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Representation of the transfer functions of given structurea by their
eigen-vibrations, taking into consideration any (arbitrary) excitations.

By Jurgen Wolfgang SchinJelin, Washington, D. Co

The dynamic behavior of given designs or structures can be described
by a system of differential equations. The solution obtained consists
in sums of integral terms that can be developed for the eigen-vibra-
tions of the structure. In that way, it becomes possible to derive
the transfer functions of the structural elements and to examine their
dynamic behavior as dependent on any (arbitrary) excitation functions,
by means of the methods commonly used in control technology.

Frequently, it is very important to know the dynamic trnnsfer behavior
of given designs or structures, due to the effect of the excitations af-
fecting them. And that is, indeed, of-importance when, e.g., the following
has to be investigated:

1. The chronological behavior of the elastic deformations of a struc-
ture as well as the stability stresses caused by them, as dependent on the
course of the excitations;

2, the effect of those elastic deformations on the output signals of
sensors that are located within the structure in question (such sensors are
gyroscopes and acceleration pick-ups in a flying body C1;2]);

3, the laws of motion of such a structure which serves, itself, as
sensor (such sensors are antennae that localize moving targets in space
[3]);

4. the behavior of structures within the time range or frequency
grange as dependent on limiting quantities (such structures are the trans-
fer elements in control systems).

The movements of the elements of a given structure due to the effect
cif any (arbitrary) excitation functions can be described by a system of
differential equations. The solution obtained consists in sums of integral
terms that can be developed for the eigen-vibrations of the structure. In
that way, it becomes possible, by the use of the Laplace transformation,
to derive the transfer functions of the structural elements.



. By means of the transfer functions, it is possible to tnvestig,ate the
dynamic behavior of the structure as affected by any (arbitr p ry) excitation
functions, by the use of the methods applied commonly in control technology.
The excitations may be present as determined functions of time, or else as
chance functions, e.g., as squall; spectra ( cf., e.g., L495]).

Derivation of the equations of motion

In the derivation of the equations of motion, we first replace the
given structure by discrete masses the number, distributions and amounts
of which will have to be chosen appropriately (cf. 1-6,73.

When i-is an index that is able to assume the values of i 1 9 2 9 ...,
n, then the displacements X i of the n discrete masses m  as well as the
excitations Pi affecting them are connected with one another by the equa-
tion

(cf- 17 9 83). In that equation, X denotes the column matrix associated
with the displacements Xi , viz.

X*

P denotes the column matric associated with the excitations Pi , viz.
''	 P13(lb)-

p»

.

and C denotes the square matrix, viz. I	 '

(11'...0^„
^-	 (lc)

Cal	can)

the elements 'c . of which - with 1	 1 9 2 9 ... , n - are the limiting numbers
of the displacements that are caused by a "standardized" excitation in the
point -i that attacks in the point 1. By multiplication by the matrix that
its inverse to the matrix C 9 viz.

1 e
	

(ld)

we shall obtain the, equation

`3-C-lw	 (2)

from the Equation (1); it describes the static behavior of the system in
question.

The dynamic behavior may be understood by a system of n differential
equations. To that end,- we shall find that

.	 2
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t
,
4

s

in that equation, d 2/dt 2 denotes a differential operator; M denotes the 	 rdiagonal matrix, viz.

7(4)
Q .. , rn„

and X ( t) and NO denote the column matrix according to Equations (1a) and
(lb), respectively, the elements X i Xi (t) and Pi 	Pi(t), respectively,
now depend on the time to

It may be mentioned that , on the basis of a once chosen spn tinl ar-
rangement of the discrete masses m  and of the kinematic conditions re-
sulting from it for their motions, frequently not only diagonal elements,
but also non-diagonal elements may app—it in the matrix M. Since they
also can be multiplied, in all cases, by the operator d 2/dt2 , the method
developed can be applied in this case also.

By the use of the Laplace transformations L fPj(tj  = p (s) And
L Xi (t) = xi ( a) which associate the variables p. (a) and x.^s) in the
picture range or frequency range with the variables ^ (t) and I i (t) in the
chronological sphere, it follows from the Equation (31 that there will
have to be

and when s = d/dt is the operator of the Laplace - transformation. By solv-
ing, the, system of equations that corresponds to the Equation ( 5) , we shall
obtain the n displacements, viz.

xf (e)

	

	 a1, (e) Pt (+t)
	 (6)t-1 N (e)

within the picture range, on the basis of Cramer ' s Rule. In that Equation,

N (e) Q dot (0 9R + 1)	 (6a)

denotes the determinant of the system, and

	

pj, i (e) . (— i)' + i D1 +1(a)
	

(6b)

-will apply when Di+i is the determinant ,of the (n — 1)-th order, that is
derived from N (s) by striking out the i-th line and the -th column. The
'formation of sums in the Equation (6) extends only over the first index
(line index) while the second index ( column index) remains conrstant for a

3

•
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'	 specified i. For that reason, we shall now simply write G:L i instead of Gi,
so as to simplify the notation. Of course, we assume on the basis of our
premise that N (e) 7 0.

The determinant N (s) may be developed into a polynomial having the
general form of	

it

	

IVY) -Qlo•l» 	+.--+02#'+ae ,	 (7)

when a01 a2 , ..., a2n is the real coefficient of development. The poly-
nomial has exactly 2 n roots of a v , with the index of v = 1, 2, ..., 2 no
In the present case, the roots are, in pairs, conjugate- complex, which means
that there are n roots having the form of

80 — j wt,	 (8a.)

and n roots having the form of

•P +,•--j too .	 (8b)

when the index M is equal to 1, 2 9 ... , n, and when j is th e imaginary
unit. The polynomial may be reduced to the product form of

N(•)- ago (a—•l)... (e— •») X	 (80X (6—•»+ 1) .,. (I—I84) •

Development for eigen-vibr, Lions

First, it is possible, by splitting it up into partial fractions, to
reduce the quotient 0  ( s)/N (s) that enters into the summation, in accord-
ance with the Equation ( 6) , to the form of

	

di M	 A i. i	 At.»

(9)
8 88 + 1	8-8106

when

ma,	 (• — •^l	 (10)

and

represent a total of 2n coefficients. These coefficients acre, in pairs,
conjugate- complex, corresponding to

At. 0- alM +i#ir 	 (12)

and

(13)
At. N+a—aim,—j#to 
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Sncq the roots sv are also conJugate -complex, in pairs, according to the
Equation (8a) and (8b), we shell find that

	

. —.r . — so+*	
(14)

.. 2 (all, Coe ar a — pep *in OP q
when L-1 is the re-transformation into the chronological sphere (see [8j).
There will be

2(wr coo cop e — Pop Wnop8) ..	
(15)- Bif sin (00 8 + rt.)

when	 "Dip ^- 4 aop 
+Flo ..	 (15a)

and	 rip w aro tan C-- 

	

^	 (15b)

We shall j therefore, find that
"

V,-i ` 0101 	 } -•	 B f, min (a, e + rop) (16)

.	 The term

Pi (a))	 BiN nn (mot + rip) • Pi (17)

follows from the Equations (6) and (16) and kertnins to the effect , of the
excitation Pi on the chronological course of the deflection Xi as developed
for the eigen=vibrations of the given structures.	 In (17), the symbol +
denotes a convolution integral (cf. 8^) .

The total deflection of the mass m 	 may be obtained by summation, i.e.,
we shall find that

m	 "

Xi (8) "'	 Dip min (wo 1 .1- rip) • A (18)
i-1 N-1

This Equation applies to the undamped system.

The structural damping which has been neglected up to this point, can
be taken into consideration by means of the subsequent introduction of the

'	 coefficient Kµ .r 00.	 Then we shall find that

X# h)	 BjO a zol .in (cop I + rip) • A2 2 (19){

When the excitations are, in particular, impulse functions according
to the equation

Pi (t) . Qi 8 (8)

in which Ri are n constant values and -S ( t) is Dirac's 6+ - function , the
'
n we

shall have 

ai lM s	 Q/ jhO 
• A'f f1 rin (00 $ + rip) 

!^
(20)
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for the deflections within the chronological sphere. That follows directly
from the Equation (19).

Determination of the transfer functions

By means of the Equation (19) 9 we shall now determine the general trans-
fer function for the behavior of the deflections Xi in the case of any
(arbitrary) excitations Pi.

Since ( cf. CkAj) the Laplace transformed equation is

it follows that

(e `t' K) + wM

will have to be valid. Henceq however, the Equation	 t
t

wo coo r, +(* + Kg) minre	 t(22

	

(e + r) + wr	 Pi O	 )

follows from the Equation (19), for the general transfer function.

The Signal flow chart 1 indicates the transfer function for the case
when only the excitation pay affects the structure y i.e. 9 when Pi = 0

applies to all i = 1'. This transfer function will be as follows, accord-
ing to the Equation (22):

"	 dM coo rl.g+(o+K )_M min rjoj,
W (.)	 D^.N	 (e + p)l + *r	 Pr(o)

(23)Mai

wi cos rio t + (e F KI) min riot

(e +KI)'+w;

a; Come 	 + (s + Kt) sin rigDell	 (+ + J + a

P^' (d

w" oos rl!" + (e + Ke) sin r,!" 	 X'+ (o)

Si al flow chart 1. Transfer function of xi (s) according to the Equation
2for the case when only the excitation pi* (s) affects the structure.
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r in the case of the transfer function no shown in the Signnl flow
ch_ a„_rt 2 9 it was assumed that all excitation functiono are equal# i.e. r
that Pl : P2 it see = P  * P and that, therefore,

w ^
 ''S"	 X00 Y^	 Iryy^ + 1 -►  K ► yin , r 1

I 1	 1"^ ^	 ^	 (24 )owl 

y^ ma rr r + (!r + K ► Pill-rd r

x

1 t	 w_c. cm. r,,+(h+Ks )minroe

"-i	
(m + Rr►' t 4*1

I

AWAN r^

an car r,,, + (0 + K.) •in INN

G	 (c+ c)" +d„

Signal flow chart 2. Transfer function of xi (s) according to the Equa-
tion 24 for the case when the excitations pi (e) . p (s) affect the
structure for all i.

will apply also Finally, the SiLn:;%. flow chart 3 shows the complete trans-
fer function according to the Equation (22) for any (arbitrary) excitation
functions.

BIOS s coo r,, + (a + xis) min r „

	

^—+	 (m + KPP + wr

_h
coo ro, + (o + Kr) isin r,,,

2Owl
e,r, ^̂rji + ̂ M

	

owl	 I
BmM aY cal `. + (M'± Kai minims

Signal flow 	 3. Transfer function of x (a) according to the Equation
1 22), for this case when any (arbitrary) excitations affect the structure.

Taking the initial conditions into account,*

Now, the deflections Xi (t) of the point masses of mi and the lateral
deviations of Xi (t) at the moment of t 0 9 i.e., the initial conditions of

R

i^

7
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f Xi(0) and of Xi (Q) , will be taken into account. The Laplace-transformed
equation of the second chronological derivation of Xi (t) is determined by

I (" " ) - 0	 x1 .(o► — to (0)

(cf. C81)	 Therefore, the Laplace - transformed equation will be

	

' MX(t)) ^• e@ l N(•) . ens _ 0	 0	 .	 (25)
In that Equation, M, X(t) 9 and x(n) denote the matrices which have already
been explained, and

t

X, (0)
m

(0)
	 (25a)

and

U	 M I i

•	 kh	 t' k

m, .Y, (0)
(25b)

m 	 (n) )
denote column matrices. Using these expressions, we shall now obtain., in
lieu of the Equation 5 9 the following Equation within the picture range:

That Equation can again be solved by the application of Cramer's Rule,
for the deflections of xi (a). The expressions correspond..,ig to the Equation
(f) will then contain the initial values of X

i 
(0) and 7 i (0) and will mare

it possible to compute the chronological course of the deflections in the
case of-any arbitrarily given initial values. Since in the present case,
too, the polynomial N($) as explained by the E 

Me
tion (6) appears, within

the relations 'that correspond to the Equation 	 in the denominator, the
structure possesses - as is required - the same eigen-frequencies.
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