CONTROLABILITY OF HIGHER ORDER

LINEAR SYSTEMS

Consejo Nacional de Investigaciones Cientificas y Tecnicas and University of Buenos Aires, Buenos Aires, Argentina

Now at Brown University, Division of Applied Mathematics,

Providence, R. I.

I

Presented in the Conference on the Mathematical Theory of Control, January **30** to February 1, **1967,** University of Southern California, Los Angeles, California

* This research was supported in part by the National Aeronautics and Space Administration **under** Grant No, **NGR-40-002-015** and in part by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, **mder AF-AFOSR** Grant No, *AF-AFOSR-693-66.*

¹Introduction We consider in this paper a dynamical system whose evolution in time is described by a second-order linear differential equation in a complex Banach space $R = u, v, \ldots$

$$
u''(t) = Au(t) + Bf(t)
$$
 (1)

Here A is a linear, possibly **unbounded** operator with domain $D(A) \subseteq E$ and range in E , B a bounded operator from another Banach space F to E. We shall assume $\rho(A)$, the resolvent set of A to be non-void, i.e. there exists a λ such that $R(\lambda; A)$ $= (\lambda I - A)^{-1}$ exists and is bounded. The state of the system at time t is given by the pair $(u(t), u'(t))$ of elements of E ; the F-valued function $f(\cdot)$ is the input or control by means of which we govern the system.

The problem of complete controllability consists, roughly speaking, in selecting a control f in a given class \int in such a way that the systems evolutions from a given initial state to the vicinity of a given final state. If the initial state is taken to be $(0, 0)$ then the problem is that of null controllability. We introduce in Section 1 some results on the theory of the equation **(1)** and **apply** them in Section **2** to show that the problem of complete controllability of the system **(1)** can be reduced to the corresponding one for the first-order system $u' = Au + Bf$ if A satisfies a certain condition (Condition **(2.6)** . Finally, we examine in Section *3* the relation between null and complete controllability for first and second-order systems. An appendix refers a systems described by higher order equations $u^{(n)} = Au + Bf$, ⁿ*23* . We **shall** use without proofs some results on controllability ${\mathsf n}\geq {\mathsf 3}$. We shall use without proofs some results on controllability of first order systems ${\mathsf u}^{\mathsf t}$ = Au + Bf ; we refer to ${\mathsf s}(g)$ for proofs and further details.

defined for $t\geq0$, We shall understand by a solution of $$1.$ Let $g(\cdot)$ be a E - valued, strongly continuous function

$$
u^{i} (t) = Au(t) + g(t) \qquad (1.1)
$$

an E – valued function $u(\cdot)$ defined and with two continuous derivatives in $t \ge 0$, such that $u(t) \in D(A)$ and Eq. (1.1) is satisfied for all $t \geq 0$.

We shall assume that the Cauchy problem for the homogenous

equation

 $\Delta \sigma_{\rm{eff}}$

 $u''(t) = Au(t)$ $(1,2)$

is <u>uniformly well posed</u> in $t \geqslant 0$, i.e. we shall suppose that

 u_0 , $u_1 \in D$ there exists a solution $u(.)$ of (1.2) with (a) There exists a dense subspace D of E such that if $u(0) = u_0$, $u'(0) = u_1$.

(b) For each $t > 0$ there exists a constant $K_t < \infty$ such that

$$
|u(s)| \leq K_t \ (|u(0)| + |u'(0)|) , 0 \leq s \leq t
$$

for any solution $u(\cdot)$ of $(1,2)$

 $u \in E$, $u(\cdot)$ (resp. $v(\cdot)$) be a solution of Eq (1.2)
with $u(0) = u$, $u'(0) = 0$ (resp. $v(0) = 0$, $v'(0) = u$). Define Let $u \in E$, $u(\cdot)$ (resp. $v(\cdot)$) be a solution of Eq (1.2)

$$
S(t)u = u(t) \quad (resp. \ T(t)u = v(t))
$$

By virtue of (a> **and** (b) S(t) , T(t) are well defined **aid** bounded for all **t** *3* 0 , at **least** in **D, Thus** they **can** be extended to bounded operators in E that we **shall** denote with the same **symbols,** It **follows** from a simple approximation argument that S(*) , *T(.)* are strongly continrious functions of t. **We** shall call S, T the solution operators of Eq. (1.2)

of A, $R(\lambda ; A)$, $S(\cdot)$, $T(\cdot)$. We take from $(\frac{h}{L})$, Section 4 the following properties

(c) For each $u \in E$, $t \ge 0$

$$
T(t)u = \int_0^t S(s)u \, ds \qquad (1.3)
$$

(d) There exist constants $w < \infty$, $K < \infty$ such that

$$
|S(t)| \leq K e^{-wt} \quad , \quad |T(t)| \leq K e^{-wt} \quad , \quad t \geq 0
$$

(e) G(A) , the spectrum of A is contained in the $\text{region } \{ \lambda \text{ ; } \text{ Re } \lambda \leq w^2 - (\text{Im } \lambda)^2 / 4w^2 \} \text{ and }$

$$
R(\lambda^{2}, A)u = \lambda^{-1} \int_{0}^{\infty} e^{-\lambda t} S(t)u dt =
$$

=
$$
\int_{0}^{\infty} e^{-\lambda t} T(t)u dt
$$
 (1.4)

 $\overline{2}$

for $Re \lambda > w$.

inhomogenous equation **(1.1)** . In fact, **we** have With the help of $T(\cdot)$ we can construct solutions of the

1.1 LEMMA Let $g(\cdot)$ be continuously differentiable. Then

$$
u(t) = \int_0^t T(t-s)g(s)ds
$$
 (1.5)

Proof: Let $0 \leq t < t'$. We have

$$
\frac{u(t') - u(t)}{t' - t} = \frac{1}{t' - t} \int_{t}^{t'} T(t' - s)g(s)ds +
$$

+
$$
\int_{0}^{t} \left[\frac{T(t' - s) - T(t - s)}{t - t'} \right] g(s)ds = I_{1} + I_{2}
$$

Using now Eq. $(1:3)$ and the fact that $|S(\cdot)|$ is bounded on compacts of 10 , *co* (a consequence **of** the principle of uniform boundedness, (1) , Chapter I) we see that $|T(r)| = O(r)$ as $r \rightarrow 0$ and thus $I_1 \rightarrow 0$ as $t' - t$ in I_2 is seen to converge to $S(t - s)g(s)$ as $t' - t \rightarrow 0$; by the theorem of the mean of differential calculus is bounded in norm by sequence of the principle of uniform boundedness

e see that $|T(r)| = O(r)$ as $r \rightarrow 0$ and thus
 \rightarrow 0. Making use again of (1.3) the integrand

converge to $S(t-r)s(s)$ as $t! = t \rightarrow 0$. by

sup $0 \le r \le t'$ | $S(r)g(s)$ |

Thus u is continuously differentiable in $t \geq 0$ and

$$
u^{t}(t) = \int_{0}^{t} S(t-s)g(s)ds
$$
 (1.6)

Interchanging now **s** by $t - s$ in \mathbb{F}_q . (1.6) and proceeding similarly as before we see that $u'(\cdot)$ is continuously differentiable in t *2* 0 and

$$
u''(t) = S(t)g(0) + \int_0^t S(s)g'(t-s)ds
$$
 (1.7)

Let us now compute $Au(t)$. Integrating the expression (1.5) by parts we get

$$
u(t) = \int_0^t T(s)g(0)ds + \int_0^t \left(\int_0^s T(r)dr \right)g'(t - s)ds
$$

Using now the fact that

$$
\mathbf{v_a} = \int_0^a \mathbf{T(s)} \mathbf{u} \, \mathrm{d}\mathbf{s}
$$

is an element of $D(A)$ for any $u \in E$ and $Av_{a} = S(a)u - u$ ((\pm) , Section 5) we see that $u(t) \in D(A)$ for all $t \ge 0$ and $Au(t) = u''(t) - g(t)$ as desired.

close this section with another result on the equation **(1.2)** . Let $E^* = \{ u^*, v^*, \ldots \}$ be the dual space of E ; denote (u* **u)** or { **u** , u*) the value of the functional u* at the point $u \in E$.

the eauation 1.2 LEMMA Let F. be reflexive. Then the Cauchy problem for

$$
(u^*)^T(t) = A^*u^*(t)
$$
 (1.8)

is uniformlv well Dosed. If *S*(.)* , T*(.) are the solution operators of $\overline{\text{Eq.}}$ (1.8) we have $S^*(t) = (S(t))^*$, $T^*(t) =$ ⁼(T(t))* , where S , T are the solution operators of (1.2)

A for which the Cauchy problem for $Eq. (1.2)$ is well posed $(\frac{1}{2})$, Theorem *5.9)* . We shall assume throughout the rest of this paper that E is reflexive so that Lemma 1.2 applies. The proof is a consequence of the characterization of operators

of elements of F endowed with pointwise operations and any of its natural norms, for instance l(uo , ul>/ dual space $(E^2)^*$ can be identified algebraically and topologically dual space $(E \rightarrow e^2)$ can be identified algebraically and topol
with the space $(E^*)^2$, application of the functional $u^* =$ = (u_0^* , u_1^*) to the element $u = (u_0 , u_1)$ being given by **2***62.* Let $\pi^2 = \mathbb{E} \times \mathbb{E}$ be the space of all pairs (u_0, u_1) $= |u_0| + |u_1|$ The

$$
\langle u^*, u \rangle = \langle u_0^*, u_0 \rangle + \langle u_1^*, u_1 \rangle
$$

Let the linear control system

$$
u^{i\ t}(t) = Au(t) + Bf(t) \qquad (2.1)
$$

(we we shall denote by $\tt L$) be given . We shall assume the class tiable functions defined in $\{0, \bar{\omega}\}$. Call K_t(L), $t \ge 0$ the subspace of E^2 consisting of all the pairs (u_0^2, u_1) $\sqrt{}$ of controls to consist of all F - valued infinitely differen-

$$
u_0 = \int_0^t T(t - s) Bf(s) ds
$$
, $u_1 = \int_0^t S(t - s) Bf(s) ds$ (2.2)

5 In wiew of Lemma 1, $K_t(L)$ can be described as the subspace of all pairs $(u(t), u'(t)), u(t)$ a solution of Eq. (2.1) with $u(0) =$ $= u'(0) = 0$, $f \in \mathcal{L}$ or simply as the subspace of all possible states of the system at time t - the initial state being $(0, 0)$ for $t = 0$. We also define K(L) = $\bigcup_{t > 0} K_t(L)$. We shall say that the system L is <u>null controllable</u> if $CL K(L) = E^2$, $\tt {s}$ ay that the system L is <u>null controllable</u> if C_1 K_{t_0} (L) = $\tt E^2$. It is a consequence of the Hahn-Banach theorem that $CL K(L) = E^2$ if and only if $K(L) = \{ (u_0^*, u_1^*) \in (E^*) | \{ (u_0^*, u_1^*) \}, (u_0^*, u_1^*) \in (E^*) \}$
for all $(u_0^*, u_1^*) \in K(L) \} = \{ 0 \}$, $CL K_t(L) = E$ if $K_t(L)$ = = 0, $K_t(L)^{\perp}$ similarly defined. consequence of the Hahn-Banach theorem that C1 K(L) = E^2 if and only if K(L)⁺ = { (u^{*}, u^{*}) \in (E^{*)² | \langle (u^{*}, u^{*}) , (u₀, u₁)) = 0
for all (u₁, u₁) \subset K(L) = { 0}, C1 K(L) = E if K₁(L)⁺ =}

Corollary 2,2 of *(5)* Our first results are analogous to Proposition 2,l and

 $\frac{1}{2.1}$ LEMMA $(u_0^*, u_1^*) \in K(L)^{\perp}$ $(K_t(L))$ if **and** only if **I** $B*(T*(s)u_0^* + S*(s)u_1^*) = 0$, $0 \le s \le t$ (0 imes in (2.3) Proof Assume $(u_0^*, u_1^*) \in K(L)^{\perp}$. Then, for any $f \in \mathcal{L}$. t $T(t - s)BF(s)ds$ + $\langle u_1^*, \int_0^t S(t - s)BF(s)ds \rangle =$ $\int_{0}^{t} \langle B*(T*(t-s)u_{0}^{*} + S*(t-s)u_{1}^{*})$, $f(s)\rangle$ ds

Taking now $f(s) = y(s)u$, u any element of E , $y(\cdot)$ any scalarvalued function we easily see that **(2.3)** holds. The reverse implicavalued function we easily see that (2.3) holds. The tion is clear. The proof is similar for $\rm\,K_{t}^{(L)}$.

contains the half-plane $\Re \lambda > w^2$ (w the constant in (d), Section **1** 1 Let us denote $\int_{0}^{1} (A)$ the connected component of $\int_{0}^{1} (A)$ that

on I)
\n2.2 COROLLARY
$$
(u_0^*, u_1^*) \in K(L)
$$
 if and only if
\n $B^*R(\lambda^* A^*)(u_0^* + \lambda^{\frac{1}{2}}u_1^*) = 0$ for $\lambda \in \beta_0(A)$ (2,4)

 $(\arg \lambda^{\frac{1}{2}} = \frac{1}{2} \arg \lambda , -\pi < \arg \lambda < \pi$.

exp $(-\lambda^{\frac{1}{2}}t)B^*(T^*(s)u_0^* + S^*(s)u_1^*)$ in $(0, \infty)$ and applying (2.3) and Lemma (2.1). For $\rho_o(A)$ the result follows from an analytic continuation argument. The reverse implication is, as in (6) , Corollary 2,2 a consequence of uniqueness of Laplace transforms. $B*R(\lambda; A*)$
 $B*R(\lambda; A*)$
 $\lambda^{\frac{1}{2}} = \frac{1}{2} \arg \lambda$, -7

<u>Proof:</u> We obtain (
 $-\lambda^{\frac{1}{2}}t)B*(T*(s)u_0^* +$

and Lemma (2.1). Proof: We obtain (2.4) for λ real, λ^2 > **w** integrating

We shall also consider in what follows the first order system M,

$$
u'(t) = Au(t) + Bf(t) \qquad (2.5)
$$

Now K₊(M) is defined as the subspace of E consisting of all values (at time t) of solutions of $(2,5)$ such that $u(0) = 0$, $f \in \mathcal{L}$, $K(M)$, $K(M)$ ^{\perp}, $K_t(M)$ ^{\perp} are defined in a way similar to that for second-order systems (see (6) for more details) **2-1** THEOREM Assume A

Then K(L) = { (u_0, u_1) ; $u_0, u_1 \in K(M)$ }

<u>Proof</u> Obviously we only have to prove $K(L)$ = $\{(u_0^*, u_1^*)$; $u_0^*, u_1^* \in K(M)^{\perp}\}$. We shall use the following characterization of the elements of $K(M)^{\perp}$ (see (6), Corollary 2.2); $u^* \in K(M)^{\perp}$ if and only if $B^*R(\lambda; A^*)u^* = 0$, $\lambda \in \rho_0(\Lambda)$. This makes clear that if u_0^* , $u_1^* \in K(M)^{\perp}$ then $(u_0^*, u_1^*) \in K(L)^{\perp}$. Conversely, assume $(u_0^*, u_1^*) \in K(L)$ Consider $(2, 4)$ for a given $\lambda \in C$. As λ turns once around the origin and returns to its original value, $\lambda^{\frac{1}{2}}$ changes sign. Adding up the two versions of $(2,4)$ so obtained we get B*R(λ ;A*)u* = 0, B*R(λ ;A*)u* = 0 for $\lambda \in C$; by analytic continuation this holds as well for all $\lambda \in \beta_0(A)$, which ends the proof. hakes clear that if u_0^* , $u_1^* \in \mathbb{N}$ when
 $\frac{1}{\sqrt{n}}$ contained to contract $(u_0^*, u_1^*) \in \mathbb{K}(\mathbb{N})$

2.4 COROLLARY Assume A 'satisfies Condition (2.6) . Then the control svstem L is **null** controllable if and **onlv** if M is null controllable

2.5 REMARK If Condition (2.6) is not satisfied then Theorem *2.3* may fail to hold, We construct in what **follows** an example of this situation,

Let $E = L^2 = L^2(v-\infty,\infty) = \{ u(y) , v(y) , ... \}$ Recall that the space H^2 o functions in L^2 that are boundary values of functions $u(y + if)$, holomorphic in the upper half-plane and such that 2 y of the upper half-plane consists of all those

$$
\sup_{f \to 0} \int |u(y + if)|^2 dy < \infty
$$

(all integrals hereafter shall be taken on $(-\infty, \infty)$) By the Paley-Wiener theorem $((2)$, Chapter 8 $)$ H^2 consists of all those

6

functions on L^2 whose Fourier-Plancherel transform vanishes for $t \ge 0$, i.e. of those $u(\cdot)$ in L² such that

$$
\hat{u}(t) = (2\pi)^{-\frac{1}{2}} \int u(y) e^{iyt} dy = 0 \text{ for } t \ge 0
$$

We **shall** make use of **the** following

 $such that $|u(y)| = m(y)$ if and only if$ 2.6 LEMMA Let $m \in L^2$, $m \ge 0$, $m \ne 0$. There exists $u \in H^2$

$$
\int | \log m(y) | (1 + y^2)^{-1} dy < \infty
$$

For a proof for H^2 of the unit circle see (3) , Theorem 7.33; it can be adapted to the case of the half-plane by using the results in (2) , Chapter 8. results in (2) , Chapter 8.

 $\frac{2.7 \text{ COROLLARY}}{2.1 \text{ G1}}$ $\frac{1}{2}$ matrix of functions in L^2 . Assume $i,j = 1,2$ <u>be</u> a 2×2

$$
\int | \log |\det \{ a_{ij}(y) \}| | (1 + y^2) dy < \infty
$$
 (2.8)

Then there exist v_1 , v_2 , both different from zero almost everywhere and such that

Then there exist
$$
v_1
$$
, v_2 , both different from zero almost
everywhere and such that

$$
v_1 a_{11} + v_2 a_{12} = v_1 a_{21} + v_2 a_{22} \in H^2 (2.9)
$$

Proof let $w_1(y) = b(y) (a_{22}(y) - a_{12}(y))$, $w_2(y) =$

$$
= b(y) (a_{11} - a_{21}(y))
$$
 where $b(y)^{-1} = sgn det {a_{1j}(y)}$.
We have

 $w_1a_{11} + w_2a_{12} = w_1a_{21} + w_2a_{22} = \det\{a_{1j}\}$

In view of Lemma 2.6 there exists $u \in H^2$ such that v_1 , v_2 satisfy (2.9) $| \det \{ a_{i,j}(y) \} | = | u(y) |$ Thus if we set $v_j = w_j$ sgn u, i = 1.2

Let us now pass to the example proper. Let $E = L^2 =$ $L_x^2(\infty, \infty) = \{ u(x), v(x), \dots \}$, A_p the (self adjoint) operator defined by

$$
(Aru)(x) = u''(x) + ru(x), \qquad (2.10)
$$

 $D(A_{\mathbf{r}}) = \{ \mathbf{u} \in \mathbf{L}^2 \; ; \; \mathbf{u}^{\mathbf{t}} \in \mathbf{L}^2 \}$ (u^{rr} understood in the sense $D(A_T^{\bullet}) = \{ u \in L^{\bullet} ; u \in L^{\bullet} \}$ (u'' understood in the sense
of distributions), $F = C^2 = \{ (y_1, y_2) , \dots \}$ two dimensional unitary space, $f(t) = (f_1(t), f_2(t))$, $B(y_1,y_2)(x) =$ $\mathbf{y}_1 \mathbf{g}_1(\mathbf{x}) + \mathbf{y}_2 \mathbf{g}_2(\mathbf{x})$, \mathbf{g}_1 , \mathbf{g}_2 elements of \mathbf{L}^2 to be determined later

The Fourier-Plancherel transform $u(x) \leftrightarrow \hat{u}(s)$ defines an isometric isomorphism of **L2** onto itself under which the operator **Ar** transforms into the multiplication operator

$$
(Aru)(s) = (-s2 + r)u(s), \qquad (2.11)
$$

 $D(A_r) = \{ u \in L^2 | s^2u(s) \in L^2 \}$. Thus we may consider $E = L^2 = L^2_s(-\infty, \infty) = \{ u(s) , v(s) , \dots \}$ A_r defined by (2.11),
 $B(y_1, y_2)(s) = y_1h_1(s) + y_2h_2(s)$, $h_1 = \hat{g}_1$, $h_2 = \hat{g}_2$. The adjoint of B is given by $B^*u = (y_1(u) , y_2(u))$

$$
y_1(s) = \int u(s)k_1(s)ds
$$
, 1 = 1,2

(where we have set $k_i(s) = \overline{h}_i(s)$) . It is not difficult to see that the Cauchy problem for $u^{+t} = A_{n}u$ is uniformly well posed for any r , the propagators being given by

$$
S_{r}(t)u(s) = a(r,s,t)u(s), T_{r}(t)u(s) = b(r,s,t)u(s),
$$

\n
$$
a(r,s,t) = \begin{cases} \cosh (r - s^{2})^{\frac{1}{2}}t & \text{if } r \ge 0 \text{ and } |s| \le r^{\frac{1}{2}},\\ \cos (s^{2} - r)^{\frac{1}{2}}t & \text{if } r < 0 \text{ or if } r \ge 0 \text{ and } |s| \ge r^{\frac{1}{2}} \end{cases}
$$

\n
$$
b(r,s,t) = \begin{cases} (r - s^{2})^{-\frac{1}{2}}\sinh (r - s^{2})^{\frac{1}{2}}t & \text{if } r \ge 0 \text{ and } |s| \le r^{\frac{1}{2}},\\ (s^{2} - r)^{-\frac{1}{2}}\sin (s^{2} - r)^{\frac{1}{2}}t & \text{if } r < 0 \text{ or if } r \ge 0 \end{cases}
$$

\nand $|s| \ge r^{\frac{1}{2}}$.

The spectrum of A_n consists of the half-line $(-\infty, r]$; thus if $r < 0$ condition (2.6) is satisfied. By Theorem 2.3 the system

$$
u^{t}(t) = Aru(t) + Bf(t)
$$
 (2.12)

is null controllable if and only if

 $u'(t) = A_n u(t) + Bf(t)$ (2.13)

is nul1 controllable, For r = 0 the system **(2.13)** has been considered in (5) , Section 4; it is null controllable if and only if

$$
h_1(s)h_2(-s) - h_1(-s)h_2(s) \neq 0
$$
 a.e. (2.14)

It is easy to see that the same result holds for any r (null controllability is "translation-invariant" for first-order controllability is "translation-invariant" for first-order
systems) . Condition (2.14) holds for instance when $g_1(x)$ =

 2^{1} 9 $= \exp (-|x|)$, $g_2 = \exp (-|x+1|)$. $h_2(s) = 2 \exp (-is) (1 + s^2)^{-1}$ hand side of $(2,14)$ reduces to $8i(1 + s^2)^{-2}$ sin s ; then $h_1(s) = 2(1 + s^2)^{-1}$, and the expression on the **left-**

2 g_1 , g_2 . Let u_o , $u_1 \in L^2_s$. It is plain that Eq. (2.3) will hold for them if **and** only if Let us now examine $(2,12)$ for $r \ge 0$, with the same choice of

$$
\int (a(r,s,t)u_1(s) + b(r,s,t)u_0(s))k_1(s)ds = 0, t \ge 0
$$
 (2.15)

It **is** easy to see by **means of** simple changes of variable that the part of the integral in the left-hand side of (2.15) extending over $|s| \ge r^{\frac{1}{2}}$ can be written

 $\int (\cos y t (K_n u_1)(y) + y^{-1} \sin y t (K_n u_0)(y)) (K_n k_i)(y) dy$ (2.16) where K_r is the isometric isomorphism of L^2 ($|s| \ge r^{\frac{1}{2}}$) onto L^2 given by

$$
(K_{\mathbf{r}}u)(y) = |y|^{\frac{1}{2}}(y^2 + r)^{-\frac{1}{4}} u((y^2 + r)^{\frac{1}{2}} sgn y)
$$

If $u_0(y)/y$ is summable at the origin we can write (2.16) as follows:

$$
\frac{1}{2} \int e^{i y t} (v_1(y) \widetilde{k}_1(y) + v_2(y) \widetilde{k}_1(-y)) dy , \qquad (2.17)
$$

N nl $v_1(y) = \tilde{u}_1(y) - i\tilde{u}_0(y)/y$, $v_2(y) = \tilde{u}_1(-y) - i\tilde{u}_0(-y)/y$ (here $\mathbf{v}_1(\mathbf{y}) = \mathbf{u}_1(\mathbf{y}) - \mathbf{u}_0(\mathbf{y})/\mathbf{y}$, $\mathbf{v}_2(\mathbf{y}) = \mathbf{u}_1$
we have written $\mathbf{\tilde{u}}_1 = \mathbf{K_r} \mathbf{u}_1$, $\mathbf{\tilde{k}}_j = \mathbf{K_r} \mathbf{k_j}$ we have written $u_1 - h_T u_1$, $h_j - h_T h_j$, call how a_{1j} y, $- h_k$ $(c-1)^j y$, i.j = 1.2 . The matrix $\{ a_{1j} \}$ so defined satisfies the assumptions in Corollary 2.7 and thus there exist v_1 , v_2 in L^2 , $v_i \neq 0$ such that $\widetilde{k}_i = K_n k_i$, Call now $a_{i,i}(y) =$

$$
v_1a_{21} + v_2a_{22} \in H^2
$$
, i = 1,2 (2,18)

It is plain that (2.18) holds as well for $w_i(y) = v_i(y)(i + y)^{-1}$, $i = 1,2$. If we now define $\tilde{u}_1(y) = \frac{1}{2} (y_1(y) + w_2(-y))$, $\tilde{u}_2(y) =$ $=\frac{1}{2}$ **i**y(w_l(y) - w₂(-y)) then u_1 , $u_2 \in L^{2^+}$ and (2.17) - a fortiori $(u_1^2(y) - u_2^2(y))$ then u_1 , $u_2 \in L^2$ and $(2.17) - a$ fortion (2.16) - vanishes for $t \ge 0$. Taking now $u_1 = K_T^{-1} \tilde{u}_1$ which are defined for $|s| \geq r^{\frac{1}{2}}$ and extending them to the entire real line by setting elements of I_g^2 such that (2.15) holds, which shows that the system (2.12) is not completely controllable for $r \ge 0$ **-Lw** nd
* $u_i = 0$ in $\vert s \vert < r^{\frac{1}{2}}$ we obtain two non-vanishing

2,6 FEMARK Our results on density of K(L) generalize to other topologies in E **x q** . We show briefly in what follows how this **can** be done.

that $E_0 \subseteq E$, $E_1 \subseteq E$ (no relation between the topologies of that $E_0 \subseteq E$, $E_1 \subseteq E$ (no relation between the topologies of E , E_1 , E_2 is postulated) Let $m > 0$; introduce in $D(A^m)$, the domain of A^m the topology given by the norm $|u|_{D(A^m)} = |u|_{E^m} + |\Delta^m u|_{E^m}$ or the equivalent one $|u|_{D(A^m)} = |(\lambda - A)^m u|_{E^m}$, Let E_0 , E_1 be Banach spaceswith norms $\left|\cdot\right|_0$, $\left|\cdot\right|_1$ such λ any element of $\rho(A)$. We shall assume that:

$$
D(A^m) \subseteq E_{o} \quad , \ D(A^{m-1}) \subseteq E_1
$$

both inclusions being continuous (we shall always consider $D(A^m)$ endowed with the topology given before, $D(A^{m-1})$ with the similar topology obtained repacing m by m-1); moreover we suppose

$$
B(F) \subseteq D(A^{m-1}) , S(t)F_i \subseteq E_i , T(t)E_i \subseteq E_i , t \ge 0 , i = 0,1
$$

 $S(\cdot)$, $T(\cdot)$ are strongly continuous functions in the topologies of **El R2'** Under a11 this conditions it **is** easy to show that

if $u(\cdot)$ is a solution of (2.1) with $u(0) = u'(0) = 0$, $u(t) \in D(A^{m})$, $u'(t) \in D(A^{m-1})$ for all $t \geq 0$. It is then natural to ask when $K(L)$ will be dense in $E_0 \times E_1$, i.e. when the system (2.1) will be null controllable in the topology α **E**_{o} α **E**₁.

Let E_0^* , E_1^* be the dual spaces of E_0 , E_1 , application of a functional $u_1^* \in E_1^*$ to an element $u_1 \in E_1$ being indicated

$$
\langle u_1^*, u_1 \rangle_1 , i = 0,1
$$

**Assume (2.1) is :
(u*, u*)** \in **K(L)** (2.1) is not null controllable in E_0 x E_1 and let $\frac{1}{\sqrt{1}}$. Then we have, in view of (1.5)

$$
\langle u_0^*, \int_0^t T(s) Bf(s) ds \rangle_0 + \langle u_1^*, \int_0^t S(s) Bf(s) ds \rangle_1 = 0
$$
 (2.19)

for all $t \ge 0$, $f \in \mathcal{L}$. Setting $f(s) = \exp(-\lambda^{\frac{1}{2}}s)u$, $u \in F$ $x + y = c$, $y + z = d$, $z = d$, setting $f(x) = e^{c}$, $y = d$, $y = e$, $y = d$, $y = e$, $y = e$ **1** we get from **(2.19)** that

 $\langle u_o^*$, R(λ ;A)Bu \rangle_o^* + $\langle u_1^*$, $\lambda^{\frac{1}{2}}R(\lambda;A)$ Bu $\rangle_1 = 0$

for $\lambda > w^2$ and a fortiori for all $\lambda \in \rho_o(A)$. A satifies Condition (2.6). Then, by using the same trick in the proof of Theorem **(2.3) we can show** that

$$
\langle u_0^*, R(\lambda;\lambda)Bu \rangle_0 = \langle u_1^*, R(\lambda;\lambda)Bu \rangle_1 = 0
$$
 (2.19')

for all $\lambda \in \rho_o(A)$. Assume now the first-order system M is null controllable. Then, if $B^*R(\lambda; A^*)u^* = 0$ for some $u^* \in E^*$ null controllable. Then, if $B^*K(\lambda)$; $A^*/u^* = 0$ for some $u^* \in E^*$
and all $\lambda \in \rho_O(A)$, $u^* = 0$ or, what amounts to the same thing, the subspace of E generated by all elements of the form

$$
R(\lambda ; A)Bu \qquad (2, 20)
$$

 $u \in F$, $\lambda \in \rho_0(A)$ is <u>dense</u> in **E**. Let us see that the same thing happens with the subspace of E generated by the elements

$$
(\mu - A)^{m} R(\lambda ; A)Bu
$$
 (2.21)

 $(\mu - A)^m R(\lambda ; A)$ Bu
 μ a fixed element of $\rho(A)$, $u \in F$, $\lambda \in \rho_0(A)$. In fact, assume this is not true. Then there exists $u^* \in E^*$ such that

$$
\langle u^*, (\mu - A)^m R(\lambda ; A)Bu \rangle = 0
$$
 (2.22)

for all $u \in F$, $\lambda \in \rho_{o}(A)$. Adding up (2.22) for two different elements λ_0 , λ_1 of $\rho_0(A)$ and using the first resolvent equation we get

$$
\langle u^*, (\mu - A)^m R(\lambda_0; A)R(\lambda_1; A)Bu \rangle = 0
$$
 (2.23)

Differentiating (2.23) with respect to λ_1 m-1 times we get

$$
\langle u^*, (\mu - A)^m R(\lambda_0; A)R(\lambda_1; A)^m B u \rangle = 0
$$

for all $u \in F$, $\lambda_o \in \rho_o(A)$. Then

$$
B^*R(\lambda_o; A^*) (\mu - A^*)^m R(\lambda_1; A^*)^m u^* = 0
$$

which, in **view** that M is completely controllable, implies

$$
(\lambda - A^*)^m R(\lambda_1; A^*) = 0 ,
$$

a fortiori, $u^* = 0$.

by all elements of the form **(2.21)** is dense in E is equivalent to assert that the subspace generated by all elements of the form Let us observe next that to assert that the subspace generated

11

(2.20) is dense in $D(A^m)$. But then it will also be dense in E_0 ; thus, in wiew of $(2.19')$, $u_0^* = 0$. The second i term in $(2.19')$ can be trated in the same way than the first. Collecting all our observations we have

conditions in Remark 2,6, Assume the first-order control system (2.5) is null controllable, and assume **A** satisfies Condition **(2.6)** . Then the system (2.1) 2.7 THEOREM Let E_0 , E_1 be Banach spaces satisfying all the $topology of E_0 x E_1$

§3. Let us call the system (2.1) completely controllable §3. Let us call the system (2.1) <u>completely controllable</u>
if, given u_o , $u_1 \in D$, v_o , $v_1 \in E$, $\epsilon > 0$ there exists $f \in \mathcal{L}$ such that the solution of Eq. (2.1) with $u(0) = u_0$, $u'(0) = u_1$ satisfies

$$
|u(t) - v_0| \le \epsilon , |u'(t) - v_1| \le \epsilon
$$

for some t > *0.* It is plain that complete controllability of **^L** implies null controllability. The reverse implication is also true; this follows from the fact that the solutions of **Rq.** (2,l) can be translated and inverted in time, i.e. if $u(\cdot)$ is a solution of (2.1) for some $f(\cdot) \in \mathcal{L}$ then $v(t) = u(a - t)$ is also a solution of \mathbb{F}_q . (2.1) for $g(t) = f(a - t)$. Thus to steer the system from (u_0, u_1) to the vicinity of (v_0, v_1) we only have to steer first to the vicinity *of* the origin (using null controllability and the inversion property just mentioned) and then from the Origin to the vicinity of (v_{0}, v_{1}) .

first-order system may be null controllable without being completely controllable. There are, however, two important particular cases where the equivalence holds; these are (a) the case where A generates an analytic semigroup and (b) the the case where A generates an analytic semigroup and (b) the
case where A generates a group and $\rho^{}_{\rm o}({\rm A})$ = $\rho^{}_{\rm o}({\rm -A})$, this last condition meaning that we can unite the points +00 and - ∞ of the real axis by means of a *curve* that does **not** meet the spectrum of *8.* The situation is diferent for first-order systems; in fact a

 s ystems $u^{(n)} = Au + Bf$, $n = 1$, 2 may also be considered for $n > 3$. However, the interest of these generalizations is limited by the fact that the **assumption** of **well** posedness of the homogenous by the ract that the assumption of well posedness of the homogenod
problem $u^{(n)} = Au$ implies the boundedness of A ((\pm), Section 3), thus.precluding applications to partial differential equations. The results are as follows: if L is the n-th order system Problems similar to the ones **we** have considered for the

$$
u^{(n)}(t) = Au(t) + Bf(t)
$$
 (2, 24)

 $13¹$

and M, as usual, is the first-order system

$$
u^{r}(t) = Au(t) + Bf(t) \qquad (2.25)
$$

then the four notions, null controllability, null controllability at time t_{0} , complete controllability, complete controllability at time t_0 are equivalent for the system **L** and equivalent to the corresponding notions for the system M. The proof is a consequence of the fact that the solution operators of $Eq. (2.24)$ - and also of equation *(2.25.)* - are analytic when A is bounded,

References

- 1. E. HILLE R. S. PHILLIPS, Functional Analysis and Semi-groups,
American Mathematical Society Colloquium Publications, vol.
XXXI , Providence, Rhode Island, 1957 American Mathematical Society Colloquium Publications, vol.
- 2. K. HOFFMAN, Banach space of analytic functions, Prentice-Hall, Englewood Cliffs, Mew Jersey, 1962
- 3, A. ZYGMWD, Trigonometric series, second edition, vol. 1, Cambridge University Press , Cambridge, *1959..*
- 4. H. O. FATTORINI, Ordinary differential equations in linear topological spaces, submitted for publication to Pacific **J,** Math. Announcement of results in: Notices of the Amer. Math. *SOC.* Abstract **66T-474 (vol, 13)** 734, Abstract 47T-41 $(vo1. 14)$, $140.$
- 5. . On complete controllability of linear systems, to appear in Journal of Differential Equations *3 (1967)*
- 6. ______. Some remarks on complete controllability, J. Soc. Ind, Appl. Math,, sera A: On Control, 4 *(1966) 686-694*