
LUBRICATION AND BEARINGTOBLEMS IN THE VACUUM OF SPACE 

by Edmond E. Bisson 

Lewis Research Center 
Cleveland, Ohio 

TECHNICAL PBEE&.proposed for presentation (in French) 
at "Friction Days" 
sponsored by GAM1 

Paris, France, December 5-6, 1966 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 



LUBRICATION AND BEARING PROBLEMS I N  

TKE VACUUM OF SPACE 

by Edmond E. Bisson 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

The lubrication and bearing problems of the  space age are many and 

varied. These problems include exposure to cer tain pecul iar i t ies  of  

space such as (1) a very low ambient pressure, ( 2 )  a radiation environ- 

ment, (3) the  absence of  a gravitional field, and (4)  the presence o f  

atomic species other than the normally encountered molecular species, 

The various problems, t h e i r  re la t ive  importance, and some indication o f  

research i n  these various areas are discussed in  considerable detai l  i n  

references 1 t o  9. One of the major problems of any type of spacecraft 

involves operation of  mechanisms i n  the vacuum of outer space. For 

example, such components as horizon seekers, sun or star finders, and 

radar antennae are involved. 

the high vacuum of outer space unless hermetically sealed systems are  

used; these sealed systems incor-porate Considerable complexity and weight. 

These components must normally operate i n  

The various pecul iar i t ies  of t he  environment of space a l l  contribute 

t o  the lubrication and bearing problems. For example, the low-pressure 

environment contributes t o  rapid evaporation of the l iquid or semi-solid 

grease lubricants normally employed. Other problems arise because of 

the lack of oxygen. A s  i s  well known, lubrication ordinarily takes place 
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by means of contaminating films between the s l id ing  o r  ro l l ing  surfaces. 

These contaminating films can be liquids, such as the  common l iquid 

lubricants, o r  sol id  films of low shear strength. The lubrication 

function is, with many metals, strongly influenced by the presence o r  

absence of  oxide f i l m s  on these metals. The surface oxides freQuently 

ac t  as protective f i l m s  and, i n  some cases, contribute t o  the f i n a l  

surface f i l m s  through e i ther  chemical reaction o r  chemisorption. 

One of the problems a t  a l t i tudes  higher than 55 miles involves the 

f ac t  that  oxygen and nitrogen do not ex is t  as the  ordinary molecular 

species but  ra ther  i n  the atomic o r  ionic s ta te .  The reaction ra tes  

between most metals and atomic oxygen are  markedly different  from those 

with molecular oxygen. The influence of t h i s  different  reaction r a t e  on 

the f r i c t ion  and lubrication process i n  vacuum is unknown at  the  present 

time. 

are  the principal species present. 

A t  a l t i tudes  gceater than 800 miles, atomic hydrogen and helium 

The main environmental change between space and the Earth's surface 

is, of course, t ha t  of pressure level. 

Earth's atmosphere is estimated a t  approximately 

absolute pressure i n  in t e r s t e l l a r  space i s  estimated a t  approximately 

The absolute pressure outside the 

Torr, while the 

Torr.  Figure 1 shows pressure as a function o f  a l t i tude.  At the  

very low pressure levels (where a gaseous atmosphere is  absent) the t e m -  

perature levels w i l l  normally be dictated by radiation. 

absorbed by radiation from any object tha t  the  mechanism "sees" and the 

Heat w i l l  be 

mechanism w i l l ,  i n  turn, r e j ec t  heat to outer space by radiation. 

mechanisms w i l l  have different  temperature levels  depending upon these 

relative rates of heat gain and loss. It is imporkant here t o  note tha t  

Various 
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evaporation from surfaces i s  an exponential function of temperature; in  

consequence, the  actual  temperature of the mechanisms is  important i n  

t h i s  respect. 

Exact duplication of the various conditions exis t ing i n  space is 

For example, the combination of radiation flux, extremely d i f f i cu l t .  

pressure level, and proper concentration of atoms of  the various gases is  

d i f f i c u l t  t o  achieve. Some of  these conditions can be simulated, however, 

i n  such a manner that t h e i r  re la t ive  effects  can be measured or estimated. 

In  order t o  conduct meaningful experiments i n  a vacuum chamber, the 

following two requirements must be met: (1) a suff ic ient ly  low absolute 

pressure, and ( 2 )  precise knowledge of  the gaseous species present. The 

normal radiation levels of  the space environment are not suff ic ient  t o  

produce any damage t o  mechanical components of lubrication devices o r  

even t o  conventional o i l  or greases. 

The first requirement is predicated on the necessity f o r  simulating 

a space environment with respect t o  evaporation of materials and f o r  

reducing oxygen concentration t o  such a leve l  t ha t  formation o f  oxide 

films i n  the t i m e  period of  the  experiment is  extremely unlikely. 

w i l l  be recalled that oxide f i l m s  can have an appreciable e f fec t  on the 

f r i c t ion  and lubrication process. Figure 2 is  included t o  show the t i m e  

It 

required t o  form a hypothetical film of  FeO on iron; t h i s  f i l m  is 1 angstrom 

thick. 

at o&en pressirres as' low as-10m7 Torr* 

t&& and iracuum m u s t  be obtained a t  oagen  pressure levels  lowerl $ W J O " ~  

Torr. 

of 10"' ordO-lo Tor r  is desirable, because & f i l m  of FeO -k iangskrom thbck. 

It w i l l  be noted thaty ;at 25'; C,  FeO fo- on iaonc2in 1 m&nute even 

Eenbe, kxperi&nta&:, b t p  Solil-fric- 

For example, conduct;ing f r i c t i o n  experhents  at'axygen p9essure levels  

would require from 1 hour t o  1 day t o  form under these conditions. 
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The second requirement ( tha t  of precise knowledge of the gaseous 

species present) i s  the necessity t o  know how closely the  environment 

of space is  approached; t h i s  requirement may be obtained by the  use of a 

mass spectrometer. 

obtained (ref. 10) from some of the f r i c t ion  studies conducted at the  

Such data i n  a vacuum f r i c t i o n  apparatus have been 

NASA laboratories. Data representative of these studies are shown i n  

figure 3. The resu l t s  show that many species are present with ion 

pumping, f o r  example, hydrogen (2), nitrogen (14), oxygen ( 16), hydroxyl 

(17), water (18), carbon monoxide ( 2 8 ) ,  nitrogen (28), and carbon 

dioxide (44). (The numbers i n  parenthesis are the r a t i o  of molecular 

weight t o  charge.) 

various techniques t o  the  point where only hydrogen i s  present when 

l iquid helium is used t o  cryopump the chamber a f t e r  bakeout a t  93' C 

Figure 3 shows the reduction of  detectable gases by 

and gaseous nitrogen purge. 

FVAPORATION RATES I N  VAcurJM 

The Langmuir equation fo r  rate of evaporation i s  G = L J ~  17.14 

where G i s  the r a t e  of  vaporization (g/(sq cm)(sec)), P is vapor 

pressure (mm Hg), M is  molecular weight, and T is  temperature ( O F ) .  

7 
-L/RT The vapor-pressure equation can be writ ten as follows: P = Ce 

where C i s  a constant, L is the heat of  vaporization, and R i s  the 

gas constant. 

the atoms that evaporate from the surface a r e , l o s t  permanently; that is  

none of  the atoms are  ref lected back t o  the surface t o  permit possible 

The Langmuir equation is based on the assumption tha t  a l l  

recondensation. The Langmuir equation thus yields the maximum rate of  

' loss.  
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O i l s  and greases are normally used as lubricants. A t  low pressures 

and at  temperature extremes, metals and inorganic compounds are of 

in te res t  f o r  use as lubricants. 

i n  vacuum are  needed. 

The evaporation rates of these materials 

O i l s  and Greases 

The evaporation rates fo r  various o i l s  and greases were determined 

under vacuum conditions (approx. 

Buckley, Swikert, and Johnson (ref .  6). 

f igure 4. Mil-L-7808 i s  the synthetic lubricant i n  common use i n  air- 

Torr )  a t  various temperatures by 

These resu l t s  are presented in  

c ra f t  turbine engines; mineral o i l s  of two different  viscosi t ies  are  

included i n  figure 4 as w e l l  as greases of  various compositions. 

An arb i t ra ry  l i m i t  of lom7 gram per square centimeter per second 

was set on the evaporation rate; values greater than t h i s  were considered 

excessive. While this  choice was  arbitrary,  it is based on the f a c t  t ha t  

a boundary lubricating f i l m  o f  l iquid 20 molecular layers thick w i l l  

evaporate i n  less  than 1 minute. 

i n  figure 4 are sat isfactory a t  temperatures of goo c o r  greater. 

On t h i s  basis, none of  the materials 

Metals 

Evaporation rates f o r  various metals were determined i n  vacuum over 

the  range of temperatures from 13O t o  540° C (ref. 6). The r e su l t s  of 

th i s  investigation a re  presented i n  figures 5(a)  and’ (b3. 

i n  figure 5(a) a re  calculated evaporation rates based on measured vapor- 

Also presented 

pressure data from the l i t e ra ture .  These calculated curves are the so l id  

lines. The experimental data of the investigation of reference 6 are  
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shown as the individual data  points. 

agreement between calculated and measured evaporation-rate data. 

bas i s  of the evaporation-rate data of figure 5(a) and (b ) ; ; a -nhbe r  of 

metals are of i n t e re s t  including gallium (5(b)) ,  which w i l l  be discussed 

i n  more detail  la te r .  

In  general, there  is  very good 

On the  

Inorganic Coatings 

I n  order t o  in te rpre t  the evaporation rates of solid-film lubricant 

coatings, evaporation-rate data were obtained f o r  the constituents of 

the  coating as w e l l  as f o r  the f i n a l  coatings themselves, 

compressed disks of various lubricant coating constituents are presented 

i n  figure 6. One important r e su l t  from these experiments w a s  the  finding 

tha t  some of the materials (such as NiF and PbO) dissociated at  the  higher 

temperatures. 

The data fo r  

The evaporation rates fo r  M0S2, WS2, CaF2, and BaFZ a t  temperatures 

from 13O t o  540° C a r e  shown i n  f igure 7. 

r a t e s  of a l l  materials i n  vacuum are quite low, even a t  elevated temper- 

In  general the  evaporation 

atures. These materials, therefore, appear t o  be the most s tab le  of the 

inorganic substances examined by the authors of reference 6 .  Evaporation 

r a t e s  were also obtained f o r  finished MoS2 coatings w i t h  various binders 

(ceramic, s i l i con  resin,  and phenolic epoxy). 

evaporation-rate experiments showed that the  r a t e  f o r  a l l  coatings w a s  

re la t ive ly  low. 

The resu l t s  of these 

Polymers 

Evaporation r a t e s  of other materials were checked also. For example, 

the evaporation rate of Teflon was  reasonably low a t  temperatures below 
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the decomposition temperature of approximately 288' C. 

development that appears very attractive for space lubrication applica- 

tions is that of the polyamides. 

tion rates and have good friction and wear characteristics in vacuum 

(ref. 11). 

A recent polymer 

These materials have very low evapora- 

FRICTION AND WEAR IN VACUUM 

As previously mentioned, one of the most important adverse effects 

of the low pressures in space is the removal of surface films by evapor- 

ation. If the surfaces become sufficiently clean, severe adhesion and 

welding can occur between sliding surfaces. 

conditions will have a tendency to rub together in their "virgin" states, 

it would be desirable to avoid this condition where possible by providing 

Since materials under such 

a contaminating film with lubricants of various types. 

Unlubr icated Metals 

Friction and wear experiments were conducted in air and in vacuum 

with five alloy combinations in the unlubricated state. 

shown in figure 8. 

The resul-ks are 

The results for the iron-base alloy 52100 sliding on 

52100 appear to contradict the results of reference 12, which shows that 

operation of metals in vacuum increased the friction coefficient markedly. 

It should be noted that the specimens in these experiments were not out- 

gassed and, hence, had some oxide films on them. The reduction in 

friction coefficient under vacuum conditions for the 52100 specimens 

may possibly be the result of the formation of oxides of iron lower than 

the normal Fez03; these lower oxides are FeO and Fe304. 

oxides have been shown (ref. 13) to be beneficial from the standpoint of 

These lower 
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f r i c t i o n  and w e a r .  

52100 as a function of the ambient pressure i n  the chamber. This pressure 

Figure 9(a) shows the f r i c t ion  of 52100 s l iding on 

w a s  varied from atmospheric t o  ZX10'7 Torr. The f r i c t ion  Coefficient a t  

atmospheric pressure is approximately 0.45 and decreases t o  a minimum of  

approximately 0.2 at  lod2 Torr ,  after which it increases t o  about 0.38 

a t  ~ . O > C ~ O " ~  Torr .  These resu l t s  are  explained by the  formation of  the 

beneficial  iron oxides FeO and Fe3O4 a t  the intermediate pressure levels. 

A t  pressure levels of loo t o  10-6 Torr, the beneficial  oxides would have 

a tendency t o  form because of  the  limited ava i lab i l i ty  of oxygen atoms. 

The resu l t s  shown i n  figure 9(a) were later confirmed by Reichenbach, 

e t  al. ( ref .  14) f o r  different  steel specimens over the same pressure 

range. 

is  suff ic ient  t o  form the beneficial ,  lower iron oxides. Hence, experi- 

Even a t  a pressure level  of lom7 Torr ,  the  oxygen concentration 

ments were made with lower concentrations of  oxygen. 

Figure 9(b) shows the resu l t s  of experiments conducted on 52100 

s l iding against 52100 under a pressure of 

pumping. 

chamber condensed the condensible gases such as nitrogen and oxygen. In  

th i s  manner, the authors of reference 6 feI t  t ha t  the  ava i lab i l i ty  of 

oxygen atoms would be markedly reduced. Figure 9(b) confirms their  

bel ief .  Friction coefficient as a function of  time showed a s l igh t  

Tor r  obtained by cryo- 

In  t h i s  case, a liquid-helium condensing c o i l  inside the vacuum 

increase from the i n i t i a l  value of 0.3 t o  the value of about 1.0 a t  30 

minutes. 

value of  about 4, a f t e r  which it continued r i s ing  u n t i l  the  specimens 

welded so  firmly together t ha t  the drive motor of  the mechanism w a s  

A t  30 minutes, the f r i c t ion  coefficient rose markedly t o  a 
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stal led.  The i n i t i a l  low f r i c t i o n  coefficient is believed t o  be the resu l t  

of the presence of the beneficial  low oxides of iron (FeO and Fe304). 

time during which the f r i c t i o n  coefficient remained re la t ive ly  low (i. e., 

l e s s  than 1.0) represents the time required to wear these beneficial  

The 

oxides from the surface. After the oxide f i l m  has been worn from the 

surface, it could not re-form because of the limited ava i l ab i l i t y  of 

oxygen atoms. Hence, complete and t o t a l  f a i lu re  of surfaces took place. 

Crystal Structure 

Recent work i n  vacuum lubrication at  the  NASA Lewis Research 

laboratories indicates a marked difference i n  f r i c t i o n  and wear between 

metals of the cubic and hexagonal c rys ta l  structures ( re f .  15), Figure 

10 shows the atomic arrangement i n  typical  face-centered-cubic and hexa- 

gonal c rys ta l  l a t t i ce s .  Polycrystalline metals a re  agglomerates of 

c rys t a l l i t e s  t ha t  have these basic  forms; when welding occurs between 

two metals, the weld i s  made up of these crystals .  When the  crystals  

i n  the welds shear, they do so along d i s t inc t  planes, and the required 

shear force depends on the  plane being sheared. Shear forces i n  cubic 

crystals  are normally greater than corresponding shear forces i n  hexa- 

gonal crystals  because of work hardening of cubic crystals  and orienta- 

t i on  on planes of easy s l i p  i n  hexagonal metals. I n  hexagonal crystals ,  

shear forces a re  usually the least on the basal  plane ( i - e ? ,  when shear 

occurs i n  a plane pa ra l l e l  t o  the  hexagons). 

i l l u s t r a t ed  i n  f igure 11, which shows the top hexagonal plane of the 

This shearing process is  

c rys ta l  displaced from the  normal axis during the shear deformation process. 
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A s  surfaces are moved w i t h  respect t o  one another, deformation, shear 

separation, and recrystal l izat ion occur as a continuing process. 

The data i n  figure 1 2  showed the difference i n  force required t o  

shear metals of  cubic and hexagonal s tmc twes .  

cobalt at  normal temperatures is hexagonal. However, cobalt transforms 

from the hexagonal t o  the cubic s t ructure  when heated above 400' C. 

The c rys ta l  form of 

A 

marked increase i n  f r i c t ion  is shown t o  accompany t h i s  c rys ta l  trans- 

formation (f ig .  1 2 ) .  

cobalt on hexagonal cobalt. 

o f  cubic cobalt on cubic covalt. The t rans i t ion  from hexagonal t o  cubic 

is shown a t  less than 400° C because f r i c t iona l  heating caused the  surface 

temperatures t o  be somewhat higher than the bulk metal temperatures 

A t  low temperatures, the s l id ing  i s  of  hexagonal 

A t  the higher temperatures, the s l iding is 

measured. Adhesive wear rate was  about 100 times greater f o r  the cubic 

cobalt than for  the hexagonal cobalt as indicated by the two wear rates 

shown i n  figure 12. Furthermore, at  the highest temperature, complete 

welding of the specimen occurred. 

should be used in  the hexagonal c rys ta l  form over the en t i re  operating 

temperature range. 

These data suggest t ha t  s l iding metals 

Additional inquiry showed tha t  the shear force i n  hexagonal crystals  

varies w i t h  the relative spacing of the atoms within the  crystal .  

particular,  the shear force is controlled by the  r a t i o  of the distance 

In 

c ( the spacing between hexagonal planes) t o  the  distance a ( the 

spacing between adjacent atoms i n  the hexagon). Various metals with 

hexagonal c rys ta l  structures have different  values of  c/a. Figure 13 

shows the variations of f r i c t i o n  i n  vacuum f o r  some of these metals. 
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The coefficient of f r i c t i o n  declines with increasing c/ar and those 

metals t h a t  showed low f r i c t ion  gave no evidence of gross surface welding. 

O f  the  various metals i n  this  study, cobalt and titanium are more 

commonly used and available and, hence, are of the greatest  pract ical  

interest .  

or galling and otherwise having very poor f r i c t ion  properties. 

other hand, cobalt al loys have been used i n  bearings, but usually i n  

alloys with predominately cubic structure. 

Titanium is w e l l  known as a metal subject t o  severe welding 

On the  

The preceeding study on 

crys ta l  s t ructure  e f fec ts  suggested that improved f r i c t ion  properties 

could be obtained i f  cobalt and titanium were alloyed i n  such a m y  as 

t o  s t ab i l i ze  the hexagonal structure over a greater range of temperature 

and to increase the  c/a l a t t i c e  r a t i o  fo r  titanium. This is  necessary 

for  titanium because i t s  poor f r i c t ion  properties can be related t o  

shear and s l i p  mechanisms which, i n  turn, can be related t o  

r a t i o  (ref. 16). 

c/a l a t t i c e  

Simple binary alloys o f  titanium with e i ther  t i n  or aluminum were 

found to provide the desired s t ruc tura l  characterist ics.  

f r i c t ion  and l a t t i c e  r a t i o  fo r  a ser ies  of titanium-aluminum and titanium- 

t i n  alloys. 

number of resul ts :  (1) higher c/a ra t ios ,  ( 2 )  great ly  reduced fr ic t ion,  

and ( 3) minimized surface f a i lu re  tendencies. 

Figure 14 shows 

Increasing the percentage of  aluminum o r  t i n  produced a 

Influence of Other Physical Properties 

There are other physical properties of metals that influence 

f r i c t ion  and wear behavior i n  a vacuum environment. 

order-disorder reactions, orientation of c rys ta l l i t es ,  and chemical 

These include 
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a f f i n i t y  of s l iding couples. 

copper-gold alloys exhibit  superior f r i c t ion  properties when compounds 

of these two elements are i n  the  ordered state. 

crystals  of vmious metals (Cb, Ti ,  Be, W, and Cu) and inwganic com- 

pounds have shown tha t  crystallographic planes and directions of greatest  

atomic density exhibit  t he  lowest coefficients of f r i c t i o n  when the  clean 

surfaces are s l iding i n  vacuum. Further, f o r  metals s l id ing  on inorganic 

compounds, where chemical reaction between the  metal and the  inorganic 

In  reference 1 7  it has been shown tha t  

Studies with s ingle  

compound can occur, shear and f r i c t ion  may be dictated by the type of 

bonds formed. 

Solid-Film Lubricant Coatings 

Friction and wear experiments were conducted on a number of sol id-  

f i lm lubricant coatings (ref. 6). The f r i c t ion  and wear r e su l t s  fo r  

various MoS2 films i n  vacuum are presented i n  figure 15. From these 

resul ts ,  it i s  apparent t h a t  the  binder material plays some ro le  i n  the 

f r i c t ion  and wear process. 

ceramic-bonded coatings, showed good results.  The ceramic-bonded coating 

is, however, basical ly  a high-temperature coating. 

All coatings, with the  exception of  the  

Figure 16 shows the r e su l t s  of  experiments with other lubricant 

coatings. These coatings include two coatings developed par t icular ly  f o r  

high temperature use i n  air (lead oxide - s i l icon  dioxide (PbO-SiO2), and 

calcium f luoride (CaF2). 

metals: t i n ,  gold, lead, and s i lver .  All coatings have been used as 

lubricants under vacuum conditions i n  the past. 

reasonable f r i c t i o n  coefficients, although the  wear is  considerably higher 

than was  the wear f o r  the  MoS2 coatings of' figure 15. 

Coatings i n  figure 16 a l s o  encompass the s o f t  

All coatings showed 
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G a l l i u m  Films 

One of the  materials of promise as a possible lubricant i n  the  vacuum 

environment of space is  gallium (ref. 18). 

a l iquid lubricant should (1) have low vapor pressure i n  order that it may 

remain on the  surface f o r  long periods of t i m e ,  ( 2 )  be l iquid over a 

broad temperature range, and (3) have good wetting properties. 

possesses a l l  these characterist ics;  it has very low vapor pressure t o  

540' C (as shown i n  f ig .  5(b)) ,  has a liquidus range of 3oo t o  1 9 8 2 O  C, 

For use as a space lubricant, 

G a l l i u m  

and w i l l  w e t  nearly a l l  surfaces. One major problem associated with 

& i l l i u m  as a lubricant is i t s  extremely reactive nature toward other 

metals; it has a strong tendency t o  form alloys o r  sol id  solutions. 

G a l l i u m  films can be applied t o  surfaces i n  a number o f  ways. In  

order t o  study the  effects  of  application techniques on f r i c t ion  and 

wear, t he  first experiments with gallium were conducted i n  air. The 

results of these experiments are shown i n  f igure 17, which compares 

f r i c t i o n  and wear of four different  gallium films w i t h  each other and with 

an ur-dubricated specimen. O f  these various films, the pretreated f i l m  

appears most practical;  the 260° C pretreatment was chosen because of 

i t s  better results.  All fur ther  experimental r e su l t s  on pretreated 

gallium films w i l l  r e fe r  t o  the  260' C pretreatment, 

Results of  experiments i n  vacuum with various unlubricated material 

combinations and w i t h  the  same combinations lubricated with a pretreated 

gallium surface fi lm are presented i n  figure 18. 

conducted a t  a pressure l eve l  of lom8 Torr. 

a l l  the  material combinations, wear and f r i c t i o n  with a pretreated gallium 

These experiments were 

The re su l t s  show that, f o r  
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surface fi lm are much less than f o r  t he  unlubricated combination. For 

example, with the  combination 4 4 0 4  on 440-C, wear with the  gallium 

lubricated specimens is  only 1/10,000 tha t  of the  unlubricated specimen. 

ROLLING-ELENEXl? BEARINGS I N  VA(J.JUM 

The rolling-element bearing appears par t icular ly  promising f o r  use 

i n  space where the  problem of lubrication can be c r i t i c a l  because t h i s  

type of bearing has very l i t t l e  s l id ing  and, therefore, inherently 

requires very l i t t l e  lubricant, With t h i s  type of  bearing, however, 

s l iding as w e l l  as ro l l i ng  occurs i n  the contact region between the  

ro l l ing  elements and the races. Therefore, lubrication must be supplied 

f o r  adequate and reliable operation. 

Since the rolling-element bearing requires very l i t t l e  lubricant 

f o r  lubrication, it is possible for  short-time applications t o  use such 

bearings lubricated with e i ther  l iquids o r  greases, provided that these 

lubricants have low vapor pressure. 

double-shielded bearings should be of some help i n  th i s  respect. 

bearing experiments a t  pressures of the  order of 

been reported (refs. 3, 7, and 19  t o  22). 

Adequate sealing by the  use of 

Some 

t o  loF6 Tor r  have 

Experiments on liquid- or grease-lubricated bearings indicated that 

a chlorinated sil icone o i l  o r  a grease made with the chlorinated s i l icone 

seemed t o  give re la t ive ly  good performance, 

by the authors of  references 2 1  t o  23  on b a l l  bearings tha t  incorporated 

self-lubricating containers. 

combinations of  Teflon with glass fiber o r  with metals (ref. 2 1 ) -  

re ta iners  were plated with th in  metallic films such as gold (ref. 22) 

Experiments were conducted 

Some of these retainers  were made of various 

Other 
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Some studies were conducted with ball bearings larger than the normal in- 

strument size bearings; 20-millimeter-bore ball bearings were investigated 

by the authors of reference 23. 

had been vacuum impregnated with various types of oils. This type of 

bearing is lubricated by f l o w  of Uquid out of the parous retainer as the 

bearing operates. For these relatively large bearings, lubrication by the 

retainer impregnation technique was found to be somewhat inadequate under 

the conditions of their investigation. Their results indicated that the 

flow of lubricant out of the impregnated retainer was not fast enough to 

provide adequate lubrication. 

They used porous nonmetallic retainers that 

Tiros I1 Bearings and Seals 
11 h interesting application of the rolling-element bearings in a semi- 

sealed" system was made to the Tiros I1 satellite. 

satellite designed for relatively short-time operation. 

the satellite was a . . . 5-channel radiometer. . . . [this] system consists 
of five optical mirrors mounted on five gears and eight ball bearings. . e . 
A schematic of the system is shown in figure 19. 

bearings were rather severe: 

was necessary, (2) low starting and running torque, and (3) reliability. 

Output torque of the motor driving the five mirrors (through gearing) and 

etght ball bearings was only 0.03 inch-ounce. 

designed by using the principle of 'holecular flow'f seals. 

rubbing seals for which the leakage can be calculated precisely by utilizing 

the kinetic theory of gases and the Knudsen principle. 

Tiros I1 is a weather 

The mechanism for 

11 

91 

The requirements for the 

(1) precise alignment of the optical mirror 

This entire mechanism was 

These are non- 

The radiometer spindle assembly described in reference 7 was 

desi;gned on the basis of minimum loss  of lubricant by evaporation. This 
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design was based on the fact that, on a molecular scale, even smooth 

surfaces appear rough, and according to Knudsen (ref. 24), the direction 

in which a molecule rebounds after a collison with a w a l l  is statistically 

independent of the angle of incidence. For this reason, the molecular 

flow resistance of small orifices can be made relatively high. 

pressure inside the chamber can be maintained, and vaporization of the 

The npor 

lubricant can be minimized. 

The bearings in the mechanism in reference 7 were so designed to 

employ lubricant reservoirs of oil-impregnated sintered nylon (fig. 19). 

The lubricant employed was a Mil-L-608511 diester oil with a vapor pres- 

sure of approximately lom4 Torr. When the outside pressure reaches a 

value below lom2 Torr, molecular flow occurs around the shaft through 
the small clearance. !l%e clearance was maintained at a nominal 0.0005 

inch. Weinreb indicates that, with the aid of an equation derived by 

budsen and others, it is possible to calculate the escape rate of oil 

from the bearing assembly. 

a bearing for space application for the required life. 

This information can then be used to design 

The validity of 

this approach was confirmed since Tiros I1 operated successfully for 

approximately 9400 hours. 

SUMMARY 

It can be stated that actual conditions of space are not precisely 

known; duplication of conditions is therefore difficult, but simulation 

is possible. The desirable pressure level for lubrication experiments 

is lo” Torr or less. Evaporation rate of materials is very important 

since evaporation will remove the contaminating (lubricant) films from 
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the  surface permitting contact of clean surface and, hence, severe wear 

and f r ic t ion ,  

(s i lver ,  t i n ,  gallium), some lubricating compounds (MoS2, PbO, Si02, and 

CaF2), as w e l l  as with Teflon. 

various lubricant coatings i n  vacuum show that MoSz and other films 

(various compounds, plated metals, etc. ) appear promising; of these 

MoS2 showed the  lowest f r i c t ion  and wear over short  t i m e  periods. 

Low evaporation rates are  obtained with some metals 

Friction and wear experiments with 

Experiments with instrument s ize  bearings i n  vacuum show good resu l t s  

with si l icones and s i l icone greases as the  lubricant. Other experiments 

have been done with self-lubricating cage8 o r  retainers,  and reasonably 

successful operation has been obtained. 

a mechanism w a s  obtained on an actual  satell i te (Tims 11). 

Successful operation i n  space of 

Lubrication 

was based on controlled loss of lubricant from a reservoir; th i s  con- 

t ro l l ed  loss w a s  precalculated on the  basis o f  a "molecular flow resis- 

tance" e quat ion. 

Finally, vacuum f r i c t i o n  studies have been proved useful t o  explore 

effects  normally hidden because of the  usual presence of  oxides i n  air. 

An example of  th is  i s  c rys ta l  structure. The resu l t s  i n  vacuum show 

that hexagonal structures frequently showed be t t e r  f r i c t iona l  properties 

than cubic structures. The controlling variable f o r  the  f r i c t ion  of  

hexagonal metals appears t o  be the l a t t i c e  r a t i o  

the f r i c t iona l  properties of a normally poor fri%€ion ma te i i a J ,~ t$ t an f~ ,  

were obtained by alloying the  titanium w i t h  e i ther  aluminum o r  t i n  i n  

order t o  increase the  c/a ra t io .  The binary alloys of titanium w i t h  

aluminum o r  t i n  showed increases i n  the 

c/a. Improvement i n  

c/a r a t i o  and appreciable 

decreases i n  both f r i c t i o n  coefficients and surface welding tendencies. 
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