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Orbit Information Derived f rom Its Hodograph 

J. B. Eades, Jr.* 

NASA, Goddard Space Flight Center 

Greenbelt , Maryland 

ABSTRACT 

The hodograph representing a two-body motion can be utilized to 

develop analytic relations descriptive of this category of central  field 

trajectories.  In this paper a brief vector development is presented 

which leads directly to the hodograph; also severa l  interesting results 

a r e  obtained which connect the various angles of reference and the 

speed components for the flight path. A correlation between the hodo- 

graphs, referenced to a moving axis system ( r  ,'p , z )  and an orbital  

fixed axis sys tem (x , y , z ) ,  is presented. Also, a geometric description 

of and correlation between the position angle of reference ( t rue anomaly) , 

the eccentric anomaly and the mean anomaly is developed. 

*NRC-NASA Resident Research Associate, on leave from Virginia Polytechnic Institute, 
Blacksburg, Virginia; also Associate Fellow of AIAA. 
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NOTATION 

describe apocenter and pericenter locations, resp. 

semimajor  axis length 

describe the extent of the semi-minor axis 

parameters  associatedwith the hodograph (See equation (8)) 

unit vector (i = r , 'p , z ;  x , y , z ) .  

specific energy for a body in motion (E  = V2/2 - d r ) .  

eccentric anomaly 

occupied, unoccupied foci. 

specific angular momentum 

mean anomaly 

mean motion 

a general  position, re fer red  to a t ra jectory 

focal parameter  ( p  = h2/p = a1 1- e21 ) 

position indicators for  constructions used herein 

radius to a t ra jectory position, measured f rom F. 

polar coordinates , associated with the moving triad 

e r ,  ev, e Z  

t ime 

Velocity vector,  speed components (i = r , 'p , x , y 

speed components defined with Fig. 2 

Cartesian coordinates, associated with the t ra jectory-  

fixed t r iad e x ,  e y  , ez 

elevation angles r e fe r r ed  to the V x '  v y  and Vr , V W  speed 

components, resp.  

c 
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€ 9  E eccentricity (scalar,  vector) 

P gravitational constant 

r t ime of pericenter passage. 

Subscripts , Superscripts 

( )lim a limit value 

(3, (7 orde r s  of differentiation, with respect  to time. 
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INTRODUCTION 

In recent years  there has  been a renewed interest  in hodograph 

methods, especially a s  they refer  to orbital  mechanics and space flight. 

The works of Al tman( ' )* ,  Pis t iner(2)  , Sun(3) , and Eades ( 4 )  to mention 

a few have done much to advance the knowledge of this method, and 

to provide useful analytic and geometric tools for  applications purposes. 

. 

+ 

It is generally thought that the hodograph is a novel technique used 

as a check on analytic methods; however, it has  been employed as a 

means for providing relations between the various parameters  used to 

describe orbital  motions, and a s  an aid in developing other analytical 

expressions. Even though the hodograph presents  an abstract  geometry 

for  space t ra jectory motion, it does augment and simplify the orbi t  once 

the investigator has  become familiar with i t s  meaning and interpretation. 

Quite frequently the use of a hodograph to descr ibe a particular two-body 

motion provides a simplification which aids in the understanding of the 

problem a t  hand. 

In this paper the hodograph of a general  two-body motion will be 

described and several  fundamental relations , a s  defined f rom this basic 

description, will be developed. It will be shown that the usual pa ra -  

me te r s  for the hodograph can be manipulated to provide other useful 

resul ts ;  and, that by relatively simple means the method can be em-  

ployed to describe relations between the various reference angles for 

the flight path. In addition, it will be demonstrated that a geometrical  

*Superscripts refer to references noted at the end of  th is  paper. 
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development can be employed to describe the eccentric anomaly, and 

the mean anomaly, a s  these quantities relate to the position angle ( o r ,  

t rue anomaly) for the orbit. 

Basic Development 

F o r  this analysis a simple two-body, central  field p r o b l e m i s  

assumed. The motion will be described in reference to two basic coor- 

dinate f rames of reference - one which moves, following the motion 

about the trajectory; and, one which is fixed relative to the flight path 

proper. 

unit t r iad  ( er , ecp, e Z  ), while the fixed frame will be in relation to the 

unit t r iad  (ex , ey , e Z  ).- See Figure 1. 

Let the moving frame be described by means of the moving 

In this section the basic developments will be undertaken. These 

will lead directly to a description of the velocity vector for the motion; 

and, subsequently, this expression w i l l  be utilized to describe the hodo- 

graph( s) and to obtain other useful information for relations describing 

the motion along the flight path. 

F o r  a description of the two-body trajectory,  and that of the veloc- 

ity vector,  one may begin with the specific equation of motion 

where  p is the gravitational constant associated with the two-body 

n motion and r is the position vector, r r e r  ! If equation (1) is vec- 

to ra l ly  multiplied by r, then 
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since r and er  a r e  parallel  vectors. Recognizing that 

d 
r x F  = - ( r x i - )  

dt 

then f rom Equation (2)  

r x r - A  = h (constant) 

which is the familiar expression f o r  the (fixed) specific moment of 

momentum. 

Next, let  equation (1) be multipled (vectorally) by h ; that is, 

wherein, it is recalled, e t  = r/r . However, since h and p a r e  constants, 

then an  obvious first integral  obtained f rom equation (4) would be 

i . x h = p ( e r  t ~ )  (5) 

where  E plays the role of an  integration constant. 
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When equation (5) is scalar  miltuplied by r ,  one obtains a form of 

the equation for a conic; namely, 

which, when compared to the more  familiar fo rm 

P r =  
1 t E C O S C p  

n leads to the conclusions that: (1) p 

eccentricity vector, and assuming that cp = 0 corresponds to pericenter,  

then€  = E e x .  Hence 

er  ' e x  = cos cp (See Fig. 1). 

focal parameter  = h2/p; (2)  E is the 

er * E E cos 'p, which indicates that I E I = E ,  and 

A Unique Description of the Velocity Vector 

In order  to describe the velocity vector for this motion, equation (5)  

is multiplied (vectorally) by h ;  o r ,  

h x (+ x h) = ,LL [h x ( er  t E)]  . ( 7 )  

Since, according to equation ( 3 ) *  h = hez  , then it follows that the tr iple 

vector product can be replaced by 

h x (i x h) = i ( h - h )  - h ( h . + )  = k ( h - h )  

7 



since h - r = O !  The vector multiplication of the right side of equation 

(7) can be done directly, with the resultant expression for the velocity 

ve c to r be in g 

P 

h ' Y  
V = - ( e , ,  + €ey)  

which will be alternately written as V = C e + Rey. 
'p 

This is an expression fo r  the velocity vector which is somewhat 

unusual in form-especially since the two component vectors,  in the 

and e directions, a r e  fixed in magnitude. It should be apparent that 

the full velocity vector is composed of: (1) a fixed magnitude component 

following the motion about the conic; and (2), a fixed vector component, 

relative to the orbi t  proper. A s  an aid to this description, Fig. 2 is 

included. Note that the vector V ( c p )  = (p/h)e changes direction as one 

moves about the orbit; however, the vector V ( y )  = €(p/h)ey is fixed in  

direction and magnitude for every point on the trajectory.  Even though 

Fig. 2 is drawn a s  an ellipse, equation (8) is general  and r e f e r s  to 

any f ree ,  two body, central  field conic. 

e(f Y 

'p 

The Velocity Components 

In o rde r  to obtain the familiar speed components, in the direction 

of the various coordinate axes,  one forms the appropriate scalar  pro- 

ducts ,  
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using equation (8); that is, V i  = V  - e i ( i  = r ,  rp;x,  y )  

v,=IZ(e t E e y ) * e  [ ~ + E C O S ' ~ ~ ] ,  
'p w =  o r  

and 

Vr 1 C(e t €ey)  * e r  = C E  s i n  cp, 
'p 

Vy = C(e t €ey) * e y  = rT. [COS 'p t € 1 .  
'p 

Note that vZ = 0 since V. e vanishes, identically. 

If equation (8) is squared, then one obtains 

accounting for the fact that P = h2/p. 

leads to the conclusion that: 

An inspection of this expression 

f o r  elliptic and hyperbolic motion (1 t 2 E cos 'p +- $ ) >  0 ;  

and, for parabolic motion [2 (1 + cos r p ) ]  > O .  - 

Recognizing that there  is a l imit  position angle defined for motion on 

a hyperbolic path (Le. a s  r -+a ,  'p-+rplim; ' p l i m  =  COS-^(- l / ~ ) ) ;  then the 

corresponding limit speed (squared) is described as, 
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since p = a ( e 2  - 1) for the hyperbola. This last result  is frequently 

re fer red  to a s  the hyperbolic excess speed (squared). One notes that 

the l imit  speed, for  a parabolic path ( E  + l ) ,  is 

v 2  + 0. I im 

Next, recalling that the eccentric anomaly ( E ) ,  for an elliptic path, 

can be related to the t rue anomaly by 

c o s  E - €  € t C O S c p  

1 f € c o s y  
o r  c o s €  = c o s  cp = .  

1 - E  cos E 

then it can be shown that corresponding to equation ( l o ) ,  and making 

use of equation (7), 

n wherein V: = ,u/r (local circular satellite speed (squared)). Here 

equations (10) and (13) relate the speed of motion on the orbit to the 

position angles ('p and e ) .  
be de s cr ib  e d sub s equent ly . 

The geometric relation between cp and E will 

It should be mentioned here  that the results given in equations (9) 

a r e  e i ther  the usual expressions found in the l i terature,  o r  a r e  easily 

reduced to such resul ts  by substitution and manipulation. Also, there  

1 0  



is a description difference in the more familiar vector representation 

for velocity - note the components in equations (9) and the expression 

in equation (8). This las t  resul t  was derived pr imari ly  for  the purpose 

of defining the hodograph; it i s  not a usual equation form since it contains 

components which a r e  not orthogonal (generally), and a r e  vector 

elements related to both of the basic t r iads  employed here. Figure 3 

shows the various velocity elements re fer red  to above, and some of 

the other geometry relative to these vector elements. 

Relations Formed f rom the Components of Speed 

Making use of the speed relations developed in equations (9) i t  is 

possible to establish severa l  interesting analytic and geometric 

resu l t s  - a few of these a r e  noted in the following paragraphs. For  the 

developments which follow he re  it is essential  to recal l ,  o r  obtain f rom 

equation (3) ,  that 

cp' h = rV 

Forming rat ios  of the various speed components leads to: 

(1) the t ra jectory eccentricity, 

( 2 )  the eccer- t r ic  a n ~ m a l y ;  corresponding to a point on the trajectory,  

can be described a s  

11 



I = 

(note equation (12)); 

(3)  in addition to the above, it is recognized that 

-- - E s i n  'p, 
Vr v'p 

V2 

-= vzl 1 + E .  c o s  'p 2 - ,  P 
vf r 

and 

V ' p  - = - s i n  'p, 
V2 

V V  - y Y - E +  c o s  'p. 

V2 

A combination of these expressions,  equation (14), yields the following: 

- r 

a 
1 - -_ 

in agreement with the equation for a conic, r = a (1- E C O S  I ) ,  when a is 

the semimajor axis length for the elliptic path. This last expression 

re la tes  the radius (to a point on the orbit)  to the speed components of 

a satellite. Of course,  obvious reductions using these same  speed 

components reaffirm the geometrical  observation that 

7T 

q l - y = - -  /3 ,  2 
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where ,B is the elevation angle shown on Figure 3.  Also, as a result  of 

this observation, equation (15) c a n  be alternately expressed as 

(17) 
E + cos cp E t s i n  ( P  - Y) 

a + € C O S  'p 1 t E s i n @  - y) 

Equation (10) describes the local speed in  t e r m s  of the position 

angle; to complete this description, equation (1 6 ) ,  and a manipulation 

of the relation between y and 'p, namely 

A'= E s i n  cp 
t an -y=-=  

l + € C O S c p '  
' 9  

yields the following: 

and 

wherein the negative sign is used when 

0 l c o s  'p < - E - 

and the positive sign is employed for 

13 



Note that cos 'p = - E descr ibes  the condition y =  

elliptic orbit. Also, since the ellipse is speed-symmetric about the 

for the 
max, mi n 

major  axis, only one side of the orbit  is described in the 'p - relations 

above. For reference purposes the functional relations for 'p = 'p ( Y )  

a r e  noted below: 

2 sin'y j e 2 -  s i n  y 
c o s  cp = - - k cosy  

E E 

and 

t a n  y (cos2 y t cos  y € 2  - s i n 2  y . s i n  cp =- 7) E 

Equations ( l o ) ,  (13), and (19) express  the local speed (squared) in terms 

of the local position angles ( o r  anomalies) and the local elevation angles. 

Other Useful Relations 

Using the definition of the elevation angles ( y ,  p )  noted with Fig. 3, 

it is easily shown that ( s ee  equations ( 9 ) ) ,  in addition to equation (18), 

v y  E t  c o s y  

- v x  

tan p =-= 
s i n y  ' 

then it follows that 

tan y tan ,B = E cos  E. 

14 
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? 

In a like manner, f rom the various descriptions it is evident that 

E s i n € ,  
m s i n  cp 
I t €  cos cp 

15-7 t any  = E 

relating 7, and E for any point on an elliptic trajectory.  

Next, squaring and adding equations (21) leads directly to a des- 

cription of the conic's eccentricity in t e r m s  of angles; namely, 

1 t t an2p cos2y 

I t  tan'y cos2p 
62 = ( t  an2yj E- (tan2y) 

and 

A ratio of the expressions (21) will indicate that 

t a n  E = ~ ' G ' c o t  p ,  ( 2  3 4  

while, other relations easily derived f rom manipulating equations (9) 

a r e :  

tan cp = cot ( p - y )  

o r  

s i n  cp 
€ + C O S  cp 

cot  p =  t a n  (zp-y) = 

15 



and 

Relating the specific energy ( E )  of the trajectory to the eccen- 

tr icity ( E )  it is easy to show that 

then using equation (22)  it is found that the specific energy is described 

by 

t a n y  tan cp ( t a n  2 y- tan rp) 
E = $?’ 

t a n 2 y  (tanrp- tany)’ 

Also, since the specific energy for a f ree  t ra jectory i s  known to be 

then 

1 h t a n 2 7  (tancp-tany)* 
2fZ tany  tancp (tancp- tan2y)  

a = -  [ 

Finally, it should be evident that corresponding relations, expressed 

in t e rms  of p ,  cp ; cp , & ; 7 ,  E a r e  readily obtained by substitution and 

manipulation of the various resul ts  derived ear l ie r .  

16 



A Description of the Hodograph 

The velocity expression developed a s  equation (8) can be utilized, 

directly, for describing a hodograph corresponding to the two-body 

motions considered here. It will be shown that this development i s  

amenable to either the (fixed) x, y , z - or  (moving) r , cp , z , - f r ames  of 

reference noted in the introduction. Because of similari ty in manipu- 

lation for the two cases  it will be advantageous to conduct the develop- 

ments in parallel  and simultaneously: 

Hodograph Referred to the r , c p ,  z 
triad. Write the velocity vector k x , y , z  t r iad 

V = Iz: (e t E ey) E Vr er + V e 

using equation (8); next, rear range  this resul t  as 

Hodograph re fer red  to 

(26a) V = $? (ecp t E e ) 'p 'p 'p '  Y 
Vx ex t Vy ey . (26b) 

(VY-$?) eY t Vr er = E fZ e Y . (27a) (Vy - E Iz:) ey t Vx ex = Iz: ecp . ( 2 7b) 

Squaring the above expression yields 

( 2 8 4  (V - E  e)* t V E  = fZ2 , ( 2 8b) (Vcp-Iz:)2 t v; = ( E Q 2 ,  
Y 

which describes a c i rc le  (in the 
V V ,  Vr plane) whose center is 
located at  $? units up the Vcp axis, 
and which has  a radius of E (=R) 
units . 

which descr ibes  a c i rc le  of radius 
e ;  and, whose center i s  located a t  
E tZ units up the Vy axis. 

A sketch of the hodograph, 
and its relation to an elliptic 
orbi t  is shown a s  Fig.  4. 

A sketch relating the 
hodograph to a corresponding 
ellipse i s  noted in Fig. 4. 

The geometries of Fig. 4 have been chosen to represent  the elliptic 

orbi ta l  motion, with convenience of representation being the factor de- 

ciding for this case. It should be evident, however, that the descrip- 

tions could have been made for the hyperbolic case just  a s  well. As a 

17 



matter of fact, to i l lustrate this companion situation, and to indicate 

the relative geometries corresponding to the hyperbolic t ra jectory and 

to the special ca ses  of the circle  and the parabola, the following figure 

(Fig. 5) has  been prepared. - 
The cases  illustrated in Fig. 5 show a comparison of the hodograph, 

for several  values of eccentricity, as they would appear on the two 

velocity planes ( V  , V  ; v , v ). It should be noted that the circular  
r ' p x  Y 

orbit,  in  the v , v 
r ' p  

hodograph is a c i rc le  of radius !? with its origin a t  the origin of coordi- 

nates (Le. E = 0 ,  hence R = 0 ). As the eccentricity increases  the figure 

plane, is the point,!? ; while in the Vx , Vy plane the 

of the hodograph grows, in size,  in the Vr  , V 

Vy plane the origin of the figure moves away f rom the coordinate origin. 

When the t ra jectory is a parabola the two geometrics appear to be the 

plane; while for the Vx, 
(P 

same ( Q ' = R ;  E = 1). For  the hyperbola, since E > 1.0, the hodograph 

(circle)  in the Vr  , V 

center 's  location position ( e ) ,  hence the figure extends into the negative 

V 

to the Vx, V plane, is represented by a c i rc le  whose center l ies well 

plane has  a radius ( R )  which is greater  than the 
'p 

region, which is, of course,  unrealistic. This same case ,  re fe r red  
'p 

Y 

above the origin; and, whose unrealist ic portion (of the hodograph) 

appears a s  the cross-hatched region shown in Fig. 5. (The angle ylim is 

described by 'pli, = t cos- (- l / ~ ) ! ) .  1 

It should be evident that for comparable cases  (using consistent 

and fixed values for E ,  e )  the Vx , vy hodograph is most  useful, f r o m  a 

geometrical-size consideration, for smal l  eccentricit ies (near  zero) ;  

18 



note that the radius of the hodograph is fixed so long a s  (z: i s  fixed. 

However, in the Vv, Vr plane the center's position i s  constant for a 

given fixed value of Q1. 

Geometric Description of the Eccentric Anomaly, E 

Figure 6,  shows, in schematic, the eccentric anomaly ( E )  and the 

corresponding t rue anomaly (rp) for a representative position, P, on an 

elliptic trajectory. The point, P ' ,  lies on the so-called auxiliary circle  

(of r ad ius , a )  and corresponds to the trajectory point, P; position coor- 

dinates for these two points a r e  (a ,  E )  and ( r , y  ), respectively. In this 

section a geometric method for  determining E ,  f r o m  the hodograph, 

will be described; in fact the construction for both the hodograph planes 

mentioned before will be described. 

Hodograph on the Vr , V Plane 
'p 

F o r  the hodograph re fer red  to the Vr , V plane the speed components 
'p 

(equation (9)) a r e  

and V ~ = ~ ( 1 t E c o S c p ) .  

Let a modified hodograph be described, one whose coordinates a r e  

Vr/rZ: and vv/C. This modification leaves the basic geometry unchanged 

even though the relative scale of the figure i s  altered.  F o r  this r ep re -  

seiitatisii tlie :lodograph a circ:e **hose radius is eqiia: the t r a j e c -  

to ry ' s  eccentricity, and with i ts  center a t  a unit distance from the 

coordinate origin. 
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Recalling that the eccentric anomaly may be expresed by 

€ + C O S  cp 
c o s  € = 

1 t € C O S  cp 

then the following copstruction, based on this relation, determines this 

position angle. The various steps in the construction a r e  seen on 

Fig. 7 and a r e  listed below: 

1. Draw a (modified) hodograph on the V r / e ,  v /e plane; this i s  w 
a circle  of radius equal to the eccentricity, and has its center a t  a unit 

distance up the V /e axis ( see  equation (28a)). The center of the hogo- 

graph is at 0. 

v 

2. P is the point of interest  on the t ra jectory;  it is located by 

Cp (position angle, o r  t rue  anomaly), and/or  by f ,  the eccentric anomaly 

( reca l l  Fig. 6). 

3. Using 0 a s  a center ,  draw a unit c i rc le  and extend OP to locate 

Q (on the unit circle).  Note the OP = E (units) while O Q  = 1 (unit). 

4. Project  P onto the V r / C  axis - this locates point D ;  thus, the 

distance PD = 00' t OP cos cp, o r ,  PD = 1 t E cos 'p. 

5. Project  Q onto the V q / C  axis, locating Q1 ; then O'Q, = 1 t C O S  'p. 

6 ,  Extend the line QPO; then, using 0 a s  a center ,  t r ans fe r  point 

Q1 to QPO (extended) locating point Q, . 

Since OQ = cos y ,  t h e 3  = OP t OQ, E t cos 'p. - 

20 



7. At Q erec t  a perpendicular ( to POQ,); and, using P as a center 
2 

t ransfer  D to D, (where the a r c  of radius PD cuts the perpendicular 

f rom Q2). 

Since PD = 1 t E cos 'p, then PD, = 1 t E cos 'p. 

8. According to equation (30)  the angle a t  P, between PQ, 

and PD,, is  the eccentric anomaly - corresponding to the point P on 

the trajectory. 

This, essentially, completes the construction. However, before 

leaving this discussion note that the line through 0 ,  perpendicular to 

PD,, and locating J, describes a line whose length is 

OJ = E sin E ,  ( 3 1 )  

recognizing that OP = E .  The significance of this will be noted 

subs e quently . 

Also, for convenience, it is helpful to relocate the eccentric 

anomaly (relative to 0); this is easily accomplished by erecting perpen- 

diculars ,  though 0 ,  to the lines PQ, and PD,. This las t  construction is 

i l lustrated on Fig.  8. 

It should be evident that the a rc  P,Q corresponds to the position 

angle (v) while the a r c  AA, r e fe r s  to the eccentric anomaly ( E  ); both 

a r c s  a r e  comparable since they a re  segments of the unit circle. 
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Hodograph on the Vx , Vy Plane 

For the hodograph described on the Vx, Vy plane the speed compo- 

nents a re  known to be, 

Vx = - Q: s i n  y ,  

and ( 3 2 )  

V y = J 1 : ( E  $ C O S  y ) ,  

( see  equations (9)).  

As in  the previous case it is advisable to work on a modified hodograph 

plane. Here the coordinate axes will be chosen as Vx/e and Vy/(l: ,  

respectively. This will simplify the construction for I ,  while retaining 

the basic geometry of the hodograph proper. Once again the construc- 

tion will be based on equation ( 3 0 ) ;  while the steps to be followed are 

noted below and pictured on Fig. 9. 

The construction on this plane is much s impler  than that for the 

previous case. Here the hodograph is represented by a c i rc le  of unity 

radius; P is the reference point on the (elliptic) orbit ,  defined by the 

position angle Y. 

1. Project  P onto the Vy/C axis locating P I .  

Since OP = 1.0 , then OP, = cos 'p. Also, note that 0' PL = 0'0 -t op1 

= E +  cos c p ,  since 0 ' 0  = E .  

2. Erec t  a perpendicular, to the line OP (extended), through 0 ' ;  

this will locate the point Q. 
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Since 00' = E ,  then O Q =  E cos cp and PQ = PO t OQ = 1 t E cos cp . - - 

3. Using 0'  a s  a center,  and PQ a s  a radius, swing an a r c  locating 

point D a s  the intersection of this arc  (radius PQ) with the line PPI. 

Now, the eccentric anomaly (€) is noted to be the angle a t  0' in 

the triangle whose base i s  O'P, and whose hypotenuse i s  O'D, a s  shown. 

4. Note that the perpendicular erected through 0 ,  drawn normal 

to O'D (locating point J) descr ibes  a line whose length is 

OJ = E s i n  E .  

The significance of 0 J will be discussed subsequently. 

Fo r  the convenience of comparison, the angle € is t ransfer red  to 

the origin ( 0 )  so that it is directly related to the corresponding t rue  

anomaly ( c p )  - thus, in Fig. 9b, the a rc  PA re lates  t o e ,  while the a r c  PP 

relates to c p ;  both angles correspond to the position point, P, on the 

ellipse. Also, for  convenience, the lengthOJ has been t ransferred to 

the horizontal a s  noted on Fig. 9b. 

- 

- 

The Time Equation 

It can be shown readily, and i s  well known, that the t ime of flight 

f r o m  pericenter along an elliptic path, expressed in t e r m s  of the eccen- 

t r i c  anomaly, is 

n (t - 7) = € - E s i n  I ,  
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where n is the mean motion and 7 is the t ime of pericenter passage. 

Referring back to the construction for the eccentric anomaly, it should 

be apparent that all of the information needed to describe the time of 

flight has been determined within those geometric manipulations. The 

a r c  relating to e ,  and the line OJ (= E sin &') have been constructed; thus 

by subtracting these two numbers - one describing the a r c  for E ,  the 

other being the length 0 J - the time function n ( t - 7) is determined. 

As an alternate description, the length OJ can be converted to an 

equivalent angle (since the basic hodograph geometry has  been r e fe r r ed  

to a unity circle) so that the difference between &' and this equivalent 

angle represents n ( t  - 7) .  It is usual to re fer  to this angle difference 

as the Mean Anomaly (M).  

In connection with these statements a modified hodograph diagram, 

showing the relative s izes  of the angles ( M ,  E ,  q ) ,  is presented a s  Fig .  10. 

On the figure are several  (corresponding) angular combinations; these 

a r e  shown to indicate the relative extent of the various angles and their  

corresponding relative variations a s  one progresses  about the elliptic 

orbit. These se t s  of angles are denoted as ' p i ,  F i ,  M i  (i being the 

indicator index) on the figure. 

CONCLUSIONS 

The developments ca r r i ed  out in the foregoing paper have i l lus- 

t ra ted the utility of the hodograph as a means of deriving useful ana- 

lytical expressions,  and as a valuable geometric tool for describing 
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various aspects of two-body motions. 

sentation is altered,  and a modified fo rm of the hodograph is described, 

it is found that a graphical means for determining the eccentric anomaly 

is obtained. In addiiion, f rom this same construction one i s  able to 

obtain the information, geometrically, to describe the time of flight 

( f rom pericenter) to a point of interest  on the trajectory of motion. 

If the usual hodographic r ep re -  

These few examples i l lustrate some of the uses  of the hodograph, 

not just  a s  a geometric check on analytic resul ts ,  but als6-s a means 

for the development, and frequently the simplification, of analytic 

relations. Once this technique is mastered i t  should prove to be a 

most  helpful adjunct to the more  usual tools employed in trajectory 

design and analysis. 
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Figure 1 -The  basic geometry for a two-body (ell iptic) trajectory, 
showing two representative frames of reference (x, y, z-fixed frame; 
and, r ,  'p, >moving frame). The description i n  sketch (a) i s  a three- 
dimensional representation showing the unit triads, with the e Z  vector 
being normal to the orbital plane. Sketch (b) describes the plane of  
motion showing the basic relations between the in-plane coordinates, 
(x, y) and ( r ,  rp). P o i n t P  i s  a general point on the ellipse; F and 
F* are the occupied and unoccupied foci, respectively; the l ine BB' i s  
the minor axis for the figure. 
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Figure 2-A sketch showing the composition of the velocity vector, 
for a central f ield conic as 

X 

wherein 

and 
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Figure 3-Velocity Components and Velocity Elements. A lso  shown here are 
the elevation angles (7, p)  used to locate the velocity vector relative to 
the two triad of interest; namely ( e i ,  erp, e Z )  and ( e x ,  e y ,  eZ). 
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Figure 4-Sketch of the hodograph(s), corresponding to an el l ipse of  motion, on the 
V r ,  Vcp, plane and on the Vx, V,, plane. The positions noted as P, a, represent peri- 
center and apocenter, respectively. Shown on both hodographs are the velocity compo- 
nents and reference angles corresponding to each figure, providing a correlation of 
these representations. 
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Figure 6-Sketch showing an el l iptic trajectory and the 
corresponding auxi I iary circle. 
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p+ ?e, r a d i u s = l  
circle, rad ius Q: 

Figure 7-The modified hodograph and a graphical description of 
eccentric anomaly, ea 
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Figure 8 -Relocation of the eccentric anomaly, relative to the hodo- 
graph origin, 0. The arc AA, indicates € (P), whilethearcfromPto 
Q represents ~p (P). 
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Figure 9(a)-The Vx, Vy hodograph construction for the 
eccentric anomaly. 
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Figure 9(b)-The relocation of &(P) relative to the 
hodograph origin, 0. 
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Figure 10 - A  graphical representation of the angles v, E ,  M on a modified hodo- 
graph in the Vx/C, Vy/C plane. The  indices on each angle set are used to correlate 
the various angle sets. 
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