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THE DIRECT FOTENTiAL METHOD IN THREE-DIMENSIONAL ELASTOSTATICS 

Y 
t .  Introduction 

The analysis of the stresses and displacements i n  an elastic body 

due to some state of leading and confinement usually begins with 

assumptions which reduce tha dimension of the field equations. 

many campiex problems this r2duction is from three dimensions to the 

familiar +t!o dimensional ra?resentations of plane stress and plane 

sf-rain. The reduction to two dimensions i s  made so that  I-he problem 

becomes tractable and the reduction may be Justified by the state of 

loading and the geometrical configuration of the body. For exampre, 

in the 

through a thick body one may consider the region f a r  from the surfaces 

of the body to be in a state of plane strain. On the other hand, near 

the surface t h e  stress field is more nearly in a state of plane sSress. 

The crucial probtem at this polnt is in determining just when one model 

or the other may b e  applied and whether these tw3 models include all 

In 

nvestigatlon of the stress field in the vicinity of a crack 

important features of the stress field. 

reduction to one or two dimensions may be made by conditions of symmetry 

in some other cases the 

such as when the stresses s3f.isfy the condition of polar synmotry and In 

yet other cases the reduction to one or two dimensions may be made solely s 

on the basis of the need for some estimate of the stress state. , 

The second crucial aspect of the analysis involves the shape 

and connectivity G f  ?he region. 

the dimnsion  of the problem, e.g., tho rectangle, t h e  circle, the 

If the region has a simple shape for 

half-space, etc., it is likely that well documented snalytic procedures 
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i 3 ~ ~  svaifabla such at; separ&ion of variables (or the related use of 

transforms). I f  the shsrpe is complex, as in the case of many real 

prObleMS, one Is forced to adopt some degree of approximation with 

related numerical procedures. SGW problems may be made tractable by 

replacing the acfual shape by an ideal shape as in the analysis of 

.f 
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elliptic or parabolic shaped cracks and notches. In the case of the 

most general shaces of regions soiui-ions may not yet be established 

and those problems that hzve been solved have been attack2d by entirely 

numericai methods such as finite differences or flnlte elements. 

While the need f o r  numerical procedures for complex shapes is 

obvious and will not change, the restriction to two dimensional 

representations is dictated by the present state of knowledge of 

solution methods. Therefore, Shere is a need fo r  new procedures of 

analysis which can be extended to analysis in three dimensions. These 

new procedures are necessary to rafine the analysis of some prObleMS 

solved with two dimensional assumptions as well as to analyze 

previously intractable problems. In keeping with the spirit of true 

three dimensional analysis the sclution method should maintain the 

highest state of generality as to geometry, connectivity and loading, 

as possible. 

A method offering the brgadest / capabilities and sase of use i s  

the direct potential method. This  solution procedure has been 

successf u I ! y app I i ed to two d i mens iona I prob I ems i n  e I astostat i cs [I 3 
and transient elastodynamics [Z] and [3]. 

paper 40 extend the capability to problems of three dimensional 

eiastostatics. 

It i s  the purpose of this 
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Tho potential methods of solution in alasticity closely parallel 

the classical solution methods [4] for Laplace's equation col lectively 

called p0ten-l-iai theory. The recmt revival of the potential formulation 

mthad i s  due both  to *he use of a boundary identiiy analogous to 

Green's boundzry identlty In potential the& [ 5 ]  and also to the 

capability of solving large s y s t m s  of algebraic equations with the 

dlgitai cmputer. The singular Pca?-!,tre of ?he potential me-i-hod for 

bounds-y 3xi i r, I d- i a 1 vz f m p m b  1 m s  i s ?he c q a b  i 1 i ty of obta 1 n i ng 

solution forms which automa-tically inctrtde t h e  prescribed da-?a, 

boundary coofiguration, and regio!; connectivity. 

may be divided into two appraaches: tho indirect and the direct 

po-tent i a I me-i-hods . 

, 

The potential rne-inod 

In the indirect procedure fnt-eegrai equatlons are writf-en in terms 

of harmonic functions from which the displacements ana stresses must be 

derfved by differentiation. 

functions must be established by integration of The actual boundary 

The necessary boundary values for these 

conditions. The indirect me-i-hod has been applied to the problem of 

vlbrations of an elastic body [6] and ?o problems in acoustics. 

The direct nethod described in [ I ]  and [Z] obtains integral 

equations whose unknowns are the unknown surface traci-ions and d i sp!ace- 

ments, t h u s  elTniinz!fing the need $or intarmediate pofen-tial functions. 

The interiw stresses and lispi%mnen-?-s are calculaSed directly from 
/. 

tensor and vector idenTities respectively. Numerical solution of +he 

integrak equations i s  achieved by a reduct2on to algstlr-aic equations 

and soliltion of the algebraic equations by standard digital computer 

J 
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methods. 
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The direct poteni-ial method has two advantages over other approximate 

methods: the dimension of the problem i s  reduced by one, and all 

numerical epproximations take place ai- the surface of the body. 

the formulation of the integrai equa-bions and their reduction $0 

algebraic equations Is not restricted by geometric considerations, 

formulation and subsequent soiution offer to the analyst the utmost in 

generality and applicability to contrivial problems and the procedures 

have been f u l l y  automated, 

Further, 

Y 

The 

2. integral €qua-i-ion Formulation - 
The analysis i n  this paper is restricted to the analysis of 

classical elastostatic problems for which the materisl may be taken 

as isotropic and homogeneous, The usual Navier equations of 

equilibrium in the absence of body forces i s  given by 

(2. I )  

for the displacement vector, ui(X). The solution to thfs differential 

equation must 

displacements 

also satisfy appropriate boundary conditions on the 

and tractions, respec-tivefy given as 
/-: 

4 

(2.2) 
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The unit vector ni is the outward normal vector for the body R, 

components, Q and displacement gradients are related by Hookers law 

The stress 

w 

(2.3) 

The well-known solu?icn -io Kelvin's problem (a concentral-ed unit 

load in the infinite body) 7s given by -the tensor field, C73, 

e 

for displacements in the x 

the xi directfons. 

operat ion 

directions due to point loads in each of J 
These displaczment components are given by the 

"j "ijei (2.5) 

on the base vectors, ei. 

the toad point F, Is given by 

TIw disftnce between the f i e l d  point X and 

(2.61 

9: 

The traction vectors, t = T e are det-ermined from Eq. (2.4) and 

are given by the tensor components, C73, 
j i j  i '  

- 

J .* 



R, due i o  known s u r f a c e  i -rac- t ions  aild displecmonts. Ths in-krior 

stress state may be g e n e r a t e d  frcm Eq. (2.9) by d i f + e r e n t f a i l a n  and i s  

,’* g i veri by -/=- 

I - 2v where k = 2( ,  - V I  

Now f etting the load p o i n t  5 be  surrounded by a smal I spherical 

region, @, with the surface, f, Betti’s t h i r d  i d e n t i l - y  may be written 

where ti., t. are i-he displacmenfs 2nd tractions for tha unknown stress 

stal-e. 

f o l l o w i n g  i d e n t i t y  results 

I i  

By ->aking the livnitr for  R* + 0 in t h e  usual way (see [ Z ] >  - the  

This i s  Soniigl i s m ’ s  i d m i - i t y  for the disptacements i n s i d e  the body, 

r 
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By utitlzing the identity 
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a t  ar 
ax a t  
- = - -  

..I 

ths tensors DkiJ and S k i j  are found to be 

i2.11) 

(2.12) 
and - 

+ 6  r 1 v 
k f j  4n I - 2u ('kir,j  kJ , i  

r .r .r 4- 3u (n r .r + n.r .r 1 (2.13) 5 - 
1 - 2u , I  ,J ,k-' I - ZV i ,J ,k J , I  , k  

The cma-differentiation i s  wi th  respect to X, the integration point 

i n  Eq. (2.10). 

Since it i s  not possible to independently specify corresponding 

components of The displacements and the tractions at a boundary pcint 

Eq. ( 2 . 9 )  i s  not suitable forthe sotution of the  givan problem. Let 

two points on t h e  surface be ylven by P and Q snrl let Q repressn-i The 

variable point X. Let  the point p be the point lnslde R, Finally, 

allow -<he field point p approzch t h e  boundary point P. Fron the 

continuity of ui {E) and by the usua I mei-hods of pol-entia1 theory [4] 

t h e  following equation results 

f 
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The infegrafs sre to be interpretad i n  +he sense of ?,re Cauc-?y 

Prfncipal Value. 

between the surface i r a c t i o w  and surface dispfaczments. 

boundary conditions, Eq. (2.21, a?e applied Eq. (2.141 becomes sets of 

This i s  the usual boundary constraint equation 

When the 

singular integral equations for the unknown boundary quantities. The 

numerical solution of these equations i s  discussed in the next section. 

3a Numrica! Solution of the integral Equations -- 
Generai analytic solutions to the integral equa-tions (2.14) are 

not available and it i s  therefore necessary to solve the equations 

numericaity. The integrzl equations reduce to algebraic equations 

by discretizing the boundary data. 

previously in acoustlcs [ 8 ]  the two-diniensional surface, S, i s  assumed 

to be made up of plane triangular elements, ASi.  

have been mode [9] to accoun 

be done approximately and Imposes a large burden on the analysis. As 

Important simplifications i n  the analysis occur by assuming plane surface 

Foliowing the procedure used 

Although attempts 

or the surface curvature this can only 

elements and since many physical problems lnvolve flat surfaces the # 

assumption that the surface i s  piecewise flat i s  made. 

assumed that on each element, ASi ,  of the surface that -the surface data 

of traction and displacement may be assumed constant. 

I t  i s  further 

. 
Foilowing 



4 k 

F t sure 

. t o  ihe 

r: -- - 

i each surface element i s  denoted by its centroidaf poin-t, Pm 

depending on whether the point i s  f ixed or  variable w i t h  respect 

integration. 

I Figure 1 .  Surface Elctments 

When the surface da-ta Is discretized I n  this way, She integral 

equations (2.14) may be seen to reduce to  the fo l lowing sigebraic 

equations 

i '  The values u (Qn), t (Qn) are n w  the constant approximatiokj to u 

tl on element AS,. 
i I 

The integrals 
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AU (Pin,Qn) = J Urj (Pm,Q)dS(Q? Li 

(3.2) 

may be calcu!atad autornaSicafly to any desired accuracy by knowing the 

size, orientation and location of ASn and tho point Pm. The numerical 

procedure used for these iniegrals (3.2) i s  discussed In Appendix A. 

Because of the assumption of plane elements it i s  possible i o  perform 

the integrations exactly when Pm = Qn (taking Into account the 

principal value interpretation) and this i s  detailed in Appendix 8. 

The points Pm ar,d Qn are taken at the centroids of the elements ASn to 

account best for the variation of u i  and ti on AS Equation (3.1) may n' 
now be written as 

which has the matrix representation 

a 

(3.31 

(3.41 



The matrix f l ]  i s  the identity maf.rix. In general, the solution to the 

mixed boundary-vafue problen 1s obtained by first appropriately rearranging 

t h e  columns in Eq. (3.4) so that al I unknown data appear in the vector {XI: 

Y 

(3.4) 

When rearranglng, the columns must be scaled to maintain the proper 

conditioning of matrix [A]. This scal ing is based on an attempt to 

keep the diagonal terms in [A] at the same order of rragnitude. 

Equation (3 .4)  i s  sclved by a standard Gatiss reduction scheme on [P.] 

followed by an iteraiion i o  refine the solution {XI. 

[A] i s  weighted toward the diagonal, it is well conditioned and in 

actual numerical examples a single iteration usually achieves refinements 

in {XI on the order of 1 CAx/x) I < .001. 

the next section. 

As the matrix 

These examples are discussed in 

Finally, af-tsr solving Eq. (3.41, the known boundary data may be 

used to determine the solution Cor the Internal displacements and 

stresses by direct integration of the identities ( 2 . 9 )  and (2.10). 

Following the same nmerical procedure these are found to be 

and 
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(3.6) 

The integrations to determine AS and AD are performed i n  the same way 

as those to obtain AT and AU. Any number of interior solutions may 

be made once the boundary solution Is obtained. Since the solution i s  

performed at pre-setected points the analyst may concentrate on 

partlcuiar areas ob Interest and Is not burdened with co.npiete field 

solutions. 

all approximations are made at the surface. 

St. Venants Principle that the errors are also restricted to near- 

surface regions. 

section. 

No approximations to the field equations are necessary as 

It can be predicted from 

A discussion of these errors i s  found in the next 

flat surface: 

boundary displacements are set eqlral i o  zero to 

the cube with unit dimensions. 

body motion. The surface elerrents for the unit 

4. Numerical Results 

Some elemen-kary boundary value problems were solved to determine 

the validity of The approximations discussed in Sec. 3 as well as to 

investigate the behavior of the numerical procedures under different 

circumstances. The computedxesults are for a region with a piecewise 

cases sufficient 

qate the rigid 

3re i I iustrated 

u -< - in Figure 2 for 12 triangles, i n  Figure 3 for 24 triangles, and in 

Figure 4 for 48 trlangles. P l l  results have been obtained using a 

single, general source program written in FORTRAN,language. Required 

n a1 

el im 

cube 

data includes the material properties, the surface ela,ment arrangement, 

r 
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N 

@ Denotes a f i xed  
normal displacement 

Figure 2. U n i t  Cube - 12 Elements 

the  known sur f  ace t r a c t  ions and d i sp I acements which are assumed constant 

over each surface element, and the locat ions o f  in ternal  po ints  where 

t h e  displacements and stresses are desired. 

4.1 Uniaxial  Stress D is t r i bu t i on  ,--. . 
I n  the  f i r s t  series of problems the  u n i t  cube i s  loaded i n  a 

state of un iax ia l  tension by the 

two ends. ' On one end and on two 

component was se t  equal to  zero. 

elements are then pa r t  of the  so 
+ 

appl icat ion of a normal stress t o  

normal faces the  norinat displacement 

The required t rac t ions  af- these 

ut ion.  The zero displacements are 

indicated on the  appropriate cubes ir, Figures 2, 3 and 4. The 

surface displacements I n  the  ax ia l  and transverse d i rect ions are 



Figure 3. U n i t  Cube -- 24 Elements 

/ 

Figure 4. U n i t  Cube - 48 Elements 

3 
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indicated i n  Figure 5 for the casa of 12 tr!angles and values of 

PoissonPs ratio varying from zero to one-half. It i s  obvious from this 

plot tha't for values of Poisson's ratio less than one-quarter large 

errors are found in the Sransverse dlspla&ments. Similar errors can 

be seen In the two dimensional case [I]. The source of these errors 

. 

has noP yet Seen determined buf- It seems that the numerical. procedures 

Introduce thearror rather than the approximations given In S0c. 3. 

This. i s  indicated by the f ~ c t  that no appreciabie change Is found going 

to 24 surface elements as shown by the data in Tabie I for u = 0.25. 

The large error is de-i-ected only when the transverse displacements are 

less than tha a x i a l  disp!acements by at least an order of magnitude. 

However, Table I also shods that the calculation of the internal 

stresses i s  improved by refining the surface elements and This effect 

i s  even m r e  pronounced for lower values of Poisson's ratio. 

By assuming the surface displacements at each elemant to be 

constant, including the in-piane displacements, the solution method 

introduces high stresses near the surface. This layer, illustrated 

for the uniaxial case with 24 elements in Figure 6, is a function only 

of the size of the surface elements and not the refinement of the 

integration. 

i s  a fraction of the size of'the element. 

at the surface a method i s  presently being developed which utilizes 

numerically calculated surface displacement gradients and kncrn 

tractions as has been demnstrated in [IO]. 

- 
Fortunately this layer i s  restricted to a depth which 

_.-. 

To determine the stresses 

This will enable the . .  
analyst to move the interior- soIuf.?on point at w i l l  within the region 

and extend these results to the surface. 
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Exacf 
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Figure 6. lnternai Solution - Surface 
Layer Error 

4.2 Uniform Shear Stress --- . 
The*second elementary problem was to solve the  case of a uniform 

shear stress applied to the unlt cube in one of i t s  planes. 

problem was solved for the case of 12, 24 and 48 surface elements. 

Again, sufficienf- surface displacements were flxed to zero to e1lmInai-e 

rigid body motion. A typical displacement pattern shown for N = 12 i s  

This 
4 

I 



Figure 7, Surface Element Displacements for  Pure Shear, N = 12 

given i n  Figure 7. 

and the internal stresses are given i n  Table 2. In t h i s  problem the 

assumption of constant displacemnt at eech element i s  more constraining 

than In the previous case and significant improvements are shown for 

the finer surface mashes. 

The numerical results for the non-zero shear strain 

,< 
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It i s  apparent t h a t  although not a i l  questions have been answered 

the  approxfmatlans of Sec. 3 are j us i - l f i ed  for these simple cases. The 

method i s  presently being exiendod to nore s ign i f i can t  problems but 

serious d i f f i c u i t i e s  are not expected. The analysls procedure has been 

completely automa-ked and -the snatysls has 6'een carr ied ou t  on a UNlVAC 

1108 computer making use of external scrafch storage. Run times are not 

minlscule (about three minutes for -the surfacz so iu t ion  wl th  12 elements) 

b u t  no strong sttempt was mado i o  minifnize run time. 

It i s  fu r ther  apparewl- t h a t  very good resu l t s  cen be achieved with 

a minimum number of elements. 

stress concwd-rations, hovever, it w i l l  be necessary t o  decrease the 

When analyzing problems with sur-iace 

element size i n  t h a t  area. Although these examples have a i l  been f o r  

equal-sized t r i ang lzs  no numerical d i f f i c u l t y  i s  expected when using 

various sizes and shapes of elements. 

procedure described i n  t h i s  document w i l l  f i n d  wide applicability in  

inherent ly d i f f i c u l t  problems and t h a t  no problems of m r e  than a 

t a c t i c a i  nature remain. 

1.1- i s  now envisaged t h a t  the 

.? 
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Appendix A 

Surface ln tsgra ls  D f  the Nen-Singular Tensors (P # Q> 

Since the  surface i n tzy ra i ions  i n  Eqs. (3.21, (3.5) and ( 3 . 6 )  

a cannot, I n  general, be done I n  closed form, it i s  necessary t o  develop 

an automatic procedure which wiil deternine the  in tegra ls  wi th  suf f ic lenf .  

accuracy i n  a minimum o f  time. The method used i n  t h i s  analysis i s  

s im i la r  t o  t h a t  reported i n  [8], where the kernels corraspond to 

singular sofviioqs i o  t h e  Helnhoitz equa-kion. 

an a f f i n e  - i rans fxmat ion  which m p s  any physical surface t r i a n g l e  onto 

a basic " u n i t  t r iangle."  The in tegrat ion i s  then perl'ormed by sub- 

d i v id ing  t h e  u n i t  t r i a n g l e  and aFproxlnating the  in-iegral by a f i n i t e  

sum. The method i s  su i tab le  for i t e r a t i n g  tc a desired accuracy but 

The ix-ihod is base<! on 

it was found for t h i s  work tha'i the  added t ime of i t e r a t i o n  was not 

j u s t i f i e d .  The use of the  u n i t  t r i a n g l g  achieves a uniform d i s i r i b u t i o n  

of sub-triangles and achievss complete f l e x i b i l i t y  i n  the or ien ta t ion  

and shape of the  physical t r iangles.  

Assume the mdy i s  located i n  p global coordinate system and t h a t  

3 
any po in t  i s  denoted by i t s  pos i t ion  vector p. The surface cf the 

three dimensional body i s  divided i n t o  adjoining, plane tr iangles,  

denoted by some pos i t i ve  i n 3 q c r  n. Let  4-he ver t ices of the t r iang les  

be denoted by t h s  pos i t ions pA, pB and pc wi th  A, 6 and C iocated i n  a 

right-handed sense about the ouihard point ing normal n. 

+ - +  + 

3. 

The numerical integratron of the kernels T, U, S and D when 

- _  ? # Q i s  accornpl ished by f I .-SI- mapping ihs physical triangle onTo a 

u n i t  t r i ang le .  The u n i t  t r i a n g l e  i s  indicated i n  Figure 2. The POiiii- 

(0,O) i s  chosen t o  correspond to corner A, (I,O) t o  corner 8, and 

I 
I 

J 



Y 

(0,O) 

Y 

( ! D o )  

Figure A - I .  The Unit Triangle 

(0,I) to corner C. Corner A should be the largest corner for the best 

conditioning of the procedure. 

variable point Q and let this be located relative to the corner A in 

Let the point (t,,f2) correspond to the 

the fol iowing way: 

(A. I )  

/--. 
.--* 

The numericai integration i s  accomplished by first dividing the 

unit triangle into M equal elenreilts (see Figure A-2 for M = 4 )  and 

calculating the locations of the centroids of the sub-element triangles 

by the-procedure given in the following FORTRAN instructions: 

9 
J 

c 



w 

Y 

.t 

Figure 4-2. Division of the U n i t  Triangle, M = 4 

NFINAL = 2+M - I 

DO 60 J = I ,  NFINAL, 2 

DO 60 I = 1 ,  J ,  2 

LIM = I 

I F  (.r ~ E Q .  J )  L m  = 2 

00 60 K = L I M ,  2 

ZETA1 = (X+tO.5 + .166667*(-I?*~K)/M 

ZETA2 = 1.C - (J*0.5 + .166667~~(-l)**(K+l))/M 

JF (I .NE. J )  G@T@ 60 I. 

ZETA1 = (Js0.5 - .!66667)/M 
ZETA2 = l . C  - (J*O.5 f .166€67)/M 

>*-. 

_r 

, 
60 ClbNTlNUE 

for each ?oint ({,,C2) Eq. ( A * ! )  determines a point Q for which the 

integrand can be calculated. The value of the integral i s  approximated 

I 

by assuming constant values of the kernels over each sub-element, 
T- 



I .. . . .  . * 

euslua-firg t h e  id-egi-and, and by adding t h e  terms for each sub-element. 

The results can be improved by increasing the value of M until some 

level of accuracy has been achieved. 

A 

Y 
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Appendix E3 

in tegrat ion of  the Singular Tensors (P = Q) 

When t h e  f i xed  po in t  P and the f i e l d  point Q are In I-he same 
Y 

t r iangles,  t he  kernels U 

2 l/r(P,Ql and (I/r(P,Q)) , respectively. These in tegra ls  are to be 

snd T 
i j  i j 

contain slnguiaritles of the  order 

inferpretcd'  i n  the sense of the  Cauchy Priilclpaf Value In ?ha-!- the 

region very close -:-o the  point 3 i s  excfudad from the Integral  and the 

in tegra l  Is to be evaluated as t h a t  region shrinks t o  zero. By 

l e t t i n g  the surface ba represented by piarte elements it I s  possible -to 

perform these in tegra ls  exacfly. 

-4 

1 .  Exact In tegrd- ion of U 
sj - -- 

The tntegrai  to be evaluatsd i s  given i n  Eq. (3.2) as 

r .r I .  I t  3 - 4 v  + I 
" 1 j  'T' { 4 ( i  p . v )  i j  4(1  - v) ,I ,j (8.2) 

_I' 

9 
.9 

Let  dS(Q) = rdrd9 and perform the in tegrat ion using polar coordinates. 

b 

, 

Let  r = ~ ( 0 1 ,  then Eq. (B.1) becorles for Pin = Qn 

2lr 

0 



' ' L  

n 

2n 

Y 

Now let the triangle be located i r r  a locai coordinate system as shown 

i n  Figure 8-1. 

gate the integral of Eq. ( 8 - 4 )  from 

Let side 1-2 b e  parallet Po -the r l  axis and investi- 

to O 2  f i r s t .  , 

I. 

Figure B-I. _Geometry of Integration - AU 

Let,the following changes i n  variables be made: 
I ,  

' I  

f 



The terms 2 are the dlrection cosines gf the q 1  and t2 axes. If 
-5. 3. base vectors el and e, are defined for the c r  and r axes and She 

L 2 
components of t h e s e  base v e c k r s  in the global coorafna-te system are 

denoted by el arid e, then LI 0 . 

e: 

2 2 r .r = sin Be e + cos OeZiezj 
# I  # J  i i  lj 

+ sin8cosefel ie2J + e2iel j ) .  

4 Along 1-2 rcose = c1 

With these substitutions the, integral from 0 to O2 becomes I 

(B.6) 

(8 .8 )  

, 

The entire integral may now be calculated by reorienting <-he c 1  

and g2 axes so that ?he 

parallel i-o side 3-1. The results are easiiy obtained in term of 

the coordinates of P and the corners, 1,2 and 3. 

axis Is parallel t o  side 2-3 and tilon % .  

i " -  



. 
a *  

i-! . ,,.. . .  

e a  4 

2. &xaci fntegrakion of T A --- -- 
The fntogral to  be evalua-ieri i n  t h i s  case i s  also given i n  

Eq. (3.2): 

(8 .9)  

where, for a plane surface ( I & . ,  ar/an = 81, the kernel T Is given 
ij 

by 

By substituting 
4 

I i n (-1 = --Cn.r - n, r  1 
"ijk"rsk r r ,s r2 j ,i 1 P J  

into Eq. (B.10) the integral becomes 

I 
t3 n (-1 dS, J rsk r r ,s 

k 
ATij = ' i j k  

bS 

The integrand i s  the k-th component of 
./ 

(8.11) 

(8.12) 

.@ 

so tha t  by using Stokes' theorGin the area integral i s  converted into 

the path integral:  

"i 

- 



- .  . 
.I . 

a 

k 1 
4% ' i j k  f i dxk' AT = - 

Tj 
(B. 13) 

Because d The principal vefue interpretation of this in-i-egtal t h e  

path must also exclude the region near P rsee Figure 8-21. 

denote +he path a,-ound the edge of t h e  triangle and C* the circular 

path of radius E around t h e  poini  P. 

L e t  C 

Then i-l- follows t h a t  

I C 

Figure 8-2. Geometry of *Integration - AT 

f :  - t i x  tc = L f  e dx 1; = 0.  

CJI c* / 
(B. 14) 

Again change the variables to  a !oca1 coordinate system such tha t  

/' 



d;,ar8 6 and ak2 are the direction cosiiios of the r ,  and g2 axes. 

i n  the prevtous section these are the components of the unit base 

As kt 

~ vectors : 
+ 

1 (8.16) 

/Let- the side 1-2 be paratlo1 To ?he c l  axis and in4qra.f-e this side 

, and d x  = eikdgt k 
2) 1/2 Tixm, since r = :<,2 -I. ;* , first..  

! L 

2 

2 

I 
e Cloglc, + 1-111 k 

4n “ I j k  f k  
= -  (€3.17) 

In the same way as bsfore, th is  iniegrat may be completed by iewing 

t h e  5 ,  axis be parallel to “re 2-3 side and the 3-1 side. This 

integral may also be automa-l-ically conputed knowing the locations of 

t h e  corners and t h e  poin-t P. 


