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Preface iii

This is the final report of a feasibility study of an experi-
ment to measure the first-order precession, predicted by Einstein's
General Theory of Relativity, of an earth-orbiting, free gyroscope.

The results of this study show that a relatively inexpensive experiment,
using an unshielded gyro and a passive data-readout and telemetry
system, is now feasible for measuring this precession to an accuracy

of about 1%. This study has been supported by the National Aeronautics
and Space Administration under Research Grant NsG-443.

A report of this size, covering many disciplines, required
the cooperation and results of investigations of many researchers
who are no longer with the Coordinated Science Laboratory. We are
indebted to Dr. Daniel Alpert, Dean of the U. of I. Graduate College,
who as the previous director of the Coordinated Science Laboratory,
was instrumental in proposing and initiating this project and who
helped;guide it in its early years. We were fortunate to have
frequent consultations with Dr. Arnold Nordsieck, inventor of the
electric vacuum gyro. The original impetus for this study had its
origin in the successful development of this gyro while Dr. Nordsieck
was a member of the Coordinated Science Laboratory. Dr. R. D. Palamera,
whose doctoral dissertation entitled, "Syntheses of a General
Relativity Experiment," introduced us to many of the problems
associated with this study, participated in some of the analyses
during a summer spent with the Laboratory. Dr. John Ray, a theoretical

physicist specializing in relativity theory, guided the group through
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the intricacies of that part of the theory (first developed by
L. I. Schiff) that is fhe basis for this experiment.

Among the members of the Laboratory, we are especially
indebted to Professor Howard W. Knoebel, leader of the Aerospace

Group, for his many original ideas, helpful discussion and guidance,

and to Professor Duane H. Cooper for devising the present overall
plan of the experiment. | :
Professor Cooper also had the major responsibility for
preparing Chapters 2, 3 and 9. Computations associated with Chapter 9 L
were programmed for the CDC 1604 computer by Jack Bouknight.
Bill Kirkwood performed the associated experiments measuring photo-
graphic film noise for the type of film used in the Baker-Nunn
cameras of the Smithsonian Astrophysical Observatory and recording
images simulating ones which would be obtained by those cameras.
Chapters 4 and 8 were prepared by James L. Myers. This material
forms part of a doctoral thesis which will soon be submitted to the
Department of Aeronautical and Astronautical Engineering of the

University of Illinois. The section on micrometeoric cratering was

énalyzed by Professor Harold Barthel of the Aeronautical and Astro-

nautical Engineering Department, who spent the summer with the

Laboratory. Gerald R. Karr, a doctoral candidate in the Aeronautical

and Astronautical Engineering Department, prepared Chapters 5 and 6.

Some of this material was written in partial fulfillment for a

Master's degree under Professor S. M. Yen of CSL and the Aeronautical
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and Astronautical Department. Dominic Skaperdas had the major
responsibility for preparing Chapters 7 and 10. Donald A. Lee
prepared Appendix A of Chapter 7. Chapter 10 was taken from
CSL Report R-330 by T. C. Chen, J. Hsu and D. Skaperdas. The
material for Chapter 11 was taken from experiments performed by
Clark W. Bullard.

Further acknowledgment must be made to the assistance of
L. Schusterman, N. Mehta, C. Sutton, H. Morrison, K. Hasz,
L. Hickok, and E. Marzullo, and to the helpful interest of the
staff of the Laboratory. Acknowledgment is particularly owed to
the encouragement and guidance of the Laboratory's present Director,

Professor W. Dale Compton.
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1. TINTRODUCTION

Two general relativity effects, which theoretically predict
a precession of the spin axis of an ideal orbiting gyroscope, have

been postulated by L. S. Schiff.l’z’3

These effects, (1) the geodetic
precession arising from motion through the earth's gravitational
field, and (2) the Lense-Thirring precession, representing the
difference between the gravitational field of a rotating and non-
rotating earth, have magnitﬁdes of, respectively, 6 and 0.1 seconds

of arc per year for an earth satellite at 300 miles altitude. The
prospect of developing a gyro of sufficient accuracy to measure the
first effect appeared feasible when the results of CSL's experience

with the electric vacuum gyro >3

were extrapolated to the orbital
conditions of low acceleration (less than 10_6 g). Gravity-induced
torques were by far the most disturbing effects in the electric
vacuum gyro. Theoretical studies undertaken by CSL and other
groups6’7’8 have resulted in the unanimity of opinion that there is
no known fundamental limitation to the feasibility of a satellite gyro
experiment to measure the precession predicted by general relativity.
In the chapters that follow, the Coordinated Science
Laboratory presents in detail the results of theoretical studies
which have led to a proposed satellite gyroscopé experiment for
measuring the first-order general relativity effect. The signifi-

cance of this effect, and accuracy considerations for measuring it,

are described more fully in chapter 2.
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The proposed experiment would consist of a passive, un-

shielded, spin-stabilized gyro with an appropriate device for

imparting a spin to the gyro about a preferted axis and a thrust to

separate the gyro from the pay-load satellite.

The gyro would be in the form of a polyhedron of solid, )
poorly conductive material with a built-in preferrgd moment-of-
inertia axis. Read-out of the gyro spin-axis would be accomplished
by terrestrial observations of solar reflections from optical mirrors
placed on the gyro polyhedral facets. The main advantage of the
proposed experiment is to transfer the system complexity from the
satellite to terrestrial stations. The experiment is described more
specifically in chapter 3.

The simplification of the gyro satellite to a completely o
passive, unshielded device imposes tighter tolerances on other
parameters. The most severe problem is the spip-axis drift due to

gravity~gradient. An optimization of gyro parameters for reducing

gravity-gradient effects, including those due to micrometeoroid

erosion, is described in chapter 4. All other known spurious torques o
are analyzed and their effects evaluated in succeeding chapters.
Thus, the effects of atmospheric drag on the unshielded satellite gyro

are shown in chapter 5 to be negligible with respect to the first order

relativity effect at altitudes greater than 600 miles. An important
experiment for measuring density, thermal and momentum accomodation

coefficients using the proposed system, is also described in this chapter.
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The effects of solar radiation pressure and heating are described in
chapter 6. Tolerances on gyro electrical conductivity are gpecified
as a result of studies of electric, magnetic and electromagnetic
torques described in chapter 7. Read-out of the gyro spin-axis
precession is discussed in chapters 8 and 9. Chapter 8 presents
possible solar-reflection angle distributions for the satellite gyro
for various orbital inclinations. Chapter 9 describes the optical
method and accuracy with which the gyro spin-axis can be determined.
The burden on the optical read-out method can be considerably reduced
if any gyro spin-axis wobble due to inaccurate initial spin~up or
micrometeoroid collision can be damped out in sufficient time.
Damping requirements impose an additional constraint on possible
gyro materials, as described in chapter 10. An analysis of possible

initial spin-up devices and their requirements is described in

chapter 11.
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2. SIGNIFICANCE OF AN ORBITING-GYRO 5

TEST OF GENERAL RELATIVITY

Measurement of the spin-axis precession of a torque-free

orbiting gyroscope is of great interest to the scientific community,

for it offers the possibility of testing a fundamental theory of

A
o

physics in new ways. The Einstein Theory of General Relativity

predicts a precession related to its description of the gravitational

&

pasiaish

field by means of a space curvature. Three aspects of the theory
\ could, however, be tested in new ways: (a) the applicability of the
/k theory to describing the motion of bodies other than simple point
masses, (b) the possible necessity for including certain corrections
j to the space-curvature theory, and (c) the description of fields in

the neighborhood of rotating gravitational bodies. Of these, (a) and

it

(c¢) have never been hitherto subjected to test. The latter would be
. marginally tested with the precision that is contemplated for the

experiment here proposed, so that items (a) and (b) remain as the ones
i of principal interest.

Item (b) has been tested principally through observing the

E; motion of the perihelion of the orbit of Mercury. The test has long
i been regarded as confirming the Einstein theory with an accuracy of one
percent. Recently, however, Dicke has shownl that there is an

observable oblateness in the figure of the sun sufficient to

account, on purely classical grounds, for some 8% of the relativistic

component of the orbital precession. He argues that this descrepancy

3
i
t
:
i
i

may require the addition of a scalar term to the characteristically

tensor field equations of Einstein. Whatever theoretical accommodations
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TEST OF GENERAL RELATIVITY

the discrepancy, if real, may demand, it is clear that such an

accommodation would have significant implications for all aspects of
astrophysics related to unusually massive systems and the large-

scale aspects of the cosmos. Included in such aspects would be the

interpretations of mainly extra-galactic observations, whether by

2

optical astronomy or by radio astronomy, and whether of other

galaxies, novae, or the more-exotic pulsars. Thus, it is particularly

e g

important to find an independent check of this 8% discrepancy. The

orbiting-gyro experiment could provide such a check, since the

scalar-tensor theory predicts2 a discrepancy also of about 87 in the

relativistic spin-axis precession. ?
In the absence of a scalar contribution, the Schwarzschild

metric in polar coordinates,

ds? = cZat?(1-2v/c?)-dr?/ (1-2v/c?) - (8% +sin®0dp®) 2, (1) )

is the solution of the Einstein field equations in the spherically-
symmetric case. The departures from the flat-space metric appear in 4

both the time-like part, in the coefficient of czdtz, and in the

space~-like part, in the coefficient of drz. In both these parts, the

flat-space metric would obtain if the coefficients were unity, that is,

if the term proportional to the gravitational potential V did not

appear. This term is 5

v/e? = aM/rc?, | (2)

Conclmeioins il
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| TEST OF GENERAL RELATIVITY

apart from the factor 2, in which G is the gravitational constant and

M is the mass of the gravitating body for which the potential

obtains at a radial distance r. As always, c is fhe speed of light,
and division of V by c2 results in a dimensionless quantity.

The appearance of the term shown in (1)'for the time-like
% part is identified with the gravitational red shift. This has been

3
quantitatively checked to an accuracy of 1% in experiments wusing the

s

. Mossbauer effect. The necessity for a similar appearance in the

space-like part has been checked to an accuracy of about 107 in

R—

measuring the deflection of starlight near the sun, as may be observed
! during a solar eclipse. As Schiff points out,4 however, these are
null-geodesic tests (the equation for the path of a light ray is

d32 = 0.) and do not challenge the validity of the theory in its

- deeper aspects, those relating to nonlinearities or involving the
motion of massive test particles (geodesics that are not null). 1In
any case, the gravitational deflection of light would, in its limited
accuracy, be deemed to test the space-like part. Similarly, the
Mercury precession and the gyro spin precession would be deemed to
test the space-like part to enhanced precession, and to test the
scalar theory, since the latter does not affect the red shift. More-

over, they would confirm, apart from testing the latter discrepancy,

the correctness of the handling of the geodesic for a massive test

particle and of nonlinear terms in the theory.
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TEST OF GENERAL RELATIVITY

The precession of the spin axis of the orbiting gyro
involves these same deeper aspects of the theory, together with one
that is new, item (a), the applicability of the theory to describe the
motion of bodies other than simple point masses. The covariant
representation of spin for a point mass was invented by Papapetrou
as a combination of first-order moment integrals spanning the space-
like volume of a vanishingly small tube, within which the particle is
represented by a nonvanishing energy-momentum tensor, which tube is to
enclose the time-like world line traced by the representative point
for the particle. Sch:’Lff4 used this representation to calculate the
motion of the spin angular-momentum vector. To obtain unique
solutions, however, certain supplementary conditions must be employed,
each of which leads to a different description of the motion. The
relationships among these were explored by Schiff showing that these
varying descriptions may be understood as specifying, in the end,
the same motion. The analysis given by Tonnelat5 follows that of
Schiff and uses the same representations.

The Russian theorists, Pustovoit and Bautin,6 object to the
complexity of the method using Papapetrou's representation, especially
in its need to invoke supplementary conditions. They prefer to base
their calculation on a Lagrangian function for each mass element in

the spinning body, from which, using an approximate superposition

principle, the Lagrangian for the whole body is obtained by integration.

B

i

Lpairsniimagl
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TEST OF GENERAL RELATIVITY

From this, the motion of the spin angular-momentum vector follows
directly. Their result agrees with that of Schiff, but the method is
used by them to show that competing linear theoriés of gravitation
will produce precessions in disagreement with that of general relativity.

Rastall7 prefers to isolate the purely geometrical aspects
of the problem from those of dynamics, for which the spinning test
particle of Papapetrou is conceptually different from a physical
gyroscope. He points out, for example, that the spin of the test
particle perturbs its own orbit, though to a negligible degree for
vanishingly small spin. This is, of course, also mentioned by Schiff.
This is related to the objection of Synge8 that a rigorous treatment
of the contribution of the spinning body's stress tensor to its
energy-momentum tensor is not obviously consistent with Papapetrou's
representation. Fastall's calculation of the precession is essentially
geometric, involving the transport of a vector along a geodesic in a
space whose curvature tensor is given in terms of the gravitational
potential. His result is for general gravitational potentials, but
reduces to that of Schiff in the spherically-symmetric case.

All of these calculations agree that the result of the
transport of the spin angular-momentum vector along the geodesic
(orbit) for a massive particle in the space represented by Eq. (1)

results in precession of the spin at the angular rate

Q= (3V/2c2)wo, (3)
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TEST OF GENERAL RELATIVITY

as seen by a co-moving observer. It is seen that the angular rate
of precession Q is proportional to the orbital angular rate w > the

proportionality constant being in terms of the gravitational potential

V at the orbit. Also, Eq. (3) is a vector equation in which the axis

)

of precession is in the same direction as the axis of the orbital

revolution. This means that the greatest angular displacement of the

spin vector will be observed when that vector lies in the plane of

I

the orbit, and that it will be observed to turn in the same direction
as the turning of the radius vector for the orbit.

While all these calculations lead to the same result,
Eq. (3), they differ in their conception of the appropriate‘relatiVé z
istic representation of the physical gyroscope. Each éalculation
also invokes an approximation that the spin angular momentum shall be N
small, a well-justified approximation but one which is invoked in a
different way in each case. Since they agree on the result, it will
not be possible to distinguish among these representations in an
experiment. The experiment would, however, be the first test of any
of these approaches to the representation of spin in a relativistic

manner, and the correctness of what these approaches share in common,

despite the logical distinctions that may be drawn, would be tested.

All of these calculations also address themselves to item

(c), the possibility that the precession would reflect the rotation of

the gravitating body (earth). These calculations use the off-diagonal

S
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TEST OF GENERAL RELATIVITY

elements of the metric tensor calculated by Lense and Thirring to
show that the additional precession would have an axis parallel to
that of the earth though the rotational motion would be opposite to
that of the earth, with magnitude (2V/5c2)(R/r)2we, in which R and
we are the radius and angular rotation rate, respectively, of the
earth, and V is the potential at the orbital radius r. (Schiff also
calculated the Thomas precession, one which would be numerically
significant if a nongravitational force were applied to force the
gyro to follow a non-geodesic, i.e., non-free-fall, orbit, aé inkan
earth-bound laboratory. For the satellite gyro this precession Would
be many orders of magnitude smaller than the geodesic precession.)
For R = 6380 mk and r = 7380 km the value of ® is about 14 times
that of w,, 8o that the Lense-Thirring precession is only about 1.4%
of the geodesic precession. It would be nearly undetected in an
experiment that measured the geodesic precession to a precision of

1l to 2 percent. 1Its detectability would be enhanced if two equatorial-
orbital experiments were done with opposing orbital directions,
because it would augment the geodesic part in one and oppose it in
the other. 1In this way, a deferrable "second shot' would provide an

indication of an effect of deep theoretical interest, also for the

first time.
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3.1. Introduction

The material of this chapter is intended to provide a survey
of the design of the proposed orbiting-gyro experiment to test those
features of the general theory of relativity and gravitation discussed
in the preceding chapter. For detailed analyses of the various
aspects of design, the reader is referred to the chapters following
the present one. The demonstration of feasibility for conducting an
experiment to measure the relativistic precession to an accufacy of
1% to 2% of its value rests upon these detailed considerations. In
the present chapter, it will be possible only to indicate the nature
of the more-important considerations and the manner of their inter-
action.

With the hope of providing an integrated view of the experi-
ment, the topics of the design of the satellite body, data readout,
readout accuracy, error propagation, environmental disturbances,
choice of orbit, and choice of material are treated in an order
differing from that of the succeeding chapters, and with differing
emphasis. VFor example, launch procedures are not discussed in this
chapter. Also, the historical development of the design is not
discussed in any detail, it being thought sufficient to sketch some

of the earlier background in the immediately-following section.

3.2. Preliminary Considerations

Because of the experience of this Laboratory in developing

the electrostatically supported gyro,l it was initially proposed that
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the feasibility of an orbiting-gyro experiment based on similar gyro
designs be studied. 1In the essentially free-fall gonditions of an
orbital experiment, the principal concerns would shift from those of
providing low-torque-inducing support to those of providing readout
accuracy of a much higher order than had been needed (for navi-
gational purposes) in the earlier gyro development. The reason is
that the angular position of the spin axis would change by very
small amounts during the course of the experiment, as may be
calculated from Eq. (3) of the preceding chapter, and it is this
change which is to be measured.

To make a sample calculation from Eq. (3) of the preceding
chapter, let the orbital altitude be 1000 km. Then, the angular

velocity in a circular orbit may be calculated to be
-3
W= 1.00x10 “rad/sec. (1)

(In practical units this would be 0.057 deg/sec, corresponding to an

apparent orbital velocity for an observer at a slant range of 1000 km

of 0.37 deg/sec, and corresponding also to an orbital frequency of

13.8 per day. The corresponding linear velocity is 7.38 km/sec.)

The gravitational potential V/c2 may be calculated first at the

surface of the earth, using the surface value of the acceleration due
. . 2 2 2 -10 .

to gravity, g, as being V/c~ = GM/Rc” = gR/c” = 7.0Xx10 ", in which

the value of R is 6380 km. Then, at orbital altitude, a value of

Kggrabbosnait
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3 DESIGN OF THE PROPOSED EXPERIMENT 15

6.0X10-10 is obtained. With allowance for the factor 3/2 the
precession rate () = 9.0X10_13 rad/sec is obtained, which in practical

units is
Q = 5.9 arcsec/year. (2)

For two angular-position observations of the spin axis, each made
with an error ¢ and spaced a year apart, {2 would be determined with
an error of &/2. Thus, if Q were to be determined to an error of
1.0%, the value ¢ = 42 milliarcsec would be required. A greater
number of observations or a more extended interval between them
would soften this requirement for the individual observations.

The concept was that of a small, spherical gyro encased
in an instrumentation system whi;h would include a facility for
readout of the gyro spin axis to an accuracy two to three orders of
magnitude beyond that hitherto achieved. There would also be
facilities for keeping the gyro centered within the instrumentation
system to maintain readout accuracy and, of course, to avoid physical
contact with the gyro. 1t was clear that, for the low relative
accelerations involved, either the electrostatic support or the
thrusting of the satellite to follow the gyro as a proof mass in
true free fall2 would very likely prove feasible. The concept would
further include facilities for high-precision telescopic star

tracking so that the spin-axis readout could be referenced to
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celestial coordinates prior to telemetry.

The obviously high cost of such an experiment, of the order

of that of the OAO (orbiting astronomical observatory) Project at

minimum, the developmental effort required to ensure su%ficient 1%
;

precision and reliability, then somewhat beyond the state of the art,

seemed necessitated by the demands for unusual precision. It seemed ‘ﬁ

clear that no physical principles would ultimately forbid the success-

e ;
Rt

ful design of such an experiment. Indeed, the group at Stanford

University was already pursuing feasibility studies along these

(R

lines, and their work since that time has brought the engineering
design of such an experiment to an advanced stage of development.3
Though their studies are continuing, it seems reasonable to believe )
that a precision of 0.1% would be ultimately attainable.

Many of the problems of complexity and reliability for

i
S

this concept seemed traceable to the fact that the gyro was to be

5

H i

shielded from its environment, and that the instrumentation system,

then, had tg be mounted on the shield to provide a means by which

£
wt
"

the orientation information could pierce this shield and be tele-
metered to earth for analysis. At CSL, interest developed around
the question as to whether the shield might be eliminated with the

hope that a significant part of the elaborate instrumentation system

might not have to accompany the gyro into orbit. The second hope

was that the orbital environment would offer so few torque-inducing
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influences that the elimination of the shield would not seriously
compromise the accuracy of a well-designed experiment. Low cost and
high reliability were the factors that would make such an alternative
appealing, then, if reasonable accuracy requirements could be met.

For an unshielded orbiting gyro, the principal environ-
mental torque-inducing influence would be the magnetic field of the
earth unless the gyro could be made to have a very low overall
conductivity such as would be characteristic of dielectrics. Thus,
if the whole of the satellite were to function as the gyro, conven-
tional electronic telemetry could not be considered as available,
once the satellite were finally separated from its parent vehicle.-
Attention focused on devising a completely passive spinning body
whose interactions with its environment would suffice to provide
information about its spin orientation, but not be so severe as to
disturb the spin significantly. The only interaction that seeﬁed to
meet these requirements appeared to be optical. Two arrangements of
promise were proposed, both requiring mirrors to be placed on the
spinning satellite for terrestrial observation.

In the earliest of these mirrored-satellite proposals, the
mirror borne by the satellite would be placed with its normal aligned
with the spin axis of the satellite. A terrestrial observatory,
suitably located, would observe sunlight reflected from this spin
axis mirror, and, in effect, measure the position of the sun as seen

through such a mirror. From knowledge of the true position of the
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sun, the orientation of the mirror normal, and hence the spin axis,

would be determined. 1In another mirrored-satellite proposal, mirrors

with normals placed at angles from the spin axis would be employed,

and terrestrial light sources (possibly using lasers) would be

directed at the satellite for reflection to terrestrial observa-
tories. The measurement would be that of incident-and-reflected-ray .%
orientations in order to measure an instantaneous orientation of a
mirror normal and thus sample a ray on the cone swept out by such a

mirror normal. From three such measurements, the cone angle and cone

L

axis (coincident with the spin axis) would be determined.*

[E—

Each of the proposals offered the promise of accurate

determinations of the spin-axis orientation on the basis of very few

[

observations. Each, however, was faced with severe initial data-

acquisition problems in the absence of accurate a priori knowledge

——

*It was subsequently learned that a similar proposal had been consid- |
ered by R. H. Dicke at Princeton University,kexcept that roof mirrors

rather than plane mirrors would be used to reflect the rays from |
terrestrial sources, The law of reflection from roof mirrors is the
same as that for plane mirrors, except that the plane containing
incident and reflected rays also contains the dihedral axis of the

roof mirror, instead of containing the mirror normal. Similarly, the

dihedral axis replaces the mirror normal as a reference against which
the equal angles of incidence and reflection are defined. Thus, re-

placement of a plane mirror by a roof mirror introduces no new elements

)
5
b
3
4

to the design of the experiment.
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3 DESIGN OF THE PROPOSED EXPERIMENT 19

of the satellite orbit and spin-axis orientation, since they each
required observing stations to be very accurately located with respect
to such a priori information. For the earlier proposal, it was
pointed out that chance naked-eye observations of the solar flash
from the spin-axis mirror, as might be reported from the population
at large or from interested amateurs, would provide for determining
a suitable location for placing a mobile observing station, provided
the observer would be able to report his position, the time, and the
general direction in which he had seen the flash all to within
easily-met tolerances. For the second proposal, a multiplicity of
mirrors (perhaps 32) were proposed to provide a reasonable proba-
bility of initial data acquisition for arbitrarily-located observing
stations.

A determined effort to solve these acquisition problems was
never undertaken because it was soon realized that the multiple-
mirror approach, using sunlight exclusively (instead of terrestrial
sources), would offer no acquisition problems, and could, at the
expense of requiring relatively numerous observations, all easily
attainable at existing satellite-observing stations, provide a high
order of accuracy. The reliability implied by using a satellite
design making for 100% Qbservab%}ity was so appealing as to capture
the exclusive interest of the CSt grogp. It is this experimental
design, then, towards which the feasibility study to be described

here was directed.
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An original goal of the feasibility study was to show that
the passive-satellite scheme would provide for a measurement of the

relativistic precession to within 10% of its value. The results of

the study indicate that the inherent precision of the method is much

better than that. Indeed, unusual weight, fabrication problems, or
demands upon orbital precision are not encountered even for a design
intended to fulfill an accuracy of 2%. The exact precision limits
of the passive scheme are unknown, and may well extent to smaller
errors than 2%. It is submitted, however, that 2% is certainly a
very interesting accuracy figure, being comparable to the precision
figure for the orbital-precession observation of Mercury, and being
sufficient, therefore, to check the claimed discrepancy in that pre-

cession.

3.3. Proposed Design of the Passive Satellite

In the passive-satellite scheme, the satellite would be a

solid body, fabricated of a "zero-temperature-coefficient" material,

Owens-Illinois CerVit, about 0.6 m (approximately 2 feet) in diameter.

It would be a polished specularly-reflecting sphere, employing a thin
metallic coating to enhance its optical reflectivity. A low-density
plastic coating could be added for protection against substantial

disturbances in the figure of inertia caused by mifrometeorite

)
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Figure 3.1.

Model of the 60-cm relativity satellite. The large
circular flats have an area of approximately 1000’ cm
each.. There are 6 of these, oriented as the faces of a
cube. and: leaving about half the original spherical
surface area undisturbed. 1In addition, there are to be
two small polar facets, one indicated by the dashed circle,
to establish a salient moment of inertia about the axis
indicated by the arrow. Otherwise, the figure of inertia
would be spherical. With the axis location approximately
as shown, the large flats would be at the colatitude
angles 42°, 549, and 729, for the hemisphere visible
here, together with a corresponding set of angles. for the
diametrically located flats. All surfaces are to be of
optical quality and reflectively coated.
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erosion. The spherical surface would provide a facility for tracking
the orbit of the satellite by means of reflected sunlight on all
occasions in which the illuminated satellite would be photographable
against the night sky. Such photography would require the cameras,
such as the existing Baker-Nunn cameras4 used at the satellite-
observing stations of the Smithsonian Astrophysical Observatory, to
track the motion of the satellite to a precision of a few percent.

The spin axis of the satellite would be established in
alignment with its salient moment of inertia, salient by about 1%
and provided by removing material to locate a pair of diametrically
opposed optical flats, "spin facets," each about 6 cm in diameter.
The spin axis would then pass through the center of these spin facets.
The alignment of the spin axis with the axis of the salient moment
would be approximated during spin-up procedures before releasing the
satellite from its parent vehicle. Thereafter, any residual misa-
lignment would be damped out by the energy-loss mechanisms inherent
in the elastic hysteresis characteristic of the dielectric material
chosen. A damping time of a few hours has been selected.

Six other facets in a cubical array would also be established
on the surface, each with an area of about 1000 cm2, so that about
half the spherical surface would be devoted to such facets, called
"olitter facets." See Fig. 3.1. Relative to one spin facet, these
facets would be located at 42, 54, and 72 degrees, with a second set

similarly located relative to the other spin facet. The provision of
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these glitter facets does not disturb the relative magnitudes of the

moments of inertia. The glitter facets serve as the primary instru-

mentation facility for measuring and tracking the spin axis orientation.

3.4. Data Readout

Flashes of sunlight reflected from the glitter facets are
photographically observable at the satellite-observing stations in
late twilight or early dawn, provided that the satellite's orbit lies
a useful distance above the horizon for the station in question and
that the local cloud cover is not excessive. The frequency of such
occurrences has been determined by digital computer simulation. For
an equatorial orbit at an altitude of 1000 km, for example, the

station at Curacao would average more than two sighting opportunities

daily, because on some passes flashes from more than one glitter facet

would satisfy, at different positions in the pass, the necessary

angular conditions.

|

To photograph the flashes, orbital data are needed to
orient the camera, but only low-precision data are needed because of
the very wide field of view provided by the Baker-Nunn cameras.

More precise data are needed to time the opening and closing of the

shutter, although an error of a few seconds is tolerable, especially
at first, while the temporal-ephemeris-data are few. These data may

be augmented by photographing the reflection from the spherical surface, s
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3 DESIGN OF THE PROPOSED EXFPERIMENT 25

with the camera motion tracking the orbital motion. To photograph
the glitter flashes, however, the camera motion will be sidereal,
in which case the reflection from the spherical surface will be well
below the photographic threshold. The further datum needed to time
the shutter opening is a knowledge of the spin-axis orientation so
that a prediction of the time at which the angular conditions are
fulfilled may be made. This orientation will be established during
the final spin-up to coincide with the equinoxes to sufficient
precision to allow the early data to be obtained. Later, more precise
timing will allow the shutter to remain open for a minimal time to
avoid overexposure to the essentially night-sky background, the more
precise timing becoming a direct consequence of the accrual of data.
It is the photography of the glitter flashes against the
stellar background that provides the precise measurement of the
spin-axis orientation with minimal disturbance from atmospheric
distortions. As the satellite is moving into position, the first
glitter flash allows a sighting through the glitter-facet mirro; of
the limb of the solar disc. As the satellite moves further, succes-
sive flashes correspond to traversals of the reflected line of sight
across the solar disc at greater and greater depths from the limb
until the traversals finally reach tﬁe nether limb, after which the
facet in question would produce no further flashes until a later
orbital pass were made. Thus the flashes will be photographed as a

pattern of flashes at points along the orbit. With an orbital speed
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of 7.4 km/sec at a slant range of 2500 km, about 1.7 seconds would
elapse between the first and last flash while the line of sight,
following the orbital motion, turned through the half-degree width
of the solar disc. At a sufficient spin rate, the individual
flashes would fail to be resolved, and the photograpﬁed pattern would
resemble the simulated image shown in Fig. 3.2.

The center of such an image as shown in Fig. 3.2 corres-
ponds to a sighting through the glitter-facet mirror of the centér
of the solar disc. This measurement, together with knowledge of
sun's true location, both with reference to the stellar background,
fix the orientations of both the incident and reflected rays and
thus determine the corresponding orientation of the facet normal.
The facet normal, however, is constrained to lie on a cone whose
axis is the spin axis. Thus, three such sightings serve to determine

both the cone angle and the spin-axis orientation.

3.5. Readout Accuracy

The problem of predicting the accuracy with which the center
of such an image as in Fig. 3.2 may be found is a statistical one,
in essence. The random grain pattern of the photographic film causes
density fluctuations which can produce small random fluctuations in
the estimated center. Generally, the estimation procedure that one

would plan to use would employ an averaging of the density fluctuations
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Figure 3.2.

Enlarged photograph of a film image as it would be recorded

by the Baker-Nunn camera. The image, simulated by photo-
graphy of the sun using an amamorphic camera, represents
the sequence of mirror flashes generated by a mirror on
the spinning satellite as it reflects sunlight while in
orbital motion, at such a slant range that the B-N
camera is unable to resolve the individual flashes.

The image is to scale relative to the graininess of the
film, and its long axis represents the half-degree width
of the solar disc scanned by the mirror.
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to find, for example, a center of gravity. The center-of-gravity

weight is a linear weighting and not necessarily an optimum one,

though it would be an easy one to implement using density wedges to
" weight the measuring aperture of a projection densitometer.

The density fluctuations that may be observed in the red-
* ) extended Royal-X pan film that is used in the Baker-Nunn cameras

have been measured and subjected to statistical analysis. The

analysis included correlation and probability distribution studies,
{ showing that the fluctuations at one point are essentially inde-

pendent of those at another point, if these be spaced a distance
| apart which is a fraction of the resolution distance of the camera,
R and that. the probability functions are susceptible to mathematical
modeling. Models were developed primarily to represent the proba-
bility distribution for opacity as depending upon an empirical
relation between mean opacity and the standard deviation in opacity.
3 This relation was determined from measurements covering an opacity
range of nearly 100 to 1, a density range of 2, since density is the
wd common logarithm of opacity.

The CDC-1604 computer was programmed, using these models,

for a Monte-Carlo simulation of the opacity fluctuations to be

expected along such an image as shown in Fig. 3.2, generating data

points spaced either a resolution interval apart, or a flash interval
apart, whichever would be the larger. In one run, many statistically

! independent images could be generated so that an rms error measurement
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could be made expressing the accuracy of the estimation procedure

based on particular weighting curves. A number of weighting curves

were tried. For '"faint'" images (central density increment of 0.3

above night sky) it was found that assigning zero weight to the

.
4
2

central 507 of the image with the weight growing parabolically
towards the edges of the image, positive weight towards one edge,
negative weight towards the other, with zero weight outside the

image, gave results very close to an optimally-small rms error.

For denser images, wider central zones of zero weight were more
nearly optimum, until, for a density increment of 1.0 above night
sky, the prescription was that essentially all of the weight should
be on the outermost 3 or 4 resolution intervals. This prescription
was found to be consistent with that of the maximum-likelihood
estimator, which uses a simultaneous weighting of opacity and density
for the statistical models used.

For this density increment of 1.0, the rms error was found

to be smaller than the known standard error for locating hard-edged

images on Baker-Nunn camera films, namely 1.1 arcsec.5 Such hard-edged

images are so located with respect to stellar images by cursor-aided

visual methods on standard measuring machines. The form of the optimal
weilghting curves for the simulated images at a central density
increment of 1.0 shows them also to be essentially hard-edged images
and well-adapted to the same visual methods. Consequently, it was

concluded that the more elaborate weighting methods need not be used
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in practice, provided this density increment, or better, could be
obtained, and that the standard accuracy of 1.1 arcsec should be
taken as characterizing these images.

This density increment of 1.0 is obtained for a flash
exposure that is greater than a certain threshold wvalue by the :
factor 5. This threshold is defined as that producing a density
increment of 0.35 + 0.05 above night sky and is equal to 0.8)(10-lO
lumen-sec/m2 at the input aperture of the camera.6 An aperture of
1000 cm2 at a slant range of 2500 km, opened for 14 ysec to transmit
solar radiation, for example, will produce the exposure corresponding
to this requisite density increment. These exposure requirements are
met by the satellite design for the counted observing opportunities

mentioned in the preceding section.

3.6. Error Propagation in the Experiment

If the center of the flash-pattern image may be located with
an accuracy of 1.1 arcsec, then the mirror-normal orientation may be
located to an accuracy of half that. For this, it must be assumed
that the sun's position as seen from the satellite may be known to
better than 1 arcsec. This is reasonable to expect in view of the
smallness of the geocentric solar parallax, 8.8 arcsec, and of the
small rate of the sun's apparent motion, less than 1 arcsec in 24

seconds of time, with reference to the stellar background. The use of
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three such observations to determine the cone swept out by the mirror
normal, results, for a reasonably uniform angular spacing, in a
factoyr 2 in combining the errors, so that a suitable triad of
observations determines the spin-axis orientation to within 1.1 arcsec.
In a week's time, the count of suitable observing oppor-
tunities for the Smithsonian net is predicted to be in excess ofv30,
and possibly as many as 60, depending upon the inclination of the
orbit, the lower number corresponding to the lower inclination
(essentially equatorial), and making no allowance for weather. The
more conservative figure provides for 10 data triads per week,
serving to locate the spin axis to within 0.35 arcsec for that week,
during which time the expected relativistic motion would be 0.11
arcsec. For the purposes of making a schematic study of error
propagation, then, it will be convenient to regard a week as being
an essentially stationary data interval, during which it is expected
that the spin-axis position may be determined with an rms error ee

which is 6% of the annual relativistic motion w = 5.9 arcsec/yr.*

The assortment of data into weekly groups provides for a

*In a previous section, the capital letter Q was used to denote this
angular rate, in conformance with the theoretical literature. In
later chapters, this capital letter will be used to denote a right-
ascension angle in defining the orbit orientation. No attempt has
been made to establish a rigidly consistent scheme of notation
throughout this report, although consistencies within chapters have

been generally observed.
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model of data reduction that is useful for conceptual purposes without
necessarily implying that the actual data reduction would proceed in
such a manner. For example, two "good" weeks of data spaced one year
apart would suffice to determine the spin-axis rate with an accuracy
of 1.4x0.35 arcsec/year, amounting to a determination within 8.3%.
Many more ''good" weeks than that may be expected, however, and the
fraction of 'good" weeks may be characterized by a probability p which
may be regarded as summarizing the expected experience with respect
to cloud cover or other causes of missed observing opportunities.
The model to be considered, then, is that of an experiment running
for T years in which the expected number of '"good" weeks of data
would be 52pT, uniformly spaced in the interval T.

The precession rate would be determined by a least-squares
fitting procedure in this model, for which it is easy to calculate
the joint effect of error contributions. If the expected precession
rate is w seconds of arc per year with error ¢, then ew/w represents
the percentage accuracy of the experiment. The error in one week's

data is denoted by €, and is related to the expected yearly displace-

)
ment by the ratio ee/w, a quantity/estimated above to be 6%. Applying
error analysis to the reduction model, one can determine the manner in
which (sw/m)/(ee/w) varies with T and p. For p = 100%, for example,
it turns out that the ratio is unity, i.e., (ew/w) = (ee/w) for

T = 0.61 year, corresponding to a solid run of about 32 weeks, while

at p = 25% the same condition is reached after 0.95 year or about
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50 weeks. The general relationship may be seen plotted in Fig. 3.3.
Interest particularly attaches to the condition in which the value of
ee/w is reduced by the factor 6 to provide an ew/w value of 1%.

This is seen to come at T = 2.0 years for p = 1007 and at about

T = 2.5 years for p = 50%.

Because of the steepness of the curves of Fig. 3.3, the
necessary running time of the experiment is not particularly sensi-
tive to losses of data represented by p values less than 100%. |
Thus it would appear that the proposed data-readout scheme is capable
of providing a 1% measurement of the precession. The ultimate : -
accuracy of the method will depend upon the number of years the
experiment may be allowed to run. This would depend, apart from cost
considerations, upon the useful life the satellite may be expected to
exhibit, a factor which in an ultimate sense is unknown, but may be
expected to exceed three years. Tf such is the case, it is more
likely that the overall error would not be set by readout errors, but
would be controlled by errors afising from disturbances traceable to

the environment.

3.7. Environmental Disturbances

Among the possible environmental effects making for an
experiment that is not entirely torque free, there are some that have

been shown to be entirely negligible. One of these, torques arising
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Figure 3.3.

Percent error in the experimental value of the relativistic
Pprecession as a function of the rumning time in years and
of the probability p that a week's position data would
attain a given standard of accuracy. The percent error

in the precession 15 given as the ratio to the standard

of accuracy for the week's positional data, the latter

also expressed as a percent of the yearly motion.
Logarithmic scales are wused.
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from the generation of eddy currents in the satellite body because of
the Earth's magnetic field, has been forced to be zero by choosing the
material to have a sufficiently small conductivity. Even the reflective
surface may be made sufficiently thin, without spoiling its optical
properties, to provide for negligible eddy-current torques. A
minimum conductivity is also required in order that non-uniform

charge distributions be not established to produce significant

torques arising from electric fields or plasma interactions that may
be encountered. These upper and lower bounds on conductivity are
quite widely spaced and are met by the material chosen, Owens-Illinois
CerVit. Another negligible-by-design disturbance is aerodynamic
torque; calculations show that the choice of an orbital altitude of
1000 km obviates such torques.* Finally, the momentum transfer

caused by the impingement of micrometeors has been found to be of

These aerodynamic studies have led to the showing that, at a lower
orbital altitude, an experiment of similar design using a more
asymmetric body may be used to measure orbital drag, spin run down, and
aerodynamic precession, each of which is an independent function of
atmospheric density and the two accommodation coefficients, allowing
each of the three to be separafely measured. The latter two have
never been measured for low-altitude, orbital-drag situations, so
that the deduction of density from previous drag experiments has been
of doubtful validity, especially for the precise prediction of drag
on objects hitherto untried. A proposal for such an upper-atmospheric
aerodynamic experiment is in preparation. It could provide a pre-

liminary test of the present instrumentation scheme.
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negligible consequence for the quantities expected, because of the

Oefy léfge amount of stored angular momentum in the satellite.

Micrometeoric impingement is not negligible in regard to
the energy transfer, however, since this energy would be expended in oy
evaporating micro-craters in the surface of the satellite, causing
disturbances in its figure of inertia. For example, if the satellite ;
had a perfectly spherical figure of inertia (moments of inertia about
the three principal axes all equal to one another), and a crater; :
however small, were formed at a certain point, then there would be
created a salient moment of inertia, and the axis for that moment
would thereafter have to pass through the center of gravity of that
crater. This will cause a nutating motion, if the axis for the
salient moment be not aligned with the angulér-momentum vector, for
then the angular-velocity vector would also not be aligned with the
angular-momentum vector, and it is the angular-momentum vector which
maintains a fixed orientation in locally-flat space. In this nutating

motion, the angular-velocity vector and the salient-inertia axis

execute rapid rotations about the angular-momentum vector. The

nutation cannot be maintained in the presence of an energy dissipation

mechanism, however, such as elastic hysteresis. As energy is lost

from the nutation, the angular-velocity vector and the salient-moment

axis both spiral in upon the angular-momentum vector and are eventu-
ally brought into alignment with it. For this reason, the axis of the

salient moment of inertia is often called the "preferred spin axis."
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The nutation is potentially very troublesome for the data
read-out system, during the time taken for nutation to damp. The
nutation rate, which could be essentially equal to the spin rate, is
much faster than the rate at which observations may be made. 1In
consequence, a mirror normal, instead of being constrained to lie on
the surface of a cone coaxial with the spin axis, is constrained only
to lie within the volume bounded by two coaxial cones having different
angles of opening. If these angles differ by very much, the obser-
vations obtained during the nutation would be essentially worthless.
After the nutation had been damped, however, the data would be
valuable again, because the angular-momentum vector would not have
changed orientation, even though the mirror normals would then lie
at new angles with respect to that vector, and these angles are
simultaneously measurable along with the measurement of the orienta=
tion of the spin axis, which is again in alignment with the angular
momentum.

Alleviation of the micrometeoric-induced nutation troubles
is to be obtained through rapid damping and through providing that
the mirror-normal cones shall be "fattened” to essentially negligible
extent during the nutation for all but the rarest of micrometeoric-
impingement events. The damping of the nutation arises because the
centrifugal stress field, which is symmetric about the angular-
velocity vector, sweeps through the body as that vector nutates about

the preferred spin axis, subjecting the material to cyclic straining
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at this nutation rate. If there be any elastic hysteresis, this
cyclic straining will progressively convert the nutational energy
to thermal energy. A similar mechanism accounts for the damping
of elastic vibrations in bodies sufficientiy well isolated from
their environment, and is expressed by means of a Q factor, which
may b>» measured for a variety of materials (and vibrational modes).
For the material selected for the satellite, Owens-Illinois CerVit,
an e-fold damping time of an hour or two is expected.

It is not possible as a practical matter to fashion a
body having a perfectly spherical figure of inertia, even though,
of course, a sphere and all regular polyhedra, including, for example,
the cube, would, if perfectly made, possess suéh a figure, as also
would the proposed composite of cube and sphere. Apart from fabri-
cation imperfections there would, at the very least, be established
a salient moment of inertia in a spinning body because of centrifugal
deformation. This centrifugal saliency is not useful in identifying
a preferred spin axis, however, because the centrifugal stress field
is coupled only to the angular-velocity vector and is free to sweep
through the material of the body. 1If a preferred spin axis is to be
established, the saliency must be an intrinsic property of the body.
For the present satellite this intrinsic saliency will be established
by grinding a pair of small polar flats on the spherical surface in
addition to the 6 cubic-oriented flats. 1In this way, the set of
mirror-normal angles relative to the preferred spin axis will be

established.

:
i



sy
i
]
.

3 DESIGN OF THE PROPOSED EXPERIMENT 41

Besides establishing definite mirror-normal angles, rather
than leaving them to be determined by chance fabrication errors, the
deliberate establishing of an intrinsic saliency provides for the
magnitude of it, the ratio by which the salient moment exceeds the
others, to be chosen as a design parameter. One could, for example,
establish a 1% saliency with great confidence. With a saliency of
this order of magnitude, one could guarantee that only very rare
micrometeoric-impingement events, such as would occur only once per
year, for example, would disturb the preferred spin axis by as much
as 1 arcsec, TFor substantially smaller disturbances, the "fattening"
of the cone surface would be of negligible consequence, and, even for
the rarer larger disturbances, the data would be of very high quality
again after a few hours.

Gravity-gradient torques, unfortunately, are present to
non-negligible extent for any body which has a significantly salient
moment of inertia, whether centrifugal or intrinsic in nature. For
understanding this, the present axially-symmetric body may be
regarded as a composite consisting of a sphere together with an
equatorial belt of mass. If the spin axis be not directed along a
radial line from the center of the Earth, one part of the belt will
be nearer the Earth than the opposite part, and it will be attracted
more strongly than the opposite part, producing a torque, because of

the gradient of the inverse-square law of the gravitational field.
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In general, this torque will consist of two parts, a periodic part

matched to the period of revolution about the earth, or some sub-

m ltiple, for harmonic terms, and a steady part. These give rise to

both periodic and secular precessions. That part of the secular
precession that would lie in the same direction as the relativistic
precession would constitute a systematic error, while all other
parts would be harmless.

There exists a choise of orbit and, more importantly, spin
direction which would make the systematic error vanish, but, since
these choices may be fulfilled only to a certain precision, it is
necessary to make design choices to also minimize the scale of the
gravity-gradient precession. Upon specifying the maximum rate for
micrometeoric events producing a given magnitude of disturbance, it
turns out that, taking all factors into account, there is an optimum
diameter for the satellite to achieve a minimum gravity-gradient
precession. The optimum is rather broad covering a range from 0.3
meter up to l-to-3 meters depending upon the exact model for the
micrometeoric flux. The scale of the resulting minimal precession
then provides a satisfactorily small systematic error, if the spin
axis may be locatéd to specification within a tolerance of a few
tenths of a degree, together with very broad tolerances, of several
degrees, for the orbit inclination.

The third, and last, nonnegligible environmental disturb-

ance is the torque arising from the radiation pressure of the solar
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radiant flux coupling to any optical asymmetry, because of variations

in reflectivity over the surface of the satellite. 1In this, only

asymmetries with reference to the satellite's equator are important.
Calculations based on reasonable assumptions regarding these asym-
metries indicate that the precession could be an appreciable fraction
! of the relativistic precession. Also, the precession rate may

Mq possibly change with time as micrometeoric impingement may darken the
optical surfaces in a way to augment or diminish those asymmetries

initially appearing as fabrication and launch artifacts.

[

The radiation-pressure precession is, however, apart from
! a secular change of scale, periodic with a period equal to the

sidereal year, and of a form which depends upon the orientation of

the spin axis relative to the ecliptic plane, When the spin axis is

normal to the ecliptic plane, the precession carries the tip of the

spin vector about a small circle centered on the ecliptic pole, but
when the spin axis lies in the ecliptic plane the vector merely nods

3 up and down out of the plane through a small arc. In between, small
i' ellipses of wvarying eccentricities are traced. In the nodding case,

it is feasible to establish a substantial known angle between the

direction of the nod and the direction of the relativistic motion so

that the radiation-pressure precession, if significant, can be

) separately measured, and the componént along the relativistic direction

el may be known.
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These studies have shown, then, that, of the possible
environmental disturbances that may not be guaranteed to be negli-
gible a priori, means of control exist whereby their effects may be
ad justed through choice of spin direction and detailed design of
dynamical parameters to become either negligible or else measureable

to sufficient precision so that their effects may be discounted.

3.8. Choice of Orbit

The relativistic precession causes the spin axis to tufn
about an axis normal to the plane of the orbit. This fact requires"
the spin axis to lie within moderately small angles from the orbital
plane since the observable effect is greatest if the spin axis lies in
the orbital plane, otherwise diminishing as the cosine of the out-
of-plane angle, so that an out-of-plane angle of 30° would leave
87% of the effect as observable. It is possible, in principle, to
maintain the spin axis exactly in the orbital plane in only two
cases, one in which the orbit does not precess, and one in which the
orbit precesses about the normal to its own plane. These are polar
and equatorial orbits respectively. 1In the polar orbit, unfortunately,
the radiation-pressure precession would always show a large component
in the same direction as the relativistic precession, regardless of
how the spin axis were positioned in the orbital plane. For this

reason, primarily, the polar orbit is to be excluded.
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3 DESIGN OF THE PROPOSED EXPERIMENT 45

In any of these orbits, the gravity-gradient precession
vanishes in its secular part if the spin-axis lies in the orbital
plane, but if the orbital plane also precesses about the Earth's
polar axis, as in the case of the near-equatorial orbits, then what
had been regarded as the ''secular" part becomes periodic with the
orbital-precession period, and the true secular part that remains
vanishes only if the spin axis lies in the equatorial plane. Thus,
it appears that a near-equatorial orbit should be selected for
which the spin-axis should be chosen to lie simultaneously in the
equatorial plane and in the ecliptic plane.

These planes intersect in the eduinoctal line, so that
it would suffice, if the spin-direction were to be established at
a time when the sun is at an equinox, to point the spin axis toward
the sun with the help of a solar sensor on the parent spin-up
vehicle. If the secular precession is to be less than 0.1 arcsec
for the optimally designed 60 cm satellite, the pointing accuracy
must be 0.1 degree, relative to the equatorial plane. This equatorial
plane does turn (general precession), but not by more than 1 arcmin
per year, so that the general precession does not compromise the
accuracy with which this pointing may be maintained, for an experi-
ment-running less than 6 years.

It should be noted that wifh a near-equatorial precessing
orbit, a part of the relativistic precession becomes "averaged out,”

so that only that part of the relativistic precession along the
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equatorial plane may be observed, since all of the out-of-plane

motions are periodic, in one way or another, and will be larger

than the periodic out-of-plane component of the relativistic motion.
Of the periodic, out-of-plane motions, none having a
period shorter than twice the interval between observations may be
measured, according to the sampling theorem for fixed sampling
intervals. This interval is actually somewhat variable, but cannot “
be appreciably less than the time required to obtain three reasonably- é
spaced (in angle) observations of flash patterns from one mirror.
Thus, periodic motions with periods less than about a day should be
regarded as unobservable with the present instrumentation scheme,
and, as a practical matter, periods as short as a week may be quite )
difficult to deal with. This automatically places periodic motions
having a period related to the orbital revolution period in the poy
unobservable category, with their rms values entering the observa-
tions only as random noise, whether in the equatorial plane or out M;
of the equatorial plane. Fortunately, these rms values are fully
negligible.

The most important periodic motion, periodic, that is,

except for a possible secular change in scale, to be measured is the

radiation-pressure precession, since it will have a component in the

equatorial plane which must be determined from its out-of-plane
component. This is sufficient, since the direction of the combined o

motion is known as being normal to the ecliptie plane. Fortunately, b
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3 DESIGN OF THE PROPOSED EXPERIMENT 47

the period for this motion is the sidereal year, so that there are no
sampling-rate problems.

If the design doctrine that the'gravity-gradient precession
be minimized, subject only to the constraint that the one-arcsec
micrometeoric disturbances have a mean time of occurrence of one
year, be adhered to, then the 2% experiment is feasible if the
initial spin-axis orientation may be set along the equinoctal line
to a precision of 0.1 degree, and no periodic motions other than of
the radiation-pressure precession need be measured. The appropriate
orbit, then, would be within a dozen degrees, or so, of the equator.
An alternative design'doctrine has recently been discovered that,
although not yet completely studied, promises to offer a means of
relaxing the initial-pointing precision, allow the use of a greater
orbital inclination, and provide even more immunity from micro-
meteoric impingement. This alternative doctrine requires that motions
periodic with the orbital-plane-precession period also be measured.
Such measurement would not present a challenge to the data rate,
since periods of the order of a few months would be involved.

Since the form of all the motions, periodic and secular,
in-plane and out-of-plane, may be determined a priori, the experiment
may be regarded as one in which the observed motion is to be sub-
jected to a least-squares fit to the predicted motion so as to
determine the unknown parameters in that predicted motion. One of

these parameters would be the relativisitc rate, and the others would
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describe the gravity-gradient precession and the radiation-pressure
precession. Under these circumstances, a much larger scale of
gravity-gradient precession would be tolerable so that thg saliency
of the preferred spin-axis moment could be made large enough to
exclude significant micrometeoric-impingement effects, while at the
same time the initial pointing tolerance could be relaxed.

The larger orbital inclinations, which complicate the
pattern of gravity-gradient precession by admitting significant
in-plane periodic effects, would also be more easily tolerable,
because the fitting to the combined in-plane and out-of-plane
periodic motions actually determines the secular motion. These
larger inclinations also serve to augment the data rate by exploiting
those observing stations that lie farther from the equator. It is
possible that a 30° inclination will prove acceptable. Such an
inclination would be attractive from a cost point of view, especially
if it made the launch compatible with the simultaneous orbiting of
packages for other missions.

It may be concluded that suitable orbits exist for which

the experiment would be feasible.

3.9. Choice of Material

The chosen material, Owens-Illinois CerVit, satisfies, as

mentioned, the requirement that its electrical conductivity fall in

A
i
i



)
{
j
}

T
!
!

3 DESIGN OF THE PROPOSED EXPERIMENT 49

the appropriate broad range of values. It also exhibits an appropriate
Q value for the damping of elastic vibrations, so that the nutational
damping time shall have a reasonable value. Not hitherto mentioned,
however, is its strength; it is stronger than ordinary glass.

The material must be strong enough to withstand the required
spin rate without risk of rupture. Glass has been studied in this
connection experimentally. The theory provides for a precise calcu-
lation of the centrifugal stress in a solid rotating sphere. 1In
particular, the value may be shown to be greatest at the center of
the sphere. This may be contrasted with the everyday experience with
the breakage of glass in which the failure occurs because the stress
exceeds the strength of the material at a point near the surface of
the body so that the surface condition (microcracks) plays a strong
role in the breakage phenomenon. For the satellite, surface flaws
would play essentially no role. A slightly different, though similar
in overall pattern, stress field may be calculated for a spinning disc,
with which experiments may be more easily done. From the observed
rupture speed for the disc, those for the sphere may be calculated.

For the spin rate planned, 3000 rmp for the 60-cm sphere, glass
would provide a very generous safety factor; yet CerVit is known to
be stronger, and therefore it also provides a very generous safety factor.

The decisive factor for CerVit, however, is its.well-known,

remarkably-small, thermal expansivity. The satellite will be sub-

jected to alternate heating and cooling as it passes in and out of
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the Earth's shadow in its near-equatorial orbit. This will establish
periodic thermal gradients within the body, which gradients, if the
expansivity (or alternatively the thermal resistivity) be not very
low, could distort the shape in a periodic fashion so as to periodi-
cally alter the mirror-normal angles to an extent sufficient to cause
significant errors. Such errors may be minimized by sorting the
observations into groups, an emerging-from-the-shadow group and an
entering-the-shadow group, but it is wise also to minimize the thermal
distortion, and CerVit will provide a minimum probably obtainable in
no other way.

An exact determination of the temperature fluctuation depends
on a balancing of the energy absorption rate for the incident solar
radiation against the emissivity of the satellite for a much colder
grey-body radiation spectrum. This determination presumably would be
made as a part of a thorough design of the experiment, but it hardly
seems necessary for the demonstration of feasibility. The general
experience with reflectively-coated bodies of this sort is that tempera-
ture fluctuations of only a few dozen degrees, for bodies of lower
heat capacity, may be expected. Thus only a dozen or so degrees of
temperature difference within the body would be expected, at most.
Unde such circumstances, it certainly appears that a CerVit body would
maintain an adequately constant shape, especially if data sorting

were used.
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4. GRAVITY GRADIENT 53

4,1 Introduction

;

Gravity-gradient torque arises from the inverse-square law
of gravitation. Different points in ihe same body have different
gravitational forces which depend inversely on the squares of their
respective distances from the center of the earth. 1In general, the
net gravity-gradient effect on an orbiting satellite is a net torque
which tends to bring thé axis of minimum moment of inertia in align-
ment with the radius vector to the center of the earth. This effect
has been used successfully to stabilize non-spinning earth satellites
with one end always directed towafd the earth. The gravity-gradient
torque on an axisymmetric body is proportional to the difference
between the maximum and minimum moments of inertia and is detrimental
to a satellite which is supposed to be spin-stabilized. The following
analysis describes the minimization of gravity-gradient effects on the

proposed relativity satellite.

4.2 Gravity-Gradient Moment

Figure 4.1 illustrates a general orbit-spin-axis configura-

tion. Standard derivations of the gravity-gradient moment on an

axisymmetric satellite give the moment components in coordinate system [Zj,

which relates the principal inertia axes of the satellite to the orbital

plane. Reference 1 gives the components as

M, = -(3GM/R3)(C-A)sinecosesinzw t
x2 : o
_ 3. R .
Myz = -(3GM/2R7) (C A)s1n6s1n2wot
Mz2 =0

(1a)

(1b)

(1lc)
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Gyro
Equator
. Z3
Orbit
Wo
Z1,2p
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Q
Vernal X2
Equinox
1 yO
k Earth's
Xo k Equator
X3 RR-134
Figure 4.1 Orbit and gyro coordinate systems related

to inertial coordinate system. The y., Yy and
Vg axes have been omitted for clarity.

Lol
(1]

inertial system; zo is the north pole of the earth.

satellite principal axes of inertia referred to inertial
system.

[2] - satellite principal axes of inertia referred to orbital
plane.

[3] - orbit axes referred to inertial system.
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4 GRAVITY GRADIENT 57
where M is the mass of the earth and R is the distance between the
centers of the satellite and the earth; C and A are the polar and
transverse moments of inertia of the satellite, respectively. It is

assumed that any initial wobbling of the gyro has damped out, and that

the spin vector W is colinear with the angular momentum vector and the

. C axis. With Qo defined as the orbital angular velocity vector, 8 is

the angle between the vectors W, and W - In the general case, the

satellite's orbital plane will regress about the earth's polar axis

. at the rate of degrees per year2 and will produce an additional

e change in ©.

- The geometry involved in the general case of interest for
regressing orbits is jllustrated in Fig. 4.1. An earth-based coordinate

J system is fixed with z along the earth's north pole and X, along the

line of vernal equinox (i.e., the line of the nodes between the ecliptié

and the earth's equatorial plane). The Y, axis completes an orthogonal

Ty right-handed system and, therefore, lies in the earth's equatorial

plane. Coordinate system [1] is shown with zy also along the gyro spin

i axis, but with x, along the line of nodes between the earth's and

. 1
gyro's equatorial planes. This is the most logical system in which to

R observe gyro motion with respect to the earth. The moment giveh for

system [2] can be transformed through angle N to system [1] by the

transformation
cosTl -sinTt O
§ sinl cosN O
. 0 0 1

The moment components in system [1] are now given by

M 4 Ew»{3GM/R3)(C—A)[cosﬂsinecosesinzwot-%sinﬂsinesinZwot] 2
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Myl = -(3GM/R3)(C—A)[sinﬂsin@cosesin2w0t+%COSnSineSin2wot] (3)
M =M, = 0. (%)

. _ . . 3
Angle T is eliminated by vector manipulation™, and the
gravity-gradient moment can be written in system [ 1] for a general orbit
of inclination i and right ascension (J and a given spin axis direction

defined by ¢ and ¢. The instantaneous moment components are now

MXl (3GM/R3)(C-A){[sinicosecos@ﬂ%p)—cosisin€]cosesinzwot-%sinisin«)%p)

XsinZth} (5)
Myl = (3GM¢R3)(CEA){SiniSin«?*p)cosesin2w0t+%£sinicosecosﬁl4p)—cosisine]

Xsin2w_t} | (6)
le = 0. (7)

4.3. Precession

The precession rate w of coordinate system [ 1] can be found

from Euler's dynamical equation,

HHoXH = M. (8)

We1 ¢ (92)
= @sine (9b)

® = PCoSE . (9¢)
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4 GRAVITY GRADIENT 59
Since the coordinate axes of system [ 1] lie along the principal axes of

the body, the angular momentum vector H and its derivative are

H o = Ae (10a)

Hyl = Apsine (10b)

Hz1 = C(ws+¢cose) (10c)
and

o, = A (11a)

ﬁyl = A(éﬁsine+€pésin€) (11b)

H , = C(&S+§c0564$ésine). (11lc)

The angular rate of the gyro, W is typically more than ten orders of
magnitude larger than ¢ or €. As will be seen later § and € are of the
order of ¢2 or éz. Therefore, substitution of (9),(10), and (1l1) into (8)
and neglecting all terms on the left-hand side which do not contain the.

factor W > shows that

-G
fl

Mxl/(Cwssine) (12)

€ = -M&i/CwS (13)

Substitution of (5) and (6) into (12) and (13) will give instantaneous values
of gravity gradient precession components, ® and €.
If it be assumed that i, Q, ¢, and ¢ change much less rapidly than

w t, average rates (¢) and (&) may be found by integrating over one orbital

period, T:
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1pL
(¢) = -'f-f ddt, (l4a)
o)
(&) == j‘T édt. (14b)
T

[¢]

For an elliptical orbit, the radius R from the center of the earth is
2
R = a(l-e“)/[ 14+ecos(¥-o)],

in which a is the semi-major axis of the ellipse, e is the eccentricity,
Y=wot is the argument of the satellite, and @ is the argument of perigee.

Also, Kepler's law of areas provides the relation

i=r% = JCGMa(l-ez)],

so that
de/R> = Vde/RA = d¥/RA.

Integration in time over one orbital period thus becomes integration
in ¥ from O to 2m. The substitutions and integrations in (12) and (13)
over one orbital period give the average rates of change of the spherical

coordinates of the gyro spin axis direction as

(9) = Al sinicotecos (Q=p)-cosilcosb, (15)

(é) = N sinisin(Q=p)]cosb, (16)
where the gravity-gradient precession coefficient is defined as

A = 3aM(c-A) /[ za3(1-e2)3/20ws3 , (17a)

and cos © may be written

cos® = sinisinecos(Q=p)+cosicose . , ’ (17b)
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4 GRAVITY GRADIENT 61
Equations (15) and (16) may be integrated with respect to time for any

i(t) and Q(t) to give ¢ and € as functions of time. The averages (9)

and (&) are both of the order of A, and therefore, this quantity must

be small (specifically, A/ws<<1) for the foregoing derivation to be valid.
Furthermore, the time derivatives of (15) and (16) show that (§), (&),

and therefore &S are of the order (¢)2 or (é)z, as assumed previously.

4.4 Order-of-Magnitude Minimization

The first step in reducing the gravity-gradient precession 1is
to reduce the coefficient A to its lowest possible value. If it could
be made much less than, say, 0.1 arcsec, the gravity-gradient precession
could be regarded as of no problem to the gyroscope-satellite. However,
limitations on the inertia difference ratio, (C-A)/C, and angular velo-
city, ws’ prevent this possibility. The semi-major axis, a, of the
orbital ellipse is limited for reasons of satellite visibility and the
magnitude of the relativity effect, and for this analysis is assumed to
be 7371 km, for an average altitude of 1000 km. A circular orbit is
assumed, making e=0.

Let v denote (C-A)/C. The smaller vy, the cloéer the body shape
approaches a sphere. The centrifugal stress produced in a solid, homo-

. . . . s s 4
geneous, elastic sphere is a maximum at its center and is given by

. s, = pw32r2(3+2v)/(7+5v) (18)

in which SS is the stress at the center of the sphere, p is the density
of the material, W is the angular velocity in radians per second, r is
the radius of the sphere, and v is the Poisson's ratio for the material.
A type of glass, such as Owens-Illinois' Cer-Vit, has been specified
because of its low thermal expansion properties and high electrical

resistance. For this material, p=2.5 gm/cm3 and v=0.25.
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For Cer-Vit, the rupture stress is 13,000 psi, so that from equation (18),
the rupture speed for a one-foot diameter sphere would be 1900 rad/sec.,
or 18,200 rpm. By comparison, ordinary plate glass may rupture at about
8000 psi. However, the minimum probable breaking stress over a long

term may be only 1900 psi, according to reference 5. This estimate was
substantiated by tests conducted at the Coordinated Science Laboratory

on one-foot diameter disks made of plate glass. The disks were spun in
their own plane in a simple test fixture at increasing angular velocities
until they ruptured. The maximum stress, at the center of the disk, is

given by

2 2
SD = prw (3v)/8

and reached a value of about 3200 psi at a spin speed of 9000 rpm just
before rupture, for the weaker of two specimens tested. No extensive
materials testing program was carried out, but the experimental apparatus
was shown to be adequate for centrifugal testing should any new material
become available. The apparatus was dismantled before Cer-Vit was
recognized as a promising material for the relativity satellite.

As a result of the spin tests made on the glass disks, the need
for a large mechanical safety factor for any glass or ceramic material was
emphasized. A tentative spin speed was set at 6000 rpm so that the maximum
stress in a one-foot sphere made of Cer-Vit would be less than 1500 psi.

The centrifugal force also causes elastic deformation which tends
to increase the inertia difference ratio, v. Chree'sllL work describes in
detail the elastic deformation at any point in a rotating solid sphere. At

the surface of the sphere, the strain in the radial direction is

oy
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Figure 4.2

Solid sphere deformed by centrifugal acceleration.
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4 GRAVITY GRADIENT 65
_ 2.3 .2
8, = (2/3E)pw_"r (1+v){v1[(3/2)31n e-1]+»2}, (19)

in which E is the Young's modulus, 6 is the angle from the spin axis,
v1=(2+v)/(7+5v),‘and v2=(2/5)(1-2v)/(L¥v).

The change in the moment of inertia about the spin axis can be
calculated from equation (19). If the body is perfectly spherical when at
rest, angular rotation produces, at an angle © from the spin axis, a dis-
tortion in the radial direction which may be treated as a ring of mass dm

on the outside of the spherical surface. From Fig. 4.2 it is seen that

dm = 2ﬂpr26Rsin9d6 (20)

The change in the moment of inertia about the spin axis is obtained by
multiplying (20) by rzsinze arnd integrating with respect to 8. The result

is

AT = (4n/3E)p2wszr7(1+v)[(4/3)(v2-v1)+(8/5)v1],

which can be simplified to

AT = (4n/3E)p2wszr7(76/75)(0.60-v)(v+l.395)/(v+1.40).

This is approximately

AL & (4ﬂ/3E)p2w32r7(0-6-V), (21)V

a linear function of Poisson's ratio. The increase in inertia difference

ratio may be found by dividing (21) by the inertia of a sphere, 8npr5/15,

to obtain

Yop = AL/T = (5p/2E)r2w32(0.6-v), (22)
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where the subscript CD means '"centrifugal deformation'. Thus the inertia
ratio is also a function of spin speed. The method of spin axis readout
requires a preferred spin-axis direction, i.e. a finite y. Therefore,
the gyro at rest cannot be perfectly spherical but must have y=y5>0.

The gravity-gradient precession coefficient for a spinning

satellite with a preferred spin axis may be represented by

A = (GBOM/2) (v Fygy) w2 (1-e7) /2]

or

A= {3GM/[2a3(1-e2)3/2]}fCyo/mé)+(5p/2E)r2(0.6-v)wS]. (23)

It can now be seen that A is no longer a monotonic decreasing
function of w_ . Differentiating (23) with respect to w_ and equating the
result to zero gives the following condition for a minimum in A:

wsz = (ZEyo)/[Spr2(0-6-v)],

or

Yo = Yep-

Thus, A will have a minimum when the gyro spin speed is such that the
deformation just equals the static inertia-difference ratio. For the Cer-
Vit material already cited, a one-foot diameter solid sphere spinning at

6000 rpm would have yCD=2.2x10_4. Assuming Yo the minimum value of

= Yep?
A would be about 27 arcsec/yr for a 1000-km orbit altitude.

4.5. Effects of Micrometeoroids

6 L s .
Barthel has pointed out the danger in having the static inertia
difference ratio,yo too small. Since the proposed satellite is unshielded,

it will be subjected to the micrometeoroid flux of high-speed particles.
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Figure 4.3

Rotation of principal axes of inertia caused
by the removal of a small particle of mass.
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4 GRAVITY GRADIENT 69
A high-energy particle could melt away a portion of the gyro surface by the
conversion of kinetic energy to heat. The analysis in Appendix 4A shows
that perturbations of the angular momentum vector by meteoroid disturb-
ances are negligible. If the bit of mass were removed from a perfect
sphere, the immediate effect would be to produce a non-isoinertial body
whose maximum moment-of-inertia axis would subsequently drift into the
angular-momentum vector because of the cyclic strain-energy dissipation in
the material. The maximum-inertia axis would shift directly to the point
where the mass was removed if the body were perfectly spherical, but

would rotate a smaller amount if Yo # 0. The effect, as analyzed in

Ref. 6 is as follows. The gyro, as manufactured, has an inertia tensor

A0O
I=|os0],
00C

where A, A, and C > A are the moments of inertia about axes Xo’ Vo> z,
respectively. If a small particle of mass m is removed from the body

surface at coordinates (x,0,z), the resulting inertia tensor (refer to

Fig. 4.3) becomes

A-mz2 0 mxz
I'=| 0 A-mE*z%) o |.
nmxz 4] C-mx2

The body's symmetry prevents any loss in generality in assuming the
y-coordinate of the mass removed to be zero. The principal axes of

inertia will then shift to axes x', y', z' by a rotation of angle «
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about the Yo axis. Their transformation is given by the orthogonal

nonsingular matrix

sing 0 coso

and'may be used to find the new diagonalized inertia tensor Iﬁ by
the equation

Iy = g 1, 24)

When the indicated matrix multiplication is performed, it is found
that the new inertia tensor has the same vanishing components as in

I', but the new diagonal elements are

I~ (A-mzZ)COS%I+(C-mxz)sin%y+2mxzsinxcogy,
= 2,2

ID22 = A-m(x"+z7),

Iy33 = (A'mzz)Sin%¥+(C-mX2)cos%y-ZmXZSin2coyx,

replacing A-mz2, A—m(x2+z2), C-mxz, respectively, and the new off-

diagonal terms replacing mxz are each equal to
[C—A+m(z2-x2)]sinwcosw+mxz(cos%w-sin%x).

The required value of @, then, is to be found by requiring this last
expression to vanish. With the help of double-angle formulas, this

value of @ is seen to be given by
, : 2 2
tan2r = -2mxz /[ C-A+m(z“~x")].

1f the coordinates (x,z) be replaced by polar coordinates (r,B),
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E Normalized rotation of body axes vs. size of mass particle removed.

Yo = (c-a)/c , MS = mass of the satellite.
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4 GRAVITY GRADIENT 73

using sinB=x/r and cosB=z/r, then o may be given by
2, 2
tan20 = -mr-sin2B/(C-A+tmr cos28), (25)

again with the help of double-angle formulas. For a spherically

symmetric body, C=A, or

tan2y = -tan2B,

which means that one of the "minor'" axes rotates to the cavity left
by the removed particle and becomes the maximum moment-of-inertia
axis. If the satellite is nearly spherical with C>A, then GzZMSrz/S
where MS is the mass of the satellite. It will be shown that
typically a<<1 and m/Ms<<(C—A)/C, so that when the numerator and
denominator of the right side of (25) be divided by ZMSZ/S and C

respectively, the approximate angle of principle axis rotation is

seen to be
o = -(5/4)(m/Méyo)sinZB. . A (26)

Thus, given Yo m/MS, the angle @ has an absolute maximum when thg
mass particle is removed at an angle of 45° from the spin axis.

Fig. 4.4 gives the product Yolal as a function of the relative size
of mass removed from a nearly spherical body. The different curves
also show the effect of location of the crater relative to the
symmetry axis. For example, if a particle of mass 10_7MS is re90ved
at 10° or 80° from either end of the symmetry axis of a body Qith
y0=0.001, a principle axis shift of 9 arcsec would result. .

As stated earlier in this section, the mechanism of mass
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removal considered here is by the conversion of part of the kinetic
energy of a micrometeoroid to the heat of fusion of the satellite
material. The mass melted away is then

_ 2
m = “mmvm /26 27

where T} is the fraction of kinetic energy converted to heat of fusion,

m is the mass of micrometeoroid, Vo is the velocity of micrometeoroid,
and € is the heat of fusion of satellite material. The mass and velocity
of meteoroids have been estimated by many researchers, and a number of
different flux models have been developed. The majority of sources

use an average velocity of 30 km/sec and a flux density of this form

- -k
3 = Kmm (28)

in which ¢ is the number per square meter per second of particles of
mass m_ grams and greater, and K and k are positive constants. The

three models used in this report are summarized in Table 4.1.

Table 4.1
Model Mass Range (gm) Av.Vel.(km/sec) Source Ref.
8, = 1.3><1o'12mm'1 10—5<mﬁ<10 30 Whipple,57 8
5. = 1.3x10 Pm "1 107 7<m <1 30 Whipple,
2 m m i 8
Revised
8, = 10'17mm'l‘7 10'1Q<mm<10'6 Distributed Barthel 6,7

In the third model, Barthel used the data reported in Ref. 7 to develop
a velocity distribution, divided into 5 equal parts with the following

velocities: 15 km/sec, 22km/sec, 22km/sec, 38km/sec, and 68 km/sec.
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4 GRAVITY GRADIENT 75
The probability of a meteoroid striking a space vehicle is

usually assumed to follow a Poisson distribution, with the probability

of n hits in time t given by

P(n,t) = (1/n!) @t)"eNE, (29)

in which N is the average frequency of hits determined from the flux

model by

N = @ASSf, (30)

AS is the surface area of the space vehicle, and Sf is the shielding
factor of the earth, the fraction of the total solid angle, subtended at
the satellite, that is obscured by the earth. Assume that a meteoroid
of mass m s velocity v strikes a nearly spherical mass at a position
45° from the ma jor axis of symmetry. Then, if (27) be substituted

into (26) and solved for m the mass necessary to cause a principal

2

axis shift of lalradians, at most, is found to be

m = (321/15) pr>Jerly )/ (WD) . (31)

@

If this equation be substituted into (28) and then into (30), the average
frequency of hits large enough to shift the body axes by angle |wl is

found to be

N, = bmre?xs [ (15/32m) (ﬂvmz)/(epr3volo{| 1. (32)

As an example, the average frequency of hits large enough to cause one

4

E]

arcsec shift will be calculated for the imertia ratio Yo = 2.2X10°

as determined in section 4.4. Flux model §3 will be used, and a
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pessimistic | = 1 will be assumed, along with the following parameters:

A = 330 cal/gm

3
P = 2.5 gm/cm
T = 15 cm
K = 10—17 gm1'7m“2sec—1
Sf = 0.75 :
k = 1.7

-6 4

|a1 = 1 arcsec = 4.8X10 ~ radian !

The smallest meteoroid mass needed, given by (31), is mm=4.3X10-8gm. 7
The average frequency of particles of this size and larger hitting the
satellite is then ¥y=220 hits/year. Such a high frequency of dis-

turbances would shift the body axes of the satellite much too often to

obtain the required accuracy of spin axis readout, and a larger Y,

iyt

is indicated. Since an increase of Yo leads to an increase in gravity-

gradient moment, a balance must be reached such that the gravity gradient

R

is minimized while still making the satellite somewhat immune to
meteoroid disturbances. The readout requirements indicate the need for |
about one week of undisturbed data to determine the spin-axis direction

to less than a half second of arc. To track the spin-axis drift, many o

sets of good data will be required. If body axis shifts of one second

of arc could be limited to an average frequency of only one per year,

the probability of zero disturbances in any one week would be from

Eq. (29) just exp(-1/52) or 0.98. That is to say, the probability of
one or more such hits per week would be 2 percent. P
To see what effect this high probability of success will have

on the gravity gradient moment, first Eq. (32) is to be solved for Yo
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4 GRAVITY GRADIENT 77
and the result inserted in Eq. (23) for the gravity-gradient precession

coefficient. At the same time, the satellite rotational velocity is

to be represented by the ratio of peripheral velocity, v, and radius r.

The equation for A including both meteoroid damage probability and

centrifugal deformation is
A = [36M/2a° (1-e%)37?]
X[ (15/32mv) (‘nva/{-:p loz t ) (éﬂKSf/Nd)'I/K (33)

+(5p/2E) (0.6-v)vr].

In this form it is clear that once a choice is made of orbit altitude,
satellite material, and frequency of hits qy which produce a body axis
shift Ial, the gravity gradient can be minimized by adjusting peripheral
velocity v and radius r. For Y0>YCD’ A decreases with increasing v,

but the peripheral velocity is limited by the maximum allowable stress.
For the 1500-psi limit set in 4.4, the peripheral velocity is about

100 meters per second. The dependence on radius is determined by the
model of meteoroid flux which is used. If k=1, as in §1 and @2, then

A is a linear function of r of the form

A= A1+A2r.

Thus, the smallest radius is most favorable. However, if k=1.7 as in

§3, equation (33) has the form

_ 0.84
A= (Al/r )+A2r

which clearly exhibits a relative minimum in r. Figure 4.5 is a plot
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of gravity gradient precession coefficient vs gyro radius for two

meteoroid flux models, & and §3, in which it is assumed that one hit

2
per year causes a principal axis shift of one arcsec. The results

for model @1 are not shown because §2 is a revised estimate of that

model and was assumed to be a more accurate representation. Two curves

are shown for each flux model, the upper curves in each model for a
peripheral velocity of 100 meters per second, the lower ones for 150
meters per second, which would produce a maximum stress of 3800 psi.
The ranges of meteoroid masses applicable to each model listed in

Table 4.1 limit the regions of applicability to the solid portions

of the curves shown ianig. 4.3. The applicable ranges of gyro radius

are summarized below:

g

@2: 0.5 cm < gyro radius < 1600 cm,

.

3 1.5 ¢m < gyro radius < 15 cm. !

3° B
It is interesting to note that if §3 were good for masses up to 10_5 gm, ?
the curves could be used up to 103 cm. The minimum value of A, found
by differentiating (33) with respect to r and equating to zero, would
be 38 arcsec per year at a radius of 74 cm; for v = 150 m/sec, A )
would be 36 arcsec per year at a radius of 47 cm. This analysis has
had the remarkable result that a rather broad optimum can be found

for the gyro radius fairly close to the values of interest in the

design of the relativity satellite, i.e. between 15 cm and 30 cm.

By adhering strictly to the curves shown in Fig. 4.5, it would appear

3
i

that 15 em would truly give a minimum value for A, since that is the

upper limit of the useful region of the §3 curve as derived from Table 4.1. 3
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4 GRAVITY  GRADIENT 81
In concluding this section, several observations can be
made. The criterion for the satellite to be relatively immune from
a meteoroid-produced axis shift was derived assuming that all of the
kinetic energy of the incoming particle is converted to heat and that
the crater is formed at an angle of 45° from either end of the sate-
1lite spin axis, the worst possible place. 1If it is assumed that
any point on the nearly spherical body is equally likely to be hit
by a meteoroid, then the average angular shift of the principal axes
caused by a given particle is about 65% of the maximum calculated by
equation (26). The curves in Fig. 4.5 may therefore be regarded as
somewhat conservative, and a 15 cm radius satellite designed with
Y, S° large as to produce a maximum of 80 arcsec per year gravity-
gradient precession will be virtually free from any noticeable

meteoroid disturbances.

4.6 Special Orbits

Now that the gravity gradient precession coefficient has
been minimized to a value of about 80 seconds of arc per year, it is
necessary to consider how to reduce the actual gravity gradient pre-
cession rates, (§) and (&), given by Egs. (15) and (16).

The relativity drift rate of the gyro spin axis will be
largest when the spin axis lies in the orbital plame. Therefore, two
cases of special interest are an equatorial orbit and a polar orbit,
because either of these orbits will allow the gyro spim axis to lie
in the orbital plane for an extended period of time. For each of
these special cases, Egqs. (15) and (16) may be simplified and inte-

grated directly, as will be seen.
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4.6.1. Equatorial Orbit
For an equatorial orbit, the inclination i will be assumed
small so that
sinims i

cosi=~ 1.

Also, it is assumed that,

where 6e is a small angle between the spin axis and the X s Y, plane,

as shown in Fig. 4.6. From this figure are obtained g

sine = sin(lz‘rr+5e) = cosée ~ 1 g
J
cose = cos(Hm+8 ) = -sin § =~ -6
e e e

Sougminis

From Eq. (17b) there obtains

i
1
3
i w‘x

cos@ = sinicos(Q-p) -ﬁecos i.

Since i is also a small angle, this reduces to

K

cos® ~ icos(Q-p) -6e .

Substituting these small angle approximations into Egs. (15) and (16)

results in the following:

($) -A[izﬁecosz(ﬂ-cp)+iﬁe2cos Q-p)

+icos (0=p) -Ge]

(8) = A[ki%sin2(Q-p)-i6 _sin@-p)].
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Orbit and spin axis configuration for a near-equaterial orbit.

The Xo axis is along the vernal equinox;

the Zo axis is the north pole of the earth.
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4 : GRAVITY GRADIENT 85
Since i and 6e are both small, {(§) is larger by at least one order of

magnitude than (), and may now be simplified by dropping the higher

order terms in i and 6e:

(9) ~ A[Ge-icos(ﬂ-cp)] X (34)

For near equatorial orbits, Q changes at the rate of 6 to 9 revolu-
fJ tions per year. Therefore, Eq. (34) indicates that the average rate
“y of change of ¢ is proportional to ée, the angle between the gyro spin

) axis and the eafth's equatorial plane. Setting Q=onﬂt, Eq. (34)

'} can be integrated with respect to time to give Ap:
Ly = A{Set~(i/é)[cos«1°4p)sinﬂt+sin(no4¢)(coﬁﬁt-l)]}
By arbitrarily setting Q-p=%m, this simplifies to
ﬂi * Ao = A[aet+(iﬂé)(1-cos Ot)] (35)

| A 1000-km-altitude orbit inclined at 10° from the equator regresses at
the rate of 2200 degrees per year. Thus, with A = 80 arcsec/yr, the
L periodic part of Eq. (35) has a maximum amplitude of about 0.36 arcsec.

»g However, to keep the secular part of (35) less than 0.1 second of arc

in one year requires

B §_ < (1/800) = 0.072°.

4.6.2. Polar Orbit

A true polar orbit (i.e., i=%7) is required for a nonre-

i
i
)

gressing orbit plame. The nodal regression rate of the orbit line of

S
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nodes is given in Ref. 2 by

Q = -(3J2/2)(GM/a)%(Rz/a3)(l-ez)-zcosi,

where J2 = 1.082 x 10_3 is the coefficient of the second harmonic term
in the earth's gravitational potential. (A more exact equation for
nodal regression, also given in Ref. 2, contains terms three orders
of magnitude smaller than Eq. (36) and will not be required in this

analysis.) The right ascension of the orbit line of nodes will now

be written Q#Qdﬂit, where Qo is the value of Q) at the time of injection

(36)

of the satellite into orbit. Figure 4.7 shows a typical configuration for

a near polar orbit right after injection. Here, 6p is an error angle
between the initial orbit line of nodes and the projection of the gyro
spin axis on the earth's equatorial plane. It will be seen that the
gfavity gradient precession depends on this angle and on the regression

rate, Q.

From Fig. 4.7 it can be seen that

Qo-cp = %rr—ép,
and, therefore,
Q-9 = f)t+%rr -ap.
Using
cos Q) = sin(ap-ét),
sin(@Q=p) = cos(ap-ét),

and also, assuming that i=%m+i', where i' is a small error in orbital

inclination, we have

Saie

1

.
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cosb = sinesin(prﬁt)-i‘cose.
Equations (15) and (16) now become
(o) = A[cosesinz(ép-ﬂt)~i'(cosZe/sine)sin(bp%ﬁt)—i'zcose], (37)

(&) = A[%sinesin(Zép-Zﬁt)—i'cosecos(6p4§t)]. (38)

These equations may be integrated with respect to time to give AP

and Ae as functions of time:
Mp = B\t cose{1—sin26P(l-cos%ﬁt)/%ﬁt—(cosZﬁpsiant)/Zﬁt

+4i'cot2e[ cosd P(l-cosfzt) /Qt-(sind o8 inQt) /Qt] -1'2} (39)

Ae = %Atsine{(sinZ6psin2§t)/2@t-cosZ§p(l-cosZﬁt)/Zﬁt
-éi'cote[sinbp(l-codﬁt)ﬂ§t+(cos6psiﬁﬁt)ﬂﬁt]}. (40)

If ¢ is allowed to vanish, these equations may give mis-
leading results. However, it must be remembered that ¢ and, therefore,
Ap, are undefined if e€=0 because the gyro spin axis becomes coincident
with the z, axis, as can be seen in Fig. 4.7.

It will be seen later that, for practical purposes, the
nodal regression rate, Q, should be less than 45 degrees per year and,
therefore, Eq. (36) indicates that for 1000 km orbits, i' must be no

larger than 1° or .017 radian. Consequently, for such slow regression

rates, Eqs. (39) and (40) may be simplified by dropping the terms
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containing i'. The simplified expressions are
Ap = %Atcose[1-sin26p(1-cosZQt)/2§t-(cosZSPsinZQt)Aﬁt] (41)
le = %Atsine[(sin26psinzﬁt)/Zﬁt-cosép(l-cos%ﬁt)ﬂﬁt] (42)
Some typical curves are plotted in Figs. 4.8 and 4.9 to show ‘é
the variations of Ap and Ae as functions of the initial misalignment ﬁ?

angle, 6P, and the nodal regression angle, Qt. In these curves,  the
nondimensional parameters Ap/(Atcose) and Ae/(Atsine) have been !
plotted. These curves illustrate the need to keep the nodal regression
rate and 6p as small as possible to avoid large values of gravity

gradient precession.

4.7 Conclusions

The gravity gradient torque acting on a non-isoinertial o
spinning satellite can easily produce precession in the same direction
as the predicted relativity precession. Centrifugal deformation of

the satellite and the need for a preferred spin-axis direction rela-

tively free from micrometeoroid cratering effects lead to a lower

limit value of the inertia difference ratio, y. This lower limit of

Y is a function of the gyro size and material properties and of the

model used for the meteoroid flux. By using this lower limit of ¥y
in the gravity-gradient equation, the precession coefficient A can be
minimized with respect to the gyro radius. A 15-cm-radius gyro with

A = 80 arcsec per year, or a 30-cm-radius gyro with A = 50 arcsec per
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4 GRAVITY GRADIENT 93
year could be built with the same degree of meteoroid immunity as that
of optimum radius, 74 cm, which would have A = 38 arcsec per year.
The final reduction of gravity gradient precession must be
accomplished by precise initial alignment of the gyro spin axis.
Eq. (35) indicates that for a near equatorial orbit, the secular
precession rate in the same direction as that predicted by relativity
theory is just A multiplied by the small misalignment angle between
the gyro spin axis and the earth's equatorial plane. A misalignment
of 0.07° would produce a secular precession of 0.1 arcsec in one
year for the 15-cm radius, whereas the same precession would obtain
with the 30-cm radius for a misalignment of 0.1l degree.
Some softening of this need for precision in alignment would
be possible if the value of A were accurately known. An estimate
of A is available from the design of the gyro, and the prediction of
its spin deformation. An estimate is also available from the peroidic
component of the gravity-gradient precession. Both of these estimates
will be made as a matter of course; the former is a necessary part
of the design, and the latter is a necessary part of data analysis.
If A may be known with an accuracy of 20 percent, then the secular
part of the gravity-gradient precession would be known with a like
accuracy, so that a five-fold greater error, than demanded above,

could be tolerated in the alignment of the spin axis with the earth's

equatorial plane.
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4.8. Appendix--Momentum Transfer of Micrometeoroids

The degree to which the relativity satellite of the Coordinated
Science Laboratory is immune -to the momentum transfer of impacting

meteoroids depends upon the model of the meteoroid flux. The best

known, and also the most conservative, model of the meteoroid
environment was developed by Whipple in 1957. This model can be

represented by

3, = 1.3x10 2p7 L |

where & is the flux per meter2 sec of particles with mass m grams and

greater8. A 1961 evaluation of rocket and satellite data obtained

,{ - 10717.0,-1.70

10 to 10-6 gm8. However, observations of

applicable for masses of 10

meteors simulated by shaped-charge firings indicated that Whipple's

1957 estimate should be revised by an order of magnitude to give8
13 -1

. §3 =.1.3Xx10 "m " .

These are the three meteoroid.models: currently used, all subject to

revision:as more -is learned ‘of the space environment.

The number of particles hitting a given satellite in a given

-amount of time can be calculated, using the flux expression, to be

}
i
]
¢
kK

N = 8AT ,
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where A is the area exposed to meteoroids, and T is the time of exposure.
Aséume, for calculation purposes, a possible CSL gyro satellite to
be a solid, nearly spherical body of density 2.5 gm/cm3, having a radius
of 30 cm, spinning at 50 Hz and monitored for ome year. A plot of the
number of meteoroids striking the satellite versus the meteoroid mass
is given in Fig. 4.10 using the above satellite radius and the three
different flux estimates. Figure 4.10 reveals that large numbers of
small meteoroids will hit the satellite while few meteoroids heavier
than 10_5 grams are to be expected within a year's time.

The effect of a meteoroid hit will depend upon the momentum
of the impinging particle. Visual observations of meteor showers
indicate that large meteoroids have approximate velocities of 28 km/sec
while smaller particles have a velocity of about 15 km/sec. The
velocity distribution tabulated in Table 35 of Ref. 8 is used for
calculations in this analysis. A conservative approach to the momentum-
exchange analysis is to assume that the momentum vector of all impinging
particles is perpendicular to the spin axis and intersects the spin
axis. The impulsive angular displacement, &, caused by one meteor-
oid hit would then be

8§ = mvr/CQ ,

where C is the moment of inertia, Q is the spin rate, and mv is the
momentum of the meteoroid acting at a distance r from the center of
mass of the satellite. For a conservative calculation, let r be the
radius of the satellite, R. The moment of inertia of the spherical
gyro is

C =38 npSRs/ls
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Figure 4.10

meteoroids striking a spherical satellite of 30 cm radius

vs. meteoroid mass. Three flux models are shown.
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4 GRAVITY GRADIENT 101
where Py is the density, and the impulsive angular deviation due to

one meteoroid hit becomes

8 = (15/8Tr)(mv/pS RﬁQ).

A large satellite then would be less affected by meteoroid hits than a
smaller one. However, a larger satellite is hit by a greater number

of particles. This can be taken into consideration by assuming a mean
square deviation of events along the spin axis and writing an expression

for the net angular deviation, o, of N hits,

o = &/N .

This function is plotted versus meteoroid mass in Fig. 4.1l using the
conservative 1957 Whipple estimate of meteoroid flux. Since the cross-
sectional area of a sphere is ﬂRz, 0 is inversely proportional to the
radius cubed.

Figure 4.11 indicates that the larger meteoroids will be
detrimental to the relativity experiment which requires spurious
deviations of less than 0.1 sec of arc per year. However, the proba-
bility of being hit by the larger meteoroids is of course less than
for the smaller particles. For a Poisson distribution of events, the
probability of no impact, P(0), within a year by a meteoroid of a given
mass is given by

P(0) = e-N

where N = 8AT. Therefore, for a meteoroid of a given mass, the maximum
impulsive precession due to its impact and the probability of not hitting

the satellite can be calculated. A plot of P(0) versus §
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using the three meteoroid flux models is given in Fig. 4.12. This
plot can be interpreted to give the probability of success of the

experiment with reference to meteoroids if a maximum § to be tolerated

is defined. For the CSL relativity experiment this maximum § would .

be 0.1 arcsec in a year which would correspond to better than 93%

chance of success using the most conservative flux estimate.

.
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5.1l. Introduction

The unshielded relativity gyro will be subjected to

aerodynamic torques due to atmospheric drag. The aerodynamic

torque on a spinning spherical satellite has been studied by

. R. D. Palamaral and Nan Tum Po.2 R. D. Palamara analyzed not only

aerodynamic torque but also numerous other effects which cause
M torque on an unprotected spinning satellite. His study of the
aerodynamic torque is, however, restricted in that the satellite
spin axis is taken as being in the plane of the orbit. Nan Tum Po
- obtained a more general solution which he used to find the spin rate

slowdown of a satellite having high surface area to mass ratio;

however, his results are not applicable to the calculation of the

S

precession rate of a solid spherical satellite which is given here.

_} This study consists of first obtaining the general ana-

3 lytical expression for aerodynamic torque which is found to depend

“g upon the orientation of the satellite and the accommodation co-

. ' efficient of the surface. Consideration is then given to the effect
}

of nonuniform distribution of accommodation coefficient and orbital
regression effects which cause a change in satellite orientation

with time. When these results are applied to the spherical satellite,

two conclusions are evident. First, a reasonable adjustment in the

initial orbital parameters and satellite orientation can be made so

as to reduce the aerodynamic effect to a value acceptable for the

i relativity experiment. Second, aerodynamic effect can also be
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amplified to make possible a direct measurement of the accommodation
coefficient of the satellite surface. The feasibility of performing
a satellite experiment to measure the accommodation coefficient is
investigated.

The obvious advantage the satellite method has over
earthbound-laboratory methods of measuring the accommodation coeffi-
cient is that the measurements are made under actual orbital

conditions.3’4’5

This advantage coupled with the accuracy and unique
simplicity of the proposed satellite provides an experimental method

for the study of accommodation coefficients.
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5 AERODYNAMIC TORQUES : 109

5.2. Analysis of Aerodynamic Torque on a Spinning Spherical Satellite

The design parameters of the proposed experiment correspond

to a gyro of one foot in diameter, composed of solid glass and spinning

at about 100 Hz. These parameters will be used in the analysis to

5% present sample results. Although the satellite is polyhedral in

; design, it is assumed to be spherical for the purpose of analysis.
The satellite orbit must be restricged to altitudes of less

than 1000 miles to produce a measurable relativity effect and also to

R

provide sufficient brightness of reflected sunlight for data coll-

=4

ection. This restriction to low orbits allows the assumption that

K

random or thermal motion of gas molecules can be neglected in
comparison with the relative velocity of the satellite;6 therefore,
the incident velocity of gas molecules can be taken to be equal to
R the orbital velocity of the satellite. The assumption of free
ER molecular flow valid above 100 miles can be used in the altitude of
interest here.7

The aerodynamic forces may be calculated by considering the
incident and reflected molecules separately. The reflection of
{f5 molecules is determined by the accommodation coefficient of the sur-
face. 1In this analysis the classical Maxwell accommodation coefficient

is used in which the accommodation coefficient, o ,, equals the

d

percentage of impinging molecules that are diffusely reflected from

the surface after being accommodated to the surface. The remaining

7 percentage, 1 - oy is specularly reflected with no energy accommodation.
i
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The torque caused by gas-surface interactions is analyzed
by also considering the specularly and diffusely reflected molecules
separately. The resultant force due to a specular reflection is
normal to the surface; therefore, for a spherical surface, no torque
about the center of mass results from specularly reflected molecules.
For the diffusely reflected molecules, the torque is evaluated in the
following way. First, the force due to the impingement of the mole-
cule depends on the angle of the surface to the flow and in general
causes a torque about the center of mass. After accommodation to
the surface, the molecule is diffusely reflected with a velocity
component normal to the surface. This component results in only a
normal force as required by the definition of diffuse reflection.
Since the molecules have been accommodated to the surface, each
diffusely reflected molecule has also a component of velocity tangent
to the surface and equal to the angular velocity of the surface at
the point of reflection. The diffusely reflected molecules thus
cause a normal force which produces no torque and a tangential force
which produces a torque proportional to the angular velocity of the
surface at the point of reflection. It is this mechanism which
produces the precessional torque that causes the directional move-
ment of the spin axis.

The coordinate systems to be used in the analysis are shown
in Figs. 5.1 and 5.2. The X, Y, Z axis is the inertial set with Z

toward Polaris and X along the vernal equinox.. The x, y, z coordinate

®

Ll
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Arrangement of Coordinate systems.
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Coordinate systems transported to a common origin.
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Figure 5.3

Coordinate system used for surface integration.
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5 AERODYNAMIC TORQUES 117

system is attached to the orbit with the z axis normal to the orbital
plane and the x axis as the ascending node of the orbit. The X s
Ygr Zg set is attached to the gyro and the X axis can be thought of
as the line formed where the plane normal to the spin axis intersects
the orbital plane. i, j, k, and is, js’ ks are unit vectors along the
X, ¥, z and X > Yo, Z axes respectively. Also shown in the figures
is the gas flow velocity vector which is always in the x, y plane and
can be thought to rotate about the center of the satellite at the
orbital angular velocity. The velocity vector is tangent to the
orbital path at all times. Fig. 5.3 illustrates the spherical
coordinate system (N, €, R) used in the integration over the surface
of the sphere.

The mass flux of gas molecules impinging upon an element of

surface dA is
pV - n dA (1)

where p is the atmospheric density at the orbital altitude, V is the
velocity vector equal to the orbital velocity, and 1 is the normal to
the surface area dA.

Since only the diffusely reflected molecules enter in the
torque analysis, we may ignore the specularly reflected ones. The

impinging molecules exert a torque

- (RXV) ad(pi} - n dA). (2)
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The reflecting molecules exert a torque
RX (QXR) ad(pir' - n dA) (3)

where Q is the spin vector of the gyro and R is the radius vector to
the surface from the center of mass. The elemental torque dL
produced by the complete interaction is then the sum of the above

expressions, i.e.,
dL = - o [RX(V - QxR) (pV - 0 da)]. (4)

Substituting the required vectors and integrating over only
the surface in the velocity stream, we obtain the instantaneous

torque which reduces to a function of the angles, o, QS; ¢S as
. . , 2 . . .
L= - Lo[31n es sin ¢S(51n o + 2) + sin GS cos ¢S(s1n o cos o)]i

+ Lo[sin 6, sin ¢_(sin & cos o) + sin 8, cos ¢S(cos%a + 2)]3

(5)
+ 3Lo[cos GS]k

where

Q. (6)

i
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If we now consider the orbit fixed in inertial space, the
problem is similar to the classic top or gyro problem where the torque
is defined with respect to a nonmoving frame. To find the resulting

motion of the spin axis under the action of the above torque, we must

express this torque referred to the X Yoo Zg system. The torque

referred to in this system, Es becomes

.
= : . 2 2 . .
L =L[sin® sin@g cos ¢ (cos@ - sin“@) + sin ® sin o cos &
s o s s s s
.
{
i . 2 2 X
| (sin ¢, - cos ¢S)]1S
a -
D
|
” + L[{sin ® cos © cosz¢ (cosza +2) +sin ® cos © sin2¢ (sin%y + 2)
o s s s s s s
+2sin® cos ® sing¢ cos ¢ sino cosao - 3 cos ©_ sin 8 ]j
s s s s s s s
+ L[-2 sinze sing cosp sino cos o - sinze cosz¢ (cos%y + 2)
(s] s s s s s
. - sinze sin%ﬁ (sin%a + 2) -2 c0329 Jk . ¢,
Sy s s s” s
b Since the spin rate of the gyro will be much higher than the

angular movements of the spin axis, the Euler equations can be simpli-
fied by neglecting terms of small magnitude. The precession of the

spin axis is then defined by the following:

LY
9 = —S
0, =7 (8)
& L
. XS
¢S sin 93 kT 9)
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where Ly and LX are the Vg and X components of torque respectively,
s s
and I is the moment of inertia about the spin axis. The angular

displacement for any time t becomes

L
£y,
B = [ -sgdt (10)
(o]
and
e Ny
%, =) sme_ m (n

Performing the integration, assuming a circular orbit and
considering the trigonometric functions of OS and ¢S essentially

constant during the time of integration, we obtain

ag =0 (12)
n T Lo
Aes = 37?775; sin GS cos GS (13)

where n is the number of completed orbits. The movement of the spin
axis is a precession causing the spin axis to move into the plane of
the orbit if initially out of the plane. However, no precession
exists if the spin axis is initially perpendicular to the orbital
plane (QS = 0) or if the spin axis is in the orbital plane (BS = %).
The maximum value of GS occurs when GS = %u
Substituting in Eq. (13) the expression for L0 and the

moment of inertia I (where I is expressed for a solid sphere of

=7

&)
|
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material density Pe and where the orbital velocity V is expressed

as R0 wo where RO is the radius of the orbit measured from the center

of the earth), we obtain

R
_ 157 P o .
AGS no; g E; g sin ZSS¢ (18

The final expression which is independent of 2, is seen to
be a function of various parameters but only two, p and GS, are
significant in changing the value of A8 . If 87°<0_< 93° (the
spin axis between i3° of the orbital plane), AOS is reduced by an
order of magnitude of its maximum value at BS = m/4. The effect of
atmospheric density is best illustrated by choosing, as a basis for

calculation, a solid glass sphere of one foot diameter for which

Py = 2.2X103 kg/m3

R=1/2 ft = 1.5x10‘1m.

The atmospheric density is taken as the maximum occurring during an
average sunspot cycle and is plotted in Fig. 5.4.8 With these values
a plot of Aesﬂyd sin 29S versus orbital altitude is given in Fig. 5.5.
The plot shows that the aerodynamic effect can be reduced to less than
one sec of arc per year by orbiting the satellite at 600 miles and

requiring the spin axis to be within 3° of the orbital plane.
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The magnitude of the aerodynamic effect is directly propor-
tional to the accommodation coefficient of the satellite surface.
This parameter can vary between zero and one and its value is
dependent upon the surface properties. Most of the experimental data
available predicts the accommodation coefficient to be almost one.
However, no experimenters have been able to reproduce the orbital
environment which requires a very high speed gas flow combined with
an almost perfect vacuum. 1In view of the results obtained shown in
Fig. 5.5, the possibility is presented of using a lower orbit to
magnify the aerodynamic effect which would, in turn, provide an
accurate measurement of the accommodation coefficient under the
actual orbital conditions which are so difficult to achieve in the
laboratory. A complete discussion of this possibility and the resﬁlts
of this analysis will be presented later.

The slow-down of the satellite spin rate is calculated as
follows. The slow-down torque, Lz , is along the z axis and the

s
expression for the slow-down rate from the Euler equation is

L
zZ
S

Q= (15)

Therefore,

= ZLa=22-[ 1 do. (16)

Substitution of LZ from Eq. (7) and integrating
]
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mr L

- o 2
A0 Iwo (5 + cos es)

and using the substitutions for Lo’ V, and 1 this becomes

- _ 157 _o 2
=-no, gy o R (5 + cos SS) . (17)

The slow-down rate is seen to be of the order of the precession rate.
Substitution of the various parameters at 600 miles yields

5

%7;% 3x10°°. (18)

The slow-down effect will therefore be negligible for the altitudes

and spin rates to be used in this experiment.

5.3. Consideration of Nonuniform Surface Distribution of Accommodation
Coefficient

i
Effects such as roughing of the surface by dust particles,

changing of surface properties due to radiation, and nonuniform
heating of the surface could cause changes in the accommodation
coefficient with respect to position on the surface of the satellite.

To study this problem and the resulting motion of the satellite spin

axis, we consider the satellite so oriented that the positive spin

vector is directed towards the sun and assume that the spin axis lies

in the plane of the orbit.
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Under the above conditions, one-half the surface area of the

satellite is in sunlight while the other half is not (see Fig. 5.6).
The surface in the sunlight will then have a higher temperature than
that not in sunlight. It may be assumed then that the effect of the
nonuniform heating is to cause one-half the surface to have one
accommodation coefficient ¢ ,', and the other half to have accommo-

d

dation coefficient ad”. Since the spin axis is in the plane of the

orbit, the satellite presents different parts of its surface to the

velocity stream. At some points in its orbit the satellite presents

both "hot" and "cold" surfaces to the velocity stream while at other

points only a "hot" or a "cold" surface is subjected to molecular
impingement. In view of the aerodynamic torque analysis presented
earlier,9 there is no torque about the spin axis when only a "hot"
or a "cold" surface is exposed to the velocity stream (and the spin
axis in the plane of the orbit). However, when both "hot" and
"cold" surfaces are exposed to the velocity stream a torque will
occur.

Since the spin axis is in the plane of the orbit and
pointing towards the sun, the satellite must pass through the shadow
of the earth. Assume that while the satellite is in the earth's
shadow the temperature reaches an equilibrium value at all points
on its surface. During the period the satellite is in the shadow,
no aerodynamic torque acts on the spin axis. By referring to

Fig. 5.6, we can visualize a net torque acting on the satellite spin
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axis every complete orbit. A significant angular displacement could
occur after 103 such orbits in a year's time.

As before, the specularly reflected molecules do not enter
into the torque analysis.lo There are now two expressions for the

elemental torque

@ = - o [T - BR) (Y - 1 aa)] (19)

Qxd must be used for molecules impinging on one-half the surface

area and ad" for the other where ad is the accommodation coefficient),
lﬁl is the radius of the satellite, V, the orbital velocity, Q the
satellite spin rate and p the gas density.

The coordinate systems (Fig. 5.7) have been set up so that
the instantaneous torque on the satellite referred to the fixed
inertial frame of the orbit has the same components when referred to
the coordinates fixed with respect to the satellite; therefore, the
result of integration of Eq. (19) can be applied directly’to the
Euler equations to find the precession. To describe the motion of the
satellite under the action of this torque we introduce the reference
angles ¢S and GS. Let GS be the angle between the normal to the orbit,
z, and the spin axis, x_. Initially then, GS = %u Let ¢S be the
angle between the line of nodes of the orbit, x, and the rising node

of the satellite with respect to the orbit plane, Vg- Therefore,

L . :
¢S =3 initially. The motion of the coordinate system attached to
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the satellite is defined by

W= - ¢ cos ©
s
w =86
Is
w o= ¢ sin 9.
s

With the usual assumption that the spin rate is much larger than

Es’ the Euler equations may be simplified as follows

L =10
X
s
L =I1Qw =1IQ¢sin® =1Q¢
y s
s s
L =-IQuw =-I1Q6 .
z y s
s s
The angular precession can now be found from
£ L o L
] 10 SIQw
o o
and
t LzS o LzS do
wo=-] w--]
o o o

where W, is the orbital angular velocity and is a constant for a

(20)

(21)

(22)

(23)
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circular orbit. Performing the integration of Eqs. (22) and (23)

after substituting the expressions for L  and Lz given from inte-
s s
gration of Eq. (19) we obtain, for one complete orbit,

4 R
_TPVR e v oL "
Ms=4Tw R @ %" (24)
oo
2.3
- _ l PV7R v " _ .
AGS 3 IQ(DO de oy Y (m ZBS + sin ZBS) (25)

where

R
_ 1 7e

BS = cos R -
o

Substituting into these equations the expressions for the moment of

inertia of a sphere, I = I% pS m R5, and the velocity of the satellite
V=Rw®w , we obtain
oo
___éfﬁ___ = 15 P EE (26)
[ ]
oy %y 32 pSR
and
2 .
Aes _15p 82 EE m - ZBS + sin ZBS 27
T [
oy oy 24 pSQ R rr
where
B = cos R

Since the orientation of the satellite spin axis with respect
to the sun will change due to the motion of the earth about the sun,

Egs. (26) and (27) give the maximum angular displacement of the spin
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axis that can occur in one orbit. One-quarter of a year after the

spin axis was pointing at the sun, the position of the earth in its
orbit will cause the satellite spin axis to be normal to the sun's

rays. The accommodation coefficient will then be of constant value

at all points on the surface because the satellite will have reached
an equilibrium temperature at all points on the surface. Aes and

= 0.

A¢S will be zero for one orbit since (@', - o" To obtain the

d d)
actual variation of ASS and A¢S throughout the year would require
knowledge of the variation of temperature distribution and accommo-
dation coefficient which is not available. This variation is
approximated by assuming Aes and A¢S to decrease or increase linearly
from its maximum value to zero in one-quarter year. From the plot
of the known points shown in Fig. 5.8 one can easily determine that
the total integrated angular displacement for one year would be zero;
however, the maximum deflection from an initial value of zero would be
large and measurable. This value is just the integrated angular
deflection for the half year when AGS and A¢S start from zero values,
pass through the maximum and back to zero. This integral is approxi-

mated as the area of an equilateral triangle with base of 1/2 year and

having vertices at. the known points seen in Fig. 5.8,

number of orbits in 1/2 year Aes or A¢s

: ) (

).

@, or 8 ) (maximum) = ( one orbit

A plot of the maximum total angular precession is given in Fig. 5.9
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Diagram of known precession rate values
during one year due to nonuniform heating.
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where for purposes of calculation the spin rate, {1, material demnsity,
p s and radius, R, of the gyro were taken to be 250 Hz., 2.2x103kg/m3
and l.SXlO—akm, respectively.

From Fig. 5.9 it is seen that the nonuniform solar heating
effect could be significant at even 600 miles if the accommodation
coefficient difference is largely due to the temperature difference.
Fortunately, experimental data predicts an extremely small change in
accommodation coefficient with temperature, if any at all. Very 1itt1eA
work has been done in this area and valid experimental evidence of the
dependence of accommodation coefficient on surface temperature is not
readily available. An experiment by J. K. Roberts (1932) shows an

increasing thermal accommodation coefficient with temperature of

where TW is the temperature of the surface. Some of the more reliable

later experiments on thermal accommodation coefficient indicate a much

smaller change of11

by .001
w SOOC

One study of normal momentum transfer by R. E. Stickney and F. C.

12
Hurlbut show no change of accommodation coefficient with temperature;
however, their results with respect to temperature effect are not

accurate enough to reveal a Aoz/ATW of less than .01/50°C.

\
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If we take into account the experimental work that has been
done on the temperature dependence of accommodation coefficient, it
appears that the nonuniform heating at 600 miles altitude will not be
detrimental to the relativity experiment.

We consider next the motion of the spin axis if the difference
in accommodation coefficient is due to a distribution of surface
roughness or other surface properties. Analogous to nonuniform
heating analysis, we consider one-half the spherical surface to have
a surface property such that its accommodation coefficient is ad' and
then the other half sphere to have a different surface property such
that its accommodation coefficient is ad“. If we assume the spin axis
to be in the plane of the orbit, the equations of motion of the spin
axis are the same as those for the nonuniform heating case with one
notable exception. In the nonuniform heating case the accommodation
coefficient difference went to zero when the satellite was in the
earth's shadow. 1In the nonuniform surface property case the accommo-
dation coefficient difference never goes to zero. When the integration
over one orbit is evaluated, the expression for torque integrates to
zero and no finite integrated motion could be observed for one orbit.
The torque is also zero if one considers the spin axis to be in the
plane which separates the two half-spheres having different accommo-
dation coefficients.

From the discussion and calculated results for the nonuniform
surface property effect, we conclude that the torque arising from a
localized accommodation difference (such as a small area damaged by a

/
meteoroid) would be much less than that resulting from the nonuniform
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heating case, and therefore, the localized accommodation coefficient
differences would be negligible in comparison to the torques result-
ing from other effects. This conclusion is also substantiated by the
work of R. D. Palamara, who studied the effect of localized accommo-
dation coefficient differences and arrived at the result that the
maximum periodic precession would be less than ~4.6X10_4 sec of arc

. . , 13
per unit radian from variation in @y ona surface element dA.

5.4. Effect of Regression of Orbit on Satellite Motion

In the above analysis of drag, the satellite orbit has been
assumed fixed in inertial space. 1In general, earth orbits are re-
gressing orbits because the earth itself is not a perfect sphere.

The principal effect of orbital regression is to change the orienta-
tion of the satellite with respect to the orbital plane. Since the
aerodynamic torque depends upon this orientation, orbital regression
will effect the motion of spin axis of the satellite as seen by an
earth based observer. Also, if it is desirable to maintain a specific
orientation of the satellite with respect to the orbital plane (say

to maximize or minimize a torque), an orbital regression analysis

must be made to determine the orbital parameters needed. For complete-
ness the effect of regressing orbit is analyzed and sample results

obtained to indicate the spin axis motion.

The general equation for precession can be found but there
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are many different solutions possible depending upon the initial
conditions on € and ¢, the Euler angles of the satellite spin axis

with respect to an earth based inertial coordinate system, and the

initial conditions on i and ¢, the orbital inclination and angle of

nodes, respectively. To illustrate the type of solutions expected

o
|
|

when orbital regression is included, the near equatorial orbit will

be used as an example. Then

]

sin ix i

[

cos i1

tame

Also, require the spin axis to be nearly in the orbital plane, that is,

let )

where ée is a small angle. Then

sin € &= 1 5
cos €~ - 8
By using these assumptions in the general precession equations and

neglecting terms of order higher than i or 6e, we obtain the expression

for precession for n orbits of

P

157 2 . . !
Doy Tex o ® [gE i sin 8T - 28e] (28) o
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where p/ps is the ratio of gas density to satellite material density,

R
o . . . . . . -

' is the ratio of orbital radius to satellite radius, & is the

orbital regression rate and T is the elapsed time from the initial
conditions.

The coefficient of the bracketed term is the same as found
for the non-regressing orbit analysis and is plotted in Fig. 5.5.. In

fact, the second term

=

1
d 6

&

mp
pS

o
no = (-26e)

~

is exactly the result one would expect if the orbit was non-regressing

LA

and QS =3 + 6e. The effect of regression is thus seen to add an

oscillating term having the orbital regression frequency and magni-
tude dependent upon the orbital inclination.

At 600 miles for a solid glass satellite of one-foot diameter

and time equal to one year

~ 20.'d sec arc

+
i

|
(9
(W)
M
[a]

Then, letting sin 8T be maximum (+ 1), we have

ég'ﬁ:Z[-Z §, + .056 iJarc sec. (29)

“a
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This result shows that the effect of orbital regression for the
condition used is small if 5e is the same order as i. 1If 1 is
allowed to be an order of magnitude greater than 6e’ the orbital
regression effects could be of the same order as the aerodynamic
effect.

The most important conclusion drawn from these results is
that when orbital regression is included in the analysis, the results
will be separable into two parts. One term will be of the same type
as for the non-regressing orbit. The other part of the solution will
contain terms of the orbital regression frequency. These last terms
cannot in general be neglected because they will depend upon the
orbital parameters and be of various magnitudes. Also, if it is
desired to keep the spin axis fixed with respect to the orbital plane,
the regression results will give the accuracy required on i, €, and

¢ to retain a certain initial orientation.

5.5. Aerodynamic Effect on the Relativity Experiment

The experiment proposed to measure a general relativity
effect consists of measuring the angular displacement of the satellite
spin axis from its original position after a one-year period of time.
The predicted angular displacement due to the relativity effect alone
is 5 to 7 sec of arc per year. It is desirable in regard to the

relativity experiment to reduce the aerodynamic effect to a value of

|
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at least less than one-tenth the predicted relativity effect. From
the results calculated in this report, the reduction of the aero-
dynamic effect is possible providing proper satellite orientation is
maintained. Figure 5.5 shows that if the satellite is orbited at an
altitude of 600 miles or more and the spin axis is restricted to lie
within 3° of the orbital plane, then an angular displacement of less
than .2 sec of arc per year is to be expected. These are reasonable
requirements since the experiment requires the spin axis to be nearly
in the plane of the orbit to produce the relativity effect. The 600
mile altitude limitation is approximately the altitude originally
proposed for the exberiment and has since served as one of experi-
mental parameters.

The nonuniform heating analysis was considered to be of
importance to the relativity experiment because if an equatorial
orbit were used there would be very little that could be done to
prevent nonuniform heating of the surface of the solid satellite.

The results shown in Fig. 5.9 indicate that nonuniform heating should
not be of importance if the available experimental work on accommo-
dation coefficient change with temperature can be relied upon.

Taking the maximum my/ATN as .01/500 and assuming a pessimistic

value of 50° change in temperature, the precession rate at 600 miles
due to nonuniform heating is less than .2 sec of arc per year.
Therefore, the use of the equatorial orbit for the relativity experi-

ment is permissible from aerodynamic considerations.



A3

J
|

148 AERODYNAMIC TORQUES 5

The orbital regression analysis is of importance because
from it the orbital parameters are determined which allow the spin

axis to remain relatively fixed with respect to the orbital plane.

The fixing of the spin axis to the orbital plane for a period of a
year is necessary not only to reduce the aerodynamic effect but also
to maximize the relativity effect and minimize gravity gradient
precession. Therefore, the requirement of near zero orbit incli- :}
nation for the case of an equatorial orbit is compatible with the 3
relativity experiment. This compatibility is to be expected for :
either the polar or equatorial orbits and the various initial
conditions possible. -

It can then be concluded that the aerodynamic effects can

it

be reduced to less than one-tenth the relativity effect by orbiting
at 600 miles or above and requiring the spin axis to be within 3% of

the orbital plane.

5.6. Measurement of Accommodation Coefficients and Atmospheric Gas Density

The results of the above analysis at low orbital heights have
lead to a feasibility study for utilizing the aerodynamic effect to

measure accommodation coefficients and atmospheric gas density. The

inclusion as one of the primary objectives, that of the measurement of

atmospheric density appears, at first, to be repetitious of the numerous

|
i

orbital drag measurements of the past. However, after investigating
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the parameters which influence the drag of a body in free-molecular
flow, it is found that the conversion of aerodynamic drag to atmos-
pheric density is not at all well known. (See, for example, ref. 15)
In fact, the density values reported at present could be as much as
40% in error. This error in density is unimportant for the relativity
experiment but is very important for low altitude satellites and re-
entry vehicles. The unknown quantity in drag measurement is the drag

coefficient CD. Drag is given by
D=C_%p V A (30)

where p is the atmospheric density, V the velocity of the satellite
and A is a suitable reference area. The drag coefficient of a
satellite is found to be strongly dependent upon the gas surface

interaction parameters. For example, for a sphere

}
Gy 2 + % @ (1a)” (31)

where ad is the momentum accommodation coefficient as defined before.

The thermal accommodation coefficient ¢ . is defined as

T
w Ti

p T T - T, (32)
r 1

where Ti is the temperature of the incident molecules, Tr the tempera-

ture of the diffusely reflected molecules, and TW the temperature of
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the satellite surface.

The plot of equation (31), Fig. 5.10, shows that the drag
coefficient of a sphere can range from 2.0 to 2.89 depending upon
the values for oy and QT. For drag measurements in the past, a
value of 2.2 has been assumed which could lead to as much as 25%
error in the density determination. Equations could be shown for
cylinders, flat plates, cones, etc., in which errors as high as
40% are possible.

From the above discussion we see that an accurate meésure—
ment of the accommodation coefficients ad and aT would provide the
information necessary to determine the density accurately. Un-
fortunately, there is no knowledge of these coefficients at the
incident energies associated with near earth satellites. (See,
for example ref. 16) The energy range of interest for satellite
application is between 1 and 10 ev. and it is precisely this energy
range in which no laboratory experiment has been able to obtain
measurements with neutral molecular beams. In fact, none of the
methods now in use to generate neutral molecular beams are believed
capable of obtaining accurate data in the 1.0 to 10 ev. range.
There will undoubtedly be methods developed in the future but these
are believed to be as much as five or more years off.

The only state-of-the-art means of obtaining high energy
molecular beams is then the satellite itself. Therefore, the experi-

ment we propose will use the satellite velocity to generate the

molecular beam. The results of the experiment will have immediate

!
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engineering application to satellite and re-entry design analysis.
Moreover, the experiment will be the first measurement of the
accommodation coefficients ever performed in this energy range and
would lead to a much greater understanding of the basic gas-surface

interaction phenomena.

5.6.1. Theoretical Basis
5.6.1.1. Primary objectives

As a spinning satellite travels through the rarefied
atmosphere it is acted upon not only by the drag force which changeé
the period of the orbit, but also by an aerodynamic torque. The
aefodynamic torque can, in general, be divided into perpendicular
and parallel components to the spin axis of the spin stabilized
satellite. The torque parallel, Tll’ causes slow down of the spin
rate, while the perpendicular component of torque, T, , causes
precession of the spin axis in inertial space. Using the read-out
system proposed by C.S.L., both the precession and spin rate of a
passive satellite can be measured to high accuracy by using the
sunlight reflected from mirrors on the satellite surface. There-
fore, there are three measurable quantities of a passive spinning

satellite; drag, T,., and Tl.

11

In ref. 10, Karr has demonstrated that even a fully

spherical satellite would have torque components both along and
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perpendicular to the satellite spin axis of the form.

where K1 and K2 are constants dependent upon the size and weight of

the sphere. The torque is seen to depend only upon the momentum
accommodation coefficient and density and is independent of the .
thermal accommodation. The drag of a satellite, as mentioned before,

is dependent upon o T and p. Since, for a spherical satellite,

a®

T, and T,, are proportional, a satellite of this shape is not suit-

11

able for measuring the proposed parameters independent of the gas
density. {

However, consider as an example a satellite composed of a

[E———

cone and a sphere spinning about the axis of the cone. 1In general

the measurable quantities for such a satellite will be of the form

|
(
)

o
|

—Alp+A2adp+A3ozdpA/l—aT

TJ_=B1p+B2afdp+B3ozdpa/l-a/T (33)

where the coefficients A, B, and C are known constants dependent
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upon the shape, angle of attack, size and density of the satellite.
The above equations must be independent for a solution to exist.
This requirement of independence is expressed by the following

relationship of the coefficients.

-A1 B3 # A3 B1

This requirement is met for an appropriately orientated cone-~sphere
combination but is not met, as would be expected, for a sphere alone.

Further, the magnitude of (Al 33 = A3 Bl) is found to be of import-

ance because of its relationship to the accuracy of the measurement

of p, PP and o In general, the larger the value of (Al B

5"

A3Bl)’the better the accuracy of the experiment. In a preliminary

T

analysis, the cone-sphere combination was found to yield satisfac-
tory experimental accuracy of the order of the accuracy of the drag
and precession measurements. One of the purposes of the proposed
study will be to find the satellite shape which will yield the best
experimental accuracy.

5.6.1.2. Secondary objectives

Since p, o and o,, can be determined accurately, the

T
change in these parameters with time, if there is a change, could
also be measured. 1In the early part of the experiment the degassing
or desorption of adsorbed gases on the surface would most likely

influence the accommodation coefficients. The change in these

coefficients with time can be related to the degassing and desorption



1

(Wi
N

AERODYNAMIC TORQUES 5

rate of the surface which has not been measured for satellite surfaces.

If the satellite were orbited in high eccentricity orbit,
the perigee point would travel through various altitudes and positions
around the earth. The density could then be mapped from the date
provided by the satellite. The accuracy of the data is, however,
reduced because of the limited amount of time in which measurements
can be made under approximately constant conditions.

If the orbit is high enough so that the lifetime of the
satellite is not too short, the roughening of the surface by meteor-
ites would cause a change in the accommodation coefficients with
time. This effect would most likely occur long after the degassing

and desorption effects, if indeed, degassing takes place at all.

5.6.2. TFeasibility

The feasibility of performing an experiment of this type
has been shown and there are no engineering problems beyond the
present state of space technology. C.S.L. has determined that a
passive sphere could be used where the spin axis precession could be
determined to less than a sec of arc per year. The data for the
measurement are obtained from sunlight reflected to a terrestial
observer by mirrors placed on the satellite's surface. The spin
rate is easily determined from the frequency of the flash of sun-
light from the mirror. For an aerodynamic measurement, Karr found

that the precession rate is well above 100 sec of arc per year for

[

=
P
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o spherical satellites. (See Fig.5.5). A composite body satellite, such

as the cone and sphere combination will yield precession rates of the

order of 500 sec. of arc per month.

Therefore, using a single passive spinning satellite, the
following three measurements can be made by the technique developed
4 at the Coordinated Science Laboratory.

(1) Atmospheric drag
(2) Spin slow down rate
(3) Spin axis precession rate

From these three measurements, the following three parameters of prime

importance for accurate orbital and re-entry analysis can be determined:
(1) The momentum accommodation coefficient of the satellite surface.
(2) The thermal accommodation coefficient of the satellite surface.
(3) The absolute orbital gas density.
In addition to the above principle objectives of the proposed
— satellite experiment, the following quantities of secondary importance
L could also be measured.

(1) The desorption and degassing rate of the satellite surface.

- (2) Orbital gas density at various orbital altitudes.
(3) The change in accommodation coefficients with roughing of

the surface by meteorites.
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6. SOLAR RADIATION PRESSURE TORQUE 163

6.1. Introduction

The incident electromagnetic energy of radiation imposes
a pressure upon an intercepting surface in mﬁch the same way as
aerodynamic pressure. This follows from both the electromagnetic
and quantum theories of light. At altitudes above 1000 km, the
solar radiation pressure is higher than the aerodynamic pressure.
In this chapter we will consider the solar-radiation-pressure induced
torque on the C.S.L. relativity satellite described in previous
sections.

Many authors have treated the problem of solar radiation
pressure torque where the radiation disturbance torque arises from
the asymmetry of the surface presented to the radiation source. or
from shielding of surfaces from radiation (see for example ref. 1)}
For the C.S.L. relativity satellite, shielding effects afe non-
existent and torques arising from asymmetry of the surface will be
extremely small due to the nearly spherically symmetric configur-
ation of the satellite. A calculation of this type for the C.S.L.
satellite was presented in ref. 2, where a precession rate of about
one sec of arc per year resulted from an asymmetry which caused the
center of pressure to act at one millimeter from the center of mass.

Even when the surface is symmetrical with respect to the
center of mass, a torque can exist because of differential reflec-
tivity of the surface elements and variations in the direction of
the surface norﬁal. Different values of reflectivity for the

various surfaces could arise from differential exposure to solar
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radiation, meteorite cratering, manufacturing errors and other

causes. Variations in the direction of the surface normal could

arise from manufacturing errors and warpage of the surface due to

deformation under centrifugal stress while spinning and thermal

expansion by solar heating. This chapter will deal only with the

)
i
precession caused by the larger of the above effects, differential !

reflectivity of the various surfaces. ;%

6.2. Analysis of Solar Radiation Pressure Torque

| |
6.2.1. Basic Equations ’
The satellite analyzed is the type proposed by the Co- i
ordinated Science Laboratory to measure a general relativity effect.
The satellite parameters which will be used in this calculation are Mj
for the satellite configuration reported in ref. 3. Briefly, the
configuration is a sphere modified by cubic-oriented flat surfaces. -
The spherical diameter is 30 cm and the flat to flat diameter is
24.50 cm. The six surfaces each have an area of 236 cm2 and the

angles of the surface normals relative to the spin axis are 42, 54,

J
§
3

71.36, 108.65, 126, and 138 degrees.

The basic equations for the torque caused by solar radiation

can be found in many references (see for example ref. 4). The torque

produced by radiation pressure on a finite plane surface at radius
r, from the center of mass of the body (see fig. 6.1) can be expressed
as

L =t x(P AA(CE-n)E+n P AA (R -n)(R)] (1)
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Reflection of solar radiation, E,
from a surface element, AAh’
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where PO is the incident radiation pressure acting in the direction
of the unit vector E. A An is the surface element having the unit
normal ﬁn, ﬁn is the unit vector in the direction of the reflected
radiation and nn is the radiation adsorption coefficient which is

equal to 1 for complete reflection and equal to zero for complete

absorption.

Since n o, E, and Rn are in the same plane, we can write

the following
R -E=(E-n +R_ -n)n (2)

Also, if we assume that the reflection is specular, then we have

the angle of reflection equal to the angle of incidence or,
E-‘n =R -n (3)
Substituting (3) into (2) we have
R =E - 2(E - n)n (4)

Using (4) in equation 1 we have for the instantaneous torque on the

nth element of area

in =7, A An(ﬁ . an) En X [(1-nn)17: + znn(x?: . ﬁn)ﬁn] (5)
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Now, if we consider the elements of surface to all have normals in
the same direction as the radius vector to the center of the surface

from the center of the mass, we have
r Xn =0 (6)

This condition is very accurately met for the C.S.L, relativity

satellite. Applying equation 6 to equation 5 we have
Ln = Po A An(E . nn) r X E(1 - ﬂn) (7)

From equation 6 we can also write the following

n = rn/ |rn| (8)
Therefore, (7) becomes
L =-P A A =l - n) (-E-n)@ xE) (9

From Fig. 6.2 we can define the vectors E and n.

- E =sina sin B is - sin o cos B js + cos ¢ kS (10)

=]
L]

sin en cos ¢n i + sin Gn sin ¢n jg t cos en ks (11)

}
|
i
H
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Orientation of solar radiation vector with
respect to the satellite spin vector Q.
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Orientation of satellite spin axis in the
inertial reference system x, vy, z.
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where ks is the unit vector in the direction of the positive spin
vector. Substitution of eqs. (10) and (11) into (9) will yield the

torque referred to the X s Yoo Zg coordinate system.
L =L i +L j +L k (12)

where Lnx , Lny , and Lﬁz are the components of the torque in'

s 5 s

We are now prepared to find the motion of the satellite spin
axis under the action of this torque. Since we want this precession
referred to a coordinate system fixed in inertial space, we intro-
duce the coordinate system shown in fig, 6.3 where the %, y, z system
is the inertial system.

In this coordinate system we can write Euler's dynamical

equations for the spinning satellite

L =I. ¢ +(I -IDw w +I o
nx 1 x 4 1 z y z y
s S s s 7’s s °s
L - 1. by + (I1 -1, ) w,ooo - Iz W Q (13)
ny 1 7s ] s s s s
an = Iz an + Q)
s S ]

Where we have assumed a body symmetric about the spin axis z Q

is the spin rate, Il = IX = Iy the moment of inertia about the
s s

axis perpendicular to the spin axis. Iz is the moment of inertia
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about the spin axis.
If the spin rate is large compared with the precession
rates wx , W and the slow down rate wz , as will be the case for

s Vs ]
the C.S.L. satellite, we can write equations 13 as

#

L =1 o Q@
nx z_y
s s s o
!
L =-1 w QO (14)
ny Z X ;
s ] s )
an = IZ ((Dz + Q) &
s s 5 |
Referring to fig. 6.3 we can write i 1
}
w =8 /
X ]
s
\
= ; o
wy ¢ sin Gs (15)
s .
w o= @ _ cos GS ‘
s A
4
Using equations 15 in equations 14, we find the precession com-
ponents of the satellite spin axis, letting Iz = I
s
L
. nx_
¢s " Q1 sin GS (16)
4 {
L L
. 0Yys
e = a7n
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To find the precession of the satellite we must integrate
equations 16 and 17 with respect to time. In general, the quantities
o, B, ¢m, Gs, and ¢S which appear in Lnx and LnyS are all functions
of time. However, in one revolution of the satellite about its spin
axis, all the quantities can be considered constant except ¢n.
Therefore, we find the average precession of the spin axis for one

revolution of the satellite by integrating only over ¢n from 0 to

2. That is, the average precession can be expressed as

- L

. t nx

65 = Jo 1 Qsinesdt/t
and

i’ t Lny

- s
es - { 1Q de/t

now ¢n,= Qt and for one revolution

_
t=3
dg
U
dt = o)
Therefore,
~. 21 Lnx .
1 s
¢s T mido Q1 sin GS d ¢n (18)
~ 2t Loy
: _-1p s
es T mido 1IQ d ¢n (19)

Before we can perform the integration of equations 18 and

19, we must take into consideration that for a given Gn, the surface
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associated with that angle may pass into the shadow or the back side
of the satellite. Under that condition, no torque would act on the

satellite. Therefore, we must use the shadow boundary as the limits

of integration on ¢n. From fig.6.1, we see that the shadow is defined
by , i

“E .8 =0 (20)

From equations 10 and 11 we find

-E +-n =sino sin B sin ® cos ¢ - sino cos B sin 8 sin ¢
n n n n n

ottt

(21)
+ cos o cos © : E
n t :;
A
We want to find the value of ¢ for a given § when equation 21 is /
n n 4
equal to zero. Denoting as ¢n the value of ¢n when the shadow \
s A
boundary is reached, we find -
%[%
-1 1 :

= i +

¢nS sin <-t'an' o tan 9n> P (22) )

We see that three situations for the shadowing of a surface

at a given Gn. First, the surface may be in the sunlight for one

complete rotation of the satellite. For this case we integrate

equations 18 and 19 from O to 21 on ¢n. Another case is when the
surface is in the shadow for one complete rotation. Under these

conditions we have zero torque. The third case is the most complicated.
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Figure 6.5

4 Top view of satellite with shadow; showing angular
] limits of shadow boundary for a surface AAn.
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Side view of satellite with shadow;
showing angular limits of shadow regions.
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For this case the surface is in the sunlight for part of the rotation
and then passes into the shadow. (see fig. 6.4). The geometry involved

in this third case is shown in fig. 6.5.

Case I. Full sunlight; On < % - o

A surface at angle en from the spin axis will be in full

T _
2

Integrating equations 18 and 19 from 6 to 2m we have

sunlight for one complete rotation if Gn < o (see fig. 6.6).

~ - L .

¢s = §ﬁ~i—§%5—§; [sin o cos o cos B(2 cos2 Gn - sin2 en)] (23)
£ 7Lo 2 2

GS =76 [sin o cos o sin B (sin Gn - 2 cos en)] (24)

where L =P AA |r ]| -1
o o n'"n n

Case TI. Full shadow; 8>3 +a
For this case no torque acts on the satellite,

therefore,

Case III. Part sunlight, part shadow; % -a< Qn < % + o
From fig. 6.5 we see that the limits of integration should
be from (- m - ¢n + 2B) to ¢n . Integrating equations 18 and 19

s s
using these limits instead of from O to 21 we have
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-L

0 D+*F 2 . 2 . 2 \
2m Q I sin @ { 2 sin en [sm ¢n - sin (¢n B 28)]
s s s
. . 2 T _ 1 . e .
G - F sin en [2 ¢ns B 4(sm 2¢ns sin 2(q5nS 25))]

2 . r 7
F~ sin en cos en | - cos qsns - cos(¢ns - ZB)J

D - G sin Gn cos en I:sin d)ns - sin(q)n - ZB):]

S

2 .
G~ sin en cos en l:cos ¢ns + cos(qz)[lS - ZB)]

2
G + F cos Gn (Tr-2¢ns'25)}

-L
0 2 . . ,
a1 {—D sin en cos Gn [sul ¢ns - 81n(¢n ZB)]

8

X 1
D - G sin en cos Bn [cos ¢ns + cos (¢ns - ZB)J

2
D - F cos en (‘n+2¢ns—25)

. in? 418 - L ; - . “
D - F sin Gn [2 + ¢ B+ z}(s:.n 2 qsns + sin 2(q§ns ZB)/:‘

n
S

. 2
> sin2 en [sin q)ns - Sin2(¢ns - ZB)]

2 . . ,
F sin Gn cos Bn l:sm ¢ns - sm(¢ns - ZB)]}

where L =P A A |r | (1 -1)

(25)

(26)

.\‘]L
i
3
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\

and

o
i

sin o sin B

G = sin o cos B 27
F =cos

¢ M?‘

% We now have but one more modification of the above equations

before we can solve problems. As the equations are written, the solar

et

radiation vector E is referred to the satellite coordinate system. It

is more advantageous for computational purposes to refer the solar

S

radiation vector to the inertial system, x, y, z. The angles involved

St

are defined in fig. 6.7. Therefore, referred to the X, y, z system we

? have
¥ _- = . s . . . k
E sin QE cos ¢E i+ sin GE sin ¢E j + cos GE (28)
With this equation and equation (10) we can find D, G, and F
o (eq. 27) in terms of 9E and ¢E. Therefore, equationg 27 become

= + 5
D = A cos ¢S B sin ¢S
G = A cos es sin ¢S - B cos BS cos ¢s - C cos 98 (29)
s F =

Asin6 sing - B sin€ cos ¢ + C cos ©
s s s s s

o
3
1
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cos GE

where
A = sin GE cos ¢E
B = sin GE sin ¢E (30)

= T

Now, with equations 23, 24, 25, 26, and 29 we are prepared
to find the precession of the satellite spin axis referred to an
inertial coordinate system of our choosing. 1In practice one might
choose the orbital plane of the satellite or the earth's north pole
as the basis for the inertia system. Since we are considering
satellite orbits which regress during the year, we have chosen the 3
earth fixed system. In this way the system of equation defining 9
A, B, C (eq. 30) correspond to the motion of the sun referred to the
earth. The equations defining the rotation of the sun with respect
to various coordinate systems can be found in other reference. See
for example ref. 5.
6.2.2. Earth Shadow Effect 7 V

In our calculation of the precession, we assume that the

average precession rates, GS, and ¢S, are constant over one complete

orbit of the satellite. This is an accurate assumption considering

that the sun's position does not change greatly in the spproximately

90 minutes it takes for one complete orbit. Therefore, for one

)
%
‘;
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complete orbit

o=t X
S s W S
o)
and
., m=
A¢S B tS 0)0 ¢S (31)

where w is the orbital angular velocity of the satellite. The
quantity tS is a correction factor needed to correct for the effect
of the earth's shadow. If the satellite passes through the earth's

shadow, no solar torque will act. The quantity tS is described as

follows
For sin v. 5«/1_(R/rs)2
t =1
s
i >
For sin v - Vl-(R/rS)Z
¢ = 180-¢
s 180
where
/i 2
cos ¢ =.,1,(R/rs) (32)
sin v

R = radius of the earth and T = radius of the satellite orbit
measured from the earth's center. The angle v is the angle between

the Earth-sun line and the normal to the orbit plane. This angle is
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found from solar and orbital parameters from the following:

" cos v cos ® sin QO sin i

- sin ® cos i@ cos Qo sin i (33)

+ sin ® sin i@ cos i

where ® is the ecliptic angle of the sun from equinox and i® is the
obliquity angle equal to 23.4°. Qo is the angle of the ascending

node of the satellite and i is the orbital inclination. The above
relations are only correct for circular near-earth orbits and can

be obtained from simple geometric considerations. The errdr committed

when one treats small eccentricity orbits (e < 1) is, however, quite

small.

6.2.3. Orbital Regression Effect

A regressing orbit is not fixed in inertial space. The
satellite in this orbit does, however, remain relatively fixed in
inertial space while the orbit can be thought to regress under it.
Since a regressing orbit does not effect the orientation of the sun
relative to the satellite, the inclusion of regression effects is
straight forward. The principle effect of orbital regression is to
alter the amount of time the satellite remains in the earth's
shadow. The change in the orbit's position with respect to the

earth is

M = -3m 3, ®/P)° cos i (34)

Gy

R

S

EAE——
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in units of radius per second where R is the radius of the earth, P

is the semi-latus rectum, i the orbital inclination, and J2 is the

second coefficient of the potential function. The quantity Qo is

the angle of node for the orbit which appears in equation (33).

e Therefore, after each orbit, the regression can be calculated and

{
iy
o substituted into equation 33 to give a new v. This v is then used
fz in equation 32 to find a new shadow time, ts.
fz
iy’ - 6.2.4. Advance of Perigee
‘E‘ Besides orbital regression, the asymmetry of the earth also

i

\
o causes an advance of perigee. This effectively changes the time

\E required for the satellite to complete one orbit. The equation for
ot
advance of perigee is
{
. L
2 .2,

] Aw = 3m J2 (R/P)” (2-5/2 sin” i) (35)
b

i where Aw has units of radius per sec and the other quantities have

I

been defined in section €2.3. Equation (35) can then be used to calcu-

A late a coefficient to multiply equation (31l) to modify the original

. time for one orbit.

| 6.3. Computational Procedure

In all the results that will be discussed, the precession of

St
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the C.S.L. satellite as described at the beginning of section I1 is
calculated. This precession and the manner in which it varies over
one year is calculated and plotted., 1In order to obtain maximum use
of the computer program, each of the six surfaces of the C.S.L.
satellite was treated separately but calculations were done simul-
taneously. A surface at a given Gn was considered to have a
coefficient of reflectivity of zero Cﬂn = 0) while the remaining
surfaces were assumed to have an ﬂn = 1. This was done for each of
the n surfaces. Therefore, the results give the precession for six
different satellites. Each curve shows the precession of the whole
satellite due to that one surface being non-reflective. Of course,
one may add the precessions together to obtain the precession for
two or more surfaces being non-reflective at the same time. If all
the six surfaces were non-reflective, then we should obtain zero
torque because of the symmetry of the surface placement. This can
be seen from the results by noting that at each position in time,
the total torque (the sum of all the curves) is approximately zero.
The sum is not exactly zero because we are treating six different
satellites rather than one satellite with six different surfaces.

With this in mind, a brief step by step procedure used
in the computer program for calculating the precession will be
given

1. Read in initial data on satellite and orbit parameters.

2. Calculate eqs. 34 and 35. These values remain constant

because i does not change. The value from equation 34

L

)

#

5
]
t
5

i

2

S i

!
.
|




™
/
|
*

]

] i
& i iS Vgt

[S————

;\
1
e ;@j

6 SOLAR RADIATION PRESSURE TORQUE 193

will be used in equation 33 to find a new shadow time
after each orbit.

3. Find position of the sun. (Eqs. 30).

4. Find the sun's position relative to the satellite.
(Egqs. 29). From this calculation we find the angles
o and B which are need in the integration limits.

5. Calculate the average precession rate gs and ;s for
each of the six surface angles Gn(Eqs. 23, 24, or 25,
26.) Case I, II, or III.

6. Calculate the precession over one orbit of the satel-
lite (Eqs. 31) for each of the six surfaces including
the effects of earth shadow and'advance of perigee.

7. Re-calculate the sun's position and orbital position

and proceed starting at step 4.

This procedure is followed for each orbit over a period of
time of one year. For the orbits we are considering, altitudes of
about 600 miles or 1000 km, there are about 5000 orbits in a year.
The results, which will be discussed in the next section, are calcu-
lated and plotted by the computer. The computer time involved is
about 20 min. on C.S.L.'s own CDC 1604 computer. This time includes

the time needed for print out of the data.
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6.4. Discussion and Analysis of Results

Samples of the computer solution results are presented in

figures 6.8 through 6.13. Each curve represents the precession of the

C.S.L. satellite with only that surface at the given angle Qn being

completely non-reflective. For all of the plots presented, certain

basic satellite and orbital parameters remained the same. These are

as follows.

1.

Surface areas - The C.S.L. satellite has six plane

surfaces of equal area.
2
AAn = 0.236m ; n=1, 6

Radial distance of surface from center of mass - All
six surfaces of the C.S.L. satellite have equal

radial magnitudes.
|z | = .1225m ; n =1, 6

Coefficient of reflectivity

Angular position of radius vector of each surface with

respect to the satellite spin axis.

= 42° = o
8, = 42 6, = 108.65
= o = o
0, = 54 8 = 126
0. = 7.35° 8. = 138°

|
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Radius of satellite orbit - Due to constraints on the
maximum and minimum orbital altitudes, we have chosen

a 600 mile, approximately 1000 km, altitude. Therefore

r = 7.345 X 106m

Moment of inertia - It is proposed that the C.S.L.
satellite be made from a non-conductive material such

as glass or ceramic. For computational purposes, we
have chosen a material specific gravity of 2.2 which
corresponds to glass. The moment of inertia was calcu-
lated assuming a spherical body of radiuS'hélf way
between the spherical diameter and flat to flat diémeter

of the C,S.L. satellite, .13625m.
2
I = .1725 kg m

Spin rate of satellite - Due to constraint on the maxi-

mum and minimum spin rate possible, we have chosen
Q = 100 cycles/sec = 628 rad/sec

Incident solar radiation pressure assumed constant at

Earth's orbit (see ref. 4).

Po = 0.3 dynes/m2 20.3 X lO-6 Kﬁ——-i

m sec
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9. 1Initial position of sun - The starting time was

consistently chosen to be at the vernal equinox.

® = 0.98563 d

where d is the number of days past vernal equinox.

1

Although the above parameters have remained constant 9

R

throughout our calculations, the computer program is adaptable to

any number of different satellite shapes and dynamic properties.

B i

With the above parameters fixed, we have then five parameters which

EE—

we have varied in the results presented. These are

1. Initial satellite orientation with respect to the i

inertial coordinate system

e d
. an ¢S

2. 1Initial orbital parameters

i - orbital inclination

Q1 - angle of ascending node

#

-

:
S

e - eccentricity of orbit (less than 0.1)

Since we have chosen the inertial reference frame to be earth centered,

the angles GS and ¢S are measured with respect to the north pole of
the earth and the line of Aries, respectively (see fig. 6.3).
Although the plots are self explanatory, a brief description

of each would be given.
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Fig. 6.8 and 6.9. These figures give the precession component

for an equatorial orbit with the satellite spin axis

in the orbital plane but 65.6° out of the ecliptic

plane.

Figs. 6.10 and 6.11. These are for an orbit inclined at 300

B
¥
!

with a small eccentricity of .0l1. The satellite

bpiramaid

spin axis is initially in the orbital plane and 5°
out of the ecliptic plane.
.i Figs. 6.12 and 6.13. These are for an equatorial orbit. The
'3 satellite spin axis is, however, perpendicular to
the ecliptic plane. These results also simulate
% to some degree a polar orbit with the satellite

spin axis in the orbital plane.

From these plots we find that there are both secular and
;é periodic precession rates. The maximum precession is less than 5
sec of arc for a surface which is completely non-reflective and the
satellite spin axis perpendicular to the ecliptic plane. Magnitudes
‘? of the order of 1 to 2 sec of arc are representative of the precession
expected for the completely non-reflective surfaces. Since the surfaces
of the C.S.L. satellite are to be highly reflective, we can expect

possibly a .1 to .2 sec of arc precession, at most, with a 107%

degradation of one surface.
3 The plots are instructive in showing the precession for a

specific surface having a given reflectivity. The precession is found
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to vary widely for the sample cases presented. Although this detailed
knowledge is useful, a more general analysis of the data will prove
to be more useful for design purposes.

Even if the reflectivity of the surfaces were initially
balanced, the space environment effects of meteorites, cosmic rays,
dust particles, and others can be expected to degrade the surface
reflective properties. Although there is some data on these degrading
effects from recent satellite experiments, the degrading process and
rates are not known well enough so that they can be designed into
the satellite. Furthermore, the degrading of the reflective proper-
ties cannot be expected to be uniform over the surface of the satel-
lite. The satellite will obtain an average reflectivity with time,
but it is expected that the reflectivity from surface to surface will
vary around this average value. To be able to obtain some idea of
these effects, we perform an analysis of these surface variations
using a stochastic model following the work by Robert E. Roberson
in ref. 4.

Consider that each surface has the same nominal value for
the reflectivity, N*, such that the total torque on the satellite
is zero. This nominal value of reflectivity could be the average
reflectivity. Now we consider that due to the non-uniform manner
in which the space environment effects erode the surfaces, each
surface will have, actually, a value of reflectivity given by

*

ﬂn =7 + 6ﬂn (34)

oy
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A8 vs. number of orbits for equatorial
orbit with spin axis in the orbital plane.
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A6y vs. number of orbits for satellite orbit
of 30° inclination and eccentricity of 0.01.
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Figure 6.12

4O vs. number of orbits for an equatorial orbit.
The satellite spin axis is perpendicular to the ecliptic plane.
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Figure 6.13

Apg vs. number of orbits for an equatorial orbit.
The satellite spin axis is perpendicular to the ecliptic plane.
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6 SOLAR RADIATION PRESSURE TORQUE 211

where 6ﬂn is a small variation, positive or negative, from the
nominal value of reflectivity N* for which the satellite would be
balanced. Using equation 34 in the torque and precession equations,
we find that the variation in the total precession component is

given by

(35)
8¢ =% bp_ &M

n

where AGS and A¢S are the vaults of equations 31 evaluated for a
n n

specific en and ﬂ*.

If we consider Gnn to be a random variable with zero mean,
we find that the expected values of 563 and 5¢S is also zero. If,
however, we suppose that the reflectivity variations in the different

surface elements is uncorrelated, we can write

Gﬂné'nk=c726

N nk (36)

where Gﬂ equals the rms variation in surface reflectivity. The over-
bar denotes expected values over the probability distribution for the
variable in question. With this assumption, we can derive the preces-

sion component correlation functions from equations 35.

— 2 2
698 693 = %(AGSH) n

@7
5, 83, =58, )" op?

n
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From equations 37 we can find the rms values of the precession
components for the various cases we have plotted in the results. To
obtain a conservative estimate we will use the relative maximma of the
AGS and A¢S values over the period of one year for which the results

n n
were plotted. Therefore,

%

(38)

_ 2
rms 693 - [ %(Aesn) max ] Gﬂ

L
= 2 *
rms 6¢s = [ %(A¢Sn) max ] o (39)

Equations 38 and 39 are plotted in figs. 6.14 and 6.15 re-
spectively. The maximum values of ASS and A¢S were obtained from the
appropriate plots in figs. 6.8 throughn6.13 witg the exception of the
line labeled, '211 to lines of Aries, i = 0" and the line labeled
" 5o out, i =-15°,ﬁ which were obtained from data not presentéd
graphically.

Figure 6.14 shows that there is little change in the rms. of
693 for the various orbital and satellite orientation parameters
chosen. The values are generally higher than for the rms of 6¢S.

The out - of - equatorial - plane component of precession is, however,
not considered of great importance to the relativity experiment.

The precession caused by the general relativity effect is directed
only in the equatorial plane. Therefore, the out - of - plane

motion of the spin axis will not effect the accuracy of the rela-

tivity experiment.
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Figure 6.14 The root-mean-square of the out-of-
equatorial-plane precession component vs. root-
mean-square of surface reflectivity.
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6 SOLAR RADIATION PRESSURE TORQUE 215

Figure 6.15 is then the more important plot with respect to
the relativity experiment. This plot shows conclusively that the
best orientation for the satellite is one in which the spin axis is
nearly in the ecliptic plane. Of secondary importance is the orbital
inclination, assuming the spin axis is initially in the orbital plane
and also in the ecliptic plane. Future work will investigate more
thoroughly the effect of orbital parameters in hopes of finding the
best orbit and satellite orientation.

Figure 6.15 shows that we can keep the rms value of the in. -
plane - precession to less than .l sec of arc in one year with as
much as 10% variation in surface reflectivity if the satellite spin
axis is nearly in the ecliptic plane. -A 10% variation should be the
maximum that one might expect from the space enviornment degrading
effects. Only a 17 variation could be allowed for the case where
the spin axis is perpendicular to the ecliptic plane for the same

rms value of precession.
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Figure 6.15 The root-mean-square of the in-
equatorial-plane precession component vs. the
root-mean-square of surface reflectivity.
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List of Symbols 219

area of surface element.

unit vector defining position and direction of solar flex.
orbital inclination.

obliquity of sun, 23.4°.

moment of inertia

potential expansion coefficient.

outer ‘unit normal vector to surface element.
vector torque.

semilatus rectum of orbit

incident solar radiation pressure.

radius vector to center of surface element.
radius of satellite orbit from center of earth.
radius of earth.

fraction of orbital period which is in shadow.

angles defining orientation of sun with respect to the
satellite (see fig. 6.2).

coefficient of reflectivity.
angle between earth-sun line and normal to the orbital plane.
ecliptic angle of sun.

angles defining orientation of sun with respect to the
inertial reference from (see fig. 6.7).

angles defining position of surface element AA, with respect
to the satellite centered coordinate system (see fig. 6.2).

angles defining satellite spin axis with respect to the
inertial reference frame (see fig. 6.3).

the angle ¢n for which the surface element AA_ at angle
en passes into the shadow of the satellite.

Kronecker delta
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6 221
w angle of perigee.
W orbital angular velocity.
W ’wy ,wz components of satellite precession rate.
s ‘s s
Q satellite spin rate
. Qo angle of ascending node of satellite measured from

line of Aries in the equatorial plane.
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7. ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 225

In this section it is shown that all spurious torques due

to electric, magnétjc and electromagnetic effects (with tﬁe exception
4

of solar radiation,%the effects of which are described in chapter 6)

can be readily controlled to sufficiently small values. This control

is obtained by choosing appropriate values of the volume electrical

resistivity for the gyro material.

The larger torques will be considered first. In order to
avoid drift torque due to localized charge on a sphere in an electric
field the charge must be uniformly distributed within aimaximum
specified time. Consider a rotating sphere of radius r located in
an electric field E with a fixed charge q localized to give ‘the
maximum electric dipole moment (see fig. 7.1). From the figure we can
write the expression for torque T and drift rate wd:

T=gqgE r sin 6

w Lo =9 r sin e

d~
Ty 2/5 mr2 w
w = 15 q-E sin ©
d & 4

r w
pn

where ® is the spin rate and P is the mass density. To estimate the
charge, assume that the sphere is at the potential V. The charge due
to that potential is assumed to be localized by some undefined process

to give a maximum dipole moment. Since q = CV where C = 4 ¢€r and €= €oer
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Figure 7.1

Charged Sphere in an Electric Field
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 229
€0€ ’
® =l§'-—”——r—lE—sin9 (1)
d 3
2 Pyt ©

2.5 X 103 kgm/m2

o =
: w = 2 100 rad/sec
r = 0.30m
¢, = 8.85x 107 farad/m
er =1
8 = 90° for the worst case.

:
[,

What value of potential V should be used? Reference 1
wé states that ''the accumulated charge on the outside of the satellite
may be fairly large, corresponding to a potential of several (or in a
few cases, several hundred) volts." 1In reference 2 potentials of
| about -6 volts on a satellite at an altitude of 795 km were measured,
which were about seven times the calculated values. Satellite poten-

tials of the order of -0.15 volts were calculated and observed for

the Explorer 11 satellite, as described by N. C. Jen.3 Let us take

V = 10 volts.
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Uncertainties also exist for exact values of the earth's
electric field at altitudes of 600 km; however, references indicate
an upper bound of about 0.1 volt/m.

Substituting these values into equation (1) one obtains as
the worst case (i.e., where 8 = 90° during all orbits);

1

wy = 1.2 x 10714 rad/sec.

~ 0.08 arc sec/year, which is approximately one-
hundredth of the first-order relativity effect.

In order to safeguard against possibly more pessimistic
space conditions, a charge-relaxation time T (in which a localized
charge is distributed to reduce its initial values p to p/e in time T)
is specified. From Ohm's law, the equation of continuity and one of

Maxwell's equations the following is obtained:

{ = qE
= _ o4 =94
v - = - =2 =0 «E =
i St v €
-1 .
ot P

where e is the volume electrical resistivity. The solution is

i
i
§
i
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Figure 7.2

Rotating, Uniformly Charged Sphere
in a Magnetic Field
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 233

and hence the relaxation time T is

T=pe€-=pee (2)

If the gyro were made of Cer-Vit, a very low thermal expan-
sion glass fabricated by Owens-Illinois, the charge-relaxation time
B would depend on the glass resistivity which in turn is dependant on
- the gyro satellite temperature. A chart of satellite temperature T,

L : Pe and T is given below

T-"C pe-ohm—meter | T-sec
90 8 x 10° .018
0 8 x 102 173
3 -25 3 x 10 6,800

By means of solar reflective coatings on the satellite gyro
the equilibrium temperature and hence the charge-relaxation time can
be selected over a fairly wide range. The choice of maximum relaxation
time imposes an upper bound on the volume electrical resistivity.

The case of a uniformly charged gyro rotating in a magnetic

field B is next considered. Let the total charge Q be uniformly
distributed over the solid spherical gyro (see fig. 7.2). The charge

2
per unit area is Q/4mr~. The area of the zone shown in fig. 2 is

RN
i
s
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2
2nr” sin 6 d6. The magnetic moment p due to this zone is

]

du

(di) (area about which the current element di circulates)

(Charge per unit area)(area of zone).(Area about which di circu-
(Period of revolution) lates)

(Q/4mr2Y (2nr? sind d8) £ (mr sin 6)2

-
]

v
wq_2 . 3
ks fo sin” 6d6
- erz
3

k=
|

 lExB| _ (wQr?/3) (Bsing) _ 5QBsing

d Iw w(Zer)/ 5 6m ui

2CVBsin ¢
3
6 (4mr pm/3)

4rie r
o

But C

0. = 15 eoZVB sing (3) -

6r P

The most pessimistic values of gyro potential V (= 1000 volts)

for a glass gyro of radius r = 0.15m in the earth's magnetic field,

4
'y
g

3

B =0.5%X 10“4 webers/mz, with u always perpendicular to B gives a

worst case value of drift rate w, approximately equal to 0.1 arc sec

per year, a negligible value. Hence, there is no need to do an exact

integration of the torque over the orbital path.

The maximum volume electrical resistivity was set by the
relaxation time T, which depends on the satellite temperature. Let Aé

12 . s s
us take P ™ 107" ohm meter as a maximum value. A minimum value
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 235

of Py is established by considering the torque due to induced currents
of a conductive spheré rotating at approximately 100 cps in the earth's
magnetic field. The torque depends on the depth of penetration which,
for values of P, as small as 1 ohm meter, is greater than the gyro
diameter. Under this condition it is shown in Appendix A that the

drift rate wd is

- B2x10”9

4

where w4 is in radians/sec., B is in gauss, Pe is in ohm cm and p is
in gm/cms. B is 1/2 gauss for the earth's magnetic field, p = 2.5
gm/cm3 for glass and, setting a maximum drift rate of 0.l arc sec/year,
the lower limit of volume electrical resistivity is obtained from

(4) as e > 835 ohm cma 10 ohm meter.

Hence, the resistivity range has been tentatively estab-

lished as

12
100 > Pe > 10 ohm meter. (5)

An approximate worst case calculation for a sphere spinning
in an electric field which induced charges slide along the resistive
spherical surface as the sphere rotates shows that a negligible drift
torque exists for pe within the range shown in equation (5). This

approximate calculation is shown in Appendix B.
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The Satellite Gyro can acquire an electric charge because
of collisions with ions and electrons during its trajectory (electro-
hydrodynamic effect). For comparable electron and ion temperatures
the thermal velocities of the electrons are higher than those of the
ions or the velocity of the satellite; therefore, the electron flux
hitting the satellite is much greater than that of the ions. A
negative satellite potential is thus generated which builds up to an
equilibrium value Veq such that the electron and ion collision rates
with the satellite are equal. Calculated values2 of Veq are approxi-
mately -0.8 volts whereas observed values of -6 volts have been

measured. It has been shown that the larger value of Ve produces

q

negligibly small values of drift due to interaction with the earth's

electric and magnetic fields. The effect of Coulomb drag on the

drift rate will be investigated following the procedure of reference 4.

The Coulomb drag results from the Coulomb force between the
negatively charged satellite and deflected or non-colliding ions and
from the change in collision rate because of the Coulomb force
between the colliding ions and charged satellite.  As the satellite
moves across the earth's magnetic field, it becomes polarized so that
the cross-section for ion collision is increased in the region of the
negative pole and decreased in the region of the positive pole. Ion
deflection is also no longer symmetrical because of the polarized
satellite. The resultant Coulomb drag force vector due to scatter-
ing acts at the center of the satellite gyro and hence causes no

torque. The portion of the Coulomb drag due to non-symmetrical ion
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 237 -

collision does cause a torque, however, which is estimated as follows.
Again, worst case conditions are taken. Reference 4 states that,

for a 4-meter sphere at 1500 km. due to increased ion collision, the
effective collision area is 10% larger than the projected area of the
sphere while the Coulomb drag due to increased ion impacts is 2.3% of
the drag of the uncharged sphere.

The increased effective diameter of the original one foot
gyro is 12.6 inches. Assuming maximum effect, the center of the
effective collision area is displaced 0.3 inches from the gyro center.
The drag of the uncharged sphere at 900 miles altitude is, at worse
D~ %.pva = 3/2(2x10" 18 kgm/m’) (50x10%m/sectIm(.15)% mf & 1070
newtons. The Coulomb drag is .025 Das 2.5 X 10-11 newtons, which is
applied’0.3 inches off center of the gyro. This gives a torque T =

1

2.5 x 10 1 (0.3 X 10-2)(2.54) = 19 X 10_14 newton meter. The worse

case drift rate becomes wy = T/Iw = 19 X 10-14/(0.3)(2ﬂ)(100)$v
9.5 X 10"16 rad/sec, an insignificant amount.

The optical method for determining the spin-axis orienta-
tion requires good reflective surfaces on the flat portions of the
polygonal glass gyro.  If conductive materials are used on the sur-
face to satisfy the required high optical reflectivity, there would
be an induced torque due to these metal surfaces rotating in the
earth's magnetic field caused by interaction with the eddy current
flow in the plates. Such torques could cause very high drift rates

even though the conductive, vapor-deposited surfaces were very thin

o}
(in the region of 1000A). One solution is to reduce the effective
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eddy current loop areas by scribing narrow lines across the metallic
surfaces. Another solution is to vapor deposit relatively high
resistance, optically reflective surfaces such as germanium, silicon
or tin-tin oxide on the glass gyro surface. The following analysis
determines the maximum area of the effective current loops for a
given surface resistivity and maximum allowable drift rate. To
simplify the calculations worst case conditions will be assumed,
resulting in an ample safety factor. It will be shown that aluminum
surfaces require breaking up into smaller areas whereas surfacés of
germanium, silicon, tin-tin oxide and other similar high resistance,
high optical reflectance materials do not .require this.

Consider a square loop of side a rotating with an angular
velocity w about axis Z, as shown in figs. 7.3 and 7.4. Let the magnetic
field B make an angle o with respect to axis Z. The induced emf e

for the sides labelled 1 and 2 are:

il

[0]
[}

B(simx)awr cos(®-¢) Bawr siny (cosBcosp + sinBsing)

1
e, = B(simx)awr cos(8+p) = Bawr simy(cosBcosg - sinfsing)
be = e -e, = 2Bawr sin o sin ¢ sin O

1 72

But sin ¢ = a/2r.

Jhe = Bazw siny sin® (1)

‘ :
R

|
&



;n
i
i3
il

239

ER—-

RR-309

: Figure 7.3
- Loop Rotating in a Magnetic Field
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Figure 7.4

sk Loop Rotating in a Magnetic Field
Top View
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 243

Making another simplification which provides a further
safety factor in the end result, let the resistance of this loop be
determined by considering the loop to be a flat plate of width a,
path length 2a and effective cross sectional area ab/2. Therefore,

R = pl/A = p(2a)(2/ba) = 4p/b where b is the plate thickness. For
the rotational frequency involved (100 cps), the skin depth for a good

conductor is much greater than the plate thickness (1000 X). Since

& = wt,

[
il

bAe/R = (Bazwb/Ap) sin @ sin wt.

The magnetic moment {4 becomes

=
]

Jude
Y
]

(Bal*wb/4p)sin o sin Wt = W sin wt

The torque on this loop is T =p X B, and if we consider by sin wt

as being equivalent to i By coswt + 3 By sinwt we have

i 5 k
T = uoB coswt sinwt 0
sinwt 0 coswt

T=1 W Beosasinwt -3 W Beosycoswt -k b Beosarcoswt.

A

The k torque component causes slowdown whereas the 1 and 3
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components cause precession. From the previous equation, the maximum

)
torque occurs when o = 45 .

_ 2 4
T ax = a2 b B~ (0.3B%a wb/4p)

it

The drift rate wd is obtained from the relation wd = T/Iw

where I is the gyro moment of inertia,.

Ly s 0.38%ab/41p. (2)
Consider the loop of fig. 7.1 cut up into n2 smaller, adjacent

but separate loops of side a/n. For simplification, assume that the

plane of each loop is equidistant from axis Z, as in fig. 7.5. The

induced potential of the i'th loop is, from equation (1)

he B(a/n)2 w sin & sin Gi

The resistance R = p4/A

p(2a/n)(2n/ab) = 4p/b
so that

(Bazwb/4n2p) sin o sin wt,

e
It

and if we let the currents from all the loops be in time phase the

. 2 .
total magnetic moment from the n~ elements is,

po= nzii(a/n)2 = iia2 = (Baawb/4n2p) sin o sin ot.

i
i
4
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Figure 7.5

Loops Rotating in a Magnetic Field
ﬁx Top View
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7 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 247

The drift rate becomes Wy~ 0.3B2a4b/4n21p which is smaller
than that of the original loop of side a by a factor of l/nz. The
worse~-case drift rate will be calculated for each original. gyro facet,
then multiplied by the number of facets to obtain the resultant drift
rate. If the drift rate is not negligible, a division by n2 could
make it so. The value of n determines the maximum size of the current
loop areas and hence the distance between scribed lines on the facet
surfaces.

One of the proposed gyro configurations is a sphere modi-
fied by cube oriented flats in which the area of the flats comprise
half the area of the sphere. Chapter 9 describes this gyro in more
detail. The diameter of each of the six facets is approximately
0.17 meter.

Consider the case of aluminum vapor-deposited to a thick-
ness of IOOOvX onto the glass gyro surface. Substituting a = 0.17
meter, B = 0.5 X 10-4 Weber/m2 (earth's magnetic field). p = 3X10_8
ohm meter and I = 0.2 kgm~m2 into equation (2), the drift rate for
one facet becomes wy = 2.5 ><10-11 rad/sec. = 167 arc sec/year.

Taking the worst case that the torques from each six facets are in
space and time phase and that the resultant torque always causes the

maximum precession, w, = 6 X 167 ~ 1000 arc sec/yr. To reduce this

d
value to less than 0.1 arc sec/yr., n2 must be larger than 10,000 or
n must be at least 100. This means that at least 100 X 100 lines must

be scribed on the surface of each facet, a laborious task.
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On the other hand, vapor deposited germanium has a resistiv-

ity of about 105 larger than that of aluminum. This would cause a

maximum drift rate of only 0.0l arc sec/year. Drift rates due to

silicon and tin-tin dioxide surfaces would be even less.

Two other torques causing negligible drift rates are

discussed in reference 1. These are the Barnett effect in which a
rotating body develops a small magnetic dipole moment due to the ig
revolving electronic systems within the atoms, and its inverse, the
Einstein-de Haas effect, in which a body experiences a small torque

due to a charging magnetic field.
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7.1. Appendix. A--Precession Due to the Interaction of a Rotating
Sphere with a Constant Magnetic Field.

Part of this derivation closely follows Smythes, who treats
the case of a conducting sphere in an alternating field. The magnetic

field B may be defined in terms of a vector potential A so that

B=vV XA (A-1)

From Maxwell's equations and Ohm's Law, then it is shown
that the solution of a magnetic field problem is equivalent to the
solution of the following linear partial differential equation

involving the vector potential:

N
]
=
Q/
1

(A-2)

|
o {o
o/
ot

where:

M is the permitivity of free space (assumed equal to the
material)

Pe is the resistivity of the rotor material

As a result of the linearity of this equation it is possible to

introduce complex notation in its solution. That is, let

B>
f
mFU
"~
7~~~
™
c
o

(A-3)

I
1>
7~~~
x
N
o
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where

x, represents the coordinates of the system

t is time, and

w . 1is the angular velocity of the rotor
i =4-1

Equation 2 now becomes
0=(\72—iwp,/p)?\
O e

Note that Q¢O/pe has dimensions of reciprocal length squared.

Let

6 = ,\/Zpe/wuo

The quantity § is called the depth of penetration.

Finally, the equation that we wish to investigate is
2 2, =
0= (vV'-2i/8") A (A-5)

The general solution to the problem of the interaction
between the rotating sphere and the magnetic field may be obtained
by assuming suitable boundary conditions on equation (A-5). Figure 7.6
shows a sphere of exterior radius a and internal radius b whose
spin axis vector makes an angle o with the magnetic field vector

Eo' The rotor is assumed to have a resistivity P and permeability

vt
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Figure 7.6

Shell Rotating in a Magnetic Field
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M (that of free space) and is rotating at an angular velocity w.
Ihus the depth of penetration, §, is uniquely defined by equation A-5.
An appropriate set of boundary conditions is that both the véctor
potential and the magnetic field be continuous at both boundaries.
The magnetic field is continuous because of the simplifying assumption
that the permitivity of the conductor is the same as that of free
space - certainly valid for all conductors except those Which are
ferromagnetic.

In a coordinate system fixed to the rotating sphere, the

magnetic field with respect to the sphere is

Eo = Bo(i sin @ cos wt + J sin o sin wt + k cos o)

where r, the radius vector from the rotor center, is large. By

inspection the magnetic vector potential is
= 1 " , . 4 .
A= EBO i(-y cosy - z sin @ sin wt) + j(xcosy - zsimy cos wt)
+ k(xsiny sin wt + ysiny coswt)]

Transforming each of the components into a spherical coordinate
system, (r, 8, ¢), the vector potential becomes (considering only the
time-dependent terms)

B rsiny § ot (A-6)

R

N [
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where

§ = (ii-ﬁ)cose—ﬂisineel¢

The form of the vector potential at infinity suggests a solution of

the form

B>
N

Bosimzei‘”ta(r)é © ,0)

Substitute into equation (A-5) and separate variables for each com-
ponent in the usual manner. It can then be ascertained that the
radial part (Rn), must satisfy the following differential equations

in the shell:

dR 2 drR i 2 _
2+rdr—(2+2)R-—0
dr ) T
and in free space:
dZR 2 dR 2
"2 ra zR7O
dr T

. . . -2 . .
The equation in free space has solutions r and r ~. The variables in

the differential equation in the shell are changed as follows:

V(r) =1 r/8

<
I

"
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This equation can then be recognized as Bessel's modified differen-

tial equation

2
d1,1dl 91
—=+ ==~ (1l+===)=0
dV2 vV dv 4 V2
The radial solution may be written as follows:
-2
R = Cr + Dr r> a
R=rp? [EI , (V) +F I wy] a>r>b
3/2 -3/2 ’
R = Gr b>r >0

Where 13/2(V) and L3/2(V) are the modified Bessel functions of

order 3/2 and -3/2 and C, D, E, F, and G are constants (possibly
complex) to be determined by the boundary conditions. Note that the
condition that the magnetic field B be continuous is equivalent to

the condition that the derivative of A with respect to r be continuous.
The important constants are those which determine the field inside the
spherical shell. After a large amount of algebraic manipulation, the

vector potential inside the shell in phasor notation is

S _ 1. . dwt -
A= 2B031mye R(r) &
where

3a
V(r)2

R = [§V(r)[3+v<b)2]-3V(b)}coshEV(r)—V(b)] + {3v(b)V(r)

- [3+V(b)2]sinh[V(r)-V(b)]}sinh[V(r)-V(b)i]////benom.
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where Denom = 3V(b)cosh£V(a)-V(b)]+{3+V(b)2]sinh[V(a)—V(b)]

7.1.1. The Precessional Torque

The torque which tends to precess the rotor is due entirely
to the interaction of the current rings and the % component of the
magnetic field. This can be ascertained by looking at the form of
the vector &. From the form it is seen that the induced current
flow lines are circles whose planes are parallel to the k axis. The

precession torque is proportional to the triple vector product

M1

X (3B,

&8

1= L
Pe

integrated over the volume of the shell. Thus

T=[[rx (GxB)]dv
) o}
which, after performing the angle integrations, reduces to

a
T = Re fr3R(r)dr . anBozsinZy)/3T. -1+ Ei)
b

And finally the torque for the shell is

igarsisins

A

%

%
i
4
}
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_ nBisinZw . . 9 2 2
T Re[(-i+ji) X 3ab {[[3+V(b) [ 3+v(a)“]-9V(a)V(b)]sinb[ V(a)-V(b)]
o
+ 3[V(a)-V(b)][V(a)V(b)-3]cosh[V(a)-V(b)]}///genom:]] (A-6)

where Denom = 3V(b)cosh[V(a)-V(b)]+{3+V(b)zsinh[V(a)-V(b)]

The relation for the solid rotor is obtained by setting
b = 0 in equation (A-6). After separating reals and imaginaries, the

following form results

23
T = W{ﬁ[ﬁ _ 6sinh(/2a/8)+sin¢/2a/8) 'J
Mo a2 I/EaCOShC/Ea/s)_COSQ/Ea/6)

+ 3 [1 _ 38 sinhQ/Ea/é)-sinQ/za/ﬁ) 7 } (4-7)

N2a cosh(/2a/8)-cos (/2a/8) |

The high frequency limit ( § < < a) is

ﬂBiaSSian

T = j m

o

The low frequency limit ( 6>>a ) is

R naSwB 2sin201
T =i =
15 P

Thus, we see that at the high frequency limit the torque is independent
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of the sphere material and is only a function of the field and the
spherical volume. At the low frequency limit, since wa5 is propor-
tional to the angular momentum, the precession rate is independent

of the size of the rotor and dependent only on the density, the
magnetic field and the resistivity of the rotor. The precession rate

for this case is

where

B is in gauss
p is in ohm cm
A 3
p_is in gm/cm
A suitable precession rate may be obtained by the use of

a semiconductor material with a resistivity of the order of 1-10

ohm cm,

= 5

Hcvmrrpisii
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7.2. Appendix B-- Approximate Worst Case Drift Calculation Due to
Induced Charges Sliding Along a Spinning Sphere in
an Electric Field.

In order to calculate the maximum current flowing on the
surface, the sphere will be considered as a good conductor. To get
the maximum power consumption P and hence the torque, the largest
resistivity will be used with the maximum current to obtain the
worst case. This drift is shown to be negligible.

Given a spinning sphere of radius a immersed in an electric
field E making an angle @ with the spin axis, as shown in fig. 7.7.

The induced charge Q is obtained from

where the projected area of the sphere is used for dA.

“Q=c¢ Erra2

It is shown in field theory that the electric field
distribution on the spherical surface is sinusoidal. We assume
that the charge is also sinusoidally distributed, and take an equiva-
lent width of about 1/3 of the half-circumference in which the charge
density is considered constant. ©Let this charge travel the average

path shown by the dotted lines.



262 ELECTRIC, MAGNETIC AND ELECTROMAGNETIC TORQUES 7

et
f

Q/t = £Q = wQ/2m

o = 2i%R = 2959—-%&
4

where 4 = 27a sin © "%
A = width w x depth of penetration § o
w = ma/3, k}
b

§ =42/wuo
“
b = permeability of vacuum = 4 X 10 fi
o = 1/pe -
P = w2 /™ Fe )

' 2 2
™

But p =F-v=Tw W

Hence T P/wsind 3

For the worst case, 6 = 900, so that T = p/w.

w,a~ T/Iw, where I = 2ma2/s "

o 45 ¢2g2 Wy pe J

d¥ %8m a P 2

where P, is the mass density and Peo is the electrical resistivity.

Substituting the values E

a=0.15m p_ = 10" ohm meter,

12

100 v/n, P, = 2.5 X 103 kgm/mz,

4t X 10_7 henry/m and ¢ =

8.85 x 10~ farad/m, the value of w, becomes approximately 0.001

d

arc sec/year, a negligible value. i
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8.1. Introduction

The relativity satellite, as proposed at C.S.L., will be
tracked photographically by the network of Baker-Nunn satellite
tracking cameras operated by the Smithsonian Astrophysical Observa-
tory. Both orbital elements and spin axis direction must be
obtained by means of photographs against the stellar background.

The physical size and reflectivity of the satellite are prescribed
in partuby the input exposure requirements of the Baker-Nunn camera,
which are explained in Chapter 9 of this report.

To optically track a passive satellite three conditions of
observability must be satisfied.

(1) The observing station must be in darkness so that the sunlight
reflections will be visible in the night sky. For this study, it was
assumed that the sun must be at least 10° below the horizon for any
observation to be made.

(2) The satellite must appear above the horizon at the observing
station in question. 1In general, there is some lower limit on the
elevation angle of satellite photographic equipment, and the Baker-
Nunn camera has a lower limit of about 14.5°. The maximum elevation
angle for a given orbit and observing station depends on the satellite
altitude and the angle between the earth station and the plane of the
orbit. Assuming circular orbits, Fig. 8.1 shows the maximum elevation
angle vs. the angle between the observing station and the orbital
plane for orbital altitudes from 200 km to 1200 km. This angle may be

interpreted as the station north or south latitude if the orbit and
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| Elevation angle and slant range of a satellite whose radius vector makes
angle ¢ with the radius vector to a terrestrial tracking station.
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8 OPPORTUNITIES FOR OBSERVATION 269

the earth's equator are coplanar. When the satellite appears at its
maximum elevation angle, the slant range to the observing station is
a minimum. The minimum slant ranges are also shown in Fig. 8.1.‘
Thus a satellite at an altitude of 1000 km in an equatorial orbit
could be photographed by a Baker-Nunn camera from any station within
18° latitude, and the minimum slant range would be between 1000 km
and 2400 km.

(3) The satellite must be in sunlight.

To obtain spin axis orientation data an additional require-
ment is that sunlight be reflected from at least one of the plane
mirror facets on the satellite during a pass over a given station.
Digital computer simulations written at C.S.L. and run on the CDC
1604 computer have been used to determine the best locations of
mirrors on the gyroscope-satellite.

Two basic programs have been used. Program SATOBS (satellite
observation) simulates each orbital pass which can possibly be observed
from a given station and determines a useable range of mirror normals
for each pass. Program ENVO (envelope of observability) computes an
envelope of the observable mirror normals by using a minimizing
technique and runs about 10 times faster than SATOBS; however, its use

is limited to circular orbits.
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8.2. Programs SATOBS and COUNT

Two digital computer programs have been written for the
CDC 1604 computer at C.S.L. to simulate a passive satellite in orbit
around the earth and to graphically depict the expected observation
times and, in particular, the distribution of mirror normal angles
which would reflect sunlight to given earth stations over a period of
one year. In the satellite observation (SATOBS) program, radius
vectors from the earth's center to the sun, earth station, and satel-
lite are computed at fixed intervals of time, usually every three
minutes, until the three observability conditions are satisfied. The

first of these conditions, station in darkness, is satisfied whenever

~

R o
« R < cos 100 (8.1)
IR‘ 8
where
R = radius vector to observing station
Rs = unit vector to sun

o .
That is, the sun must be at least 10 below the horizon.

The second condition, satellite above horizon, is satisfied whenever

"8 > cos 75° (8.2)

TRT TsT

where

S = r - R = slant range vector

radius vector to satellite.
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8 OPPORTUNITIES FOR OBSERVATION 271

Eq. (8.2) specifies that the angle measured from zenith to
the satellite must be less than or equal to 750, thus assuring that
the satellite is at least 15° above the horizon. The third condition

may be specified by inspection of the sketch of the plane containing

Yaw!

SATELLITE

x PLANE OF SUN, SATELLITE.
AND CENTER OF THE EARTH

the sun, satellite, and earth center. For sunlight to reach the
satellite, it is necessary that P, the perpendicular from the earth
center to the satellite-sun line, be greater than Re’ the radius of

the earth. This is assured if

|r|A/l - cos2 v > R, (8.3)

- r
where cos § = RS C =

=T

A "pass" of the satellite is defined as that period of time when all
three conditions are satisfied. At the time instant when the three
conditions (8.1)-(8.3) are first satisfied, the computer 'backs up"”
one time increment, shortens the increment to 20 seconds, and proceeds
to compute the radius vectors during an obsefvable pass of the satel-

lite. During a pass, additional computations at each time instant
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determine the unit vector normal to a flat mirror on the satellite
which would reflect sunlight to the ground station, and the "flash
angle" or angle from the satellite spin axis to the mirror normal is
calculated. 1In general, the flash angle may vary as much as 70° in

a given pass, and may have a relative maximum or minimum. Fig. 8.2
shows the flash angle variation computed by SATOBS through four
passes of a satellite in a 1000 km equatorial orbit over a tracking
station on the earth's equator. The plot shows that flashes could be
obtained twice in one pass from each plane mirror whose normal makes
an angle of say 500, 600, 1100, or 120° from the satellite spin axis.
The maximum duration of any pass is somewhat more than 1000 seconds, -
or about 16 minutes. SATOBS stores flash angle data on magnetic tape
and program COUNT reads the data and counts the number of times any
specified mirror normal angle would produce flashes for a given orbit
and station location, To save time and tape storage space, only the
values of flash angle and time at the endpoints and at flash angle
extremes for each pass are stored.

Program COUNT also produces calcomp plots of flash angle
data for a whole year, in which the time scale is greatly compressed
relative to that shown in Fig. 8.2, and each pass appears as a
vertical line. Computer plots of flash angle data for the Baker-Nunn
station at Curacao and a satellite in 1000 km orbit at inclinations
of 00, 50, and 10° are shown in Fig. 8.3 (a), (b) and (c); the

satellite spin axis is directed at the vernal equinox. These plots

show ‘the dates of observation of any mirror on the spinning satellite.
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Figure 8.2

Angle from satellite spin axis to the vector normal to mirror which
reflects sunlight to tracking station vs. time. Four passes in one
day are shown of satellite in 1000 km equatorial orbit over ficti-
tious tracking station located on the earth's equator. Greenwich
mean time is listed at the end of each pass. The satellite spin
axis is directed toward the vernal equinox.
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It appears that flashes reflected from a mirror on either end of the
spin axis (flash angle = 0° or 1800) are almost nonexistent, and
mirror normals between 40° and 140° from the spin axis will be
sighted most frequently. The average frequency of passes over the
station is about two per day and if the satellite has six mirrors

at angles of 42°, 54°, 71°, 109°, 126°

s 138° (six faces of a cube),
many of the passes will produce reflections from more than one mirror.
Comparison of Fig. 8.3(a) with Figs. 8.3(b) & (c) illustrates

the effects of the regression of the orbit line of nodes due to the
earth's oblateness. For zero inclination the node line is undefined,
but for any finite inclination, the minimum angle between the station
and satellite radius vectors occurs at varying positions relative to
the sun line. Therefore, if the inclination is too large, there will

be times when the satellite is not visible at the observing station

at night time. The critical inclination can be found from Fig. 8.1

.and the station latitude. In this figure, it can be seen that depend-

ing on satellite altitude, there is a certain maximum angle ¢m between
the station and satellite such that observation is not possible from a

Baker-Nunn tracking station. For example, at satellite altitudes of

o]

800, 1000, and 1200 km the ¢m are 160, 18.6 , 20.8° respectively.

.Consequently, morning or evening observations can be made continuously

only if the sum of station latitude and orbit inclination is less than
¢m. For the case of the 1000 km orbit being sighted from Curacao,
latitude 12°n, the critical inclination is 18,60-12O = 6.60. This

explains the modulated effect on the flash angle distributions
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i
;

exhibited in Fig. 8.3(b) and (c¢) and the gaps in the pattern of Fig.

8.3(c), since i = 10°. The modulation frequency is about seven cycles

per year, the sum of six cycles per year nodal regression and, in the

opposite direction, one cycle per year of the earth's rotation about
£ the sun.

§
: Fig. 8.4 shows the number of sightings accumulated over a
year's time as a function of mirror normal angle. The data for this
plot were obtained from the flash angle distributions shown in
Fig, 8.3. It is seen that on the average, the number of sightings

from the Curacao station decreases as the orbital inclination increases.

The satellite in a 1000 km equatorial orbit would not be

visible from stations above 18.6° latitude and since only two of the

SAO network stations (Curacao and Arequipa, Peru, lat 16° s) could be

S

used to track the equatorial orbit, it was desired to check the feasi-
. bility of inclining the orbit so that other stations could be used.
Fig. 8.5 shows the flash angle distributions for the tracking station
51 at Maui, Hawaii for orbits of 50 and 10° inclinations. As could be

expected, the sighting frequency at this station increases with the

orbit inclination, and will reach a maximum at some particular incli-
nation. However, the orbit cannot be inclined so much that the rela-
tivity effect is appreciably diminished (by the factor (1 + cos 21i)/2)

or that extraneous torques become more of a problem. The optimization

of the orbit parameters for the relativity experiment is the subject

B of a Ph.D. thesis to be published by J. L. Myers.
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Figure 8.4

Cumulative number of satellite sightings per year
vs. mirror normal angle. Orbit and tracking

station are the same as those listed in Fig. 8.3.
N
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Figure 8.5

Flash angle distributions for tracking station Maui, Hawaii, position
20.7°N, 203.7°E. Data are for circular orbits of 1000-km altitude,
satellite spin axis along the vernal equinox line.
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The flash angle distributions may be illustrated another way
by plotting the projection of the mirror normal in the plane perpendi-

cular to the gyro spin axis.

7 D = MIRROR NORMAL
af - PROJECTION OF n
IN Y-Z PLANE
C = TRAJECTORY OF
MIRROR NORMAL ON
SURFACE OF UNIT
SPHERE
v  ¢F = proJECTION OF ©
ON Y-Z PLANE

SPIN
AXTS

UNIT CIRCLE
IN. Y-Z PLANE

Since the spin axis is assumed to be pointed at the vernal equinox,
the mirror normal projection lies in the Y-Z plane in inertial space.
The mirror normal is a unit vector, and the length of its projection
is equal to the sine of the flash angle. Mirror normal distributions
have been plotted in this way in Fig. 8.6 for one-week periods of
observation from stations at Curacao and Peru. The orbital conditions
are the same as those listed in Fig. 8.3(a), with the patterns in the
upper half of each picture visible from Curacao, and those in the
lower half visible from Peru. 1In each frame, circles have been drawn
showing the paths of unit vectors on the spinning satellite which
correspond to fixed mirror normals of 420, 540, and 71°. Wherever a
circle is crossed by the path of a projected mirror normal, an actual

observation is indicated. The dotted paths denote mirror normal angles
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42° 54° e
11 i bordnd

(b) First week of February
Figure 8.6

Projections of mirror normal unit vectors on the Y-Z plane of inertial
space, i.e., perpendicular to the vernal equinox. The horizontal line
represents an edge view of the earth's equatorial plane. The data shown

are for a satellite in a 1000-km altitude circular orbit observed from
Curacan and Peru.
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(d) First week of April

Figure 8.6 (continued)
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(f) First week of June

Figure 8.6 (continued)

AR-343
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0 . . o1 .
-of more than 90 and crossing a circle indicates a reflection from

one of the supplementary fixed mirrors diametrically opposite those
listed above. This presentation shows that there will usually be
enough angular diversity of the mirror normals actually sighted to

produce good estimates of the spin axis orientation.

8.3. Envelope of Observability: Program ENVO

An inspection of Figs. 8.3 and 8.5 shows that the flash
angle distribution patterns are bounded by envelopes. The boundaries
may be determined by finding the maximum and minimum values of the
flash angle as a function of time. The resulting envelope is called
the envelope of observability (EQ) because observations giving spin-
axis data are possible only from mirrors whose normal angles lie
inside the envelope. A digital computer program, ENVO, has been
developed to find the EO for any given orbit and station conditions.
The program takes about five minutes to run a complete case on the
CDC-1604 computer at CSL, compared to 30-40 minutes for program
SATOBS to run the same case. The EO is computed in the following
manner: given the station latitude, satellite orbit altitude, incli-
nation, initial right asscension, spin-axis direction, and time,
radius vectors are computed from the center of the earth to the sun,
satellite, and earth station. At a given time instant, the cosine of

the flash angle is computed and maximized with respect to two angles,
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Xy the station longitude measured from the vernal equinox line and
X,5 the argument of the satellite, measured in the orbital plane from
the line of nodes. All other angles are fixed by the initial conditions
and time. At the same instant of time, the minimum of the cosine is
also determined. These two extremes give the minimum and maximum of
the flash angle.

Of course, the optimization of the cosine function is con-
strained by the same three conditions necessary for an observation as
were used in SATOBS, namely earth station in darkness, satellite in
sunlight and station-to-satellite line of sight more than 15° above
the horizon. In ENVO, these three constraints are formulated as
penalty functions which are added to the authentic trigonometric
expression whenever one or more of the constraint angles are outside
the prescribed limits.

In general, observations are possible in the morning and
evening of each day and thus two envelopes are produced. The initial
conditions on X, and X, determine which of the two envelopes is to be
followed. Figure 8.7 is an EO produced by ENVO, with points computed
about four times a month, or every 7.5 days. These envelopes compare
reasonably well with the SATOBS output in Fig. 8.3(a).

Either the flash angle distribution of Figs. 8.3 and 8.5 or
the EO of Fig. 8.7 may be used to determine the effectiyeness of a
particular mirror mounted on a spinning satellite. In the former case
one simply counts the number of vertical lines intersected in a year's

time by the chosen flash angle. The same results can be obtained by
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Envelope of observability

oy Station latitude ®812.08° N
Orbit altitude = 1000 km
Orbit inclingtion =0°

Mirror normal angle  (degrees)

Figure 8.7

5 Envelope of observability of a satellite in circular
- orbit. Tracking station is Curacao.
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counting the number of days the particular flash angle is within the
EO and multiplying by the average number of passes per day. As stated
earlier, ENVO runs nearly 10 times as fast as SATOBS, so the EO method
will be pursued in the optimization of orbital parameters for the
relativity satellite.

Program ENVO is not as versatile as SATOBS because it is
limited to circular orbits of low inclination. However, additional
constraints will be easier to implement with ENVO, using a Lagrange
multiplier technique. The constraints will be based on the.brightness
of flashes received at a tracking camera and are discussed in the

next section.

8.4. Geometrical Factors Affecting Brightness of Flashes

The input exposure necessary to produce a photographable
image in the Baker-Nunn camera is about 10_10 lumen sec/mz. The
luminous intensity of sunlight reflected from a perfect plane mirror

to an earth station is

ER = ESAmcosc/Ae (8.4)

where

ER = reflected luminous intensity ~ lumens/m2
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. 2
E = luminous intensity of sun's rays on earth ~ lumens/m

b
L

area of mirror
o = angle of incidence = angle of reflection

A = area covered by reflected light at earth's surface in
a plane normal to slant range vector

(o]
- 537 m
=m( 3 1800

5)2

S = slant range from earth station to satellite

The geometry of the reflected sunlight is shown in Fig.
8.8 (a). The mirror, mounted on a spinning satellite, sweeps through
the sun's disc from limb to limb during a pass, giving the longest
exposure time T when it sweeps through the solar diameter. This

exposure time is given by

T = .53° ( igoo)/|§l (8.5)

where l§| is the absolute value of the time rate of change of the unit
vector from the satellite to the observing station. Referring to

~

Fig. 8.8 (b), the time rate of change of S 1is

&
~ = A pn by + A P . ~ .
§=2[w xb@ - -R)+0@ XxH . R)] | (8.6)
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’
Sunlight .5+3°, -

S=Slant Range

Observing Station

A Earth

(a)

w

i

S
Spin Axis

Y «— Mirror

( b) RR-346

Figure 8.8

y Geometrical factors which determine the photographic brightness of
1 reflected solar radiation.

N (a) Slant range S and angle of incidence-reflection, O.

(b) Mirror normal angle 8§, solar aspect angle p, and incidence-
reflection aggle 0. Rg is the unit vector in the direction
of the sun, S is the unit vector in the direction of the
terrestrial tracking station, as seen from the satellite.
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where

= angular velocity vector

>
]

mirror normal unit vector

b's
[

unit vector toward sun

Eq. (8.6) can be solved in terms of the sides of the spherical

- triangle, 4, 0, and § in Fig. 8.8(b), and the result is

tsimid
I
1t

L
Zws[sin26 - (cosécosccosu)zj2 8.7

where

§ = flash angle = angle between spin axis and mirror
normal

iww‘,-,f
qQ
L]

angle of incidence

=
[l

solar aspect angle

i
i

Now, the input exposure per flash is just

A
€ =E 7 =1.87 X 10° =2 Tcosc (8.8)

R g2

where the value 1.25 X 105 lumens/m2 has been used for the sun's

luminous flux. The factor Tcoso may be regarded as an effective
flash duration time, since it includes the fraction by which the

mirror area is reduced by a reflection through an angle of 20.
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Using Eq. (8.7) in (8.5), the effective flash time is

6.7 x 10°° coso

Tcoso = (8.9

2 L
wS[sin 8 - (cosbcoso - cosu)z]2

The denominator of this equation cannot be zero or imaginary because

the law of cosines for spherical triangles requires that
2
(cos§ cosg - cosy) S_sinzé sin%:

When the equality sign holds in this expression, (8.9) is a maximum:

-5
_ 6.7 x 10
(Tcosc)max = o, Sinb (8.10)
The minimum of (8.9) is realized when cos 4 = cos § cos O:
, y o BeTX 107 coso (3.11)
TCOST) hin T sind )

S

Some typical curves have been plotted in Fig. 8.9 showing the effective
flash duration from mirrors on a satellite spinning at 50 revolutions
per second. The principal flash angles have been used, and the
variation is shown as a function of solar aspect angle and incidence
angle, In all cases, the highest likelihood of the maximum effective
flash duration occurs near p = 0 or at the time of the vernal equinox

assuming the satellite spin axis to be aligned in that direction. The

i
!
v
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Figure 8.9

Effective flash duration T cos 0, of individual flashes from mirrors
on a satellite spinning at 50 hz. The flash angle is the angle
between the satellite spin axis and the mirror normal.
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mirror incidence angle is limited to 77.5° because of the limits set
by the first three conditions of observability. The sketch below

will clarify this limitation.

SATELLITE

A

Y
>

25 ‘ S

STATION

It is seen that 20 =m + B - N and that o will be maximum when B is
maximum and T is minimum. But T is the angle between the earth
station and the sun line, and cannot be less than 1000, by Eq. (8.1),
and B can be no larger than 750 by condition (8.2). Therefore, the
result is O ax 77.5° for any observable pass of the satellite and

Eq. (8.11) gives the minimum effective flash duration as

_ 1.45 x 107°

Tcoso) . -
( )mln ws sind

Now, with the help of Fig. 8.1 and Eq. (8.8), it becomes
possible to estimate the effective flash duration necessary to pro-
duce a photographable image in the Baker-Nunn camera. Again,
assuming a 1000 km orbit, Fig. 8.1 indicates a maximum slant range of

2400 km. With the mirror area chosen as 944 cm2 and necessary
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exposure € = 10“]'O lumen sec/mz, Eq. (8.8) gives Tcosog = 2.9 | sec.
Thus, it appears from Fig. 8.9 that, for a satellite spinning at 50

cycles per second, it is possible for the peak input exposure during

any pass to be above the threshold of the Baker-Nunn camera. However,

5 ’;}

a factor of five above the threshold exposure may be possible only

s} o
with the four mirrors whose normals are 42 and 54 from the spin axis.

i

(DY |

8.5. Conclusions

R ]

The present results of studies of opportunities for

observing the passive gyroscope satellite indicate that a .6 meter

Rorazios”

diameter satellite, spinning at 50 cycles per second and with the
spin axis aligned toward the vernal equinox will produce photo- o
graphable flashes from most of its 6 facets, each having an area of
944 cmz. With the satellite in a 1000 km equatorial orbit, two

Baker-Nunn stations in the SAO network, located at Curacao and

Arequipa, Peru, would be capable of producing spin axis data about
three times per day, weather permitting.

The expected observation frequencies were obtained from

computer-simulated satellite orbits with no limitations on the

individual flash brightness. The envelope of observability, which

3
&
i

gives essentially the same information, will be modified to utilize a

]

brightness criterion based on Eq. (8.8) to get a better estimate of

the number of useable passes.
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9.1. Introduction

The goal of thé studies to be reported in this Chapter has
s, been to determine the photographic brightness to be demanded of the
relativity satellite so that satisfactory images may be recorded by
&? the Baker-Nunn Satellite-Tracking Camerasl of the Satellite Observing
} Network operated by the Smithsonian Astrophysical Observatory. There
ﬁ are two kinds of images to be considered and, thus, two kinds of
criteria defining "satisfactory." The reason is that there are two
kinds of reflective facilities to be provided on the satellite®,

illustrated in Fig. 9.1.

One of these facilities is the spherical surface. It was
ﬁ desired to '"round-off" the space between the reflective facets, and
it was decided to use this rounded-off part, following a suggestion
by J. Bardeen, to provide a facility for tracking the satellite's
Ll orbital motion between the times at which the mirror flashes would
be observable. 1In this way, orbital-motion data, in addition to
.| spin—axis—motioh data, could be obtained by methods each best suited

to its own purpose, and "100% observability," over a much wider range

of geometric conditions than demanded by the flat mirrors, could

sk

A third facility, the small polar facets, are not considered in this
report because of the necessity to use a specially-located, possibly
i mobile, observing station. Because of the long '"on time," the polar
flashes would make very modest demands upon camera sensitivity, how-

3 ever. The feasibility of using these facets has not been examined

in detail.
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conceivably be assured.

The spherical-surface reflection is much weaker, being spread
over 47 stereradians, than is that of the flats. On the other hand,
it is essentially continuous, being interrupted with a duty cycle of
about 50% by the flats. Thus, comparatively long exposures may be
made by causing the camera motion to follow the satellite to record
a point image. The brighter background stars then leave image trails
which are periodically interrupted by the shutter in the camera.

This is one of the standard modes of operation of the Baker-Nunn
camera in tracking satellites, and it provides temporal and angular
data of standard accuracy (l.l arcsec in angle) for orbital deter-
minations. The brightness criterion to be examined in Section 9.2,
then, is that the exposure be well above a threshold value for
standard methods of image measurement without demanding unreasonable
precision (to obtain sufficiently long exposure times) in tracking
the satellite's motion. A percent or less of error in matching the
camera's angular velocity to that of the satellite is regarded as
reasonable.

When it is desired to obtain spin-axis-orientation data,
it is necessary for the camera motion to be sidereal to track the
stars, which then register as point images, and the satellite's image
is to be allowed to "trail." Under these circumstances, the photo-
graphic exposure produced by the spherical surface would be reduced
by some two orders of magnitude and should fail to be recorded, so

that the only possible record would be that produced by the flashes

1
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Figure 9.1

Model of the 60-cm relativity satellite. The two optically
reflective facilities consist of the polished spherical surface
and the six optical flats or glitter facets. The spherical
surface provides for the observation of the orbital motion,

while the flats provide for the observation of the spin-axis
motion.
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of sunlight from the other reflective facility, the large optical
flats. Such a mode of operation would not be used unless it could
be anticipated that all the geometric conditions described in Chap. 8
would be fulfilled for that pass of the satellite. Also, the cyclic
mode of shutter operation is not to be used in the photography of the
flat-mirror flashes, because the timing information to be obtained
need not be more accurate than a few seconds of time.

In the early days of the experiment, the ability to
anticipate the exact opportunity to record flash observations would
be faulty to some extent, so that it might be necessary to leave the
camera shutter open for longer intervals than the minimum needed to
record the whole of the flash pattern. Although the camera is
extremely tolerant of pointing errors, the longer exposures could
result in excessive exposure to the night-sky background. As more
data are obtained, however, the exposure time could be reduced to the
3 seconds or so necessary to record the whole image at the greater
slant ranges.

The Baker-Nunn Satellite-Tracking Cameral is a Schmidt-
type camera with a focal length of 0.5m (20 inches), an aperture of
£:1.0, a field of view of 50X3OO, and a resolution spot-size on
red-extended Royal-X Pan film (55mm Cinemascope base) of about 25
microns, corresponding to 10 arcsec, or about 50 microradians. The
"threshold" sensitivity of the camera with this film, reciprocity
conditions favoring fractional-second exposure times, and the

standard processing established for the Satellite Observing Network,



312 READOUT ACCURACY FOR THE BAKER-NUNN IMAGES 9

is 0°8X10—10 lumen sec/m2 measured at the input aperture of the
camera for a point source having the same spectral properties as
the sun seen through the Earth's atmosphere. This exposure produces
a denéity increment of 0.35+ 0.05 above that produced by a 1l sec
exposure to night sky.2 Experiments havelestablished that "hard-
edged" images, shutter-induced breaks in star trails, for example,
may be located on the film with reference to other such images, or
point images, with a standard error of 1.1 arcsec, i.e., to within
about 1/9 of the resolution-spot size.,3

Since the flash-pattern image to be obtained from the
relativity satellite will resemble that of Fig. 9.2, which does not
appear to be hard edged, it is necessary to determine the extent to
which it may be expected that such images may be located to within
the standard accuracy of 1.1 arcsec, with reference to neighboring
stellar images on the same film. The image is trail-like, but,
instead of having uniform density alqng its length and terminating
abruptly, the density tapers toward either end and seems to ''fade out.”

This tapering may be known a priori, as it turns out, so
that one could conceive of matching an observed taper against the
predicted one to locate the center. Such a procedure cannot be
expected to attain any arbitrarily desired accuracy, however, because,
at the very least, there are also randowm density fluctuations along
the image. These fluctuations are characteristic of the inherent

graininess of the film, and they will always "fool" a matching
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Figure 9.2

Enlarged photograph of film image simulating that which would be
recorded by the Baker-Nunn camera for unresolved glitter flashes.
The original image was 4.6 mm long, the same as would appear in
the camera, and the film was of the same type, developed in the
same manner, as used in the Smithsonian network of these cameras.
The simulation used the anamorphic camera shown in Fig. 9.5,
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procedure to a certain extent, so that an error in center estimation
will result. The problem comes down to one of estimating that
error and determining the exposure level at which the error is equal
to the standard one of 1.l arcsec, because it is that exposure level
which must be met by the satellite design, and feasibility could turn
upon the question as to whether such a design is at all reasonable.
For the present eminently-reasonable 0.6-m diameter, it will be seen
that the standard accuracy is in fact obtainable, and that the
estimation methods need not involve detailed matching to a priori
density patterns.

In the sections that follow, the photographic brightness
of both the spherical and flat reflectors are surveyed and shown
capable of producing quite dense images on the Baker-Nunn (B-N) film.
The major part of the discussion is devoted to reporting our studies
of the images obtainable from the flat reflectors, a flash-pattern
image. The exposure structure of that image is discussed, following
which the means used of photographically simulating such an image in
the unresolved-flash case, together with analog trials at estimation
of its center by means of weighted-aperature photometry are described.
The experimental measurements of film noise and the mathematical
modeling of that noise as needed for computer simulation of flash~-
pattern images is described, followed by a discussion of maximum-
likelihood as well as "practical' weighting schemes of image-center

estimation. The '"practical” schemes were implemented in computer
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trials for study, by which it was possible to show that the pre-
scription turns out to be a very simple one for images of practical
interest, and that these are the ones which demand exposures only
5-fold greater than threshold and that are capable of yielding the

full accuracy inherent in the B-N camera, 1.1 arcsec.

9.2. Photographic Brightness of the Spherical Surface.

When the B-N camera tracks the satellite, the effective
exposure time is limited by the error in matching the angular rate
of the camera's motion to the apparent angular rate of the satellite's
orbital motion, because this error will cause the satellite's image
to creep along the film, eventually moving into previously-unexposed
territory by virtue of having moved a distance equal to the diameter
of the resolution spot. The image will move an angular distance ©
in a time equal to €r/v, if r be the slant range to\the satellite,
and v be its linear orbital velocity, if the camera not be tracking.
If it tracks with a percentage error €, this time will be extended by
the ratio 100/e. Setting © to be the resolution of the camera, 50 prad,
and r to be a value near the maximum for slant ranges, 2500 km, then,
with an orbital speed of 7.4 km/sec, the effective exposure time is
1.7 sec for an ¢ of 1%.

With the present satellite, the spherical-surface reflection

is interrupted by the flats, reducing the effective exposure time.
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Since half the area of this surface has been devoted to the flats,

it seems reasonable to use a duty factor of 507 to adjust the effective

exposure time to be 0.85 sec, even though it would remain necessary

to allow the camera to take the full 1.7 sec to record the image.
wg - The luminous flux, F, at the satellite may be taken to be
the value of the solar constant measured at the surface of the Earth,
to allow for atmospheric absorption. This value in photometric
units is F = 1025x105 lm/mz° The part intercepted by the satellite

of diameter d is ﬂdZF/4, and this is scattered uniformly over a solid

angle of 41 stererad, so that the luminous flux reflected to the

camera is ﬂdZF/4 divided by 4nr2, in which r is the slant range to

the satellite. The result is that the received luminous flux is

(d/4r)2Fa Setting d=0.6 m and r=2500 km, the value 3Q6X10—15F _

10

4.5x10° lm/m2 is obtained. For the calculated effective exposure

el - 2
j time of 0.85 sec, the input exposure is E=3.82x10 10 lm sec/m,

10 lm sec/m2 by the

which is above the threshold value of 0.8x10°
. factor 4.8.

. . . 2 . . .
From studying the sensitometric curve  shown in Fig. 9.3, it

may be deduced that exceeding the threshold-exposure value® by a

This threshold exposure value for the B-N camera, defined in section

9.1, is based on utilization criteria and is not necessarily a standard

sensitometric concept, such as the inertia point defined by Hurter

and Driffield. For a discussion of photographic sensitometry, see

iy
)

e

Ref. 4, especially pages 72-119 and 409-436. The reciprocity conditions
for this sensitivity measurement favor exposure times ranging from
fractional seconds to a second or so. The manufacturer's literature,
however, rates the film as having an excellent reciprocity law for

exceedingly short exposure times. Consequently, no reciprocity

L

corrections will be made here or in Section 9.3.
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factor 4.8 will bring the density increment to 1.1 above night sky
instead the threshold increment of 0.35. On the other hand, the
standard night sky reference is based on an exposure of 1 sec,

whereas some 2 sec is needed to record the image. With reference to
this more heavily exposed background the density increment would

still be 0.9. Since density increments of 0.35 are regarded as

useful for the purpose of measurement, there seems to be provided an
ample margin of sensitivity. Upon inspecting the overall equation for

the above exposure calculation, with a duty factor %,
E = 5(100/e) 0r/v) (d/4r)’F,

it would appear, for example, that tracking errors of some 4% to 5%
could be tolerated, or more at the shorter ranges, especially since
the background exposure would then be reduced. Such questions are
of no great importance except as demonstrating the ample sensitivity

margins available.

9.3. Photographic Brightness of the Optical Flats.

The sun subtends an angle viewed from the earth of 0.93><10—2

rad, corresponding to a solid angle of m/4 times the square of that
quantity, or O.,69X10“4 stererad. On the other hand, a mirror of

area 1000 cm2=0,1 m2 subtends, at a slant range of 2500 km=2,,5XlO6 m,
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Sensitometric data for the type of film and development used for

the Smithsonian network of Baker-Nunn cameras.
may be calibrated from the information that a density increment _
of 0.35 + 0.05 above night sky requires an exposure of 0.8 x 10

1m sec/niz

The exposure scale

10

at the input aperture of the camera for point images.
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12

a solid angle of [0,1/(2,5)2]X10- =1‘,6)<10“14 stererad. Through the

aperture represented by such a mirror, then, only a fraction equal to

10=2,,32X10-10 of the solar disc may be seen. The

(1.6/0.69)x10"
interposition of such an aperture would reduce the luminous flux from
its value given by the solar constant luZSXlO5 lm/m2 to the value

3 > lm/mza

2.32X1.25x10 =2.90x10"
The exposure time for a given flash depends upon the length
of the chord across the solar disc that is scanned and upon a number
of other geometrical factors indicated in Chapter 8. For the present
purpose, let the time be that required for the satellite to turn
through half the angular diameter of the disc, namely (),.46X10—2 rad,
the factor % because the mirror normal bisects the angle between
incident and reflected ray. For a rotation rate of 50 rev per sec
or 314 rad/sec, this time is (0°46/0,314)X10-5=1498 wsec. The
exposure would then be 2090x1°48x10'10=4,29x10_10 Im sec/mz, a value
which exceeds the '"threshold" value of the B-N camera, 0.,8X10—10 1lm
sec/m2 by the factor 5.36.

This calculation serves the purpose of a base value, from

which calculations for other slant ranges, other effective projected

mirror apertures, or other exposure times may be made. Taking

"rounder" numbers, it may be quoted that an aperture of 1000 cmz,
transmitting sunlight from a slant range of 2500 km, and open for
15 wsec, will produce an exposure greater than the B-N threshold
value by the factor 5.44, and this represents a nominal value for

the brightness of the optical flats on the satellite.
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9.4. Flash-Pattern Structure.

As the satellite moves ip its orbit at the rate of 7.38 km/sec,
a mirror will come into reflecting position 50 times per second so
that the flashes will have a spacing of 148 m along the orbit. At
a slant range of 2500 km, howeyer, the 50 uréd resolution-spot diameter
of the B-N camera projects to 50X2.5=125 m. Thus it appears that the
flashes would be individually resolved on the film at this and all
shorter ranges. The spin rate would have to be increased, in fact,
to about 60 Hz to make a continuous image, such as that shown in
Fig. 9.2 at this essentially maximal range. At the time at which
there was an interest in simulating flash pattern images, such faster
spin rates, e.g., in the neighborhood of 100 Hz, were being considered.

The computed flash spacing, however, subtends an angle of
(148/295)X10-6=59 prad, so that in the 9.3 mrad angular width of the
sun there would appear (9300/59)=158 flashes, which, at the rate of
50 ﬁer second, would be formed in a span of 3.16 seconds of time.
On the film, the flash spacing would appear to be 30 microns and the
total pattern width would be 4.6 mm because of the half-meter focal
length of the camera's optics. At nearer slant ranges, the flash
spacing would subtend larger angles and the image would be coarser.
‘Its overall width, however, is fixed by the angular width of the sun,
so that the image would contain fewer flashes, also, at the nearer
ranges. For example, at 1000 km there would be only 63 flashes at 75
microns spacing over the same 4.6 mm on the film, and these would be

recorded in 1.26 seconds of time.
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In Section 9.3, exposure values for a central flash in the
image were computed. For flashes away from the center of the image,
the reflected line of sight scans along a chord of the solar disc of
a length that becomes progressively less the nearer the chord to the
limb of the solar disc. It is the length of this chord that deter-
mines the exposure time for the disc, so that the exposure value
varies across the pattern as the length of a chord varies in its
successive positions across a circle. Thus, a plot of expostire
along the flash-pattern image would be a semicircular (or more
generally a semielliptical) curve. From this knowledge, and a
knowledge of the H & D sensitometric curve, the curve shown in
Fig. 9.3, the resulting curve given by a densitometer tracing along
the long axis of the image, such as the image of Fig. 9.2, for
example, may be determined. In the case in which the flashes would
be individually resolved, such a curve would be periodically 'chopped",
but otherwise would resemble that of Fig. 9.4, in which the irregu-

larities reflect the random grain structure of the film.

9.5. Analog Image Simulation.

The image of Fig. 9.2 was formed by an anamorphic camera to
produce a distorted image of the solar disc. The camera is shown in
the schematic drawing of Fig. 9.5. The principal distorting element

is the cylindrical mirror of which three were used to project three
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images upon the 35mm red-extended Royal-X panchromatic film in the
35mm camera body. These anamorphic elements image the disc as a
long narrow ellipse. The mirror-to-lens distance was chosen so that
the minor axis of the ellipse would project on the film as consider-
ably less than 25 microns, while the lens to film distance was
chosen to match the half-meter focal length of the B-N camera.

The lens was chosen to have a spherical component with
a focal length of 0.5m also, so that the length of the elliptical
image would be the same as the length of the flash pattern image in
the B-N camera. With this lens, the ends of the elongated image
would be sharply focused. However, the closely spaced sides of the
image would not be focused because the location of the virtual image
for that dimension would fall only a small fraction of an inch
behind the cylindrical surface. To focus this dimension, it was
necessary for the lens to have a cylindrical component as well.
The focal specifications for this lens fell in the range of those
that are common for astigmatic spectacle lenses, and one such was
procured from an optical dispensary. This lens exhibited chromatic
aberration that was to be controlled by using color filters, since
there was never to be any difficulty in obtaining intense enough
images for photography with this very sensitive film, quite the
contrary, in fact.

The focus of the camera for the ends of the image could be

adjustéd by moving the lens relative to the film, and that for the
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Figure 9.4

Computer-simulated densitometer tracing along the long axis of

the flash-pattern image of Fig. 9.2. The simulation used a random-
number generator obeying a law that was caused to vary along the
image in accordance with models developed from a statistical
analysis of the measured graininess noise characteristic of the
film used in the Baker-Nunn cameras. Actual tracings closely
resemble these.
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Color filter
Bellows and extension tube

6. i
Astigmatic

spectacle lens 35 mm

Board mounting camera body
3 cylindrical mirrors Figure 9.5

RR-370

Schematic diagram of anamorphic camera used to form images
simulating the unresolved flash patterns to be recorded by the
Baker-Nunn camera, as in Fig. 9.2. The anamorphic elements are
the cylindrical mirrors which form narrow images of the sun's
disc. The spectacle lens has a cylindrical focal component to
compensate for the astigmatism of the mirrors and a spherical
component matching the optics of the Baker-Nunn camera. The
color filter eliminates chromatic aberration.
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sides by moving the cylindrical mirrors. .With this latter adjustment,
the image could be diffused to be 25 microns wide uniformly along its
length so that the exposure value would vary as the width of the solar
disc along that same dimension. The adjustments for the image of

Fig. 9.2 approximate these conditions.

A great number of images were photographed with this camera
for the purpose of making experimental trials of image-center
estimation, using analog techniques. These estimation techniques were
to be patterned after the modified center-of-gravity techniques being
explored in a parallel study using digital-computer simulatipno

A projection microdensitometer setup, based on the Jarrel-
Ash projection microdensitometer owned by the U. of I. Astronomy
Department, was used, in which the standard photomultiplier was
replaced by one in a special housing. The special housing was fitted
with provision for precision mounting of a density wedge in two
positions, differing in orientation by 180°. The arrangement is
schematically shown in Fig. 9.6. The density wedge in its two
positions could weight each half of the image in a manner approximating
a center of gravity weight. When the transmission through the two
halves were equal, a center estimation could be read from the code
wheels for the Mann-comparator lead screws driving the film transport.

Though it was known that a true center-of-gravity weighting
was not optimal, trials were made using density wedges roughly of that

sort, pending further specification of more nearly optimal weights as
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the result of computer simulation. Statistical analysis of the

results indicated that image centers could be estimated to within

-an rms error of about 0.67% of image width, or about 11 arcsec,

considerably larger, as might have been expected from the make~-
shift character of the arrangement, than the errors found from
computer simulation, The arrangement also made the estimation
procedure very tedious to execute because of the painstaking care %
required. ' :

Plans to provide for a more elaborate setup to obviate

the necessity for making so many time-consuming adjustments, and to

make a larger number of measurements with more-nearly-optimal-
weighting wedges, were abandoned because of limitations in funds

and staff. It has since been found, as a result of the computer

simulation, moreover, that siwmpler estimation procedures will suffice
for image-center estimation with an rms error of less than 0.06% of i

image width, or about 1.1 arcsec.

9.6. Measurement of Film-Noise Statistigs.

For the purpose of developing mathematical models of film-

noise statistics, experimental studies were undertaken to measure

statistical properties of film noise in order to determine which

measurable parameters would adequately characterize that noise.

¥
1
o

From specimens of B-N film, both as expesed in the camera, and as
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Figure 9.6

Weighted-aperture projection microdensitometer (schematic diagram).

The 1light source and monitoring photomultiplier of the Jarrel-Ash
instrument are not shown. By allowing half the image, of a type

shown in Fig. 9.2, to enter the slit, noting the transmission, then
moving the image to bring the other half over the slit with the wedge
turned through 180°, and positioning the image to obtain exactly the
same transmission, a center-of-gravity type of estimate of image center
may be made. Later studies have shown that much more convenient esti-
mation procedures may be used.
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Figure 9.7

Measured probability distribution (noncumulative) of graininess noise
in density of Baker-Nunn film. The average (specular) density is 0.36,
The distribution is roughly characterized as skewed gaussian, except
for a slight tendency for a double peak probably due to a drift in the
calibration of the Ansco projection microdensitometer.
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Measured autocorrelation values plotted versus separation along the
film of the noisy density values for the same data as in Fig. 9.7. It
is seen that for points separated by 10 microns (the width of the aper-
ture in the Ansco projection microdensitometer) or more, the density
fluctuations are essentially uncorrelated.
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exposed to sensitometric step wedges, kindly supplied by the Smith-
sonian Astrophysical Laboratory,2 microdensitometer tracings were
obtained and studied.

Prior to our making arrangements with the U. of I. Astro-
nomy Department to use their Jarrel-Ash machine, D. C. O'Connor,
temporarily with Photogrammetry and Geodesy in the U. of 1. Depart-
ment of Civil Engineering, volunteered to make microdensitometer
tracings for us with the Ansco machine at Ft. Belvoiro5 These
tracings were made of the density step wedges and were recorded
graphically. Successive values on the graph were read at equal
intervals and transcribed to coded paper tape for computer analyses.
Calcomp plots of the transcription were compared against the original
tracings to check for errors. These data were analyzed in two ways,
and examples of the results are shown in Fig. 9.7 and 9.8.

The first of these, Fig. 9.7, shows a plot of the proba-
bility distribution (noncumulative) of the density values for an
average density of 0.36, using a microdensitometer aperture of 10 pm.
The indication is that of a roughly gaussian distribution, except
for the clear evidence of skewness. At larger apertures, the general
experience with such distributions is that they approach more nearly
to gaussian distributions, but there is always some evidence of
skewing,6 For greater values of mean density than shown here, the
distribution is also less strongly skewed.

Autocorrelation analysis was also undertaken, based.on
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values read from the tracing at micron intervals. An example of the
autocorrelation function so obtained is plotted in Fig. 9.8, also for
a mean density of 0.36. It is evident that the correlation is
negligible for density values spaced more than 10 pm apart. Since
this distance is the diameter of the aperture in the microdensitometer,
the characteristic grain size must be somewhat smaller than that,
and certainly smaller than the resolution-spot size of the B-N
camera, 25 um. In the planned simulation of B-N images with the
computer, in which the image samples would be spaced a distance of
25 ym, these data indicate that the noise at each sample could be
taken to be statistically independent of the noise at every other
sample.

The mathematical models of film noise, to be described in
Section 9.7, require the specification of only two pérameters, the
mean value and the standard deviation of the noise. The specifi-
cation of the mean value was to be made to suit the needs of the
digital-computer simulation program, so that the remaining parameter,
the standard deviation, is the one to be determined by film-noise
measurements. The exact form in which this was desired was that of
the standaré-deviation values, as a function of the mean. These were
to be determined as transmission values, the reciprocal of that for
opacity values, and the logarithm of the latter for density values.

For making these measurements, the Jarrel-Ash projection

densitometer was used, including a facility for automatically punching
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coded transmission values on paper tape. Using a 20 pm aperture,
short scans within each step of the step-wedge specimen of B-N £ilm
were made and transmission values spaced more than 20 um apart were
punched. Though many data points were desired, it was necessary to
make very short runs to minimize the risk of a lapse of focus, a
condition which ;ould increase the effective aperture size and lead
to a low estimate of the standard deviation. As a further precaution,
runs were made along the axis of film curl, despite the fact that
the holder allowed very little curl. -A Calcomp plot of a typical
tracing is shown in Fig. 9.9. The data used for each density step
was a composite of many such runs.

The transmission values obtained in this way are the so-
called specular transmission values. Since the diminution of trans-
mission by photographic film results in large part from.a scattering
of light, the transmission values depend in large measure upon the
solid angle of acceptance of the forward-scattered light. When this
solid angle is small, one is dealing with specular values, in contrast
to the standard values obtained by placing a diffusing screen (opal
glass) in contact with the specimen and measuring the light trans-
mitted from that screen; these latter are called diffuse values and
involve the acceptance of scattered light over more nearly 2m stere-
radians. The calibration of the projection densitometer in terms of
diffuse values was by a procedure involving a measurement of the

Callier Q factor7 for each density level to provide a conversion of
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specular densities to diffuse densities by way of reference to a
standard calibrated Welch step wedge. Diffuse values were desired
so that the measured densities could be compared to those obtained
in the sensitometry. The calibration procedures and statistical-
analysis procedures were implemented on the CDC-1604 computer.,

The resulting plot of the standard deviati;n in opacity,
O, Yersus mean opacity, Vi? is shown in Fig. 9.10. The straight
line fit obeys

o, = (vw/6)4/3.

Laws of this form have been examined by Finley and Marshall,,8 They

find that the variance in transmission can be fitted to the law
b
c " =at (2)

in which b has the value 1.5 for a great variety of conditions and t

is the transmission. Writing c,as a differential, this is

at = pe"/2, 3)

into which there may be inserted t=1/w and dt=dw/w2 to obtain

dw = Bw(z_b/z) , (4)

(L
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Figure 9.10

Measured standard deviation in opacity plotted versus mean opacity,
adjusted to represent measurements on a diffuse basis. The fitting to
a Callier Q-factor type of curve for this adjustment was made in batches.
The overlap of one batch with another is indicated by the points con-
nected by dashed lines, which points may be interpreted as providing a
notion of the reproducibility of the data. The straight-line fit shown
here represents the law to be used in the computer simulations.
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in which the exponent 2-b/2 may be compared with the exponent in

Eq. (l). For example, the value b=l.5 is equivalent to an exponent

value of 1.25 in Eq. (4), and this compares favorably with the value

1.33 in Eq. (1), as measured here. In some early runs covering a
o small range in . opacity, an indication of an exponent of 1.0 was
obtained for Eq. (4), with a B value of 0.1. Some of the digital-
computer estimation trials were based on these early parameters, but
™ the analyses for high-density images used the parameter values shown

in Eq. (1).

4 9.7. Mathematical Models of Film Noise.

*j In order to construct numerical specimens of simulated
densitometer tracihgs, as in Fig. 9.4, of noisy Baker-Nunn images of the
flash pattern, it is necessary to develop mathematical models of the
probability distribution of film noise.  For economical simulation,

n the models must be simple in their parametric structure to facilitate

-y allowing the parameter values to vary with position along the image

to reflect variations in mean value, standard deviation, and skewness.

At the same time, the models must be adaptable to the formation of

random numbers obeying those models, starting from random numbers u

uniformly distributed over 0<u<1l, since such are the ones most easily
generated in a digital computer.

It is clear that perfectly symmetrical distributions are
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out of the question, whether for transmission values, t=I/Io, the
ratio of transmitted to incident light, for opacity values, w=1/t,

or density values §=logw. For transmission wvalues bounded to the

finite interval O<t<l, the distribution must vanish at O and 1 and
be appropriately skewed as the mean crowds close to either bound.
Opacity values are bounded to the semi-infinite range 1<u<®, and
density values are similarly bounded to 0<§<~. Models need be -
developed only for opacity, but the same form of model, might, with
suitable fitting, serve also for density. The model must be most
strongly skewed when the mean is a short distance, measured in units
of the standard deviation, from the lower bound, and become more
nearly gaussian as the mean is farther from that bound.

The model to be chosen should be finite only for positive
values (accommodation to the range 1 to ® can be obtained by shifting)
and should involve 3 parameters: mean, standard deviation, and
skewness. A one-parameter model was actually chosen, since dilation
of the scale can be introduced as a second parameter, and since an

arbitrary, but reasonable, relation between skewness and the ratio of

standard deviation to mean was thought to be adequate in order not -
to place too great a burden upon the experimental measurements. The
measurements were found to be sufficiently difficult, even for very

modest demands for reliability, that this decision proved to be most

fortunate.




9 READOUT ACCURACY FOR THE BAKER-NUNN IMAGES ; 347

The model chosen was the chi-square distribution

i

£, Ma = [T )] e ™1 Pa 5

governing a random variable O§ﬁ§4”, with mean value v = p+l and

Lp
standard deviation GZP =1J(p+1), in which T'( ) denotes the well-
known gamma function. For p>>1, this model does tend to a gaussian
form, and it has a skewness deemed appropriate for the present
purposes as may be seen from the plots of Fig. 9.11. Given arbi-

trary values of mean and standard deviation v and o> then p is

specified via
p=(v_fo )1 (2)
X X ?
and the random variable x is represented by
2
X =0 xzp/vx’ (3)

for an x variable to be bounded as 0<x<w, as, for example, density.

For opacity, the p value is

p =[O,/ %1, )
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and the random variable w is
W=l 20 /(v -1) (5)
wop W ?

in order to accommodate the lower bound at 1.

The plan of generation of these random variables, then, is
to compute the Zp random variables, given the specified p values via
Eq. (2) or (4), and then to apply these scaling and shifting formulas
Egs. (3) or (5) as appropriate. The Zp values themselves are to be
calculated from uniformly distributed random numbers u. The way in
which this last may be most economically done depends upon the value
of p, whether p=0, O0<p<l, ILp10, and 10p.

For p=0, the distribution (1) is just the exponential

distribution for which the cumulative form is

A A
Foo®) =) ean = 1-e™, (6)
0
which is readily inverted to form
-1
A =F (F) = In(1-F). @)

This form provides for a very simple generation of zo as

L, = gzo’l(u) = -1n(l-u) (8)
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Figure 9.11

Plot of the mathematical models of film-noise probability distri-
butions. These models are adapted to fitting to measured values of
mean and standard deviation and have the property that the skewing
depends, in approximately the correct manner, upon the distance of
the mean, in standard-deviation units, from the lower bound. The
parameter labels are values that are functions of the ratio of mean
to standard deviation.
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from the uniform random Yariables u. When p is not O, this inversion

of the cuhulative distribution is very costly of computer time,

especially if p be not an integer, and other algorithms must be used.
For Kp<l, the uniform random variable u is tested against

a second, independent, uniform, random variable v, and the value of

u is accepted as a suitable value for zp provided it satisfies

v < e P, 9

Otherwise, the values of u, v are interchanged, and the test repeated.
Failing both tests, the values of u, v are discarded and a new pair
is generated, proceeding in this manner until a success is obtained.

The range of the variables for this test are suitably scaled so that

~about 99.9% of the area under the curve specified by Eq. (9) is

covered.
For 1<p<10, the value of p is analyzed into a fractional
part Qipf<l, together with an integral part yi=no Since it may be

shown that

(10)

£p+£o = zp+l’

for zp and zo independent, it is sufficient to sum n independent
generations of 20 to obtain zn and to also generate ZP for P=Pg>

adding that to Ln.
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For 10<p, the gaussian approximation is justified. The

gaussian generation is done via a stored-table lookup using

o - (p¥L) = Fg'1<u>¢<p+1>, (11)

-1 . , . .
in which Fg is the inverse of the cumulative gaussian distribution
for zero mean and unit standard deviation.

The program for generating these random numbers has been

tested, with satisfactory results for various values of p, by
exercising it to generate a great many numbers, sorting these into
value intervals, and comparing the empirical distributions so
obtained with curves such as those shown in Fig. 9.11,

This program has also been incorporated into a. larger
program whereby the mean value v, representing an image intensity,

could be caused to vary in accordance with the sequence of exposure

values along the simulated image, while the standard deviation was
suitébly dependent on the mean value, e.g., as in Eq. (1) of the

preceding section. In this manner, data of the form of Fig. 9.4

was generated. This particular figure was made for density values

in which the value of o, was independent of v

8 6

that was representative of early experimental data (in which Gw

s a law of variation

appeared to be proportional to \)w)° Also, the nonlinearity of the

H & D sensitometry curve, Fig. 9.3, was not used. The appearance of

%
i
7

the more realistic image plots do not greatly differ from this one,

however. i
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9.8. Estimation of Image Center by Maximum Likelihood.

The data representing a noisy image, such as that shown in
Fig. 9.4, may be regarded as a sequence of n random variables which
have taken on the values Yq2¥gseees¥ - If it is known how the
probability distribution depends on the position Gi in the sequence
with respect to a central position 90, then the probability of
obtaining any particular sequence can be expressed as a conditional
probability, or likelihood function, the condition. being that the

central position be given by 60° Schematically, this likelihood

function may be written

L = L{yl’yZ!°°°’yn‘eo}° (1>

These data may be thought to be "explained" with maximum likelihood by
finding the wvalue of 90 which maximizes the value of L, i.e., by

solving

aL/ae0 =0 (2)

to obtain that value of 90, It is often convenient to deal with the

logarithm of the likelihood function

A = 1oL, (3)
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in which case, Eq. (2) is equivalent to

aA/aeo = 0. : 4)

The value, obtained by solving Eq. (2) or Eq. (4), is called the
maximum likelihood estimate9 of the parameter 90, the center of
the image. .

In the present instance, the logarithm of the likelihood .

function is, from Eq. (1) of the preceding section,
A= -2, 10T (p+1)] - T,y; +IT;p,lny,, o (5)

in which 12 is to be a function of ei-eo, the distance of the image
point i from the image center 60, and the summation index i is to
range over all points in the image. In this, ¥ stands for the
random value (density or opacity) that obtains at the point i.
These yi are fixed measured values, not to be regarded as functions

of eo in calculating the derivative indicated in Eq. (4), except

that they may be related to the values of interest (density or
opacity) by way of eo-dependent parameters of proportionality.
Consider the differentiation of the first term on the

right in Eq, (5). It is

-Zi(a/aeo)ln[I"(p-i-l)] = z:i(a/ae i) lnl:l"(pi+l)]° (6)

%
:
!
i
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In the approximation in which the summation is equivalent to an

integration, the value of (6) is just the difference in the values

of 1n[T'(p+1)] to the left and right of the image where p=0, i.e.,

the value of Eq. (6) is zero. (Apart from this approximation, the

zero is also obtained for p being an even function of ei-eoe)
Also, if y is to represent an opacity value, then,

according to Eq. (5) of the preceding seciion, v should be

replaced by

v, = @D eD/e 7, )

+

4
i

upon making adaptation to the ersent notatio%. The last term of
]

Eq. (5) then becomes
2
Z,p;In(,-1) +Z p. lo[ (v.-1)/o ], (8)

of which the last term may also be discarded by the same argument

concerning Eq. (6). There remains only
Zi(aqi/aei)(wi-l) - 2i(api/aei)1nq»i-1) = 0, €©))
in which

q; = (\)i-l)/ciz (10a)
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and

p; < (vi-l?zﬁsiz (10b)

1

l

serve as local values of the signal-%o-noise ratios,

The solution of Eq. (9) may be described. The function
0=0q/d6 is a function of 91—90, that is to say, it is a weighting
function for the values of wi—l, and its center 90 is to be adjusted
so as to make the first term of (9) vanish. Similarly, the function
A=3p/d® is a weighting function for the values of lnGbi-l) whose
central location is to make the last term vanish. If these do not
vanish separately, then, according to Eq. (9), 90 must be chosen to
make their difference vanish. When the index value c is assigned
to the center of the weighting functions, the problem is seen to be

the determination of ¢ such tﬁat
EiQi_c(wi-l) - ZiAi_cln(wi—l) =0 (11)

In the computer, this would be done by computing these weighted sums
for successive values of c¢ until the value were found for which (11)
were satisfied. -Actually, however, ¢ need not be one of the indexed
values, but, as a practical matter, it could be assumed to be such
until neighboring values for which (11) would be positive for one
and negative for the other were found, and then the true value of

¢ could be estimated by interpolation.
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The maximum-likelihood estimator was not thought to be
adaptable to practical application, however, so that the formulae
given here were not developed and studied until very,léte in this
program of work. This judgment is borme out by the fact that this
estimator requires the simultaneous weighting of opacity and its
logarithm and is, on that account, nonlinear. The exact nature
of the nonlinearity, in general, will depend upon the specific
probabalistic model assumed; it is fully linear for gaussian models.
This last observation was made quite early in the program, and it
was the inspiration for the study of linear estimators. These are
the "practical" ones with which the experience described in the next
section was obtained.

In the experience with practical estimators, it was found
that, for reasonably large image densities, the most nearly optimal
weighting functions required zero weight over a very wide central
portion of the image. On comparison with the weights that may be
calculated from Eqs. (10), it was seen that this characteristic
could rather accurately have been foretold, that only the edgemost
2% or 3% of the image would be of value, except for the possibility
of very small negative weights in the central part being indicated.
The significance of this comparison will be indicated in a later
section, but it is premature to indicate in any great detail the role
that a maximum likelihood estimator might play in the actual conduct

of an experiment until further study is made.
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9.9. Practical Center-Estimation Procedures.

The center-estimation procedures for which extensive trials
were conducted in the computer using computer-simulated images,

employed the so-called practical weighting scheme

g, w.-1) =0, (1)

in which LA is always positive for index values i of one sign and
always negative for the other. The scheme is '"practical," because
it is one that could be implemented with a two-aperture densitometer
in which the two apertures are suitably weighted by density wedges
and equality between the signals obtained from the two apertures

is to be sought.

The images constructed, as in Fig. 9.4, consisted of an
interval representing night-sky exposure, a central interval repre-
senting the exposure pattern for the solar flashes, followed by a
night sky interval. These three intervals were of nearly equal length,
but the central interval was represented by 180 equally-spaced
samples corresponding to a sample spacing equal to the resolution of
the B-N camera, 10 arcsec, for a flash pattern 1800 arcsec long,
i.e., the solar disc was taken to be exactly 0.5 deg. wide. The
exposure values were programmed to follow the predicted "semi-
circular" envelope (actually elliptical for arbitréry choice of

scale) with a peak or central value that was specified in terms of
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a density increment above night sky via computer interpolation in
the sensitometric data of Fig. 9.3. Using these sensitometric data,
the mean opacity value for each point of the image was computed,
and, for each such point, the standard deviation of opacity was

also determined using the law deduced from the measurements as in
Fig. 9.10. Using the probabalistic models described in Section 9.7,
these parameters governed the selection of the actual noisy opacity
for each point.

Having constructed the w. sequence, the computer also
generated the LA sequence according to rules specified by the
programmer., Then it computed the value of the weighted sum, the
left-hand side of Eq. (1) for a short sequence of c values bracketing
0. On finding a neighboring pair of ¢ values such that the sum was
positive for one and negative for the other, the computer used linear
interpolation to estimate more accurately the ¢ value satisfying
Eq. (). Having stored this c value, the computer then proceeded to
generate a new image to the same specifications, but using independent
random numbers, to determine a ¢ value, and to store that one also,
repeating the process again and again until the specified number of
statistically independent trials had been completed. It then computed
the mean and standard deviation of its center determinations for
printout as percentages of the solar-image width.

The results of many sets of trials are shown in Figs. 9.12

and 9.13. For these, the rule used was that the standard deviation
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in opacity was 10% of the opacity value as indicated by early
measurements. In later sets, the 4/3-power rule was used. Each
datum of Fig. 9.12 is based on 100 trials, and the error symbol
shown for one of the points represents the 10% rms statistical
uncertainty. In Fig. 9.13, each datum represents 1000 trials and
the statistical uncertainty is about equal in size to that of the
plotting symbols used.

The data of Fig. 9.12 were obtained to explore the efficacy
of various kinds of weighting curves for computing AR The center-
of-gravity weight, open diamonds, is seen to be superior to weights
that show discontinuities or provide uniform weights near the edges
of the image. On the other haund, weights which are zero for the
central part, but are free of discontinuities (though vanishing
outside the image) are superior to center of gravity. Weighting
curves such as shown by the open circles and that obey a second-
order curvature have a clear advantage, especially if a central
interval is zero (solid circles).

The data of Fig. 9.13 were obtained to explore the effect
of reducing the number of flashes in the image. To this end, runs
were made using 180 image points and also using 90 image points
by the simple expedient of alternately replacing the opacity values
for half the points by a constant value. In this way, the night-sky
opacity fluctuations that would occur between resolved flashes is

ignored, a proper procedure for actual estimation also, if weighting

3
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£
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Figure 9.12

Trials of a variety of weighting functions for center-of-gravity types
of center-estimation procedures. Root-mean-square-error values are
plotted versus central-flash-exposure values. Each point represents
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Trials of center estimation for resolved flash-pattern images in
comparison with unresolved ones. The deletion of alternate image
points to leave an image consisting of 90 points, instead of 180
points, results in an increase in rms error by nearly the expected
factor, /2. Each point represents 1000 statistically independent
trials.
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methods are to be used. It is seen that deleting half the image
points increases the estimation ervror, for the same exposure values,

almost exactly by the expected factor /2. One may conclude that a

halving of the slant range, which quadruples the exposure value but
" halves the number of flashes, will lead to a reduction in error by
. - the factor 2/2, since the dependence upon exposure here is seen to
o) approximate an inverse first-power law.

In order to extend the investigation to larger exposure

e

values than shown in Figs. 9.12 and 9.13, it was necessary to
§ obtain noise-variance data over a greater range of densities. With
these data, the 4/3-power law was discovered and used in all later
i studies. Also in making this extension, it was discovered that the
’§ best weighting curve of Fig. 9.12, also used in Fig. 9.13, did not
continue to provide for substantial reduction of error with increasing
% exposure, in that the extrapolations according to an inverse first-
) power law, as indicated in Figs. 9.12 and 9.13, did not appear to
o be fulfilled. Accordingly, variations in that weighting were
investigated.
The best weighting curve of Fig. 9.12 is one constructed of

quadrants of circles, with zero weight assigned to the central

third of the image of the solar disc. It was decided to explore

variations in the width of this central "shadowed" part by varying
the radii of these quadrants, and determine whether there were a

best length for the shadowed portion, depending upon the exposure
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or central-density values. The results are shown in Fig. 9.14.

In Fig. 9.14, the curves are plots of rms angular error in
center estimation given as a percentage of the width of the solar
image and plotted versus the percentage of the image that is left
unshadowed. The curves terminate at the left in the value 2% for
which the angular error is that obtained Whgn the central 98%.of the
image has been assigned zero weight. Otherwise, the weighting curve
is as described in the preceding paragraph. Each curve is labelled
with a value of the central density increment above that obtaining
for a 1 sec exposure to nignt sky. Each point represents 400 trials.
In each of these trials, half the image points had been deleted;
if the full complement of image points had been used, the errors
plotted would have been smaller by the factor 0.7. The standard
accuracy of the B-N camera is marked on the ordinate as 0.067 of
the width of the solar disc, the percentage corresponding to 1.1
arcsec.

Some further study would be justified to clarify a few
minor points. For example, the night-sky background was maintained
at the fixed value produced by a 1 sec exposure. For the farther
ranges, exposures nearer 3 sec may be expected, and the actual
brightness of the night sky will vary with orientation of the camera,
atmospheric conditions, and the distance of the sun below the horizon.
The night-sky exposure enters to a slight degree as a background

competition primarily for the weaker images, but these would probably

i
1
.
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Figure 9.14

Center-estimation trials of high-density images, with a search for the
optimal fraction of the image to be used. The weighting function is
like that indicated by the solid circles of Fig. 9.12, made up of
quadrants of circles with a central "shadowed" portion of zero weight
the length of which may be adjusted by adjusting the radius of the
quadrants. The plot is of rms error versus the fraction of the image
left "unshadowed." The curves are labelled with the central-flash
density increment above night sky. Each image consisted of 90 flashes,
as with the open diamonds of Fig. 9.13. It is seen that the optimal
fraction of the image becomes very small for density increments of 0.8
or larger and that the inherent accuracy of the Baker-Nunn (B-N) camera
is attained for density increments of 1.0 for these 90-flash images.
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be discarded as introducing too large an error, in any case. For

the stronger images, the night sky exposure enters primarily as an

augmentation of the exposure because the image is constructed in a

flash-by-flash manner each part being treated to pre- and post-
exposure to night sky. Though it may be doubted that these variations
. would significantly alter the conclusions that may be drawn from

et Fig. 9.14, the point is worth investigation.

Also worthy of further investigation would be the compari-

e

sons that may be drawn between the maximum-likelihood estimator and
these "'practical' estimators, including the computer implementation
of the former. Such work is in progress, but the results to date
are not yet worthy of presentation here, so that the present inter-
j pretations are to be based on the data of Fig. 9.l4.
It may be seen that the accuracy of the B-N camera is

i achieved for density increments of 0.9 to 1.0, depending upon whether
the image is essentially continuous, consisting of 180 points, or
shows resolvable flashes, some 90 in all. As indicated in Section 9.2,
i such density increments correspond to an exposure greater than

"threshold" by a factor of somewhat less than 5, and it also has
Q been indicated in Section 9.3 that such exposures are obtainable

from the mirror flashes at slant ranges of 2500 km.

Studies of the curves of () and A appearing in the maximum-
A likelihood estimator in Section 9.8 show the same increasing emphasis

of the weight upon the bare fringes of the image as being indicated
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for densities near 1.0, with the weight being more broadly distributed

for the lower densities. Here, the 2% unshadowed region barely
encompasses two datum points at each edge of the image. When the
density is such that such a narrowly-based weight should be used,
it would appear that the edges could be satisfactorily located by eye
and measured with a cross-hair cursor as in a Mann comparator.
Although it would appear that the normal cursor-aided
estimation '"by eye'" will be the most practical, as well as fully
accurate, estimator in the end, some slightly more sophisticated
techniques will be needed when the image is resolved into individual
flashes. The location of these flashes with respect to the center of
the image is a happenstance matter of phasing, one for which it might
be difficult to make due allowance '"by eye." 1In this resolved-flash
circumstance, it would be best to measure the positions of the two
outermost flashes, two from eacn edge, and identify these for an
independent density (or opacity) measurement. The densitometer
operator would also measure the density of a central flash. These

data would suffice for a computer implementation of an estimation

procedure like those discussed in this report though vastly simplified.

Images for which the outermost 4 points (4 from each edge) would be

useful might also be of some value. In any case, the practical estima-

tion problem would be very simple, and it would appear that the

standard -accuracy of the camera would obtain.
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9.10. Conclusions.

The principal conclusion that may be drawn is that the
photography of the sunlight-illuminated 0.6-m satellite against the
night-sky stellar background by means of the Baker-Nunn camera may
be expected to provide eminently useful images on the film normally
used. Density increments in the neighbornood of 1.0 above the
night-sky background may be expected, corresponding to exposures
greater by a factor 5 than the threshold defined as producing a
density increment of 0.35 + 0.05, a threshold of 0.8)(10-10 1lm sec/mz,
and this expectation obtains for slant ranges of 2500 km, whether
the photography be of the "steady' reflection from thé spherical
surface of the Vglitter" reflection from the optical flats. It
has further been shown that the standard accuracy of the B-N camera,
1.1 arcsec, will obtain for the measurement of these images, including

the location of the center of the solar flash pattern, using easily-

implemented and practical estimation procedures.
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RELATIVITY SATELLITE GYRO

10.1. Damping Mechanics of Precessing Body

The demands on a gyro spin axis readout system based on a
preferred moment of inertia axis are simplified if the gyro symmetry
axis, Wss angular momentum vector h and instantaneous spin axis W are
colinear. In general, when a spinning gyro is suddenly released in
free fall, these three axes will not be colinear as shown in Fig. 10.1,
resulting in a torque-free motion of the gyro about its angular
momentum vector.l Even if these axes were colinear, an envirohmental
disturbance such as a micrometeorite collision could cause cratering,
thereby shifting the symmetry axis with respect to the angular
momentum axis,2 resulting in a torque-free motion. For an axially

symmetric gyro this motion is a steady precession of its instantaneous

about its angular momentum axis h,

spin axis w and symmetry axis g3

as shown in Fig. 10.2 from the point of view of an observer fixed in
inertial space. 1In this figure the outer cone (body cone), whose
axis is Wys rolls without slipping on the inner cone (space cone), -
whose axis is h, and the line of intersection is the instantaneous

spin axis w. This precession of the symmetry axis w, about h compli-

3
cates the readout problem; consequently, a damping mechanism which

aligns the three axes within a reasonable time is required. This

report analyzes a passive damping scheme in which energy is dissipated



374 PASSIVE DAMPING OF THE GENERAL 10

RELATIVITY SATELLITE GYRO

by virtue of cyclic strains in the gyro body caused by its torque-
free precession.3 The gyro will be considered an axially symmetric
solid, spherical in shape except for two diametrically opposite flats,
which give a preferred moment-of-inertia C (polar). The moment of
inertia about the perpendicular axis is A. The case for a thin,
spherical shell has been analyzed.l"’4a

The analysis of the combined effects of gravity gradient,
centrifugal distortion and the statistics of micrometeorite cratering
leads to an optimum gyro diameter of about one foot.5 For a gyro of
this diameter the analysis of micrometeorite cratering6 gives a
relationship between the number of hits per year, each of which
could cause an angular disturbance of 0.6 arc sec per year, versus
(C-A)/C. For one hit per year the ratio (C-A)/C ~ .0l. Assuming a
Poisson distribution for the meteorite flux, this gives a probability
of 0.92 for having one month of undisturbed data. It is important,
then, that the damping time be quite smaller than one month in order
to separate the effects of such crateriné from the spin axis orienta-
tion data.

The quantities Wys h, and @ in Fig. 10.1 are coplaner, and the

angles © and o are related byl

tan 6 = < tan @ (1-1)

alx

so that if A = C, then h and w become colinear and w., loses its signi-

3
ficance. For (C-A)/C = .01 the angle € between h and @ will be small
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General Relationship of Angular Momentum, Symmetry
and Instantaneous Spin Axes of Axially Symmetric Gyro.
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9
3
f

and is given approximately as € ~ [ (C-A)/C] tan . For example, if

o = 0.4 degrees, € a~ 14 arc sec. During initial gyro spinup attempts

will be made to keep o as small as possible, but there will be some
oa misalignment error. The maximum allowable error is determined by
the tolerance within which the satellite spin axis must lie in its
”T orbital plane, which is of the order of 0.4 degrees for the present

gyro parameters.5 This means that w, must be known with respect to

3
{ the gyro body to better than 0.4 degrees.

For axially symmetric bodies the rate ¥ at which w, and W

3

precess about h for the case of free precession (zero .torque) is

1
i given by

»\ y--c 2

C
i A-C cosb (1-2)

where 6 is the angle between w, and h. The quantity é, (later

3
referred to as the elastic vibrating frequency) is the angular rate
a4 at which the @ vector moves about the body as viewed by an observer
stationed on the body. Therefore, if the spinning body is centri-
fugally distdrted, an observer stationed along w, will see the body

3

undergo periodic deformation at a fundamental rate ¢ corresponding

to the rotation rate of the w vector about the observer. This is

shown rigorously in Section 3. Equation (1-2) can be rewritten with

the aid of Fig. 10.3, which shows the geometrical relation of the involved

i,

;
!
b

2
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quantities. Since wo =¥ + é/cose eliminating ¥ gives
- _ A-C _
P = x wo cos® (1-3)

where w is the initial gyro satellite angular velocity.

The periodic deformation of an anelastic body gives rise to
a rate of energy dissipation which, among other things, depends upon
the fraction of the elastic energy which is dissipated in each
deformation or strain cycle.3 This fraction, ¥, is called the
hysteretic damping factor, and is a measure of the internal friction
of the anelastic body. Metallurgists who measure internal friction
usually state results in terms of logarithmic decrement D, quality
factor Q, or angle § by which strain lags stress.7 The logarithmic
decrement is the logarithm to the base e of two successive amplitudes
of a freely oscillating body. The various factors which measure

internal friction are related as follows, for Q > 10:

Q=<"=" = tans . (1-4)

The effect of internal energy dissipation is to decrease
the angle © between the symmetry axis w, and h, which is shown as
follows. The kinetic energy T of the axially symmetric body in

Fig. 10.1 can be written as

%) + 2w’ . (1-5)

i
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Also,

+ jAw, + kCw

b= iAw 2 3

1

(1-6)

Multiply Eq. (1-5) by 2A and subtract from Eq. (1-6) to get
h? - 2AT = C(C-A)w32.

Since Cw, = Cwo cos® = hcost, solving for T gives

3
2
_h _ C-A 2 ]
T = A [1 <_E—> cos ® |.

For a finite dissipation, with constant h, the time rate of

change of kinetic energy is

2
o b [C-A - -
T = A < G > cos® sinb ©. (1-7)

For the case C > A, and for a negative value of T (energy
dissipation), d8/dt is negative; therefore, & decreases.

It is shown later that the total gyro elastic strain energy
can be classified into two parts. The first part is independent of
é and is represented as a dc or constant term. Strictly speaking,
it is dependent upon € and § and hence slowly changing with time, but
this change is negligible compared with the second part. The second

part of the elastic strain energy varies with time at a rate é, and
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all higher harmonics of é up to the fourth. It is this time varying
part which is responsible for the hysteretic damping of precession.
If we call W that portion of the gyro elastic strain energy per cycle
of stress (ﬁhose fundamental frequency is é), then the fraction of
this energy which is dissipated per cycle of stress is YW and the
rate of dissipation is yW¢/2m. This must be equal to the rate of
decrease in kinetic energy T as given by Eq. (1-7). We then have

W=7
Substituting é from Eq. (1-3), letting h = Cwo‘and solving
for é, one obtains

. W
b= (1-8)

21 Cw_ sind
o)

Sections 2 and 3 describe the method of determining W for
a solid, spherical body with preferred moment-of-inertia axis C, such
that C/A~ 1.01. There it will be shown that W is a function of gyro
radius a, gyro material, spin speed w and angle © as in the following
equation for small values of 6.

4rip e

W= : r (1-9)

22 47,2
w_a
0
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where ' is a dimensionless quantity which is a function of gyro

geometry and material. Substituting this into Eq. (1-8), with sin® « ©

and C = (Z/S)Ma2 = (8/15)ﬂasp gives

s 15, 3,2 ]
6 = g YW T8 Te . (1-10)

The solution of (1-10) for the damping time t for an initial

B! angle 8, and a final angle 6 is
I .
i
| ¢ = 4E Ln | =£ . (1-11)
32 .
15 Yow ~a T i

It remains to determine I', which is obtained from the strain

i energy W for a rotating solid sphere in torque-free precession.

o 10.2. Inertia Force Field

Consider a solid sphere rotating about an instantaneous
o axis W as in Fig. 10.3. The instantaneous axis of rotation w is

misaligned with the angular momentum vector h due to some disturbance

which has also shifted the symmetry axis Q3 from the momentum axis h

by a small angle 6 according to Eq. (1-1). 1If 8 is assumed to be

small in comparison with the spin velocity ¢ and the precession @,
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then the angular velocity W can be written as
w = v sinBcosgp + 3? sinBsing + i(¢+@ cosb) (2-1)

where 6, ¥, ¢ are Euler angles defining the orientation of the body
axes X,y,z with respect to the space axes X,Y,Z as shown in Fig. 10.4

and i1, j, k are unit vectors along the axes x,y,z respectively.

The angular acceleration & is

o7
€

e
i
&
Al
+
e
x
e

Assuming that 0, é, and ¥ are constant,
é,= é@ simd (- i sing + 3 cosg) . (2-2)
Substituting (2-1) and (2-2) into the equation for linear

acceleration

a=a +a'+wx (@Xo) + oxc + 2uxy' (2-3)

and noting the following approximationsl’3

a =a'=y' =0 (2-4)

o paisadiiigh
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2 2
a = wzi[-x Gosze + L sinzesin2¢> + y (§> sinzesin¢cos¢
- o A2 A

+ 2 ($) sindcosteosp + z [ - =) S sinBcosBeosg |
z |3 | sinScos cos@ Z = A/ a simdcos cos¢J

2 2
+ wiﬁ X 95 sinzesin¢cos¢ -y Gosze + e sin29c032¢>

A A2

c _. . _Lc _. . ]
+ z A sinBcosOsing + z é A>A sinBcosOsing

2 2

+ wiﬁ[x % sinBcosBcosp + y % sinfcos®sing - z £ sin%

A2

389

(2-5)

c\c . c\c . .
- X ( - A>A sinBcosbeosgp + vy ( - A>A smecosesulq)]

Under the assumption that 9 is negligible compared with é

and @, the only time-varying quantity in (2-5) is ¢ = ét and the

inertia force wvaries harmonically at a rate ¢ and 2¢ as can be seen

from the above equation.

If it is assumed that the body can be approximated by a

C . .
homogeneous sphere so that the ratio = is equal to unity, then the

A

above acceleration becomes

ﬁni[-x(cosze + sinzesin2¢) + v sinzesin¢cos¢ + z sinecosecos¢]

3wi[x sinzesin¢cos¢ - y(cosze + sin29c052¢)+z sinecosesin¢]

%wi[x sinfcosOcosp + y sinBcosbsing - z sinze] .

(2-6)
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The problem is now reduced to finding the displacement field in a
sphere subjected to an inertia force F = -p a.

A general method of solution for a sphere subjected to body
force was given by Chree8 who, as an example, has worked out the
displacement field of a sphere rotating about a diametric axis. 1In
that case the problem becomes axisymmetric but such a symmetry is
lost when the body force field is that due to acceleration (2-6)
which takes into account the influence of precession of the spin
axis. In the following, a brief account of Chree's method and its

application to the present non-axisymmetric case will be given.

10.3. Displacement Field in a Sphere Subjected to Inertia Force

Chree's method mentioned above is essentially based on the
existence of a body force potential which is expanded in spherical

harmonics. Consider Navier's equation of equilibrium
2
AH)VV u + uwv u + pF = 0

where A and p are Lame's constants, u is the displacement and F is
the inertia force per unit mass due to the acceleration a(= - F/p)

expressed by (2-6). This may be written in indicial notation as

()b, + MU + pF, =0 ' (3-1)

3
d
»

St
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Q)

P
% .

i
3

from potentials Vn(an nEh order spherical harmonic) and &, respectively,

i

A =V-u is the dilatation, P,i = ,» 1 =1,2,3 for any function P

and the triad x,y,z becomes X 5%, ,X 1f Fi and u, are derivable

such that
F.=F
i n,i
(3-2)
u, =98,
i i
then (3-1) becomes
(K+u)@,kk + an =0 . ‘ (3-3)
Because of the identity
m - m-2
(r Vn)’kk = m(m+ 2n + Dr. Vn (3-4)
where m and n are positive integers, Eq. (3-4) is satisfied by
8 = P r2y (3-5)

n

_2(k+&x) (2n+3)

The displacement field corresponding to this & is, from

(3-6) and (3-3),

2
(r V.),.
. = P Tl (3-6)

2(A+2p) (2n0+3)
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which is accompanied by a surface traction

_ pHs ntl 2 {L 2§n+lq_ ‘
Ty T T Tor) [2n+3 Vo, Tl T 2mk3 T Fi'n G-7)

across any spherical suyrface r = constant. 1If a body is bounded by
the surface r = a where the surface traction is zero, the displacement
ug is determined by adding to (3-6) the displacements corresponding

to w- and %-type solutions,9 This yields surface tractions

i_ 2 A { A }
— = S+ 1)+ L+ (ot
m (Znﬁun)r mn,i + [?n m 11+ o § (n+3) m (o Z)j]xfnn
(3-8)
o = - oA + (3n+1)u
n (n+3)x + (o+5)u
and
T,
—2 = 2(n-1)3
o n,1
respectively, where, in this case, wn and @n are to be taken as
wn B pBth
@n = pBZVn . (3-10)

“H
3
i
$
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For the case Ti = 0 onr = a, these constants B1 and B2

are given by

{(2n+3)x + (2n+2)u} {(n+3)k + (n+5)@}

| B = (3-11)
4 L o (2m3) 0t2u)u {(2n2+4n+3)x +2(n2+n+1)g}

’;{ n{(n+2)k + (n+l)@} a2

- B, = 2 )

oy 2(n-Du {(Zn +4nt3)h + 2(n +n+l)u}

- where n is the order of the spherical harmonic, Vn'
It can be shown easily that the inertia force field due to
: (2-6) is derivable from the potential

ks ’\ 2

V=V o+ Vv (3-12)

2

S e

where V0 and V,_, are spherical harmonics of zeroth and second order

2

given by 9
v = —%— and (3-13a)

€

€
N

(3cosze + BSinzesin2¢ -2)x2

+ — (300529 + BSin29c052¢ -2)y2

+ — (BSinze - 2)z2 +

- W sinzesin¢cos¢ Xy
- ®w = sinBcosfsingyz

, - ®w ~ sinBcosbcospxz. (3-13b)
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It is interesting to note that the potential given by
(3-12) and (3-13) reduces, as it should, to that of a spinning sphere
given by Chree8 when the misalignment © is set to zero.

By substituting (3-12) into (3-6) and superposing the
displacements due to w - and @n—type potentials given by (3-10; and
(3-11) to ensure the satisfaction of the boundary condition on r = a,
after considerable amount of algebra, one obtains the followihg

expressions for the components of the displacement.

B 22
puw a (50+6u) 2B2 9 9 5 2 2 .-2
Y1 T T2 Gy - 3 Yo +Bw "~ cos® + Bw " sin® sing| x

" sin'e sing cosply - 30" ]
- Bzwo sin'® sing cosg |y Bzwo sin® cos® cosg |z

B.M
2 1 1 2
+{'3B Ty LA 3}‘”0

ex]

1

—_ ﬁ} W 2 cosze
2 o
B

+
Pt

lwe]
—

1
~
|l

1

1 1 } 2 .2 . 2 3
+ {Bl -3 L - > M w "~ sin 0 sing| x

1 2 .2 ; 3

+ - B1 + 4 L ] w - sin 6 sing cosp y

B 1 2 . 3
+ - Bl + n L ] W sin@ cos® cosp =z

B 3 2 .2 , 2
+ - B1 + A L + Blyﬂ w "~ sin O sing cosp x y
+ B B, + 2 L+ B, M ] W 2 54 8 cos® co 2

i 1 14 1 o Simb cosb ¢ sp Xy

B
2y v Lailyy?
+ {— 3 B1 + 35 L + 3 M wo

T 3
Rl

.
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B
1 1 2 2 1 } 2 .2
+{Bl-7L-——M}wO cose—{—laL wo sin ©

1 2 .2 2 2
+{B1_2 M}wo sin"® cos @ | y x

E 1 2 .2 2
+ | - Bl + 4 L] w " sin © cos® cosp y z
F B B
ol {_g 3 1.2 2 2, 1 2 .2
+ 3Bl 70L+3Mjwo+B1¢oo cos © ZMwo sin ©
i + {Bl - -i]"Z L} woz sinze sin2¢ zzx
|
1 2 .2 . 2
+[- Bl + i L] w " sin © sing cosp z'y
) 1 2
+ [—7- L + B1 M:| wo sinB cos® sing =xyz. o (3-14a)
y
A - -B " 2 . 29 .
| u, M, sin sing cosgp x
|
Aw/! 2
2 p a (5h+6u) 2 2 2
-<3B. +
| + -3, 150t20) Ghizpy) Yo T By o8 ®

2 2 2 2 . ,
“ + Bzwo sin'® cos¢ |y -~ Bzwo sinB cos® sing =z

1 2 .2, . 3
+_— B1+14L] W, sin" @ sing cosp x

[ B B
_ 2 1 l} 2 { _ 1 _ 1] 2 2
+ { 3 Bl+---—-35 L+——3 M 0.)0 =+ B1 7 L 5 Mf wo cos ©

B
7y _.1-_ ____]; 2 .2 2 3 [- _l_]
+{B1 7L -3 M}wo sin'® cos"¢| y~ + By + 77 L| X

o 2
i ' w sind® cos® sing 23
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B B
-2 L 1 } 2 { A | M} 2 2
+{3B1+35L+3M<J.)0+B1 7L 5 W cos @
1 . 2
- 14 Lw™ sin™®
)
By 2 .2 2| 2 i
+{Bl~2—M}wo sin'® sin"g| x"y
- 1 2 2 “
+ _-Bl + 1 L:l w sind cos® sing x z
B 3 2 .2 , 2
+ _—Bl + 4 L + Bl M—J w - sin @ sing cosp y'x
+‘-B +-2-L+B M:]wz ind s6 si 2z {
L1 " 14 1 o Simd co np v
B 1 2 2. 2 {
+ _-B1 + 4 L] w " sin @ sing cosp z'x o
[ 3 S\ 2 2 {
+{—§Bl-—7-5L+§—}wo+Blwo cos @ H
;
1 2 .2 2 2
-l—{B1 - 1 L} w "~ sin @ cosp| 2y }
2
1 2 .
+ [7 L+ B1 M] W sin® cos® cosgp xyz. (3~14b)
u, = -B,.w 2 sin@ cos® cosp x - B.W 2 sin cos® sing
3° % ¢ 2% y

B 2 .
2 p a”(SAtéu) 2 2 2 {
+ { 3 T Oy Yo T B, cos ) 2 E
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I:B + = ] sin® cos® cosgp x +|:B + = L] X

woz sin® cos® sing y3

B
_ 12 1 } 2 {l _ } 2 2 3

o + { 15 L+ 3 Mpow ot Z L-B M w "~ cos 8| =z
o -
i 1 2 2
| i + - Bl + 4 L] w sin® cos® sing =Xy
, B B
+ { 3 70 L+ — 3 B + M cos 9
1 B 2 2. 2| 2
p -{14L+2 M} wo sin"® sin¢ Xz
i} B 1 2 2
. 4+ = i

+ LBl 4 L] wo sin® cosb cosp y x

B
SR Y O R I I QP
| + {3 70L+3 M UJO Bl+2 M wo cos ©

B
1 l} 2 .2 2 2
. —{-—--14L+——2 Mwo sin"® cos’¢ vy z
+|:—B +—§—L+B M]wz in® cos® co 2
1 14 1 o Simd c cosp z X

3
14

+ [ B. + =L+ Bl M] woz 8in® cos® sing z2y

+ [ % L+ ]31 M] woz sin® sing cosp =xyz. (3-14¢)
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where L = 1
A+ 2
M = 4y + 14

5N + 7w (3-15)

Terms in these components of displacement can be classified
into three categories, the first group being the steady part which
does not depend on ¢ at all, the second those which vary with time at
a rate é, and lastly those which pulsate at a rate 2. The last two
categories which vary with time are responsible for the hysteretic

damping of precession.

10.4, Elastic Strain Energy of Solid Sphere

The time varying part of the elastic strain energy can be
computed by first taking one half the dot product of the force field
-pa, where a is given by (2-6), and the displacement field u, given

by (3-15), to give the strain energy density W' such that
W= 2(-pa)u (4-1)
2 i’ i

and then dropping all the steady terms which are independent of ¢.

The amount of alternating strain energy W per cycle of precession is

2
w=ffw'dnd¢ (4-2)
o Q

]

i mings

5,
¥
4
|
3
#
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where Q is the volume of the sphere. By substituting (2-6) and
(3-14) into (4-1) and (4-2), and dropping terms of the order of
sin49 in comparison with those proportional to sinze, it is not hard,

although tedius, to obtain

B
-2 2 4 7.2 (2 20 9 . _ 19 } (he
W=dmpw al {5a2+63 By - 980 “ ~ 630 B1 M (4-3)

as the fundamental component of the alternating part of elastic strain

energy per unit cycle of precession. Designating the quantity within

brackets as I'', one has

B 208
L5 19 . 19 )
r o2 * 63 " 980 " B30 Bt (4-4)

Equation (4-4) may be simplified by first substituting

A and B into the expressions for L and M of (3-15) and 31 and B2 of

(3-11), to get

L = (1+v) (1-2v)
E(1l-v)
_ 2(7+10v
M 7-4v ?

and

= () (T-4v) (I+v)
1 TE(1-v) (7+5v)
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_ (3+2v) () a?
2 E (7+5v)

for n= 2.

These values of L, M, B, and B2 are substituted into (4-4)

1
to get

pooo v o3ty _9(l-2v) (34«))(7-4\))[ 19(7-10v) ZOJ}
E | 5(7+5v)  980(1-v) = (L-v) (7+5v) L 2205(7-4v) 44

(4-5)

|
t=3 |3

which is now only in terms of Poisson's ratio v and Ybung's modulus E.

Equation (4-3) may be rewritten as

W= 4ﬂ2p2w04a792 L

=

where I’ is a function of v only. This value of I', substituted in

(1-11) determines the damping time t for a given gyro.

10.5. Numerical Calculations

The expression for damping time (1-11) may be rewritten in

the form

E
Ln | == (5-1)

) 5.
vo T (pw_"a”) =4

-4
t=15

J

& st

Uiosimings

e
b3
i
1
i
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From elasticity theory, the maximum stress at the center of a solid,

spinning sphere is approximately given by8

2 2 3 4+ 2v
cmax + pwo a <7 + 5;> (5-2)

where v is Poisson's ratio. Hence, the term pwoza2 in the denominator
of (5-1) is proportional to the maximum allowable stress for the
selected gyro material. Since the optimization study referred to in
Section 1 fixes the value of a to be approximately six inches, w_ for
a given material follows from equation (5-2), giving due allowance
for a safety factor.

Volume electrical resistivity requirements severely restrict
the choice of materials to those between the good conductors
(p > 103 ohm cm) and good insulators (p < 1010 ohm cm). The materials
germanium, silicon and titanium dioxide, when properly doped, and
certain glasses are among those which appear to satisfy the electrical
resistivity requirements. At present, the hysteretic damping factor
Y has been obtained only for certain glasses. Among other things,
1/Q is a function of the elastic vibrating frequency é given by
equation (1-3). Present gyro parameters indicate a vibration fre-
quency of about 1 to 3 cps. Fortunately, glass has a maximum value
for 1/Q(= y/2m) of about 4 X 10-3 in this range of frequencies ’
at room temperature. This makes it a promising high damping factor

material.
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In order to determine experimentally the approximate value

of O ax’ thin glass disks were spun to the bursting point in a motor-

driven test fixture. For such disks, the maximum stress is also at

the center and is, to good approximation

' _ 22 [3+wv
cmax = pw a (————8 > . (5-3)

For glass, v == 0.16 so that the bracketed factors in (5-2)

and (5-3) become 0.425 and 0.395 for the sphere and disk, respectively.

Siaiinion

Hence, the maximum stresses are nearly the same for identical
materials, diameters, and spin speed, therefore justifying the use of «‘
disks for this test. These tests indicated an upper value of wé of
about 630 rad/sec for plate glass, with an adéquate safety factor.
For C/A = 1.0l and 6 of the order of half degree, the elastic "
vibrating frequency é is about one cps, as seen from equation (1-3).
Using glass as the gyro material, the following parameters

have been determined:

== = ,025
Y T
p = 2.5X 103 kgm/m2
%
w = 630 rad/sec »
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a =7.5cm= .075m

Qf = 0.1 arc sec

Gi = 0.5 degree

E =7 X 1010 newtons/m2
v = 0.16

The value of I' from equation (4-5) becomes I’ = -0.071.
Substituting this and the above values into equation (1-11), the

damping time t becomes 8.2 hrs, a reasonable time.

10.6. Conclusion

Using glass as a possible gyro material, the passive
damping method for aligning the gyro instantaneous spin axis, angular
momentum axis and symmetry axis has been shown to be feasible,
requiring about 8% hours to damp from & = 0.5 degree to ® = 0.1 arc sec.
The damping time constant T = 0.83 hours. This value of damping time
is probably required only during the initial gyro spin up. The
statistics of micrometeorite collisions with this gyro show that
there will be a probability of 0.92 for no collisions within the period
of one month which could cause an angular disturbance of 0.6 arc sec
per year. The effect of such a collision, however, would require only

(0.83) (1.8) = 1.5 hours, a reasonable time.
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11. COLD-GAS SPIN-UP INVESTIGATION 405

One of the simplest and most reliable types of spacecraft
control systems consists of a cold-gas exhaustion through a nozzle
from a constant volume supply. This type of system has been used
in the past and is being considered for use in bringing the gyro
satellite up to the required spin velocity of about 100 revolutions
per second. For this application the use of an inert gas in the
system will eliminate the possibility of contamination of the
satellite gyro optical surfaces. This investigation determines the
theoretical performance of the system under quasi-steady flow
assumptions and compares the theoretical predictions with experi-
mental results.

In order to derive expressions for the time dependence of
the supply parameters, the continuity equation must be used to
relate the supply parameters to the rate at which gas is flowing from

the supply vessel. For this case,

w= - -(%_:(m(t) > @B)

where m(t) is the mass in the supply at any time t. It is known from
one dimensional flow theory, applied at the throat of a choked con-

vergent nozzle, that

s (2 i e
VOV R \y+L :

(2)
VI

for a perfect gas.
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Under the assumption of quasi-steady flow, the value of the
weight flow is a function of the instantaneous value of the supply
pressure and temperature. Using this assumption, eqs. (1) and (2)

can be combined.

'Y"‘l P A*C

PACy
'?i_t' m(tD /15 y+1/ JT, )

In this equation, Pt and Tt are functions of time. The solution of

eq.(3) requires that Pt, Tt and m(t) be expressed in terms of a single

time dependent variable. The assumption of isentropic conditions in

‘the constant volume supply vessel produces the following equatidhs:

-1
Eii_ = <:Eﬁi_\\ 3%7- (5)
Tto Pto'}
Introducing the notation
t .
a(r) = 2B (6)
o

where G is a dimensionless mass ratio, eqs. (4) and (5) can be re-

written as

£t =g
to
and
T
t _ dY'l

)
v
o

-(8) ©

G

[

¥
i
%
4
it

s



11 COLD-GAS SPIN-UP INVESTIGATION 407

Substituting eqs. (6), (7), and (8) into eq. (3), the

following differential equation is obtained

Y+l

dG _ k-
dt m ¢ 2 )
o
where
C. P A*
Ko -d to” e (10)
- +1 1
+1. X7 %
[ &1 RT, ]

This equation can be solved by separating variables and integrating.

dt €t -y+l
i EL.I dt = I ¢ ? 4 (11)
m_ ©
o
The solution is
- 2
G = [Xél ﬁ—.t +1] YL (12)

Now, since the time dependence of G is established in equation (12),

eqs. (7) and (8) can be written as

-ZY
- y-1k_ v-1 1
P, =P L st 1] (13)
o]
-2
- Y-l k
T, = Tygo L 2 t + 1] (14)

A series of experiments were conducted to check the validity

of equations (12), (13) and (14).
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The pressure vessel, a 7.8 cubic foot cylindrical steel
tank, was filled with‘nitrogen to an initial pressure of 80 psig,
which was read from a precision pneumatic calibrator. Since the
filling raises the temperature above that of the surroundings, time
was allowed for the gas to come to equilibrium with the surroundings
and all runs were conducted from the same initial temperature and
pressure of 97°F and 80 psig respectively. The initial temperature
of the gas was measured using a copper-constantan thermocouple. The
temperature of the reference junction, which was immersed in an
ice-bath, was 320F.

The tank was also instrumented with a 100psi differential
pressure transducer. The transducer was fitted into a small valve
which was attached to the tank. This allowed the transducer to be
detached and atmospheric reference pressure to be recorded before
each run. The output from the transducer was fed into a recording
oscillograph. The oscillograph recorded the pressure-time history
on a 5 inch-wide film strip. The film strip speed was 0.25 inches
per second. The valve to the transducer was opened and a second
reference reading of 80 psig was recorded. Since the oscillograph
output is linear, two reference readings were sufficient.

The gas was then allowed to discharge through an ASME
standard long-radius flow nozzle which had a discharge coefficient
of 0.99. A two-inch, quick-opening gate valve was attached to the

tank. The gas flowed through a two inch diameter, seven inch long
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!
g
G

pipe at a Mach number of 0.01 upstream of the nozzle. The oscillo-
graph was turned on several seconds before the valve was opened to

take the reference reading and was left on several seconds after the

valve was closed to observe the pressure rise due to the heat
transfer into the tank.

Seven runs were made, with one of them recording the
pressure-time history completely from 80 psig to atmospheric pressure.

The other six were stopped after various run times and the pressure

and temperature of the remaining gas was measured after equilibrium

was again established. From this data, a mass vs. time plot was

[N

generated.
i The experimental data is compared with the results of the

theoretical analysis in figures 11.1, 11.2 and 11.3. Figure 11.1 is

[—

a plot of the complete pressure-time history, with the theoretical
» curve plotted for the choked portion. Discrepancies between the two
curves may be due to heat transfer into the supply tank, incorrect
value of the ASME standard, long-radius flow nozzle discharge
coefficient or incorrect value for volume of the supply tank. A
nozzle discharge coefficient of 0.85 gave a better corroboration

between theory and experiment. Figure 11.2 is plot of mass ratio

versus time and fig. 11.3 shows the variation of the pressure ratio

versus the mass ratio.

The above theoretical results were used on spherical and

3 toroidal supply vessels in some preliminary digital computer studies

B —
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to investigate whether required gyro spin-up rates could be achieved.
Centrifugal effects and increased moment-of-inertia of the system
due to the supply tanks were taken into account. These preliminary
studies indicated that 100 cps spin velocities can be attained with
aluminum spherical containers. It turns out that a large number of

smaller containers gives better results than fewer, larger ones.

.
5
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Figure 11.1
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\ Gas pressure vs. time. 7.8 cubic-foot tank
B : filled with nitrogen gas discharging into atmosphere.
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Mass ratio vs. time. 7.8 cubic-foot tank filled with nitrogen gas,
| initially at a pressure of 80 psig, discharging into atmosphere.
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Figure 11.3

Gas pressure ratio vs. mass ratio. 7.8 cubic-foot
tank filled with nitrogen gas, initially at a pressure
of 80 psig, discharging into the atmosphere.
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List of Symbols

Symbol Definition Units

* 2

A Nozzle throat area ft

N Cyq Nozzle discharge coefficient -

- G Ratio of mass in supply ( r ) -

o m

///// g Acceleration of gravity ft/sec2

% m(t) Mass of gas in supply 1bm
s

) m Mass of gas initially in supply ' 1bm
‘é Pt(t) Supply pressure psia
Pto Initial supply pressure psia
R Gas constant —Le-1b

4 1bm o
| R

t Time sec

;

ig Tt(t) Supply temperature - o
Eg Tto Initial supply temperature %
w Weight flow lbm/sec

Y - Specific heat ratio -
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