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DIVERGENCE OF SOME ALL-MOVABLE CONTROL SURFACES 

INCLUDING DRAG LOADINGS 

By Robert C. Goetz 
Langley Research Center 

SUMMARY 

The aeroelastic divergence characteristics of some rigid all-movable control sur- 
faces supported by a flexible shaft have been studied analytically, and the results have 
been compared with existing experimental data in the Mach number range from 1.64 to 
15.4. 
a long, thin cantilever that was weak in the lift direction and stiff in the drag direction. 

The configuration studied was a blunt, double-wedge control surface supported by 

The results of the study indicate that a new type of divergence instability is inher- 
ent to this configuration. 
bending accompanied by torsional rotation. The analysis and experiments indicate that 
drag loadings, in addition to lift loadings, are important in this new divergence instability. 
Estimates obtained from a potential- energy analysis using aerodynamic characteristics 
calculated from simple Newtonian theory were in fair agreement with the experimental 
results over the entire Mach number range; however, excellent agreement resulted when 
measured static aerodynamic derivatives were incorporated into the analysis for the 
Mach 6.8  and 15.4 experiments. 

Its character is a mode of deflection consisting of lateral 

INTRODUCTION 

Divergence is classically defined for unswept wings as a static instability of an air- 
foil in torsion, which occurs when the torsional rigidity of the structure is exceeded by 
aerodynamic twisting moments (ref. 1). However, a different type of divergence is pos- 
sible for a rigid wing supported by a cantilevered shaft that is weak in the lift direction 
and stiff in the drag direction. When the drag loading is high, as for a wing with a blunt 
leading edge at high speeds, such a combination can diverge in a mode of deflection con- 
sisting of a twist accompanied by a lateral bending deflection. Whereas torsional diver- 
gence is analogous to the problem of column deflection with initial eccentricity (ref. 2), 
this two-degree-of-freedom instability is analogous to  the lateral buckling of a beam. 
Although conventional all-movable control surfaces are supported on present-day vehicles 
by torque tubes with support bearings and therefore are not subject to this type of diver- 
gence instability, there is no assurance that mission requirements will not dictate design 



changes on future generation vehicles. Additionally, there have been many aeroelastic 
investigations, especially flutter trend studies, where all-movable control-type models 
with integral support shafts were side-wall mounted for  tunnel testing. 
refs. 3 to  8.) In two of these investigations (refs. 6 and 7), experimental divergence data 
are presented that were not predicted by conventional torsional divergence theory. It 
was these anomalous data that motivated the present investigation. 

(See, for example, 

In the investigations of references 6 and 7, the model shaft was designed to give 
desired values of spanwise bending and torsional stiffnesses so as to insure flutter within 
the dynamic-pressure-range capability of the wind tunnels, and also to place the model 
out of the tunnel-wall boundary layer into the uniform flow region. These design cr i ter ia  
necessitated relatively long, thin rectangular shafts which, by their nature, a r e  suscepti- 
ble to divergence. Instabilities caused by static loadings have not been limiting design 
factors for  models with similar structural arrangements in the past, since most aero- 
elastic investigations have been conducted at zero  angle of attack and have employed low- 
drag (sharp-leading-edge) models. Consequently, the models experienced small  static 
aerodynamic loadings during the tests. 
the static loadings have resulted in two-degree- of-freedom divergence. 

But with high-drag (blunt-leading-edge) designs, 

Accordingly, the purpose of th i s  paper is to investigate the two-degree-of-freedom 

A uniform cantilever 
divergence problem in general - including drag loadings - and the divergence charac- 
teristics of the model designs of references 6 and 7 in particular. 
shaft of thin rectangular c ross  section, coupled to a rigid panel at its free end and loaded 
by concentrated loads that simulate the aerodynamic forces of lift and drag on the panel, 
is discussed. 
based on the potential-energy method applying the usual assumptions of elementary beam 
theory. 
loading conditions of lift only, drag only, and a combination of lift and drag, 
solution to the general problem of two applied loads is dependent upon such aerodynamic 
quantities as the magnitude of the drag force, the slope of the lift curve, and the location 
of the lift and drag forces  on the panel. Newtonian theory aerodynamics a r e  used to 
predict these steady- state aerodynamic parameters,  and the results a r e  compared with 
the experimental results of references 6 and 7. A theoretical parametric study is also 
conducted to determine the sensitivity of the divergence instability to these parameters.  
In addition, the same aerodynamic quantities were measured in the Langley hypersonic 
aeroelasticity tunnels at Mach numbers of 6.8 and 15.4, and the results a r e  included in 
the divergence analysis, yielding additional divergence results for comparison. 

The derivation of the equations governing the divergence instability is 

Theoretical solutions of the divergence conditions are obtained for the applied 
The final 
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SYMBOLS 

spanwise distance from flexible- shaft-rigid-panel junction to applied loads 

generalized amplitude 

chordwise distance from elastic axis to applied drag load, positive forward 

functions defined by equations (15) (i = 1, 2, 3, and 4) 

panel chord 

torsion rigidity; f o r  a uniform beam with rectangular c ros s  section, - 
Y 

C = h t ( l  - 0.63 c)G 
3 h 

drag coefficient 

lift coefficient 

functions defined by equations (19) (i = 1, 2, 3, and 4) 

slope of lift curve 

chordwise distance from elastic axis to applied lift load, positive forward 

drag 

Young's modulus of elasticity 

modulus of elasticity in shear  

width of flexible shaft 

moment of inertia of c ross  section with respect to Z-ax i s  

constants dependent upon structural  quantities of flexible shaft, see 
equations (13) 

length of flexible shaft 
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L lift 

L+ 
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qi  
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UB 

UT 

u@ 

V 

V 

X 

X O P  

L lift function, L4 = - 
+X=Z 

Mach number 

bending moment about X-axis 

bending moment about Y-axis 

bending moment about Z-axis 

bending moment about Z 1- axis 

dynamic pressure 

generalized coordinate 

rigid panel (planform) a rea  

thickness of flexible shaft 

strain energy of system in bending 

total strain energy of system (see eq. (6)) 

strain energy of system in torsion 

free-stream velocity 

total potential energy of system 

spanwise coordinate measured from built-in end of shaft 

chordwise location of aerodynamic center measured from leading edge, 
fraction chord 

coordinate of an arbitrary cross  section in deformed configuration which is 
tangent to elastic axis 
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lateral coordinate 

coordinate at elastic axis of an arbitrary c ross  section in deformed con- 
figuration being in y principal direction 

chordwise coordinate, positive aft, measured from elastic axis 

coordinate at elastic axis of an arbitrary c ross  section in deformed con- 
figuration in z principal direction 

fixed axes of undeformed-shaft configuration (see fig. 1) 

axes of deformed-shaft configuration (see fig. 2) 

angle of attack 

distance drag load moves in z-direction during deformation 

mass ratio (ratio of mass of model panel to mass of volume of test medium 
contained in a solid generated by revolving each chord about its midpoint, 
length of solid being wing semispan) 

test-medium density 

angle of twist of shaft in deformed configuration relative to undeformed state 

frequency of nth mode (n = 1, 2, 3, . . .) 

total work done on system by drag load 

total work done on system by lift load 

Subscripts : 

calc calculated 

cr critical (conditions at divergence) 

div divergence 

D due to drag 
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L due to  lift 

max maximum 

meas measured 

DIVERGENCE ANA LYSIS 

Potential Energy of the System 

The configuration to be analyzed is shown in figure 1. Here the x,y,z coordinate 
system is fixed in space, the origin coinciding with the fixed end of the support shaft axis. 
The origin of the xl,yl,zl coordinate system shown in figure 2 is taken at  the elastic 
axis of an arbitrary c ross  section along the deformed shaft, with the Y1- and Z1-axes 
being in the principal directions of the section and the XI-axis being in the direction of 
the tangent to  the elastic axis. According to the condition imposed on the loads, forces 
shown in figure 1 remain in their initial directions while the shaft deforms. 

The bending moment in the vertical plane at a distance x from the fixed end of the 
shaft is 

My = -D(Z + a - x) 

The component of this bending moment that is of interest is the one which causes bending 
about the Z1-axis (see fig. 2(b)) and is 

( M z ~ ) ~  = -D(Z 1- a - x)sin 4 

where c$ denotes the angle of twist and is variable along the flexible shaft length. Simi- 
larly, the component of interest with respect to the Z1-axis of the bending moment, due to 
lift, in the horizontal plane at x is 

= -L(Z + a - x)cos c$ (2b) (MZ1)L 

By using the usual elastic-beam theory and assuming small  displacements, a condi- 
tion of equilibrium can be expressed by the equation 

(0 5 x 5 2) (3) 

where the load L, which simulates the lift force, has been assumed to be a linear function 
of the shaft twist (panel angle of attack) at the end of its flexible length. 
assumed that the curvature in the XZ-plane is infinitely small  and can be neglected in 
deriving equation (3). 

It has been 
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The corresponding s t ra in  energy of the system in pure bending is found to be 

and the s t ra in  energy in torsion is 

where C is the torsional rigidity 

U@ =fs"(*) 2 dx 

o d x  

of the flexible shaft. Even though some small  change 
in energy due to bending of the shaft in its plane (stiff direction) occurs, it is neglected in 
order to be consistent with the previous assumption of negligible curvature in this plane 
made in deriving the equilibrium equation. Therefore, the equation for the total increase 
in strain energy of the system is obtained from equations (4) and (5) and is 

UT = UB + u$ (6) 

This total increase in strain energy for the divergence condition is equal to the decrease 
in potential of the system caused by the work done on the system by the externally applied 
loads. 

The work done on the system by the drag load can be expressed as 

(7) 

where the f i rs t  t e rm on the right-hand side of the equation is the contribution to the work 
that is due to the change in potential of the drag load during lateral bending, and the second 
te rm is the contribution that is due to the change in potential of the drag load during rota- 
tion about the elastic axis. 

Similarly, the work done on the system by the lift load can be expressed as 

L 

The total potential energy 

Substituting the quantities 

of the system is 

v = U T  - a D  - a L  (9) 

given by equations (4) to (8), into equation (9) gives 
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Theoretical Solution for the Divergence Condition 

The theory of static divergence deals principally with the conditions under which 
equilibrium ceases to be stable. A system is in stable equilibrium if the value of its total 
potential energy is a relative minimum. The requirement for a multidegree-of-freedom 
system to be in equilibrium is that the first variation of its potential energy with respect 
to the generalized coordinates be equal to zero. Consequently, if the second variation of 
the potential energy with respect to the systems coordinates evaluated at the equilibrium 
position is greater than zero, the system is said to be in stable equilibrium (ref. 9). 
Therefore, defining the conditions under which equilibrium ceases to be stable (the static- 
divergence conditions) as those resulting when the second variation of the potential energy 
of the system is identically equal to zero, a divergence solution can be generated by 

In order  to reduce the expression for the potential energy of the system (eq. (lo)), 
the variable 4 must be eliminated by expressing it as a function of x. Assume for 4 
a suitable function of x, which satisfies the boundary condition of the system. 
mode 

Let the 

be assumed to represent the deformed twisting mode shape and satisfy the boundary con- 
ditions of the following form: 

@ = O  (at x = 0) 7 
(at x = 0) 

(at x = 2) 

(at x = 2) J 
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where K1, K2, and K3 are constant quantities for a given model and loading configura- 
tion and do not need to be specifically known, and primed quantities represent derivatives 
with respect to x. 

Substituting @, as given by equation (12), and its derivatives into the expression for 
the potential energy of the system (eq. (10)) and performing the indicated integrations 
yields 

(14) V = L P 1 D 2  A2 + L@BzD + EIZ(bD + L@ d)Bd + 2CA2B4 
2EIz 

where - 

4z3 + 

B3 = i(l ‘4 - + a14 ( I  + a13 (I  + a )  

‘ I  B4 = [ ‘3 - ‘2 + 
3(1 + a>4 (Z + a13 (Z + a)2 J 

The magnitude of the applied lift and drag forces at any given time a r e  relatively 
dependent upon the dynamic pressure as follows: 

where 

q =  3LD 
cL,s ‘DS 

dynamic pres  sur  e 

slope of l i f t  curve 

drag coefficient 

reference (planform) a rea  

lift function 
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The problem has now reduced to solving for the minimum dynamic pressure neces- 
s a ry  to generate the lift and drag forces which induce divergence. Accordingly, substi- 
tuting equation (16) into equation (14) and taking the second variation of the resulting 
expression for the potential energy yields 

Equating equation (17) to zero  and solving the resulting quadratic equation in te rms  of the 
dynamic pressure, the critical dynamic pressure is found to be 

where 

c1= - 
E1ZB3 S I 

i 4 CB4 EIZ 
c2 = 

S2 

Examination of the solution as given by equation (18), in te rms  of the critical 
dynamic pressure at divergence, shows that this solution is dependent only upon such 
static aerodynamic quantities as the drag coefficient (CD), the slope of the lift curve 

, the location of the lift and drag forces with respect to the elastic axis (d and b, 
respectively), and upon other known structural quantities as defined in the derivation (that 
is, the functions Ci). 

(cLa) 

Theoretical Solution for Drag Force Alone 

The solution to the general analysis as given by equation (18) is only an approxima- 
tion since it is dependent upon an assumed mode shape. 
divergence condition depends on how accurately the expression for the assumed mode 
shape represents the actual one that yields the minimum resistance to divergence. In 
order to assess  the accuracy associated with the assumed mode given by equation (12), it 
is useful to examine a case that has been solved exactly by other investigators. Such a 

The accuracy of the estimated 
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case is divergence induced by a single applied load in the plane of the model, representing 
the drag force alone. The equation for the potential energy of this simplified case is given 
by equation (10) when L$ is allowed to go to zero. Utilizing the assumed mode shape 
given by equation (12) in the new expression for the potential energy of the system and 
performing the indicated integrations yields 

bA2B3 
1 D L -  D + 2CA2B4 v = - -  A ~ B  

2 EIz 2 

By taking the second variation of this expression for  the potential energy, equating it to 
zero, and solving the resulting quadratic equation, an estimate of the critical drag load 
associated with divergence can be determined. This critical drag load is 

L 

If the location of the applied single load is specified to be at the elastic-axis-root-chord 
junction (b and a a r e  equal to zero), then equation (21) reduces to 

Dcr = k4.183 - 

The exact differential equation of Timoshenko (ref. 10) for this same simplified case is 

A comparison of 
tion predicts a 4 

the coefficients of equations (22) and (23) indicates that the exact solu- 
percent lower critical drag load. As expected, the solution dependent 

upon the assumed mode predicts a higher value for the critical drag load since this mode 
does not offer the minimum resistance to divergence. However, it is concluded from this 
comparison that the assumed mode shape (given by eq. (12)) is sufficiently accurate for 
the purposes of the present investigation. 

RESULTS AND DISCUSSION 

Models 

Experimental divergence data obtained for model configurations that a r e  represented 
by the preceding analysis have been presented in references 6 and 7. In these references, 
the basic model configuration and the details of the individual models a r e  also given. The 
basic model was a double-wedge control surface, with a wedge angle of 5O and the maxi- 
mum thickness at the midchord as illustrated in figure 1. The rigid, unswept, square 
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planform was mounted on a flexible shaft; the pitch axis was at the 35-percent-chord line 
and the center of gravity was located at about the 53-percent-chord and 50-percent-span 
coordinates. The leading and trailing edges were circularly blunted and had radii  of 
6 percent of the chord. Since the models were essentially rigid, all deformations occurred 
in  the flexible support shafts. Those parameters which define the structural characteris-  
t ics  of the model shafts are summarized in table I. 

Experimental Data 

For completeness, the basic data from the wind-tunnel tests obtained in helium 
(detailed in refs. 6 and 7) are summarized in table II. The test-section conditions and a 
velocity- index parameter a r e  listed for each test where divergence was observed. ; 9vii 
Presenting the divergence conditions in the form of the velocity-index parameter allows 
direct comparison between the variety of models having different levels of stiffness, since 
each is normalized by their particular level of stiffness. The experimental results from 
table I1 a r e  presented in figure 3 as the variation of divergence velocity-index parameter 
with Mach numbers from 1.64 to 15.4. 

An indication of the experimental "scatter" is shown at several Mach numbers where 
attempts were made to repeat a particular test. 
abrupt with the model striking the reflection plane less  than 0.1 second after the first 
observable displacement. 

In most cases, the divergence was quite 

Theoretical Investigation 

Divergence due to lift only.- Figure 4 presents the results of an analytical effort to 
predict the experimental divergence. This investigation was accomplished by allowing 
the drag coefficient to go to zero  in equation (17). The resulting expression w a s  then 
equated to zero and solved. The solution, given in te rms  of critical dynamic pressure,  is 
then dependent upon the lift-curve slope of the airfoil ( C L ~ , ,  the location of the lift force 

(a and b), and the torsional structural properties of the model shaft; therefore, being 
synonymous with the classical torsional divergence problem. The aerodynamic quanti- 
t ies were obtained by using simple Newtonian theory which is independent of Mach number 
(Cp = 2 sin26, where Cp is the pressure coefficient and 6 is the local slope). While 
this theory predicts lift characterist ics which a r e  conservative for the lower Mach num- 
ber  range, it does predict the aerodynamic center to be located at about the 25-percent- 
chord station for a blunt-leading-edge double-wedge airfoil with a 5' wedge angle near 
zero angle of attack. Other simple supersonic theories, such as piston theory, were not 
used since, in general, they apply to sharp-leading-edge airfoils and locate the aerody- 
namic center aft of the 35-percent-chord station; consequently, they predict no torsional 
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instability. It is worthy of note that the slope of the lift curve as predicted by Newtonian 
theory is the same as that predicted by third-order piston theory at M = 7 for similar 
double-wedge configurations but with sharp leading edges. 

The poor prediction of the instability obtained by utilizing the classical torsional 
analysis is illustrated in figure 4. The prediction is shown as a ratio of average mea- 
sured dynamic pressure to calculated dynamic pressures  at divergence. 
the theory predicted dynamic pressures  at divergence approximately four or five times 
greater than the average measured values over the entire Mach number range. 

For all models, 

Divergence due to drag only.- Because of the poor agreement between the torsional 
divergence analysis and experimental results, an alternate divergence mechanism was 
sought. Some insight into the general character of the new type of divergence can be 
found in figure 5, which presents some typical examples of the model support shaft (with 
the control-surface panel removed) deformed by the divergence instability. The deforma- 
tion is shown to consist of a lateral bending mode in addition to the torsional or twisting 
mode. 
namic drag loadings in comparison with the lift loadings for the blunt-leading-edge control 
surface suggested a general analysis including these parameters. 
"Divergence Analysis" for development.) 

This deformed mode combination and the relatively high magnitude of the aerody- 

(See section entitled 

In order to determine the relative importance of high drag loadings on the systems 
stability, the critical conditions were calculated for the models of references 6 and 7 by 
utilizing the divergence theory pertaining to the drag-only case. The results a r e  pre- 
sented in figure 6 in the form of the ratio of average measured dynamic pressure to cal- 
culated dynamic pressure at divergence as a function of Mach number. The structural 
characteristics of each model tested were used in the analysis, with the drag load assumed 
to be acting at the midspan of the control surface at i ts  leading edge. This assumption is 
reasonable since almost all the drag is due to the high pressure at the blunt leading edge 
of the control surface. The calculated dynamic pressure w a s  obtained from equation (21) 
by using the relationship 

where the drag coefficient CD is assumed to be constant over the entire Mach number 
range for the blunt airfoil shape. The resulting comparison in figure 6 shows that all the 
models tested at Mach numbers between 4 and 15 diverged while in a dynamic-pressure 
environment equal to approximately one-half that predicted by the drag- only divergence 
theory. The calculated results were even less  encouraging for Mach numbers l e s s  than 4. 
However, at these lower speeds, the assumption of a constant drag coefficient is believed 
to be questionable and could, in par t  at least, account for the greater variance. 
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It is concluded from the results shown in figure 6 that the wind-tunnel tests a r e  not 
adequately represented by the divergence theory including only the drag load. Further- 
more, a comparison of figures 4 and 6 indicates that for  the blunt control surfaces being 
investigated in this study, the drag load is a primary factor in their divergence. 

Divergence including - -  lift and drag loadings calculated - from Newtonian theory.- - _  The 
solution given by equation (18), which defines the critical value of the dynamic pressure 
associated with the case of two applied loads, depends on certain static aerodynamic quan- 
t i t ies associated with the airfoil shape while operating in a given flow field. Such aero- 
dynamic quantities as the drag coefficient CD, the slope of the lift curve CL,, and the 
spanwise and chordwise locations of the two loads simulating the lift and drag forces with 
respect to the elastic axis a r e  needed for  the blunt double-wedge control surface over the 
Mach number range from 1.64 to 15.4. Therefore, the effect of these aerodynamic quan- 
tities on the divergence solution should be examined in order  to be able to evaluate the 
possible variance in the general results when applying various aerodynamic theories. 

The effect of the slope of the lift curve on the critical dynamic pressure associated 
with divergence is illustrated in figure 7 .  The critical dynamic pressure at angles of 
attack near zero are divided by the critical dynamic pressure for  the divergence condi- 
tion including only the drag load for the same model. The model under consideration has 
an aluminum-alloy shaft 5 inches long (12.7 cm), 1.2 inches wide (3.1 cm), and 0.065 inch 
thick (0.165 cm), with the lift acting at the elastic axis and the drag acting at the control- 
surface leading edge. The drag coefficient was given a constant value of 0.284 based on 
the planform area.  The critical dynamic pressure is seen to decrease with an increase 
in CL,. For a value of CL, = 0.6 (the calculated value from Newtonian theory - 
which is realistic for the higher Mach numbers), the critical dynamic pressure is reduced 
about 36 percent from that of the drag-only case. 

Figure 8 presents resulting critical dynamic pressures  for  the same model con- 
figuration when the lift load is applied at various chordwise positions forward + - 
aft (- :) of the elastic axis. As would be expected, moving the location of the lift load aft 
of the elastic axis is stabilizing and moving i t  forward of the elastic axis is destabilizing. 
For a constant value of CL,, the variation in the critical dynamic pressure is only 
between 5 and 10 percent when d/Z changes from 0 to *0.80. This small variation is in 
contrast to that obtained for the classical torsional divergence instability where the diver- 
gence condition is directly proportional to the chordwise location of the lift force. 

( 3 and 

, 
For completeness, the critical dynamic pressure as a function of drag coefficient is 

a/Z, and d/Z. It is realized that the drag shown in figure 9 for constant values of C 
coefficient is nearly constant for a given configuration at supersonic and hypersonic 
speeds. However, because of the prime effect that drag has on the stability of the system 

La’ 
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under investigation, if there  is a variation in drag coefficient, it is important. 
ple, if at the low supersonic speeds there is a 25-percent change in CD, a 15-percent 
change in the critical dynamic pressure would result, other quantities remaining 
unchanged. 

distance the drag load is acting forward (+ t) or  aft (- !), of the elastic axis. The critical 
dynamic pressure as a function of this applied load position is presented in figure 10. 
Again, as would be expected, a decrease in stability is obtained by applying the drag load 
forward of the elastic axis and, conversely, an increase in stability is obtained by applying 
the drag load aft of the elastic axis. Results from calculations not shown in figure 10 
indicate that for the range of structural characteristics of the models of the experimental 
program, the percent increase o r  decrease in stability resulting from applying the load 
off the elastic axis is a constant for corresponding loading positions on all the models. 
It can be concluded from the results presented in figures 8 and 10 that the locations of the 
applied forces a r e  of only secondary importance to the divergent condition, since in both 
cases  there is only a maximum of about 10-percent change in the divergence results. 

For exam- 

The final parameter to be examined is the chordwise location of drag load, or the 

Ratios of the average measured values of dynamic pressure (from the experimental 
wind-tunnel programs of refs. 6 and 7) to the calculated values a r e  presented as a func- 
tion of Mach number in figure 11. 
aerodynamic quantities needed to obtain a closed-form solution to equation (18). 
tions to the divergence problem including both lift and drag loadings are indicated in the 
figure by the solid circular symbols. Over the low supersonic speed range, the calcu- 
lated results a r e  unconservative up to a Mach number of 3, whereupon they become con- 
servative with further increase in Mach number. However, the calculated values do tend 
to approach the measured values of dynamic pressure of the divergence instability at the 
very high Mach numbers. 

Newtonian theory was used to determine the static 
Solu- 

Divergence including measured lift and drag loads.- More accurate analytical pre- 
diction of the measured divergence results of the wind-tunnel tes ts  over the entire Mach 
number range would require measured static aerodynamic characteristics for the partic- 
ular blunt-leading- edge control surface under consideration. Unfortunately, experimen- 
tally determined quantities such as these do not seem to exist in the literature for  this 
configuration. These quantities, therefore, have been obtained in helium at Mach 6.8 and 
15.4 in the Langley hypersonic aeroelasticity tunnels. Normal static aerodynamic deriva- 
tive measurements using six-component strain-gage balances were obtained. 
from these tes ts  are presented in figure 12 in the form of the lift coefficient, the drag 
coefficient, and the location of the aerodynamic center - all as functions of angle of 
attack. 
attack the aerodynamic characteristics of a blunt, double-wedge airfoil having a leading- 
edge radius equal to 6 percent chord are as follows: 

The data 

From these experimental results, it can be determined that near zero angle of 
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CD = 0.168 
X,/C = 0.325 

At M = 6.8 

CL, = 0.53 
CD = 0.127 
X,/C = 0.252 

Newtonian theory 

CL, = 0.606 
CD = 0.161 
xo/c = 0.220 

Mentioned here  for interest, the comparable aerodynamic characteristics for  a sharp- 
leading-edge, double-wedge airfoil are as follows: 

I 

CL, = 0.69 
CD = 0.008 
X,/C = 0.315 
1 

At M = 6.8 

CL, = 0.55 
CD = 0.006 
X ~ / C  = 0.315 

Newtonian theory 

CL, = 0.679 
CD = 0.00134 
x0/c = 0.250 

These results indicate that the drag loading is increased by a factor of about 20 when a 
sharp-leading- edge configuration is blunted to  a configuration with a radius equal to 
6 percent of its chord, the length of the chord being held constant. 

Incorporating the measured aerodynamic coefficients and aerodynamic- center loca- 
tion obtained a t  Mach 6.8 and 15.4 for  the blunt airfoil into the divergence analysis yielded 
the results illustrated in figure 11 by the open circular symbols. The agreement between 
the measured and calculated dynamic pressure for  divergence is seen to be excellent. 
Also shown in figure 11 for  comparison are the measured to calculated results from fig- 
ures  4 and 6 where the analysis included the lift and drag loadings rlluG3,mdently. This 
comparison reiterates that the experimental divergence encountered by the blunt airfoil 
model- shaft configuration being investigated was quite different from the classical tor- 
sional divergence attributed to  lift loadings. The neu. type of divergence consists of a 
combination twisting-bending mode which is highly sensitive to drag loadings, and conse- 
quently produces a much lower stability boundary for the configuration over the entire 
Mach number range of this investigation. 

CONCLUSIONS 

An investigation of the divergence characterist ics of some rigid all- movable control 
surfaces supported by a flexible shaft has been conducted. The particular configuration 
studied was a blunt, double-wedge control surface with a 5 O  wedge angle and a leading- 
edge radius of 6 percent chord. The control surface was supported by a relatively long, 
thin rectangular shaft that was weak in the lift direction and stiff in the drag direction. 
The results of the study indicated the following conclusions: 
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1. A new type of divergence instability is inherent to this configuration. It is char- 
acterized by a mode of deflection consisting of lateral  bending and torsional rotation. 

2. The two-degree-of-freedom instability can result in a lower divergence boundary 
than the classical torsional divergence case. This fact was exhibited for the ser ies  of 
models of this investigation, both analytically and experimentally, over the Mach number 
range from 1.64 to 15.4. 

3. Estimates obtained from a potential- energy analysis, using aerodynamic charac- 
terist ics predicted by simple Newtonian theory, were in fair agreement with experimental 
results for the Mach number range from 1.64 to 15.4. 
drag loadings was essential to predicting the divergence instability. 

It was found that inclusion of the 

4. Since there is a dearth of experimental verification of the aerodynamic theories 
for blunt control surfaces, it was found necessary to measure the static aerodynamic char- 
acterist ics for the configuration being studied in order to predict the divergence condi- 
tion precisely. These parameters were measured at Mach 6.8 and 15.4, and incorporating 
the results into the divergence analysis afforded excellent divergence predictions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 29, 1968, 
126-14-02-08-23. 
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TABLE 1.- MODEL SHAFT CHARACTERISTICS 
[Refs. 6 and 73 

0.065 

.047 

.033 

Length, 1 

in. I c m  I Thickness, t 

in. I c m  
Model 1 

.932 X 99.585 

0.1651 2.0 

.1194 2.0 5.08 

.0838 2.0 5.08 2.24 x 10-6 

C 
~ 

0.1651 
.1651 
.1651 

in4 I cm4 I lb-in2 I N-m2 

5.0 
6.0 
4.0 

6-20-65 

6-20-47 
6-20-33 

6-A-6-1 
6- A- 6- 2 
6-A-6-4 

0.065 
.065 
.065 

,del 

6-20-65-1 
6-20-47- 1 
6-20-6 5-2 
6-20-65-6 
6-20-47-3 
6-20-33-1 

6-20-47-2 

6-A-6- 1 
6-A-6-2 
6-A- 6-4 

n 

12.70 
15.24 
10.16 

27.46X loe6 
27.46 X 

27.46 X 

11.43 x 10-4 
11.43 X 

11.43 X 

TABLE II.- EXPERIMENTAL DIVERGENCE RESULTS 

1.64 
2.00 
2.55 
2.55 
3.00 
3.98 

6.83 

15.20 
15.00 
15.35 

P 

s lugs/ft3 

0.001526 
.000500 
.001182 
.001215 
,000423 
.000132 

to 
.OOO 151 
.000067 

t o  
.000068 
.0000136 
.0000096 
.0000226 

kg/cm3 

0.786468 
.257689 
.609178 
.626 18 5 
.218005 
.068030 

to 
.077822 
.034530 

to 
.035046 
.007009 
.004948 
.011648 

Speed of 
s 0 1  

ft /sec 

920 
8 59 
760 
7 52 
702 
582 

870 

43 1 
408 
395 

d 

m/sec 

280.4 
261.8 
231.6 
229.2 
214.0 
177.4 

265.2 

131.4 
124.4 
120.4 

lb/ft2 

1728 
732 

2218 
2230 

939 
353 
to  

403 
1180 
to 

1200 
292 
180 
415 

1209.587 
1209.587 
1209.587 

~ 

N/m2 

82 737 
35 048 

106 198 
106 773 
44 960 
16 902 

19 296 
56 499 

57 456 
13 981 
8 618 

19 870 

to 

t o  

2.1303 
A196 
.2867 

3.4824 
3.4824 
3.4824 

V 

9d-P 

1.13 
1.18 
1.24 
1.29 
1.33 
1.44 
to 

1.34 
1.48 

1.37 
1.12 
1.07 
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(a) xl,yl'zl coordinate system. 

(b) Arbitrary cross section. 

Figure 2.- Deformed shaft configuration. 
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Figure 3.- Experimental divergence characteristics of blunt, double-wedge control surface having a leading-edge radius equal to 6 percent of i ts  chord (refs. 6 and 7). 
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Figure 4.- Comparison of measured dynamic pressure at divergence wi th  calculated values including only the lift force. 
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Figure 6.- Comparison of measured dynamic pressure at divergence with calculated values including only the drag load. 
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Figure 7.- Analyt ical effect of the slope of the lift curve on the cr i t ica l  dynamic pressure. a/Z = 0.6; d/Z = 0; b/Z = 0.42; CD = 0.284. 
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Figure 8.- Analytical effect of the chordwise location of lift load on the critical dynamic pressure. a/l = 0.60; b/l = 0.42; CD = 0.284. 
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Figure 9.- Analytical effect of the drag coefficient on the cr i t ical  dynamic pressure. a/ l  = 0.60; d/l  = t0.051; cb = 1.00. 
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Figure 10.- Analytical effect of t h e  chordwise location of the  drag load o n  the  c r i t i ca l  dynamic pressure. a/Z = 1.00; d/Z = 1.00; 
CD = 0.13; Cb = 0.55. 
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Figure 11.- Comparison of the measured dynamic pressure at divergence wi th  calculated values. 
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Figure 12.- Characteristics of a blunt,  symmetrical, double-wedge a i r fo i l  having a leading-edge radius equal to 6 percent of its chord. 
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