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Abstract 

An analytical  solution f o r  the  time 
optimal control function and optimal t r a j ec -  
tor ies  of a second-order l i nea r  system with a 
constant time delay has been obtained. The 
system i s  a simple spring mass system with a 
constant time delay i n  the  posit ion variable. 
In addition t o  expressions f o r  the control 
function and t ra jec tor ies ,  an equation f o r  
the  l imi t  cycle has been established as well 
as a numerical construction of a pseudo 
switching curve f o r  t h i s  system. The optimal 
control function was deduced from the  maximum 
principle of Pontryagin f o r  systems with 
delay. The two-point boundary value problem 
associated with the  differential-difference 
equation i n  the  synthesis of the control was 
solved by use of a Newton-Raphson i t e ra t ion  
scheme. The resul ts  a re  expressed i n  a form 
which can be eas i ly  compared t o  the  well- 
known resul ts  of the corresponding system 
without delay. 

Introduction 

Recently, much in teres t  and e f fo r t  have 
been spent i n  the attempt to  answer questions 
on the  s t a b i l i t y  and control of l i nea r  
systems of the  hereditary type; tha t  i s ,  
systems which a r e  described by l inea r  
differential-difference equations whose 
future behavior depends upon i t s  pas t  and 
present s ta tes .  Although these systems were 
studied by N e r  i n  1750, no appreciable 
application of them t o  physical si tuations 
were discovered and employed before the f i r s t  
quarter of the  20th century. Physical 
systems which contain delays occur i n  such 
f i e lds  of science as biochemistry, economics, 
t r a f f i c  flow, control theory, and so forth.  

For example, i n  the  remate control of distance 
space vehicles, the  communication delay can 
adversely af fec t  the  s t a b i l i t y  of the  system. 
Time delays i n  engine response of large  j e t  
t ramports  can seriously a f fec t  the handling 
qual i t ies  of the a i r c ra f t .  

Many questions concerning the s t a b i l i t y  
of these systems have been answered by 
Bellmvl (1953), Pontryagin (1962), Bellman 
and Cooke (1963), Krasovskii (1963), 
Kashiwagi and Fxbgge-Lotz (1967), Halanay 
(1966), and Kashiwagi and Shaughnessy (1967), 
jus t  t o  name a few. Questions concerning the  
optimal control and the  control labi l i ty  of 
systems containing delays have been pa r t i a l ly  
answered as well. Khratishveli (1961) has 
extended Pontryagin's maximum principle t o  
systems described by differential-difference 
equations. Balakirev (1962) has applied the  
extended maximum principle t o  a par t icular  
l i nea r  system with delay t o  determine the 
switching l ine .  Chyung and Lee (1965) have 
considered the time optimal problem f o r  the 
case of a general controller  r e s t r a in t  s e t .  
0&zt;reli (1966) has considered the  control 
of delay systems i n  general, and i n  part icu- 
l a r ,  has extended the Neustadt method f o r  
control synthesis t o  the system with delay. 
Many questions concerning the  time optimal 
control of l i nea r  systems with delay remain 
t o  be answered. The purpose of t h i s  paper is 
t o  examine i n  some d e t a i l  t h e  basic character- 
i s t i c s  of a par t icular  l i nea r  system con- 
taining a delay - namely, a second-order sys- 
tem f ree  of f r i c t ion ,  but which contains a 
time delay i n  i t s  posit ion feedback. Because 
of the  well-developed theory and application 
of t h i s  problem without delay, many important 
analogies and differences a re  discussed. 
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Description of the System and 
the Solution Tra.iectories 

The mathematical model considered here 
has the form 

where A, B, and C are  constant matrices, 
and u( t )  i s  the control function which is 
bounded by the inequality 1 u ( t )  / 6 1. 

The solution of equations (1) fo r  the 
s t a t e  trajectory i n  terms of the control 
function i s  given as 

where ~ ( t )  is the fundamental matrix for  the 
di f f  erential-diff erence equation given by 
equations (1) . The fundamental matrix ~ ( t )  
sa t i s f i e s  the following differential-  
difference equation and properties: 

~ ( t )  = A K ( ~ )  + B K ( ~  - 8) 

~ ( 0 )  = I J 
In th i s  paper, one of the  simplest examples i s  
considered; that  i s ,  the case for  

A=! 1, B = E  1, .=[:] I (4) 

~ ( t )  =y + bt + ;J 
2at + b 

Tne i n i t i a l  function ~ ( t )  was assumed t o  be 
quadratic in  time. This choice makes it pos- 
s ib le  t o  represent many functions through the 
proper choice of the constants a, b, and c.  

For t h i s  system, the elements of the 
fundamental matrix ~ ( t )  are  

k I2 ( t )  = -k2Jt + 9) = 

(5 

the largest  integer 

The fundamental 

matrix ~ ( t )  for  the system behaves somewhat 
l ike  the fundamental matrix Q ( t )  fo r  the 
system without delay. It can be seen from 
figures 1 and 2 that  fo r  small values of the 
delay ( i n  t h i s  case 8 < 0.1),  ~ ( t )  and Q ( t )  
are very nearly the same. However, fo r  large 
delays (9 > 0.1) striking differences occur 
between ~ ( t )  and ~ ( t ) .  The most obvious of 
the differences i s  that  the magnitudes of the 
elements of ~ ( t )  increases rapidly with time. 

If the results of equations (4) and (5) 
are  substituted into equation (2),  the f o l -  
lowing elements of the s t a te  vector ~ ( t )  
result  : 

where 

AU. that  is needed t o  reduce the expressions 
given by equations (6) t o  a completely d g e -  
braic form i s  the integration of the integrals 
I1 and 12. These expressions can be inte- 

grated immediately, once the optimal control 
function u ( t )  i s  determined. 



The Time Optimal Control Function 
and Its Synthesis 

The time optimal control function f o r  the 
system given by equations (1) can be obtained 
from the  extended maximum principle of 
Pontryagin f o r  systems with delays. According 
t o  t h i s  principle,  the optimal value of u ( t )  
i s  t h a t  value which maximizes the  Hamiltonian 

where the  elements of the adjoint  vector & ( t )  
are determined from the  differential-difference 
equations f o r  0 5 t < T - 8 as  

( i  = 1,2) ( 9 )  

and f o r  T - 8 5 t j T as  

For the  system given by equations (1) and (4 ) ,  
these equations can be rewritten as  

l t i ( t)  = - ~ l $ ( t )  - ~ ' & ( t  + 8) 

(0  5 t < T - 8) (11) 

& ( t )  = - ~ * & ( t )  

(T - 8 rC t i T) (12) 

where A' and B' a re  the  transposes of the  
coefficient  matrices given i n  equations ( k ) ,  
and T i s  the optimal time. The value of 
u ( t )  which makes the  Hamiltonian as  given by 
equation (8) maximum subject t o  the  constant 

lu( t ) l  S 1 is 

4 % )  = sgnD2(t] (13) 

where $2(t)  can be obtained from the  solu- 

t i o n  of equations (11) and (12). The solution 
f o r  &(t )  i s  

The resemblence of t h i s  r e s u l t  t o  t he  value of 
t he  adjoint  vector f o r  systems with no delay 
i s  c lear .  

Substi tut ion of $2(t)  as  determined 
from equation (14) into the  above expression 
f o r  the optimal control gives 

u ( t )  = sgn [ 2 (  T D sgn C l l  k (T - t )  + ak12(~ - t] 
(15) 

where a = \ (Tf i2(T) .  This form f o r  u ( t )  

shows tha t  both components of &(T) need 
not be known; instead, a l l  t h a t  i s  needed is 

the  r a t io  a and the  value of sgn Jr T . C2(  )IJ 
The f ac t  t h a t  the  optimal control function i s  
of the bang-bang type allows an evaluation 
of t he  in tegra l  functions I1 and I 

2 as 

The value of m occurring i n  the above 
expression is the  number of switches required 
t o  control the  system, and t i s  t he  pth 

P 
switching time a s  determined from t h e  pth root  
of the  equation 

where 0 < t l < t 2 < .  . . < t  < t  <. . . < T .  
P p+l 

It can be seen from equation (17) t h a t  the 
value T - t i s  a function of a only and 
not of T. 



The values of T and a which serve t o  
drive the perturbed s t a t e  t o  the origin i n  
time T by use of a bang-bang control func- 
t ion  can be obtained as  the unique solution 
f o r  T and a of the s e t  of equations 

Since the pa r t i a l  derivatives of x l ( ~ , a )  and 

%(T,a) with respect t o  T and a can be 

computed analytically, the Newton-Raphson 
scheme of solving f o r  the root of a system of 
equations can be used i n  equations (18), once 
approximate values f o r  T and a a re  given. 
Optimal t ra jector ies  fo r  several values of 
delay are  shown i n  figure 3. The i n i t i a l  
function for  t h i s  example was taken as a 
l inear  function of time (eqs. (4)) with 
b = c = 2.0. In addition t o  the obvious di f -  
ferences i n  trajectory ch'EEracteristics, there 
i s  also an increase in  the value of the opti-  
mal time required t o  control the system with 
increasing values of the delay. 

given by a particular root of the equation 
k = ( ~ )  = 0. For the family of i n i t i a l  Func- 
t ions given i n  equations ( k ) ,  the value of 
xl(0) and x2(0) are  c and b, respec- 
tively. This means that  i f  Tr, satisfying 
k12(Tr) = 0, i s  substituted into  equations (6) 
with X~(T,) = x2(~,) = 0, the resulting 
values of c and b are  the coordinates of 
the r t h  cusp point. These coordinates 
demted by x and ~ i , ~ ,  respectively, 
are  l,r 

r \ 

Optimal Switching Curve and 
Limit Cycle 

An optimal switching curve can be con- 
structed numerically fo r  the system with delay. 
In the analysis, the term optimal switching 
curve w i l l  denote the curve that  separates 
the parts of the trajectory fo r  which u = +1 
from those for  which u = -1 for  a particular 
family of i n i t i a l  functions. This curve 
reduces t o  the  ordinary optimal switching 
curve i n  the case of vanishing small delay 
values. 

There are  certain points on the switching 
curve which w i l l  be referred t o  as cusp points. 
For the system with no delay these points 
correspond t o  the intersection of the 
switching curve with the x l  axis. I n i t i a l  
s ta tes  with these points as  coordinates can 
be driven t o  the origin i n  the time required 
f o r  a particular number of consecutive 
switches of the control function. The value 
of a corresponding t o  these i n i t i a l  s ta tes  
are  a = +m or  -m or  equivalently 
w2(!P) = 0. The corresponding value of T is 
a particular root of the equation &(T) = 0. 
In the case of systems with delay, the cusp 
points do not necessarily occur on the x l  
axis and the value of T for  the synthesis i s  

where Tr i s  the r t h  root of the equation 

k (T) = 0, and 0 < T1 < T2 <. . .< Tr < 
12 

THl <. . . . The analytical  determination 

of the coordinates of these points i s  s ig-  
nificant t o  the construction of the 
switching curve since much work is required 
t o  locate them numerically. 

An example of the switching curve associ- 
ated with a system whose i n i t i a l  disturbance 
function i s  l inear  in  time ( a  = 0, b = 2.0 
i n  ~ ( t )  i s  given for  8 = 0 and 0.3 i n  f ig-  
ure 4. Closely associated with the switching 
curve i s  the l imit  cycle f o r  the system. The 
curve is symmetric with respect to  the origin 
and i t s  equation for  x2(t)  < 0 i s  

where p is  the l imit  of the sequence 
whose r t h  element is 



The l i m i t  cycle i s  a closed curve i n  s t a t e  
space which separates the space into two 
regions. Disturbed s ta tes  in ter ior  t o  t h i s  
curve can be controlled with the class of 
time optimal control functions used here. 
Disturbed s ta tes  exterior t o  the curve cannot 
be controlled with these control functions. 
Disturbed s ta tes  which l i e  on the curve remain 
on the curve indefinitely. An example of how 
the l i m i t  cycle of the system described by 
equations (20) varies with increasing values 
of the delay i s  shown i n  figure 5 for  the case 
of a = 0 .  As shown, the effect of increasing 
the  magnitude of the delay i s  t o  substantially 
reduce the region of s t a t e  space which can be 
controlled optimally. The extreme cases fo r  
the l i m i t  cycles are  a c i rc le  whose radius 
becomes in f in i t e  as 8 approaches zero (the 
ent i re  s t a te  space controllable) and the x 
axis between +1 as 8 approachks infinity.  1 

Comments on an Approximation 

An approximation tha t  has been used in  
the past t o  study systems of the hereditary 
type with small delays i s  

which represents the f i r s t  two terms of a 
Taylor's series expansion of ~ ( t  - 8). This 
approximation reduces the hereditary system 
given by equations (1) to  an ordinary l inear  
system containing negative f r i c t ion  which i s  
described by the  equations 

where 

A o = [ r  1, "=[I, and %=I] 
(24) 

An indirect and simple method of com- 
paring the results of t h i s  approximation t o  
the exact analysis jus t  discussed is through 
the fundamental matrices of the two systems. 
Shown i n  figure 6 are  the elements of the 
matrix, plotted versus time fo r  exact calcu- 
lations from equations (1) and approximate 
calculations from equations (23) and (24). 
The figure indicates re la t ively  good agree- 
ment between the elements of the two matrices 
fo r  small delays (8 < 0.1), but sizable di f  - 
ferences fo r  larger vdues  of the delay. This 
implies that  the approximation should give 
reasonable results f o r  systems with small 
delags compared t o  the control time. 

Concluding Remarks 

A time optimal control study of a par- 
t i cu la r  l inear  system containing a delay i n  
i t s  feedback position has been conducted. It 
was found that  the optimal control function 
is the bang-bang type whether or  not a delay 
i s  present; however, the times a t  which the  
control function switches sign and the optimal 
time for  control are dependent upon the  s ize  
of the delay present in  the system. For the 
cases considered here, the control time 
increased monotonically with increasing values 
of the delay. 

It was found that  the switching curve fo r  
the system with sizable values of delay d i f -  
fered considerably from the switching curve of 
the corresponding system without delay. In 
fact ,  the switching curve fo r  the  system with 
delay attenuates along the x l  axis.  For 
large values of delay it was found that  a l i m i t  
cycle exists which substantially reduces the 
region of s t a t e  space which can be controlled 
optimally. 

The analysis further indicated that  the 
approximation of the term containing the 
delay by the f i r s t  few terms of a Taylor's 
series comparison can be useful i n  cases f o r  
which the delay is small compared t o  the con- 
t r o l  time, but should be abandoned fo r  large 
values of the delay. 
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Figure 2. - Variation of the  element klg(t) of the fundamental matrix with time. 





Figure 4.- Switching curve and l i m i t  cycle for a = 0, b = 2.0 and 0 = 0 and .3. 



Figure 3. - Effect of increasing delay on the limit cycle. 




