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ABSTRACT

The time evolution of wave correlations (cumulants) in a
uniformly turbulent ensemble of weakly nonlinear, dispersive
systems 1s discussed. With closure of the hierarchy for wave
correlations appropriate to the inclusion of resonant four-wave
processes; a kinetic equation for the spectral energy density
of the waves is derived in situations where the resonant three-
wave decay condition cannot be satisfied. The resulting kinetic
equation is a nonlinear integro-differential equation with driving

terms trilinear in the energy density. Some general propertics
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of this equation are discussed including associated coanser—at’lon

relations and the law of increase of entropy.
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I: INTRODUCTION
A large number of nonlinear dispersive systems are described

by dynamical equatlions of the form

BA(X TN
By
(1.1)

X KQBy(kl,geyga)eXP(i&qx(gl)-406(52)-a§ (53))t3 p

where Aa(vl&l’t) is the amplitude of the q'th mode of oscillation in the
appropriate representation, wa(lfil) is the corresponding oscillation

,53} is the

frequency as a function of wave vector }v{l’ and KCY ‘57(‘151 ,}52

interaction kernel for the triplet of modes (@,B,y). The functional
dependence of wa(}sl) and KQB7(1’51,}S2 ,:153\) on vave vector depends on the
details of the problem undexr consideration. The dynamical equation
(1.1) arises in a variety of circumstances where a fluid-like descrip-
tion 1s applicable, ranging from plasma models in which a magnetchydro-
dynamic description is used,l to the nonlinear interaction of gravity
waves in a fluid of constant dep‘l;h.g’3 The formal derivation of (l.l)
for a broad class of nonlinear dispersive systems, together with
references to explicit examples has been given elsewhere and need not
be included in our consideratioms here.h

There are essentially two types of nonlinear wave-wave inter-
action problems one can consider in relation to (1.l). First, there :s
the coherent initial-value problem in which we are given the ini%isl
amplitudes {Aa(}ggl, 0)} and determine from (1.1) the subsequent time

evolution of [Aa(l'él’t)}' The nonlinear nature of the dynamical equation
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makes a mathematical analysis untracteble except in small-amplitude
situations where lAa(lEl’o)' ~ ) << 1, say. In this case one can

formally generate the perturbation solution to (1.1l), i.e.,

Ay (k1) = Mél)(gl,t) + xaAée)(gl,t) Foaee (1.2)

to some desired order, 2P, In lowest epproximation, the wave amplitude
Aa does not change with time. In higher order, however, the nonlinear
terms act as perturbations which cause the amplitude to change during the
course of time through the interaction between waves of differing wave
number., The second type of problem, and the one that shall concern us
here, corresponds to weakly turbulent situations where the time evolu-
tion of a statistical ensemble of systems, each evolving according to
(1.1), is considered. For the case of uniform turbulence (i.e. a
spatislly homogeneous ensemble) it is of paramount interest to ascertain
the time behavior of the spectral energy density, EGoa’ assoclated with

the oscillation amplitude where

and { ) denotes ensemble average. As will be discussed below, there are

two procedures which may be used to obtain a kinetic equation for 2Goa‘

In the conventional approach, the coherent solution (1.2) is obtained to

some order and appropriate statistlcal averages are then taken over a

spatially uniform ensemble in order to give a kinetic equation fcr the

5,6

spectral energy density. The other approach, which leads simply and

directly to the desired kinetic equation, consists of comsidering at the
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outset dynamical equations for wave correlations in the ensemble.

Before describing the details of the formalism to be used, we remind the
reader of some salient Teatures of existing kinetic theories for resonant
three-wave processes pertinent to the general dynamical equation (l.1l). The
discussion will be brief in this regard since the weak turbulence theory of
resonant three-wave interactions has been discussed in detail elsewhere,b o
and, as suggested by the title and abstract, the principal concern here will
be the construction of a kinetic theory for resonant four-wave processes

within the framework of (l.l)., At this point we record the sign conventions

and symmetries to be used throughout the remainder of this article, i.e.,

wa(-El) = -wa(El) ’ (1.4)
A (k& 5t) = A (=K, ,t) L.5)
PV kpk5) = K0 (ke s-key k) - (1.6)

The oscillation frequency w (k) is assumed real. Liloreover, the response
Lad

BY(kl, 2,k ) defined in terms of the interaction kernel by

P (00 k5) = v ()0, (30K (ke ) (1.7)

will be assumed to enjoy the symmetries

P ks) = WP (e koky) = WP,k k) = WPk )
(1.8)
for 51 = 52+53, which is the case for a large number of physical processes of
interest. In terms of the action density na(El’t) defined by

nQ:(}Sl’t) = QGQa(l,El’t)/wa(}sl) ) (1,9)
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the leading-order kinetic equation for na is given byu
7(k k, )|2

l) )k3
3t Rl ot) = b ﬂa}ﬁe‘i% o T T o ()

3:7
6(k -X -1:3)5(w (1: )-w (1; )-w (k ))
(50000 (8, 0D s 00yl 00m, (p 80) 5 (1420)

where (1.10) holds for a spatially uniform ensemble in weakly turbulent
situations. Equation (1.10) is correct to O(n2) and the tasic process causing
the action density to change with time is that of resonant three-wave inter-

actions where

w (i) = wli ) ()

This may be viewed as the "decay" of (wa(kl)’gl) into two further waves
(wa(ke),gg) and (w7(53),§3), or as the inverse process of the merging of two
waves into one. Although Eq. (1.10) is non-trivial in a large number of
situations of interest, there are physical problems where the linear dispersive
properties, as manifest in {wa(gl)], are such that the resonant three-wave
decay condition (1.11) cannot be satisfied. In this case (B/Bt)na(gl,t) =0
trivially from (1.10), and clearly a higher-order kinetic theory must be con-
structed to describe the time evolution of the action density. Whether or not
(1.11) can be satisfied depends on the explicit functional forms of [wa(kl)}'
As particular examples, we remind the reader that the dispersive properties of
gravity waves in a fluid of constant depth,; as well as the dispersive properties

of (long wavelength) electrostatic electron plasma oscillations, are such that



resonant three-wave interactions are forbidden. In any case it will be assumed
in the present analysis that (Ll.11) cannot be satisfied. Since it is not
necessary to specialize to a particular problem in deriving the kinetic
equation appropriate to these circumstances, the above-mentioned examples may
be kept in mind as possible applications.

In this case the leading-order process vhich causes the action density
to change will be that of resonant four-wave interactions. We will see in
Sec. III that for a statistical ensemble of systems evolving according to the
dynamicael equation (1.1), the kinetic behavior of na(k,t) is governed by stoss
terms trilinear in the action density when the resonance condition (1.1l)
cannot be satisfied. In particular, the relevant kinetic equation (4.15) may

be written in the form (dropping the %t notation)

0770 (kI 00,01
= (gt "BZ Jff”‘ U T T o T o )
27>

X 5(k +k, -k -k )o(w (kl)+w (52) -w (k )-w (1&))
¢ (B g, i 3oy (00, Gty )0 i )
- 0 )8, g )0 By ) (00 (80 (6008)) 5 (32)

where DGB78(-§1,- k_) is related to the three-wave response through Eq.

a iy
(4.16)s Tt is clear from (1l.12) that ga(gl,t) evolves due to resonant vehavior

manifest by the condition

iy 0 (15, =

[
€
~~~
=
w\/
&
o]
~~
S:F

gtk = Kt - (1.13)
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The resonant four-wave condition (1.13) has a simple interpretation. It should
be kept in mind that three-vave interactions are still basic to the dynamical
equation (1.1). As shown schematically in Fig. 1, the resonant four-wave
behavior associated with (1.12) and (1.13) consists of two successive three-
wave processes. Namely, the two states (wa(gl),kl) and (wﬂ(ge),ge) merge into
a virtual state (wn(gl+§2),§l+52) which instantaneously decays into two further
states (w7(§3),£3) and (wa(ku),gh). Other possible combinations are of course
possible. It should be noted that although wa(;lsl)wﬁ(}ﬁz) # wn(-lf'lﬂsz) by
hypothesis, the over-all process microscopically conserves energy and momentum
according to (1.13).

The purpose of the present article is to put the derivation of the
kinetic equation for resonant four-wave processes on a systematic and rigorous
basis, within the framework of the general dynamical equation (1l.1). Tae
details of the formalism to be used have been developed in Ref. 4 where a
hierarchy was obtained describing the time evolution of wave correlations
(cumulants) in a spatially homogeneous ensemble of systems evolving according
to (1.1). The kinetic equation (1.10) for resonant three-wave interactions
was shown to be very simply accessible within this hierarchy for wave corre-
lations. The analysis here is an extension of this formalism to one higher
order, in situations where (1l.1l) cannot be satisfied and hence the basic
bProcess for causing the action density to change is that of resonant four-wave
interactions. We reiterate the basic philosophy for using the hierarchy
approach. As mentioned earlier, the conventional method for treating the weak
turbulence problem is to obtain the perturbation solution to the coherent
initial-value problem to some desired order. Then suitable statistical

averages (usually referred to as the random phase approximation) of the
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coherent solution are performed over a spatially uniform ensemble. In parti-
cular, the kinetic equation for the spectral energy density is obtained in the
conventional approach by considering the average change in the transition pro-
bability per unit time. Objections have been raised to this type of apprbach,
not only regarding the basis of validity of the random phase approximation,

but also because the formalism inherently involves considerably more informatim
(and hence algebra) than is necessary to describe the turbulent ensemble.h’8
For example, the solution to the coherent problem entails phase information
which is unnecessary in describing properties of the ensemble. The hierarchy

formalism offers considerable simplification in this regard since dynamical

equations for s-wave correlations SG, 8 = 2,3,.s., characterizing the ensemble

are considered at the outset., A simplification also occurs regarding the

relevant expansion parameters Whereas the natural expansion parameter encounter-
ed in obtaining the coherent solution to (1.1) is M, a measure of the oscilla-
tion amplitude, the expansion parameter appropriate to the hierarchy framework
is € ~ KE, a measure of the spectral energy density. Consequently, in order

to obtain a kinetic equation for resonant four-wave processes it will be
necessary to carry out an analysis of the hierarchy for wave correlations only
to order 63. However, if the conventional approach were used it would be

necessary to first obtain the coherent solution to (l.1) correct to O(X5), as

was done by Hasselmann in relation to the particular problem of the nonlinear
interaction of gravity waves in a fluid of constant dep‘l:h.e”3

In Sec. II the hierarchy formalism is briefly reviewed. The ordering
appropriate to weakly turbulent situations is discussed and the equations

expanded in a multiple-time perturbation analysis. It should be noted that no

assumption regarding random phases cr gaussianity of statistics is made. The
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only assumption is that the ensemble is spatially homogeneous corresponding to
uniformly turbulent situations. The expanded hierarchy equations (2.13)-(2.18)
are solved order by order in Sec. III. For simplicity of presentation the

mode labels are omitted in the analysis of Secs., II and III, but reinstated

in the final version of the kinetic equation for the action density, Eq. (4.15)
Various general properties of this kinetic equation are discussed in Sec. V
including energy and momentum conservation relations. In addition, the appro-

priate non-equilibrium entropy for the kinetic equation (1.12) is shown to be

.
S =21'J%£1 znlna(g
a

IT. HIERARCIY FORMALISM AND WEAK TURBULENCE ORDERING

(a) Review of Hierarchy Formalism

The moment hierarchy for a statistical ensemble of systems evoiving
according to (1.1) forms an interconnected chain in which the average of the
product of s amplitudes, (Aal(gl,t)...Aas(gs,t)), is advanced in terms of the
average of the product of s+l amplitudes, (Aal(gl,t)...A (As+l,t)), where
S = 1,2,.4. « As elaborated in Ref. 4, from this moment hierarchy an alternste
hierarchy may be constructed describing the time evolution of irreducible s-

wave correlations (cumulants), Gs 8 =2,3,.0., defined by

G(-\l,t)o(ﬁ +k ) = (A(fl\{..l’t)A(gl.E’t)) 5 (2.1)
36k 250,808 (5 ¥, Hs) = (ACK) ,£)A(K,,0)A(RS,E)) (2.2)

hG(}él,}‘{e,k s8)3(k +52+k +k ) = (A(kl,t)...A(}éu,t))

- o0l 8,6 (5, )8 (k) +, Jo (I, )
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- o0, 8),0(k,, £ )8 (k) +ea )5 (I, )

for a spatially uniform ensemble., Similarly, 5G is defined by subtracting
from the average of the product of five amplitudes all distinct permutations
of 2G3G products, and so on. In Egs. (2.1)-(2.3) and throughout the analysis
of Secs, II and IIT mode labels have been dropped for simplicity of presenta-
tion. These serve principally to complicate the notation and not to modify
the basic formalism, and will be appropriately reinstated in the final version
of the kinetic equation. Moreover, in writing the definitions (2.1)-(2.3) it
has been assumed that (A(Ea’t)) = 0, i.e. that A(El,t) corresponds to a fluc-
tuation with zero mean. This remains true for all times if so initially »ro-
vided K(o,-gg,;se) = 0. It should also be noted that the delta-function
dependence in the above definitions is just a manifestation of translational
invariance of ensemble averages in X-space, i.e. that the ensemble is spatially

9

uniform. The resulting hierarchy for sG, 5 = 2,3,sse, Torms an interconnected

chain in which 2G is advanced in terms of 3G, 3G is advanced in terms of G
L

and 2G2G driving terms, etc, : . The first few members are given by

. o)
Bk k) 55 0k 4t)

= 8(ky *+s,) {(\/%‘K(El’%' K-kt )00k -k t)

el (00 ol oy K )8) +1 w2} (2.4)
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Loy D ,
 expl1(o(s Ja(, )l 4, )60] + L2 0 30)
+(2el)+ (3 4—)1)} (2.5)
+ 8 (k) Hls i, ){ <f dk'K(k, k'K -k ), 6k Ky -k K 00)
 expl (i o ol KD 42 1) + GV}
5 (k,+k,+k +k ) 9 ok, ,k.,k,,t)
~lTaR A3 AL T LR A R3?
b
= 5(‘%14"1\{'24"1534'& )2 Z {<[K(£1:§l+§2:'§2)2G(},§2:t)3G(,1§3:,1&4_:t)
st=2
X expli (05 1ol -0l 85, 1] + [2 @31 + [2 4]
+ (l(—es')} (2.6)

<+

L
el
(st ) 4 (8K i 00 K el t)
s'=2

{4 (0 J-o()-olls 5 ) (1 o5}

X

G.G and gGL(.G as well as 6G terms, and in general

373

sG is driven by s+lG and PG s+l-pG terms, P = 2,+¢4,5-1. The resulting

Similarly 5G is driven by

hierarchy of equations is structurally quite analogous to the B.B.G.K.Y.

hierarchy for irreducible correlations. Equations (2.4),(2.5)... represent
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the dynemical system of equations to be used in describing the time evolution
of wave correlations in a spatially homogeneous ensemble of systems, each
evolving according to (1.1)., Such a description is clearly practical only if
a meaningful closure of this hierarchy can be obtained at some level of des-
cription, i.e. sG becomes small for increasing s. That this is the case in

weakly turbulent situations will now be demonstrated.

(b) Weak Turbulence Ordering and the Multiple-Time Perturbation Expansion

In the weak turbulence case corresponding to a small-amplitude analysis

of (1.1) we assume

Lrve e<<1l (2.7)
in leading order. TFrom (2.5), since 3G is driven by 2G2G terms we assume
3G ~Ie2 t0 leading order. Similarly hG is driven by 2G3G terms and we take
hG ~ 63, and in general
G~ (2.5)

Whether or not an initial ordering of the form (2.3) is violated during the
course of time may of course be checked. Of paramount interest in present
considerations is the evolution of the spectral energy density, 2G. It is

clear from (2.%) that the degree of accuracy with which we describe .G depeads

2

in detail on the level of sophistication with which we describe 3G, ete.

For purposes of obtaining the kinetic equation for resonant four-wave processer

it will be necessary to obtain 2G to order 63 and describe the leading-order
oG for times t ~ 1/62. Consequently, as may be seen from (2.4)-(2.6), 3G and
3

AG are needed correct to order ¢”; 5G and higher correlations, however, may be

omitted from the analysis. In general, to calculate 2G to order ¢ and descrie
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the leading-order 2G Tor times t ~ l/en-l, closure may be obtained by neglecting
+2G and higher correlations.
Within the context of the above estimates, Egs. (2.%)-(2.6) may be

expanded using the multiple-time perturbation techniques of Frieman and
10,11,12

Sandri, In particular, 2G,3G,... are written

G eeG(l)(lél,t,et,...)+622G(2)(§l,t,et,...)+e32G(3)(’£1,t,et,...)+... , (2.9)
G e? (2)(kl,k2 b,et, .. J4ed (3)(kl, Ko rtyCtyees e (2.10)
G e 3 (3)(1:1, 2,‘;3,t,€t,...)+... , (2.11)
5 ¥ € 1‘5 (“)(1;1,‘\2,&“,1: sbyet,ee Jene (2.12)

.
[
.

Operationally, the time scales t,et,eet,... are treated as independent

variables, and the freedom inherent in the multiple-time formelism will be

used to obtain a uniformly valid solution. To the order appropriate to
obtaining a kinetic equation for resonant four-wave interactions only the time
scales t,et,eet are relevant, and et n 3 3 may be suppressed in the notation
below. Evidently

o

5 26(1)(5l,t,et,e2t) =0, (2.13)

2
S(k +k, ) (;&- 2G( )(Al,t et,e t)+ T T o0 ( )(’-l,t et,e t))
1 b ]  § (2) 1.7 .1
= 5(51+52) dk 1{(51,;5 'K -k )3G (x KX styetyeee)

x expl1 (005, )-u(g -a(iy K ))e]) + (L w2))f (2.14)



8 (15, +is )<at Xe o3 Iy sb,et e %)+ dat G (2)(;31,t,et,e2t)

+-—-——
de“t

= 8(k +k,) { ( fdlg'x(;gl,;g',ggfg')36(3)(;5',51-}5',t,et,...)

2 2G(l)(}sl,t,e'b,r;2t ))

x el ()0 ol )0 + (1 o 2)}

8 (1, +53) &é (2)(1:
= 6(k +K +k3) {([K( l,-1:2,1:l+k2)2G(l)('152,1:,615,...)2G(1)(53,t,et,...)

X expl i (0(35 J (i) (i) )61 + [2 0 30)

+(2eol1)+ (3 c—»l)}

6(1{ +k +k3) {EE 3 ( (A:l, sbyet,eee )+ -gi- 3 (2)(1{l,k sE,et,00 )}

S(L +k +k3) {( [K(&l,-kz,klﬂ ) G(l)(kz,t €tyees) G(e)(k3,t €tyees)

+ 2G(2)(k t Et,--o) G( (1;3,1-, Et, )]exp[l(w(kl)-l-(&)(k ) (.0(.{ +1{ ))t}]

+[2 (__,3}>+(2<-+1) + (3 Hl)}

8(kl+k +k3) {(\/:ik'h(.: i -k') G(3)(1 oKy -k! 1{2,t,et,....)

+

x expl1(o(t ol )—w(z;l-y))t}) s (2o1) + 3o}

1k

(2.15)

(2.16)

(2.17)
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6(1: +k, +k3+k ) St L{G( (-.l,ug,kB,t €byens)
(1),
= 5(1:1+1<2+“3+;c )2 [K(kl,kl -k ) G (A.Q’t’et"”)
s'~2
x 8B (1,568,000 Jempl 3 (0 )0, )00k +E,) 1)
+[2e3] + ]2 «-)h]>+ (le—)s')} . (2.18)

Although Eqs. (2.13)-(2.13) may appear somevhat formidable, the analysis is
quite straightforward. One solves (2.13)-(2.10) order by order, commencing
with the lowest order first. The freedom inherent in the multiple-time
formalism allows for the removal of secular behavior on short time-scales,
vhich in turn determines the kinetic behavior on longer time-scales. Ve note
from (2.13) that the leading-order two-wave correlation, 2G(l), does not vary

on the short (oscillation) time-scale t, i.e.,

2G(1)(§l,t,€t;62t) = 2G(l)(lgl,o,et,eet) . (2.15)
Consequently 2G(l)may be treated as constant as far as any t integrations are

concerned in the analysis that follows.

ITY. FORMAL SOQLUTION

We now systematically seek the solutions to Egs. (2.13)-(2.13) for tie
correlation perturbations. The symmetries and definitions (l.4), (1.6), (1.7)
and (1.8), will be freely used throughout this section.

(a) Lowest Order

(1)

Since 2G

(2.16) may be integrated directly to give the leading-order three-wvave

does not vary on the short time-scale t according to (2.13),
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correlations on the t time-scale. This gives
2 2 ,
( )(kl,az,b,et,o..) - 3G( )(']51,52;0,€t,-.-)
s r Y _
, XP(l(w(,lgl)w(:se) )T @y ey o)
T{u(E, JRTE, J-6(%, &) s I T ’ '

where we have introduced the convenient notation

(2)(1;1, ket ,eot) = 2 {K(kl,k e ,-52)2(;(1)(1: ,et,e2t) G(l)(k Ho,et,e5t)
+ K(-k,-k,,~k_ ,~k.) G(l)(k ,et,ezt) G(l)(k ,et,eet)
B Xprlpky 1,0, 25 T\

_ 1 2 1 2
+ K(ge,—§1,51+52)2(;( )(gl,et,e t)EG( )(51+52,et,e t)} . (3.2)

In writing (3.1) and (3.2) use has been made of appropriate symmetries dis-
cussed in the introduction; moreover, we remind the reader that in light of
the definition (2.1), 2G is real and an even function of its k-argument. It
should be noted that 33(2) as defined in (3.2) in general varies on the et,
eet,... time-scales through the slow time variation of QG(l). It will also

be useful to have an expression for 36(2) in terms of the action density

n(%,et,eet) associated with the leading-order spectral energy density where
n(E,et,eet) = 2G(1)(§,et,egt)/w(§) . (3.3)

Making use of (1.7), (1.3), and the oddness of n(}s,t,et,eet) as a function of

its k argument, Eq. (3.2) may be rewritten as

~(2
3G( )(k sEny€t € t) = -2u(1\l,nl+k2,-k ) X {n(lxl,et,‘. t)n(ﬁ k,,et,e t)

+ n(k s€t,¢ t)n(k + ,et,eet)-n(gl,et,eat)n(%e,et,ezt{} . (3.4)




17

Expression (3.1) for the leading-order three-wave correlations may be
substituted directly into (2.18) to determine the leading-order four-wave
correlations on the short time-scale t. In addition (3.1) may be substituted
into (2.14) to determine the fast time variation of 2G(2) as well as the

(1)

evolution of 2G on the et scale. The latter calculation has been discussed

in Ref. 4, and leads directly to the kinetic equation for resonant three-wave
interactions. We remind the reader of the relevant results. Provided the

initial-value term in Expression (3.1) for G(a)(g’,kl-g',t,et,eet) is a

3

sufficiently smooth function of its Fourier arguments, ©The associated effect
in the E'—integration on the right-hand side of (2.14) phase mixes to zero on
the t time-scale. In particular, this mixing process yields long time behavior

in the %’ integration of the formu’l3

(psci;}gtion) , (3.5)

in three-dimensional situations. However, the last term in (3.1) when sub-
stituted (2.14), gives a steady contribution to the 5’-integration, as well

as terms which phase mix to zero. 1In particular, terms of the form

exp{ 3 (w(l po(k" )-u(k, k' ))t)-1

- (3.6)
i.(e(lgy )-0(k" )-w(x, k"))
behave effectively as
- (3.7)
ST RE O E A o o, '

as t —» o, insofar as integrations over relatively smooth functions of E’ are
concerned. Consequently, it is clear that vhen (2.11) is integrated on the

t time-scale, (a/aet)gc;(l) (vhich is independent of t) as well as the steady
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contribution from the E'-integration will lead to secular behavior in 26(2)

proportional to t. Removal of this secular behavior gives the evolution of

1
o)

on the ¢t time scale, namely

1 S (2) let 2
¢ et,e?t) = (1fax’ bk k' iy k') 3a () ok =K' set,e7t)
2 G(ET IO K)ol )k )-(ky K J¥iA

t (kg oK), b4-0 . (3.3)
With the secular behavior removed in this manner,

5 2G(2)(§l,t,et,62t) =0, (3.9)

as t > o, Equation (3.9) may be written in a more familiar form in terms of
the action density as

d |P-(k1:~ ’~l ~ )|2
St n(kl,et € t) = “ﬁ/&k<u(y (R =y )O(w(Ef‘w(E')'w(kl'k'))

(?(k',et,e t)n(c -k',et,e t)-n(kl,et € t)n(k s€t,¢€ t)
2 ' 2
- n(kl’Et’e t)n(51—5 ,€t,e ti) . (3.10)

vhere use has been made (3.!) and the symmetries (1.6) and (1.8). Equation
(3.10) will be recognized as the conventional kinetic equation for resonant
three-wave processes. If the appropriate mode labels are reinstated in the
preceding analysis, then this kinetic equation may be written in the form of
Eq. (1.10) with time variations on the et time scale. It should be emphasized
that once the hierarchy formalism is established, the derivation of (3.10) is
& very simple two-step process. Equation (2.16) is solved for the leading-
order three-wave correlations and the resulting e:tpression substituted into

(2.1&), which directly yields the kinetic equation.




The concern here, hovever, is with situations where the resonant three-
wave decay condition (1l.1l1) cannot be satisfied, and hence it is necessary
to carry out an analysis of the hierarchy equations for the correlation per-
turbations to higher order. 1In this case the action density does not vary on
the et time scale, i.e. (B/Bet)n(%l,et,egt) = 0 from (3.10). Or in terms of

the leading-order spectral energy density we have that
o (1) 2
Sex 2G (El,et,e t) =0. - (3.11)

It should be noted from the definition (3.2) that 3§(2) is also independent

of et by virtue of (3.1l1).

(b) Next Order

In carrying out the analysis to next order, we now successively solve
(2.13), (2.17) and (2.15), using the information regarding the two- and three-
wave correlations given in Egs. (3.1), (3.9) and (3.11). The kinetic equation
for four-wave interactions will be manifest as a nonlinear integro-differzntial

<)

equation for on the e2t time-scale.

2
First, the leading-order four-wave correlations, hG(3)’ may be simply
obtained from (2.18) as a functional of the leading-order spectral energy

density and initial conditions using expression (3.1) for the three-wave

correlations, 3G(2). This gives

‘2:E3:ﬁ:5t:€2t) = o(k,+k .tk +§4)AG(3)(51:52,§3,0,6t;€2t)

8 (3)
°(51+52*53+5h)uG (0% Rlw2 A3

(1) 2

c =%

+ 5(51+52+53+b+)22 {([K(El,§1+;52, 5556 (kys€"t)
st=2

xftdt"exp[i(w(k Yot )-o(k, +) 6" eB) (e ,0,¢t,62t)
0 ~1 ~2 ~al A2 3 ~3 b
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.t"
+ 33(2)(;33,&,&)[0 dt'exp(i(w(&)w(&)-w(%%))t'}J]

+ [2 o 3] + [2 eh]>+(1 o s')} . (3.12)

Expression (3.12) for the four-wave correlations when used in Eq. (2.17) deter-
mines the t and €t behavior of 3G(3) and 3G(2) respectively. The resulting
(3)

expression for G when substituted in%o (2.15) then gives further informa-

tion regarding the time evolution of the two-wave correlations, in particular
the kinetic behavior of 2G(l) on the e2t time-scale,

In order to shorten algebraic presentation in the subsequent analysis,
we point out at this time some simplifications which occur when the above
mentioned series of substitutions is carried out. These may be verified by
the reader. It will be noted that the initial-value terms G(z)(g ks 505€T, 000

3

and , G(3)(k 3,O,€t,...) have been retained in writing (3.1) and (3.12) as

1’12’
should always be done in any rigorous multiple-time perturbation formalism.
However, when the contribution of the initial-value term hG(S)(kl’ 2,53,O,et,...)
to the three-wave correlations, 3 ( )(kl’ 2,t,et), is calculated from (2.17)
and the result substituted into (2.15), it is found that the corresponding
contribution to the g'—integration in (2.15) phase mixes to zero on the short

13

time-scale, on the basis of previous arguments.u’ Consequently, for all
intensive purposes of obtaining a kinetic equation for the spectral energy
density, the initial-value term associated with the leading order four-wave
correlations may be omitted from the analysis, and, in particular, set equal
to zero. Similar conclusions also pertain in regard to the initial-value term,
(3)(k

l,ke,o,et,...) which occurs in integrating (2.17) on the short time-

scale. Moreover, 3 ( )(ﬁl,ne,O,et,...) may be omitted from the analysis.
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Keeping in mind that (9/det) 3(2) = 0 in light of (3.11), it may be shown from

3
(2.17) that the condition for removing secular behavior in the solution
3G(3)(51,52,t,et,...) is simply
o (@) -
Set 3G (51,52,o,et,...) =0, (3.13)

That is, if 3G(2) is initially zero, it remains so at least on the t and et
scales. We thus omit the initial-value terms associated with uG(S), 3G(3)
and 3G(2) from the subsequent analysis. The phase mixing of these initial-
value terms as regards the time evolution of the spectral energy density is a
most encouraging feature, and in fact a necessary one for deriving a closed
kinetic equation for the two-wave correlations.lu

With the omission of initial-value terms, the four-wave correlations

(3.12) become simply
(3)
o 1 o 1
O (151+E2+§3+ﬁ‘_ ))-l-G (;51’:52):53 Jt ,Gt 3o )

1 2.\ a2 2
st=2

t .bll
x fo dt"expti(w(gl)wqgg)-w(gfgz)>t"}fo at*expl3 (05 )i, -0 (lsy g, ) )t )]

+[2e3] +[2 4—)1+]> + (1 Hs')} ’ (3.114)

which is a trilinear functional of the leading-order spectral energy density,

G(l)(k,ezt), in view of definition (3.2) of 3§(2). We now integrate (2.17)

on the short time-scale to determine the three-wave correlations G(B) (keep

3

2

in mind (d/det) 3G(2) = O from previous discussion). This gives
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5(1{ +k2+k3 3 (3)(‘\15.&2’1; t;.oo)

= 515, {( [‘\(ﬁl, ik 1, )6 ,ﬁt)ae(z)(%,et,...)

¥ 2G(2)(k ,et,€%t) G(l)( 2 exP{i(w(El)J'w(l‘,e)""(;élﬂée))t)-l]

B¢ T T, )G, ¥, )

+[2<—+3}>+(2+—>l) + (3 Hl)}

t
+ 6(§l+}5 +k ){(fk"l: hd ,k”,kl k")f dt L,_G(3)('15",'1§ k", k 5%, €ty00s)
0 |

X ek’p{i(w(lgl)-w(}g")-w(}gl-;g"))t}> +(2ol)+ 3o 1)} (3.15)

where use has been made of (3.9), and hG(3) appearing in the last term of
(3.15) is given by (3.1%) with appropriate Fourier arguments. Expression
(3.15) may then be substituted into (2.15) to give further information on the
time evolution of the spectral energy density. It will be recognized that the
2G(l)2G( ) driving terms on the right-hand side of Expression (3.15) for 3G(3)
represent a higher-order version of the ternary correlation effects calculated
in part (a) of Sec. III. Consequently, for large t these terms give zero
contridbution to the 5'—integration in (2.15), in view of our assumption that

the resonant three-vave decay condition cannot be satisfied. Only the contri-

bution of the four-wave correlations in (3.15) remain, and Eq. (2.15) becomes

§? (3)(kl,t ¢t ,e c)+ \-a—- (2)(kl,et, t )+ ——— (1)(51,62,0)

cet 2 a€2t 2

- (st e ) { Ul et (0 i) )0)

X‘/;) atr" G(3)(k",kl 1" _kl t"',e t)exp{l(w(k') w(l—")-w(k' k"))’c'"}]
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ESt{t,EG(l)(egt),EG(l)(eet),gG(l)(eet)} , (3.16)

vhich is the final equation of the perturbation analysis to be considered here.
Since AG(3) is a trilinear functional of 2G(l)(§i,62t), it is clear that the
right-hand side of (3.15) varies on the t and 2t time-scales, but not on the
et scale. We use the abbreviated notation St{t,eG(l)(egt),EG(l)(ezﬁsz(l)
(egt)} for the right-hand side of (3.16) to emphasize these features.
Evidently, when Eq. (3.16) is integrated on the t time-scale, both (d/det)
2G(2) and (B/begt)eG(l) lead to secularities in 2G(3) proportional to t.
Moreover, that portion of the stoss term in (3.16) which tends to a steady
asymptotic value as ¢ -9&,15 will also lead to secular behavior (proportional

to t) in 2G(3). Using the freedom inherent in the multiple-time formalism to

vield a uniformly valid solution, we thus have the condition that

E_SEQG(E)(}Sl’et’eet) + 62 gG(l)(lf.]-’eet)

et

= lim St{t,gG(l)(e2t),EG(l)(ezt),gG(l)(egt)} (3.17)

t—)eo

vhere the limit in (3.17) is with respect to the short time-scale t. Moreover,
9 2
< 26(3)(51,t,et,c t) =0, (3.18)

as t — . In addition, since EG(l) and the right-hand side of (3.17) are
independent of et, these terms will give secular contributions (proportional
to et) to 2G(2) when Eq. (3.17) is integrated on the et time-scale. The

condition for removing this secular behavior is simply




oL,

e ,eP8) = 1 sete, 6 (o), oM (), MRy, (3.0)

t—>co

Se 2
. : (2) 2 " ot P
in which case (B/BGt)EG (51’€t’€ t) = 0. Equation (3.19), which Tforms a

(1)

. . N . . - 2 .
closed nonlinear integro-differential equation for on the ¢t time-scale,

2G
thus describes the kinetic behavior of the leading-order spectral energy
density. It should be acted that the analysis of this section has indicated
that the ¢t time-scale is irrelevant in describing the evolution of ensemble
correlations when the resonant three-wave decay condition cannot be satisrfied.
This completes the formal analysis of the hierarchy (2.13)-(2.18) for the
correlation perturbations. In the next section, the t — o limit of the stoss

term given by the right-hand side of Eq. (3.16) will be carried out, and the

kinetic equation (3.1S) reduced to a useful form.

IV. THE XINETIC EQUATION FOR FOUR-WAVE INITERACTIOIIS

(a) Reduction of Eq. (3.19)

It is convenient to rewrite Eq. (3.1C) in terms of the action density,

which in this case varies on the e2t scale through
n(k eet) = G(l)(k ezt)/w(k ) . (k.1)
~1’ 2 ~1’ ~1

Writing out explicitly the stoss term from (3.16), Eq. (3.19) then becomes

5 u(kl,& ok ~k! p(E',%",E'-E")
a(‘:et n(kl7€ t) "tliﬂco }5 g}\{: g-,v )w('\: _Kl) { UJ(-E")Q)(}S‘ "}S")

t
e exp{ i(w(}sl)-w('%' )-Lo(’]él..}st ) )t}b[ at?! "exp[ i(w(}sx )_w(‘lén)_w(}sr —,15," ) ).tl n)
0

X AG(3)(§",51-5’,-1~<1,t*",ezt)] ekl + [ o -5']}) + (5 @ -,151)] )
(L.2)



wvhere the response y defined by (1.7) has been introduced in (4.2). The
leading-order four-wave correlation G(3) appearing in (4.2) is given by
Expression (3.14) with appropriate Fourier arguments. Making use of the
definition (3.k4), AG(S) may be written explicitly in terms of the action

density as

6(k e +k +k )uG( )(;Elﬂ ,1<3,t"',e2t)
t“l
[( f at' e‘m{l(w(k )+w(k )- w(n: ))t"}
s'=2

tn
><fo dt'exp{i(w(}\:a)w(&)-w(&fﬁ))t']

1 . 2 2 2,
X GTEE:EZT “(51’k1+k2’ k )p(&3,k ) ,-k )n(ie,e t)-{n(§3,e t)n(E3+54;€ t)

+

n(ly, € 6 )n( tly, €t )-n (5, € )n (g, €)1 + [2 03] + [2 M])

4

(1 & s')] 5 (kK +k3+:a+) . (4.3)

It is clear from (%.2) and (4.3) that there are three successive time
integrals over oscillations to consider on the short time-scale before taking
the t = o limit. As indicated in Appendix A, several of the associated terms
phase mix to zero in the k' and 5" integrations. Iiovever, a steady portion

also remains as t — . In particular, it is shown that insofar as integrations

over k' and k" are concerned,
Ll o

t
Lim exp(i(w(l, )-w(k')-o(k -k )t}f d*"exp{i(w(k')-w(k")-w(k'-k"))t""}
0

1t -

2
l) w(k')-w(k -k")

X G(3)(k",.ﬂ. |.l ‘{llt' l‘,€ t) = w(i
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‘ i ( L T 'L L n 2
X SR T A8 (R R
./_X-->O+ s (h.1)

i where 8(3)( sk .k, k ,eet) is the trilinear functional of action density
| I-I- ~ ~2 ~ nll-
defined by

80 (11 k00,5 %8)

2/w(x +1'5,T) 5
= <[ w(k )W(&)—w(;{ +1,E)+) 'J'(k ,k +k'2.9 ,}52)“(}53)§3+§)+,-ﬁ)n(52)€ t)

X (n(l5,¢° )0 (iky#lg,» <76 Jon(ly, e Dn(ies#ly, <% )-n(l5, €t (g, ,€6) )]

+[2 3]+ [2 e—>’+]> +(Le2)+ le3)+ Lek), (k.5)

with k +1£2+'153+‘Ia+ = 0. 1In light of (4.4), the kinetic equation (k.2) is giventby

d 2 g { 2/u(x!)
2t n(El;E t) = 2Re (ﬂ‘%,% {[ ,‘*’(1,51)"*’(1},’ )_w(;;l_}sq

P-(:*El:}s' ’}El_}\{:‘ )P(}E‘ )}S"J}E' '}5")
I PR T U T (R )

ih@(3)(k",kl-k' -“1,1x —A 'ye t) -
(V2 3 ~ ~. ~ - ' -
BTG | i)+ O ) )

A-O, (+.6)

trhere the factor [m(}sl)m(}\{” )w(}ﬁl’}f.')]_l“(]‘.él’}:‘.”}f.l"}ﬁ') has been absorbed into
the square bracket of (1'.-.6).]'6 Twice the real part has been taken in Eq. (4.6)
since the (k e—»—kl) interchange in (4.2) just adds the complex conjugate.

Tt should glso be noted that the various factors of the form
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[w(gl)+w(§2)-w(ﬁl+§2)]—l in (4.5) and (4.6), are non-divergent since it has

been assumed that the three-wave resonance condition is not satisfied.
Equation (4.5) appended by the derinition (l:.5) is thus the closed

Rinetic equation for the action density. We see that four-wave interactions

are manifest through the appearance of

1
RYARAM et Yo LISETLA YR
w(}\{'lj w(;v ) w(El }5 ) w(}s '15 )+-*-A A = O+

= w(lf.lf-w(}s")-wlg}sfk‘,' Yoy -0 (wlly -els)-wl -5t )-e(E' "), (W)

in EQ. (4.6). The d-function contribution from (4.7) corresponds to inter-
actions of the resonant four-wave type discussed in the introduction. The

principal-value term, however, corresponds to non-resonant or adiasbatic four-

wave processes. Both effects will in general be present. However, in a large
number of situations of interest, the effects of non-resonant four-wave inter-
actions, i.e. the principal-value contributions in (4.6), are small. This
occurs, for example, in circumstances where the response y is pure real
corresponding to the case of a lossless medium.lY In this situation we see
from (4.5) that ha(S) is real. Moreover, the remaining integrand in (k.6) is
also real except for the iP[w(ga)-w(gf)-w(gl-§])-w(g}-gﬁ)]'l term, which gives
zero contribution upon taking the real part in (4.6). Even in the general case
vhere p is complex, it is clear that if Imy is sufficiently small, the princi-
pal value contribution to the kinetic equation (:.6) will be negligible in
comparison to the resonant four-wave contribution from S(w(gl)-w(g")—w(gl-k')
~o(k'-k")).

In many case, we shall retain only the resonant four-wave contribution

for present considerations. After a modest amount of algebra which is
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summarized in Appendix B the kinetic equation (4.5) may then be written in

the convenient form

lD(-k 2,k ,,J_{_)le
S 00, = [[faaces, T e o)

X 6(“(51)'*‘03(;52)"(9('1‘{‘3)—0.)('1\{1{‘))E)(Kl .&2-1{3 ~L|-)

2
X <é(E2’€ t)n(£3,62t)n(k ,eet)+n(§l,eet)n(E3,62t)n(§4,62t)

2 2
- n(i) €7t )n(k, t)n(gu,eet)-n(gl,eet)n(Le,ezt)n(53,e2t)> ;o (18

where D is defined in terms of the response p by

T 2/w(k,+k,)
D(- Xpomkpok ’~h) \j— {j(;(k )+w(k )-w(k +, ) k(- “XK17Km 2’~2)
gt + g o) + G -5} (:9)

Equation (4.8) is analogous to (1.12) in the absence of mode labels, and with
t replaced by ezt. It should be noted that D(—El,-52,§3,§u) is symmetric under
interchange of any two of its Fourier arguments vhen the resonance condition
5176y = K3tk
ol Jls,) = w(i)+(,)

is satisfied. Moreover,

D( k 2, )'J-l-) = D (J.xl,.n.e, ;’{3, ,-J.{.) . (h-olO)



(b) Many Mode Extension

The considerations o Secs. II and III can be extended in a straight

forward manner to include node labels. We now have that

a1 » = 1 21_
2Cop (120085 ¥p) = (A (K ,2)A, (%)) (k.11)
k., 5 X = Jid b,
ete. The resulting hierarchy for 2G ’ 3Ga67’ hGaﬁys’ «es may then be

expanded in a multiple-time perturbation scheme, and the analysis carried out
in a completely analogous fashion. As was the case in the derivation of the
kinetic equation for resonant three-wave interactions using the hierarchy
:Eb:."mc'ﬂ.lism,l‘L it is found that if the two-wave correlations between unlike modes
are initially zero, they remain so in the time-scales of interest. That is

to say, if
op =05 GFP (%.13)

initially, then (L4.13) remains true at subsequent times, at least within the
range of validity of the third-order perturbation analysis. We assume (1.13)
to be the case. As before, in situations where the resonance three-wave decay
condition (1.11) cannot be satisfied, it is found that the leading-order

spectral energy density G<l)

Vo ol0ys does not vary on the et time-scale, but does

exhibit kinetic behavior on the 62t scale through the effects of four-wave
correlations. As stated earlier, the analysis proceeds in an analogous manner,
and we leave it to the reader to reinstate the appropriate mode labels and mode

summations in the previous sections. Introducing the action density associated
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uwith the a'th mode, which varies on the 62t scale, i.e.,
n (“l,e t) = N (kl,e t)/u “l) s (a1l)
the kinetic equation is given by
GB
D ( =k ,~k )'
a o4 2) ’~)+
llg €)= L fffi*‘e%smu 0 (5 e (500 (k o, (k)
ae? 7y 38 Al
B57,0
-k - L
X a(w (k )+w (1< )= (k )-w (ﬁ))s(klﬂce 1<3 ;&) (4.15)

2 -3 2 2 2 2
: £ T 1’;
><<nﬁ(}32,e t)n7(£3,e ¢)ng (k,, €76 )+n (% ,¢ t)ny(}sye t)n, (K, ,€7¢)

2
i na(zil,ezt)ns(ge,e t)ns(ﬁ,eet)-na(gl,e%)na( ,€2)n (kg t)>

where only the resonant four-wave contribution has been retained in (4.15)
(i.e. the principal-value, non-resonant four-wave contribution has been omitted
as before). Equation (%.15) is the obvious generalization of (4.8). The
coupling coefficients Daay&) hovever, involve a suwmmation over virtual states

and are given by

S L]_J 2/(.0 k + 2)
DO‘57 (- k 10 -k ;k :’15)_,_) J fZ{ (w (kl)+w (k ) w zkl+1{2)

-k k., < -l
o] ~2 ~ ~2 Al
W7 (g kg4l oI m TP (kK Kt )> (ﬁ 73> +<ﬂ © B >} )

(L.16)

The states n are just the intermediate virtual states referred to in relation

to Fig. 1. 1In viev of the symmetries (1.4t) and (1.6) we see from (4.15) that

D70 (e sykgoly) = DOl i ukly) - (Ba)
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Moreover, from (4.,16) and (1.8), Da575( -k oKk sk ) is symmetric under the

37~
interchange of any two of (a,-k k ) (8,- k, ), (7,k ),and (8,k & ), when the four-

wave resonance condition (1.13) is satisfied, i.e.

D78 (ke 5ok

Kpokool) = POk

2:'kl>k ;~[+)

- 7P R

Koy ok,) (5 o-kpok3omly ) = vee (4.18)
K307 < ~hTARIR3 TR

when

Wl Heg(ky) = o (kg )y (g,

ity = kot
V. GENERAL PROPERTIES CF THE KINETIC EQUATION
We now discuss various general properties of the kinetic equation (4.15)
including the preservation of the non-negative nature of the spectral energy
density, energy and mcmentum conservation relations, and tie appropriate law
of increase of entropy.

(a) Preservation of the Sign of the Spectral Energy Density

The spectral energy density 2Gda associated with the a'th mode, in
addition to being real and an even function of its Fourier argument, is mani-
festly non-negative as may be demonstrated from the definition (4.11) witn
& = B. Consequently, one of the minimum demands ve can make of the kinetic

equation (4.15), in order that the kinetic theory be acceptable, is that this

property be preserved during the course of time. That is to say, if

1 . -
ny (B () = ,60000) = 0, each (5:1)
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initially, then nw, does not turh negative at subsequent times. We check
that this is the case by the following reductio ad absurdum argument.

Take relation (5.1) to be true initially. Assume that the first corre-
lation to turn negative is associated with the mode @, and that this occurs

for '%l = 1‘50. It follows that at the instant G( ) is passing through zero

2o
L) =0,
( )(kl#k ) = (5.2)
and (l)(k )2 0 B distinet from ¢ .

EBB

Also, at the instant EGC%) is passing through zero, (4.15) gives

2 (€)= 0 (k) % n(5y%0)
%"t ae t
'Daﬁ?a(-,vo"}sa)l{B)}&L)lg
- ) s 2
oL (0 00 (5D (35,))

X 5(wa(go)ws(ge)—wy(g3)-ws(ﬁ) 5 (kothy-kak )

(l

X o0s’ (5 ,6240)2(}%)(1{ 1),681) (1 ,¢%)

20, (5.3)

where use has been made of Relations (5.2). This contradicts our hypothesis

of EG(%) turning negative. This argument may of course be extended to show
that none of the correlations, 2Gé:,|'&, ; turn negative.

(b) Conservation Laws

There are simple conservation laws associated with the kinetic equation

(4.15). We note that resonant four-wave processes conserve energy and momentum



on the microscopic scale according to (1l.13). TFurthermore, the total energy

density, éo, and momentum density, P, are conserved by Eq. (4.15), vhere

Go=), Jounalie®ts) (5.1)
(04
and
B
po=) Jaun G - (5.5)
(04

In particular,

- nlly ,€%t) (k)

5 C \ f
. Z ffffdkldk Al (o, Oy o, ()00 (1)< ()
7

IDO‘W&( Ky -k ,NL)I2
(k Jw (kj‘*’ (k )w,l:a 6(wa<}31)mﬁ(§2)_wy(:‘%)—wa(.}&;))5(k1+k k3 ~1L)

2 2 2 2 2 2
><<n6(1’§2,€ t)ny(}f;?),e t)nG(}Eu,e t)+na(}51,e t)ny(}és,e t)ns(}&,e t)
2 2 2 2 2 2
- na(§l,e t)na('l\c’z,e t)na(lc_u,e t)-na(;sl,e t)nﬁ(’lcg,e t)ny(ga,e t))
=0 , (5.6)
where use has been made of the symmetries (4.18), (1.k), and the oddness of

the action density as a function of its Fourier argument, n_, (-5,62t) =

-n; (k,€2t). In & similar manner it may be shown that P, is conserved, icee,

d \" 3 - SN
D ro-) i T g =0
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(¢c) Non-Equilibrium Entropy

As is the case for the kinetic equation for resonant three-wave pro-
cesses, the appropriate non-equilibrium entropy density in relation to (4.15)

is given by

S EZ fg}slznlna(gl,ezt)l . (5.7)
(07

Making use of the oddness of wa and n, as functions of their Fourier arguments,
together with the symmetries (%.18), it follows that

1
d y \ d 2

2- 5 =), 1% 5 o Nyl oet)
&t 5 a(51’€ t) %t

ID ﬁ)’ (" lJ *gxk :}34_”2

G:B
7,0

X & (u (It 1 (I5,)-0, (1e3)-wy (1) )3 (I Kook )

X (k€8 D (g g (g, €280, (15,0 (n, (s €58 )0, (165)) (g (i, €% D, (35,))

2
1
na(gl,e t) By (x €°t) n7(53,€ t) na(gh,e t)
Since n M, 2 0 for each @, the right-hand side of (5.8) is clearly non-

negative, i.e.,

d
3e2

szo0. (5.9)

Consequently, S is a monotonic increasing function of time, and reaches a

steady asymptotic value only when

1 1 1 1
.10
N R e N ey ©+10)

(¢
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for kl’52’53’54 satisfying the four-wave resonance condition
Loa('lsl)+ws('1§'2) = w7(1£3)+w5('13+) s
1£1+4"52 = 53"1,5‘4 . (5.11)

Relations (5.10) and (5.11) will also be recognized as the conditions for a
stationary (time-independent) solution to the kinetic equation (k.15). Evi-

dently the "modified" Rayleigh-Jeans distributionl8

1 L-JC/( }5)+R.}5 ( )
= — , each a , 5.12
ny(k) ®

where (+) and b are constants, solves (5.10) subject to the resonance condition
(5.11). However, Eq. (5.12) is not an acceptable stationary or time-asymptotic
solution for non~zeroC£), since it corresponds to infinite energy density

§ fna(g)wa(g)gk. We saw earlier that é% = é fga %)wa(g)gg is a constant of
the motion; consequently, if the initial preparation corresponds to finite

Cb, the system cannot pass to a state of the form (5.12).

(d) Generalizations and Limitations of the Theory

Throughout the analysis of the preceding sections it has been assumed
that uaﬁy’ and hence DaBya’ do not vary with time. However, it is clear that
the results may be trivially extended to situations where uaﬁy has a slow time
variation on the €2t scale. The analysis of Secs. II and III remains exactly

the same, and the final kinetic equation is still given by (k.15), with
pB70 |, %782ty | (5.13)

loreover, the conservation relations and lav of increase of entropy which vere

derived above, remain valid.
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A further simple e:tension of the analysis occurs with the inclusion
of a sufficiently weak linear instability. The modification of the hierarchy

formalism of Sec. II has previously been cons:'Ldereélbr in situations where

R
k) = i by .
0 () = 0 Ry (x) (5.14)
*
with wa? and Yo real, and wa(—k) = -W (g). A meaningful perturbation analysis

of the hierarchy for wave correlations is possible provided |7a/wQFl < 1.

In particular, let us assume
7 (k) = €%y 0 ) . (5-15)

ince the generalization of the kinetic equation (L.15) is the obvious one, we

only quote the results here, namely

—§§~ gx(k € t) = 27, (2)( l)n (kl,e t)
€%
+ (right-hand side of Eq. (%.15) with w_,- ‘*’a'R} . (5.16)

In addition, the growth rate 7a(2)(§l) may be alloved to vary on the slow time
scale eEt and not alter the result (5.16).
Finally, we remind the reader of a restriction for the validity of
(k.15). Certainly, in order for the kinetic equation to be meaningful,
the right-hand side of (4.15) must not be divergent. Let us examine Eq. (4.15)

Tor a fixed k,, and imagine carrying out the EM’ &, and k. integrations, res-

~1 ~3 2
pectively. The kh-integration just replaces %L k +52-k3 in the remaining
integrand. The k3-1ntegrat10n over 3(w (kl)«» (x )-w (k )-w (xl+k2 3)) is

then restricted to a surface (or surfaces) S(gl,%g) determined from

w iy D (1) = o, (g )4y (I +sp-ke0) (5.17)
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This gives a contribution in the integrand proportional to
a d -1
dk3 W (g ) + = d13 W (k +g2-§3) (5.18)

evaluated on S(gl,ge). Clearly the integrand will be singular in regions where

d
@3. w, (1) + 5 i wa(k Hsyoka) = 0 (5.15)

for 53 satisfying the resonance condition (5.17). In order for the right-hand
side of (4.15) to be finite, we thus require
%3. @ (k) + ‘; 0y (k) #ymk5) # 0 (5.20)

for §3 satisfying (5.17), except possibly for regions of zero measure insofar
as the integrations over S and §2 are concerned. Condition (5.20) thus Poses
a restriction on the class of problems to which the theory is applicable.
However, this does not appear to be a serious limitation.

Physically, the restriction (5.20) corresponds to situations where the
group velocities are different for the final states on the right in Fig. 1;
consequently, the corresnonding wave disturbances move away from one another
and do not further interact effectively. If condition (5.19) were possible,
the wave disturbances would move off together with the same group velocity and

ky5

be capable of additional multiple interactions. In this case the vave-
coupling is strong, and the weak turbulence analysis of preceding sections is

no longer valid.



VI. CONCLUDING REMARK

In conclusion we reiterate some features of the analysis. First, the
hierarchy formalism for weak turbulence +s inherently simple in comparison with
the conventional approach of solving Eq. (1.1) to some order, and then carry-
ing out appropriate statistical averages over a spatially uniform ensemble.
As pointed out earlier, in order to derive the tinetic equation (4.15), the
latter approach would involve a perturbation analysis of (1.1) to order hs in
the oscillation amplitude. However, the natural expansion parameter in the
hiergrchy for wave correlations is € ~ Kzg a measure of the spectral energy
density; moreover, it is necessary to carry out the analysis only to order €3.
The hie;archy formalism also has the desirable feature that no additional
statistical averaging need be carried out. Second, we remind the reader that
no random phase approximations, assumptions of gaussian statistics, on golden
rule of transition probabilities, have been invoked in the present analysis.
The kinetic equation (*.15) has been systematically derived solely within the
assumptions of wealk nonlinearity, and spatial homogeneity of the ensemble.

Application of the present kinetic theory to the nonlinear interaction
of long wavelength electron plasma oscillations is the subject of an

(o)
additional article.l/
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APPENDIX A

The factor
e::p{ i(u(}\{.l)-m(l{,' )'w(zl‘:—::' ))J‘:‘}

t
X f at " exp( 3 (0" )-0(x") -0 (k' -k") )6 "6 3 (i -k 6B (A1)
0

in the integrand of (L4.2), contains three successive time integrals, in light
of Expression (4.3) for the leading-order four-vave correlations. For the
time being we consider the contribution to Expression (A.1l) made by the first
square bracket term in Eq. (4.3). Inserting the appropriate Fourier arguments,

the corresponding portion of (A.l) is given by
L \ iy .
1(t)- Wk "K'+K") n(E" kg -k K kX Ju(-kp BT =Kk KK
X 1 2 2 1 1] 2 [ § 1 2 | ] " 2
¢ n(l‘.l'E ,€ t){n(-;sl,e t)n(k'-k -k, ,€ t)+n(}5 -k",e€ t)n(gs ~k"-k, ;€ t)
2 ' n 2
- n("}sl:e t)n(}s -k",€ )} (A.2)

vhere we have factored out the explicit dependence on the short time-scale t

through
I(t) = expli(w(k, )-w(k' )-w(k,-k'))t}
ftdt {i(w(k!)-w(k")-w(k'-k"))t ]ft'"dt
X LIS ilwlx! )-w(k")-w(k'-k" ) "
0 P ~ ~ - 0
X expf i(w(lg")%’(;gl-g' )-w(k;-k'+k") )t")

t"

x fo at " expl2(o(x'-K" -0k, (i - E"))ET) (803)
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Using the abbreviated notation

- Yo 1y et
fl = w(’%l) w(l{, ) w('lsl '13 ) >
£, = oK' )-0(k")-0(x' k")

— 11 et S | 1
25 = (g oK)l K"
£, = o'k, Ml -k ") (a.L)

it is convenient to take the Laplace transform of (A.3) with respect to t.

This yields

[e]
1(s) =] e Str(t)at , Res >0,
0

- l . l - l » l (A 5)
s-1fl S-lfl-lf2 s-1fl—1f2-1f3 s'lll'lf2’1f3'1fu
Since fl+f2+f3+fb' = 0 from (A.4), I(s) may be rewritten as
1 1 1 1 -
I(S) i = * v s 3 —~ . (AQO)
s s 1fl s+:LfLL s lfl 1f2

When Expression (A.6) is inverted, various of the oscillatory terms may be
shown (by standard stationary-phase techniques) to phase-mix to zero as t — =,
vhen the k' and E" integrations are carried out in the kinetic equation (L.2).
In particular, these oscillatory terms give contributions which decay for

large t as

(oscillation) or (oscillation)
t3/2 £

; (A.T7)

in three-dimensional situations. However, there is also a portion of I(t)
which gives a steady contribution as t - « insofar as the E' and E" integratias

are concerned. This contribution may be simply obtained from (A.6) as



L1
lim I(t) = lim sI(s)
t - s -0
+
1 1
= . 3 5 5 A—>O ) (A'8)
flfh X 1fl 1f2 +

where fi # 0 by hypothesis. Reinstating the definitions of fi we have that

lim I(t) = {u 1 . i m}
t e (El)-w(lé' )—w(’}&l-}\{" ) w(gl)"w(,lﬁn)’“’(,%l-k' )"w('l‘{"-}‘{‘" )+.

° 1 Q
SEEE, R, EET 27 % (A.2)

This determines the steady contribution of (A.2) as t — =, to Expression (A.1).
The above arguments may also be carried out for the successive permuta-

tions of terms in Expression (4.3) for the four-vave correlations. When all

terms are grouped together, it follows that (insofar as integrations over E‘

and k" are concerned)
t
i expli(9(5))-0(' )l k') a6 el (ol )-u(g")-u(k!-x") ")

2
] lz-G(D)(E"’f‘El'}E' oKy 6T ",E5%)

— 2 i
= {w(,%l)'w(}\{" )-W(El'.lé' )'w(}‘sl)-w(}s ")-w(}sl_}éx )_w('}s; "}S")"l'iA}

ua(s)(%"’}&l-}s"-,}‘El’,l\{,'-,lsn}ezt) ,
s -0, (4.10)

where hﬁ(B) is defined by (L.5) with appropriate Fourier arguments.




Lo

APPENDIX B
We consider Ixpression (4.5) for 21LG(")(k",l«:l-x ,-kl,g'-k",eet) vhen

the resonance condition
0k )-0(x")-0(k, -5 )-u(E'-K") = 0 (B.1)

is satisfied. After some straightforward algebra making use of the symmetries
(1.4), (1.8), and n(ag,eet) = -n(k,egt), it may be shown that the various

permutations group to give
R e T)

=\[%; D(g",gl-g’,-El,x'-g"){n(g",eat)n(gl-lg',ezt)n(;s'-g",egt)

- n(El,th)n(g",ezt)n(kl-g',ezt)-n(gl,eet)n(Kl-E',eet)n(g'-h",ezt)

- n(k; €76 )n(k", €% )n(K' k", €% )} (.2)

where

D(jé",lhgl—l,s X, SK'-K")
g/w(k -k'+k")
= &E T 0 e prices o il p(-k, ,k'-k"-k, ,k"-k")
3 Vzk )+w(k w(%l k'+k ) ~lln & Al m

X u(k",k -k -k )) <~1 -k’ o - 1«:) (1: -k' e k'-k ">} s (B.3)

and the resonance condition (B.1l) is satisfied. It should be noted that

*
D(}\{"":l\{.l-;s"—}&l_’}s{o' -,15") =D ('E")kr',lsl’l{'l)k"'l{‘t) ) (B‘)’!')

in view of (1.4) and the relation
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l-l(kl ’Ll '*'}32 - ') = H ( kl ’_kl 2 ’ ,132') ’ (8.5)

with appropriate Fourier arguments. Moreover, it may be shown from (B.3) and
(B.1) that D is symmetric under interchange of any two of its Fourier arguments,

i.e.,

D(E"’El-}::«"-}sl’}é'—:é”) = D(,}Sl'}&';,ls": l’k '}3 ")
= D(-E]_’E]_-E”E”J,}f,x'k") = D(kt Nn,kl_}st’_-;[sl’}su) = vee (Bo6)

Use is also made of the symmetries (1.8) in verifying (B.6). 1In view of (B.2),

the resonant four-wave contribution in the kinetic equation (L4.6) becomes

g/w(k’
____ n(kl,e t) = 2nRe </ﬁ*"dk" [w(k )-w(k")-0(k, -k")

I-l(;sl:li,‘ :}51',13' Ju (5 ':,lf,"::"é' ‘,15")
S R R T T ()

/:—3 p(k", k -k, -k

l,k -’«: "3 (w(}gl)'w(}s")""(}él'}st )"‘*’(E"‘k"))

x {n(x", %t )n(k -k, et n (i -K" ¢
- n(Al,e t)n(k",e t)n(“l kt,e t) n(kl,e t)n(k ~5’,e t)n(k' -k", € t)
- n(gl,ezwn(;g",eet)n(l,g'-zg",eetn}

+ [X' 9151-5'] + [x' e—}gﬂ}) . (B.7)

Equation (B.T) may be further reduced to the convenient form (L4.8). We outline

here some of the intermediate algebraic steps, and write (B.7) schematically as

d W 2
n(k,,e“t) = T +T 4T
NN 1 17273

(B.5)
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where Tl, T2 and T3 denote the contributions from the successive square
bracket interchanges in the order they appear in (B.7).

We first demonstrate that T3 = 0. From the third square braclket
interchange in (3.7),
2/u(k,) w(=k", -k )k -k Ju(-k, k", -k, -k")
T, = 2xRe/ [ak’ K" ~L R s
3~ K& S eE ek E) T eE )w(}gl-}g' Yo (K Vo(EE")
3 .
X\/’ﬂ; D(}s",}jl'}g' bk :'}51"}3" )5 (“’(1}" )*‘”(15")"'“’(}51“}3' “*’(,151'*'}3"))
x-{%(E",ezt)n(gl-g',egt)n(§l+§“,ezt)
- n(k', et )n(x", <% n(x, -5 ;€% )+ (k' , %t (i =k' €7t )n(k, +k", ¢t
2 w2 n 2
+ n(k',e"t)n(x",¢ t)n(}51+1£ €78) ¢ (B.9)

vhere the symmetries w('ﬁ) = -w(E), n(-k,eet) = -n(E,eat) have been used.
Equation (B.$) may also be written in an alternate form by interchanging the

variables k' & -k". Making use of the symmetries (1.8), (B.6) and conditions
(B.!:) and (B.5), this gives

2/w(kl
_ 1311 o~ - - LUK PR ETS e ot
= QR?‘[/E&{‘ % ‘*’(,15,1)"'“’(}5")'“’(.151""}5") (- u( 1,511,13 ’ 1,31 }3 u( L,& ; -}sl"l:l £ )
3 " el Tt 1 1M N MYl -1t ). 1
KB DO -l B (0 () - - 7))

x{ } (B.10)

vhere { } is the curly bracket in (B.9). Adding (B.9) and (B.10) yields

T3 = 0, since the resulting integrand contains the factor

(k" ) (5" Yol - )=0a(is +5") o ((" Yo" Voo (le, It )=k +K")) (3.11)



which vanishes in the k' or E" integration.

Consequently, the kinetic equation becomes (B/Beat) n(kl,eet) = T 4T,

The T, contribution, which corresponds to the interchange %' e»%l-g', just

2

represents a simple change of variables in the E’ integration, and hence

reproduces T..

1 Thus, the kinetic equation may be written

2 n(gl,eat) = 2T

(B.12)
Begt

l )

vhere Tl corresponds to the contribution from the first square bracket term
in (B.7). After appropriate changes of integration variables in the expression

for Tl’ it may be demonstirated that the factor,

2/w(x")
o ' ot RN IE B
_w(gj_w(}sl_:ét) “(E]_’}v{ :51 ,15 )P-(}\E );1‘; )}& ,15 ) 2

w(kl)

in the integrand of (B.7) may be replaced by

2/w(k' " "
3 {<Tk j"w(k w(& -krj u(kl)k ,k -k )u( ’,k kl_g )>

(g ol EE ¢ & o)

%
= -31-\/'15 D (5",§l-§',-5l,5'-k") . (B.10)

~

Use has been made of all the usual symmetries in obtaining this result. Conse-~

quently the kinetic equation (B/Bezt)n(gl,ezt) = 2T, becomes

3 5 ID(k" )k, k' =k, k' -k") |2
— t 1 ~ el N ~lT N
a€2t n(}§1,€ t) "fg‘k,i, 9}5 m('lsl)w(}sl_}sl )‘”(1,5,")‘*’(5""}?7

x & (w(y )-0(k")-0(k, -k )-w(k'-k"))

{%(:",e t)n(k -k‘,e t)n(k' k",e t)
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LS
- n(gl,egt)n(E",eat)n(El—k',ezt)—n(gl,eet)n(gl-g‘,eet)n(b’-g",ezt)
- 05, e t)n(x", %6 )a(k X", <5t )} . (3.11)

Changing the %' and %" integration variables to 52 and §3 integration variables
where k' = k,+k, and k" = §3, Eq. (B.1l) may be written in the convenient form
(4.8), since D is symmetric under interchange of any two of its Fourier

arguments.
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1L, 7In the discussion of this paragraph it has been assumed that these initial-
value terms are sufficiently smooth functions of their Fourier arguments.

The special initial preparation corresponding to singular initial condi-

tions can of course lead to non-mixing contributions.

15. Those terms which do not tend to a steady value as t — « phase mix to zero

in the k' and E" integrations.
16. This factor is symmetric under the interchanges indicated in successive

square brackets of (L.6) because of the symmetries (1.4) and (1.8).




17.

18.

19.

A case in point where p is pure real, and hence the principal-value terms
vanish in the kinetic equation (3.25), occurs in the description of the
nonlinear interaction of gravity waves in a fluid of constant depth.

The Rayleigh-Jeans distribution is modified through the appearance of the
term R-Exg)in (5.12).

R. C. Davidson (to be published).
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FIGURE CAPTIONS
Fig. 1. Basic resonant four-wave process consisting of the merging of two
waves into an intermediate virtual state, followed by the (instanta-

neous) decay of this virtual state into two further states.
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