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SUMMARY 

A one-dimensional hydrodynamic formulation of t h e  hyperveloci ty  impact 

of a p e l l e t  onto a t h i n  bumper has been analyzed by f i n i t e  d i f fe rence  tech- 

niques. 

well-known a r t i f i c i a l  v i s c o s i t y  due t o  Von Neumann and Richtmyer. 

were made assuming a p e r f e c t  gas equation of state and r e s u l t s  fo r  t he  com- 

p l e t e  i n t e r a c t i o n  including the  e f f e c t  of a secondary sur face  are presented 

here  a 

A f i r s t  order  scheme due t o  Lelev ier  w a s  used together  w i t h  the 

Studies  

The f i n i t e  d i f fe rence  code w a s  found t o  remain computationally 

s t a b l e  throughout a l l  phases of the  inves t iga t ion .  However, the  long term 

expansion r e s u l t s  are not  wi th in  the  realm of the physical  assumption of 

one-dimensionality. Consequently, the  long term s t a b i l i t y  i s  more important 

mathematically than physical ly ,  

the e l imina t ion  of s m a l l  l oca l  dis turbances o r  " j i t t e r s "  which o f t e n  accom- 

pany the use of a r t i f i c i a l  v i s c o s i t i e s .  

does not appear t o  have been used before  on t h i s  type of problem, w a s  

successfu l ly  employed. 

A usefu l  f ea tu re  of the  present  work is  

A technique of smoothing, which 
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-* RP bumper and p e l l e t  ra re fac t ions  

+ &  
bumper and p e l l e t  shocks respec t ive ly  'B' 'P 

t t i m e  

U v e l o c i t y  

v p e l l e t  impact ve loc i ty  i n  bumper frame 
6 - L  

shock v e l o c i t i e s ( o f  S S respect ively)  
'pJ 'B P B  
X a x i a l  coordinate 
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8 t i m e  increment associated with i n i t i a l i z a t i o n  of 

a thickness  of t r a n s i t i o n  zone shock wave when a r t i f i c i a l  

v i s c o s i t y  i s  present  

space =.. t i m e  mesh s i z e  A x J A t  
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2, Symbols used repeatedly i n  the Appendices 
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- i k A  x A 1 + ul (e 
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INTRODUCTION 

This r e p o r t  is one i n  a continuing series of s tud ie s  of t h e  pro- 

The method of pro- t e c t i o n  of a spacecraf t  i n  a meteoroid environment. 

t e c t i o n  is  due t o  Whipple. Consider Fig. 0.1. The spacecraf t  h u l l  i s  

surrounded by a t h i n  s h e l l  o r  "bumper". The high k i n e t i c  energy of an 

impinging meteoroid may be expected t o  vaporize both the  meteoroid 

and a loca l  s e c t i o n  of the  bumper. 

cloud w i l l  then d isperse  the  o r i g i n a l  meteoroid momentum over a la rge  

sec t ion  of t he  inner hu l l .  

pressure on t h e  h u l l  may be expected. 

other  th ings ,  on the  spacing between the bumper and the  hul l .  

The expansion of the  r e s u l t i n g  gas 

I n  t h i s  way a considerable reduct ion of 

The reduct ion w i l l  depend, among 

Bump er Spacecraft  Hull 
(a> 

- Center 1 i n e -  

( c> 
Schematic of Meteoroid-Brunper I n t e r a c t i o n  

Fig. 0.1 
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A fundamental assumption i n  t h e  foregoing is t h a t  t h e  k i n e t i c  

energy w i l l  be high enough t o  produce vaporizat ion,  For most materials 

(sand, c lay ,  g r a n i t e ,  aluminum, steel) t h e  vaporikat ian energy is  of 

t h e  order  of lOL0to 1OI2 ergs/grams, 

10 km/sec should produce vaporization. (i 

v e l o c i t i e s  of 30 km/sec the  assumption t h a t  vapor iza t ian  takes  p lace  

should c e r t a i n l y  be va l id .  

Hence v e l o c i t i e s  i n  excess of 

A t  t he  high meteoroid impact 

A s  an experimental s imulat ion of t h e  physical  s i t u a t i o n ,  one may 

p ro jec t  a c y l i n d r i c a l  p e l l e t  t o  impact normally on a t h i n  sheet .  

c y l i n d r i c a l  p e l l e t  is used t o  obta in  r o t a t i o n a l  s y m e t r y  about t h e  

d i r e c t i o n  of t h e  impact veloci ty .  

of a c y l i n d r i c a l  Lexan p e l l e t  t h a t  has been acce lera ted  by a l i g h t  gas 

gun impacting on a lead sheet.  Frames 1-4 show t h e  approach and des- 

t r u c t i o n  of t h e  p e l l e t  while frames 5-8 show t h e  expansion of the re- 

s u l t r n g  gas cloud. 

A 

Fig. 0.2 shows high speed photographs 

A s  a prel iminary t o  a t tempting an ana lys i s  of t he  flow represenLed 

i n  Fig. 0.2 w e  have s tudied a one-dimensional approximation. 

taken i s  t h a t  i n i t i a t e d  by D r .  G.V. Bul l  (Ref. 1). A hydrodynamic model 

The approach 

is proposed and t h e  k i n e t i c  energy assumed s u f f i c i e n t l y  high t h a t  vapor- 

i z a t i o n  energy may be ignored. 

ou ter  o r b i t a l  e l ec t rons  may then become important. However such e f f e c t s  

are not  considered i n  t h i s  repor t .  

Plasma e f f e c t s  due t o  the  s t r i p p i n g  of 

The model w e  have adopted is  one-dimensional i n  that r a d i a l  e f f e c t s  

are ignored. Such an  assumption can only be va l id  f o r  sho r t  t i m e s  a f t e r  

impact. 

t h e  c e n t e r l i n e  

f i c i e n t  f o r  r a d i a l  a t t enua t ion  waves t o  pene t r a t e  t o  the  center .  

I f  w e  i n t e r p r e t  t h e  study made i n  t h i s  r epor t  as applying t o  

b i g .  O.l(c)g, then by a shor t  t i m e  w e  mean a time suf-  

We 
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might a n t i c i p a t e  t h a t  t h e  one-dimensional model i s  v a l i d  during t h e  

per iod i n  which the  p e l l e t  is being vaporized,, 'Phis w i l l  be s o  i f  

t h e  length  of t h e  p e l l e t  i s  small compared t o  t h e  radius .  It is  use- 

f u l  t o  v i s u a l i z e  t h e  one-dimensional model as descr ib ing  t h e  impact of  

one i n f i n i t e  f l a t  p l a t e  onto another.  

The l i m i t a t i o n s  of t h e  assumption of one-dimensionality make it 

d i f f i c u l t  t o  ob ta in  experimental confirmation of the  r e s u l t s  contained 

i n  t h i s  r epor t .  

range is  roughly 10 km/sec, which is  w e l l  below meteoroid v e l o c i t i e s .  

Thus, while we may expect vapor iza t ion  tQ occur,  it does not  appear 

reasonable t o  ignore the  binding energy i n  comparison wi th  t h e  k i n e t i c  

energy corresponding t o  such a ve loc i ty .  Experimental confirmation is ,  

the re fo re ,  fu r the r  hampered by t h e  need t o  include t h e  e f f e c t s  of non- 

n e g l i g i b l e  vapor iza t ion  energy., 

Also, t h e  upper l i m i t  of t he  experimental ve loc i ty  

Since t h e  one-dimensional approach has reasonable v a l i d i t y  

during the  vapor iza t ion  of t h e  p e l l e t ,  w e  a r e  a b l e  t o  study the  "des- 

t r u c t i o n  po ten t i a l "  of t h e  bumper. The shock moving i n t o  t h e  p e l l e t  

w i l l  eventua l ly  be overtaken by a release wave from t h e  free sur face  

of t h e  bumper, provided the  p e l l e t  i s  s u f f i c i e n t l y  long. 

pressure  behind the  p e l l e t  shock w i l l  consequently decay. 

it w i l l  reach some c r i t i c a l  l e v e l  a t  which i n s u f f i c i e n t  energy is 

a v a i l a b l e  f o r  vapor i ia t ion .  e Although vaporizat ion:  energy was neg- 

l ec t ed  and an  i d e a l  gas equation used i n  t h e  present  s tudy,  it was 

poss ib l e  t o  decide a p o s t e r i o r i  t o .  what degree an impinging p e l l e t  would 

The high 

Eventually 

have been destroyed. 

It w a s  t o  be expected t h a t  t h e  long t e r m  expansion p r o f i l e s  

would produce pressures  and d e n s i t i e s  w e l l  i n  excess of experimental 
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values  as no mechanism f o r  r a d i a l  decay could be involved i n  t h e  one- 

dimensional model. Nonetheless, a c a l c u l a t i o n  of pressures  a t  a 

secondary su r face  downstream of the  impact po in t  was performed t o  

determine whether q u a l i t a t i v e  agreement could be obtained,  wi th  the  

experimental conclusion t h a t  t h e  maximum pressure  a t  a secondary 

su r face  i s  not  much higher than  t h e  maximum t o t a l  p ressure  a t  t h e  

same poin t  i n  undisturbed flow. 

An important concern of t h i s  r epor t  has been t h e  development 

of a successfu l  f i n i t e  d i f f e rence  code. I n  t h i s  regard two fea tu res  

appear. The code w e  have developed was found t o  remain computationally 

s t a b l e  throughout a l l  s tages  of t h e  ana lys i s .  Secondly t h e  r a the r  

annoying problem of 'I j i t ters",  or  pseudo-shocks , which o f t e n  accompany 

an  a r t i f i c i a l  d i s s i p a t i o n  t e r m  have been eliminated. We borrowed a 

technique f ami l i a r  t o  meteorologis ts  but which does not seem t o  have 

been used i n  t h i s  connection u n t i l  now. This technique i s  one of 

designing a "smoother" o r  f i l t e r  which d e l e t e s  any small  dis turbance 

whose wavelength is  of t he  order  of t he  g r id  in t e rva l .  Judic ioas ly  

appl ied ,  a smoother not  only removes "jitters" but also  enhances the  

s t a b i l i t y  of t h e  f i n i t e  d i f f e rence  program. 
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CHAPTER ONE 

1.1 The I n i t i a l  S t a t e s  

The model w e  adopt t o  descr ibe  t h e  impact process i s  due t o  

Bul l  (Ref. 1). We consider t h e  normal impact of a moving p l a t e  ( t h e  

p e l l e t )  onto one a t  rest i n  the  labora tory  system of coordinates  ( t h e  

bumper). 

propagate through t h e  p e l l e t  and bumper, dece le ra t ing  t h e  former and 

acce le ra t ing  t h e  lat ter.  I n  t h e  shocked regions high thermodynamic 

energ ies  w i l l  be produced a t  the  expense of t h e  p e l l e t  k i n e t i c  energy. 

It is  assumed that t h e  k i n e t i c  energy involved is  s u f f i c i e n t l y  high 

A t  t h e  moment of impact s t rong  shock waves are produced which 

t h a t  the  r e s u l t i n g  thermodynamic energy w i l l  be l a rge  compared with the  

intermolecular  binding forces  of t h e  p e l l e t  and bumper mater ia l s .  A t  

t h e  same t i m e  plasma e f f e c t s  are ignored and t h e  hydrodynamic equations 

presumed t o  apply throughout t h e  p e l l e t  and bumper materials. 

I n  t e r m s  of t he  f l u i d  desc r ip t ions  of Ref. 1 ,  w e  represent  t he  

s i t u a t i o n  s h o r t l y  a f t e r  impact i n  Fig. 1.1 below. 

Fig. 1.1 

In i t i a l  S t a t e s  a f t e r  Impact 
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W e  assume that t h e  f l u i d s  obey a poly t ropic  gas l a w  wi th  ex- 

ponent % . Pressure,  dens i ty  and ve loc i ty  have been denoted by 

p ,  9 , u respec t ive ly .  

p e l l e t  media respec t ive ly .  

The subsc r ip t s  B and P r e f e r  t o  bumper and 

The f u r t h e r  subsc r ip t  o has been used t o  

denote i n i t i a l  o r  unshocked states. 

t o  sepa ra t e  t h e  p e l l e t  from the bumper material a t  a l l  t i m e s .  

and S 

wi th  r e spec t ive  v e l o c i t i e s  W 

A contac t  f r o n t  C is presumed 
c 
S 

denote the  shocks moving i n t o  p e l l e t  and bumper materials 
P 

a 
B 

WB r e l a t i v e  t o  the  unshocked bumper. 
P, 

Under t h e  assumptions t h a t  
W d  

( i )  

( i i )  

Sp, SB are s t rong  shocks, 

vapor kzat ion energy is neg l ig ib l e ;  and 

( i i i )  She bumper and p e l l e t  gases obey a pe r fec t  gas l a w ;  

one may use t h e  Rankine-Hugoniot r e l a t i o n s  together  wi th  cont inui ty  of 

p re s su re  and p a r t i c l e  ve loc i ty  across  t h e  contac t  f r o n t ,  t o  ob ta in  

(Ref. 1): 

1 
; u  = u  B U 

- =  
v P B  

1.1.1 

1.1.2 

V 1.1.3 2 u -  
B P 2 P 

; w =  U 
- 8)B + 

'B - 2 

1.1.4 
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W e  now non-dimensionalize a s  follows: 

1.1.5 

3 u u/v 

We choose a s  our un i t  of length the  bumper thickness. Consequently the 

u n i t  of t i m e  i s  given by (Bumper Thickness)/(Impact Velocity of P e l l e t )  

'Impact Velocity of p e l l e t  
Bumper thickness time time x 1.1.6 

W e  f i x  our coordinate system by choosing the  o r ig in  of the x-axis a t  

the  contact  f ron t  a t  the  in s t an t  of impact ( t  = 0). 

Equations (1.1.1) to (1-1.4) determine the shocked f l u i d  prop- 

e r t i e s  u n t i l  such time as  B 

assume t h a t  t he  impact process takes  place i n  a vacuum and t h a t  SB 

reaches the  downstream bumper surface before S -  reaches the  upstream 
P 

or ?? encounters a f r e e  surface.  We - P 

p e l l e t  surface,  
a 

which S reaches B 

i.e. 

From (1.1.3) and (1.1.6), the  non-dimensional time a t  

the  downstream bumper f r e e  surface is given by: 

A t  time t the  contact  f ront  C w i l l  be located a t :  
0 

2 - 
%B + 

x = %to - 
c 

The p e l l e t  shock w i l l  be a t :  

x = W t  
SP P 0 

1.1.7 

1,1e8 



- 10 - 

a 
Consequently, a t  t h e  instant when S reaches t h e  downstream bumper 

f r e e  sur face ,  t he  shocked f l u i d  p r o f i l e s  are given by: 

B 

x 4 : x L - 1  
C 

1.1.13 

I f  w e  t ake  t h e  p e l l e t  l ength  t o  be 1 

then  a t  t t h e  upstream p e l l e t  f r e e  sur face  will be located at: 

( in  u n i t s  of bumper thickness) ,  
P 

0 

x = - 1  + t o  
P P 

2 x = - 1  + 
P P 8 B  + 

1.1.14 

Then t h e  unshocked f l u i d  p r o f i l e s  are given by: 

u(x,to) = 1 x L x - x  L 

P ( W o )  = 0 x L, x f x  

P -  SP 

P SP 

1.1.15 

1.1.16 



x L X F X  P SP 1.1.17 

a 
B The condition t h a t  S 

S i s  s t i l l  in  motion can be wri t ten:  

reach the  downstream bumper f r e e  surface while 
+ 

P 

P xsp 

i.e. 1.1.18 

1.2 The Expansion S ta t e s  

Having determined the  i n i t i a l  shocked s t a t e s  w e  tu rn  t o  t h e  

question of the  expansion process. Consider Fig. 1.2. 

12t 
P e l l e t  

\ 
-1 

P 

t 

fl #. 
f l  

4 
0 

0 , Contact f ron t  

Wave Diagram of Impact Process 

Fig. 1.2 
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W e  may d iv ide  t h e  flow i n t o  four c h a r a c t e r i s t i c a l l y  d i f f e r e n t  

periods.  I n  period I both shocks are progressing wi th  undiminished 

s t rength.  The p r o f i l e s  during t h i s  period are given by (1.1.10) t o  

(1'1.13) and (1.1.15) ta (1.1.17). I n  period 11, S has reached t h e  

downstream bumper f r e e  sur face  and generated a r a r e f a c t i o n  

A s  qB does not overtake S during t h i s  per iod,  t he  flow i s  i sen t ropic  

i n  each zone of shocked o r  unshocked f lu id .  I n  period 111, R B  has 

.-. 
6 B 

Q B' * 
P - 

e 
overtaken S before  the  l a t t e r  has reached t h e  upstream p e l l e t  f r e e  

P 
surface.  Evidently period 111 may or  may not occur. However, t h e  

r e s u l t i n g  shock decay i s  of primary interest  i n  t h i s  r e p o r t  and it w i l l  

be assumed t h a t  period 111 does occur. 

period 111, t he  governing equations w i l l  not be i sen t ropic .  I n  period 

qr 
Due t o  the  decay of S i n  

P 

--.) 

IVY 2 has generated the  p e l l e t  r a r e f a c t  ion ap. The governing 
P 

equations w i l l  be i s en t rop ic  or non-isentropic depending on whether 

or  not period I11 (i.e. shock decay) has occurred. 

I n  t h e  case t h a t  w e  a r e  deal ing wi th  a l i k e  materia1 impact 

one can w r i t e  a simple so lu t ion  f o r  the flow i n  period I1 (Ref. 4 ,  5)' 

a, i s  character ized by two surfaces .  An expansion f ron t  moves back 
6 

i n t o  t h e  gas r e l ax ing  the  highly shocked s t a t e s  created i n  period I; 

while an escape f r o n t  moves i n t o  t h e  ambient vacuum a t  constant  ve loc i ty ,  

The so lu t ion  w e  write down is  v a l i d  a s  long as the  expansion f ron t  pro- 

gresses  through a homogeneous region i n  which t h e  flow p rope r t i e s  a r e  

constant.  Consequently, i n  t he  case of un l ike  mater ia l  impacts, t h e  

so lu t ion  w i l l  be v a l i d  u n t i l  t h e  expansion f ron t  overtakes t h e  contact 

sur  face. 

L e t  t h e  constant  p a r t i c l e  ve loc i ty  and sound speed a t  t he  ex- 

pansion f r o n t  be uo and c respec t ive ly .  Then the  expansion f ron t  
0 
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moves according to:  

(x - xo> = (uo - c o w  - to) 1.2.1 

where x is t h e  i n i t i a l  pos i t i on  of t he  bumper f r e e  sur face  (x = 1 i n  
0 0 

non-dimensional un i t s )  and to is t h e  time a t  which @, is generated 

[see equation (1.1*7)]. The escape f ron t  i s  found t o  move according t o  

1.2.2 2 
(x - xo) = (m co + uo> ( t  - to> 

The governing equations a r e  i sen t ropic  and a r e  found t o  have the  

va l id  between t h e  extremes defined by (1.2.1) and (1.2.2). 

1.3  F i n i t e  Difference Representation of t he  I sen t rop ic  Equations 

I n  the  case t h a t  one is dea l ing  with unl ike mater ia l s  or i f  

period 111 (Fig. 1.2) does not occur, it i s  convenient t o  have a 

f i n i t e  d i f f e rence  scheme f o r  t he  i s en t rop ic  equations. The r e s u l t s  

of Sect ion 1.2 may be  used t o  e l imina te  t h e  i n i t i a l  d i s c o n t i n u i t i e s  

a t  f r e e  sur faces  and t o  produce smooth i n i t i a l  d i s t r i b u t i o n s .  

One may w r i t e  t h e  i s en t rop ic  equations as: 

= o  2 - 3 C  3 u  2u 3 C  + c - +  
x - 1  a t  a x  8 - 1  

1.3.1 

1 . 3 . 2  
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W e  represent  t he  various de r iva t ives  i n  the  form: 

1 . 3 . 4  

where E (x , t )  i s  some va r i ab le  of x and t and t h e  symbols A x, 

A t represent  i n t e r v a l s  i n  the  space-time mesh. 

t t  

X 

F i n i t e  Difference G r i d  

Fig.  1.3 

The s i t u a t i o n  is  indicated i n  Fig. 1.3.  Information concerning f i e l d  

va r i ab le s  is known a t  the  gr id  po in t s  ( j  h x ,  n n  t) where n, j a r e  

integers .  For convenience w e  w r i t e  

so t h a t  (1 .3 .3) ,  (1 .3 .4)  may be w r i t t e n  
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Subs t i t u t ion  of t hese  representa t ions  i n t o  (1 .3 .1 ) ,  (1 .3 .2)  y i e l d s ,  

a f t e r  rearrangement: 

n 
1-1 

* " u .  i+l 
2 

1 n  n 2- 1 .& ( cn n+l = - ( cj+l + cj-l)  - - 
j C 2 2 A x  j 

n n 
cj.+l- i-1, 

- e  + 2u; 

$ -1 2 

n n 
j+l  - u. 1 - 1  

U n 
( u j  2 

n n A t  
+ U  n+l = 1 

2 ( uj+l j-1 U 
j 

n n 
j + l  j - 1  

2 

- c  
+ 

1 . 3 . 5  

1 . 3 . 6  

Equations ( 1 . 3 . 5 ) ,  (1 .3 .6 )  a r e  t h e  working form of the  f i n i t e  d i f f e r -  

ence scheme. The r i g h t  hand s i d e  contains  only information a t  t i m e  

n At. 
at  each gr id  poin t  jA x a t  t i m e  (n + 1)A t. 
t h a t  ( 1 . 3 . 5 ) ,  (1 .3 .6)  w i l l  produce so lu t ions  c lose ly  approximating 

those of (1 .3 .1 ) ,  (1 .3 .2)  only under t h e  r e s t r i c t i o n  tha t  

This information is used t o  p red ic t  t he  values  of u and c 

One may show, however, 

1 .3 .7  

Equation (1 .3.7)  i s  r e f e r r e d  t o  as the  s t a b i l i t y  condi t ion for  t h e  

f i n i t e  d i f f e rence  scheme ( 1 . 3 . 5 ) ,  (1 .3 .6)  and is  derived i n  Appendix A. 

The treatment of boundaries is discussed i n  Sect ion 1 . 7 .  

1.4 F i n i t e  Difference Representation of the  Non-Isentropic Equat iom 

One has ,  fo r  t h e  conservation of m a s s ,  momentum and energy: 

1.4.1 
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together  with the  equation of s t a t e :  

E =  F ( P , y  1 

One may form three  s imple representat ion-  for  the  f i r s t  deriva 

1.4.2 

1.4.3 

1.4.4 

ive : 

,& ( 5 (x + h, x) - 5 (x)) (Forward Difference) - &  2 ) g  
a x  

(Centered Difference) 

The subs t i t u t ion  of centered d i f fe rences  for  t he  s p a t i a l  der iva t ives  

i n  (1.4.1)ta (1.4.3) produces a scheme which is  unconditionally un- 

s table , \ (Ref .  7). Consequently w e  use the  f i r s t  order scheme due t o  

Lelevier:  

un 3 0 
j -  

1.4.5 

1.4.6 
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n+l > 
U - 0  
j 

The convective t e r m s  

(1.4.7) by backward differences.  I f  

1.4.7 

have been represented i n  (1.4.5) t o  

t h e  ve loc i ty  is negat ive,  forward 

d i f fe rences  a r e  t o  be used i n  these  t e r m s .  The equation (1.4.6) i s  

used t o  advance u from one t i m e  s t e p  t o  the  next. Then t h e  advanced 

value of u i s  used t o  ca l cu la t e  new values  of p ,  9 , . We have 

l e f t  t h e  equation of state a r b i t r a r y .  

es tab l i shed  i n  Appendix B and is  found t o  be 

The s t 8 b i l i t y  condi t ion i s  

( l u l  + c)  L 1 1.4.8 - A t  
AX 

which is i n  agreement with (1.3.7) fo r  t h e  i s en t rop ic  equations. NQ 

s ign i f icance  is at tached t o  the  agreement. 

1.5 Shock Waves and the  A r t i f i c i a l  Viscosi ty  

It is  d i f f i c u l t  t o  give an  exact treatment of shock waves. A 

usefu l  approximation which permits automatic ca l cu la t ion  i s  due t o  

Richtmyer and Von Neumann (Ref. 7). 

added t o  t h e  k i n e t i c  pressure  i n  equations (1.4.2), (1.4.3). The 

An a r t i f i c i a l  viscous pressure  is  

viscous t e r m  i s  taken t o  be: 

1.5.1 
= lo i f  A o 
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The f i n i t e  d i f f e rence  r ep resen ta t ion  of q is, with lv = a A x 

9'3 - 

- I o  

1.5.2 

Whereas ordinary v i s c o s i t y  would be propor t iona l  t o  t h e  s t r a i n  r a t e  

. The advantage of using , w e  have used a quadra t ic  t e r m  i n  - a U  _I t 3 U  

a x  ax  
a quadra t ic  t e r m  i n  t h e  s t r a i n  rate is t h a t  t h e  shock thickness  be- 

comes independent of t h e  shock s t rength .  Richtmyer (Ref. 7) has dolved 

the  problem of a plane s teady-s ta te  shock in  a pe r fec t  gas with t h e  

viscous t e r m .  The flow i s  found t o  be undisturbed except f o r  a 

t r a n s i t i o n  zone centered about t h e  "exact" pos i t i on  of t he  shock and 

of width: 

1.5.3 

L e t  x be t h e  "exact" instantaneous pos i t i on  of t he  shock 

Denote p rope r t i e s  before  and behind t h e  shock wave by sub- 

0 

wave. 

s c r i p t s  1 and 2 respec t ive ly .  Then one has i n  the  t r a n s i t i o n  zone 

1 1 - _ -  1 

+ 3 2  fl s in  
V 

2 
- =  1. . . *-+ 

2 Y 
1.5.4 

x - x  
O )  

V 

s i n  p1 + p2 e p1 p2 
p + 4 =  2 2 

1.5.5 

1.5.6 
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4 =  p1 - p2 
2 

d + l  
2 

1.5.1 

I f  shock waves a r e  present  a t  the  beginning of t h e  f i n i t e  d i f f e rence  

ana lys i s ,  (1.5.4) t o  (1.5.7) may be used t o  approximate them. The 

r e s u l t i n g  smooth p r o f i l e s  are then s u i t a b l e  f o r  a f i n i t e  d i f f e rence  

technique. 

c o r r e c t  ve loc i ty  (as  determined from the Rankine-Hugoniot r e l a t i o n s ) .  

The c a l c u l a t i o n  proceeds automatical ly  provided w e  r ep lace  

The smeared out  shock propagates with very near ly  t h e  

i n  

n n 
equations (1 *4 .6 ) ,  (1.4.7) by pn + q j  where q is  given by ( l e5 .2 ) .  

j j 

The e f f e c t  of the  a r t i f i c i a l  v i s c o s i t y  on t h e  s t a b i l i t y  con- 

d i t i o n  is discussed i n  Appendix 6. The maximum permissible  t i m e  

increment is somewhat reduced as t h e  shock s t r e n g t h  increases .  We 

found it des i r ab le  t o  use the  condi t ion 

1.5.8 

1 6 Smoothing Operat ions 

It has been observed by many users  of t h e  a r t i f i c i a l  v i s c o s i t y  

t h a t  small o s c i l l a t i o n s  o r  "jitters" o f t e n  occur during a ca lcu la t ion .  

These a r e  probably due t o  i n s u f f i c i e n t  d i s s i p a t i o n  on the  p a r t  of t h e  

viscous t e r m  (Ref. 8). The e l imina t ion  of small non-physical o s c i l -  

l a t i o n s  has been successfu l ly  performed by meteorologis ts  (Ref. 9).  

W e  have adopted t h e i r  techniques,  

W e  wish t o  def ine  some operator  which e l imina tes  small l o c a l  

d i s turbances  from t h e  flow while leaving the  rest of t h e  flow p a t t e r n  

unchanged, By a small dis turbance i s  meant one whose wavelength is  of 

c 
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t h e  order  of 2 A x  

l i t u d e  i s  small. Since shock waves w i l l  be present  i n  t h e  flow, 

such a n  opera tor  w i l l  have t o  be appl ied  c a r e f u l l y  and only i n  those  

regions which are known t o  be f r e e  of rap id  t r a n s i t i o n s .  

def ine  a "smoothing element", d i scuss  i t s  p rope r t i e s ,  and show how 

more complicated smoothers may be designed. Designating the  gr id  

poin t  values of some funct ion (4(~)  by 

where A x is  t h e  gr id  spacing, and whose amp- 

W e  now 

Q ( n h x )  w e  write: 

Equation (1.6.1) def ines  a three-point  smoother. It i s  usefu l  t o  

w r i t e  (1.6.1) as: 

1.6.2 

where .) = 1 - p 
examine the  e f f e c t  of a smoothing element on a Fourier  t e r m .  Take: 

i s  called the  smoothing element index. L e t  us  

where k i s  t h e  wave number and x i s  a phase fac tor .  Subs t i tuc ing  

(1.6.3) i n t o  (1.6.2) one has ,  upon s impl i f ica t ion :  

- 
= C + (1 ., .$(I - c o s ( k A x ) ) )  ACOS (k(x - x))  1.6.4 n n 

Consequently, t he  smoothing element changes ne i the r  t h e  

wave number nor t h e  phase but a l ters  t h e  amplitude by a f a c t o r  

I f  w e  apply successive smoothing opera t ions  wi th  ind ices  Q0, .$13 

.... , $n t h e  f i n a l  r a t i o  of smoothed t o  unsmoothed amplitude is  
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e a s i l y  seen t o  be 

= 5 Tl .... dn = f i  (1- um(l - c o s ( k 4 x ) ) )  
m = O  

One could, i n  p r inc ip l e ,  use the  above polynomial t o  curve-f i t  

a smoother t o  any d e s i r e d  f i l t e r i n g  spec i f ica t ions .  

been discussing three-point smoothers with real indices. One may 

equally wel l  def ine  a five-point smoother by: 

So f a r  w e  have 

One may v e r i f y  t h a t  a combination of two three-point smoothers whose 

indices  a r e  complex conjugates i s  equivalent t o  one five-point: smoother 

with a real index. I n  our ca lcu la t ions  we used a multi-element smoother 

indicated by Shuman ( 9 ) ,  fo r  which the  indices  were: 

vo = 0.45965 

9. = -0.22227 + i 0.64240 

q2 = -0.22227 - i 0.64240 

1.6.6 

The multi-element smoother defined by (1.6.6) was appl ied p e r i o d i c a l l y  

t o  those regions of the  flow known t o  be f r e e  of shock waves. The 

r e s u l t i n g  operator  proved very e f f e c t i v e  i n  e l iminat ing shor t  wave 

dis turbances.pwhile  leavfng the  rest -of t h e  f i e l d  untouched. 

1.7 Details of the  F i n i t e  Difference Schemes 

The f i n i t e  d i f fe rence  representa t  ion of the i sen t ropic  equations 

(1.4.5),  (1 .3.6)  w a s  given i n  Section 1.3.  

s e c t i o n  t o  ind ica te  t h e  de ta i l s  of i t s  use. The non-isentropic 

equations (1.4.5) , (1.4.6) , (1.4.7) are t o  be handled analogously. 

It i s  the  purpose of t h i s  
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Consider Fig. 1.4. 

9 10 11 12 13 14 15 16 

f r o n t  

Detail of F i n i t e  Difference Grid 

Fig. 1.4 

Equations (1 ,3 .5)  , (1 .3.6)  involve centered s p a t i a l  differences.  

Evidently values a t  t h e  g r i d  po in t s  11, 12, and 13 may be w r i t t e n  down 

by d i r e c t  a p p l i c a t i o n  of ( 1 . 3 . 5 ) ,  (1 .3 .6) .  However, one must be more 

c a r e f u l  a t  10, 14, and 15. An attempt t o  c a l c u l a t e  centered d i f f e r -  

ences a t  2, say,  w i l l  t ake  us  ou t s ide  t h e  boundaries. Therefore, a t  

po in t  2 w e  use as an approximation t o  - : ; 3 U  a x  
1 u(3) - u(2) f 3 u n, L u(2) - u(1) x 2 (  9 A x  1.7.1 

where is t h e  d i s t ance  between 1 and 2. I f  e-.+ A x then 

(1.7.1) tends t o  t h e  usual centered form. S u b s t i t u t i o n  of (1.7.1) 

i n t o  ( 1 . 3 . 5 ) ,  (1 .3 .6)  permits us t o  c a l c u l a t e  t h e  new values of u and 

c a t  po in t  10. A s i m i l a r  procedure is followed a t  p o i n t  14. Then t h e  

value a t  15 may be obtained by l i n e a r  i n t e r p o l a t i o n  between 14 and 16 

on t h e  boundary where values are presumed known. 

One may note  t h a t  t h e  f i r s t  t e r m  on t h e  r i g h t  hand s i d e  of 

(1.7.1) i s  a s u i t a b l e  representa t ion  f o r  a backward d i f f e rence  a t  
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poin t  2. Forward d i f fe rences  may be defined analogously. With t h i s  

observation i n  mind one may extend the  above techniques t o  the  non- 

i s en t rop ic  d i f f e rence  equations (1.4.5) to (1.4.7). 

1.8 Treatment of t h e  P e l l e t  and Bumper Rarefact ions 

The i n i t i a l  d i scon t inu i ty  which occurs a t  t he  downstream f r e e  

sur face  of. t h e  bumper a t  t h e  moment when zB is generated is  e a s i l y  

treated v ia  equations (1.2.3), (1.2.4). I n  t e r m s  of t he  nota t ion  of 

Sect ion 1.2 w e  w r i t e  

s = t - t o  E. 8.1 

and choose & s o  t h a t  t h e  width of t h e  r a r e f a c t i o n  fan a t  time to +s 
corresponds . t o  four or  f i v e  gr id  spaces. The width of t he  fan  i s ,  of 

course, determined from equations (1.2.1), (1.2.2). I n  t h i s  way the  

i n i t i a l  d i scon t inu i ty  a t  t i m e  t is  removed and the  only change i n  the  

rest of t h e  flow i s  t h a t  t h e  uniformly moving boundaries are advanced 

0 

by t h e  appropr ia te  amount. 
-.+ 

The i n i t i a l i z a t i o n  of & , however, cannot be handled q u i t e  

so nea t ly .  Two p o s s i b i l i t i e s  e x i s t :  

( i )  When shock decay occurs,  and t h e  a r t i f i c i a l  v i scos i ty  i s  used t o  

produce a shock of f i n i t e  thickness  whose leading edge reaches t h e  

upstream f r e e  sur face  of t h e  p e l l e t .  

( i i )  When no shock decay occurs,  no a r t i f i c i a l  v i scos i ty  i s  used, 

and a shock of zero thickness  reaches the  upstream f r e e  sur face  of 

t h e  p e l l e t .  

I n  case ( i )  w e  make use of t h e  f i n i t e  d i s t r i b u t i o n  of t he  shock wave. 

We a r b i t r a r i l y  determine the  escape t i m e  as t h a t  i n s t a n t  when 
c 

P 
t h e  leading edge of S reaches t h e  upstream p e l l e t  edge. A t  t h a t  t i m e  
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escape condi t ions are determined from t h e  flow values  a t  t he  poin t  of 

maximum pressure  and values a t  t h i s  po in t  are joined l i n e a r l y  with t h e  

predicted escape values a t  t h e  p e l l e t  boundary. I n  t h i s  way no t i m e  

s t e p  i s  involved and the  rest of the  f i e l d  i s  l e f t  unchanged. A small 

e r r o r  i s  introduced i n  t h a t  a small quant i ty  of p e l l e t  mass is l o s t .  

This e r r o r  is, however, comparable with t h e  uncer ta in ty  i n  t h e  t i m e  of 

a r r i v a l  of t he  shock wave a t  the  upstream p e l l e t  boundary. 

I f  w e  w r i t e  x as the  pos i t i on  of t h e  p e l l e t  boundary a t  the  
0 

chosen escape t i m e  and x 

escape boundary condi t ions are:  

fo r  t h e  pos i t i on  of t h e  p e l l e t  maximum, our 1 

Although no tests were made i n  which case ( i i )  occurred, as 

t h e  primary objec t  of t he  program was e s s e n t i a l l y  t o  study period III 

and t h e  subsequent shock decay, provis ion w a s  made t o  allow such a 

p o s s i b i l i t y .  The f r e e  sur face  w a s  handled i n  the  fashion described 

i n  Sect ion 1.2 f o r  t he  bumper f r e e  sur face  except t h a t  w e  used values 

of t h e  flow va r i ab le s  appropr ia te  t o  t h e  p e l l e t  material. 

permissible  as long as t h e  expansion f r o n t  of the r a re fac t ion .  @,p, 

generated a t  t h e  p e l l e t  f r e e  sur face ,  is not permitted t o  en te r  t he  

9 

This i s  
I, 

rcI 

regime of aB i n  t h e  process of i n i t i a l i z a t i o n .  

One must then ad jus t  t h e  rest of t h e  f i e l d  t o  

to + 6 .. Equations (1.2.3), (1.2.4) were not  used 

generat ing i n s t a b i l i t i e s .  Instead it was noted that 

t h e  new t i m e  

i n  order t o  avoid 

t h e  var ious 
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p r o f i l e s  re ta ined  geometric s i m i l a r i t y  during the  p r i o r  computation. 

Therefore, it w a s  assumed that t h e  decay p r o f i l e s  i n  the  r a r e f a c t i o n  

zone would r e t a i n  t h e i r  shape during the  small t i m e  i n t e r v a l  8 .  
Writing x and x f o r  t he  pos i t ions  of the  expansion and escape 

0 

f ron t s  associated with w e  have: 

S x --.+ xo = x + (uo - co) 1 
0 0 

xl+ x1 1 = x1 + u 6 
1 

1.8 .3  

where 

u = u(xo) 

c = c(xo) 

0 

0 

ul = u(x,) = escape veloci ty .  

The new p r o f i l e s  are taken t o  be 

1 x - x  1 0  c ( x , t  + $ ) = c ( (x - xo 1 + X0Y to )  "1 - 0  _ _  
- x  0 

1.8.4 

1 x - x  1 0  
1 1 0 

(x - x 1 + X0Y to) u(x , to  + s ) = u ( 

x1 . = x  0 

where t w a s  the  time a t  which was generated. 
0 

I n  both cases ( i )  and (ii) it i s  assumed t h a t  the  escape f ron t  

ve loc i ty  remains constant.  I n  f a c t  t h i s  i s  a consequence of the  uni- 

formity of t he  material bounded by the  f r e e  sur face  assumed i n  Sect ion 

1.2 and is  not t r u e  i n  general. However, it is f e l t  t o  be j u s t i f i e d  

a pos te r i r i r i  by the  subsequent c a l c u l a t i o n  i n  which the  ve loc i ty  

f i e l d  w a s  seen t o  increase monotonically from the  upstream p e l l e t  

escape value. 



1.9 Treatment of t h e  Contact Front 

I n  general  a contact  d i scon t inu i ty  must be handled by i n t e r i o r  

f i t t i n g  procedures which are accura te  t o  t h e  second order i n  the  g r id  

spacing Ax. (Ref. 7). 

I f ,  however, a func t iona l  r ep resen ta t ion  of t h e  entropy i s  

a v a i l a b l e ,  it may be poss ib l e  t o  write t h e  t r a n s i t i o n  p rope r t i e s  

d i r e c t l y .  I n  t h i s  r epor t  only a pe r fec t  gas i s  considered. I f  w e  note 

t h a t  p a r t i c l e s  on e i t h e r  s i d e  of t h e  contac t  f r o n t  r e t a i n  t h e i r  shocked 

entropy values throughout t h e  e n t i r e  subsequent ana lys i s ,  w e  may write: 

1.9.1 

1.9.2 

where t h e  r i g h t  hand s i d e s  a r e  evaluated in t h e  i n i t i a l  shocked s t a t e  

and the  e q u a l i t i e s  hold a t  t h e  contact  f r o n t  for  a l l  subsequent t i m e s .  

Since w e  a r e  deal ing with a contact  sur face  w e  may w r i t e :  

"p = 93 
- 

pp - pB 

1-9.3 

These a r e  t h e  t r a n s i t i o n  r e l a t i o n s  f o r  pressure  and ve loc i ty  across  

the  contact  sur face ,  

Using t h e  second equation i n  1 .9 .3  and d iv id ing  1.9.1 by 1.9.2 

w e  a r r i v e  a t  

1.9.4 

a 
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which is  va l id  fo r  a11 t i m e s  subsequent t o  t h e  i n i t i a l  i n s t a n t  of 

impact. 

Since gB = 1 i n  our non-dimensional scheme w e  have t h e  
0 

t r a n s  it ion formulae: 

and 

A s  t h e  ve loc i ty  of t h e  contact  f r o n t ,  6, r e l a t i v e  t o  t h e  flow 

i s  zero,  w e  may advance i t s  pos i t i on  each time s t e p  a s  follows: 

L e t  f be t h e  pos i t i on  of 6 ,  i - 1 ,C f 6 i 

k 
A X  ( u i - l  f ( t  +At) = f ( t )  + ( i  - f )  + ui (f - i f 1)) 

where u = u ( ( i  - 1) A x , t >  i- 1 

During computation wi th  t h e  non-isentropic equations,  equations 

(1.9.5) were used t o  convert d i r e c t l y  t e r m s  appearing i n  d i f fe rences  

taken across  t h e  contact  f ron t ,  

i.e. With i - 1 2 f 5 i w e  w r i t e  a backward d i f f e rence  as: 

- dp.. 
X B  

0 

A X  

1.9.6 
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Simi lar ly  a forward d i f f e rence  a t  g r i d  po in t  i - 1 is  w r i t t e n  

A x  

Centered d i f fe rences  may be constructed by averaging the  

1.9.7 

expressions i n  (1.9.6), (1.9.7) wi th  t h e  usual  forward d i f f e rence  a t  

i or the  backward d i f f e rence  a t  i-1 (such t e r m s  a r e  unaffected by the  

contact  f ron t  as d i f fe rences  a r e  not  taken across  it). 

Of course,  t h e  i n t e r n a l  energy, 8 , must be s imi l a r ly  convert- 

ed by s u b s t i t u t i o n  of an adjusted dens i ty  value i n  the  funct ional  

equation whenever necessary. 

I n  the  i s en t rop ic  case w e  r equ i r e  a conversion r u l e  f o r  c ,  t h e  

i s en t rop ic  sound speed. 

We have, i n  v i r t u e  of t he  cont inui ty  of pressure:  

across  t h e  contact  f ront .  Using t h e  second equation i n  (le9.5), w e  

1.9.8 

Since A = A , a constant ,  w e  may write 

P B $ B  
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W e  now s u b s t i t u t e  t h i s  i n t o  the  equat ion 1.9.8 t o  e l imina te  

pB. This gives  us: 

$p w e  may w r i t e  

B 
c P = A c B  1.9.9 

where 

Then 1.9.9 and i t s  inverse a r e  used t o  represent  centered 

d i f fe rences  i n  t h e  s a m e  way a s  above. 

This technique assumes that the  p r o f i l e s  on e i t h e r  s i d e  of t h e  

contact  f ron t  are geometrically s imi l a r ,  and inspect ion of a sample 

ca l cu la t ion  supports t h i s  assumption. 

po r t iona l  t o  t h e  f ineness  of the  s p a t i a l  mesh. 

Of course,  t h e  accuracy is  pro- 

W e  chose t h e  convention t h a t  when t h e  contact  f r o n t  coincided 

wi th  a gr id  poin t ,  t h a t  g r id  poin t  assumed p e l l e t  values. 
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1.10 I n t e r a c t i o n  of t h e  Gas Cloud With a Secondary Surface 

I f  a secondary sur face  is  present ,  t h e  leading edge of t h e  cloud 

w i l l  i n t e r a c t  with it a f t e r  some i n i f i a l  period of expansion and a 

r e f l e c t e d  shock wave w i l l  be produced. L e t  t he  subsc r ip t s  0 and 1 

denote p rope r t i e s  before  and behind t h e  wave r e spec t ive ly  and le t  t h e  

shock ve loc i ty  i n  a laboratory frame of re ference  be D. Then 

where \h? = ' a 
jump condi t ions across  a shock. 

. Equation (1.10.1) may be deduced from the  

2 - uo> It J (ul - u0l2 + (1 - p 2 , c 0  - 
n 1.10.2 

D = u + ( u l  0 

For a t r a v e l l i n g  wave one chooses t h e  p o s i t i v e  sign. p1 and 

p may be obtained from t h e  mass and momentum r e l a t i o n s  r e spec t ive ly :  1 

1.10.3 

W e  now apply t h e  s tagnat ion  requirement a t  t h e  s t a t iona ry  p la te :  

u1 = 0 

yl and p so t h a t  t h e  1 We now have enough information t o  determine 

shock is  completely specif ied.  Consequently w e  may approximate t h e  

i n i t i a l  r e f l ec t ed  shock according t o  equations (1.5.4) te (1.5.6). 

The f i n i t e  d i f f e rence  so lu t ion  can then be continued automatically.  
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It is  usefu l ,  however, t o  make a q u a l i t a t i v e  study of t h e  re- 

f l ec t ed  shock. 

moment of i n t e rac t ion ,  w e  may w r i t e  equation (1.10.2) as 

I f  w e  no te  t h a t  co k 0 near  t h e  escape f r o n t  a t  t h e  

where w e  have w r i t t e n  u = 0. 

Gonsequent l y  

1 

0 2u 1 D k u0 (1 - 2 )  =,.)3+1 l - v  
Whence from 1.10.3 w e  have 

1.10.4 

1.10.5 

1.10.6 

1.10.7 

( ignoring the  i n i t i a l  p ressure  p . sa 
Equation (1.10.6) i s  t h e  n a t u r a l  consequence of t h e  s t rong  

shock assumption 

D >> co 

However (1.10.7) i s  of more immediate i n t e r e s t .  I n  t h e  un- 

dis turbed flow the  t o t a l  pressure consists mainly of t h e  dynamic t e r m  

. I f  w e  now observe t h a t  f o r  long t e r m  expansion eo2 i s  9 U2 
2 

neg l ig ib l e  i n  equation (1.10.2) throughout t h e  flow, and i f  w e  suppose 

u1 eL 
remain va l id  throughout t h e  flow. 

back flow, these  assumptions are adequate fo r  a q u a l i t a t i v e  ana lys i s .  

Q behind t h e  shock wave a t  a l l  t i m e s ,  then (1.10.5)ts (1-10.7) 

While ignoring the  p o s s i b i l i t y  of 
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It then  follows from (1.10.7) t h a t  t h e  pressure  behind t h e  

r e f l e c t e d  shock is  approximately ( d + 1) t i m e s  t h e  t o t a l  pressure 

a t  that poin t  i n  t h e  undisturbed flow. Now i f  t h e  ve loc i ty  is constant  

behind t h e  shock wave, w e  expect from t h e  momentum equation 

that ,%,= 0. I n  other  words, t h e  pressure  behind t h e  shock wave 

is a good indicaeion of t he  pressure a t  t h e  secondary surface.  Con- 

sequently,  w e  expect t h a t  t h e  pressure a t  t he  secondary p l a t e  w i l l  be of 

t h e  order of ( 

t h e  s a m e  po in t  i n  t h e  undisturbed flow. This i s  i n  l ine  wi th  the  

% + 1) t i m e s  t h e  maximum t o t a l  p ressure  observed a t  

experimental observations 

For t h e  i n i t i a l i z a t i p n  of t h e  wave w e  make use of t he  f i n i t e  

d i s t r i b u t i o n  of t h e  t r a n s i t i o n  zone determined by the  coe f f i c i en t  of 

a r t i f i c i a l  v i scos i ty .  The t r a i l i n g  edge of t h e  wave i s  i d e n t i f i e d  

with t h e  p l a t e  pos i t i on  so  that t h e  p o s i t i o n  of t he  leading edge is 

determined from equation (1.5.3). The q u a n t i t i e s  u o’ Po, Po are 

evaluated a t  t h e  leading edge whence 

(1.10.6) and (1.10.7). The d i s t r i b u t i o n s  i n  t h e  t r a n s i t i o n  zone are 

determined from equations (1.5.4) t o  (1.5.6). A t  later t i m e s  t h e  

boundary value fo r  u i s  known, u = 0 and boundary values fo r  

p 

sly p1 are given by equations 

P y  
are obtained from an  ex t rapola t ion  of t h e  two adjacent  gr id  

points .  
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CHAPTER TWO 

2.1 Resul ts  and Discussion 

A successful  c a l c u l a t i o n  @as made f o r  a l ike  material impact 

wi th  a p e l l e t  t o  bumper l eng th  r a t i o  of 8 and 

r e s u l t s  of t h i s  c a l c u l a t i o n  are depicted graphical ly  i n  Figs. 2 - 1  t o  

2.13. I n  Figs.  2.1 t o  2.4, t h e  p r o f i l e s  of t h e  f l u i d  p r o p e r t i e s  during 

YB = 3. The 
P 

t h e  d e s t r u c t i o n  of t h e  p e l l e t  are shown; Figs. 2.5 t o  2.7 show t h e  p r o f i l e s  

during t h e  period of t o t a l  expansion; and Figs. 2.8 t o  2.10 show t h e  

p r o f i l e s  during t h e  i n t e r a c t i o n  of t h e  flow wi th  a secondary su r face  

located 100 bumper thicknesses  downstream from t h e  po in t  of impact. 

Fig. 2.11 makes a comparison of t h e  t o t a l  p re s su re  a t  t h e  secondary sur- 

f ace  with t h e  t o t a l  pressure a t  t h e  same po in t  i n  undisturbed flow. 

Fig. 2.12 shows t h e  peak pressure behind t h e  p e l l e t  shock, S as a 
c 

P7 
4- 

funct ion of t i m e ,  while Fig. 2.13 shows t h e  p o s i t i o n  of S as a funct ion P 

of t i m e .  A l l  d a t a  is presented i n  t h e  non-dimensional form discussed 

i n  Sect ion 1.1. Successful ca l cu la t ions  were a l s o  performed wi th  a 

p e l l e t  t o  bumper r a t i o  of 9 f o r  l i k e  material impacts w i t h  

successively t o  be 1.4, 3 and 7. A f u r t h e r  test  w a s  made with = 

d taken 

P 
1 = 9,  but wi th  a p e l l e t  t o  bumper dens i ty  of 2, i n  VB = 3 and 
P 

order  t o  check t h e  contact  surface technique discussed i n  Sect ion 1.9. 

A s  t h e  purpose of t hese  tests w a s  merely t o  examine t h e  range of 

a p p l i c a b i l i t y  of t h e  computer program, t h e  r e s u l t s  are not presented 

i n  t h i s  r epor t .  

A s to rage  a r r a y  of 250 gr id  po in t s  w a s  considered adequate f o r  

The p r o f i l e s  of t h e  f l u i d  parameters t h e  c a l c u l a t i o n  presented here. 
i, 

a t  t h e  i n s t a n t  when S reached t h e  downstream f r e e  surface of t h e  

bumper were ca l cu la t ed  from equations ( l . l * l O )  to  (1.1.13) and were 

B 

represented by d i s t r i b u t i o n s  over 100 gr id  p o i n t s  located symmetrically 
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i n  t h e  f i e l d  of 250. The bumper r a r e f a c t i o n  was i n i t i a l i z e d  wi th  t h e  

help of equat ions (1.2.3) and (1.2.4) and t h e  c a l c u l a t i o n  of t he  pro- 

f i l e s  a t  subsequent t i m e  s t eps  proceeded using t h e  i s en t rop ic  equations 

5 as (1.3.5) and (1.3.6). The gr id  r a t i o  w a s  taken t o  be - = A x  
At  

recommended i n  Ref. 3. A s  may be seen from Figs.  2 . 1  t o  2.3, t h e  

pressure  and dens i ty  p r o f i l e s  decrease monotonically i n  the  r a r e f a c t i o n  

zone while t h e  ve loc i ty  increases  monotonically. 
b b 

P' 
Once t h e  r a r e f a c t i o n  &. had approached the  p e l l e t  shock S 

& 

S 

e t c .  The c o e f f i c i e n t  of a r t i f i c i a l  v i s c o s i t y  w a s  taken t o  be a = 2.5. 

w a s  represented by t h e  "shock layer" p r o f i l e s  of equations (1.5.4) 
P 

Then t h e  c a l c u l a t i o n  of t h e  subsequent flow proceeded using t h e  f i n i t e  

d i f f e rence  scheme (1.4.5) etc. wi th  t h e  viscous t e r m .  Smoothing was 

performed every 25 t i m e  s t eps  according t o  equat ion (1-6.6).  A s  may be 
6 

seen from Fig. 2.12, t h e  pressure  behind S i s  considerably diminished 
P 

by t h e  bumper r a re fac t ion .  I n  t h i s  i d e a l  model, no vapor iza t ion  energy 

was considered. Consequently the  program contained no automatic proce- 

dure f o r  t he  determinat ion of some c r i t i ca l  shocked pressure  t h a t  would 

j u s t  correspond t o  p e l l e t  vaporizat ion.  It would, however, be poss ib l e  

t o  make such a dec is ion  and t o  study the  dynamics of p e l l e t  des t ruc t ion .  

The v a l i d i t y  of t h e  one-dimensional approach is, of course,  r e s t r i c t e d  

t o  the  e a r l y  t i m e  i n t e r a c t i o n ,  before  r a d i a l  a t t enua t ion  becomes impor- 

t a n t .  But t h e  p e l l e t  des t ruc t ion  takes  p lace  i n  j u s t  that period, so 

t h a t  t h e  r e l a t i v e l y  simple one-dimensional model may be employed w i t h  

a reasonable  measure of confidence. 

Although it was understood t h a t  t h i s  model would p red ic t  pro- 

f i l e s  i n  gross e r r o r  f o r  t h e  long t e r m  expansion, i t  w a s  considered 

d e s i r a b l e  t o  determine the  s t a b i l i t y  of t h e  computer code in  t h i s  case 

c 
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and t o  attempt a prel iminary a n a l y s i s  of t h e  secondary p l a t e  i n t e r -  

ac t ion .  When S reached t h e  upstream p e l l e t  edge, t h e  release wave 

8 
continued up t o  t i m e  t = 10. 

&- 

P 
was i n i t i a l i z e d  according t o  equations (1.8.2), and the  so lu t ion  

P 

I n  order  t o  continue t h e  so lu t ion  out  t o  l a r g e  d i s t ances ,  it 

was necessary a t  t h i s  po in t  t o  reduce the  p r o f i l e s  t o  a spread of 25 

t o  40 gr id  i n t e r v a l s .  This had t h e  e f f e c t  of decreasing the  comput- 

a t i o n  t i m e  considerably.  It was expected t h a t  a loss of accuracy would 

be incurred i n  t h i s  way due t o  the  t runca t ion  e r r o r  i n  the  f i n i t e  

d i f f e rence  approximations. I n  f a c t ,  increasing lo s ses  i n  mass and energy 
. 

were observed throughout t h i s  p a r t  of t h e  ca lcu la t ion .  F igs .  2.2*  

2.6, 2.7 represent  t h e  f l u i d  p r o f i l e s  a t  times 50, 70, 100 and 150 

respec t ive ly .  W e  have not presented the  n e g l i g i b l e  s t a t i c  pressure.  

It may be observed from F&gs,*2;4 and 2.7 t h a t  t h e  i n i t i a l  

double peak i n  t o t a l  p ressure  gradual ly  tends t o  a s i n g l e  peak located 

toward the  f ron t  of t h e  cloud. The f i r s t  of these  two peaks located 

towards the  f r o n t  of t he  cloud is e s s e n t i a l l y  a dynamic cont r ibu t ion  

s, whereas the  o ther  is due t o  a l o c a l  s t a t i c  pressure  maximum 
2 

behind the  p e l l e t  shock. During t h e  phase of t o t a l  expansion, t he  

s t a t i c  pressure  tends uniformly t o  zero  and only the  f i r s t  peak remains. 

The v e l o c i t y  curve tends t o  become linear by t i m e  t = 30 except f o r  a 

s m a l l  f l a t t e n i n g  e f f e c t  near t he  bumper escape f ront .  This f l a t t e n i n g  

is probably anomalous and without phys ica l  r e a l i t y .  Near the  escape 

f r o n t  t h e  p re s su re  and dens i ty  tend t o  such small values  t h a t  com- 

pu ta t iona l  inaccuracies  a r e  generated by t h e  f i n i t e  d i g i t a l  represent-  

a t i o n  of t he  computer. Several  a t tempts  were made t o  counteract  t he  



losses  i n  mass and energy which were discovered. Sample ca l cu la t ions  

wi th  a f i n e r  mesh indicated t h a t  they were indeed due t o  t h e  coarse  

mesh chosen fo r  computational r z s i d i t y .  

However, a n  examination of Figs. 2.5.to 2.7 revea l  t h a t  t h e  

flow becomes se l f - s imi l a r  once t h e  pressure  has diminished t o  the  

poin t  of n e g l i g i b i l i t y .  This i s  t o  be expected and is supported by 

a s i m i l a r i t y  ana lys i s  of t h e  problem (Ref. 3 ) .  One could therefore  

compute t h e  p r o f i l e s  a t  t i m e  200 d i r e c t l y  from those a t  t i m e  30 v i a  

the  observed geometrical  s imi l a r i t y .  

The loss i n  mass by t h e  t i m e  t h e  gas had reached a poin t  100 

bumper thicknesses  downstream was roughly 25%. However, s ince  t h e r e  

was not l i k e l y  t o  be experimental confirmation of t h e  p r o f i l e s  pre- 

d ic ted  so f a r  out of t h e  range of v a l i d i t y  of t h e  one-dimensional 

assumption, it did not s e e m  economically worthwhile t o  perform t h e  

ca l cu la t ion  with a f i n e r  gr id .  

When t h e  leading edge of t he  expansion cloud was 100 bumper 

thicknesses  downstream from t h e  poin t  of impact, secondary p l a t e  bound- 

a ry  condi t ions were es tab l i shed  v i a  equations 1.10.6, 1.10.7. The wave 

was i n i t i a l i z e d  to a spread somewhat longer than t h a t  determined by a 

v i s c o s i t y  coe f f i c i en t  of 2.5. This w a s  not always necessary,  as 

ca l cu la t ions  with d a t a  a t  d i f f e r e n t  t i m e s  and wi th  d i f f e r e n t  impact 

d a t a  have indicated.  However , for  t h i s  p a r t i c u l a r  case i n s u f f i c i e n t  

shock spread caused t h e  wave t o  co l lapse  back i n t o  the  p l a t e .  Pre- 

sumably one should supply more information about t h e  physics of t he  

in t e rac t ion  i n  order t o  remove t h e  ambiguity caused by t h e  absence of 

known boundary values f o r  t he  dens i ty  and pressure.  
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A s  can be seen from Fig. 2.10, t he  pressure  a t  t h e  w a l l  increases  

t o  a maximum quickly s ince  t h e  i n i t i a l  mass d i s t r i b u t i o n  peaks towards 

t h e  f r o n t  of t h e  cloud. The pressures  behind t h e  r e f l e c t e d  shock are 

roughly constant .  

Fig. 2.9 shows t h a t  backflow is  predic ted  i n  agreement with ex- 

per imental  observations.  From Fig. 2.11 it would appear t h a t  t h e  

r e f l e c t e d  and f r e e  stream pressure  pulses  are roughly s i m i l a r  i n  shape. 

The r e f l e c t e d  pulse  has a maximum approximately four  t i m e s  t he  f r e e  

stream pulse.  Since d was taken t o  be 3 ,  t h i s  is i n  su rp r i s ing ly  

good agreement wi th  t h e  naive ana lys i s  of Sect ion 1.10. 

Secondary p l a t e  ca l cu la t ions  were performed f o r  a p l a t e  5 bumper 

thicknesses  downstream from t h e  po in t  of impact as a prel iminary t o  t h e  

c a l c u l a t i o n  shown here. A s  such a c a l c u l a t i o n  i s  w e l l  w i th in  t h e  bounds 

of a p p l i c a b i l i t y  of a one-dimensional model, w e  w i l l  mention t h e  most 

important f ea tu re s  of t h e  r e s u l t s .  A t  such an  e a r l y  s t age  i n  t h e  ex- 

pansion, t he  p e l l e t  shock w a s  s t i l l  i n  progress  and cloud pressures  

were t y p i c a l l y  a t  t he  impact leve l .  The assumption of a p e r f e c t l y  

r e f l e c t i n g  wal l  l ed  t o  enormous r e f l e c t e d  pressures .  

t h e  presence of any i n t e r n a l  l i n i n g  between a bumper and the  h u l l  could 

Consequently, 

produce d i sa s t rous  r e s u l t s  even under the  assumption t h a t  t he  l i n i n g  

does not  vaporize. I f  t h e  l i n i n g  i t s e l f  should vaporize,  one may 

expect v io l en t  damage t o  t h e  neighboring h u l l  due t o  t h e  very high 

pressures  assoc ia ted  wi th  t h e  impacted l i n ing .  

I n  Fig. 2.12 t h e  pressure  behind the  p e l l e t  shock has been 

p l o t t e d  as a func t ion  of t i m e .  A s  can be seen, t he  dependence i s  

roughly l i nea r .  Due t o  t h e  decrease i n  pressure ,  S tends t o  be 

acce lera ted  downstream. 

6- 

P 
Taking t h e  p e l l e t  shock p o s i t i o n  t o  be 
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located i n  t h e  center  of t h e  f i n i t e  shock layer ,  one may p l o t  it 

versus t i m e .  This i s  done i n  Fig. 2.13. 

Figs. 2.12 and 2.13 give a f a i r l y  r e l i a b l e  ind ica t ion  of t he  

impact dynamics. 

space gr id ,  s ince  t h e  f i n i t e  d i s t r i b u t i o n  of t h e  shock Gave i n  t h e  

von Neunann theory causes earlier in te r fe rence  wi th  t h e  bumper rare- 

f a c t i o n  than a ca l cu la t ion  based on an i d e a l  discontinuous shock. 

The accuracy involved depends on t h e  f ineness  of t h e  
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2.2 Concluding; Remarks 

Although t h e  bas i c  motivation f o r  t h i s  r e sea rch  was t o  understand t h e  

dynamics of t h e  hyperveloci ty  impact ,  w e  were l a r g e l y  concerned wi th  com- 

pu ta t iona l  d i f f i c u l t i e s .  Consequently, while w e  have developed a use fu l  model 

f o r  t h e  e a r l y  s t ages  of t h e  i n t e r a c t i o n ,  t h e  r e s u l t s  presented here  represent  

f o r  t h e  most p a r t  mathematical r a t h e r  than physical  progress. 

By wr i t i ng  i n  new hydrodynamic code w e  wanted t o  solve two problems 

which have caused d i f f i c u l t i e s ,  namely t h e  long term s t a b i l i t y  and t h e  

I l j  i t ters" associated with the  a r t i f i c i a l  v i scos i ty .  

l a r g e l y  successful  i n  both respects .  

during a l l  phases of t h e  expansion. The l o s s e s  i n  mass due t o  t runca t ion  

e r r o r s  can be avoided by the  use of a f i n e r  mesh during t h e  later p a r t  of 

t h e  calculat ion.  This need not be ove r ly  expensive as t h e  flow quickly be- 

comes se l f - s imi l a r  once t h e  p e l l e t  i s  e n t i r e l y  vaporized, One, t he re fo re ,  

need only use t h e  f i n i t e  d i f f e rence  scheme during t h e  e a r l y  s t ages  of t o t a l  

expansion. 

format ion. 

The program has been 

The program was computationally s t a b l e  

The la te  t i m e  p r o f i l e s  may be obtained by a s i m i l a r i t y  t r ans -  

The technique of using a smoother i n  conjunction with an a r t i f i c i a l  

v i s c o s i t y  does not seem t o  have occurred t o  f l u i d  dynamicists a t  la rge .  The 

method is ,  of course, q u i t e  f ami l i a r  i n  meteorology where it i s  used t o  d e l e t e  

unphysical o s c i l l a t i o n s  of sho r t  wavelength. We used it as an  add i t iona l  

mode of d i s s ipa t ion .  Because t h e  "jitters" u s u a l l y  appear  f i r s t  i n  t h e  

dens i ty  p r o f i l e , t h e  a r t i f i c i a l  v i s c o s i t y  i s  not  brought i n t o  play immediately 

(see equation 1.5.2). Consequently add i t iona l  d i s s i p a t i o n  i s  necessary. 

(One may de f ine  d i s s i p a t i v e  terms dependent on t h e  d e n s i t y  g rad ien t s  but 

t h e i r  p rope r t i e s  i n  t h e  t r a n s i t i o n  zone make them d i f f i c u l t  t o  dea l  with.) 



The program as developed is  w e l l  su i t ed  t o  the  s tudy of t he  

meteoroid-bumper in t e rac t ion .  During t h e  per iod of interaction, t h e  

one-dimensional approximation has reasonable va l id i ty .  

u se fu l  t o  use a real gas equat ion of state and t o  consider t h e  e f f e c t s  

of vapor iza t ion  energy. I n  t h i s  way one would be a b l e  t o  p r e d i c t  

automatical ly  t h e  d e s t r u c t i v e  p rope r t i e s  of var ious pellet-bumper 

systems i n  t h e  intermediate  ve loc i ty  range where vapor iza t ion  energy 

i s  not  negl ig ib le .  This is  e spec ia l ly  d e s i r a b l e  as t h e  experimental 

v e l o c i t i e s  belong t o  such an  intermediate  range. 

It would be 

The secondary p l a t e  c a l c u l a t i o n  produced r e s u l t s  i n  r a t h e r  good 

agreement wi th  a very s impl i f ied  ana lys i s .  The maximum r e f l e c t e d  

pressure  w a s  found t o  be roughly ( d + 1)  t i m e s  t he  maximum f r e e  

s t r e a m  pressure.  Experimentally, t he  t w o  maxima appear t o  be roughly 

t h e  same. However, rad ia l  r e l a x a t i o n  of t h e  r e f l e c t e d  shock i s  l i k e l y  

t o  be important i n  t h e  two-dimensional case. 

The assumption of a p e r f e c t l y  r e f l e c t i n g  w a l l  l ed  t o  enormous 

r e f l e c t e d  pressures  when t h e  bumper and w a l l  were very close to each 

other.  

fo re ,  t h e  presence of an i n t e r n a l  f i l l e r  between a bumper and t h e  space- 

c r a f t  h u l l  could produce d i sa s t rous  r e s u l t s  i f  t h e  shock wave i s  a b l e  

t o  propagate through the  f i l l e r  t o  the  h u l l  or  i f  t he  f i l l e r  is suf- 

f i c i e n t l y  shocked t o  vaporize,  producing gas under very high pressures  

i n  a confined volume, as these  pressures  could produce very l a rge  

ruptures  i n  the  adjacent  hu l l .  The d i f f e rences  i n  impact pressures  

between lower ve loc i ty  experimental  impacts and t h e  higher ve loc i ty  

meteoroid impacts may produce very d i f f e r e n t  r e s u l t s  wi th  f i l l e r  

materials. Even a t  cu r ren t ly  ava i l ab le  labora tory  v e l o c i t i e s  a 

ca t a s t roph ic  rup tu re  due t o  f i l l e r  vapor iza t ion  may be observed. 

The pressures  were of t h e  order of t h e  shock pressures .  There- 



- 41 - 

Friend et al. (Ref. 10) descr ibe  impacts onto a system cons is t ing  

of two p a r a l l e l  shee t s  f i l l e d  wi th  polyurethane. The expanding vapor 

cloud from t h e  outer  sheet  induced pyro lys i s  of t h e  f i l l e r ,  producing 

a high pressure  gas i n  a confined volume. 

f a r  g rea t e r  than t h a t  observed i n  the  u n f i l l e d  system. 

The r e s u l t i n g  rupture  was 

P 
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Stability of the Isentropic Scheme 

We had (2.1.5), (2.1.6): 

2un n n U. - u  
n+l 1 n n 2-1 At n j+1 j-1 j ,  
j 2 + 6 - 1  = 5 (cj+l 9 Cj-r) - - - 2 A X  (‘j C 

n n 
3 4-1 

2 1 3 - 1  - c. C. 

n n 
3 4-1 

2 

- c  
j-l 1 

C. 

A. 1 

A. 2 

We take stability of a system of finite difference equations to mean 

stability of the corresponding set of linearized equations. 

(A.2) we have, on substituting a local perturbation and dropping sub- 

scripts on the zero order terms: 

For ( A . l ) ,  

n n 

2 1 J+I - ‘j -1 C. 

n n - e. 
2 1 3 - 1  j+l 

C 

A. 3 

A. 4 
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One now assumes a Fourier  space dependence f o r  the  perturbation: 

5;  = 5 exp ( i k j  a x) 

Then (A .3 ) ,  (A.4)  become: 

n 
C n+l = cn (cos(kA,x)  - i u l s i n ( k A x ) ) -  (2 x -1 i c l s i n ( k A  x)) u 

A. 5 

(cos(k,A x) - i u l s i n ( k A  x)) - (-gq- i c l s i n ( k h x ) )  c 

A. 6 

n+l n 2 n 
U = u 

At 
A x  

where 1 = - 

7 
c o s ( k A x )  .. - 2  ' i c l s i n ( k  A x) 

I 

- i u l s i n ( k A  x) 

i c l s i n ( k $  x) cos(kAx) -, i u l s i e ( k A x :  

I 
" d - 1  

C i \ u  

A. 7 

The matr ix  on the r i g h t  hand s ide  of ( A . 7 ) ,  which takes  the  state 

a t  t i m e  n At i n t o  t h a t  a t  (n + I)A t, i s  c a l l e d  the ampl i f ica t ion  

matr ix ,  G. The Von Neumann necessary condi t ion f o r  s t a b i l i t y  ( 7 )  may 

be w r i t t e n  as: 

where 3\ are the eigenvalues of G, i = 1,2, .... n 
i 

For the case a t  hand we  have: 

A. 8 

i c l s i n ( k A  x) 2 
cos (kb, x) - i u l  s in(k 4 x) - ), - 

de t  \ G - A I \  = 

s i n ( k A  x) c o s ( k h x )  - i u l s i n ( k A  x) 2icl  
- ~m 

- x  

= o  
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A = c o s ( k A x )  - i sin(lsAx) ( ul  cl) 

In practice one uses the form: 

- A X  '> U k C  

A t  - A. 9 

(A.9) i s  usually referred to as the stabi l i ty  condition for ( A - l ) ,  (A.2). 
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APPENDIX B 

Stability of the Non-Isentropic Equgtions 

We had (2.2.5) 

As  in Appendix A, we proceed to obtain linearized equations. 

and (B.2)  may be immediately rewritten as: 

(B.l) 

( B . 3 )  is linearized and somewhat recasted by noting: 

g = F(P9P 1 

Hence (B.3)  becomes: 

B. 4 

3.5 
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n ,  P j - 1  
u l  n - - y ;-1 )) = p; - - 2 (Pj+l 

Subs t i tu t ing  from (B.4)  t h i s  becomes: 
n 

Note t h a t  for  i s en t rop ic  v a r i a t i o n s  

d e  = -pd ( 1/y ) 
P - -  P 2  '. d? = O i.e. F dp + F y  dJ 

P 

B. 6 

The i sen t rop ic  sound speed, c i s  the square rw t  of ( + along 

an a.diabat. Hence 

4. - 7  
2 e 2  

F c =  
P 

Thus (B.6) may be w r i t t e n  

B. 7 

We now s u b s t i t u t e  a Fourier  s p a t i a l  dependence i n t o  (B.4), (B.5), 

and (B.7) t o  obtain: 
c\ 

n B1  n = A u  - i - p  n+l 
9 U t 

3 2 n+l - n pn+' + p ~ c  iBu - p A 

B. 8 
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where 

B = sin(kAx) 

A = l + u l (  e - i k h x  ll 

The amplification matrix, G is given by 

2 2  A - B 1  

2 
G =  0 A - (Bcl) 

0 . B1 

G has characteristic equation: 

2 2 2 2  (A - A )  ((A -$\ )(A- (Bcl) .. ) +AB c 1 ) = 0 

The first eigenvalue may be written down immediately: 

- 1) 
$ \ l = ~ = l + u ~  (e - i k h x  

Hence 

B. 9 

B. 10 

B. 11 

Be 1 2  

The other two eigenvalues are the roots of the quadratic equation 

B. 13 2 l2 + 3 ((Bc~)~ - 2A) + A = 0 

We now ask under what conditions one of the roots of (B,13) may have 

amplitude unity. 

If sin(kAx) = 0 we have from (B.9), (B.13) 

and since in this case A = 1, no additional requirement is necessary. 
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Otherwise : 

2 2 2  e - + B c l  & = A -  2 

2 2 2  

4 - A  B c l  where K = 

W e  may wri te  out A i n  terms of B as: 

ulB 2 %  
2 ulB A = l - p  2 - 2  + i - ( 4 - B )  

Whence w e  have IC: 

ulB2 - ulB 2 %  - 1 + y  + i - ( 4 - B  2 1 
2 2 2  

4 
B c l  K =  

B. 14 

5.15 

B. 16 

The requirement t h a t  one of the  r o o t s  of (B.13) l i e  on the  u n i t  

circle may be w r i t t e n  as: 

with .$ real Be 1 
- 2  - it9 - - e 

Subs t i t u t ing  from B. 16 one has 

2 %  
2 ulB I ulB 2 2 2  

+ i- (4 - B ) e 2iQ - Bele + ? =  4 - 1 + 7  2 
B c l  2 2 2  i$ B C I  

Separating the  above i n t o  real and imaginary par t s :  

2 ulB  COS^^ = B c l  COS& - 1 + B. 1 7  

B. 18 

We now el iminate  6 from ( B . l J ) ,  (B,18) t o  produce a compatabili ty 
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r e l a t i o n .  This w i l l  produce the  des i red  r e s u l t .  (B.17) y ie lds:  

B c l  B. 19 

whence 

,/- )’ B.20 
2 2 2 2  2 B u l  B c l  , B c l  

s i n e  = ( I - -  4 - 8 +T 

W e  now s u b s t i t u t e  (B.19), (B.20) i n t o  (B.18) t o  obta in  

2 2 4  

4 
2 2 2  u l B  

= u l B  - 

where w e  have used T 3: * 

The above equat ion reduces to  

2 2 2  4c212 = (2c212 + 4ul - 4u 1 ) 

2 2  2 o r  c 1 = (1 - ul) 

which we recognize t o  be the condi t ion 

- + ( u +  e)1 = 1 

Consequently a root  o f  (B.13) w i l l  have amplitude un i ty  i f  

( i )  s i n  ( k A x )  = 0 B. 21 

or  ( i i )  f (u +- c ) l  = 1 

Now note t h a t  the eigenvalues o f  G are continuous funct ions o f  u, c, 

1, k, and i f  s i n @  x) f 0 ,  c = O  a n d O < u l < l ,  

then from (B.21) 

j1= h 2 =  h , =  A w i t h  144 
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W e  then a s s e r t  t h a t  by cont inui ty ,  the eigenvalues cannot be outs ide 

t h e  u n i t  circle fo r  (u + c ) l  Sk 1, 

c is  always non-negative and u has been assumed non-negative:.) 

@.he s igns have been dropped s ince  

Suppose 

A2, say, were outs ide  t h e  u n i t  

3 2  l e t t i n g  c +  o would cause 

Hence, by cont inui ty ,  $\ would 

value of c fo r  which 

(u + c )1  < 

circle with (u + c) 1 & 1; then 

-.I$ A, i n s ide  the  u n i t  c i r c l e .  

be on the  u n i t  c i r c l e  f o r  some 

1 

which would v i o l a t e  (Bo 20). 

I f  u < 0, forward space d i f fe rences  are required i n  t h e  con- 

vec t ive  t e r m s  u - a i n  (B. 1) t o  (B.3). 

x 3 (-x) and u --e (-u) w i l l  br ing u s  
ax 

Thus t h e  condi t ion fo r  s t a b i l i t y  i s  taken 

Then t h e  transformations 

back t o  the o r ig ina l  e quat ions. 

t o  be 

1 .  
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APPENDIX C 

S t a b i l i t y  of the Non-Isentropic Equations with A r t i f i c i a l  Viscosity 

W e  had (2e3.7), (2.3,8): 

c. 1 

ut: 2% 0 e. 2 
J 

c. 3 

c. 4 

where 1,= a 

The l i nea r i za t ion  proceeds as i n  Appendix 14, but we consider q as 

being an independent variable.  Consequently we have: 

c. 5 
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C. 6 

c. 7 

The f i r s t  order equat ion fo r  q i s  derived from ( C . 4 )  under the  as- 

sumption t h a t  t h e  perturbance i s  dominated by t h e  e r r o r  i n  t h e  represem- 

t a t i o n  of t h e  der iva t ive ,  

and w r i t e  

d U  

a x  
We regard ( q-) as  a zero order  quant i ty  

C. 8 

(One may car ry  th.rough the  ca lcu la t ion  with the added term 

f? l2 ( 7) . However5 i t  turns  out t o  have neg l ig ib l e  e f f e c t ,  

j u s t i f y i n g  the a p r i o r i  assumption,.) 

With the abbrevia.tioos 

a u  2 
c3 

B = s i n ( k A x 1  

c .  9 

one has, on subs t i t u t ing  a Fourier s p a t i a l  dependence i n t o  (C.5) to(C.8): 

c. 10 

C. 11 



- 68 - 

B (Pn + qn)) c. 12 n+l = pn A - i - at * n i At  e B ( u  A - - -  - 
Ax P B A x  

P 

C. 13 

One may write the four th  order ampl i f ica t ion  matr ix  G as: 
\ 

G =  

- ip  A t ,  

A 

* - ie y c AB 

A A i B  
A x  

The eigenvalue equat ion fo r  G i s  

AB A = - $ \  -is= A t  

0 A -  h 

0 = = i  At e*AB 

h i B  A 
A x  

0 

- ( A  t ) 2  B2 

( A  X I 2  

- ht12 B2 
2 

B i A t  
e A x  

- - -  - - -  i A t B  
e Ax 

Evidently the  f i r s t  eigenvalue i s  

S 1 = A  
i B  Then d iv id ing  the four th  row by and subt rac t ing  i t  from 

C, 14 

= o  
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the  second, one has fo r  the  remaining three  eigenvalues: 

0 

Ai0 
AX 

A t  h B 2  
P A X  

Expanding i n  cofac tors  by the f i r s t  row w e  get: 

A 2 = 0  

while the las t  two eigenvalues s a t i s f y  the quadrat ic  equation: 

* 
we note  t h a t  i f  A = 0 ,  c = c corresponding t o  the case of 

no v i scos i ty ,  the above equat ion reduces t o  (B,13), as it should, 

Rearranging (C. 16) w e  have: 

+ A t  A m 2 = o  

whence i t  i s  elear t h a t  f o r  s t a b i l i t y  i n  t h e  l i m i t  as A t ,  4 x 

+ 0 we w i l l  r equi re  

f i n i t e  constant  

= o  

C. 15 

c. 16 

C. 17 

C, 18 
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Hence l e t t i n g  A t ,  A x T-, o 
be come s : 

with (C.18) s a t i s f i e d ,  (C.17) 

The roo t s  of the quadra t ic  equation are seen t o  be: 

sin’ (k A XI 3 U  
’Iv (a) A 4 = 1 +  at 

( A  X I 2  

Hence t o  s a t i s f y  the Von Neumann necessary condi t ion we require:  

s ince  - 0 i n  the shock t r a n s i t i o n  zone. ax - 
w e  na tu ra l ly  take the extreme value 

predicted by equati.on (le505). One may then write (G.19) wi th  the 

a U  

ax A s  an estirnate of - 

help of (1.5.5) as: 

I n  order  t o  compare t h i s  with the  usual form fo r  

d i t i o n  we assume t h e  most s t r ingen t  case, namely 

that:  

and p1 = 0 - =  ? 2  d +  1 
e1 

From the  conservation of m a s s  and momentum: 

c. 1 9  

c. 20 

the s t a b i l i t y  con- 

a s t rong shock, SO 

c. 21  

c, 22 
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T.ogether with (G.21) one obta ins  
.-.LIIIIIIIIIII\ 

D - u 2 -  -/+ c 2 

C. 23 

C. 24 

i s  the i s en t rop ic  sound speed i n  the shocked 2 where c 

gas, Similar ly  one finds:  

G. 25 

Hence from (C.24) and (C.25) one has: 

P \ 
C. 26 

Consequently we write the s t a b i l i t y  condi t ion (C.20) i n  the  extreme 

case as :  

ac 2 41 C, 27 
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