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ABSTRACT 

The time evolution of wave cor re la t ions  (cumulants) i n  a 

uniformly turbulent  ensernble of w e a k l y  nonlinear, dispers ive 

systems is discussed. With closure of the hierarchy f o r  wave 

cor re la t ions  appropriate t o  the inclusion of resonant f o-u--Jave 

processes, a k ine t i c  equation f o r  the spec t r a l  energy dezs l ty  

of t h e  waves is derived in  s i t ua t ions  where the r e sman t  three- 

wave decay condition cannot be satisfied. 

equation i s  a nonlinear in tegro-d i f fe ren t ia l  equation w i t h  drivi32 

terms t r i l i n e a r  i n  the energy density.  

of t h i s  equation are discussed including associated co;Issr-:b;t.'.oc 

r e l a t ions  and the  law of increase of entropy. 

The re su l t i ng  k ine t i c  

Some general  p r q e r t i z s  
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I: INTRODUCTION 

A large number of nonlinear dispersive systems are described 

by dynamical equations of the form 

where Aa(Zl,t) i s  the smplitude of the a’th made of oscillation i n  the 

appropriate representation, cu (k ) is  the corresponding oscillation 

frequency as a function of wave vector Zl, and f’’(&ljlca,$3) i s  the 

interaction kernel for  the t r i p l e t  of modes (a, ply) . The f’unctioml 

dependence of wa(Zl) and ~ r ( l x z j ~ 2 , $ 3 ~ )  m vave vector aepends on the  

details  of the problem under consideration. 

(l.1) arises in  a variety of circumstances where a fluid-like descrip- 

a -1 

The dynamical equation 

t ion  is applicable, ranging from plasma models i n  which a magnetohydro- 

dynamic description i s  used,’ t o  the nonlinear interaction of gravity 

waves i n  a f lu id  of constant depthO2j3 The formal derivation of (1.1) 

fo r  a broad class of nonlinear dispersive systems, together w i t h  

references t o  explicit examples has been given elsewhere and need not 

be included i n  our considerstions here. 4 

There are essentially two types of nonlinear wave-wave inter-  

Nrst, there 5 s  action problems one can consider in relation t o  (lsl). 

the coherent initial-value problem in  which we are given the in5;ial 

amplitudes {Aa(lcl,O)1 and determine from (1.1) the subsequent time 

evolution of (Aa(&, t )  1 . The nonlinear nature of the dynamical equation 
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makes a mathemtical analysis untractable except i n  small-amplitude 

situations where )%(&,O) I - X << I, sey. 

formally generate the perturbation solution t o  ( L l ) ,  i.e., 

I n  this  case one can 

t o  some desired order, An. 

Aa does not change w i t h  time. 

terms act as perturbations which cause the amplitude t o  change during the 

course of time through the interaction between waves of differing wave 

number, The second type of problem, and the one that  shall concern us 

here, corresponds t o  weakly turbulent situations where the time evolu- 

t ion  of a s t a t i s t i ca l  ensemble of systems, each evolving according to 

(l,l), i s  considered. 

spatially homogeneous ensemble) it is of paramount interest t o  ascertain 

I n  lowest approximation, the wave amplitude 
1 

In higher order, hawever, the nonlinear 

For the case of uniform turbulence (Le .  a 

the time behavior of the spectral e n e r a  density, 2Gm, associated with 

the oscillation amplitude where 

and ( ) denotes ensemble average. 

two procedures which may be used t o  obtain a kinetic equation for  2Gm. 

In  the conventional approach, the coherent solution (1.2) i s  obtained t o  

some order and appropriate s ta t i s t ica l  averages are then taken over a 

spatially uniform ensemble i n  order t o  give a kinetic equation f c r  the 

spectral energy density. 5’6 The other approach, which leads simply an2 

directly t o  the desired kinetic equation, consists of considexiag at  the 

A s  w i l l  be discussed below, there are 



1;. 
gut s e t  dynamical equations for vave correlat ions i n  t h e  ensemble. 

Before describing the  de t a i l s  of t he  Pormal5.sm t o  be used, we remind t h e  

i-eader of some sal ie l i t  ?eatures of ex is t ing  k ine t ic  theories  f o r  resonant 

three-wave processes per t inent  t o  t h e  general  dynamical equation (1.1)" 

discussion w i l l  be b r i e f  i n  t h i s  regard s ince the  weak turbulence the3ry of 

resonant three-wave in te rac t ions  has been discussed i n  d e t a i l  elsewhere, 

and, as suggested by t h e  t i t l e  and abs t rac t ,  t h e  pr inc ipa l  concern here T r i l l  

be t he  construction oi a k ine t i c  theory f o r  resonant four-wave processes 

within t h e  framework of (1.1). 

and symmetries t o  be used throughout t h e  remainder of t h i s  a r t i c l e ,  Le. , 

- I  

The 

4- 7 

A t  t h i s  point w e  record t h e  s ign conventions 

Py(k k ,k ) = K *mu (-k ,-k ,-k ) . 
-1'-2 -3 -1 -2 -3 

The osc i l l a t ion  frequency o (k) 

papy($l,$2,$3) defined i n  terms 

a- 

pO@'(k lt ,k  ) = -1'-2 -3 

is  assumed real.. 

of t he  in te rac t ion  kernel by 

i\ioreover, t h e  response 

(1.6) 

w i l l  be assumed t o  enjoy t h e  symmetries 

(1.8) 

f o r  Is1 = Z2+Is3, which i s  t h e  case f o r  a la rge  number of physical  processes of 

i n t e re s t .  In  terms of t he  action densi ty  na(&l&,t) defined by 
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4 t he  leading-order k ine t ic  equation f o r  n i s  given by a 

(1.10) 

where (1.10) holds f o r  a s p a t i a l l y  uniform ensemble i n  weakly turbulent  

s i tuat ions.  

tile ac t ion  densi ty  t o  change t r i th  time is t h a t  Df resonant three-wave in te r -  

act ions where 

2 Equation (1.10) i s  correct  t o  O(n ) and t h e  k s i c  process causing 

(1.11) 

This may be viewed as t h e  "decay" of (wa($k),ls,) i n t o  two fu r the r  waves 

(WB(lc2),&) and (W~(&~),$~C), or  as the  inverse process of the  merging D f  tm 

waves i n t o  one. 

s i t ua t ions  of i n t e r e s t  , there  are  physical  pmblems where t h e  l i n e a r  dispersive 

Although Eq. (1.10) i s  non- t r iv ia l  i n  a large number of 

proper t ies ,  as manifest i n  (w (k  ) I ,  are  such tha t  the  resonant three-wave 

decay condition (1.11) cannot be sa t i s f i ed ,  

t r i v i a l l y  frm (LlO), and c lear ly  a higher-order k ine t ic  theory must be con- 

a -1 
I n  this  case (a/&)na(gl,t) = 0 

s t ruc ted  t o  describe the  time evolution of the  act ion density.  

(1.11) can be s a t i s f i e d  depends on t h e  expl ic i t  funct ional  fmms of ( ( d a ( $ l ) ) .  

As par t i cu la r  examples, we remind the  reader t h a t  t h e  dispers ive propert ies  of 

Whether or not 

g rav i ty  waves i n  a f l u i d  of constant depth, as well  as the  dispers ive propertks 

of (long wavelength) e l ec t ros t a t i c  e lectron plasma osc i l la t ions ,  are such tha t  
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resonant three-wave interact ions a re  forbidden. 

i n  the  present analysis  t h a t  (1.11) cannot be sa t i s f ied .  

necessary t o  s p e c i d i z e  t o  a par t icu lar  problem i n  deriving the k ine t ic  

equation appropriate t o  these circumstances, t he  above-mentioned examples may 

be kept i n  mind as possible applications. 

I n  any case it w i l l  be assumed 

Since it is  not 

I n  t h i s  case t h e  leading-order process which c a u s s t h e  ac t ion  densi ty  

t o  change w i l l  be t h a t  of resonant four-wave interact ions.  

Sec. I11 that f o r  a s t a t i s t i c a l  ensemble of systems evolving according t o  the  

dynamics1 equation (Ll), the  kinet ic  behavior of na(z,t) i s  governed by s toss  

terms t r i l i n e a r  i n  the  act ion density when t h e  resmance condition (1.11) 

cannot be sa t i s f ied .  

be wr i t t en  i n  t h e  form (dropping t h e  E t notat ion)  

We w i l l  see  i n  

I n  par t icu lar ,  the  relevant Binet i c  equation ([!-. 15 ) may 

2 

where Daa7’(-&1,-&2’$3,1&.) is re la ted  to t he  thee-wave response through Eq. 

(4.16). 

manifest by t h e  condition 

It i s  c l ea r  from (1.12) that  n (IC , t )  evolves due t o  resonant behavior a -1 
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The resonant four-wave condition (1.13) has a simple interpretat ion.  It should 

be kept i n  mind t h a t  three-vave interact ions a r e  s t i l l  basic  t o  the  dynamical 

equation (1.1). 

behavior associated with (1.12) and (1.13) cons is t s  of two successive three- 

wave processes. 

a v i r t u a l  s t a t e  (W (k +l~~),k.~+Elc) which instantaneously decays i n t o  two fur ther  

s t a t e s  (W (k ),k ) and (w,.(k ) ,k  ). 

possible. 

hypothesis, the  over-al l  process microscopically conserves energy and momentum 

according t o  (1.13). 

As sham schematically i n  Fig. 1, the  resonant four-wave 

?lamely, t he  two  s t a t e s  (wC($lc),$lc) and ( ~ ~ ( $ ~ ) , k ~ )  merge in to  

t7 -1 
Other possible combinations a re  of c w r s e  Y -3 -3 0 4  -A 

It should be noted tha t  a l thvlgh “,($k)W (g2) # U (k +k ) by B T) -1 -2 

The purpose of the  present a r t i c l e  i s  t o  put t he  der ivat ion of the 

k ine t i c  equation f o r  resonant four-wave processes on a systematic and rigorous 

basis, within the  framework of the general  dynamical equation (1.1). Tbe 

d e t a i l s  of t he  formalism to be used have been developed i n  Ref. 4 where a 

hierarchy was obtained describing the  time evolv.tion of wave correlat ions 

(cumulant s ) i n  a s p a t i a l l y  homogeneous ensemble of systems evolving according 

t o  (1.1). 

was shmm t o  be very simply accessible within this hierarchy for wave corrq- 

The k ine t ic  equation (1.10) for resonant three-wave in t e rac t  ions 

la t ions.  

order,  i n  s i t ua t ions  where (1.11) cannot be s a t i s f i e d  and hence the  basic 

process for causing t h e  ac t ion  density t o  change is t h a t  of resonant four-wave 

The ana lys i s  here i s  an extension of t h i s  formalism t o  one higher 

interact ions.  We r e i t e r a t e  t h e  basic philosDphy f o r  using tne  hierarchy 

approach. As mentioned e a r l i e r ,  t h e  conventional method f o r  t r e a t i n g  the  weak 

turbulence problem i s  to obtain the  per turbat ion solut ion t o  the  coherent 

i n i t i a l -va lue  problem t o  some desired order. Then su i tab le  s t a t i s t i c a l  

averages (usually referred t o  as t he  random phase approximation) of t he  



coherent solut ion a r e  performed over a s p a t i a l l y  uniform ensemble. 

cular,  t he  k ine t ic  equation fo r  the spec t r a l  energy densi ty  i s  obtained i n  the  

I n  p a r t i -  

convefitional approach by considering t h e  average change i n  the  t r a n s i t i o n  pro- 

b a b i l i t y  per un i t  time. Objections have been ra i sed  t o  t h i s  type of approach, 

not only regarding t h e  basis of va l id i ty  of t he  random phase approximation, 

but a l s o  because t h e  formalism inherently involves considerably more informat- 

(and hence algebra) than i s  necessary t o  describe the  turbulent  ensemble. 4 ,a 

For example, the  solut ion t o  t h e  coherent problem e n t a i l s  phase infwmation 

which i s  unnecessary i n  describing propert ies  of t he  ensemble. 

formalism of fers  considerable s implif icat ion i n  t h i s  regard s ince dynamical 

The hierarchy 

equations for s-wave correlat ions 

a r e  considered a t  t he  outset. 

relevant expansion parameters Whereas the na tura l  expansion parameter encounter- 

ed i n  obtaining the  coherent solut ion t o  (1.1) is  A, a measure of the  osc i l l a -  

t i o n  amplitude, t he  expansion parameter appropriate t o  the hierarchy frametrork 

i s  E - A*, a measure of t h e  spec t ra l  energy density. 

G, s = 2,3,..., character iz ing the  ensemble 
S 

A simplif icat ion a l s o  occurs regarding t h e  

Consequently, i n  order 

t o  obtain a k ine t ic  equation f o r  resonant four-wave processes it w i l l  be 

necessary t o  carry out an analysis of the  hierarchy f o r  wave correlat ions o n l j  

t o  order E . 3 However, i f  the  conventional approach were used it would be 

necessary t o  f i rs t  obtain the  coherent solut ion t o  (1.1) correct  t o  O(A 5 ), as 

in t e rac t ion  of grav i ty  waves i n  a f l u i d  of constant depth. 233 

vas done by Hasselmann i n  r e l a t ion  t o  t h e  pa r t i cu la r  problem of the  nonlinear 

In  Sec. I1 the  hierarchy formalism i s  b r i e f l y  reviewed. The ordering 

appropriate t o  weakly turbulent  s i t ua t ions  i s  discussed and the  equations 

expanded i n  a mult iple- t ine perturbation analysis. It should be noted t h a t  no 

assumption regarding random phases cr gaussiani ty  of s t a t i s t i c s  is  made. The 
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only assumption is  t h a t  the  ensemble i s  s p a t i a l l y  homogeneous corresponding t o  

uniformly turbulent s i tuat ions.  The expanded hierarchy equations (2.13)- (2.18) 

a r e  solved order by order i n  Sec. 111. 

mode labe ls  are  omitted i n  the  analysis of Secs. I1 and 111, but re ins ta ted  

i n  the  f i n a l  version of t he  k ine t ic  equation f o r  t h e  act ion density,  Eq. 

Various general propert ies  of t h i s  k ine t ic  equation a re  discussed i n  Sec. V 

For s b p l i c i t y  of presentat ion the  

I 
(h.13). 

including energy and momentum conservation relat ions.  In  addition, t he  appro- 

p r i a t e  non-equilibrium entropy for t h e  k ine t ic  equation (1.12) is  shmn t o  be 

11. EIERARCYY FORMALISN AiiD WEAK TURBULENCE OPDERIIIG 

(a) Review of Hierarchy Formalism 

The moment hierarchy for a s t a t i s t i c a l  ensemble of systems evolving 

according to (1.1) forms an interconnected chain i n  which the  average of t he  

product of s amplitudes, (A 

average of the product of s i 1  amplitudes, (A ($lJt ). .Aas+l(ws+l k , t ) ) ,  where 

(lc17t) ...A (&Ic,t)), i.s advanced i n  terms of the  9 as 

"1 
s = 1,2, ... . 
hierarchy may be constructed describing the  time evolution of i r reducible  s- 

wave correlat ions (cumulants), sG, s = 2,3,... 

A s  elaborated i n  Ref. 4, from t h i s  moment hierarchy an a l t e rnc te  

defined by 
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- 2  ~ ( S l > t ) 2 ~ ( $ 2  ,t (gl+s 16 (52+53 1 > (2.3) . . 
f o r  a s p a t i a l l y  uniform ensemble. 

from t h e  average of t h e  product of f ive  amplitudes a l l  d i s t i n c t  permutations 

of G G products, and s o  on. I n  Eqs. (2.1)-(2.3) and throughout t h e  analysis  

of Secs. I1 and 111 mode labe ls  have been dropped f o r  s implici ty  of 2resenta- 

t ion.  

t h e  basic formalism, and w i l l  be appropriately re ins ta ted  i n  t h e  f i n a l  version 

of t he  k ine t ic  equation. Moreover, i n  wr i t ing  t h e  def in i t ions  (2.l)-(2.3) It 

has been assumed t h a t  ( A ( $ , t ) )  = 0, i.e. t h a t  A ( l c l , t )  corresponds t o  a fluc- 

t ua t ion  with zero mean. This remains t r u e  fo r  a l l  times i f  so i n i t i a l l y  pro- 

vided K(O,-k2,Z2) = 0. 

dependence i n  the  above def ini t ions i s  j u s t  a manifestation of t r ans l a t iona l  

invariance of ensemble averages i n  x-space, i.e. t h a t  t he  ensemble i s  s p a t i a l l y  

uniform.' The resu l t ing  hierarchy f o r  sG, s = 2,3,..., forms an interconnected 

chain i n  which G i s  advanced i n  terms of G G i s  advanced i n  terms of G 

and G G driving terms, etc.  . 

Similarly, G i s  defined by subtracting 
I 5 

2 3  

These serve pr inc ipa l ly  t o  complicate the  notation and not t o  modify 

It should a l s o  be noted t h a t  t he  delta-function 

w 

2 3 ' 3  4 
The f irst  few members are given by 1; 

2 2  
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+ (1 c) st) )  (2.6) 

X e ~ ( i ( w ( ~ , ) - w ( k ' ) - ~ ( ~ i  N -1 -kr ) ) t}>  - (1 c) s t ) }  . 
. 

Similar ly  G is driven by G G and G G as well a s  / G  terms, and i n  general 
5 3 3  2 4  0 

G i s  driven by s+lG and G G terms, p = 23.. . ,~-1.  The r e su l t i ng  

hierarchy of equations is  s t ruc tura l ly  qui te  analogous t o  the  B. B. G. ILY. 
S p s+l-p 

hierarchy f o r  i r reducible  cor re la t ims .  Equations (2.4), (2.3). . . represent 



t he  dynamical system of eq~iations t:, be used i n  describing t h e  time evolution 

of wave .correlat ions i n  a spa t i a l ly  homogeneous ensenble of systems, each 

evolving according t o  (1.1). 

a meaningful closure of t h i s  hierarchy can be obtained at some l e v e l  of des- 

c r ip t ion ,  i.e. G becomes small f o r  increasing S. That t h i s  is  the  case i n  

weakly turbulent s i t ua t ions  w i l l  now be demonstrated. 

Such a descr ipt ion i s  c l ea r ly  p r a c t i c a l  only i f  

S 

(b)  Weak Turbulence Ordering and t h e  ,.Multiple-Time Per turba t im Expansion 

In the  weals turbulence case corresponding t o  a small-amplitude analysis  

of (1.1) w e  assume 

2G E E << 1 (2.7) 

i n  leading order. FrOEI (2.5), since G is  driven by G G terms we assume 3 2 2  

3 2 3  

4 

G -'c2 t o  leading order. Similarly 4G i s  driven by G G terms and  re take 

G ,., E , and i n  general  3 

. (2.3) s - 1  G - E  
S 

Whether o r  not an i n i t i a l  ordering of t h e  form (2.3) is violated during t h e  

course of time may 02 course be checked. Of paramount in t e re s t  i n  present 

considerations is  the  evo lu t im  of t h e  spec t r a l  energy density,  2G. It is  

c l e a r  from (2.1!.) t h a t  t h e  degree of accuracy with vhich we describe 2G dqends  

I n  d e t a i l  on t h e  l e v e l  of svphistication with which Tie describe 

For purposes of obtaining t h e  kinet ic  equation f o r  resonant four-Trave processe- 

it w i l l  be necessary t o  obtain 2G t o  order 

2 
2 

G, etc. 3 

and describe the  leading-order 

G f o r  times t - 1 / ~  . Consequently, as may be seen from (2.4)-(2.6), 3G and 

4G are needed correct  t o  order E 3. , G and higher correlat ions,  however, may be 
5 

omitted from t h e  analysis. I n  general, t o  ca lcu la te  G t o  order en and d e s c r B  2 



n- 1 t he  leading-order 

n+2 

G f o r  times t .c 1/~ , closure may be obtained by neglecting 2 

G and higher c or r  e la t  ..- ons . 
Within t h e  c m t e x t  of t h e  above estimates, Eqs. (2.k)-(2.6) may be 

expanded using the  multiple-time pei-turbatim techniques of Frieman and 

lo>ll>z In  pa r t i cu la r ,  2 ~ ,  G,... a r e  wri t t en  3 Sandri. 

G(2)(k , % , t , E t , .  . . )+c3 G(3)(51,$,t2~t). . )+. .. , 3G 2 E 3 -1 ry 3 (2.10) 

L. ,,G 2 ~ ~ ~ G ( ~ ) ( ~ ~ , $ ' ~ ~ , t , e t , . . . ) + . . .  , (2.11) 

. . . 
2 Operationally, the time sca les  t , E t , E  t,... a re  t r ea t ed  as independent 

var iables ,  and the  freedon inherent i n  the multiple-time formalism t r i l l  be 

used t o  obtain a uniformly valid solution. To the  order appropriate t o  

obtaining a k ine t i c  equation for resonant four-wave in te rac t ions  only the t h e  

sca les  t ,c t ,E t a r e  relevant,  and E t n 2 3 may be suppressed i n  the  notation 2 n 

below. Evidently 

G(')(kl,t,Et,E 2 t )  = 0 , 
x 2  

(2" lk) 



, 14 

x 

S ( l ~ ~ + i ~ + & ~ )  2 3G(2)($l,$,t,Et,... ) 

= 6(k +k +k ) { ( [ic($,-~2,h + ~ 2 )  [2G(1)(lC2,t,~t,tt,...)2G (2 ) (k  , t , E t , . . . )  
-1 -2 -3 -3 

X exp(i(w(li -1 ) -W(B' ) -w(k  - -1 - + (2 C) 1) + (3 C) 1)} , (20 17) 



+ E2 ~ 3 1  + 12 -41) + (1 c) s f ) }  (2.13) 

. . 
Although Eqs. (2.13)- (2.13) may appear somevhat formidable, t h e  analysis  i s  

qui te  straightforward. One solves (2.13)-(2. lG) order by order, commencing 

v i t h  t h e  l a r e s t  order first. 

iolmalisn allars for  the  removal of secular  behavior on short  time-scales, 

which i n  t u r n  determines t h e  kinet ic  behavior on longer time-scales. 

f r D m  (2.13) t h a t  t he  leading-order two-wave c x - r e l a t i m  

on t h e  short  ( o s c i l l a t l m )  time-scale t, i.e., 

The f r e e d m  inherent i n  the  multiple-time 

1Je note 

(I), does not vary ’ 2G 

&(k t & , E  2 t )  = 2G(1)(&l,0,Et,E 2 t )  . 
2 -1’ ’ (2.19) 

Consequently G(’)may be t r ea t ed  as constant as far as any t i n t e g r a t l m s  a re  2 

concerned i n  t h e  analysis  t h a t  follows. 

111- FORMAL SOLUTIO?? 

We now systematical ly  seek the  solut ions t o  Eqs. (2.13)-(2.18) f o r  t l e  

co r re l a t ion  perturbations.  The symmetries and def in i t ions  (1.4), (1.6), (1.7) 

and (LS), w i l l  be f r e e l y  used throughout t h i s  section. 

(a)  Larest Order 

Since G(l) does not vary on t h e  short  time-scale t according t o  (2.13), 2 

Eq. (2.16) may be integrated d i r ec t ly  t o  give t h e  leading-order three-vave 



correlat ions on tL:e t time-scale. T h i s  gives 

where we have introduced t h e  convenient notation 

I n  wr i t ing  (3.1) and (3.2) use has been made of appropriate symmetries dis- 

cussed i n  t h e  introduction; moreover, w e  remind t h e  reader t h a t  i n  l i g h t  of 

t h e  de f in i t i on  (2.1)> 2G i s  real and an even funct ion of i t s  k-argument. 

should be noted t h a t  e(2) as defined i n  (3.2) i n  general  var ies  on t h e  E t ,  

E t,. .. time-scales through t h e  slow time var ia t ion  of It w i l l  also 

be useful  t o  have an expression for 

n(k,& ,E t ) associated with t h e  leading-order s i e c t r a l  energy densi ty  where 

It 
ry 

3 
2 

G(l). 2 

i n  terms of t he  ac t ion  densi ty  3G 
2 

rc. 

Naking use of (lo”), (I-.$), and the  oddness or” n(;tf,t,Et,E 2 t )  as a function of 

i t s  k argument, Eq. (3.2) may be rewr i t ten  as 
ry 

(3.k ) 



Expression (3.1) f o r  t h e  leading-order three-wave cor re la t ions  may be 

subst i tuted d i r e c t l y  i n t o  (2.18) t o  determine the  leading-order four-wave 

cmre la t ions  on the  short  time-scale t. 

i n t o  (2.14) t o  determine the f a s t  time var ia t ion  uf 

evolution of G(l)  on the  et scale. 

i n  Ref. 4, and leads d i r e c t l y  t o  t he  k ine t ic  equation f o r  resonant three-wave 

I n  addi t ion (3.1) may be subst i tuted 

(2) as  wel l  as the  2G 
The l a t t e r  calculat ion has been discussed 2 

interact ions.  We remind the reader of the  relevant resu l t s .  Provided the  

in i t i a l -va lue  term i n  Expression (3.1) f o r  G(2)(k',k - k ' , t , E t , E  t )  i s  a 

s u f f i c i e n t l y  smooth function of i ts  Fourier arguments, the associated e f f ec t  

i n  the  k '- integration on the  right-hand s ide  of (2.14) phase mixes t o  zero on 

the  t time-scale. 

2 
3 N -1 ry 

m 

In  par t icu lar ,  t h i s  mixing process y ie lds  long t.ime behavior 

i n  the  k' integrat ion of the  form 4 J 3  
cy 

osc i l l a t ion  w >  (3.5 1 

i n  three-dimensional s i tuat ions.  However, t he  last term i n  (3.1) when sub- 

s t i t u t e d  (2.14), gives a steady contribution t o  the  k '- integration, as wel l  

as terms which phase mix t o  zero. 

.c. 

I n  par t icu lar ,  terms of the  form 

behave e f fec t ive ly  as 

as t +Q), insofar  as integrakions over r e l a t i v e l y  smooth functions of IC' are  

concerned. 

t time-scale, (a/&t),G(')(vhich i s  independent of t )  as well  as the  steady 

0u 

Consequently, it is clear  t h a t  when (2.14.) i s  integrated on the  



contribution from the  k'- integration w i l l  lead t o  secular behavior i n  2G(2 

proportional t o  t. 

2 

N 

Removal of t h i s  secular  behaviw gives t h e  evolution of 

G ( l )  on the  E t  t i n e  scale ,  namely 

a G(l)(k Et,E2t) 
-1 - 3 x 2  -1 J 

With t h e  secular  behavior removed i n  t h i s  manner, 

2 a G(2)(k , t , E t , E  t )  = 0 , b t 2  *l 

a s  t +eo. 

t h e  ac t ion  densi ty  as  

Equation (3.9) nay be wr i t t en  i n  a Iiloi-e familiar form i n  terms of 

where use has been made (3.1)) and the  symmetries (1.6) and (1.8). Equation 

(3.10) w i l l  be recognized as t h e  conventional k ine t ic  equation f o r  resonant 

three-wave processes. If the  appropriate mode labe ls  a r e  r e ins t a t ed  i n  t h e  

preceding analysis, then t h i s  kinet ic  equation may be wr i t t en  i n  the form of 

Eq. (1.10) with time var ia t ions on t h e  Et time scale. 

t h a t  once the  hierarchy formalism is established, the  der ivat ion of (3.10) i s  

a very simple two-step process. Equation (2.16) is  solved f o r  t h e  leading- 

order three-wave cor re la t ions  and the  r e su l t i ng  expression subs t i tu ted  in to  

(2.14), which d i r e c t l y  y ie lds  the  k ine t i c  equation. 

It should be emphasized 



The concern here, hnrever, i s  wi th  s i t ua t ions  where t h e  resonant three- 

wave decay condition (1.11) cannot be sa t i s f i ed ,  and hence it i s  necessary 

t o  car ry  out an analysis  of t h e  hierarchy equations f o r  t he  cor re la t ion  per- 

turbat ions t o  higher order. 

t h e  E t  time scale,  i.e. (a/&t)n($l,ct,E t )  = 0 from (3.10). 

t he  leading-wder spec t r a l  energy densi ty  we have t h a t  

I n  t h i s  case the  a c t i m  densi ty  does not vary on 

2 O r  i n  terms of 

a 
3 x 2  G(l)(gl,Et,e 2 t )  = 0 . 

It shoulO be noted from the  def in i t ion  (3.2) t h a t  8(*) i s  a l s o  independent 

of E t  by v i r tue  of (3.11). 
3 

(b)  N e x t  Order 

In  carrying out the  analysis t o  next order, we now successively solve 

(2.18), (2.17) and (2.13), using t h e  information regarding the  two- and three-  

wave correlat ions given i n  Eqs. (3.1), (3.9) and (3.11). The k ine t ic  equation 

f o r  four-wave in te rac t ions  will be manif e s t  as a nonlinear integro-differEnt ia1 

2 equation f o r  G(l) on the  E t time-scale. 2 
F i r s t ,  t he  leading-order four-wave correlat ions,  ,+G(3), may be simply 

Qbtained from (2.18) as a functional of the leading-order spec t r a l  energy 

dens i ty  and i n i t i a l  conditions using expression (3.1) fo r  t h e  three-wave 

correlat ions,  G(2). This gives 3 
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f * \  - r t "  
- . (k -3 )W(s)- 

J O  

r i r  

-3 - 

Expression (3.12) f o r  the four-wave correlat ions when used i n  Eq. (2.1'7) deter-  

mines the  t and E t  behavior of G(3) and G ( 2 )  respectively.  

expression f o r  3G(3) when substi tuted in50 (2.15) then gives fu r the r  inf'orma- 

t i o n  regarding the  time evolution of the  -bo-wave correlat ions,  i n  par t icu lar  

The r e su l t i ng  3 3 

t h e  k ine t ic  behavior of 2G(1) on t h e  E: 2 t time-scale. 

In  order t o  shorten algebraic presentat ion i n  t h e  subsequent analysis,  

Ire point out a t  t h i s  time some simplifications which occur when t h e  above 

mentioned se r i e s  of subst i tut ions i s  car r ied  out. 

t h e  reader. It w i l l  be noted that  t he  in i t ia l -va lue  terms G(2)($l,$2,0,ct,...) 

and 4G(3 ) (~1 ,~2y~3 ,0 ,~ t , . . 0 )  have been retained i n  wri t ing (3.1) and (3.12) as 

should always be done i n  any rigorous multiTle-time per turbat ion formalism. 

Emever, when the  cmtri 'oution of t h e  in i t i a l -va lue  term qG(3)(k ,k2y$3j0,Et,...) 

t o  t he  three-wave correlat ions,  G(3)(k ,k , t , E t ) ,  i s  calculated from (2.17) 3 -1 -2 

and the  r e s u l t  subst i tuted i n t o  (2.15), it i s  found t h a t  t h e  corresponding 

contr ibut ion t o  t h e  IC'-integration i n  (2.17) phase mixes t o  zero on the  short 

time-scale, on the  basis  of previous arguments. 4,13 Consequently, f o r  a l l  

in tensive purposes of obtaining a k ine t ic  equation for t he  spec t r a l  energy 

These may be ver i f ied  by 

3 

-1 - 

hr 

density,  t h e  in i t ia l -va lue  term associated with t h e  leading order four-wave 

cor re la t ions  may be omitted from t h e  analysis,  and, i n  pa r t i cu la r ,  s e t  equal 

t o  zero. Similar conclusions also pertain i n  regard t o  t h e  in i t ia l -va lue  term, 

G(3)($1,$2,0,~t,...) which occurs i n  in tegra t ing  (2.17) on t h e  short  time- 3 
scale.. Moreover, 2G(2)($l,lip,0,ct,. . . ) may be omitted from the  analysis. 



2 1  

Keeping i n  mind 

(2.17) t h a t  t h e  

t h a t  (a/a~t),a(~) = 0 i n  l i g h t  of (3.11), it may be shown f m m  

condition f o r  removing secular behavior i n  t h e  solut ion 

G(3)(k 4 ,k -2' t ' Et,...) i s  simply 3 

(3.1-3) 

That i s ,  i f  G ( 2 )  i s  i n i t i a l l y  zero, it 3 
scales.  We thus omit t he  ini t ia l -value 

and G(2) from t h e  subsequent analysis. 3 

remains so at l e a s t  on t h e  t and E t  

terms associated with 4G (31, 3 G ( 3 )  

The phase mixing of these i n i t i a l -  

value terms as regards t h e  t i q e  evolution of t h e  spec t r a l  energy densi ty  i s  a 

most encouraging feature ,  and i n  f a c t  a necessary one f o r  deriving a closed 

lrinet i c  equation for  the tvo-wave correlat ions.  

With t h e  omission of in i t ia l -va lue  terms, t h e  four-wave correlat ions 

lli- 

(3.12) become simply 

which is  a t r i l i n e a r  functional of t he  leading-order spec t r a l  energy density,  

G ( 1 ) ( & j E 2 t ) ,  i n  view of def ini t ion (3.2) of 8'". We now integrate  (2.lrO 

on the  short  time-scale t o  determine the  three-wave correlat ions 1G(3) (keep 
2 3 

J 

i n  mind (a/&) G ( 2 )  = 0 from previous discussion). This gives 
3 
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:: -1 -k"))t}) - + (2 c) 1) + (3 c) 1)) 
?There use has been made of (3.9), and ,+G(3) apFearing i n  the last  term of' 

(3.15) i s  given by ( 3 . l k )  u i th  appropriate Fourier arguments. Expression 

(3.15) may then be subst i tuted into (2.13) t o  give fur ther  information on the  

t i n e  evolution of the  spec t r a l  energy densi'iy. It v i11  be recognized t h a t  t he  

2G(1'2G(2) driving terms 3n 'ihe right-hand s ide of Ekpression (3.13) for 3G(3) 

represent a higher-order version of t he  te rnary  cor re la t ion  e f f ec t s  calculated 

i n  pa r t  (a )  of Sec. 111, 

c m t r i b u t i o n  t o  the  k '- integration i n  (Z'.l5), i n  view of our assumption t h a t  

t h e  resonant three-vave decay condition canno'i be sa t i s f ied .  

but ion of t he  four-wave correlat ions i n  (3.15) remain, and Eq. (2.13) becomes 

Consequently, for  large t these terms give zero 

.% 

Only t h e  contr i -  
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vhici: i s  the  f i n a l  equation of the per turbat ion analysis  t o  be considered here. 

Since 4G(3) i s  a t r i l i n e a r  functional of G(1)($i,c2t), it is  c l ea r  t h a t  t h e  
2 

right-hand s ide of (3.15) varies  on t h e  t and E: 2 t time-scales, but not on the  

et scale. We use the  abbreviated notat ion st(t,,G(1)(E:2t),,G(1)(E:2t),2G (1) 

2 
(E t ) ]  f o r  the  right-hand s ide  of (3.16) t o  emphasize these features .  

Evidently, when Eq. (3.16) is integrated on the  t time-scale, both @/ac t )  

G ( 2 )  and (a/aa2t)2G(1) lead t o  s e c u l a r i t i e s  i n  G ( 3 )  proportional t o  t. 
2 2 
Xoreover, t h a t  port ion 0: t he  s toss  term i n  (3.16) which tends t o  a steady 

asjlm2totic value as t +.a2'' w i l l  a l s o  lead t o  secular behavior ( p r q o r t i o n a l  

t:, t )  i n  G ( 3 ) .  Using the  freedom inherent i n  the multiple-time formalism t o  

y ie ld  a uniformly v a E d  solution, we thus have the c m d i t i o n  t h a t  
2 

7 :her 

L 

t he  l i m i t  i n  (3.17) i s  with respect  t o  t h e  short  time-sca-e ... Moreover, 

as t -+ W. I n  addition, since G(I) and t h e  right-hand s ide  of (3.17) a re  2 

independent of E t ,  these terms w i l l  give secular  contributions (proport5.onal 

t o  E t )  t o  2 G ( 2 )  when Eq. (3.17) i s  integrated on t h e  E t  time-scale. The 

condition f o r  removing t h i s  secular behavior i s  simply 



i n  vhich case (a/act),G(2)($19Et,E 2 t )  = 0. Eciua-Lion (3.13), which 29212s a 

closed nonlinear i n t e g o - d i f f e r e n t  i a l  equation foi- 2G(1) on t h e  E 2 t t ine-sca le ,  
2 

thus describes t h e  k ine t i c  Sehavior of t h e  leading-order spec t r a l  energy 

density. It should be n d e d  tha t  t h e  ana lys i s  oi t h i s  sec t ion  has indicated 

t h a t  t he  E t  t ime-scale i s  i r re levant  i n  describing t h e  evolution of ensemble 

emre la t ions  when t h e  resonant three-wave decay condition cannot be sa t i s f i ed .  

This completes the  formal analysis of t h e  hierarchy (2.13)-(2.18) far the  

cor re la t ion  perturbations. 

teriil given by the  right-hand side of Eq. (3.16) w i l l  be car r ied  out, and t h e  

lr inetic equation (5.19) reduced t o  a useful form. 

I n  the next sect ion,  t h e  t + m  l i m i t  0-f t h e  s t o s s  

IV. THE ICINETIC EQUATIOi\T FOR FOUE-WAVE 13TTEPACTIO1JS 

(a )  Reduction of Eq. (3.19) 

It is convenFent t o  rewrite Eq. (3.19) i n  terms of t h e  ac t ion  densi ty ,  
2 xrhich i n  t h i s  case var ies  on the  E t sca le  through 

TJriting out e x p l i c i t l y  t h e  stoss term from (2.16)5 Eq. (3.19) then bec9mes 

(L!-.2) 



irhere t h e  response IJ- dei'ined by (1.7) has been introduced i n  (4.2). The 

leading-order four-Trave correlat ion 4G(3) appearing i n  (4.2) i s  given by 

Expression (3* 14) with q p r q r i a t e  Fourier arguments. Making use of t h e  

de f in i t i on  (3.4), i.G(3) may be wri t ten exp l i c i t l y  i n  terms of t he  act ion 

densi ty  as 

d t  e:q { i (w (k )+w (k ) - w ( lc1+l& ) )t 'I ) -1 -2 
s'=2 

::~ot"dt'exp{i(w(k -3 )W(k 4 )-@(k -3 +k 4 ))t') 

)"(:&,E 2 t ) - { n ( k  ,E 2 t ) n ( k  +k,,,E 2, L )  
-3 -8. -3 

+ n(&>E 2 t )n (k  +3),~ 2 t ) -n(k  ,E 2 t ) n ( s , E  2 t))] -t [2 c) 31 + [2 c) 41 
-3 -3 

It i s  c l ea r  from ( k . 2 )  and ( h . 3 )  t h e t  there  a r e  three  successive time 

in t eg ra l s  over o sc i l l a t ions  t o  consider on the  short  time-scale before taking 

t h e  t 4ej limit. As indicated i n  Appendix A, several  of t h e  associated terms 

phase mix t o  zero i n  the  1;' and k" integrations.  

a l s o  remains a s  t +ea.  

IIowever, a steady port ion 
ry r.4 

I n  par t icular ,  it i s  shown tha t  insofar as integrat ions 

over k' and k" a re  concerned, 
-cy-- 
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where 4G ̂(3 1 (&,$2,$,l&,~ 2 t )  is the t r i l i n e a r  funct ional  of act ion densi ty  

defined by 

with k +k +IC +k = 0. In l igh t  of (4.4), the  k ine t ic  equation (4.2) i s  givenby -1 -2 -3 -4 

?!here the  f ac to r  [w($,)w(zt )u(E1-$' )l-lp($l,lc' ry '-1 k -k' * ) has been absorbed i n t o  

t h e  square bracket of (::..8>.16 Twice t h e  r e a l  pa r t  has been taken i n  Eq. (4.6) 

since t h e  (k o - k  ) interchange i n  (4.2) j u s t  adds t h e  complex conjugate. 

It should a l s o  be noted that  t h e  various fac tors  of t he  form 
-1 -1 
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[~(~!i)+w(k ) -L ) ( l~~+k~) ] -~  i n  (l!-.?) aild (4.6), a re  non-dLvergent s ince it has 

Seen assumed t h a t  the  thi-ee-wave resonance condition is not satisfied. 

-2 

Equation ( k .6 )  apyended by the  de f in i t i on  (il.5) i s  thus t h e  closed 

'kinetic equation Tor t h e  ac t ion  density. We see t h a t  four-wave interact ions 

a r e  manifest through the  ap-pearance of 

1 I 

i n  Eq. (4.6). 

act ions of the  resonant four-wave type discussed i n  the  introduction, 

principal-value term, huwever, corresponds t o  non-resonant o r  adiabat ic  four- 

wave processes. Both e f f ec t s  w i l l  i n  general  be present. However, i n  a large 

The &function contribution f r o m  (4.7) corresponds t o  in te r -  

The 

number of s i tua t ions  of i n t e re s t ,  t h e  e f f ec t s  of non-resonant four-nave in te r -  

act ions,  i. e, t he  principal-value contributions i n  (4.6), a r e  small. This 

Occurs, f o r  exaaple, i n  circumstances where t h e  response p i s  pure r e a l  

corresponding t o  the  case of a loss less  medium. r' 
from (4.3) t h a t  

I n  t h i s  s i t ua t ion  ve  see 

i s  rea l .  Moreover, t h e  remaining integrand i n  (4.6) i s  

-1 a l s o  r e a l  except f o r  t h e  i r [w(k , ) -w(~ ' ) -w($-~ '  )-U(k'-k'')] N -  term, which gives 

zero contribution upon taking the r e a l  part i n  (4.6). Even i n  t h e  general  case 

vhere p i s  complex, it is  clear t h a t  i f  Imp i s  su f f i c i en t ly  small, t h e  pr inci-  

p a l  value contribution t o  t h e  kinet ic  equation (1:-.6) w i l l  be negl igible  i n  

comparison t o  the resonant four-wave contribution from S(W(~l)-W(k")-W(~l-~' e.4 ) 

- W  (k ' - k" ) ) 
W r y  

In  many case, we shall r e t a in  only the  resonant four-wave contribution 

for present considerations. After a modest amount of algebra which i s  



28 

summarized i n  Appendix B t he  k ine t ic  equation (4.6) may then be wr i t t en  i n  

the convenient form 

where D is defined i n  terms o f  t h e  response p by 

Equation (4.8) i s  analogous t o  (1.12) i n  t h e  absence of mode labe ls ,  and v i t h  

t replaced by E 2 t. It should be noted t h a t  D(-S1,-$,E3,$) i s  symde-cric under 

interchange of any two of i t s  Fourier arguments when the  resonance condition 

11 +k = k +k -1 -2 -3 4 

i s  satisfied.  Moreover, 

(4.10) 



‘I V 

(b)  Many Mode Extension 

The considerat ims 7: Secs. I1 and I11 can be extended i n  a s t r a igh t  

Torward manner t o  include rmde labels. We nom have t h a t  

(k ,IC ,t)G(lr +k +k ) = (Aa(k , t ) A  ($&, t )A (k , t ) )  , 3GcY$y -1 -2 -1 -2 -3 -1 B Y -3 (4.. 12) 
. 

etc.  

expanded i n  

The r e su l t i ng  hierarchy fo r  G ... may then %e 2 q’ 3Gq3r> 4G0@7s’ 

a multiple-time perturbation scheme, and the  analysis  carr ied out 

i n  a completely analogous fashion. As was the  case i n  the  der ivat ion of t h e  

k ine t ic  equation for resonant three-wave i n t e r s c t i m s  using the hierarchy 
4 f b r m a l i s m ,  it i s  found t h a t  if the two-wave cor re la t ions  between unlike modes 

a r e  i n i t i a l l y  zero, they remain so i n  the  time-scales of in te res t .  That i s  

t o  say, if  

i n i t i a l l y ,  then (4 .13)  remains t rue a t  subsequent times, a t  l e a s t  within t h e  

range of v a l i d i t y  of the  third-order per turbat ion analysis.  

t o  be t h e  case. 

condition (1.11) cannDt be sa t i s f i ed ,  it i s  found t h a t  t he  leading-orde? 

s p e c t r a l  energy densi ty ,  

exhib i t  k ine t ic  behaviDi- on the  E t scale  through t h e  e f f ec t s  of four-wave 

coi-relations, A s  s t a t e d  e a r l i e r ,  the  analysis  proceeds i n  an analogous manner, 

and ve leave it t o  the  reader t o  r e i n s t a t e  the  appropriate mode labe ls  and node 

summations i n  the  previous sections. Introducing the  act ion density associated 

We asswic ( k .  1 3 )  

A s  before, i n  s i tuat ions where t h e  resonance three-trave decay 

G(’ ) ,  does not vary on t he  E t  time-scale, but does 2 m  
2 



with t h e  a ’ t h  mode, vhjch varies on t h e  E 2 t scale ,  i .e. ,  

t he  

Trhere only the  resonant four-wave contr ibut ion has been retained i n  (4.15) 

(i. e. t he  principal-value,  non-resonant four-srave contr ibut ion has been omitted 

as before). Equation (k.l>) i s  t h e  obvious general izat ion of (b .8) .  

cmpl ing  c9efficien’is ,ae7’, hmever, involve a summation over v i r t u a l  s t a t e s  

and a r e  given by 

The 

(4.16) 
The s t a t e s  7 a r e  j u s t  tl:e intermediate v i r t u a l  s t a t e s  re fer red  t o  i n  r e l a t i o n  

t o  Fig. 1. I n  vievr 02 the  symet r i e s  (1.4) and (1.6) we see from (h.16) t h a t  



Moreover, from (4.16) and (1.8), DWrs(-k -IC 1s k ) i s  symmetric under t h e  

interchange of any trio of (a,-k ),(p,-$2)9(Y,$3)9and ( S , & ) ,  when t h e  four- 

wave resonance condition (1.13) is s a t i s f i e d ,  i. e. 

-1' -29-3.'J+ 

-1 

Da'rS(-gl,-$2,&3,%) = DpaYs(-k -2 ,-k -1 ,k -3 ,k -4 ) 

= DY'"S(&3,-lc2,-$l,$) = D'pra(l&,-$,$3,-$lc) = . . . , (1;. 18) 

when 

k + k = k + k  . -1 -2 -3 -4 

V. GENERAL PROPERTIES OF TEE KINETIC EQUATIOM 

We now discuss various general p roper t ies  of t h e  k ine t ic  equation (1k.13) 

including t h e  preservation 9f the non-negative nature of t h e  spec t r a l  energy 

densi ty ,  energy and msmentwn conservation r e l a t l m s ,  and t h e  appropriate law 

of increase of entropy. 

( a )  -- Preservation of t h e  Sign of t h e  Spec t ra l  Energy Density 

The s p e c t r a l  energy density G associated with t h e  a ' t h  mode, i n  2 m  
addi t ion  t o  being r e a l  and an even function of i t s  Fourier argument, i s  mani- 

f e s t l y  non-negative as nay be demonstrated f m m  t h e  de f in i t i on  (4.11) w i t ' ?  

ct = (3. Consequently, m e  Df t h e  minimum demands ve can make of t h e  k ine t i c  

equation (4.13), i n  order t h a t  the k ine t i c  theory be acceptable, i s  t h a t  t h i s  

property be preserved during t h e  course Df t h e .  That i s  t o  say, i f  
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i n i t i a l l y ,  then nawa does not turn negative a t  subsequent times. 

t h a t  t h i s  i s  the  case by t h e  fol lwing reduct io  ad absurdum argument. 

We check 

Take r e l a t ion  (5.1) t o  be t r u e  i n i t i a l l y .  Assume t h a t  t he  f irst  corre- 

l a t i o n  t o  t u r n  negative is associated with the  mode a, and t h a t  t h i s  occurs 

for Is1 = k It follows t h a t  at the  instant  2Gg) i s  passing through zero -0’ 

G ( l )  k ) 2 0 p d i s t i n c t  from a . 
and 2 pp (4 

Also, at the  ins tan t  2 G E )  i s  passing through zero, (4.15) gives 

2 0 ,  (5.3) 

where use has been made of Relations (5.2). 

of 2Gg) tilrning negative. This argument may of course be extended t 3  shcxr 

t h a t  none of the  correlat ions,  

(b) Conservation ~aws 

This contradicts  our hypothesis 

t u r n  negative. 
2Gaw 

There a r e  simple conservation laws associated w i t h  t he  k ine t i c  equation 

(4.15). We nate t h a t  resonant four-wave processes conserve energy and momentum 



on t h e  microscopic sca le  acccmding to (1.13). 

density,  &, and momentux density, P 

Furthermore, t h e  t o t a l  energy 

a r e  conserved by Eq. (4.13), vhere 
4' 

and 

dk n (k ,E 2 t)gl 
-1 a -1 (5.5) 

C! 

I n  pa r t i cu la r  , 

s o  J (5 .5)  

where use has been made of t h e  symmetries (k.18), (1.4),and t h e  oddness of 

t h e  ac t ion  dens i ty  as a function of i ts  Fourier argument, n ( - $ J E 2 t )  = 

-n ($JE2t ) .  

a' 
I n  a similar manner it may be s h a m  t h a t  P i S  conserved, i.e., 

at 4 
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( c )  Non-Equilibrium Entroyy 

As i s  the cese f o r  t he  kinetic equation for resonant three-trave pro- 

cesses, t he  appmpriate  non-equilibrium entropy densi ty  i n  r e l a t i o n  t o  (4.15) 

i s  given by 

Making use of 

together with 

a 
t he  oddness of U and n 

the  symaetries (k.18), it follmrs t h a t  

as functions of t h e i r  Fourier arguments, a a 

SZnce nawa Z 0 fo r  each a, t he  right-hand s ide  of (5.8) i s  c l ea r ly  non- 

negative, i. e. , 

s z o .  a 
as2t 
- 

Consequently, S i s  a monotonic increasing funct ion of time, and reaches a 

steady asymptotic value only when 

1 1 1 1 
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for k k k k sa t i s fy in2  t h e  four-vave resonance condition cvl’cv2’~3~nk 

Relations (3.10) and (5.11) w i l l  a l s o  be recognized as t h e  conditions for  a 

s ta t ionary  (time-independent) solution t o  the  k ine t ic  equation ( h . 3 3 ) .  Evi- 

dent ly  the  “modified” Rayleigh-Jeans d i s t r ibu t ion  18 

(k)+b*k C!ry # v I v  , each a , 1 

0 g$= 
where @and b a re  constants,  solves (5.10) subject t o  t h e  resonance condition 

(5.11). 

so lu t ion  fo r  non-zero @ , since it corresponds t o  i n f i n i t e  energy densi ty  

ry 

However, Eq. (3.12) i s  not an acceptable s ta t ionary  o r  time-asymptgtic 

Jn,(k)w,(lr)dk. We sa?? e a r l i e r  t h a t  = Jn,(k)w,(lr)dk i s  a constant of 
cv -4- cv cv- 0 ci ci 

t h e  motion; consequently, if the i n i t i a l  preparation corresponds t o  f i n i t e  

I& t h e  system cannot pass t o  a state of t h e  form (5.12). 

(d )  Generalizations and L5mitations of t he  Theory 

Throughout t h e  analysis  of t he  preceding sections it has been assumed 

t h a t  pqY, and hence DC’”, do not vary with time. 

t h e  r e s u l t s  may be t r i v i a l l y  extended t o  s i tua t ions  where pW7 has a slow time 

var ia t ion  on the  E t scale. The analysis  of Secs. II and I11 remains exactly 

t h e  same, and t h e  f i n a l  !;inetic equation i s  s t i l l  given by (h-.l5), with 

However, it i s  c leer  t h a t  

2 

Dqrs + DQBrs(E2t) . (5.1-3) 

l,Ioreover, t h e  conservation relat ions and la17 of increase of entropy which vere 

derived above, remain valid. 



A fu r the r  simple e:Aension of the  analysis  occurs with t h e  inclusion 

of  a su f f i c i en t ly  veal; l i nea r  insta3ility. 

formalism of Sec. I1 has previously been considered 

The modification of t he  hierarchy 
I: i n  s i t ua t ions  >rhe;-e 

e (k) = w R (k)+iya(k) (5.14 1 a -  a -  cv 

R * 
.crith Oa and y r ea l ,  and wa(-$) = -aa (g). A meaningful per turbat ion analysis  a 
of the  hierarchy f o r  wave cmre la t ions  i s  possible  provided 17 /W '1 << 1. 

In  pa r t i cu la r ,  l e t  us assume 
Q G  

Since t h e  gene ra l i za t im  of t h e  k ine t i c  equation (L~.l5) i s  t h e  obvious one, .ire 

only quote t h e  r e s u l t s  here, namely 

+ (right-hand s ide of Eq. ( k . 1 5 )  u i t h  w G ,,+ . (5.16) 

I n  addition, the g ra r th  rate ya(2)($l) may be a l l m e d  t o  vary on t h e  slnr time 

sca l e  e t and not a l t e r  t h e  r e s u l t  (5.16). 2 

Final ly ,  we i-eriiind the  reader of a r e s t r i c t i s n  f o r  t h e  v a l i d i t y  of 

Eq. (4.15). Certainly,  i n  order f o r  the k ine t ic  equation t o  be meaningful, 

t h e  right-hand s ide  of (4.15) must not be divergent. Let us examine Eq. (k.15) 

f o r  a f ixed  and imagine carrying out t h e  %,.> 2 and k integrat ions,  res- 

pectively.  

integrand. 

t hen  r e s t r i c t e d  t o  a surface (or surfaces)  S ( k  ,k ) determined from 

-3 -2 

The k , - in t eg ra t ion  j u s t  replaces  5:. 'oy k +IC -k 

The k -integraticm over S( .  (3)" (:I )-. (k )-. (:I +k -k ) )  is 

i n  t h e  remaining A- -1 -2 -3 

-3 a - p -2 7 -3 6 -1 -2 -3 

-1 -2 

w (IC )Wm(&li) = (k ).W ( +k -I< ) a -1 p y -3 6 5 -2 -3 (5.17) 
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This gives a c o n t r i b u t i m  i n  the integrand pro,xortLonal t o  

d 

-3 
W (k ) + - W (k +IC -IC ) 

y -3 dk 6 -1 -2 -3 

evaluated on S(s1,s2). Clearly the  integrand w i l l  be singular i n  regions where 

d d - fJJ (IC ) + - U (5 +p3) = 0 dk Y - 3  dk 6 1  -3 -3 

f o r  k 

s ide  of (4.15) t o  be f i n i t e ,  we thus require  

sa t i s fy ing  t h e  resonance condition (3.17). In  order f o r  the  right-hand -3 

d d 
- W  (k ) + - u  (k +k -’- ) # 0 dk 7 -3 d k  6 -1 -2 23 -3 -3 

(3.20) 

f o r  1i 

as t h e  integrat ions over S and k axe concerned. 

a r e s t r i c t i o n  on t h e  class of problems t o  which the  theory i s  applicable. 

However, t h i s  does not appear t o  be a ser ious l imitat ion.  

sa t i s fy ing  (5.17), except poss ib ly  f o r  regions of zero measure insofar  

Condition (5.20) thus p ~ s e s  
-3 

-2 

Physically, t he  r e s t r i c t i o n  (5.20) corresponds t o  s i tua t ions  where the  

group ve loc i t ies  a r e  d i f f e ren t  fo r  t he  f i n a l  s t a t e s  on t h e  r igh t  i n  Fig. 1; 

consequently, t h e  corres2onding wave disturbances move away from one another 

and do not fu r the r  i n t e rac t  effectively.  If c m d i t i o n  (5.19) were Tossible,  

t h e  wave disturbances would move off  together  v i t h  the  same group ve loc i ty  and 

be capable of addi t iona l  multiple interact ions.  I n  t h i s  case t h e  wave- 

couyling i s  strong, and the  veak turbulence a n a l p i s  of preceding sect ions i s  

no longer valid.  

- 
4- ,5 



VI. CONCLUDIEG RidARKS 

In  conclusion ?re r e i t e r a t e  some fea tures  of the  analysis.  F i r s t ,  Lhe 

hierarchy formalism for rrealr turbulence 3 s  inherent ly  simple i n  comparison w i t h  

$he conventional approach of solving Eq. (1.1) t o  sgme order, and then carry- 

ing out appropriate s t a t i s t i c a l  averages O w l  a s p a t i a l l y  uniform ensemble. 

As pointed out e a r l i e r ,  i n  order t o  derive t h e  k ine t i c  equation (4.15), t he  

- 

l a t t e r  approach 

the  osc i l l a t ion  

trould involve a perturbation analysis  of (1.1) t o  order A' i n  

amplitude. However, t he  na tura l  expansion parameter i n  the  
n 

hierarchy fo r  wave correlat ions is E r~ k ,  a measure of t h e  spec t r a l  energy 

density; moreover, it i s  necessary t o  car ry  out t he  analysis  only t o  ceder E 3 . 
The hierarchy formalism also has the  desirable  fea ture  t h a t  no addi t lona l  

s t a t i s t i c a l  averaging need be carr ied out. Second, ire remind the  reader t h a t  

no random phase approximations, assumptions of gaussian s t a t i s t i c s ,  on golden 

r u l e  of t r a n s i t i o n  probabi l i t i es ,  have been invoked i n  the  present analysis.  

The k ine t ic  equation (&.l5) has been systemat5cally derived so le ly  v i t h i n  t h e  

assumptions of weak nonlinearity,  and s p a t i a l  homogeneity of t he  ensemble. 

Application 02 the  present k ine t i c  theory t o  the nonlinear i n t e rac t ion  

of long wavelength e lec t ron  plasma osc i l l a t ions  is the  subject of an . 

addi t iona l  a r t i c l e  . '' 
ACIQWlXDGENEW 
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APPENDIX A 

The fac tor  

exp{ i (w ($c)-w( k' )-w (lcl-Z' ) )t } 
N 

i n  t he  integrand of (4.2), contains three  successive time in tegra ls ,  i n  l igh t  

of Expression (4.3) f o r  t h e  leading-order four-vave correlat ions.  For the  

time being we consider the  contribution t o  Expression ( A . 1 )  made by the  f i r s t  

square bracket term i n  Eq. (4.3). 

- 
Inser t ing the  apprupriate Fourier arguments, 

the  corresponding port ion of ( A . l )  i s  given by 

where we have factored out t h e  expl ic i t  dependence on the short  time-scale t 

through 

I ( t )  3 e,q( i(w(~l)-~(k')-w($l-~'))t} ry 

r t  r t ' "  
dt"'exp{ i(w(1r' nd )-w(k")-w(k'-k"))t'")J ry r c . *  ~ d t "  

0 

x exp{ i(W(k")-tw(k -k' )-w(lcl-kl+ktt) ) t t t )  -1 - N N  cv 
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I Using t h e  abbreviated m t a t  ion 

it is  convenient t o  take the  Laplace transform of (A .3 )  w i t h  respect t o  t. 

This y ie lds  

. 1 1 1 1 =-.  
s-ifl s-if -if s-if - if  - if  s-if if - if  -if4 

1 2  1 2 3  1- 2 3 

Since f +f +f +f = 0 from (A.4), I(s) may be r e v r i t t e n  as 1 2 3 4  

1 1 1 1 I(s) = -  0 - 0  - 0 

s s-ifl s+if4 s-if -if 1 2  
(A. 6 ) 

When Expression (A.6) i s  inverted, various of t h e  osc i l l a to ry  terms may be 

shown (by standard stationary-phase techniques) t o  phase-mix t o  zero as  t 9 0 9 ,  

vhen t h e  k' and k" integrat ions are car r ied  out i n  the  k ine t ic  equation (1!-.2). 

In pa r t i cu la r ,  these osc i l l a to ry  terms give contributions which decay f o r  

large t as 

cy cu 

osc i l l a t ion )  
9 

t3 

i n  three-dimensional s i tuat ions.  

which gives a steady contribution as t 4 co insofar  as the k' and k" i n t e g r a t i m  

are concerned. 

However, there  i s  a l s o  a port ion of I ( t )  

cu cu 

This contribution may be simply obtained from ( A . 6 )  as 



, 

l i m  I ( t )  = l im S I ( S )  
t 3 c 3  s 4. o+ 
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where f i  f 0 by hypothesis. Reinstating t h e  def ini t ions of f i  we have t h a t  

. i 

-1 - -1 - -1 

1 

(k )-w(k' )-W(&?C-$') W(k )-W(l<")-W(k -k' 
lim I ( t )  E 

t + c w ,  

w(k'-B")-U(k 1 t-w k -k'+k") A + O+ 
c y -  -1) (cy1 - ry 

This determines t h e  steady contribution of (A.2) as t + O O ,  t o  Expression ( A * l ) .  

The above arguments may a l so  be car r ied  out f o r  the  successive pcrmuta- 

tions of terms i n  Expression (4.3) f o r  t he  four-wave 

terms are grouped together,  it follows t h a t  ( insofar  

and k" are  concerned) 
cv 

l i m  exp( d t ' " eq ( i (w(8 '  
ry t -> 03 

correlations.  When a l l  

as 

-W 

integrat ions over k' 
.v 

t " )  

(A. 10) 

i s  defined by (4.5) with appropriate Fourier arguments. 4 vher e 
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with appropriate Fourier arguments. 

(B.l) t h a t  D i s  symmetric under interchange of any two of i t s  Fourier ai-gutaents, 

i. e., 

Moreover, it nay be shown from (3.3) and 

Use i s  also made of the  symmetries (1.8) i n  veri2ying (B.6). 

t h e  resonant four-wave contribution i n  the  k ine t i c  equation (4.6) becomes 

In  view of (B.2), 

x { n ($'I, E 2 t  ) n( El- k' , E 2 t )n( k' - k" , c2t  ) 
ry N C Y  

k ,E 2 t)n(li",c 2 t)n(lcl-2' ,E 2 t ) - n ( k  E 2 t)n(!cl-k',E 2 t)n(k'-k",E 2 t )  - n(-l N -1' cv C V N  

- n(kl,E 2 t)n(k",E 2 t)n(k'-k'',E 2 t))] 
N N N  

>> + [k' ~ l <  -k'] -k [k' N ++-$I 
'y -1 - 

Equation (€3.7) may be fur ther  reduced t o  the  convenient form (4.8). IJe out l ine 

here  sgme of t he  intermediate algebraic s teps ,  and w i t e  (B.7) scheraaticallg as 



r 

vhere T1, T2 and T denDte t h e  contributions fmrn the  successive square 

bracket interchanges i n  t h e  3rd- they  appear i n  (B.7). 
3 

We f i rs t  demonstrate t h a t  T P 0. From t h e  t h i r d  square bracket 3 
interchange i n  (S.?), 

- n(k',E 2 t)n(k",E 2 t)n(lcl-S' ,E 2 t)+n(k',E 2 t)n(&-k',E 2 t)n($l+$tt,E 2 t )  
ry ry ry ry 

where t h e  symmetries W(-k) = -U(k), n(-$,E 2 t )  = -n(k,e 2 t )  have been used. 
Y ry cy 

Equation (B.9) may also be wr i t ten  i n  an a l t e rna te  form by interchanging t h e  

var iables  k' e,-k". Making use of t h e  symmetries (1.8)y (B.6) and conditions 

(Bo]!-) and (B.5),  t h i s  gives 

ry Y 

x l3 D(k" k -k1 ,kt  ,-k -k")6(w(k1 )+w(k")w($-kr )-w(lsl+k")) \,G ry '-1 cv ry -1 Y #w .v ry ry 

(Bo l o )  

vhere { 1 i s  t h e  cur ly  braclset in  (B.9). 

T3 = 0, s ince the  resu l t ing  integrand contains the  fac tor  

Adding (B.9) and (B.10) yie lds  

(3.11) 



rrhich vanishes i n  the  k' or  k" integration. 
ry ry 

Consequently, t he  kinet ic  equation becomes (a/& 2 t )  n(lcl ,E 2 t )  = Tl+T2. 
I 

The T 2 ry r y l  ry 

represents a simple change of variables i n  t h e  E' integrat ion,  and hence 

reproduces T1. Thus, the  kinet ic  equation may be wr i t t en  

contribution, which corresponds t o  t h e  interchange k' c) k -kl, j u s t  

vhere T 1 

i n  (B.7). 

for T19 it may be demonstrated tha t  the  f ac to r ,  

corresponds t o  the  contribution f m m  the  f i r s t  square bracket term 

After appropriate changes of in tegra t ion  vmiables  i n  the  expression 

2/W(k' ry ) 
w (g1)-W (5' ) -w(&l-g ) P(gl,$,$l-$ )P($ ,&y',pgl) , 

i.n the  integrand of (B.7) may be replaced by 

+ (k' C) k -k'-k'') + (k' 
ry c y 1  ry ry l y n d  

(B.10) 

Use has been made of all the  usual symmetries i n  obtaining t h i s  resu l t .  

quently the  k ine t i c  equation (a/& t)n(k1,E t )  = 2T1 becomes 

Conse- 

2 2 

,E 2 t)n(k'-k",e 2 t )  
r y w  



- n(sl' E 2 t  )n (B" , E 2 t )n 2t)) (B. 11) rv 

Changing t h e  k' and k" integration var iables  t3 k 

vhere k' = k +k and 1:" = IC 

(4..8), s ince D is symmetric under interchange 03 any two of i t s  Fourier 

ar &went  s . 

and k in tegra t ion  variables 
-2 -3 h, rv 

Eq. (B.11) may be m i t t e n  i n  the  convenient form 
cv -3' - -1 -2 
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A case i n  point where p i s  pure r e a l ,  and hence t h e  principal-value terms 

vanish i n  the k ine t ic  equation (3.25), occurs i n  the  descr ipt ion of t h e  

nonlinear in te rac t ion  of gravity waves i n  a f l u i d  of constant de$c,h. 

The Rayleigh-Jeans d is t r ibu t ion  i s  modified through t h e  appearance of the 

term fv b - f l i n  (5.12). 

R. C. Davidson ( t o  be published). 
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FIGURE CAFT IONS 

Fig. 1. Basic resonant four-wave process consis t ing of t h e  merging of two 

waves i n t o  an interraediate v i r t u a l  s t a t e ,  followed by t h e  ( ins tan ta-  

neous) decay of t h i s  v i r t u a l  s t a t e  i n t o  two f u r t h e r  s t a t e s .  

L 




