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SUMMARY

A one-dimensional hydrodynamic formulation of the hyperveiocity iﬁpact
of a pellet onto a thin bumper has been analyzed by finite difference tech-
niques. A first order scheme due to Lelevier was used together with the
well-known artificial viscosity due to Von Neumann and Richtmyer. Studies
were made assuming a perfect gas equation of state and results for the com-
plete interaction including the effect of a secondary surface are presented
here.

The finite difference code was found to remain computationally
stable throughout all phases of the investigation. However, the long term
expansion results are not within the realm of the physical assumption of
one-dimensionality. Consequently, the long term stability is more important
mathematically than physically. A useful feature of the present work is
the elimination of small local disturbances or "jitters'" which often accom-
pany the use of artificial viscosities. A technique of smoothing, which
does not appear to have been used before on this type of problem, was

successfully employed.
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NOMENCLATURE

1, Symbols used repeatedly in the text.

o

A x, At

a = 1V/ZS.X

contact surface

isentropic sound speed

shock velocity

internal energy density

& =rF@E.9)

coefficient of artificial viscosity
pellet to bumper length ratio
pressure

artificial viscosity

bumper and pellet rarefactions

bumper and pellet shocks respectively
time

velocity

pellet impact velocity in bumper frame

-

P o
shock velocities @f Sp, SB respectively)

axial coordinate

polytropic gas constant
e —

time increment associated with initialization of CXLB’ C%'p
thickness of transition zone shock wave when artificial
viscosity is present

space ~ time mesh size

:

s

¥ +
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smoothing element index
,GQ dummy variables

density

o v <

2. Symbols used repeatedly in the Appendices

«ik A x

A 14 ul (e ~1)
B sin(k A\ x)

G amplification matrix
1 identity matrix

Fourier wave number

£(e) = 0(A ©) =$'Atl_fﬂ6 %Elt_ = finite

s C 7

eigenvalue of G



INTRODUCTION

This report is one in a continuing series of studies of the pro-
tection of a spacecraft in a meteoroid environment. The method of pro-
tection is due to Whipple, Consider Fig., 0.1, The spacecraft hull is
surrounded by a thin shell or "bumper'". The high kinetic energy of an
impinging meteoroid may be expected to vaporize both the meteoroid
and a local section of the bumper. The expansion of the resulting gas
cloud will then disperse the original meteoroid momentum over a large
section of the inner hull. In this way a considerable reduction of
pressure on the hull may be expected. The reduction will depend, among

other things, on the spacing between the bumper and the hull,
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(c)

Schematic of Meteoroid~Bumper Interaction

Fig, 0.1



A fundamental assumption in the foregoing is that the kinetic
energy will be high enough to produce vaporization.. For most materials
(sand, clay, éranite, aluminum, steel) the vaporiZation energy is of‘
the order of 1010to 1012 ergs/grams. Hence velocities in excess of
10 km/sec should produce vaporization.. At the high meteoroid impact
velocities of 30 km/séc the assumption that vaporization takes place
should certainly be valid.

As an experimental simulation of the physical situation, one may
project a cylindrical pellet to impact normally on a thin sheet, A
cylindrical pellet is used to obtain rotational symmetry about the
direction of the impact velocity, Fig. 0.2 shows high speed photographs
of a cylindrical Lexan pellet that has been accelerated by a light gas
gun impacting on a lead sheet, Frames 1l-4 show the approach and des=
truction of the pellet while frames 5-8 show the expansion of the re=
sulting gas cloud,

As a preliminary to attempting an analysis of the flow represented
in Fig. 0.2 we have studied a one-dimensional approximation, The approach
taken is that initiated by Dr. G.V. Bull (Ref. 1), A hydrodynamic model
is proposed and the kinetic energy assumed sufficiently high that vapor--
ization energy may be ignored, Plasma effects due to the stripping of
outer orbital electrons may then become important, However such effects
are not considered in this report,

The model we have adopted is one-dimensional in that radial effects
are ignored, Such an assumption can only be valid for short times after
impact., If we iﬁterpret the study made in this report as applying to
the centerline [Fig. 0.1(c)], then by a short time we mean a time suf-

ficient for radial attenuation waves to penetrate to the center. We



*oas/u $0°9 %u.m.ooﬁm.» joedny *TTeM peoOl MOTyl um 16°0 © pue
. 911309f0ad uexo] Suol wm ;°7Z] X IoJoWEIp W /°TI V
$TL7 3I0yg Jo oouonbog waswen Sutwexy QOE M € T°0 814




£

S

-

(penut3uo))

[4

0




-5 -

might anticipate that the one~dimensional model is valid during the
period in which the pellet is being vaporized,  This will be so if
the length of the pellet is small compared to the radius. It is use~-
ful to visualize the one~dimensional model as describing the impact of
one infinite flat plate onto another,

The limitations of the assumption of one-dimensionality make it
difficult to obtain experimental confirmation of the results contained
in this report. Also, the upper limit of the experimental velocity
range is roughly 10 km/sec, which is well below meteoroid velocities.
Thus, while we may expect vaporization to occur, it does not appear
reasonable to ignore the binding energy in comparison with the kinetic
energy corresponding to such a velocity. Experimental confirmation is,
therefore, further hampered by the need to include the effects of non-
negligible vaporization energy,.

Since the one~dimensional approach has reasonable validity
during the vaporization of the pellet; we are able to study the "des-
truction potential' of the bumper. The shock moving into the pellet
will eventually be overtaken by a release wave from the free surface
of the bumper, provided the pellet is sufficiently long. The high
pressure behind the pellet shock will consequently decay. Eventually
it will reach some critical level at which insufficient energy is
available for vaporization,. Although vaporization.energy was neg-
lected and an ideal gas equation used in the present study, it was

possible to decide a posteriori to:what degree an impinging pellet would

have been destroyed,
It was to be expected that the long term expansion profiles

would produce pressures and densities well in excess of experimental



values as no mechanism for radial decay could be involved in the one=-
dimensiocnal model. Nonetheless, a calculation of pressures at a
secondary surface downstream of the impact point was performed to
determine whether qualitative agreement could be obtained, with the
experimental conclusion that the maximum pressure at a secondary
surface is not much higher than the maximum total pressure at the
same point in undisturbed flow,

An important concern of this report has been the development
of a successful finite difference code, 1In this regard two features
appear. The code we have developed was found to remain computationally
stable throughout all stages of the analysis. Secondly the rather
annoying problem of "jitters", or pseudo~shocks, which often accompany
an artificial dissipation term have been eliminated. We borrowed a
technique familiar to meteorologists but which does not seem to have
been used in this connection until now. This technique is one of
designing a "smoother" or filter which deletes any small disturbance
whose wavelength is of the order of the grid interval, Judiciously

applied, a smoother not only removes "jitters" but also enhances the

stability of .the finite difference program.



CHAPTER ONE

1.1 The Initial States

The model we adopt to describe the impact process is due to
Bull (Ref, 1). We consider the normal impact of a moving plate (the
pellet) onto one at rest in the laboratory system of coordinates (the
bumper). At :the moment of impact strong shock waves are produced which
propagate through the pellet and bumper, decelerating the former and
accelerating the latter. In the shocked regions high thermodynamic
energies will be produced at the expense of the pellet kinetic energy.
It is assumed that the kinetic energy involved is sufficiéntly high
that the resulting thermodynamic energy will be large compared with the
intermolecular binding forces of the pellet and bumper materials. At
the same time plasma effects are ignored and the hydrodynamic equations
presumed to apply throughout the pellet and bumper materials,

In terms of the fluid descriptions of Ref, 1, we represent the

situation shortly after impact in Fig., 1.1 below,.

wdp

o
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o} o
v Yp g "B
QPQ QP QE Q @
W
L A B Ve,
— Pellet Bumper ——®

Fig, 1.1

Initial States after Impact



We assume that the fluids obey a polytropic gas law with ex-
ponent ‘X . Pressure, density and velocity have been denoted by
P> 5} , u respectively, The subscripts B and P refer to bumper and
pellet media respectively, The further subscript o has been used to
denote initial or unshocked states. A contact front C is presumed
to separate the pellet from the bumper material at all times, 1;
and'gé denote the shocks moving into pellet and bumper materials
with respective velocities Wp, WB relative to the unshocked bumper.

Under the assumptions that
(i) ‘gé,'ﬁé are strong shocks,

(ii) vaporization energy is negligible; and
(iii) the bumper and pellet gases obey a perfect gas law;
one may use the Rankine-Hugoniot relations together with continuity of

pressure and particle velocity across the contact front, to obtain

(Ref, 1):
u 1
VB _ ﬂ , pu = vy 1.1.1
1+ YB e ?Bo/
YP + 1 |?p0
¥ + 1 Y. +1
= e ; . 1.1.2
?g YB-]. 9B0 (Pp yp-l PPO
¥y + 1L Y +1 -1
WB = 5 ug R WP = - pz uP - ) vV 1.1.3
2
¥ + 1 Ps v
o = B [e] 1.1.4
%) %3. 2 olo
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We now non-dimensionalize as follows:

9 — 3/%

p — p/ 93 v2 1.1.5
]

u —» u/V

We choose as our unit of length the bumper thickness. Consequently the
unit of time is given by (Bumper Thickness)/(Impact Velocity of Pellet)

Impact Velocity of Pellet
Bumper thickness

time ———p time x 1.1.6

We fix our coordinate system by choosing the origin of the x-axis at
the contact front at the instant of impact (t = o).

Equations (1.1.1) to (1.1.4) determine the shocked fluid prop-
erties until such time as ‘é—P or ?B encounters a free surface. We

—
S

assume that the impact process takes place in a vacuum and that B

L
reaches the downstream bumper surface before Sb reaches the upstream
pellet surface, From (1,1.3) and (1.1.6), the non-dimensional time at

-
which SB reaches the downstream bumper free surface is given by::

2
to ( g + 0w
B . B
11197
XB +1 93
i.e. t 2 T 1 1+ ) 2
o
L3 \(p ?po
At time t0 the contact front C will be located at:
X = uBto = —-hz£¢-i———- 1.].-‘8
¢ B

The pellet shock will be at:
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+ - +
%sp ¢ +i - : +1 L+ 8B+i 7% 1.1.9
5P ¥ '§ xp Ppo
-
Consequently, at the instant when SB reaches the downstream bumper
free surface, the shocked fluid profiles are given by:
u(x,t ) = — x & x £1 1.1.10
¥. +1 8B P
B o}
1 +
K 4+ 1 S)
P P0
\& + 1
p(x,t ) = - 132 et L . X & x€1 1.1.11
° g+ 9 P
B Bo 2
( 1+ ‘ )
+ 1
4 Jr,
et
= X &= X & x 1.1.
? (x,t ) {. -1 ( o/g) ) sp 3 1.12
P o
o +-1
?(x,t)=-———B—— x & x &1 1.,1.13
o KB -1 c

If we take the pellet length to be lp (in units of bumper thickness),
then at t, the upstream pellet free surface will be located at:

x ==1 +¢t
p P o

g+ 1 9y

x = -1+ 1+ 1,1.14
+ 1 + 1 s
PP 3 ¥p P,
Then the unshocked fluid profiles are given by:
= . L L
u(x,to) 1 xp - X = Xsp 1.1.15

i
[«
®
i
]
I
b

( &
p("x’to) P sp 1.1.16
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S
Pty = °/§>Bo B £ X £ xg 1.1.17

—
The condition that SB reach the downstream bumper free surface while

G
SP is still in motion can be written:

X X
P < sp

) XB+1?BO B +1

or -1 + Xy F 1 1+ ,8p+lfp <7];L+T
(8]
- .t 1

€p * 1 X, +L B
o]
\d+1 X * 1 PBO

i.e. 1 1.1.18
e > (+1 A

1.2 The Expansion States

Having determined the initial shocked states we turn to the

question of the expansion process, Consider Fig. 1.2.

— b,

i N @P
Pellet
+ scape front_’

-

-~
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,.’bontact front

Pellet Surface
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o -
) S
4%~ Pa =
I / ' Bumpe_lé‘ shock
x
0o 1 >

Wave Diagram of Impact Process

Fig., 1.2
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We may divide the flow into four characteristically different
periods, In period I both shocks are progressing with undiminished
strength, The profiles during this period are given by (1.1.10) to
(1.1.13) and (1.1.15) to (1.1.17). 1In period II,'E; has reaéfff the
downstream bumper free surface and generated a rarefaction <§L1y

-~ -
As GRIB does not overtake SP during this period, the flow iﬁ‘ffentropic
in each zone of shocked or unshocked fluid, In period III, (ﬁi:B has
overtakenﬁgg before the latter has reached the upstream pellet free
surface, Evidently period III may or may not occur. However, the
resulting shock decay is of primary interest in this report and it will
be assumed that period IIT does occur. Due to the decay oflgé in
period III, the governing equations will not be isentropic. 1In period
IV"S-P has generated the pellet rarefaction _@:P. The governing
equations will be isentropic or non-~isentropic depending on whether
or not period IIL (i.e. shock decay) has occurred,

In the case that we are dealing with a like material impact,
one can write. a simple solution for the flow in period II (Ref. 4, 5).
z;&B is characterized by two surfaces, An expansion front moves back
into the gas relaxing the highly shocked states created in period I,
while an escape front moves into the ambient vacuum at constant velocity.
The solution we write down is valid as long as the expansion front proe-
gresses through a homogeneous region in which the flow properties are
constant, Consequently, in the case of unlike materialAimpacts, the
solution will be valid until the exﬁénsion front overtakes the contact
sur face, |

Let the constant particle velocity and sound speed at the ex-

pansion front be u, and c, respectively. Then the expansion front
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moves according to:
(x - xo) = (uo - co)(t - to) | 1.2.1

where X, is the initial position of the bumper free surface (xo =1 in
non~dimensional units) and to is the time at which CZL B is generated

[éee equation (1.1.7)]. The escape front is found to move according to

(x = xo) = (-7;2:—I—~ e, + uo)(t - to) 1.2.2

The governing equations are isentropic and are found to have the

solution (Refs, 4, 5):

¥ -1 (x - %)
c(x, t) = L+ 1 u - (t p— ) 'injr* 1.2.3

(x, t) 2 {x_x°+ } + 8- 1 1.2.4

u(x, c u R
g +1 t tO o + 1 o)

valid between the extremes defined by (1.2.1) and (1.2.2).

1.3 Finite Difference Representation of the Isentropic Equations

In the case that one is dealing with unlike materials or if
period TIT (Fig. 1.2) does not occur, it is convenient to have a
finite difference scheme for the isentropic equations. The results
of Section 1,2 may be used to eliminate the initial discountinuities
at free surfaces and to produce smooth initial distributions.

One may write the isentropic equations as:

xz-i —-gi +c§:+2§_1———2§=0 1.3.1

S, Qe 2 Qe 1.3.2
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We represent the various derivatives in the form:

= o

zzlsx ? S+ Dx,e) - E(x - Ax,t)} 1.3.3

3 wo

-Z&lt- {‘§<x,t+At>--§-( Ca+Axn
+ g(x-A.x,t))} 1.3.4

where Eg (x,t) is some variable of x and t and the symbols ACS X,

4ﬁ; t represent intervals in the space=-time mesh.

{A t

24A¢
At
8% =A% Y 25 TTAE? x
N
-2 At

Finite Difference Grid

Fig. 1.3

The situation is indicated in Fig. 1.3. Information concerning field
variables is known at the grid points (j Ek:{,llﬁ& t) where n, j are

integers, For convenience we write
n .
Ej = S GAx, nAv)

so that (1.3.3), (1.3.4) may be written

281 | )
=) x1 T 2N (grjlﬂ - 5?-1)

&E? 1 ( Enﬂ._‘l (in + 2y
St At j 2 j+l j-1
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Substitution of these representations into (1.3.1), (1.3.2) yields,

after rearrangement:

n n
: u,, . = u,
c?+1 = l-( R ) - ;ELL;L' £ ( ct e i-1
i 2 it j-1 Ax j 2
n n n
. 2u -c
: g+l -1
+ «»1 2 ) 1-03.5
A Vi =9
n+l 1 n n t n i+l j=1
by 2 (U T o) = "Ax (9 2
n n
2c c c
. i "+l iml
L ] 5 ).. 1.3.6

Equations (1.3.5), (1.3.6) are the working form of the finite differ=-
ence scheme., The right hand side contains only information at time
n.Zﬁ&t. This information is used to predict the values of u and ¢
at each grid point j.A x at time (n + DA t. One may show, however,
that (1.3.5), (1.3.6) will produce solutions closely approximating

those of (1.3.1), (1.3.2) only under the restriction that

TA; (utc) &£ 1 1.3.7

Equation (1.3.7) is referred to as the stability condition for the
finite difference scheme (1.3.5), (1.3.6) and is derived in Appendix A,

The treatment of boundaries is discussed in Section 1.7.

1.4 _Finite Difference Representation of the Non-Isentropic Equations

One has, for the conservation of mass, momentum and energy:

%, 82 LR

ot

= 0 1.[}.1
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'%%*‘ISZJ"SIS"%“%:O 1.4.2
ggﬁt ru %ﬁx +_§_g: =0 1.4.3

together with the equation of state:
& - Fp, §) L.b.4

One may form three simple representations for the first derivative:

%gx Al - ( g (x + A X) = E (x)) (Forward Difference)

P

gg A Alx ( )§ (x) - 8 (x - Ax)) (Backward Difference)

.gi T oxr (fa+An - Ta-An

(Centered Difference)

The substitution of centered differences for the spatial derivatives
in (1.4.1) te (1.4.3) produces a scheme which is unconditionally un-

stable,‘(Ref. 7). Consequently we use the first order scheme due to

Lelevier:

+1 A 1 1
8? i ?rJl 4 injc;?rjl-l _ _Bn “?Il”“?tl
X

At 3 k| Zpx >
u‘J}"‘l > 0 | 1.4,5
un+l - ot o - ot pn _ 0
] KT S TN L PP | - Py-1 o,
At 3 Ax n 2 DNx
h|
Wl > 0 1.4.6
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nt+l n n n n n+l n+l
éj B éj 4 oot Ei - & S R M
I\t i X ‘

o2 0 1.4.7
J
The convective terms wfg%; have been represented in (1.4.5) to

(1.4.7) by backward differences. If the velocity is negative, forward
differences are to be used in these terms., The equation (1.4.6) is
used to advance u from one time step to the next. Then the advanced
value of u is used to calculate new values of p, S? ’ EZ.. We have
left the equation of state arbitrary. The stability condition is

established in Appendix B and is found to be

%; (lul +c) & 1 1.4.8

which is in agreement with (1.,3.7) for the isentropic equatiomns. No

significance is attached to the agreement,

1.5 Shock Waves and the Artificial Viscosity

It is difficult to give an exact treatment of shock waves, A
useful approximation which permits automatic calculation is due to
Richtmyer and Von Neumann (Ref, 7). An artificial viscous pressure is
added to the kinetic pressure in equations (1.4.2), (1.4.3). The

viscous term is taken to be:

1333(——-‘2; )2 g 28 g

1.5.1



- 18 -

The finite difference representation of q is, with 1V = a Zl x

)
a n n n _ n 2 P R S
5 (5% D) g~ ) Loy m 9= 0
q? = 1.5.2
’ 0 iful,. -ul . S0
1 7 %5e1

Whereas ordinary viscosity would be proportional to the strain rate

Su Qu

S>x° we have used a quadratic term in Sx° The advantage of using

a quadratic term in the strain rate is that the shock thickness be=
comes independent of the shock strength, Richtmyer (Ref, 7) has sSolved
the problem of a plane steady-state shock in a perfect gas with the
viscous term, The flow is found to be undisturbed except for a
transition zone centered about the "exact" position of the shock and

of width:

= L 1.5.3
\/ +1

Let X be the "exact" instantaneous position of the shock

A TN

wave., Denote properties before and behind the shock wave by sub=

scripts 1 and 2 respectively. Then one has in the transition zone

g + 1 1 1

Loo_ Sy B +_32. £ sin ¥+ 1 ,X.fxo)
E? 2 2 ] 2 1
v
1.5.4
u, +u u, = u /K X = X
_ 2 1 2 1 . 8 +1 o
u == + —=———sin ( J 5 T ) 1.5.5
v
p,tp Py =P ¥ x =%
_ -1 2 _ 1 2 + 1 o :
p+gq > 5 sin ( 5 T ) 1.5.6
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(cos ( 21 xo % »?
@ P17 P2 K+ Yo L 1.5.7
2 2 ?14—?2 . 1§ x "Xy
=+ sin ( J 5 T )
51792 v

If shock waves are present at the beginning of the finite difference
analysis, (1.5.4) to (1.5.7) may be used to approximate them, The
resulting smooth profiles are then suitable for a finite difference
technique. The smeared out shock propagates with very nearly the
correct velocity (as determined from the Rankine-Hugoniot relations).
The calculation proceeds automatically provided we replace p? in
equations (1.4.6), (1.4.7) by p? + q? where q? is given by (1.5.2).
?he effect of the artificial viscosity on the stability con=~
dition is discussed in Appendix C. .The maximum permissible time
increment is somewhat reduced as the shock strength increases, We

found it desirable to use the condition

1.5.8

—%—;E (Jul £0) &

L
2

1.6 Smoothing Operations

it has been observed by many users of the artificial viscosity
that small oscillations or "jitters" often occur during a calculation,
These are probably due to insufficient dissipation on the part of the
viscous term (Ref., 8). The elimination of small non~physical oscil-
lations has been successfully performed by meteorologists (Ref. 9).
We have adopted their techniques.

We Wish.to define some operator which eliminates small local
disturbances from the flow while leaving the rest of the flow pattern

unchanged, By a small disturbance is meant one whose wavelength is of
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the order of 2 Ax where A x is the grid spacing, and whose amp-
litude is small., Since shock waves will be present in the flow,
such an operator will have to be applied carefully and only in those
regions which are known to be free of rapid transitions. We now
define a "smoothing element", discuss its properties, and show how
more complicated smoothers may be designed, Designating the grid

point values of some function (Q(X) by Ce (nAx) we write:
Qﬁn = Q (nAx) = M ?n + % (1- rl\)( ?n+1 + @nel) 1.6.1

Equation (1.6.1) defines a three~point smoother. It is useful to

write (1.,6,1) as:

an=Qn+_;2.(cen-l+2(en+(en+l) 1.6.2

where f) =1 = M is called the smoothing element index, Let us

examine the effect of a smoothing element on a Fourier term. Take:

CPn =0 + Acos(k(xn-x)) 1.6.3
where k is the wave number and x is a phase factor. Substituting
(1.6.3) into (1.6.2) one has, upon simplification:

Qn =C+ (1~ (L - coskd x))) Acos (x| = ) 1.6.4

Consequently, the smoothing element changes neither the

wave number nor the phase but alters the amplitude by a factor

Q' =1- "> - cos(k A %)) 1.6.5

If we apply successive smoothing operations with indices ‘)2 s Vl’

ceees ’Qn the final ratio of smoothed to unsmoothed amplitude is
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easily seen to be

n
2, = 0 T eeee T, = TT (- 9 a - cosk An))
m
m=20
One could, in principle, use the above polynomial to curve=fit
a smoother to any desired filtering specifications, So far we have
been discussing three=-point smoothers with real indices. One may

equally well define a five-point smoother by:
Qn-_' @n-i- 4 (Cen-2+ ?n-l+@n+l+cen+2-4c!€ n)

One may verify that a combination of two three-point smoothers whose
indices are complex conjugates is equivalent to one five-point smoother
with a real index. 1In our calculations we used a multi-element smoother

indicated by Shuman (9), for which the indices were:

170 = 0.45965
"
Vs

il

=0,22227 + 1 0,64240 1.6.6

=0,22227 - i 0,64240

The multi-element smoother defined by (1.6.6) was applied pericdically
to those regions of the flow known to be free of shock waves. The

resulting operator proved very effective in eliminating short wave

disturbances while leaving the rest.of the field untouched.

1.7 Details of the Finite Difference Schemes

The finite difference representation of the isentropic equations
(L.4.5), (1.3.6) was given in Section 1.3. It is the purpose of this
section to indicate the details of its.use. . The non=isentropic

equations (1.4.5), (1.4.6), (l.4.,7) are to be handled analogously.
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Consider Fig. 1.4,

9 10 11 12 13 14 15 16
£ ; Ii

Expansion
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tﬁ...Ax_W At Escape front

12 3

S
-
o
~4
00|

Detail of Finite Difference Grid

Fig. 1.4

Equations (1.3.5), (L.3.6) involve centered spatial differences,
Evidently values at the grid points 11, 12, and 13 may be written down
by direct application of (1.3.5), (1.3.6). However, one must be more
careful at 10, 14, and 15. An attempt to calculate centered differ=-
ences at 2, say, will take us outside the boundaries. Therefore, at

Su

point 2 we use as an approximation to S x :

Qu Ay L, uw@ -u® . u@ -wu®@

> > ( %f Ax ) 1.7.1

where % is the distance between 1 and 2, 1If @—aA x then
(1.7.1) tends to the usual centered form. Substitution of (1.7.1)
into (1.3.5), (1.3.6) permits us to calculate the new wvalues of u and
¢ at point 10. A similar procedure is followed at point 14, Then the
value at 15 may be obtained by linear interpolation between 14 and 16
on the boundary where values are presumed known.

One may note that the first term on the right hand side of

(1.7.1) is a suitable representation for a backward difference at
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point 2, Forward differences may be defined analogously, With this
observation in mind one may extend the above techniques to the non~

isentropic difference equations (l.4.5)t» (L.4.7).

1.8 Treatment of the Pellet and Bumper Rarefactions

The initial discontinuity which occurs at the downstream free
[ o

surface of the bumper at the moment when (;{; is generated is easily

B
treated via equations (1.2.3), (1.2.4). 1In terms of the notation of

Section 1.2 we write

ES =t =ty 1.8.1

and choose 8 so that the width of the rarefaction fan at time to +S
corresponds to four or five grid spaces. The width of the fan is, of
course, détermined from equations (1.2.1), (1.2.2). In this way the
initial discontinuity at time to is removed and the only change in the
rest of the flow is that the uniformly moving boundaries are advanced
by the appropriate amount,
—

The initialization of C;a]p’ however, cannot be handled quite
so neatly., Two possibilities exist:
(i) When shock decay occurs, and the artificial viscosity is used to
produce a shock of finite thickness whose leading edge reaches the
upstream free surface of the pellet,
(ii) When no shock decay occurs, no artificial viscosity is used,
and a shock of zero thickness reaches the upstream free surface of
the pellet.
In case (1) we make use of the finite distribution of the shock wave,

We arbitrarily determine the escape time as that instant when

e
the leading edge of SP reaches the upstream pellet edge, At that time
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escape conditions are determined from the flow values at the point of
maximum pressure and values at this point are joined linearly with the
predicted escape values at the pellet boundary. In this way no time
step is involved and the rest of the field is left unchanged., A small
error is introduced in that a small quantity of pellet mass is lost.
This error is, however, comparable with the uncertainty in the time of
arrival of the shock wave at the upstream pellet boundary.

If we write X, as the position of the pellet boundary at the

chosen escape time and x. for the position of the pellet maximum, our

1

escape boundary conditions are:

9(};0) =0

px) =0 1.8.2
_ 2 plx;)

Bl = ) = T Yp eR)

Although no tests were made in which case (ii) occurred, as
the primary object of the program was essentially to study period IIL
and the subsequent shock decay, provision was made to allow such a
possibility. The free surface was handled in the fashion described
in Section 1.2 for the bumper free surface except that we used values
of the flow variables apg;OPriate to the pellet material, This is
permissible as long as the expansion front of the rarefacti_on,-@:p,
generated at the pellet free surface, is not permitted to enter the

o

regime of CILB in the process of initialization,

One must then ad just the rest of the field to the new time

t + ES . Equations (1.2.3), (1.2.4) were not used in order to avoid

generating instabilities, Instead it was noted that the various



profiles retained geometric similarity d;lring the prior computation.

Therefore, it was assumed that the decay profiles in the rarefactioﬁ

zone would retain their shape during the small time interval 8
Writing X and Xy for the positions of the expansion and escape

fronts associated with & we have:

xo—->x0 =% +(u -c)8
1.8.3
1 o -
xl---—-> xl =% + ulg
where
u = u(xo)
¢y = c(xo)
u, = u(xl) = esgcape velocity.

The new profiles are taken to be

- 1 0 1
C(X:to+g)"c(Al 1 (X-XO)+XO’tO)
x, = X
1 0
1.8.4
X, = X
_ 1 0 1
u(x,to+5)—u( 1 1 (x Xo)+xo’ to)
T *o

where to was the time at which @p was generated,

In both cases (i) and (ii) it is assumed that the escape front
velocity remains constant. In fact this is a consequence of the uni=-
formity of the material bounded by the free surface assumed in Section
1.2 and is not true in general., However, it is felt to be justified
a_postériori by the subsequent calculation in which the velocity
field was seen to increase monotonically from the upstream pellet

escape value,
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1.9 Treatment of the Contact Front

In general a contact discontinuity must be handled by interior
fitting procedures which are accurate to the second order in the grid
spacing AX. (Ref. 7).

If, however, a functional representation of the entropy is
available, it may be possible to write the transition properties
directly, In this report only a perfect gas is considered, 1If we note
that particles on either side of the contact fromt retain their shocked

entropy values throughout the entire subsequent analysis, we may write:

+ = (—B—) 1.9.1
ar g T
P P

Pp Py
X X
?B ® PB ?

where the right hand sides are evaluated in the initial shocked state

) 1,9.2

and the equalities hold at the contact front for all subsequent times.

Since we are dealing with a contact surface we may write:

up = U_B
1.9.3
PP = .PB

These are the transition relations for pressure and velocity across
the contact surface,
Using the second equation in 1.9.3 and dividing 1.9.1 by 1.9.2

we arrive at

¥

X .

f%o S>Po
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which is valid for all times subsequent to the initial instant of
impact.,

Since 93 = 1 in our non=dimensional scheme we have the
0

transition formulae:

93 - ¢ by )XP/ ¥y 1.9.5

and

5>p = '§>BV )j?iB

As the velocity of the contact front, C, relative to the flow

is zero, we may advance its position each time step as follows:

Let £ be the position of C, i-1l & f£1
£t +At) = £(t) + L, . (L=6+u (f-1i+1))
Ax i=1 i

where u, g = u((i = 1) AN x,t)

During computation with the non=-isentropic equations, equations
(1.9.5) were used to convert directly terms appearing in differences
taken across the contact front.

i.e., With i -1 & f &-i we write a backward difference as:
9 . YP.«
i-1 X.
; - 5 ) °B
S

o/
%%-\ i.Q: AXS)BO 1.9.6
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Similarly a forward difference at grid point i = 1 is written

-%{ | . (84 2 A\x. \ 1.9.7

Centered differences may be constructed by averaging the
expressions in (1.9.6), (1.9.7) with the usual forward difference at
i or the backward difference at i~l (such terms are unaffected by the
contact front as differences are not taken across it).

Of course, the internal energy, ii , must be similarly convert~
ed by substitution of an adjusted density value in the functional
equation whenever necessary.

In the isentropic case we require a conversion rule for c, the
isentropic sound speed.

We have, in virtue of the continuity of pressure:

N
jp_=/\§£ s
°B ). ¢ ?p

across the contact front, Using the second equation in (1.9.5), we

have:

' ‘ \(p - X B \
c =c -_\.é_E. i]i?. 79 XP
P B XB ?po B

1.9.8

Since -—%Z——- = J\ , a4 constant, we may write

¥
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1

\/'Br". 1

2
%, = (g0
B BA
We now substitute this into the equation 1,9,8 to eliminate

j?B' This gives us:

. T x - X -

L. Sp” ¥s s > B
7 (7 - D B

SR T e (W¥py *?

C'P - CB XB ?po

go we may write
¢ =Ac 1.9.9

¥p "~ ¥ L
1- Xp ) )

where EB \A X
= 0 P P
A= ( ?Po ¥ ( >\ XB)

XB ( ‘&p:“l.)
Xp ( XB "1)

Then 1.9.9 and its inverse are used to represent centered
differences in the same way as above,

This technique assumes that the profiles on either side of the
contact front are geometrically similar, and inspection of a sample
calculation supports this assumption, Of course, the accuracy is pro-
portional to the fineness of the spatial mesh.

We chose the c?nvention that when the contact front coincided

with a grid poiﬁt, that grid point assumed pellet values.



1,10 Interaction of the Gas Cloud With a Secondary Surface

If a secondary surface is present, the leading edge of the cloud
will interact with it after some initial period of expansion and a
reflected shock wave will be produced. Let the subscripts O and 1
"denote properties before and behind the wave respectively and let the

shock velocity in a laboratory frame of reference be D, Then
L= pMHY@-u)? = =u)@=-u) -1 =-pHec?=0 1.10.1
P» 0 1 0 0 PA 0 s

2_ X1

where \L, T Equation (1.10.1) may be deduced from the

jump conditions across a shock,

2 2. 2
D=u0+(E_L-uO)i \,(ul"“o) T Wy
2(1 - 15

1.10,2

For a travelling wave one chooses the positive sign. jPl and
Py may be obtained from the mass and momentum relations respectively:

(uO - D)
531 ?o ———-—(ul m—— 1.10.3

P = Rt 9 (5D - @ - D)

We now apply the stagnation requirement at the stationary plate:

We now have enough information to determine 91 and p, so that the
shock is completely specified. Consequently we may approximate the
initial reflected shock according to equations (l.5.4)te (1.5.6).

The finite difference solution can then be continued automatically.



It is useful, however, to make a qualitative study of the re-

flected shock, If we note that o f~ 0 near the escape front at the

moment of interaction, we may write equation (1.10.2) as

-u0 + (-uo)
D &> u0+ 5 1.10.4
2(1 = v& )
where we have written uy = 0.
Consequently
1 2u,
aY] - —————— =
D & u, (1 5 ) Y+ 1.10.5

. Whence from 1.10.3 we have

s
?1 ?O —T—T 1.10.6
_ 2 ( + 1
pl = Shu' ;ﬁ___) 1.10.7

(ignoring the initial pressure pq).
Equation (1.10.6) is the natural consequence of the strong

shock assumption

D S <o

However (1.,10,7) is of more immediate interest. In the un=-
disturbed flow the total pressure consists mainly of the dynamic term
Spuz 2
5 . If we now observe that for long term expansion. <o is
negligible in equation (1.10.2) throughout the flow, and if we suppose

u, = 0 behind the shock wave at all times, then (1.10.5)te (1.10.7)

1
remain valid throughout the flow. While ignoring the possibility of

back flow, these assumptions are adequate for a qualitative analysis.
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It then follows from (1.10,.7) that the pressure behind the
reflected shock is approximately ( ¥ + 1) times the total pressure
at that point in the undisturbed flow. Now if the velocity is constant

behind the shock wave, we expect from the momentum equation

au &u 1v82_
éB?t“r+ YA x + 55 S x 0

that —g—% = 0. In other words, the pressure behind the shock wave

1s a good indication of the pressure at the secondary surface, Con=
sequently, we expect that the pressure at the secondary plate will be of
the order of ( ’8 + 1) times the maximum total pressure observed at

the same point in the undisturbed flow. This is in line with the
experimental observations,

For the initializatijon of the wave we make use of the finite
distribution of the transition zone determined by the coefficient of
artificial viscosity. The trailing edge of the wave is identified
with the plate position so that the position of the leading edge is
determined from equation (1.5.3). The quantities Us P 5?0 are
evaluated at the leading edge whence S?l’ p, are given by equations
(1,10.6) and (1.10.7). The distributions in the transition zone are
determined from equations (1.5.4) to(l.5.6). At later times the
boundary value for u is known, u = 0 and boundary values for §3 s
p are obtained from an extrapolation of the two adjqqent grid

points,
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CHAPTER TWO

2.1 Results and Discussion

A successful calculation tvas made for a like material impact
with a pellet to bumper length ratio of 8 and XP = XB = 3. The
results of this calculation are depicted graphically in Figs. 2.1 to
2.13, 1In Figs. 2.1 to 2.4, the profiles of the fluid properties during
the destruction of the pellet are shown; Figs. 2.5 to 2.7 show the profiles
during the period of total expansion; and Figs. 2.8 to 2,10 show the
profiles during the interaction of the flow with a secondary surface
located 100 bumper thicknesses downstream from the point of impact,
Fig. 2.11 makes a comparison of the total pressure at the secondary sur=-
face with the total pressure at the same point in undisturbed flow,
Fig. 2.12 shows the peak pressure behind the pellet shock,‘g;, as a
5

P as a function

function of time, while Fig, 2.13 shows the position of
of time, All data is presented in the non~-dimensional form discussed
in Section 1,1, Successful calculations were also performed with a
pellet to bumper ratio of 9 for like material impacts with B/ taken
successively to be 1.4, 3 and 7. A further test was made with )( =

\(B = 3 and 1p = 9, but with a pellet to bumper density of 2, in
order to check the contact surface technique discussed in Section 1.9,
As the purpose of these tests was merely to examine the range of
applicabiiity of the computer program, the results are not presented
in this report,

A storage array of 250 grid points was considered adequate for

the calculation presented here, The profiles of the fluid parameters
at the instant when.gg reached the downstream free surface of the

bumper were calculated from equations (1.1.10) te (1.1.13) and were

represented by distributions over 100 grid points located symmetrically
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in the field of 250. The bumper rarefaction was initialized with the
help of equations (1.2.3) and (1.2.4) and the calculation of the pro-

files at subsequent time steps proceeded using the isentropic equations

(1.3.5) and (1.3.6). The grid ratio was taken to be jgi: = 5 as
recommended in Ref. 3. As may be seen from Figs., 2.1 to 2.3, the
pressure and denéity profiles decrease monotonically in the rarefaction
zone while the velocity increases monotonically.

- L cand

Once the rarefaction 0%’B had approached the pellet shock SP,
4;; was represented by the "shock layer" profiles of equations (1.5.4)
etc, The coefficient of artificial viscosity was taken to be a = 2,5,
Then the calculation of the subsequent flow proceeded using the finite
difference scheme (1.4.5) etc. with the viscous term. Smoothing was
performed every 25 time steps according to equation (1.6,6). As may be
seen from Fig, 2,12, the pressure behind‘g; is considerably diminished
by the bumper rarefaction., In this ideal model, no vaporization energy
was considered. Consequently the program contained no automatic proce-
dure for the determination of some critical shocked pressure that would
just correspond to pellet vaporization. It would, however, be possible
to make such a decision and to study the dynamics of pellet destruction.
The validity of the one-dimensional approach is, of course, restricted
to the early time interaction, before radial attenuation becomes impor-
‘tant., But the pellet destruction takes place in just that period, so
that the relatively simple one-dimensional model may be employed with
a reasonable measure of confidence.

Although it was understood that this model would predict pro-

files in gross error for the long term expansion, it was considered

desirable to determine the stability of the computer code in this case
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and to attempt a preliminary analysis of the secondary plate inter~
action, Whenﬁg reached the upstream‘pellet edge, the release wave
Zﬁip was initialized according to equations (1.8.2), and the solution
continued up to time t = 10,

In order to continue the solution out to large distances, it
was necessary at this point to reduce the profiles to a spread of 25
to 40 grid intervals, This had the effect of decreasing the comput=-
ation time considerably. It was expected that a loss of accuracy would
be incurred in this way due to the truncation error in the finite
difference approximations. In fact, increasing losses iIn mass and energy
were observed throughout this part of the calculation, Figs, 2.7,
2,6, 2,7 represent the fluid profiles at times 50, 70, 100 and 150
respectively., We have not presented the negligible static pressure.

It may be observed from Figs, 2:4 and 2.7 that the initial
double peak in total pressure gradually tends to a single peak located

toward the front of the cloud. The first of these two peaks located

towards the front of the cloud is essentially a dynamic contribution

2
~35%E——, whereas the other is due to a local static pressure maximum

behind the pellet shock, During the phase of total expansion, the
static pressure tends uniformly to zero and only the first peak remains.
The velocity curve tends to become linear by time t = 30 except for a
small flattening effect near the bumper escape front., This flattening
is probably anomalous and without physical reality., Near the escape
front the pressure and density tend to such small values that come
putational inaccuracies are generated by the finite digital represent-

ation of the computer, Several attempts were made to counteract the
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losses in mass and energy which were discovered, Sample calculations
with a finer mesh indicated that they were indeed due to the coarse
mesh chosen for computational ripidity.

However, an examination of Figs, 2.5 to 2,7 reveal that the
flow becomes self-similar once the pressure has diminished to the
point of negligibility., This is to be expected and is supported by
a similarity analysis of the problem (Ref. 3). One could therefore
compute the profiles at time 200 directly from those at time 30 via
the observed geometrical similarity.

The loss in mass by the time the gas had reached a point 100
bumper thicknesses downstream was roughly 25%., However, since there
was not likely to be experimental confirmation of the profiles pre=-
dicted so far out of the range of validity of the one=-dimensional
assumption, it did not seem economically worthwhile to perform the
calculation with a finer grid.

When the leading edge of the expansion cloud was 100 bumper
thicknesses downstream from the point of impact, secondary plate bound-
ary conditions were established via equaticons 1.10.6, 1.10.7., The wave
was initialized to a spread somewhat longer than that determined by a
viscosity ccoefficient of 2.5, This was not always necessary, as
calculations with data at different times and with different impact
data have indicated. However, for this particular case insufficient
shock spread caused the wave to collapse back into the plate, Pre-
sumably one should supply more information about the physics of the
interaction in or&er to remove the ambiguity caused by the absence of

known boundary values for the demsity and pressure,
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As can be seen from Fig. 2.10, the pressure at the wgll increases
to a maximum quickly since the initial mass distribution peaks towards
the front of the cloud. The pressures behind the reflected shock are
roughly constant.

Fig. 2.9 shows that backflow is predicted in agreement with ex~
perimental observations. From Fig. 2.11 it would appear that the
reflected and free stream pressure pulses are roughly similar in shape,
The reflected pulse has a maximum approximately four times the free
stream pulse, Since B) was taken to be 3, this is in surprisingly
good agreement with the naive analysis of Section 1.10,

Secondary plate calculations were performed for a plate 5 bumper
thicknesses downstream from the point of impact as a preliminary to the
calculation shown here. As such a calculation is well within the bounds
of applicability of a one~dimensional model, we will mention the most
important features of the results. At such an early stage in the ex-
pansion, the pellet shock was still in progresé and cloud pressures
were typically at the impact level, The assumption of a perfectly
reflecting wall led to enormous reflected pressures, Consequently,
the presence of any internal lining between a bumper and the hull could
produce disastrous results even under the assumption that the lining
does not vaporize., 'If the lining itself should vaporize, one may
expect violent damage to the neighboring hull due to the very high
pressures associated with the impacted lining.

In Fig. 2.12 the pressure behind the pellet shock has been
plotted as a function of time, As can be seen, the dependence is
roughly linear, Due to the decrease in pressure,<§§ tends to be

accelerated downstream. Taking the pellet shock position to be
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located in the center of the finite shock layer, one may plot it
versus time, This is done in Fig, 2.13.

Figs. 2.12 and 2,13 give a fairly reliable indication of the
impact dynamics. The accuracy involved depends on the fineness of the
space grid, since the finite distribution of the shock wave in the
von Neumann theory causes earlier interference with the bumper rare-

faction than a calculation based on an ideal discontinuous shock,
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2.2 Concluding Remarks

Although the basic motivation for this reseérch was to understand the
dynamics of the hypervelocity impact, we were largely concerned with com-
putational difficulties., Consequently, while we have developed a useful model
for the early stages of the interaction, the results presented here represent
for the most part mathematical rather than physical progress.,

By writing in new hydrodynamic code we wanted to solve two problems
which have caused difficulties, namely the long term stability and the
"jitters" associated with the artificial viscosity. The program has been
largely successful in both respects., The program was computationally stable
during all phases of the expansion. The losses in mass due to truncation
errors can be avoided by the use of a finer mesh during the later part of
the calculation. This need not be overly expensive as the flow quickly be-
comes self=similar once the péllet is entirely vaporized. One, therefore,
need only use the finite difference scheme during the early stages of total
expansion. The late time profiles may be obtained by a similarity trans-
formation.

The technique of using a smoother in conjunction with an artificial
viscosity does not seem to have occurred to fluid dynamicists at large. The
method is, of course, quite familiar in meteorology where it is used to delete
unphysical oscillations of short wavelength., We used it as an additional
mode of dissipation. Because the "jitters'" usually appear first in the
density profile,the artificial viscosity is not brought into play immediately
(see equation 1.5.2). Consequently additional dissipation is necessary.

(One may define diésipative terms dependent on the density gradients but

their properties in the transition zone make them difficult to deal with.)
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The program as developed is well suited to the study of the
meteoroid=bumper interaction. During the period of interaction, the
one=~dimensional approximation has reasonable validity. It would be
useful to use a real gas equation of state and to comsider the effects
of vaporization energy. In this way one would be able to predict
automatically the destructive properties of various pellet=bumper
systems in the intermediate velocity range where vaporization energy
is not negligible, This is especially desirable as the experimental
velocities belong to such an intermediate range.

The secondary plate calculation produced results in rather good
agreement with a very simplified analysis. The maximum reflected
pressure was found to be roughly ( 5)+ 1) times the maximum free
stream pressure, Experimentally, the two maxima appear to be roughly
the same, However, radial relaxation of the reflected shock is likely
to be important in the two-dimensional case.

The assumption of a perfectly reflecting wall led to enormous
reflected pressures when the bumper and wall were very close to each
other, The pressures were of the order of the shock pressures, There=
fore, the presence of an internal filler between a bumper and the space-
craft hull could produce disastrous results if the shock wave is able
to propagate through the filler to the hull or if the filler is suf-
ficiently shocked to vaporize, producing gas under very high pressures
in a confined volume, as these pressures could produce very large
ruptures in the adjacent hull, The differences in impact pressures
between lower velocity experimental impacts and the higher wvelocity
metecroid impacts may produce very different results with filler
materials, Even at currently available laboratory velocities, a

catastrophic rupture due to filler vaporization may be observed,
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Friend et al, (Ref. 10) describe impacts onto a system consisting

of two parallel sheets filled with polyurethane. The expanding vapor
cloud from the outer sheet induced pyrolysis of the filler, producing
a high pressure gas in a confined volume, The resulting rupture was

far greater than that observed in the unfilled system,
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APPENDIX A

Stability of the Isentropic Scheme

We had (2.1.5), (2.1.6):

c - (cn et
i T2 Y41t St

)..

A.l

A.2

We take stability of a system of finite difference equations to mean
stability of the corresponding set of linearized equatiomns. For (A.l),
(A.2) we have, on substituting a local perturbation and dropping sub-

scripts on the zero order terms:

n n
o4l 1 . m n Y-1. De, %417 %-1  2u
¢j =3 (5 1) 7~ A= 2 NI
Cn - Cn
A un - un

ndl 1 n n _ t 41 j=1 2¢c
B =7 @y U - A @ 2 + Y -1

n _' c .

j+1 j-1 ) A
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One now assumes a Fourier space dependence for the perturbation:

En §n exp (iij X)

J

Then (A.3), (A.4) becomes

X -1
2

cn+1 iclsin(k\ x)) u”

= ¢ (cos(kDx) - iulsin(kAx))- (
A.5

n+l

u = u" (cos(kA x) - iulsin(kd x)) - (—22—_—1—' iclsin(k A x))

A.6
At
where 1= Ax
ot ( cos(kAx) - - x? iclsin(k A x) \
| - iulsin(kA X)
i.e, =
un+1 - YZ‘. T -i»cl-sin(kA X). cos(kA.x) - iulsin(k Ax
A.7

.u

The matrix on the right hand side of (A.7), which takes the state

at time n N\t into that at (n + l)A t, is called the amplification
matrix, G. The Von Neumann necessary condition for stability (7) may

be written as:

max \%1\ £ 1+0 AbY A.8

where ’xi are the eigenvalues of G, i = 1,2, ....n

For the case at hand we have:

cos(kAx)-iulsin(kAx)-% - -Ll— iclsin(kA x)

det\G-)\I\ - ’

_ Zicf - sin(kA %) cos(kl\x) - iulsin(kA x)

- A
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a-.‘ A = cos(kAx) -1 sin(kA X) (ul £ cl)

Hence \ >\\$ 1+0 (AD) reduces to

@irole 1+0 (Ao

In practice one uses the form:

Ax u+c A.9

At = v

(A.9) is usually referred to as the stability comdition for (A.l), (A.2).
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APPENDIX B

Stability of the Non-Isentropic Equations

We had (2.2.5)

n+l n n n n+l n+l
i S + oL i i1 __on i %4 B T
N 3 Dx y.‘i 2K x ) =
B.1
un+]. _ un un _ un pn _ pn 5
e B I o _§  §-1 _ __1 ¥l -1 ny
At +uj D x Pn 2 x ’uj— 0 B.2
J
n+l n n _ n n . okl ol
€ ; € ; 4 ot Ei-&i1 L IR 72 S S R B
At j A x B po 2Ax T =
J B.3

As in Appendix A, we proceed to obtain linearized equations, (B.1)

and (B.2) may be immediately rewritten as:

n+l 2_1_ n+l n+l n_ ul n n

PR el CHER I b P 573 (_9j+l D) B.4
u+l n ul =n n 1 n a
uj = uj 2 (uj+l uj"l) zf (pj+l - Pj_l) B.5

(B.3) is linearized and somewhat recasted by noting:

€ -Fe. p)
o2& ,
F“Fp%%+%_§%

& S p D
S x Fpax +F?ax

L]

Hence (B.3) becomes:
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1p n+1 n+1 F n+l n ul n -
Pj +25>F (W1 - ¥5-1) (9; "Ry T Pia
-0ty = - Bt -t )
P51 = p5° 7 @y 7 Py

Substituting from (B.4) this becomes:

2
P~ @F .
n+1+1 9 €

P-
j ZPFP

n+l ntly,  @n_ul n _n
( ) - P, 2 (PJ-I-]. ) PJ"]-) B-6

Y541 T Y31 j

Note that for isentropic variations

d& = -pd (1/9)

P

i.e. de'.p + FP d'P - }-i df =0

The isentropic sound speed, ¢ is the square root of (—-g-f—o-—) along
an adiabat, Hence
2 _F
2 Q2 f
€ = F
p
Thus (B.6) may be written
1 1c22 n+l n+l n ul , n n
Py + T Wy v =Pyt T By T PyLy) B.7

We now substitute a Fourier spatial dependence into (B.4), (B.5),

and (B.7) to obtain:

Pn+l+iB}lun+ =o"a

L
ol

1 2. n+l n
1c¢™iB
+ P iBu p A D
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where .§n= g? exp(-iijx)

B = sin(kd\ x) B.9

Aol+ul( e ikDx_ 1)

The amplification matrix, G is given by

2,2

A - B1 -1 48 O 1
2 , 2
G = 0 A - (Bcl) -ABlﬁ ¢l B.10
.B1

A

0 -]:}“
G has characteristic equation:

A-N) (A-A)@a- @D?-XN)+a%%1H = 0

The first eigenvalue may be written down immediately:

7\1 =A=1+ul (¢ - 1) B,11

Hence \r'>\\ = | if0& u 4c L 1 B.12

The other two eigenvalues are the roots of the quadratic equation
Wor N(@eD? -2 +a% = 0 B.13

We now ask under what conditions one of the roots of (B.13) may have
amplitude unity.

If sin(kAx) = 0 we have from (8.9), (B.13)

A= X, = NXz=

and since in this case A = 1, no additional requirement is necessary.
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Otherwise:
2 2.2 2 2.2 v
B¢l B cl
:\ = A - > + Bcl \// 7 - A
= - ( E%l N 2 B.14
222
where K =2Si— - B.15
We may write out A in terms of B as:
ulp> ulB 2. %
A=1-—— 4 i~ (4-3B")*
2 - 2
Whence we have K:
2 2.2 2
- X
K =«§—EZ¥—— -1+ “lg + iu;B (4-8%)% B.16

The requirement that one of the roots of (B.13) lie on the unit

circle may be written as:

elﬁ = E%‘l‘ + ./K with '6‘ real

Substituting from B.l6 one has

e2i9 9 BZCZ 2 2 2.2

2
i 1 B c’l UlB" e

Separating the above into real and imaginary parts:

ule
cos2@ = Bcl cosBG -1 + =5
sin2 & = Bcl sin?® F .}1;]2-_1_3_ 4 - B2

)
i“éE 4 - B%)?

B.17

B.18

We now eliminate '6 from (B.17), (B.18) to produce a compatability
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relation. This will produce the desired result. (B.l7) yields:

A Y
cos & = BCl + —]Z— ,\/ﬁczl2 + 4ul B.19
whence
2 2 2.2 2 / \
L
sine = (1_B4ul _.Bc81 ¢B§l c212+4u1 )% B.20

We now substitute (B,19), (B.20) into (B.18) to obtain

1 - Bzul _ Bzczl2 T B lT\ - Be _Q'r\ - Bel 2
4 8 2 + 2 2

where we have used -r\ = 4/ c:212 + 4ul .

The above equation reduces to
402]_2 r-\ 2

or 6212

2c21?% 4 4l - 4l1H?

a - uly?

which we recognize to be the condition

£ @xal = 1
Consequently a root of (B.13) will have amplitude unity if
(i) sin &Dx) =0 B.21
or (i) + (wxc)l =1

Now note that the eigenvalues of G are continuous functions of u, c,
1, k, and if sin(kNx) #0, c=0 and 0<€ul< 1,

then from (B.21)

,)\1'"‘ >\2= >\3= A with ‘A\&.l
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We then assert that by continuity, the eigenvalues cannot be outside

the unit circle for (u + ¢)1 & 1. (The signs have been dropped since

¢ is always non-negative and u has been assumed non-negative,) Suppose
J\ 9> 83y, were outside the unit circle with (u+c¢) 1 & 1; then

letting ¢ —» o would cause ;XZ —» A, inside the unit circle,

Hence, by continuity, JN 9 would be on the unit circle for some

value of ¢ for which

w4+l < 1

which would violate (B.20),

If u € o, forward space differences are required in the con=
vective terms u érg in (B.1)to (B.3). Then the transformations
X =3 (-x) and u -p (~u) will bring us back to the original equations.

Thus the condition for stability is taken to be
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APPENDIX C

Stability of the Non-Isentropic Equations with Artificial Viscosity

We had (2.3.7), (2.3.8):

n+l n n n+l n+l
EJ + o Vi 93‘-1 I N o ES R
j X ?j 2\ x >
un+1 2 0 c.1

+ n - n - n
_J___EJ___ Pi1 i1 7 Py1 ” Y4
ZS x 9 2 A X ’
]

ur.l = 0 C.2
J
n+1l n n n n n n+l n+l
81 éj N S+ éj gj-l Py +a Y34l Y4-1
Dt 3 A x - n 2\ x >
k|
n+l -~
u, = 0 C.3
J
1 2 n n-1 n n 2 n n
= ; , L L= U, if wu, - U, 0
52 (9 Py Ny muy)t Hupy, -y L
C.4
qJ = n n
0 if u, -u, 2 0
j+l J

where 1V= aA K.

The linearization proceeds as in Appendix B, but we consider q as

being an independent variable, Consequently we have:

o+l n At no_ - . A.t o+l _ o+l
j Ri+" A= (0 QJ 1 Crr= My ™ %5-0)
C.5
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n+l n At n n -At n n n n
u, - u, u , = u, = e . + 49, ., = D, - q,
] iU AR O 7 %D T2pAx o Y T Py T 9y

n+l n At n n _ (p + @ At o+l n+l
éiJ' ) 83‘ tUTAE (Sj' 53-1) =" 29 Ax (“j+1'uj-1)

Cc.7

The first order equation for q is derived from (C.4) under the as=-

sumption that the perturbance is dominated by the error in the represen--

tation of the derivative, We regard ( 2 ) as a zero order quantit
Dx q y

and write

21
n+l 2 Su o+l ntl

4 TR = (P O Y0 c.8

(One may carry through the calculation with the added term
er-l 12 (_59__2)2 . However, it turns out to have negligible effect,
justifying the a_priori assumption.)

With the abbreviations

B = sin(kd x)
A=1+L1"2A§’§E§(e-ikAx— 1)

.9
ok = (R4 o2& o€ c

N

|
N
et

one has, on substituting a Fourier spatial dependence into (C.5) to(C.8):

S o+l 9H‘A— ip ﬁ; B (u" A - —5%— —%}%B(Pn+ ) C.10

1 i t
Wttt W™ A - —‘l?—' %x B(pn + qn) c.11




- 68 =

n+l n . At * n i A t n n

P = P A_lA S}c B (u A-—j)— AXB(P +4q9)) Cc.12
q1:1+]. - _/\.}1(}3 (un _ fP%; B (Pn + qn)) .13
One may write the fourth order amplification matrix G as:
2 2
Aoy Aty Lo_2 (Ao
A (Ax (A®
G=] o A - -’-“55- é—}% B - ;—- ﬁ; B
2 2
0 _1%590 AB A_u&nzjg _(An” 2
* (&%) (4 %)
0 WA A A\ is - Lﬁtb) Aip - _;_ik_tB)
A x AN P x’ Ax 5) x/
The eigenvalue equation for G is
2 2
AeX -ip A;AB _(Atzsz _(AQZBZ
A (A= (A=)
i Dt i At
0 A- N Y B - _E? A B
2
0 ai%—EecAB A (A B -\ _(_é_y_)?c*BZ
* (A =) (A %
iz Az 1 A JLiB . i ¢
0 AXA A x ("}_HB) A x “F“—;B)-%

Evidently the first eigenvalue is

A =4

Then dividing the fourth row by —'—&E and subtracting it from

C.1l4
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the second, one has for the remaining three eigenvalues:

_AX}B; P Ax Q C*AB A~ -(-A-)—t)"é‘»c*Bz— - 5 c*p? = 0
(Ax) (Ax)
ias At _/\.Bz (Ao A __1;_2__>
A x pAx Ax (Ax) Ax e
Expanding in cofactors by the first row we gets
A 5 =0 C.15

while the last two eigenvalues satisfy the quadratic equations

At"/\' --.)s+A)+-&"/\'BZ

An? *2
ST an? T Ly A pan
Lo’ c*32+—%§- j\\_" $ A = 0 c.16

(Aw

. /‘ * 2 .
We note that if = =0, ¢ = ¢  corresponding to the case of

no viscosity, the above equation reduces to (B.13), as it should.

Rearranging (C.16) we have:

2 * 2 _/L 2
+ c B - ———— B™ - 2A) + A
AN (Am> 9<Am

P (A x)
whence it is clear that for stability in the limit as A t, A X

-p 0 we will require

A t . finite constant c.18

(Axn?
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Hence letting ZS t, Zl x -~ (0 with (C.18) satisfied, (C.17)

becomes:

t 2 t ’
N Xoc- (AAX)Z %B -2>+1+(AA—;ZA§- = 0

The roots of the quadratic equation are seen to be:

N3
A Du, 2
=14 ==2=0 21 ( y sin®(k A x)
v*\& (A X)Z v o x

1

Hence to satisfy the Von Neumann necessary condition we require:

e — Su &

N vox

2 c.19

2u

since
2]

% 0 in the shock transition zonme.

b

As an estimate of we naturally take the extreme value

S u
X
predicted by equation (1.5.5). One may then write (C.19) with the

help of (1.5.5) as:

——\
A (a (u, - u) ,/——K——*z'—l y &1 C.20

A x

In order to compare this with the usual form for the stability con-
dition we assume the most stringent case, namely a strong shock, so

that:

R,
Ri

o<
+
Pt

and p; =0 C.21

:

From the conservation of mass and momentum:

Ql ®-u)=Q, ®-u) C.22
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2 2
Ppt QL @-udi=p+ @, @-uy ¢.23
Together with (C.21) one obtains
—i————-\
D~ u, = '—ji—:—k— c C.24
2 2 2
sz
where ¢, =[5 is the isentropic sound speed in the shocked
2
gas, Similarly one finds:
N
2
(¥ +1)
D~-u = C.25
i 2¥ (¥ -1

Hence from (C.24) and (C.25) one has:

= 7 2 ) 26
u2 - u1 = CZN/-ﬁzi—Er:—E). C.

Consequently we write the stability condition (C,20) in the extreme

case asi
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