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ABSTRACT

Scientific interest in radio astronomical observations at
frequencies near 1 MHz have led to the consideration of large earth
satellites as radio astronomy observatories. One such concept, a
Kilometer Wave Orbiting Telescope (KWOT), consists of a system of
four rigid bodies connected to a heavy reference satellite by flex-
ible cables. The nominal configuration of the system is that of
a 10-kilometer rhombic with a 10-kilometer cross-member extending
across the rhombic along its minor diagomal. In operation, it is
desired to spin the system about the reference satellite at 1
revolution per hour to maintain cable tension, and to precess the

spin axis in stepwise increments of 1/2 degree.

This report discusses a numerical analysis of the planar
motion of a lumped-mass model representing the KWOT structure
conducted to investigate the feasibility of the KWOT concept. The
model consists of a system of particles with interconnecting non-
linear springs and an in-place tangential thrust capability.
Specifically, the effects of small perturbations from a free-space
condition of uniform rotation due to the gravitational gradient
and to control thruster activation are investigated. Orbital
constraints are assumed, with the reference satellite describing
a circular orbit at synchronous altitude. In addition, a coordin-
ated spin-up deployment method is studied. The effects of three-
dimensional motion, structural damping or orbital eccentricity are
not studied.

Results indicate that the amplitude of the structural
oscillations excited by the deployment method are within the limits
defining allowable structural distortion, and that a simple configur-
ation control system can counteract small perturbations from a free--

space equilibrium rotating condition for a lifetime in excess of one year.
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Section I: PURPOSE

Several previous investigations into the motion of cable-connected space
structures have been reported by Haddock® and Crist® The dynamical models
used in all of these studies have the common characteristic that the motion of
each model approximates the motion of a portion of the complete structure
envisioned for the Kilometer Wave Orbiting Telescope (KWOT), whose main
features are shown in Figure 1. 1In particular, these studies have concentrated
heavily on dumbbell configurations which approximate the motion of the dipole

leg.

The purpose of the present investigation is to study the motion of a model
represeﬁting the entire structure to evaluate its feasibility for use as a
radio astronomy observatory from the viewpoint of dynamics. Since major
structural deformation degrades the electromagnetic characteristics of the
antenna, some specifications are necessary to define the extent to which
distortion can be permitted. From a dynamical standpoint, several important
feasibility considerations are:

(i) The type and extent of structural distortion which is produced by
perturbing influences in the expected operating environment, and

(ii) The capability of an active control system to prevent the structural
distortion from exceeding allowable limits for an extended period of time.

These topics have been investigated in the present study.

The guideline used to define allowable distortion limits states that, to
maintain acceptable antenna characteristics, no part of the structure should
deviate more than a specified distance from its desired position during its
motion in time, thus defining a '"distortion circle'" for each point of the
structure. Since provision for active control devices on the actual structure
is limited to thrustors on the small maneuvering subsatellite (SMS) units and
the central observatory (CO), the distortion guideline also leads to the
construction of two sectors related to the angular position of each SMS unit:

(i) A "position sector" relative to the CO defined by the tangent rays
to the distortion circle of that unit within which motion of the unit is

acceptable, and



(ii) A "control sector' within which the control system for the unit remains

quiescent.

In order to streamline the discussion, a complete glossary of terms has

been compiled in Appendix A.



Section II: DESCRIPTION OF MODEL

The dynamical model selected to simulate the motion of the actual KWOT
structure of Figure 1 is a lumped-mass approximation consisting of a set
of 16 point masses with massless interconnecting springs, as shown in
Figure 2. The equations which govern the motion of this model are derived
under the following assumptions:

II-1. The point mass m s representing the mass of the CO, coincides
with the center of mass of the model. This assumption is a valid approximation

if the following inequality holds:
my/m << 1 (2-1)

The total mass of the model is given by:
16
M=m +)j=1m (2-2)
II-2. The sole perturbing influence external to the model is the

gravitational field of the earth.

I1-3, The gravitational field of the earth is a pure inverse-square

central force field.

II-4. The initial configuration of the model is such that all the point
masses lie in a single plane containing the center of the earth, and the
initial motion is such that the velocity vector of each mass lies in this

plane.
II-5. The spring characteristic of the jth spring is a piecewise constant
function of its instantaneous strain eEj:

Kj = kj u (eEj) (j = 1...18) (2-3)

where u(t) is the unit step function:

a(t) =f o (t <O)7’L
[ 1 (cg;o)}'



This disallows the generation of compressive force in any spring.

II-6. Gravitational forces due to the mutual interaction of the point

masses of the model are negligible compared to the spring forces.

II-7. A thrustor for configuration control, installed on each model mass
which represents an SMS unit, is capable of bi-directional thrust along a
line lying in the plane of the initial configuration and normal to the line

connecting m and m, .

As a consequence of assumptions II-2 through II-4, II-7 and Newton's
second law of motion, the subsequent motion of the model is confined to the
plane of its initial configuration. Thus, its configuration at any time is
completely defined by 34 independent generalized coordinates, so that the
system has 34 degrees of freedom. As described by Greenwood? the equations
of motion for this model may be readily obtained using Lagrange's equations

in the form:

S (2L/33) - 3L/3g = Q (2-1)

where
L (Q:i) t) =T (ﬂ:g) t) -V (.g.) t) (2'5)

is the Lagrangian of the system. The generalized coordinate vector used gives

the system configuration in ordinary polar coordinates:

q = (r,s, 1eeeligs <p1...q>16) (2-6)

as indicated in Figure 2. If 2, represents the position vector of the ith mass,

m, relative to an inertial reference frame fixed at center of the earth, then

oj

. 16 .2 _ N1 .
T(g,4,t) = %E}:O mi”<£i” = iio my 1.(r cos 6-r® sin © + 1 cos @4

. 2 . . >, . 2
-1,¢; sin ¢i) + (r sin © + r cos © + l;sin 93 + 1,p; cos mi) }' (2-7)

e



and

V(.g.: t) = VG (.g.: t) + VE (-‘1: t) ’ (2"8)

The gravitational potential is obtained from Newton's law of gravitation

for the force fG- on m, due to the mass of the earth mE:
-1

G my m;
= - E L

ot gy At e @) (6=0..18) (2-9)

so that
16 HEM™ 16 " "1
V(g t) ='Zi=o ENI 'Zi=o -
Il = \//{}2+1i3+2r1i cos(e-¢i)j- (2-10)

where

wg = Gm, (2-11)

The elastic potential VE(g,t) is obtained from the law of linear elasticity

for the force ij in an elastic spring:

Ej = -Kj (Sj—sjo) gj = -_V_VEj (-Q»)t) (2-12)
so that
\ 18 PR -
Vg (g, t) = 3 j=1 Ky (83-%o) (2-13)

The spring length sj is expressed as a function of the generalized coordinates.
If yj is the position vector of the jth mass, mj, relative to a non-rotating

reference frame attached to m then:

(e X4



gy - 351 (j=1...6)

;! (3=7)

ey - 2511 (3=8,9,11...14)

g - 255110 (j=10)

sy = Hasoqy = %511 © (3=15) (2-14)

Haop - 240ql ] (§=16)

oy = 25l (3=17)

o qH (3=18)

where, from the law of cosines:

- /
lzy - gl =¥ 4,7 - 21,1, cos (0;-9,) (2-15)

Combining equations (2-5) through (2-15), the Lagrangian of the system is
obtained. The generalized forces are obtained from a computation of the

virtual work of all forces not derivable from a potential function:

s,

=) on =) n -
=) 2 F 6xk -L . Q 8 (2-16)

The tangential forces produced by the control thrustors are the only such forces
being considered, so that the components of the generalized force vector are
given by:

P P -
0 otherwise (2 17)

T /1 (p = 4,9,12,16)
\Qp'=‘{

By direct application of equation (2-4), the two equations for the motion of

m become:
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( - r6® + E) ?}ﬁl

m .
(2 {- 8 e
° [ra + 112+2r1icos (e-cpi)]a__/.a

.0 ', Lod - e @B - ‘L (2-18)
+ (1qui + 211cp1) sin (e-q>i) + (1i liq’i ) cos (© cpi)J = 0

)

(x5 + 228)+ it (2 {csbeas) + (1,0, e (0-0,)
r r )i=]l (—e ré+2re) + (1,-1,9.° + — sin(©-@,

& m, i "ivi E-?+lii+2rlicos(e-tpi)]3/z) i
-.,- (liCPi + 2liCPi) cos (9'(91)} =

(2-19)

Similarly, the two equations for the motion of each mass m, become:
e .3 e . .0 23
1, - 1§ - (6 + 2t6) sin (6-9,) + (¥-ré) cos (e-9,)
+ -
<+ - -
2. .3 a ('_—') E =0 (2'20)
[x*+1 +orl, cos (e-cpi)] /s oy o1,
i
1,9, +21 FE -rd® + ) sin (e-qpi)
[r +1, +2r1 cos (e-cpi)]
o ( 1 ) Vg
+ (r8+2t0) cos (6-9,) +{ mI7) ( Tor - Q ) = 0 (i=l...16) (2-21)

Equations (2-18) through (2-21) form a set of 34 coupled second order ordinary
differential equations for the planar motion of the model of Figure 2. At
this ﬁoint, several additional assumptions are introduced for purposes of
simplification:

II-8. The point mass m, is sufficiently large that, in addition to (2-1):

16
( i=lm)/m, <1 (2-22)

II-9. For all masses m, , and for allt > t :

°

1i/r << 1



When (2-22) is incorporated into equations (2-18) and (2-19), they reduce

to the equations for a single point mass in a central force field:

o +PE o (2-24)
2
r6+210 = 0 ' ‘ (2-25)

Expanding the gravitational potential terms of (2-20) and (2-21) in Taylor
series and making use of (2-23) through (2-25), equations (2-20) and (2-21)

reduce to:

Mo 1, \

.. 2 E 1 I —1 1 OVE
li-liwi' P «143 cos c(e-wi)q + (;;) ali =0 (i=1l...16) (2-26)

. AL, 1 oV

Ll . - E 1 . -~ - s E - A = =
1,0,+ 21icpi 55~ sin 2(e @i) + (mili) ( 5¢i Q) 0 (i=1l...16)
(2-27)
oV / BVE/
Since the derivatives Bli and Bmi of the elastic potential are quite

long expressions, their explicit forms are placed in Appendix B.

When assumptions II-1 through II-9 are justified, equations (2-24) through
(2-27) describe the motion of the lumped-mass approximate model of Figure 2.
It should be noted that no provision for damping is incorporated in the model,
for reasons to be discussed at the end of section IV. The equations for a
similar model incorporating linear viscous damping mechanisms in parallel with

each spring are easily derived, however, as shown in Appendix C.

The purpose of the control thrustors on the peripheral masses of the model
is to provide configuration control of the deformable structure. The thrustors
are activated by a simple control law based upon the relative angular position
and velocity of the peripheral masses only. One of these masses is chosen
as a reference subsatellite. A measure of structural deformation is then

defined by an angular position deviation:



If Qp=0),> then i,=9, i2= 12, 13= 16, and

% (i=9)
1 (i=12)
-3 (i=16) (2-29)

The control objective is to keep the deviation &pi within a specified position

sector Pi defined by:

,6‘4)1] < €dby (2-30)

for each non-reference peripheral mass m, . This is accomplished by activating
the thrustor for a mass m, wh?never the point(&pi,Smi) lies outside a certain
control sector Ri in the &@i-ﬁ$i phase plane., Both the position sector and
the control sector are shown in Figure 3 and are defined by the following

expressions:

P, = {(%iécpi)l 5<PiL < bp, < %95, all 6cI’iLGPLi’ 6cPiReFR.} (2-31)

where

e

I

[

1
[
[a
o

Ly = {(Bcpi,écpi)lécpi = i (2-32)

L

+
a
o

R = {(Scpi,&pi)lémi = 1 (2-33)

=1
L

R, = {( 6cpi,5cp,._) lécpi+_<. S, < 89, ,all écpfer,,i, %i'er_i} (2-34)

R," = {Qpi,é@i); b, < b9, , all S, ¢ 1"+i} (2-35)
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&; = {(y,50,)| So,> B0, 7, a1l so,” o r_,} (2-36)

where

+i {(5‘91’3’@1” S, * Ciéq)i 'edbi} (2-37)

!
il

]

s
1

{( écpi,écpi)l S, + Ciécp:.L +edbi} (2-38)

The position sector Pi is related to the distortion circle of m, in the
following way. Let GMi be the radius of the circle centered at some desired
position of m, . Then the angle subtended at m by a tangent to the circle

and the line connecting m to the desired position of m, is given by:

)
B =sh;1 ——EL— (2-39)
i 1, (t)
ito
For sufficiently small values of Bi:
2n-1
sin By =z -1 (-'1)11.1 Pi g,
* n= (en-1)! ' (2-40)
so that (2-39) becomes:
6M
B, & __* (2-b1)
T (¢
i ‘7o)
By comparison with (2-30):
B, = edb (2-42)
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In order for m, to remain within its distortion circle, the following equation

must hold for all t2> tO:

28 = x(e) <8, (2-13)

For sufficiently small values of Bi, (2-43) may be approximated by:

os v {Eéli(t)‘f + 71, (¢) 5‘91(")12} < By (2-11)

Since 51 (t) for i=1...16 and 5¢i(t) for i=9,12,16 are obtained directly from
i

the data reduction, as will be explained in Section IV, the following two

special cases of (2-4L) are most often referred to in the subsequent sections:

(i) m, leaves its position sector 15¢il > edb,

(ii) m;, leaves its distortion circle radially - [61 | > Sy

i i

The control law for the ith peripheral mass is now simply expressed as:

. O
+Ipg (9,,80,) ¢ R,

0 (bp;,80,) e & | (2-45)
-Tmi (&Pi’ %i) € Ri-

J

or explicitly in terms of a switching function Ai (&pi,&pi):

T,(f,,b,) =T, 8, (fo,,bp) (2-16)

where

Ai(éq)i’éq)i) = ~dez {gi(&pi + Ciéq)i)/ edbi} (2-47)
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and
' -1 (u<-1)
dez (u) = o (lu] < 1) (2-48)
+1 (u > +1)

A schematic diagram showing a portion of the control system is shown in Figure

L, using m, as the reference subsatellite. The functions h and h & represent

h
9’12 1
all terms in the corresponding equations of motion exclusive of the control

force terms. Only variables which appear explicitly in the equations are
shown as arguments of each hi’ so that the coupling which is present between

the equations is not fully illustrated in the figure.

Fuel consumption is easily calculated from the rate of mass decrease for

each peripheral m, 2

f, = - = - = -b, (2-L9)

The fuel Fi(t) used by a given thrustor in time t is given by:
Fi(t) - mi(t) - mi(to) = b, TAi(t) (2-50)

A current estimate of satellite lifetime, based on the fuel capacity FC of each
i
peripheral mass m, , is then given by:
- i I }}
Lf(t) = min { Fti/ LFi(t)/ t (2-51)
i=4,9,12,16
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Section III: COMPUTATIONAL CONSIDERATIONS

Equations (2-24) through (2-27), together with a set of initial condi tions:

a(e) =4, a(e) =4 (3-1)
comprise an initial value problem for the motion of the lumped mass model of
Figure 2. The algorithm chosen for solution of the equations was a fourth-
order Runge-Kutta numerical integration procedure applicable to initial value
problems for systems of second order equations, as shown by Collatzu. For the
initial value problem in general form:

')

x = F(t,x,%); x(t) =x, x(t) =x (3-2)

the Runge-Kutta algorithm is given by the two recursion formulae:

h2
Xy = X, T hE 7 (k) tk, k) (3-3)
) h
Ky =k, t6 (o + 2k, + 2 +k) (3-4)

The auxiliary functions gi are given by:

(L

(e

( tn)l{n,én)

(e + g“, x
h

(tn + -2" X

. b .
(e, +h, x +hik +3 ks, X+ hk,)

2

(3-5)

(3-6)

(3-7)

(3-8)

In addition to their use in the recursion formulae, these auxiliary functions
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can also be used to assist in determination of the proper integration step

size h. If the ratio:

is larger than a few percent, a smaller step size should be used. A step

size of h = 1 second was chosen with the aid of this guideline.

In order to obtain meaningful solutions for the motion of the model, a
reasonable set of initial conditions must be chosen. Two sets of conditions
immediately suggest themselves: a condition of dynamic equilibrium and a
condition of rest. The first would be useful for an analysis of the effect of
small disturbances from equilibrium, which pertains to stability of motion,
while the second would be useful in studying the problem of deployment.
Unfortunately, the equilibrium condition under the influence of the gravitational
field cannot be determined without solving the initial value problem (3-2).
However, a set of algebraic equations which describe a condition of uniform
rotation in a free-space environment can be readily obtained, thus defining

a configuration from which meaningful perturbation studies may be conducted.

Determination of such an equilibrium configuration is simplified by taking
advantage of the structural symmetry. It is sufficient to solve the equilibrium
problem for a quadrant, as shown in Figure 5. The following assumptions are

made regarding the equilibrium problem:

III-1. The mass values m, of the model are determined from the mass
distribution of the continuous structure in some assumed rest configuration.

For the quadrant of Figure 5, che equations are:

. |
m = 0 AD( 260 + 5180) (3-9)

=
"
=)
o =J

20 ;o} (3-10)
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s s

m = g Ap ( 2+ =) (3-11)
s Swo L My ‘

= (=22 + =22y + - (3-12)

m, =P A 2 ) g,
S s

s = fp Ap( __élQ__ + _%5_0_) (5-13)
s W

mye = 0p Ap ;70 ) + 26 (3-1k)

o]

The physical properties of the continuous structure are assumed to be specified.

III-2. The spring characteristics k:.x of the model are related to the

physical properties of the continuous wire by the equations:

III-3.

a.
b.
Cs
d.

e.

“r"r

kj = 5 (j = 1...6,10...15) (3-15)
Jo
AE

k= SD 2 (3% 7T...9,16...18) (3-16)
Jo

The equilibrium configuration is characterized as follows:

The
The
The
The

The
and

angular velocity, ®, is specified.

model radius,a, is specified.

rhombic half-angle,Ct, is specified.

distance between adjacent point masses on the rhombic is uniform.

distance between adjacent point masses of the dipole leg on
exterior to the rhombic is uniform.

Since the specifications of model size and spacing of the point masses are made

in the equilibrium configuration, the rest configuration, which would be

obtained by removing all energy from the system, is left unspecified, and is,

in fact obtained as part of the solution for a particular equilibrium

configuration.

approach.

There are several advantages to this somewhat unconventional

First, in order to evaluate the electromagnetic characteristics of

the actual KWOT structure in its operating environment, the specification of
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geometric properties in the spinning configuration as given by III-3a through
ITI-3c above is desirable. Secondly, the additional specifications III-%d and
ITI-3e together with III-3a through III-3c reduce the number of algebraic ’
equations that must be solved simultaneously to obtain the equilibrium

configuration.

It is apparent from elementary principles that the rhombic legs of the model
cannot remain straight, as shown in Figure 2, in a state of uniform rotation
about m but must deform in a manner similar to that shown in Figure 5. The
equations which define the equilibrium configuration are of four basic types:

inertial, elastic, geometric and mass distribution.

The inertial equations may be obtained by writing the equations of motion

for each point mass m. of the quadrant of Figure 5.

For m,: T T2ty sin (@-0,) +mys o =0 (3-17)
For m.:
2 T, T
7o ?g—) [sin(u2-¢2) - (;i—) sin u2] + m212wa =0 (3-18)
"
(;;‘) - cos ¢2 - tan y, sin Wz =0 (3-19)
For m5: T
3 __g__ 3 1 2-— - -
75[31n My - ( 15 ) sin (u5+k5)] + m313w =0 (3-20)
T
(;i) - cos WB + tan u5 sin ¢5 =0 (3-21)
For mh:
et cos (o + 93) - mhluwz =0 (3-22)
For ml5: .
T -1 +m 1. W =0 (5"23)

17 16 15715
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For m16:

2 _ -
117 - m16116w =0 3 2h)

The elastic equations are obtained from the law of linear elasticity,

incorporating equations (3-15) and (3-16):

A

Tj = sjo (sj - st) (j=1"'3) (5-25)
A E
1,= 22 (5 -5.) (j=16...18) (3-26)
. Sjo 4 Jo

The geometric equations express: (i) the relations between the quantities
o6f Figure 5 which appear in the equations of motion and the generalized

coordinates, and (ii) the specifications of assumption III-3.

Transformation relations:

522 - 122 - 152 * 21,1, cos (cp§-cp2) =0 (3-27)
13 sin P + 85 cos (a+e5) -1, =0 (3-28)
13 cos @, - s, sin (o:+93) =0 (3-29)
1, sin ¢, - s, cos (a-eg) =0 (3-30)
1, cos ¢, = s; sin (a-eg) - 858=0 (3-31)
Mg = 95 + (048;) = 0 (3-32)

my = 9, + (a-6,) =0 (3-33)
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s, sin 8, - s, sin ©
¥me t tan”t { 2 2 L. 2 ] =0 (3-34)
/'(1h2 + 5182) =55 COS 93-51 cos 6,
_ r s3 sin 63 -8 sin 62
Y_-O_~- tan = | =0
373 L - } (3-35)
\/.(lu2 + 8182) 85 cos 95 s1 cos 62
Simplifications:
Iy = 116 = a (3-36)
5,, = @ tan O (3-37)
5) = 85, = 5, =7 (3-38)
e >
S15 = S17 (3-39)
S16 7 817 7 s18 = lig (3-10)
156 %18 = 115 (3241)

The mass distribution equations are given in (3-9) through (3-1L4).

Equations (3-9) through (3-14) and (3-17) through (3-41) form a set of 38

independent equations for the 38 variables:

m, (i=1...4, 15, 16)
;985 Ty (i=1...3, 16...18)
Bss q!i’ei’tpi (i=2,3)

1, (i=2...k4, 15, 16)
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By algebraic manipulation, these may be reduced to a set of two simultaneous

equations for the rhombic bow angles 9 and 6_, which, in turn, are used to

3

calculate the remaining variables from the other equations. The solution will
be briefly outlined. The geometric transformation relations are rearranged

50 8 and S5 the independent variables. Combining (3-30), (3-31),
and (3-37) yields:

to make 62, 6

12 = /[sla - 2a Sl tan @ sin (0-92) + a? tanaaj (3'“2)
) cos (a—e )
P = tan [ a tan o-s sin (-0 ) ] (5-43)

Combining (3-28), (3-29), and (3-36) yields:

. = i)
1 = fLs3 -2a s, cos (a+63) +a ] (3-Lk)

- eag -1 [ a - s3 cos (0r93) ]

P, = p (3-&5)
3 s5 sin (QﬁﬁB)

Using (3-43) and (3-45), p, and p
the form:

5 can be expressed, from (3-32) and (3-33), in

“2 = u2(62,63,sl,53) ; u3 = “5(62)93)81)551 (3-h6)
Using (3-42) through (3-45), s, can be expressed, from (3-27), in the form:
32 =8 (92} 5,51’53) (3’“7)

The inertial equations are next reduced with the help of the geometric
specifications. Combining (3-21) and (3-22) with (3-20), substituting values
of 12,1h,u5 and WB from (3-4b), (3-36), (3-L46) and (3-35) and making use of
(3-37) and (3-38) yields, after considerable manipulation:
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m sin 6, seca-(c) s1n(62+6)
m, 2cos 33 {tana - (0') [sm ., + tanacosej] - (g) sin (02 + 6 )}
(3-48)
where
€, =a- e, (3-49)
6, =0 + 65 (3-50)
S
Similar manipulations combining (3-19) through (3-22) with (3-18) yield:
m, sin 8, sec (a) sin (6o + 65)
m, B 2cot€3cos€2tana {tana ( ) [éine +tanacose'] [OQE sio (3 + e 8,
(3-51)

Incorporating (3-3%8) into (3-47) results in a quadratic equation for Fg);
a

[1+2 cos (9 )'( ) [(cos €2+cos€ )+tano(sine +sln€5) (0’)+sec a=0

(3-52)

whose solution is real if the following condition holds:

sin 6, - sin 6, < 1 (3-53)
Of the two solutions for % , which are both real and positive if (3-53) is
satisfied, the smaller root is easily seen to be the proper choice for this
model, This root is given by:

- Egos€2+cos€3) + tana(sin€2+sin€3)] 14 - sec’a |1 + 2 cos(e- ’5)]
a - e
El+2 cos (32 €3)] L(cos o, T cose ) + tano(sin€ +sin¢'3h

(3-5k)
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Substitution of (3-54) into (3-48) and (3-51) yields two equations of the form:

s

" - 8 (92,93) =0 (3-55)
%2 - 8, (0,0;) =0 (3-56)

ml'.

To obtain the solution of (3-55) and (3-56) for 8, and 63,

two nested iterations is employed, the second iteration process being carried

an algorithm involving

to completion at each step of the first. Process A is an iteration on the
values of m, while process B iterates on the values of 92 and 95. A rest
configuration for the model is assumed, which fixes the m, values in
accordance with equations (3-10) through (3-12). Equations (3-55) and (3-56)
are then solved numerically using a multi~dimensional form of Newton's method,

which applies to a system of algebraic equations of the form:
£(x) =0 xcr £ eCc(RLRY (3-57)

The solution algorithm is given by the recursion relation:

L) L (0 3E) (£ (o)) (3-58)

and iteration continues until the criteria:
£, &) < (i=1...n) (3-59)
i Bi

are satisfied. This algorithm is known to converge quadratically toward the

*
desired solution x if the initial guess 3(0) is sufficiently close:

122 - £*] < €, (3-60)
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The solution of the system (3-55), (3-56) by Newton's method should be expressed
as:

P O O N C IS C O

0)
2 20 7 530 7 Sup ) 3 Y3 20 (3-61)

(
30 2 Sho )

which shows the dependence upon the initial guess for the rest configuration.
This completes process B. Using (3-60), it is then a simple exercise to compute
the remaining variables which completely specify the equilibrium configuration.
In particular, this includes the variables sio(i=2,3,h) as part of the rest
configuration corresponding to the equilibrium configuration. This completes
the first step of process A. 1In general, the solution sio(k_l) is used as a

revised initial guess for step k of process A, which continues until the

criteria:

(k) Sio(k-nl <e, (i=2,3,4) (3-62)

Isio

is satisfied. Process A is then complete, yielding the correct equilibrium
configuration together with the associated rest configuration corresponding to

the assigned specifications.
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Section IV: INVESTIGATIONS PERFORMED

With the aid of a Scientific Data Systems (SDS)-930 digital computer,
performing double precision arithmetic, and a CALCOMP-565 automatic plotter,
studies of the motion of the model of Figure 2 were made. A set of programs

were written in FORTRAN II to accomplish, successively, the following tasks:

IV-1. Using a set of configuration specifications,
a. Compute the free-space equilibrium configuration meeting the
specifications and the corresponding rest configuration using the nested

iterations of section III.

b. Select the configuration to be used for problem initial

conditions

IV-2. Solve the initial value problem defined by (2-24) through (2-27)
and (3-1) using the Runge-Kutta algorithm (3-3),(3-4) and record the results

on magnetic tape.

IV-3. Using the magnetic tape output records, perform data reduction
by producing:
a. Graphical displays of certain simple functions of the generalized
coordinates and their derivatives, and
b. Diagrams of the model structure itself
The following functions were calculated specifically for graphical display:
(i) Radial distance deviation, 511(t) and (ii) Spin rate deviation, &$i(t),
defined by:

511(t) = 1i(t) - lgi (i=1...18) (4-1)
5,(€) =, (t) - w (i=1...16) (4-2)
Six types of graphical display were produced:

I. Radial distance deviation time history: 51i vs t, te(O,tf) (i=1...16)
II. Spin rate deviation time history: 6¢i vs t, te(B,tf) (i=1...16)



2h

III. Angular position deviation time history: &$i vs t,tS(O,tf) (i=9,12,16)
IV. Angular position deviation phase plane diagram: &pi vs &pi, tG(O,tf
(i=9,12,16)
V. Control switching function time history: Ai vs t, te(o,tf) (i=9,12,16)

VI. Control switching function time history: A, vs t, te(t ,t 41 )
. i si” si 61

| (i=9,12,16)
Type VI plots are simply expanded scale views of the corresponding type V plots

over a portion of the computational time interval: (O,tf).

The investigations performed using these programs may be classified in four
categories: wverification of. equilibrium, small perturbations from equilibrium,
large perturbations from equilibrium and deployment. Except for the fourth
category, the model configuration at the instant of problem initiation was that
corresponding to a free space equilibrium condition of uniform rotation. In all
cases, however, the reference condition for computing the deviations of (4-1) and
(4-2) was the equilibrium configuration. Each of the cases investigated is assigned
a case identifying letter, given in parentheses after the case.designation, to

facilitate reference to them in the discussion of section V.

1. Verification of equilibrium. (4)

Unperturbed motion in a free space environment was computed.

2. Small perturbations from equilibrium.

a, Field perturbations
1.Gravitational field (B)

Motion perturbed only by the earth's gravitational field was
computed. '

b. Contact perturbations
Contact perturbations were induced by simulation of an unintentional
activation of one of the SMS unit thrustors at problem initiation time. The
perturbation thrustor was subsequently deactivated when the mass m, being
perturbed attained a specified multiple of its initial angular velocity w relative
to m . All contact perturbation studies were conducted under the simultaneous
influence of the gravitational field.

1. Rhombic peripheral mass (mh): 1.005w (c)
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2. Dipole leg peripheral mass (m9): 1.005w

(a) Free motion (D)
(b) Controlled motion: { = 60 (E)
3. Rhombic peripheral mass: 1.01w
(a) Free motion (F)
(b) Controlled motion
(i) € = 60 (6)
(ii) ¢ = 10 (1)
(iii) € = 120 (1)

3. Large perturbations from equilibrium,

a, Contact perturbations

1. Rhombic peripheral mass: 1.0lw

(a) Free motion (K)
(b) Controlled motion: § = 60 (L)
4, Deployment (M)

A study of one method of deployment was made, starting from the rest
configuration corresponding to free-space equilibrium. At problem initiation
time, all peripheral mass thrustors were activated simultaneously providing a
coordinated spin-up torque. When the reference mass, m, , reached the desired
angular velocity w relative to m all spin-up thrustors were deactivated. The
resulting motion was observed under the simultaneous influence of the

gravitational field.

All of the investigations were performed using a single set of configuration
specifications and environmental conditions, which are listed in Table 1. These
were chosen to approximate closely the expected physical characteristics of
the actual KWOT structure and its operating environment. The terms "free motion"
and "controlled motion'" are to be interpreted in the following sense. Each of
the perturbation studies considers motion of the system disturbed from the free
space equilibrium configuration by certain combinations of field and contact
perturbations. A study in which the motion of the system is allowed to evolve
under the influences of the perturbations alone, regardless of the amplitudes of
the resulting deviations as defined in section IV, is referred to as a study of

"free motion”. On the other hand, a study in which the motion of the system,
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evolving under the influences of the perturbations, is further affected by
activation of the configuration control system in order to limit the amplitudes
of the angular position deviations, as described in section II, is referred

to as a study of '"controlled motion'.

It is unfortunate that such a large number of restrictive assumptions were
necessary. In particular, a similar model incorporating provisions for:

(i) Three-dimensional motion

(ii) Variable center-of-mass position, distinct from m .

(iii) Linear damping
would give a better approximation to motion of the actual KWOT structure, without
altering the mass distribution. The primary obstacle preventing‘study of any
of these additional features was the word storage capacity of 8K for the

computer used in the investigations.
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Section V: DISCUSSION OF RESULTS

A. General
Before proceeding with a detailed discussion, the major results are

summarized.

1. Free-motion generated by the gravitational field perturbation alone, as
well as in combination with a small contact perturbation of a rhombic peripheral
mass (1.005W) appears to be neutrally stable with maximum amplitudes of
radial and angular position deviations for each mass interior to the

corresponding distortion circles.

2. Free motion generated by the combined influences of the gravitational field
perturbation and a small contact perturbation of a dipole peripheral mass (1.005W)
appears to be unstable, with the dipole leg tending to deform in a vee shape

with respect to the rhombic major axis.

3. Free motion generated by the combined influences of the gravitational
field perturbation and a slightly larger contact perturbation of a rhombic
peripheral mass (1.01w) consists of neutrally stable oscillations which
produce angular position deviations that lie outside the position sector for

peripheral masses on the dipole leg.

4, The response to the gravitational field perturbation alone, as well as to the
combined influences of the gravitational field perturbation and the coordinated
deployment thrusting is characterized by radial symmetry in the sense that if
?; = Qj + T in the initial configuration, the subsequent motion of m, and mj is

identical.

5. The response to the combined effects of the gravitational field and
tangential thrust perturbations is characterized by dividing the structure into
two regions, whose common boundary passes through m and is parallel to the
direction of the thrust perturbation. If m, and mj are corresponding masses
on opposite sides of this boundary (i.e. in mirror image positions) in the
initial configuration, the subsequent motion of each is qualitatively similar
with two exceptions: (i) A 180°-phase shift appears in the harmonics of order
k > 1, and (ii) The amplitude of the harmonic components of order k > 1 is

higher on the side of the perturbation.
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6. A continuous-data control system sensing the error and error-rate in
relative angular position is able to maintain the peripheral masses within théir
position sectors for all cases in which free motion exterior to the position
sectors occurs. The extrapolated satellite lifetime based on SMS fuel capacity
is satisfactory for small thrust perturbations (1.01®) but not for large

perturbations (1.05w).

7. The control system is unstable for sufficiently small values of the

error-rate comstant,G.

8. Neither field nor contact perturbations generate a tendency for
structural collapse because of the inability of the model interconnecting

springs to support compressive loading.

9. A coordinated spin-up deployment method starting from a sglected unstressed
rest configuration can deliver the system into a steady state condition consisting
of small amplitude free oscillations about a pre-selected free space
equilibrium configuration, in the presence of the gravitational field, in which
all masses remain within their respective distortion circles. No active control
is required in the absence of further perturbing influences. During the
thrusting period, the peripheral masses remain interior to their position
sectors, while the rhombic line masses temporarily leave their distortion circles
radially. As the heavier peripheral masses move toward their equilibrium positions,
the amplitudes of radial oscillations for the line masses are reduced to values

less than the radii of the distortion circles.
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B. Specific

The results will now be discussed in more detail. Due to considerations of
computation time and magnetic tape storage capacity, a uniform problem time,t_,
as listed in Table 1, was used for each case investigated. Consequently, certain
motions which appear in the graphical output as non-periodic functions may in
fact be periodic with a period ™>te. The amplitude and period for those harmonic
components of the response that are visible from the graphical displays for
free motion are listed in Table 3. Superscripts enclosed in parentheses identify

a particular frequency component.

Labeling of the figures displaying the results is simplified by using two
identifying characters:
(i) Plot identifier: a Roman numeral-letter pair that identifies:
(a) the type of graphical display (I...VI), defined on pages 23-24
(b) the conditions which generate the motion according to the case
identifying letter (A...M), defined on pages 2L-25
(ii) Mass identifier: a subscripted letter that identifies the point mass

of Figure 2 whose motion is displayed (ml"'ml6)

1. Verification of equilibrium

The equilibrium configuration satisfying the specifications shown in
Table 1 in a free-space environment, and the corresponding rest configuration are
listed in Table 2 for the quadrant of Figure 5. With the system initially
placed in this equilibrium configuration, the subsequent unperturbed motion
showed no visible deviation in radial distance or spin rate for any m, and
consequently no deviation in angular position for any peripheral m, when
displayed on large scale plots. The scaling factors used for 511(t), qii’ and
5@1 were identical to those used in Figures 6 through 12, namely 18.18 fg/&n,
3.6375 x 10-6 rad/sec/in and 0.7275 deg/in, respectively.

2. Small perturbations from equilibrium

a. Field perturbations
(1) Gravitational field (Figures 6-12)
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The predominant effect of the gravitational field perturbation is a
variation in the spin rate for the masses m, since the radial distance deviations
do not exceed 0;5% of the distortion circle radius, as given in Table 1, during
periodic oscillations. Deviations in radial distance and spin rate are both

symmetric with respect to m:

515(8) = 854(¢) (i=1...6,8,9; j=7,10...16)  (5-1)

&i(t) = &p4(¢) (i=1...6,8,9; j=T7,10...16)  (5-2)

Figure 6 shows the fundamental oscillation of the rhombic outer mass, &$u, while
Figures 7 and 8 show two additional superposed harmonics in the motion of the
rhombic line masses, &@5 and &iz, respectively. Figures 9 and 10, showing

&g and &b9, indicate that:

(1)
8y (1) =89, () (5-5)
(2)

and also show a superposed oscillation with the same frequency as &, (t) but

of lower amplitude. The following empirical observations:
o (t) = 5, (t) (5-4)
63,00 = 6,0 (15,65m2,3501,2) (55)
26, (e) = 43, (D (e)m (15,63 172,55 k3)  (5-6)

allow the remaining spin rate deviations to be deduced from Figures 6 through 10.
The deviations in angular position of the peripheral masses that result from these
spin rate deviations remain interior to the position sectors. For these

deviations:

Sp (t) =0
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and

by () = & (1) (5-8)

where 5¢9(t) is shown in Figure 11. The control sector corresponding to § = 60

is drawn for reference on the phase plane diagram of Figure 12.

b. Contact perturbations
The duration of unbalanced thrust that produces each of the contact

perturbations previously described is listed in Table k.

(1) Rhombic peripheral mass: 1.005w
(a) Free motion

The qualitative features of the free motion of the model under
small tangential thrust perturbations of different magnitudes applied to a
peripheral mass of the rhombic are similar in that the same frequency components
appear in the resulting motion. The only difference lies in the amplitudes of
the respective components. Thus, Figures 50 through TO, showing the motion for
a 1.01w perturbation, to be discussed later, are sufficient to show the
qualitative behavior for the 1.005W perturbation. The most significant result
is that the radial and tangential motion excited by the 1.00N5w rhombic
perturbation occurs entirely within the distortion circle for each m,, 80 that

no control is required to maintain the configuration within allowable limits.

(2) Dipole peripheral mass: 1.005w
(a) Free motion (Figures 13-29)
Motion under the influence of a tangential thrust perturbation of
a peripheral mass on the dipole leg is significantly different. The primary effect
is an increase in spin rate of the perturbed mass, as shown in Figure 13,
accompanied by a decrease for the peripheral mass on the opposite end of the
dipole leg, as shown in Figure 14. Both of these changes consist of a low
frequency, low amplitude oscillation superposed on a monotonically divergent
fundamental. Spin rate deviations for the other m, are adequately represented
by Figures 15-235, since motions of masses on the rhombic legs are connected by

the following empirical relations:

5 (o) = 8, (0) (1=2,3,5,6; §=14,13,11,10; k=1,2) (5-9)
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359, (e) = 98, (04m (192,3,5,65 3%14,13,11,105 k=3) (5-10)
5, () = 6 _(t) (5-11)

Masses on or close to the dipole leg have a fundamental divergence with superposed
harmonics in spin rate deviation, while those on the rhombic legs well away from
the dipole legs (mi: i=%3...5, 11...13) show a tendency toward neutrally stable
oscillations. Although the same frequency components are present for
corresponding masses located along the same normal to the rhombic major axis,

the amplitudes are higher for masses on the side of the perturbed mass. The
result, shown in the full structure diagram of Figure 24, is major distortion of
the dipole leg into a vee shape while the rhombic shifts in the direction of the
perturbation. Although the radial distance deviations 611 for rhombic masses

m, undergo large changes, their relative magnitudes are such that major distortion
of the rhombic shape does not occur. In view of the following empirical

observations:

{it
O

5li(t) (i=117"'9:15)16) (5'12)

51i(t) é-slj(c) (4=2...6; j=10...14) (5-13)

the plot of 514 in Figure 25 is sufficient to indicate the qualitative character
of all the 511. The angular deviations of the peripheral masses on the dipole
leg and their corresponding phase plane trajectories leave the position sectors
very rapidly, as shown in Figures 26 through 29. The phase plane plots, on which
the control sector for { = 60 is given for reference, show that the angular
deviations approach exponential functions as t approaches te with time constants
Y = 22 minutes, Yi = 27.55 minutes, respectively. The plot for &p_ _ is

g & 12
omitted since:

S () =0 (5-14)
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(b) Controlled motion: § = 60 (Figures 30-49)
Use of the control system described in section II to maintain

configuration control produces rapid changes in the spin rate deviation of the
m, for which the control is activated, as shown in Figure 30 for 5¢9. Each
point resembling a jump discontinuity corresponds to a point of control system
activation, as seen by comparison with the graph of the switching function A9 in
Figure 31. The first cluster of control pulses is expanded in Figure %2 for
clarity. This clearly shows the nature of this switching function as consisting
largely of a set of one-second pulses, separated by intervals of at least 4 seconds.
Figures 33 through 35 display the corresponding information for m except that
Figure 35 expands the final cluster of control pulses of Figure 34, rather than the
initial cluster. The effect on the spin rate deviations for the remainder of the
structure is seen by comparison of Figures 36 through U4l with Figures 15 through
23, respectively. In particular, Figures 35 and 37 show the direct effect of
the control on the spin rate deviation of line masses lying on the dipole leg
between the rhombic and the leg periphery. The primary effect of the control is
an arrestment of the divergent fundamental motion that previously appeared in the
deviations for masses on or close to the dipole leg, so that the peripheral masses
m, now remain within their distortion circles as indicated by the radial motion
of Figure 45 and the tangential motion shown in Figures 46 through 49. Due to
the monotonic character of the fundamental free motion for 5¢9and &318’ the

control is unidirectional for each controlled mass:
A >0 (5-15)

A <0 (5-16)

The phase plane trajectories of Figures 47 and 49 in conjunction with the graphs
of the switching functions in Figures 31 and 34 show that the control is applied
in a series of pulses rather than continuously for a certain duration, similar

to the ''chattering' phenomenon observed in second order bang-bang control systems.
The fuel requirements are summarized in Table 4, using the calculations based on

equations (2-49) through (2-51).
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(3) Rhombic peripheral mass: 1.01w
(a) Free motion (Figures 50-70)

If the perturbations remain small, the qualitative features of
the natural response to tangential thrust perturbations of one of the peripheral
rhombic masses are the same for different size perturbations. The radial distance
deviations representative of the response are shown in Figures 50 through 5k.
Since these deviations for masses on the dipole leg are very small (< 0.0104 5Mi),

they are not shown. The empirical observations:

$81,(8) = §op (0)+m (5-17)
5,590 = 61,000 (1m2,3,1,155 526,5,10,115 k=) (5-18)
31, (0) = 901,V (0am (102,5,10,135 576,510,115 k=2)  (5-19)

allow the remaining 611 of the rhombic masses to be deduced from Figures 50 through
54, The higher harmonics of the rhombic leg masses are superposed on the
fundamental oscillation of that rhombic peripheral mass on the same side of the
dipole leg, and have much lower amplitudes on the side away from the perturbation.
The spin rate deviations for rhombic masses are markedly different on opposite
sides of the dipole leg, as shown in Figures 55 through 64, the primary difference
being the greater amplitude of the second harmonic for masses on the perturbed

side of the dipole leg. The relation between the spin rate deviations of the

rhombic tip masses:
x5, @) (e) = ge ) (e)4m (5-20)

is observed to hold, where both deviations oscillate about a fundamental motion

f(t) given approximately by:

£(t) = -8_(t) + 0.877 x 10°° sec™ (5-21)
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The spin rate deviations of the remaining rhombic masses, in turn, contain higher
harmonics superposed on the rhombic tip mass motion. The angular position
deviations of the tip masses and the corresponding phase plane trajectories, shown
in Figures 65 through 70, show a non-periodic fundamental motion with the
superposed harmonic &ylz(t), which combine to exceed the limits of the position
sector for the dipole tip masses. The harmonic Gmla(t), for the unperturbed

rhombic tip mass, is a pure sinusoidal oscillation, as seen from Figures 67 and

68.

Since the dipole leg peripheral masses leave the position sector in free
motion under a 1.01® rhombic perturbation, activation of the control system is
needed for configuration control. Several values of the error rate constant { were

chosen for comparison of control system performance.

(b) Controlled motion: { = 60 (Figures T71-95)

The study of the free motion for this case shows that deviations in
radial distance, spin rate and angular position consist generally of a non-periodic
fundamental motion modulated by one or more harmonics. The primary effect of the
control system is to change the character of the fundamental motion. Although
the frequencies of the superposed harmonicsare not affected, their amplitudes are
changed, the latter effect being most pronounced for spin rate deviations of
masses on the dipole leg exterior to the rhombic. The radial distance deviations
shown in Figures 71 through 75 show that the moderate changes in each 611
compared to the freenmotion of Figures 50 through 54 do not carry any mass
outside of its distortion circle fédially. The spin rate deviations are shown by
Figures 76 through 81, 84, 85, 88, and 89, while the control switching functions
are shown in Figures 82, 83, 86, and 87. The amplitude changes in spin rate
deviation due to control application for masses on the dipole leg are clearly
shown in Figures 80 and 8L. Since the free motion of the &); is not monotonic,
in contrast to case D, A; assumes both signs. The angular position deviationms
and the associated phase plane trajectories of Figures 90 through 95 show that
all controlled tangential motion for the peripheral masses occurs within the
closure of the position sector. The final burst of control pulses shown for
Als in Figure 86 and expanded in Figure 87 is seen from Figures 94 and 95 to be

due to the presence of a large magnitude of &mle near the boundary of Rle.
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Table 4 shows the fuel consumption data for this case, where it is seen that m
8
governs the satellite lifetime in accordance with (2-51) since it requires the

most thrusting time of the peripheral masses.

(c) Controlled motion: § = 10 (Figures 96-120)

Reduction of the value of the error-rate constant by a factor of &
more closely approximates a control package employing pure position control. The
results indicate that this reduction is undesirable. The radial distance
deviations of Figures 96 through 100 show a large peak reaching an
amplitude of 0.51 Gﬂi for all masses. The spin rate deviation and switching
function graphs for this case, corresponding to Figures 76 through 89, are given
in Figures 101 through 114. The plots for the dipole leg masses, however, in
Figures 105 through 112, indicate an instability of the control system which
causes the switching function to alternate in sign, with an increasing pulse duration.
The angular position deviation and phase plane trajectories of Figures 115 through
120 show the high é$i rates near the control sector boundaries which generate the
large control pulses required to maintain the tangential motion within the
position sector. Figure 118 shows that the former pure sinusoidal motion of
the unperturbed rhombic peripheral mass has been altered. The fuel consumption
data in Table 4 shows that the control of m is now the governing factor for
satellite lifetime. The time history and phase plane trajectories of &pi indicate
that control pulses of long duration are generated by allowing large magnitudes
of &pi to occur near the boundary of the control sector. One way of improving

this situation is to increase the value of the error-rate constant,{.

(d) Controlled motion: § = 120 (Figures 121-145)
Increasing the error-rate constant by a factor of 2 from the original

choice in case G improves ihe control system performance markedly. Figures 121
through 125 show that the radial distance deviations compared with Figures T1
through 75 are only slightly affected. The spin rate deviation and switching
function graphs of Figures 126 through 1%9 indicate the control system is
stable. The amplitudes of the harmonies induced by the control pulses are
greatly reduced for masses on the dipole leg exterior to the rhombic. The
angular position deviations and phase plane plots given in Figures 140 through

145 show that the &@i rates near the boundary of R; have been reduced in magnitude,

and that pure sinusoidal motion for 6@12 has been re-established.
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3, Large perturbations from equilibrium

a. Contact perturbations
(1) Rhombic peripheral mass: 1.05w
(a) Free motion
The free motion of the model under this large perturbation

was observed to be very similar qualitatively to that observed for the smaller
1.0lw perturbation. Accordingly, no figures for this case are presented.
Quantitatively, the radial distance deviations for all masses are interior to
their distortion circles, although the peak amplitudes for the rhombic line
masses increase by nearly a factor of 5. The angular position deviations
extend beyond the position sector boundaries for all of the non-reference

peripheral masses, so that configuration control is required.

(b) Controlled motion: § = 60 (Figures 146-157)
Figures 146 through 157 show the angular position deviation

time history, phase plane diagram and switching function time history for m
m_s and m o respectively. The perturbation is sufficiently large that the
control systems for the dipole leg peripheral masses are both activated within
5 seconds after perturbation cut-off, and that for the unperturbed rhombic
peripheral mass within 20 seconds. The fuel consumption, from Table 4, is such
that the effective satellite lifetime is reduced by nearly a factor of 10
compared to case E. The utility of this result lies in its relation to the
deployment problem, Let the large tangential disturbances of a reference
satellite be viewed, not as a perturbation from some nominal configuration, but
rather as a method of changing the steady state spin rate, with configuration
control maintained by the subsatellite control system. In the extreme case,
when the initial spin rate is zero, one has the deployment problem of spin-up
from rest. These results indicate that a spin-up method that applies thrust
exclusively to a reference satellite is inefficient. This observation is the
motivation for a coordinated thrusting procedure which applies uniform thrust

to each subsatellite during the thrusting phase.
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4. Deployment (Figures 158-183)

Coordinated tangential thrust applied to each peripheral mass in spin-up
from the rest configuration results in oscillatory motion about the free space
equilibrium configuration that is symmetric relative to m in the same sense that
was observed for case B, so that equations (5-1) and (5-2) are valid. Figures
158 through 165 show that the radial distance deviations display a large
transient peak that approaches 300 feet for rhombic line masses near the dipole leg,
but subsequently assume oscillations about the free space equilibrium distance
with amplitudes that are interior to their respective distortion circles
measured from equilibrium. The cause of these large transient peaks and their
"apparent damping'' to a satisfactory steady state amplitude is seen, by a
comparison of Figure 158, for the motion of the rhombic peripheral mass, with
Figures 159, 160, 164, and 165 for the line masses. The rhombic peripheral
. masses, which initially move inward toward m, from the rest configuration with
zero spring tension, giving rise to negative strain values for the rhombic legs
and the resultant large changes in radial distance deviations, must eventually
move radially outward toward the free space equilibrium configuration
corresponding to the final spin rate W and the parameters of the initial rest
configuration to satisfy the laws of motion. When this happens, the spring
tension is increased, providing the mechanism for the ''apparent damping' observed.
Figures 166 through 173 show the representative spin rate deviations which
display slightly different behavior. The motion of the peripheral masses are

truncated ramp functions, given by:
= { 1
RT(t) = (Alt + Az) (u(t) u(t—tT)J (5-22)

where

A.1 = 0.976 x 10 ®sec °

Ag =-1,745 x 10 ®sec !
with u(t) defined as in equation (2-3). The remaining spin rate deviations

oscillate about RT(t) without displaying a transient peaking as observed in the

ﬁli(t) plots. A very encouraging result is that the angular position deviations
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do not leave their respective position sectors during or after spin-up thrusting.
Since the symmetric relations (5-7) and (5-8) hold for this case also, Figures

174 and 175 represent the time history and phase plane diagram for the angular
position deviation, and clearly illustrate this result. Consequently no
activation of the control system after thrust termination is required., Figures
176 through 183 are full structure diagrams of the structure at designated
instants during the thrusting phase, and show that the major structural distortion
due to the early transient peaking in Gli(t) disappears by thrust termination
time. The fuel and thrusting time required for spin-up deployment are shown

in Table k4.



Section VI: APPLICABILITY

The results obtained for the lumped mass model are encouraging. One can
specify certain characteristic parameters of a desired operational configuration,
compute the exact free space equilibrium configuration and the associated rest
configuration corresponding to these specifications, and then deliver the system,
in the presence of the gravitational field, from the rest configuration into
a configuration which is sufficiently close to the specified configuration that: -

(i) the allowable structural distortion limits are not exceeded, and

(ii) no active control for configuration adjustment is required in the absence
of further perturbations, at least for high operational altitudes.

The effect of thrust perturbations likely to be encountered if all thrustors
are not terminated simultaneously has been determined by a study of contact
perturbations, and a simple control system which can counteract small

perturbation effects for a satisfactory operational lifetime has been demonstrated.

Several remarks should now be made concerning the extent to which one may
view the results obtained for this lumped mass model as applicable to the actual
KWOT structure. First, the duration of time for which the motion has been
studied is only a few hundredths of one percent of the least useful lifetime
envisioned for KWOT., Thus, a classification of ''mon-periodic'' applied to a -
certain motion, such as the fundamental motion of many of the deviations, is
evidently premature. The conclusion of an "infinite" lifetime for the model
under the influence of those perturbations which did not produce free motion
exterior to the distortion circles of each mass, such as the pure gravitational

field perturbation, is similarly premature.

Second, the oscillations that occur due to field or contact perturbations
from equilibrium persist in most cases in a steady state condition resembling
neutral stability for the model, which does not incorporate provisions for
damping., The actual structure, however, will undoubtedly have some degree of
natural damping. This can be expected to reduce the amount of fuel required
for configuration control due to portioms of the structure exceeding their

distortion limits.
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Third, the assumption that the relative motion of the structure does not
affect the motion of the center of mass is equivalent to the assumption that
the central observatory has infinite mass, which is clearly not true: In fact,
the ratio mi/mo of equation (2-1) computed for one of the SMS units alone is
expected to be of the order of 10" for the actual structure, so that assumptions
II-1 and II-8 are not really justified. Of the results obtained for the model,
the one which appears most sensitive to the validity of these assumptions is
the result for case D which indicates instability of the dipole leg to tangential
thrust perturbations. The motion that occurs is characterized by a lack of
coupling through the central mass mos and by the fact that the actual center of
mass position, as the motion evolves in time, deviates a significant distance
from its assumed position coincident with m . These considerations cast doubt
on the instability conclusion for structures similar to the model with relatively

large mi/mo ratios.

Finally, it should be observed that these results have been obtained with
a very simple control system, for which no systematic optimization studies have
been conducted. Other control concepts, such as a sampled data system, could be

expected to perform as well, if not better.
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Appendix A: GLOSSARY OF TERMS

Roman letters ~ lower case

a
by

Radius of model in equilibrium configuration

Rate of fuel ejection from thrustor associated with my
Characteristic of linear damper in parallel with jth spring
Unit vector acting in direction of instantaneous strain
Component of total force at a point in direction of positive x;
Force vector due to ith spring

Force vector acting on m, due to me

Gravitational acceleration at surface of earth

Step size for Runge-Kutta integration

Function representing the equation of free motion for my
ith auxiliary vector function for Runge-Kutta integration
Linear characteristic of jth spring

Distance of m; from m,
Reference distance of m; from m,
Mass of earth

{th

Generalized coordinate vector

point mass of lumped mass model

Distance of m, from earth center
Laplace transform variable
Lengch of jth spring

Value of sj at zero strain

Time

Problem termination time

Value of t at kth

step of Runge-Kutta integration
Problem initiation time

Start time for plot type VI of Ai

Thrust duration for thrust perturbations

State vector x at kth

step of Runge-Kutta integration
Vector x at kth stage of Newton's method iteration
Cartesian position coordinate

Pogition vector of m; relative to m

Position vector of my relative to earth center
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Roman letters - upper case

Cross-sectional area of continuous wire comprising dipole legs
Cross-sectional area of continuous wire comprising rhombic legs
Rayleigh dissipation function

Modulus of elasticity of continuous wire comprising dipole legs
Modulus of elasticity of continuous wire comprising rhombic legs
Vector function representing general second ordér equation of motion
Fuel capacity of SMS unit associated with m;

Fuel used for configuration control

Fuel used for thrust perturbations

Universal gravitational constant

Specific impulse of thrustor propellant

Non-~linear characteristic of jth spring

Lagrangian function

Total mass of lumped mass model

Position sector associated with m;

Generalized force vector

Generalized force not derivable from a potential or dissipation function
Generalized force derivable from a dissipation function

Control sector associated with my

Region exterior to Ry requiring 4; > O

Region exterior to R; requiring Ai <0

Total kinetic energy

Thrust level for thrustor associated with m,

Thrust produced by thrustor associated with my

Total potential energy ‘

Potential energy associated with elastic forces

Potential energy associated with gravitational forces

Work

Weight of SMS unit associated with m,



45

Greek letters - lower case

(04

Mg
Bi

Q

TAi
Tci

Qi
PR

Rhombic half-angle defined by mo-m4~nain the equilibrium configuration
Half-angle subtended by distortion circle of m; at m,
Time constants for motion of dpj

Radial distance deviation for my

Radius of distortion circle for my
Spin rate deviation for my

jth harmonic component of &pj
Angular position deviation for my
Convergence parameter for iteration process A

Convergence parameter for ith equation for iteration process B
Radius of position sector for tangential motion of mj

h

Instantaneous strain of jt spring

Angle between rhombic major axis and spring connecting m: to a

i
principal axis of the structure in equilibrium

Radius of ball about the true solution containing initial guesses

for which Newton's method converges

Error rate constant for control system for my

Angular position of m, measured at earth center

Acute angle defining the deviation from a straight rhombic leg
configuration for the spring connecting a rhombic leg mass mj to a
principal axis of the structure in equilibrium

Earth gravitational constant

Acute angle defined by y; and the normal to the spring which connects
m; to a principal axis of the structure in equilibrium

Volume density of continuous wire comprising dipole legs

Volume density of continuous wire comprising rhombic legs

Uniform spacing of point masses along rhombic leg in equilibrium
configuration

Cumulative activation time for thrustor associated with mj

Time duration for plot type VI of Ai

Tension in jth

spring
Angular position of m; measured at m

Reference value for P4
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Wi Acute angle between two adjacent springs at my
Angular velocity of model about m, in the equilibrium configuration

R Reference spin rate for m; relative to m,

Greek letters - upper case

PLi Left boundary of Pj
FRi Right boundary of Pi
gy Left boundary of Ry
-3 Right boundary of R;
b; Control switching function for control thrustor associated with m

i

Special symbols

% Phase angle

II;II Euclidean norm of the vector x defined by 4{ §’9 ) g},
L, 1= x4
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Appendix B: ELASTIC POTENTIAL DERIVATIVES

The elastic potential Vg(g,t) is defined by equations (2-3), (2-13), (2-1k4), and
(2-15). The derivatives BVE/aqi, expressed in terms of the generalized

coordinates are listed below for completeness:

dVg/91i (i=1...16):
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Appendix C: TIncorporation of Artificial Damping

In this appendix, the equations governing the motion of a model similar

to that of Figure 2 incorporating damping are derived. Consider the structure

of Figure 2 with the additional feature that a linear damper with characteristic
cj is connected between each point mass in parallel with the spring kj. Although
equation (2-4) may be used directly to generate the equations of motion, with the
viscous dissipation forces computed as part of the generalized force vector Q,
another form of (2-4) may be obtained by introducing the Rayleigh diseipation
function D(q,q,t), defined by:

D(g,q,t) = %fgate of energy dissipation in system}

as described in reference 3. The generalized forces due to viscous dissipation may

thus be separated as:

oD/.
Q, =- "% (¢c-1)
so that
oD/..
Q=0 "% (c-2)
Lagrange's equations may now be expressed in the form:
d ,3L oD oL
__( - ) + - = Q {0"3)
dt 39 G):] ogq R
The dissipation function for the model described is given by:
18 .
D(g,4,t) = Bk ¢ 3,.°(2,d,¢) (c-k)

If S is the length of the spring connecting m, and mj’ it is expressed in terms
of the generalized coordinates by equations (2-14) and (2-15), and its derivative

is given by:
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k
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When the necessary manipulations are completed, in accordance with equation

(c-3), the equations of motion for each mass m, become:
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- 2 - — ] = i= - AY
1,-1,6,°- 55~ | 143 cos 2(e- Py ) m;) 31, + 5T, 0 (i=1...16) {c-6
.n . . 3H1i 1 raVE aD
1,9,+21,0,- —57 sin C(e-Qi) + (mili) \3or T - Qr } =0 (i=1...16) (c-7)

3D/

-
The forces Q. are given by equation (2£-17). The derivatives, ' 21y, OD/aéi

are listed below for completeness:
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Table 1 - Configuration Specifications and Environmental Conditions

Configuration Specifications

1. Material properties of rhombic wire
Radius, ™
Modulus of elasticity, Ep
Volume density, 0p

2. Material properties of radial wire
Radius, rp
Modulus of elasticity, Ep
Volume density, DR
3. SMS unit characteristics
Weight, W, (i=h,9,12,16)
Thrust level, Tp, (i=h,9,12,15)

4, Equilibrium condition requirements
Angular velocity, w
Model radius, a

Rhombic half-angle, C

Environmental Conditions

1. Gravitational Field characteristics

Gravitational constant, p

2. Orbital specifications
Eccentricity, e

Period, 7

Other Parameters
Dead band radius, €gp, (i=9,12,16)

Problem termination time, tg

Distortion circle radius, &3 (i=1...16)

0.01 in.
260,000 #/in.?
70 #/£¢.°

0.01 in.
260,000 #/in.?
70 #/£t.°2

200 #
0.1 #

1 rev/hr.
5 km.
13.3 deg.

1.407775.10* % ££% /sec®

24 hr.

0.01 rad.
1.5 hr.

50 meters
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Table 2 - Configuration Solutions

Free Space Equilibrium

1. Rhombic leg shape 3. Generalized coordinates
62= 0.10891716 deg. 'll = 3872.0680 ft.
63= 0.1092086k4 deg. 12 = 6045.1208 ft.
o/a = 0.3L4252052 1, = 10999.684 ft.

14 = 16380.000 ft.
2._Spring tension L= 10126.034 ft.
T = 0.16113813 # 1, = 16380.000 ft.
T_= 0.16075628 # @, = 64.617149 deg
T,= 0.15992107 # ¢, = 83.206874 deg

T .= 0.311k4620 #

1, = 0.31053510 #

T = 0.23849823 #

Rest Configuration

1. Unstressed spring lengths 3. Generalized coordinates
s,, = 5599.4398 ft. 1, = 3860.7950 fr.
80 = 5599.4659 ft. lgr = 6026.804k ft.
S0 = 5599.5231 ft. 131- = 10974.835 ft.

S oo™ 3860.7950 ft. 1.= 16348.745 ft.
S, 00" 6230.23106 ft. 1 .= 10091.006 ft.
800" 6230.2798 ft. 1= 16321.285 ft.

9, = 64.718194 deg.

2. Point mass values Pp = 83.265827 deg.
m = 0.050486223 slugs
m, = 0.026556764 slugs 4., Rhombic mass deviation from
m = 0.026556961 slugs xest
m, = 6.2377372 slugs m: 22.055669 ft., <
n&5=~0.0295h8hh9 slugs 35.807569 deg.

m = 6.205054h slugs m i 27.300447 ft., 4

58. 7741l deg.
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Table 3 - Spectral Characteristics of Free Motion

Case Harmonic Amplitude Period -
Ldentifier Component (107" sec™™) (sec)
5 5¢3(2) 0.431 2935
&ia(S) 0.431 212.5
S(.pe(g) 0.718 2935
5®2(3) 0.718 212.5
Géa(z) 0.1427 21z.5
&ig(e) 0.1437 212.5
D 5@9(2) 2.87 1800
&@lg(g) 2.87 1800
o@a(g) 2.87 1800
5®8(3> 0.718 109
5@15(2) 2.87 1800
5@15(3) 0.919 109
a@v(g) 8.62 1800
&il(a) k.59 1800
56910(2) 2.865 1518
5@10(3) 2.865 2l2.5
5@14(2) 1.438 1518
Gélé(a) 1.438 212.5
6$ll(e) 2.155 1518
6¢11(3) 2.155 212.5
5®13(3) 1.438 1518
5, (2) 1.438 212.5
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Case Harmonic Amplitude Period
Identifier Component (107° sec™) (sec)
F 8, (=) 8.7 616
8, (2) 12.95 646
5@:1(3) 0.72 19.02
8, (2) 2.88 646
8, () 2.155 109
5, . (7) 0.1062 deg. 641
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Table 4 - Fuel Consumption Data

Propulsion System Parameters

Fcy

g, = 3c.2 ft/sec”

I
sp

0.1 #

A2

50 #

= 200 sec

Thrust Perturbations

(i=k,9,12,16)

(i=h;9:12:16)

Type o; (to) ¢, (f1) tr B
Perturbation (selec“l (s&c™) (sec) (;}
Perturbatioﬁ) ; w 1.005 w 9 0.00k5
of m, from { w 1.01 w 18 0.009
equillibriam W 1.05 ® 97 0.0485
Spin-up from rest 0 w 1788 3.566
Configuration Control System
Case TA T TA, . TaA, . F, Lg
Identifier (s&c) (sec) (st?) { (se?) (#) (months)
E 0 26 0 26 0.026 8.02
G 0 7 0 33 0.020 6.30
H 0 55 0 21 0.038 3.875
J 0] 12 0 16 0.01kL 13.04
L o} 296 17 305 0.309 0.683
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Figure 2. Lumped-mass Approximate Model of KWOT
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Figure 5. Free-Space Equilibrium Configuration for a Quadrant
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