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ABSTRACT 

A question that often arises about the principles under- 
lying the Brown-Twiss stellar interferometer is "HOW can 
interference phenomena occur with light produced by inco- 
herent sources?" Starting from the familiar interference 
pattern produced by two coherent sources, one can proceed 
in simple steps to a picture of two incoherent sources pro- 
ducing an interference pattern that moves about at random. 
This randomly moving pattern leaves behind a "footprint" 
in the form of the intensity autocorrelation function. This 
report describes how the autocorrelation function for an 
extended, incoherent source may be constructed. It is 
this function that is measured by the Brown-Twiss stellar 
interferometer. 
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AN AUTOCORRELATION APPROACH TO THE 
BROWN-TWISS INTERFEROMETER 

by 
Frank C. Jones 

Goddwd Space Flight Center 

INTRODUCTION 

The physical principles underlying interference phenomena, such as the pattern produced by 
a diffraction grating o r  a double-slit interferometer, are understood by practically everyone who 
has studied physical optics. However, 10 o r  more years  after the basic papers of Brown and Twiss 
(References 1 and 2) describing the principles and operation of their post-detection stellar inter- 
ferometers, much confusion still errists in the minds of many physicists concerning the fundamental 
concepts employed. This condition persists in spite of the considerable number of published papers 
(Reference 3) that have covered the phenomenon in great detail. 

There appear to be two main areas of confusion. The first concerns the correlation of arrival 
times of two separate photons at two separate detectors. This situation appears to contradict a 
basic principle of quantum electrodynamics: as stated by Dirac, (Reference 4)  "Each photon then 
interferes only with itself. Interference between two different photons never occurs." 

This question has been answered quite clearly by Purcell (Reference 5) and Mandel (Reference 
6 )  to the effect that, while two photons cannot interfere with each other, they may be correlated by 
virtue of their being bosons and their tendency to clump together in phase space. It would be diffi- 
cult to improve on the clarity of the treatment of the quantum problem found in Reference 5 and 6. 
Therefore, only a brief discussion of this matter is given in Appendix Afor background. In fact, 
this treatment leans heavily on that of Mandel (Reference 6). The primary result of this discussion 
is that the operation of the stellar interferometer can be understood entirely from the point of view 
of classical electromagnetic theory-a point that has been emphasized by Brown and Twiss (Refer- 
ence 2). In fact, the validity of the semiclassical approach to a wide variety of electromagnetic 
phenomena has been demonstrated recently by MAndel and Wolf (Reference 7). 

The second question is purely classical in nature: ''How is i t  possible to have any kind of 
interference phenomena associated with light from incoherent sources? " Although this question 
has been discussed extensively, i t  still remains somewhat of a puzzle to those not familiar with the 
literature on the coherence properties of radiation from incoherent sources. A thorough review of 
this subject and extensive references have been given by L. Mandel and E. Wolf (Reference 8). It 
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is to this question that the present paper is addressed. The following paragraphs describe the 
spatial dependence of intensity correlations, starting with the simple, first-order interference 
pattern produced by two coherent sources and proceeding the physical principles of the post- 
detection stellar interferometer of Brown and Twiss. 

SPATIAL DEPENDENCE OF INTENSITY FLUCTUATION CORRELATION 

The essential element in the post-detection interferometer is an electromagnetic radiation 
detector whose response is proportional to the intensity I of the radiation. This can be a radio 
receiver with a "square-law" detector circuit or, in the optical region of the spectrum, a photo- 
electric cell. In Appendix A it is shown that, although the photoelectric cell responds to individual 
photons, this fact can be ignored for the purpose of studying the statistical correlation between the 
output of two separate detectors, and its output can be assumed to be directly proportional to the 
classical intensity. 

In reality, however, detectors do not have zero resolution time and also do not have an output 
O( t ) that is directly proportional to the instantaneous intensity I( t ); the appropriate quantity will  
be ~ ( t ) ,  where 

I ( t ) d t  
u ( t ) a  11, 

In this expression, T represents the resolution time of the detector. If the coherence time A t  of 
the radiation is defined as the characteristic time during which the intensity varies only slightly, 
and i f  T<<At  , we have 

u ( t ) a T I ( t )  . (2) 

This assumption is quite reasonable for the radio-interferometer (Reference 1) but not in the optical 
case (Reference 2). The complications involved in the case where T 2 A t  in no way change the basic 
principles to be considered, but they do make the treatment more difficult. For this reason, we 
shall assume that the output of any detector under discussion is directly proportional to the instan- 
taneous intensity of radiation falling upon it. 

In the operation of the post-detection interferometer, two detectors, A and B ,  are separated by 
a distance 6 .  Their outputs are passed through filters, which remove the steady component and 
allow only the fluctuations to pass. The filter output is proportional to I(  t ) - (I), where the brackets 
( ) represent a time average. The outputs from the two filters a r e  multiplied together and time- 
averaged in a circuit called a correlator; the output of the correlator C A B  is therefore 
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Figure 1 -Post detection interferometer block diagram. 

Figure 1 is a schematic representation of this 
arrangement. 

It is desirable now to examine the rela- 
tionship between the correlation of intensity 
fluctuations in two separated detectors and the 
structure of the radiation source. We start with 

' 2  
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Figure 2-Instantaneous interference pattern 
produced by two sources. 

the simplest possible picture of two sources? 1 and 2, located at r ,  and r2 (Figure 2), each radiating 
a monochromatic wave of frequency - and amplitudes A, and A,. At first, consider their ampli- 
tudes to be constant. However, each source wi l l  have a phase, : ,( t ) and i,( t 1 , that wi l l  change 
with time in a random way, but with d.r dt  ?: 1 A t  << A .  The important point to note is that, although 
the two sources have no fixed relative phase, at any given time a certain instantaneous phase dif- 
ference, I , ( t  ) - i, ( t  ), does exist. Neglect of this point causes much of the confusion concerning 
the possible e-xistence of interference phenomena for  incoherent sources. 

A t  the origin of the coordinate system, the amplitude from both sources is given by 

A = A, exp i [r, + Lt - (t - r l  c ) ]  .t A, exp i [ rz  + + f 2 ( t  - r 2  41 . (4 1 

In this expression, the amplitudes A ,  and A, are the amplitudes at the origin from source 1 
and source 2, respectively, and r , and r 2  are measured in wavelengths c . for simplicity. 
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The corresponding intensity wil l  be given by 

(5 1 I ( t )  = A: + A: + 2 A 1 A 2 c o s [ r 1  - r 2  + +1 (t - rl/c) - 4 2 ( t -  r,/c)] . 

If we move to a point at a distance x away from the origin, keeping t fixed, and assume that 
(this is extremely valid for earth observations of astronomical objects), the distances x << r 1, r 

from the sources to the new position are given by 

r l ' a  r l  - i?, * x ; r i z  r 2  - E, x , 

where E = r/r , a.unit vector. 

The intensity at the point x (since we may safely take Al(x) = A, etc.) is 

(6 ) I ( x ,  t )  = A: + A: + 2 A 1 A 2  cos - r 2  - x + e 1 2  + 9,, (x, t)] , 

where e 12 = E, - E, and, for small  values, is just the angular separation between sources 1 and 2; 
cp12 ( x ,  t )  is the new relative phase angle given by 

We may now ask to what extent Equation 6 represents a well defined interference pattern. Note 
first of all that the overall phase of the cosine function is unknown, since r l  - r 2  (to within a 
wavelength) and the phase factor cp are not known. However, the behavior of Equation 6 as a 
function of x is well defined if the phase angles do not change appreciably (if they do, they change 
in a random way). To assure this, the condition E, . x R, E2 * x << c A t  must exist since &( t ) is 
essentially constant for times that are. small compared to A t  . This can be achieved by requiring 

,$, = 0; however, this would make x * e ,, = 0 ,  and we would have no dependence on x . 
The best compromise, therefore, is to set (x /2) . (P1 t f , )  = 0, o r  in other words to stay on a plane 
perpendicular to the average direction of the sources (see Figure 2). In practice (References 1 
and 2) this is achieved by inserting a time delay in the circuitry of the detector at x equal to 
- 6 t  = (112)  (E, + E,) 

= E, . 

X/C , which has the same effect on the arguments of 41 and 4*.  

Using either approach, the arguments of c $ ~  and C#J~ may be written as 

t - rl/c + E, * x/c - (1/2) ( f ,  + r2) * x/c = t - rl/c + e,, .x/2c 

and 

t - r 2 / c  - e 1 2  * x/2c 
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respectively. We now require that e 12 x << 2cAt. But we have required d4/dt z I/& << and, 
since w = c in our units, 2cAt >> 1. Therefore, e 1 2  - x may vary through many times 271 without 
appreciably changing 4, or 4,. 

With these considerations Equation 6 can be written 

I ( x ,  t )  = I ,  + I, + 2 ~ C 0 S [ B l 2  * x + @,,(t)] 1 

where w e  have dropped the constant (and unknown) factor r ,  - r ,  and have written I ,  and I ,  for 
A' and A:, respectively. Thus we have a standard coherent interference pattern-but one that is not 
stationary. It jumps from place to  place, staying in one spot only for t imes l e s s  than At. It 
would be extremely difficult to determine its structure ( and hence e 12 , which would be of astro- 
nomical interest) by taking its photograph-although this has been done for the interference fringes 
produced by the light from two l a se r s  (Reference 9)-or by scanning it with a single phototube. On 
the other hand, it is important to realize that the spatial pattern represented by Equation 7 has a 
certain internal structure that is independent of its overall position. The internal structure of a 
function can be described in terms of its autocorrelation function (Reference lo), which is a meas- 
ure  of how the values of a function at two points separated by a fixed amount are related. 

For a given function F( X )  the autocorrelation function $( 6 ) is defined by 

x / 2  

F ( x ' ) F ( x '  + 6) dx' . ,J,(s) = lim- 1 
x-m X 

It is easy to see that if  F(x) is a periodic function with a period X ,  

x + x  

F ( x ' )  F ( x '  + 6) dx' , (9) 

which is independent of x . Forming this quantity for the intensity pattern (Equation 7) gives 

(10) I ( x ' ,  t ) I ( x '  +6, t ) d x '  = ( I ,  +I,)* + 2 1 ,  12cos(B12 ' 6) , 

where 

Equation 10 is independent of x and the phase @,,(t). This quantity, viewed as a function of 6 , 
allows one to extract the physically interesting parameter e l * ,  even though there is no 
information about the position of the interference pattern. 
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From our point of view, the significance of the quantity 3 (6 ) lies in the fact that changing the 
phase angle alz is equivalent t o  changing (e , 2  e X )  . Therefore, the integral over x in Equation 10  
can be replaced by an integral over Q , ~ :  Thus, 

PV 

I (x ' ,  t ) I ( x '  + 6 ,  t )  da,, 

E we take a time-average of the integrand I (x ,  t ) I ( x + 6 ,  t ) , the phase angle al will  vary 
randomly and uniformly over the range 0 to 277, and we will  have performed a Monte Carlo integra- 
tion of Equation 11. Therefore, 

Equation 12 demonstrates the underlying principle of the stellar interferometer of Brown and 
Twiss. It shows that two sources of radiation that have no fixed phase relationship can cause the 
intensity at two different points to be correlated. Furthermore, the correlation depends on the 
separation of the detectors 6 and the separation of the sources e , 2  in a way that is very reminiscent 
of the interference pattern that would have been obtained had the sources been coherent. This is not 
surprising since the correlation pattern is closely related to the underlying interference pattern 
that is moving about too rapidly to be seen. The picture of the sources considered so far is very 
simple and not very realistic. In the following paragraphs, the picture wi l l  be refined to resemble 
a real astronomical object; the basic principle will  remain the one expressed in Equation 12. 

REFINEMENTS OF THE MODEL 

The foregoing paragraphs described sources that radiated a scalar amplitude A. The descrip- 
tion therefore corresponded to a completely polarized source o r  to measurements made with aligned 
polarizing filters placed over the detectors. The treatment of partially polarized sources is rather 
complicated and will  not be attempted here. However, the extension to completely unpolarized 
sources is almost trivial if one assumes that waves of opposite polarization are completely uncor- 
related and also remembers that they do not interfere with each other. Thus, for completely un- 
polarized sources, = I~ = 1/2, and 

From this, 

( ~ ( x ,  t ) q x  + s, t ) )  = ( I ~  + I,), + I, I ~ C O S  ( e l z .  9) . 
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Combining Equations 12 and 12' into one equation gives 

( I ( ~ ,  t ) I ( x  + 6, t)) = ( I ~  + I,), + 71, I , C O S  (e , , .  6) , (12") 

where y = 1 for completely unpolarized light, and y = 2 for completely polarized light. 

It is a straightforward matter to generalize Equation 12" for the case of N sources with direc- 
tion vectors G i  ; thus 

where 

At this point, a rather peculiar fact becomes apparent. Until now the point oscillators have been 
described as radiating a constant-amplitude wave with only the phase varying at random. There- 
fore for a single source, I 
in Equation 13 to coincide at a point to form a single source (setting e 

= const., and (I ;) = (I i ) z .  However, allowing N of the point sources 
= 0), gives 

(I(x) I ( x  + 6 ) )  = (I,) 

I i  I j  . 
i # j = 1  

This situation indicates that there is no longer a simple, point source with constant 
amplitude, but rather one whose intensity fluctuates in time so that (I~) > (I)~. Realizing that 
any macroscopic radiation source (where macroscopic implies a dimension that is very large 
compared to the wavelength) is in fact composed of many microscopic oscillators, we see that 
our "point" sources should be considered as being composed of many, small identical oscillators. 
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To answer the question of how many oscillators should contribute to one source, consider Equa- 
tion 14 for N equal oscillators where = (I)/N. Thus, 

(I,) = (I)2 + $  2 I i  I j  
i # j = l  

= (I)2 (1 + $ -  &) 

Choosing N = m gives for any point oscillator the relationship 

(Ii2) = ( 1  +%) ( I i ) 2  

It may be stated that the picture of a point source composed of a very large number of 
oscillators, all oscillating with a steady amplitude but constantly changing phase, is not very 
realistic. This is a valid objection. However, in Appendix B, it is shown that a far more 
realistic model of a radiation source also yields Equation 16. This fact is not too surprising; 
it is merely one more example of the statistical law of large numbers. This law asserts that the 
probability distributions of a quantity that is a sum of N random quantities approaches a gaussian 
as N becomes infinite. In our case, this means that the statistical properties of the output f rom 
N oscillators become independent of the properties of the individual oscillators as N becomes 
very large. 

Thus in deriving the expression for the autocorrelation of the intensity (Equation 12) we should 
have taken time-averages of the individual terms, taking into account the fluctuations of I ,  and I , .  

Equation 12" becomes 

and instead of Equation 13 we have 
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Applying Equation 16 and noting that (I I j) = 

different sources are independent, gives 
(I i) (I j )  , since the intensity fluctuations of two 

+ $ (Ii)(Ij)  [1 + - ; i ‘ O ”  Y ( e i j  
i j51 

Allowing these sources to coincide to form one source will  give 

(I2) = (1 + %) 2 (Ii)Z + (1 +3) 2 (Ii) (Ij)  
i = 1  i # j = l  

= (1 +$) 2 (Ii)(Ij) = (1 t3) (E i = l  (Ii))2 
i ,  j = 1  

= (1 +%) ((I))2 I (20) 

which is the same as Equation 16 for a point source. This expression shows that an infinity of 
oscillators plus several other infinities of oscillators behaves like an infinity of oscillators. 

Equation 19 can be cast into a form that is quite suggestive; recalling that e = r^ - r^.  1’ 

(I(x) I(x + 6)) = 2 (I) (Ij)  [1 + 2 Y C O S  (Ei  . 6 - G j  * 6)] 
i ,  j=1 
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The generalization from N discrete sources to a continuous distribution of sources is im- 
mediate. With the substitutions (Ii) - I (? )dn ,  Z -, J, Equation 21 becomes 

I 

where F(S) is the source brightness per solid angle in the direction C.  

Returning to Equation 3, we may identify I, with I (x ) ,  and I, with I ( x + 6 ) .  It is easy to 
verify that (I(x)) = ( I (X  + 6)) = {I); therefore Equation 22 can be substituted into Equation 3 
to obtain for the output of the correlator 

c,, OC [ (UX) I ( x  + 6)) - (IC.)) (I(x + 6))] [%lJF(G) exp (i; . 6) dn . (23) I7 
The quantity F(6 ) = J F( C) exp ( iG 
eter. By determining this quantity as a function of 6 ,  the complete brightness distribution over the 
face of a star F(G) may be determined, using the inverse Fourier transform 

6 )dn is the quantity determined with the Michelson interferom- 

- 
With the post-detection interferometer, only IF(6 ) I 
tion about the phase of F ( 6 ) .  We are ,  therefore, unable to reconstruct F(C) uniquely without making 1 

additional assumptions. 

can be determined, and there is no informa- 
-u 

The foregoing result has been obtained under the condition that db'dt be small compared to 
the frequency W .  This is equivalent to assuming that the source is quasi-monochromatic, since 
any change in 4 introduces additional frequencies to the wave, and that the condition d4'dt << w is 
the same as &J << w ;  in other words, we are dealing with a narrow band of frequencies. If this 
condition is relaxed, Equation 7 is no longer valid since the phase difference a,, cannot be considered 
as independent of x .  Because of this, Equation 12 should be replaced by 

( I ( x ,  t )  I ( x  + 6 ,  t)) = ( I 1  + I,)2 + 21, I , C ( ~ , ,  . 6) , 

where 

c(e,, 6) = 2 ( [  e,, . x + a l Z ( x ,  t )  I [  COS e,, x + e,, 6 + a 1 2 ( x  + 6, 
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If we write Q l 2  (x  t 6 ,  t )  = m l z  (x ,  t) + Am,, ( x  + 6 ,  t ) ,  we can expand the cosine functions to 
obtain 

+ c o s  a l 2  sin a12 cos A@,,) + sin' ( e l 2  . x)(sinz al2 sin A Q ~ ~  

where the arguments of a12 and Am,, a r e  understood. We shall now assume that m12 performs a 
random walk so that the distribution of A m l z  does not depend on Qlz . The primary justification for 
such an assumption is that any natural model of a light source would have this property. 

Recall that a uniform distribution of a12 implies 

1 
(cos2 a12) = (sin2 m 1 2 )  = - 2 

and 

(sin a l 2  cos mlZ) = o ; 

thus Equation 27 becomes 

c(e12 6 )  = cos ( e l 2  6 )  ( cos  A Q ~ ~ )  - sin ( e l2  6)(sin A@.,,) 

= Re [exp (iolz * 6 )  (exp (iAmlZ))] , 

b -  



where R~ means the real part, and ( exp(iAQlz))  can depend only on e l Z  6 (not on X) since we 
have assumed throughout the discussion that the statistical properties of the source do not depend 
on time and the arguments of QlZ are just retarded time. 

The development from this point on proceeds exactly as before with the simple substitution of 
6) for cos ( e l z  . ti). Recall that A@,, = MZ - M1; thus Equation 21 becomes the function C ( O l z  

= (I}' t 5 2 {Ii) exp (isi . 6)  (exp (io+i)) x (Ij) exp ( -  i G j  ' 6) (exp (- in+j)) 
I ,  j = 1  

Before proceeding, pause and consider the function {exp )) . Forming the autocorrelation 
function of the amplitude A i  ( t ) gives 

The Fourier transform of $ ( T )  is 

r m  

where ( 0 ' )  is the transform of $' ( 7 ) .  The function $ ( w ' )  is called the normalized power 
spectrum (Reference 10) of the amplitude A i  ( t  ) . It has this name because it represents the 
relative amount of power radiated in the frequency interval w' and w'  + dw '  (Reference 10). 
Therefore writing 

, a J  

( exp  [iwi ( T ) ] )  = (27r)-' zf ( w ' ) e x p ( - i w ' ~ )  dw'  , 
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and substituting this expression in Equation 29 gives 

Abandoning the practice of writing lengths in units of the wavelength gives 6 - 6 / h  = 6 d c .  We 
also have T~ = C i  . SIC and therefore can wr i te  

Assuming that all of the sources have the same spectral distribution, i.e., Zir ( w ' )  = $' (w') for 
all i , we may go to the limit of a continuously distributed source and wr i te  as the equivalent of 
Equation 23 

c I - m  

This result is valid for any spectral distribution, assuming that the detector itself is not frequency- 
dependent. In any real situation, $ ( w '  ) should be multiplied by the frequency-response function of 
the detector since any real  detector is equivalent to an ideal detector with a frequency filter placed 
in front of it. 

From Equation 34 it can be seen that if (w'  ) is sharply peaked about a particular frequency 
(quasi-monochromatic), we obtain the previous result, Equation 23. The finite bandwidth of the 
input radiation causes a loss of information in the sense that the function ( 6 d c )  gets "smeared 
out" over the frequency distribution. For example, if the characteristic size of the source is 
0 ,  ? will  have structure over values of 6 of order C/W 0 o r  larger. If the spread in frequency 
A w is such that A ( C / W  0) = ( C / W  0) AW/W % C/W 0 or  A W/W % 1, the structure will  be lost and 
even the overall size of the source cannot be determined with great accuracy. Therefore, even 
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though the initial requirement d+/dt << w is not strictly required, it certainly indicates the best 
operating conditions, and, if it is violated such that d+/dt a W ,  it is very difficult to obtain any 
information about the source. 

CONCLUSIONS 

Beginning with the simple notion of an interference pattern that moves randomly about, one can 
proceed through a se r i e s  Of simple steps to the spatial correlation pattern of light from an extended 
source. This correlation pattern exists because so-called incoherent sources a r e  not totally in- 
coherent. There are short periods of time during which some phase-relations exist between the 
various parts of the source. During this same short period, an interference pattern exists at the 
point of observation. Since these phase-relations between the various parts of the source do not 
persist, this interference pattern is constantly shifting and changing. However, during this change, 
certain internal structures of the interference pattern are constant because of the overall structure 
of the source. The correlation pattern observed with the Brown-Twiss stellar interferometer is 
a measure of this constant, internal structure. 
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Appendix A 

THE CONNECTION BETWEEN QUANTUM 
AND CLASSICAL DESCRIPTION 

Photons in the optical range are detected primarily by means of a detector that employs the 
photoelectric effect (e.g., a photoelectric tube). In fact, the detection of a photon in a light beam 
can be defined as the ejection of an electron from the photocathode of some suitable detector. In 
this context, the concepts of photon and classical electromagnetic field are related through a single 
consideration; that is, for a photocathode illuminated by a light beam, the instantaneous probability 
per unit time of emission of a photoelectron (detection of a photon) is proportional to the instan- 
taneous intensity of the electromagnetic wave falling on the photocathode. Thus, 

where dP (1) is the probability for one, and only one, photon to be detected in a time d t ;  a is the 
proportionality coefficient. The probability for two photons to be detected is of second order in d t  

and is considered negligible. From probability theory, we know that for a finite interval of time 
between t l  and t 2, the probability for the detection of n photons is given by the Poisson distribution 

where 

Unfortunately, unless the intensity ~ ( t )  is a constant, the distribution Qu (n )  is not observable, 
for if one took statistics on successive intervals ( t l ,  t Z ) ,  ( t Z ,  t3) - - - ( t n ,  t n + l ) ,  one would find 
that in general the value of u (tn , t n +  1) would vary from interval to interval. Equation A2 would 
describe the distribution for only the collection of intervals that had a common value (e.g., al) 

for the variable u (see Figure Al). 
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STATISTICS TAKEN ON ALL INTERVALS WILL =YIELD POISSON'S 
DISTRIBUTION DUE TO DIFFERENT VALUES OF u; a, , a2 , a3 , ETC. 

STATISTICS TAKEN ON THESE SELECTED INTERVALS E L  YIELD POISSON'S 
DISTRIBUTION SINCE u = a, ON ALL OF THESE INTERVALS. 

Figure A1 -Sequence of time intervals hoving different values of u = 

If the variable u varies from interval to interval such that the probability of any interval 
having a particular value of u is given by p(u) , the probability of detecting n photons in any 
interval selected at random will be given by the Poisson distribution averaged over all possible 
values of U; that is, 

It would be well at this point to ask what possible meaning can be given to the instantaneous 
intensity I( t ) or its integral over a n  interval u (t n, t + 

way to determine their values. The number of photons detected in any given interval has no unique 
relationship to the value of u for that interval. Therefore, I and u a r e  calculational devices used 
to determine the statistical properties of photoelectrons from a photocathode. If one calculates the 
probability per unit time for ejection of a photoelectron caused by a source of electromagnetic radia- 
tion some distance away and does so strictly from the theory of quantum electrodynamics, one 
finds that this probability is proportional to the absolute value squared of a vector quantity A .  
Furthermore, i f  the source is composed of a large number of elementary quantum systems and is 
some distance away, the quantity A may be calculated to a very good degree of approximation by 
using Maxwell's equations and considering A to be the classical vector potential and hence I AI to 
be the classical intensity I ( t ) .  Therefore, although the quantities I ( u )  and u ( t n ,  tn+l)  are, 
strictly speaking, not observable (although their average values may be defined operationally), they 
are conceptually and calculationally useful quantities. 

since there seems to be no operational 
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Consider now a large number of nonoverlapping intervals of length T and the mean value and 
r m s  fluctuation of the number n of detected photons in each interval. Employing the definition of 
a mean value 

and making use of the relationship 

m 

n !  U" c ( n  - p ) !  x e x p  ( - u )  = up , 
n= 0 

we obtain 

P ( u ) u d u  = (u) . 
= som 

This may be taken to be the operational definition of (u), the average value of u . 
The mean square fluctuation of n about its mean value will  be given by 

= (n) + (<. - ( U y )  

= (n> + (nu') . 

The first t e rm on the right-hand side of Equation A7 is the result that would be obtained if 
light were a s t ream of classical particles; the statistics of the photons then would be Poissonian. 
The second te rm (Au'} , which is a measure of the fluctuations of the wave field caused by some 
sor t  of interference phenomena, shows that the deviation of photon statistics from Poissonian 
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because of their boson nature can be determined solely from an investigation of the associated 
classical electromagnetic field. In fact it can be shown (Reference 11) that the very existence 
of the classical electromagnetic field is intimately connected with the boson character of the 
photon. 

Consider now the situation where two different detectors A and B are situated at different 
points of space. For  fixed values of uA and u B ,  the emission of electrons from the two cathodes 
is completely independent, giving 

and 

P ( n A '  nB) = J J p ( u A >  u B ) p u A , u B  ( n A '  nB) duAduB . (-49) 

Equation A8 indicates the complete independence of the distributions of nA and nB for given 
values of uA and u B .  However, if uA and uB are not distributed independently, i.e., P(uA, ..) # 
P(uA) P(uB), then P(nA, nB) # P(nA) P(nB) in general, and nA and nB a r e  not distributed independently. 
In other words a correlation between uA and uB imposes a correlation between nA and nB . 

In the operation of the stellar interferometer of Brown and Twiss, the fluctuations in the 
rloutput" of two different detectors a r e  multiplied together in a circuit called a correlator, and 
this product is time-averaged. The rloutput" of a photoelectric detector will be a current o r  
voltage that is proportional to the number of photoelectrons ejected from its cathode during some 
interval of time T ,  which is essentially the resolution time of the detector. 

The averaged output of the correlator therefore is proportional to 

this output is directly expressible in t e rms  of the fluctuations of the classical electromagnetic in- 
tensity. If the fluctuations of uA and uB a r e  independent, then (uA uB) = PA) (uB),  and there is 
no averaged output from the correlator. 
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Appendix B 

A DETAILED SOURCE MODEL 

Consider a model of a ra( iation source that is considerably more realistic t a n  1 le one em- 
ployed in the section entitled "Refinements of the Model." Instead of constructing the source from 
a large number of oscillators with constant amplitudes and phases that change randomly over a 
period of time A t ,  we shall construct the source from a collection of oscillators that turn on at 
random times with random starting phases and then after a time A t  turn off again. This model is 
suggested by the picture of a hot gas whose atoms are constantly being excited through collisions, 
resulting in the radiation of their extra energy during a short time A t .  The method to be used was  
employed by Rice (Reference 12) in his calculations of the "shot effect;" however, for a different 
treatment of the same problem the reader is referred to a paper by Janossy (Reference 13). 

Consider a collection of oscillators situated at a point S . If the i t h  oscillator at S turns on 
at t = 0 ,  it will  produce a field at R given by 

A i ( t )  = si exp( i4 i )  F(t  - ISRI/c) , (B1) 

where +i is an overall phase angle, and Si is a unit polarization vector perpendicular to the line 
joining S and R .  F( t ) describes the characteristic output of an oscillator and has the properties 
~ ( t )  = o for t < o and F( t )  2 o for T >> A t  . Since the retardation factor I S R ~ / C  will  apply equally 
to all times at R, we shall drop it in subsequent calculations, remembering that any event at time 
t at S corresponds to an effect at R at time t + ISRt/c. 

The total field at R caused by many oscillators turning on at t imes t i  with phase angle +i 

and polarization e ^ ,  is given by 

A ( t )  = e^i exp(iq5i) F( t  - t i )  
I 

The field produced by N oscillators will  be considered to be a random function of the 3N random 
variables q 5 i ,  e^i , and t i .  If the random variables have probability distribution P ( + i ) ,  P(Gi) , and 
P ( t i  ) , the average of a random function can be defined as the weighted integral of the function over 
all values of the random variables, 

(F(& e ^ i ,  ti)) = b(+i )dq5i  dtiF(q5i ,  e ^ i ,  t i )  . 
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The normalized autocorrelation function of the function F( t ) is defined as 

where it is assumed that the integrals exist. It is easy to verify that cp ( 0 )  = 1 and ~ ( - 7 )  = @*(r). 

Since F( t )  is essentially zero everywhere except for 0 5 t 5 A t  , @ ( T )  is essentially zero every- 
where except for -At '< r 5 A t  . 

Consider again the amplitude function, Equation B2. For a process that is stationary in time, 
the sum should be taken over an infinite number of oscillators over all times. Since it would be 
difficult to calculate averages with this quantity directly, we shall calculate with the subsidiary 
quantity AT( t ) , which is the amplitude produced by all of those oscillators with turn-on t imes t i  

such that -TI2 5 t i  5 T/2. At the end of the calculation, we shall always take the limit T-  a. 

It is assumed that the t i  are independently and uniformly distributed with a probability per 
unit time 7 ,  where 7 T  is the average number turning on in time T. The phase angles C # J ~  are 
independently and uniformly distributed between 0 and 2 ~ .  The distribution of e^i will  be con- 
sidered later. 

The averages can be calculated in three steps; first, (F)TN is calculated for the case where 
exactly N oscillators turn on in time - T/2 5 t 5 T/2.  We will  then calculate 

where PT(N)  is the Poisson distribution 

($>N exp ( -  qT)  . 

Finally, 
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Now consider the intensity 

I ( t )  = A * ( t )  * A(t )  = (6, * G j )  exp(i+j  - i+ , )F*( t  - t i ) F ( t - t j )  
i j  

r 1 

* 6 j ) e x p ( i + j  -iq5i)F*(t - t i ) F ( t - t j )  [ ,i;l 
Only those t e rms  in the sum where i = j give a non-zero contribution after the phase angle 
averaging; therefore (recalling 6,  . e ^ ,  = l), 

T / 2  
N 

(ICt>) N T  = d t ,  IF(t - t i ) \ '  

Since the time interval T can be as large as desired, as long as t is not too close to 
by the infinite integral to obtain - T/2 or  T/2 , we may replace the integral over IF I 

Also, 

The passage to  the limit T + is now trivial, and thus 



The average intensity is just the intensity produced by a single oscillator multiplied by the 
average number of oscillators turned on per unit time-a rather intuitive result. The result is 
independent of the state of polarization, Le., independent of p(.^,) . 

Consider now the autocorrelation function of the intensity (#(7)> defined as # ( T )  = 

( I ( t )  1 ( t  + 7 ) ) :  

x F * ( t - t i ) F ( t - t j ) F * ( t  + 7 - t k ) F ( t t 7 - t 4 )  . 1 
Again phase angle averaging gives a zero result unless i = j and k = 8 , or i = 4 an( 

or i = j = k = 8 . This gives 
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Converting the integrals to infinite integrals under the assumption that both t and t t T are 
far removed from -T/2 and T/2, gives 

N(N - 1 )  
t T2 ((ei * e k ) 2 )  1 J:m F * ( t ) F ( t  + T ) d t  

where 

Averaging over N and taking the limit T-m gives 

+ T 2  I Km F*(t)  F( t  + 7 )  d t 1 2  ((gl . 6,)') 

Turning now to the quantity (( G i  . 6,) z }  we define two states of polarization, completely 

e^ , ) ' )  = 1 for completely polarized and (( G i  * 6k)2) = 1/2 for completely unpolarized. 
polarized by P(6,) = s(Gi - 6 ' )  and completely unpolarized by P(Gi) = (2n)-'. The quantity 
( ( g i  
Equation B14 can be simplified to be 
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where y = 1 for unpolarized and = 2 for polarized. 

In the limit of a very large 77 (equivalent to a large number of oscillators being on at any given 
time), we may neglect the t e r m  linear in 17 compared to (I) 2 ,  which is quadratic in 17, giving 

a familiar result (Reference 14). For T = 0 ,  @( t ) = 1 ; this gives 

our desired result. 
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