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THE DIRECT POTENTIAL METHOD IN THREE-DIMENSIONAL ELASTOSTATICS

. Introduction

~

The analysis of the stresses and displacements in an elastic body
due to some state of lcading and confinement usually begins with
~assumptions which reduce the dimension of the field equations. In
many complex problems this raduction is from three dimensions to the
familiar two dimensional representations of plane stress and plane
strain. The reduction to Two dimensions is made sc that the probiem
becomes tractable and the raduction may be justified by the state of
loading and the geometrical configuration of the body. For example,
in the investigation of the stress field in the vicinity of a crack
through a thick body one may consider the region far from the sﬁrfaces
of the body to be In a state of plane strain. On the other hand, near
the surface the stress field is more nearly in a state of plane siress.

The cruclal problem at this point is in deftermining just when one model
or the other may be applied and whether these two models include all
important features of the stress field. In some other cases the
reduction to one or two dimensions may be made by conditions of symmetry
such as when the stresses satisfy the condition of pclar symmetry and in
yet other cases the reduction to one or two dimensions may be made solely
on the ba§is of the need for some estimate of the stress state.
Tﬁelsecond crucial aspect of the analysis involves the shape
and connectivity of the region. 1f the region has a simpie shape for
the dimension of the problem, e.g., the rectangle, the circle, the

half-space, efc., it is fikely that well documented znalytic procedures

e
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are available such as separation of variables (or the related use of

transforms). |f the shape is complex, as in the case of many real
problems, one Is forced to adopt some degree of approximation with
related numerical procedures. Scme probiems may be made tractable by
repiacing the actual shape by an ideai shape as in the analysis of
elliptic or parabolic shaped cracks and notches. In the case of the
most general shaces of regions sclutions may not yet be established

and those problems that have been solved have been attacked by entirely
numerical methods such as finite differences or finite elements.

Vhile the need for numerical procedures for complex shapes is
obvious and wil! not change, the restriction to two dimensional
representations is dictated by the present state of knowledge of
solution methods. Therefore, %here is a need for new procedures of
analysis which can be extended to analysis in three dimensions. These
new procedures are necessary 1o rafine the analysis of some problems
solved with two dimensional assumptions as well as to analyze
previously intractabie problems. In keeping with the spirit of true
three dimensional analysis the sclution method should maintain the
highest state of generality as to geometry, connectivity and loading,
as possible.

A method offering the broadest capabilities and sase of use is
the direct potential method. This solution procedure has been
successfully applied to two dimensicnal problems in elastostatics [1]
and transient elastodynamics [2] and [3]. it is the purpose of this
paper to extend the capability to problems of three dimensional

elastostatics.



The potential methods of solution in eiasticity closely parallel
the classical solution methods [4] for Laplace's equation collectively
called potential theory. The recent revival of the potential formulation
method is due both to the use of a boundary identity analogous to
Green's boundary Identity in potential fhegry (5] and also to the
capabiiity of sclving large systems of algebraic equations with the
digital computer. The singular feature of the potential method for
boundary and initial value problems is the czpability of obtaining
solution ferms'which automatically include the prescribed davia,
boundary configuration, and region connectivity. The potential method
may be divided into two approsches: the indirect and the direct
potential methods.

In the indirect procecure Integral equations are written in terms
of harmonic functions from which the displacements and stresses must be
derived by differentiation. The necessary boundary values for these
functions must be established by integration of the actual boundary
condlfiéns. The indirect method has been app!led to the problem of
vibrations of an elastic body [6] and o prablems in acoustics.

The direct method described in [1] and [2] obtains integral
equations whose unknowns are the unknown surface tractions and displace-
ments, Thus eliminzting the need for intermediate potential functions.
The interior stresses and di;;}acemen?s asire calculatecd directly from
tensor and vector identities respectively. Numerical solution of +the
integral é#uafions is achieved by a reduction to algebraic equations
and solution of the algebraic equations by standard digital computer

methods.



The dlirect potential method has two advantages over other approximate
methods: the dimension of the problem is reduced by one, and all
numerical approximations take place at the surface of the body. Further,
the formulation of the integral equations and their reduction ‘o

v
algebraic equations is not restricted by geometric considerations. The
formujafion and subsequent solution offer to the analyst the utmost in

general ity and applicability to nonirivial problems and the procedures

have been fully automated.

2. Integral Equation Formulation

The analysis ip this paper is restricted to the analysis of
classical elastostatic problems for which the material may be taken
as Isotropic and homogeneous. The usual Navier equations of

equilibrium in the absence of body forces Is given by

(A + “)ui,lj + ou,H =0 (1,j = 1,2,3) (2.1)
for the displacement vector, “i(X)' The solution to this differential
equation must also satisfy appropriate boundary conditions on the

displacements and fractions, respeciively given as

o
ui(X) = q; R th(ul)
and P (2.2)
TI(X) = cjun.i =p; Xes(fi').



The unit vector n; is the outward normal vector for the body R. The stress

components, olj’ and displacement gradients are related by Hooke's law

= AS. .U + u(u'

%15 = A8V +u . (2.3)

P N Y R

The well-known soluticon to Kelvin's problem (a concentrated unit
load in the infinite body) is given by the tensor field, [7],

4 - [3-4\1 |

ij 4nu S o= Sy Va7 r,ir,j]; (2.4)

for displacements in the xj directions due to point loads in each of
the X, directions. These displaczment components are given by the

operation

= U, .e (2.5)
J

on the base vectors, e;- The distance between the fiesid point X and

the load point g is given by

r= Ll - B x; = gi)]'/z. (2.6)

The traction vectors, ?J = Tijei’ are determined from Ec. (2.4) and

are given by the tensor components, {73,

ar 3
E J+T—:~§-\;r.r)-n.r

Ty ® ""7’ i T

+ n.
n'r,J],

2.7
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Now letting the load point £ be surrounded by a small spherical

where k =

region, R*, with the surface, I, Betti's third identity may be written

as

(a,T .. - +.U..)dS = 0, (2.8)
i T i
ST

where Ujs fi are The displacements and tractions for tha unknown stress
state. By Yaking the limits for R¥ = 0 in the usual way (sse [2]} the

following identity results

= - (
uj(g) J ui.X)Tji(X,E)dS(X)
S

(2.9)

Ti(X)UJi(X,g)dS(X).

+

This is Somigliana's identity for the displacements inside The body,
R, due to known surface fractions and displacements. The inierior
stress state may be generated frcm Eq. (2.9) by differentiation and is

given by | ’;;I

() = - uk(X)Skij(X’s)dS(X)

oij

Cf) oy,

(2.10)

+ J fk(X)D {X,2)dS(X).
S



By utilizing the identity

Fromialing L (2.11)

A

the tensors D,., and S, .. are found to be

kij kij
=k A - 3
Oy T 2% AT T Sk T T TN
' (2.12)
and
Sl 2000
Saiy “ar 3P Loiir k¥ 7= GBal,g * Sgn, 1
- 5 -1 3v
=% r’ir’Jr’kJ 4 T—:mig-(n'r’jr,k + njr’ir’k) (2.13)
+3n0 .r . +nd . +ns , -+—2 5 3.

k ,i ,J J ki Pikj 1 =-2v k'ij

The cohma—differenfiafion is with respect to X, the integration point
in Eq. (2.10).

Since it is not possible to independently specify corresponding
components of the displacements and the tractions at a boundary pecint
Eq. (2.9) is not suitable forthe solution of the givan problem. Let
two points on the surface be given by P and Q and let Q represent the
variable point X. Let the point p be the point & Inslide R. Finally,
allow tha field point p approzch the boundary point P. From the
continuity of ui(E) and by the usual methods of potential theory [4]

the following equation results



{
i-uJ(P) + J u‘(Q)TJi(Q,P)dS(Q)

w

(2.14)
- J QWU (Q,P)dS(Q) .
S

The integrels are to be inferpratad in the sense of the Cauchy
Principal Value. This is the usual boundary constralnt equation
between the surface fractiors and surface displacements. When the
boundary conditions, Eq. (2.2), are applied Eq. (2.14) becomes sets of
singular integral equations for fie unknown boundary quantities. The

numerical solution of these equations is discussed in the next section.

3. Numerical Solution of the Integral Equations

General analytic solutions to the integral equations (2.14) are
not available and it is therefore necessary to solve the equations
numer!éa!%y. The integrezl equations reduce to algebraic equations
by discretizing the boundary data. Following the procedure used
previously in acoustics [8] the two-dimensional surface, S, is assumed
to be made up of plane triangular elements, Asi. Although attempts
have been made [9] to account for the surface curvature this can only
be done approximately and imposes a large burden on the analysis. As
important simplifications in the analysis occur by assuming plane surface
elemenfé and since many physical problems involve flat surfaces the
assumption that the surface is piecewise flat is made. It is further
assumed that on each element, ASi, of the surface that the surface data

of traction and displacement may be assumed constant. Following

S



Figure | each surface element is denoted by its centrolidat point, Pm

or Qn, depending on whether the point is fixed or variable with respect

- to the integration.

Figure 1. Surface Elements

When the surface data is discretized in this way, the integral

equations (2.14) may be seen 1o reduce to the following algebraic

equations
i ) S
i-uj(Pm) + ﬁ ui(Qn) j Tji(Pm,Q)dS(Q)
ASn
- - (3.1)
=t o J U.,(Pm,0)dS(Q). '
n Ji
Asn

The vaiues ui(Qn), *S(Qn) are now the constant approximatiofis to uss

t+, on element Asn. The integrals

I
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ATU(F‘m,Qn) = TU(Pm,Q)dS(Q)
w AS
and ¥ (3.2)
AUU&Pm,Qn) = uuwm,o)dsm)
AS,

may be calculated automatically +o_any desired accuracy by knowing the
size, orientation and ifocation of ASn and the point Pm. The numerical
procedure used for these integrals (3.2) is discussed in Appendix A.
Because of the assumption of plane elements it is possitie to perform
the integrations exactly when Pm = Qn (taking into account the
principal value interpretation) and this is detailed in Appendix B.

The points Pm and Qn are taken at the centroids of the elements ASn to

account best for the variation of u; and fi on ASn. Equation (3.1) may

now be written as

|
{56i + ATiJ(m,n)}uj(n)

jsmn
(3.3)

o

= AU, (m,m)t. (n),
iJ J

.
e

which has the matrix representation

{-'7; 011 + CaT]}{u} = Caud{t}. (3.4)
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The matrix [1] is the idenfffy matrix. In general, the solution to the

mixed boundary-vaiue problem Is obtained by first appropriately rearranging
the columns in Eq. (3.4) so that all unknown data appear in the vector {x}:

«
-

[AJ{x} = [B1{y}. (3.4)

When rearranging, the columns must be scaled to malntain the proper
conditioning of matrix [A]. This scaling is based on an attempt to
keep the diagonal terms in [A] at the same order of magnitude.
Equation (3.4) is scived by a standard Gauss reduction scheme on [A]
followed by an iteration to refine the solution {x}. As the matrix
[A] is weighted toward the diagonal, it is well conditioned and in
actual numerical examples a single iteration usually achieves refinements
in {x} on the order of |{Ax/x}| < .00l. These examples are discussed in
the next section.

Finally, after solving Eq. (3.4), the known boundary data may be
used fo determine the solution for the internal displacements and
stresses by direct integration of the identities (2.9) and (2.10).

Following the same numerical procedure these are found to be

(p) = -2 ui(Qn)éTji(Qn,p)
n _

i
(3.5)

+ Iz f'(Qn)AU .(Qn,p)
n Ji

and

“urg



o‘J(p) = - ﬁ "k(Q")Askij(Q"’p)

(3.6)

+ 3 fk(Qn)ADkiJ(Qn,p).

n
o ~

The integrations to determine AS and AD are performed in the same way
as those to obtain AT and AU. Any number of interior solutions may
be made once Tﬁe boundary solution Is obtained. Since the solution is
performed at pre-selected points the analyst may concentrate on
particuiar areas of Interest and is not burdened with conplete field
solutions. No approximations to the fleld equations are necessary as
all approximations are made at the surface. It can be predicted from
St. Venants Principle that the errors are also restricted to near-

surface regions. A discussion of these errors is found in the next

section.

4, Numerical Results

Some elementary boundary value problems were solved to determine
the validity of the approximations discussed in Sec. 3 as well as to
investigate the behavior of the numerical procedures under different
circumstances. The computed .results are for a region with a piecewise
flat surface: the cube with unit dimensions. |In all cases sufficient
boundary displacements are set equal to zero to eliminate the rigid
body mof{bn. The surface elerents for the unit cube are illustrated
in Figure 2 for 12 triangles, in Figure 3 for 24 triangles, and in
Figure 4 for 48 triangles. All rasults have been obtained using a
single, general source program written in FORTRAN, language. Required

data Includes the material properties, the surface element arrangement,
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Figure 2. Unit Cube -~ 12 Elements

the known surface tractions and displacements which are assumed constant
over each surface element, and the locations of internal points where

the displacements and stresses are desired.

4.1 Uniaxial Stress Distribution

=
-

In the first series of'problems +he unit cube is loaded in a

state of uniaxial tension by the application of a normal stress to
two end;;/ On one end and on two normal faces the normal displacement
component was set equal to zero. The required ftractions at these
elements are then part of the solution. The zero displacements are
indicated on the appropriate cubes in Figures 2, 3 and 4. The

surface displacements In the axial and transverse directions are
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indicated in Figure 5‘for the casa of 12 triangles and values of
Poisson's ratio varying from zero to one-half. It is obvious from this
plot that for values of Poisson's ratio less than one-quarter large
errors are found in the ftransverse displadements. Similar errors can
be seen In the two dimensional case [1]. The source of these errors
has not yet been determined but it seems that the numerical procedures
introduce thegerror rather than the approximations given in Sec. 3.
This. Is indicated by the fact that no appreciable change is found going
to 24 surface elements as shown by the data In Table | for v = 0.25.
The large error is detected only when the transverse displacements are
less than the axial displacements by at least an order of magnitude.
However, Table | also shows that the calculation of the internal
stresses Is improved by refining the surface elements and This effect
is even more pronounced for lower values of Poisson's ratio.

By assuming the surface displacements at each element to be
constant, including the in-plane displacements, the solution method
introduces high stresses near the surface. This layer, illustrated
for the uniaxial case with 24 elements in Figure 6, is a function only
of the size of the surface elements and not the refinement of the
infegrafion. Fortunately this layer is resiricted fo a depth which
is a fraction of the size of;;he element. To determine the stresses
at the surface a method is presently being developed which utilizes
numerically calculated surface displacement gradients and kncwn
Tracfiéns as has been demonstrated in [10]. This will enable the
analyst to move the interior solution point at will within the region

and extend these results to the surface.

-'®
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Figure 5. Surface Displacements for Various Poisson's
Ratios, N = 12.
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4.2 Uniform Shear Stress

The’éécond elementary problem was to solve the case of a uniform
shear stress applied to the unit cube in one of its planes. This
problem was solved for the case of 12, 24 and 48 surface elements.
Again, sufficient surface displacemenis were fixed to zero to eliminate

rigid body motion. A typical displacement pattern shown for N = 12 is



Figure 7. Surface Eiement Displacements for Pure Shear, N = |2

given in Figure 7. The numerical results for the non-zero shear strain
and the internal stresses are given in Table 2. In this problem the
assumption of constant displacement at each element Is more constraining
than In the previous case and significant Improvements are shown for

the finer surface mashes.
e
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It Is apparent that although not all questions have been answered
the approximations of Sec. 3 aée Justified for these simple cases. The
method is presently being extended to more significant problems but
serious difficulties are not expected. The analvsls procedure has been
completely automated and the wnalysls has Been carried out on a UNIVAC"
1108 computer making use of external scratch storage. Run times are not
miniscule (about three minutes for the surfacs solution with 12 elements)
but no strong attempt was masde o minimize run fime{

It is further apparent that very good results can be achlieved with
a minimum number of elements. When analyzing problems with surface‘
stress concenirations, however, it will be necessary to decrease the
element size in that area. Although these examples have all been for
equal~-sized triangles no numerical difficulty is expected when using
various sizes and shapes of elements. It is now envisaged that the
procedure described in this document will find wide applicability in
inherently difficult problems and that no problems of more than 3

t+actical nature remain.
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Aggendix A

Surface lIntegrals of the Non-Singular Tensors (P # Q)

Since the surface integrations in Egs. (3.2), (3.5) and (3.6)
cannot, in general, be done In closed form, it is necessary to develop
an automatic procedure which will defermine the integrals with sufficient
éccuracy in a minimum of time. The method used in this analysis is
similar to that repér?ed in [8], where the kerneils corraspond to
singular soiutions To the Helmholtz eguation. The method is based on
an affine Transformation which meps any phvsical surface Tfiangﬂe onto
a basic "unit triangle." The integration is then performed by sub-
dividing the unit friangle and approximating the integral by a finite
sum. The method is suitable for iterating tc a desired accuracy but
it was found for this work that the added time of iteration was not
Justified. The use of the unit triangle achieves a uniform distribution
of sub-triangles and achievas complete flexibility in the 5rienfa+lon

and shape of the physical triangles.

Assume the body is located in & global coordinate system and that

any point is denoted by its position vector 3. The surface cf the

three dimensional body is divided into adjoining, plane triangies,

denoted by some positive integer n. Let the vertices of the triangles s ’
be denoted by the positions KA, 38 and 36 with A, B and C located in a ’

righf—haﬁ@ed sense about the outward pointing normal .

The/numerical integration of the kernels T, U, S and D when
P #0Q is accomplished by fi-st mapping the physical triangle onto a
unit triangle. The unit triangle is jndicafed in Figure 2. T7he point
(0,0) Is chosen to correspond to corner A, (1,0) to corner B, and

-
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(C,.Cz)

(0,0) . (1,0)
Figure A-1. The Unit Triangle

(0,1) to corner C. Corner A should be the largest corner for the best
conditioning of the procedure. Let the point (c,,;z) correspond to the

variable_poinf Q and let this be located reiative to the corner A in

the following way:

-

-+ > > -> ->
°Q = Pp + Cl(pa - pA) + Z,'z(pc - pA). (A1)

e
P

The numericai integration is accomplished by first dividing the
unit triangte into M equal elements (see Figure A-2 for M = 4) and
calcu!affng the locations of the centroids of the sub-element triangles

- by the procedure given in the fol lowing FORTRAN instructions:

K3



Figure 4-2. Division of the Unit Triangle, M = 4

NFINAL = 2#M - |

DO 60 J = I, NFINAL, 2
D060 I=1,1J, 2

LIM = |

IF (I +EQ. J) LIM = 2
DO 60 K= LIM, 2

ZETAl

(I#0.5 + .166667%(~1)»4K)/M

ZETAZ = 1.C - (J%0.5 + .166667:+(~1)%%(K+1))/M
IF (I .NE. J) GPT@ 60

(I%0.5 - .166667)/M

ZETAl =
ZETA2 = 1.0 - (J%0.5 + .166667)/M
60 CONTINUE

For each noint (5',62) Eq. (A.1) determines a point Q for which the
integrand can be calculated. The value of the integral is approximated

by assuming constant values of the kernels over each sub-element,
A



evaiuatirg the integrand, and by adding the terms for each sub-element.
The results can be improved by increasing the value of M until some

level of accuracy has been achieved.

\



Appendix B

integration of the Singular Tensors (P = Q)

vhen the fixed point P and the field point Q are In the same
triangles, the kernsls Uij and Tij confaiﬁqs?ngularifies of the order
t/r(P,Q}) and (I/r(P,Qi)z, resnectively. These Integrals are to be
interpreted in the sense of the Cauchy Principa! Value in that the
region very close o the point P is exciudad from the integrail and the
integral is to be evaluated as that region.shrinké to zero. By

letting the surface EF representad by plane elements it Is possible to

perform these Integrals exactly.

I. Exact integration of Ui[

The Integral fo be evatuated is given in Eq. (3.2) as

BU, (P, On) = J U, ;(Pm,)d5€Q) (B.1)
8S,
where
0y 3= 4y | ,
Yy P oo e it (B,2)
o

Let dS(Q) = rdrdé and perform the integration using polar coordinates.

Let r = r(8), then Eq. (B.1) becores for Pm = Qn

2n
_Um o1 O e N
Auij = 550 {4wv J Cir(e) p)(4(‘ m_— Gij +~4(l —3 r’ir,J)]de}
0

(B.3)



N

which becomes

2w
= 3 - 4y !
AU” = 4’"1‘ J r(e)[m GSJ + m r,ir’J]de. (B.4)
0

~

Now fet the triangie be located in a local coordinaie system as shown

in Figure B-1. L&t side |-2 bs paralle! to the Z axis and investi-

gate the integral of Eq. (B.4) from'e‘ to o, first.

Figure B-1. ;ﬁ;omefry of Integration - AU

Let the follgwing changes in variables be made:

-

,r

14 14
r_ _ar_ 1 3r 2 (8.5)

3xl 3;1 Bxi Stz 3xi



where

or or
= = 5inf, —— = cosh.
ac’ acz
3;‘
The terms ax’ are the direction cosines pof the ;l and cz axes. If

base vectors e, and gé are defined for the CI and ;2 axes and the
components of thesz base vectors in the global coordinate system are
denoted by e and e,, then

Zi

r.r = sinzee + coszeez.e .

,iT,d 11 %2
+hsineccse(e”e2j + e2ie!j). ' (8.6)
Along 1-2 rcosé = c, é
or r(e) = c,/cose. ‘ (B.7)

to 92 becemes

With these substitutions the integral from e,

(o4
] {3 dy

4y 4 - v) Gij[iog('tana + 3/C056)]

]
AUi.] 2.
J 6,

+

l N
T =y [8)48);¢-31n0 + log(tane + 1/cose))

. - /: e
. 2
+ 0y, 5int - (e”eZJ + e2ieu)cose]}]e . (B.8)
]

LS

7

Thé’enfire integral may now be calculated by reorienting tThe Z,
and g, axes so that the g axis is parallel to side 2-3 and *+hen
parallel to side 3-1. The results are easily obtained in terms of

the coordinates of P and the corners, 1,2 and 3.

()



7. Exact Infegration Qi.T;!

The integral to be evaluated in this case Is also given in

Eq. (3.2):

AT, (Pm,Qn) = I Tij(Pm,Q)dS(Qfa (8.9)

ASn

J

where, for a plane surface (i.e., ar/dn = 0), the kernel Tij fs given

by
T, =S dotmr -nr (B.10)
ij 4 r2 Jj i | *
By substituting ‘
4
€, ,E__ N (lJ = l—(n r.-n.r .) (B.11)
ijkrskrr,s r2‘ J i i ,J *
into Eq. (B.10) the integral becomes
AT, =g e _.n b ds (B.12)
1j 4r "ijk rsk rr,s )
AS
The integrand is the k-th C?TPonenf of . o
»
nx v/

e

so that by using Stokes' theorcin the arca integral is converted into

the path integral:



14
s °° @
[ 3

aT,. = & §‘Fdx (B.13)

i % Sijk k*
Because of the principal vaiue interpretation of this integral the
path must also exclude the region near P Usee Figure B-2). Let C

denote the path around the edge of the triangle and C* the circular

path of radius € around the point P. Then it follows That

&

B o

] c 2

Figure B-2. Geometry of ‘Integration - AT

§ Lix, = -’-§ dx, = 0. " (B.14)
r S €
o c*

Again change the variables to a !ocal coordinate system such that

-
e

~

dxk = akld;' + akzdz;2 (B.15)

2

3



< .era Bi and a o are the direction cosines of the Cl and ;2 axes. As

in the previous section these are the components of the unit base

4
- vectors:
¥

'e,i = ai'. e2i = afZ‘ ~ (B.16)

fLeT the side 1-2 be parallel to the 5 axis and integrate this side

_ " e =t 24 2W2 e =
first. Then, since \ci + 5y , and dxk = e!kdcf
2
2 eak‘";t
AT, .| = Ty
ij | 4w sJk v/ 5
K 2
= 7 Si1jK e Llogtz, + r):” . (B.17)

In the sames way as before, This infegral may be compleféd by letting
the g axis be parallel to the 2-3 side and the 3-1 side. This

integral may also be automatically computed knowing the locations of

the corners and the point P.



