
•S '

/
,. ..-_,_,;t. -:..,-,- _ ,, , _,',r_",:_;,." ", ,.... ,;_ _...,.., , ':"_ ,.._..,_,. *''Z'_',_ -'-_'_,;" • ". "...... ,' ". ......, ,.....,-_,_ _, :': __. ,_. ,..,.... ....... ....... _....... ,.............

196802622



f

|
._=

[

IIOCKETDYNE
A DIVISION OF NORTH [_MERICAN ROCKWELL CORPORAT!ON

6633 CANOGA AVENUE CANOGA PARK, CALIFORNIA 9130.4

i i i i i

f
R-7_50-1

i
;

J-2 PERF0 C . AN YSIS

S-II ANDS-_ STAGES

Contract NASS-19

Exhibit A, Para. A.3.a

PREPARED BY !

Rocketdyne Engineering

Canoga Park, California

1

APPROVED BY

P. D. Castenholz

J-2 Program Manager

NO. OF PAGES _02 & xlriJ.J. REVISIONS DATE 17 M.v ]068
i

DATE REV. BY PAGES AFFECTED REMARKS
q_ ¢-

nl,i | i

FORtl RIII-G REV. S.|?

.._-_._,-_r_,-_ "_ _',.r,":J._'_._",,-.'._*" ,':'<',_,, :" ::,'_v_'c''''''_:'''!_'_,._'_:,-_-"'-':_:---_ :'-" ' "'- ' " "" ............ - ' '" ........._"*

.. ,_................................ - ........................_ _'." _.......................

1968026222-002





OP,_-_OI_

This J-2 Engine Flight Report, "J-2 Engine Performance

Analysis of Flight AS-501 (Apollo _), S-II and S-IVB

Stages," R-7_50-I, #as prepared by _ocketdyne, a

Division of North American Rockwell Corporation.

ABSTRACT

This report presents the flight performance results

O of J-2 engines J2026, .12028,J20)0, J2035, and J20_3

in the S-II stage, and J-2 engine J2031 in the S-IVB

stage of the AS-501 (Apollo _) Saturn V flight vehicle.

Included are the engine start transients_ mainstage

performance, and cutoff transients for the S-II and

S-IVB stages, as well as the environmental conditions

during the orbital coast period between the initial

start and restart of the J-2 engine in the S-IVB stage.

R-7450-I I
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TNTRODUCTI ON

D
The AS-501 (Apollo _,) vehicle was successfully launched at 7:00 AM (ESI)

on 9 November 1967 from Launch Comple-: 5QA in the ._lerrit_ Island Launch

Area (MIL_) at Kennedy Space Center (KSC).

FLIGHT DESCRIPTION

The AS-501 (Apollo _) _'as an unmanned Apollo test with primary objectives

of demonstrating the structural integrity of the Saturn V launch vehicle

and satisfactory command module lunar rpturn re-entry performance

The vehicle was launched on an azimuth of 90 degrees along a firin_ azimuth

of 72 degrees east of true north. The S-IC, S-II, and S-I%_ stages per-

formed satisfactorily to insert the $-I_/instrument unit (IV), and command/

service module (CSM) into a earth near-circular parking orbit of _pproxi-

O mately 120 miles.

The pre-ignition sequencing for the S-IVB stage second _urn ,,as initiated

near the end of the second revolution as the vehicle passed over tbe con-

tinental United States. At the start of the third revolution, as the

vehicle passed north of the KSC area, the S-IVB was re-ignite,l. The S-IVB

second burn, which simulated a translunar injection, was controlled %o yield

an apogee ellipse altitude of approximately 10,550 miles, which will inter-

sect the earth on its re-entry phase° After cutoff of the S-IVB second burn,

the S-IVB/IU and CSM coasted for 10 minutes prior to separation. During I

this time, the vehicle had a fixed attitude relative to the sun for thermal

considerations. The S-IVB/IU was then separated from the CSM. Following

this period of active life, the S-IVB/IU entered a dormant and controlled

phase.

L
Ci"
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_9_IICLE DESCRIPTION

_J
The AS-501 flight vehicle is composed of eight major separable items

(Fig. 1):

First Stage (S-IC)

Second Stage (S-II)

Third Stage (S-IVB)

Instrument Unit (IU)

Lunar Module (Lxl)

Apollo Service Module (SM)

Apollo Command Module (CM)

Launch Escape System (LES)

STAGE DEgCRIPTION USING J-2 ENGINES

4

The second stake, S-II (Fig. 2 ) contains five J-2 engines to provide its

propulsion, The five engines are located in the stage as indicated in

Fig. 3 •

Th_ engine serial number and its location in the stage are as follows:

Engine Location Engine Serial Number

Engine No. 1 J2026

Engine No. 2 J20_3

Engine No. 5 J2050 _

Engine No. _ J2055 iEngine No. 5 J2028

The third-stage S-IVB (Fig. _ ) contains one J-2 engine to provide its

propulsion. The aerial number of this engine is J2031.

9
2 R--7_50-1
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REPORT CONTL-NTS

This report presents the flight performance results of the five J-2 engines

in the S-II stage and the single J-2 engine in the S-IVB stage of the A$-501

vehicle, Included in the results are the engine start start transients,

mainstage performance, and cutoff transients for the S-II and S-IV]] stages,

as _ell as the environmental conditions during the o_bital coast period

between the initial start and restart of the J-2 engine in the S-IVB stage.

t

_ i1,| .._. J __. Jll _ i .l_,l _ _. _. •
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D SUMMARY

Performance of the J-2 engines on both the S-II and S-I_ stages of the

Saturn VAS-501 vehicle was satisfactory in all phases of flight 5peration°

During the flight, the oxidizer heat exchanger on engine J2035 (S-II stage,

engine No, 4) appeared to be obstructed because of _ow flow compared to the

other engines on the S-II stage. The remaining eat exchangers satisfac-

torily adjusted to the higher demand that _s placed on them, even though r-

the demand_ near the end of the stage operation, was above the engine model

specification limits.

A momentary high helium consumption noted on engine J-20_3 (S-II No. 2)

was believed to be due to improper purge valve operation caused by c_ntamiuation.

!,

During the S-II stage operation, no temperature limits were exceeded as a

• result of base heating temperatures, and were less severe than expected.A

W The S-IVB environmental conditions were either close to that predicted or

less severe than that predicted.

Mainstage thrust, specific impulse, and mixture ratio performance were

well within the expected operating range on all engines of both stages°

]1,-7450.-1 9/10 _,_':2.... ._ ._,'";'-_-'.._.:_..._,".__;.,,, ._ .... : ....... ..: ._.::.,, ,_ °.: ..... . - ....... - .......... : --'-'_,,,_r_," .......
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CONC LUSIONS

The foilo_ing conclusions can be made from the flight evaluation of AS-501:

1 The J-2 engine csn satisfactorily restart after a two-orbit coast.

2. The engine mainstage performance was satisfactory in all respects,

and measured engine parameters were in good agreement with those

predicted.

3. The effect of the thermal environment was not as severe as ex-

pected, and was well within the ca oability of the eagine operating

limits.

4. Orbital temperatures were as expected; however, the ullage rocket

heating rates were negligible.

?

i
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IIECO_TIONS

The results of the AS-501 flight evaluation indicate that, _ile engine

operation _s quite satisfactory, these recommendations can be made:

I. Install a filter in the oxidizer inlet line to the heat exchanger

to prevent foreign particles from entering the heat exchanger.

2. Install a filter in the helium inlet line to the pressure-actuated

purge control valve to prevent foreign particles from lodging in

the valve, subsequently preventing the proper seatin_ of the valve.

3. Insulate the s±nrt tank and helium tank temperature transducers

from external effects to provide better temperature data in orbit.

/t. Conduct a laboratory test program to define the start tank ven_

and relief valve operating characteristics. This, together with
_r

item 3, will provide three _etheds of temperaturo determination

of the start tank and helium tank during flight. _

• :
5. Provide for a higher telemetry--sampling rate for the fuel pump

discharge pressure, oxidizer pump discharge pressure, and FIOV

position potentiometer.

6. Increase engine vibration measurement calibration range to prevent _

overdriving the amplifier output during engine operatio n. Recom-

mended calibration ranges are: dome, 100 g rms; oxidizer ring,

150 g rms; fuel pump, 200 g rms. _

i
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PREIAL._CHAND LAL_CHHISTORY
t

D
EX;GIX_ACCEPTANCE TESTS

Table 1 is a summary of the acceptance tests of the engines on the S-II

and S-IX_ stages.

TABLE 1

ENGINE ACCEPTANCE TEST HISTORY

Engine Engine Accumulative Final Test Date, DeliveD- Date,
S/N Starts Time, seconds 1965 1965

J2026 _ 659.5 15 June 2_ June

J20_3 _ 736.3 18 October 16 November

J2030 _ _5_._ 13 July _ August

J2035 3 359.3 _ August 2t, August

J2028 8 62_.1 1 July 8 July

O J2031 3 358.5 15 July 23 September

AS-DELIVERED ENGINE CONPIGUI_TION

The engine configuration (modification number designation), as delivered

to NASA, is as follows:

J2026 MI) 3x5 1l_....x13 20x,,3x2._. 28___x32x_._.38xZt.._OZ_Tx_9 _1x53 60x6Ztx68

70x72x76 80x82x8_x86 87x97x99xlOlxlO6xlllx116 118x122 i

!2_x127x130 132xI_._xl__ l_2xl_

J2028 bid 3x5 Ilxl5 20x23x2_.5. 28._.x32x,_h.38x_.0 31x53 60x6Ztx68 70x72x76

80x82x8_,x86 8_.Tx97x99xlOlxlO6xlllxl16 118x122

12_x12__xl__x 13_x138 l__x lfl_ i

R-7_50--1 15 *
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•1203o rid 3x5 llxl.__ "Ox-._.x23 28xy.Zx_._.38x_£ 51x53 60x64x68 70x7'-'x76 [

80x82x8_x86 87x97x99xlOlx106 107xlllxl16 118x122 124x127xl__ _J
_x !JAx1__ l__x153

J2051 .MD 3x5 llxl._. 20x2__.x__ 28x3_2x54 _8x40 51x_..3 61x64x68 70x72x76

80x82x84x86 88x9/'x99x101x106 107x116 118x122 123..x127x130

17_,xl__x)__ l__.x1__

J2O35 ,ID 3x5 ll._.xl__2Ox._.x23 28__x_2x_.__38x4_.0.__1.x5361x64x68 70x72x76

80x82x8hx86 88x97x99x 10._.J.lx106 108x116 118x122 l___x127x130

2_Lx_.xLSS1____x2322.Z_.xl__

•120J,'5 311) 3x5 11x1_). oov9";,-o'5 28X30X32X34 38x_0 51x_. 61x64xt_8 70x72y76

80xS2x8hx86x88x97x99.._x101x106 108x116 118x122 123x130 13-'2xl_x137

i_4xl4_xi_- l__x l__x 158x 16__.j.lx173x 179

STAGE ACCEPTANCE TESTS

The engines, following stage installation, completed the follo_'ing acceptance

tests (Table 2):

TABLE 9_ ._

STAGE ACCEPTANCE TEST HISTORY }

Engine Cumulative Cumulative Final Test Date, iS/N Position Starts* Time, seconds 1966

J2026 1 6 1_03.0 30 December i

J201t3 2 6 11t75.6 30 December 1
J2030 3 6 1193.6 30 December

!

J2035 _ 5 1098.9 30 December

J2028 5 10 I363.5 30 December

J2031 6 858.0 26 May

*Does not include stage static test No. A20010,
which was terminated prior to ..-_-i_-__t,age signal
because of ASI ignition detector short

O
16 R--7_50.-1
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ENGINE SERV[CINfi RECORD

D
The following is a summary of significant engine prohIems encountered

during the accouplishment of engine checkouts, modifications, and

inspections

\ Engine Contamination Inspection

EFIR J2-20 _is generated and accomplished on all S-II-1 engines following

the discovery of contaminates in the stage oxidizer tank. The engine

oxidizer syste'ns were opened to allow inspection _f critical components,

i.e., the o'(idizer turbopump, main injector, and gas generator injector.

A No serious contamination was found.

ASI No. 1 Spark Trace Anomaly "

Data from an oscilloscope test of engine J2030 spark systems on the S-II
stage revealed a negative pulse at the start of every positive spark pip

on No. l ASI spark igniter. The ECA package was replaced. Subsequent

investigations revealed that the ECA in question was satisfactory, and

* that the noted condition was associated with the ground support equipment.

r_ Cognizant Rocketdyne personnel at KSC were alerted of the situation.
r"

E

Spark Igniter Cables Pressure Test

Five of the twenty engine spark igniter cables on the S-II stage were pres-

*_ sure tested in compliance :.,ith ECP J2-538; the pressurizing tubes on they

remaining igniter cables were too short to allow the test to be performed.

Two igniter cables on engine J2026 were found de-pressurized; further tests
_

of these cables revealed one with a leak, which was replaced. All spark i

igniter cables were subsequently fitted with Schrader valves and pressure

_" tested, except for engine J20_3 G-1 spark cable, which appeared to have a

; R-7450-I 17 ;
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pressurization tube restricticn Subsequent analysis determined that the

condition noted would not adversely affect spark igniter performance and
.J

_s dispositioned acceptabte for flight.

Electrical Connector Corrosion Inspection

Corrosion was noted on connector PI of engine J2030 during ECA package

replacement and prompted an inspection of eight selected connectors from

each engine position on the S-II stage However, inspection of these con-

nectors yielded no defects.

Engine Valve Timing Difficulties

The initial engine sequence accomplished onthe S-II stage at KSC revealed

four out of five main ozidizer valves ramp times out of specification limits,

and two engines with marginal gas generator oxidizer poppet opening delay

times. Subsequent attempts to retime these valves were seriously hampered

by lack of precision instruments to determine actual size of orifices removed

and installed. The problem was finally alleviated by use of pre-sized

orifices.

Customer Connect Line Leakage

Leak checks performed on the S-II center engine (J2028) revealed a leak

at the fuel bleed line customer connection. Initial attempts to correct

the leakage, first by seal replacement and then by hand lapping the flange

sealing surfaces, were unsuccessful. Measurements of the stage-supplied

mating flange showed the seal bleed hole to be incompatible with the Naflex

\ J

q
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#
seal design (also stage-supplied). A satisfactory joint was finally ef-

fected by careful and accurate position of the seal. As an immediate

solution to this problem, the North American Rockwell Corporation Space

Division has initiated steps to incorporate a new seal design:

'-: Si{_nificant Engine Hardware Replacements (Post-Deliver_-)?,
+

Electrical Control Assembl_-. All engines on the S-II stage received ECA

replacements prior to stage static testing to change STI)V delay timer from

0,06tl to 1.0 second. In addition, the engine J2050 ECA x,_s changed again

at KSC because of indication of a spark exciter failure which _'as ._ubse-

quently determined to be ,-aused by faulty KSC monitoring equipment.

Oxidizer Turbopump. Inspection after stage static testing revoaled turbine

wheel cracking on engines J2028, J2050, and J20_5, which necessitated

O oxidizer turbopump reptacement on those engines.

Main Oxidizer Valve. A detonation in the actuator of the M0V on engine

J2026 resulted in removal, inspection, and reinstallation (per EYIR J2-26)

of the M0V on all engines. In addition, the engine J2026 M0V was replaced

again because of helicoil insert problem.

Pneumatic Regulators. All regulators were replaced with new assemblies

(per ECP J2-602) to resolve a life-cycle controversy.

Additional Major Problems (Post-Delivery)

No significant major problems were encountered during post-delivery testing i

with engine J2031. Oxidizer turbopump cavitation was experienced just prior

It-7450-1 19
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to shutdown on the final S-II static stage test, which was programmed

for a oxidizer low-level cutoff. Engine J2035 encountered the most severe

cavitation.

Because of high fill rates during oxidizer tanking, the antivortex baffling

in the S-II stage oxidizer tank sump was damaged severely, resulting in

contamination with aluminum particles. Oxidizer pump disassembly was re-

quired on all five engines, All but one small piece of almninum x_s finally

recovered.

CI[ECKOL_ HISTORY

The S-II_ stage for vehicle AS-501 arrived at Kennedy Space Center (KSC)

from the Sacramento Test Center (STC) on Ih August 1966. The S-II-1 stage

arrived at KSC from Mississippi Test Facility (btTF) on 21 January 1967.

Both stages were subjected to routine post transportation, receiving inspec-

tion and checkouts in the vehicle assembly building (VAB)o Concurrent with ")

these tests, stage and engine modifications were conducted.

A preliminary erection of the AS-501 launch vehicle was accomplished in

the VAB on 1 November 1966, utilizing a spacer instead of the S-II stage

to permit advanced checkouts of the launch vehicle integrated systems.

The mating of all flight stages was accompliohed later in the week of

25 February 1967.

On 27 ._y 1967, the launch vehicle was de-mated for an integrity inspection

of the internal welds of the S-II stage fuel and oxidizer tanks. While

this inspection was being accomplished, engine modifications on both S-II

and S-IVB stages continued. The following significa,_t engine tasks were

started and/or completed during this period: remove, inspect, and clean

main oxidizer valves (EFIR J2-26); remove and inspect helium regulator

assemblies (ECP J2-602); and install redundant start tank and helium tank _i

flight instrumentation (ECP _2-59_). Other scheduled engine tasks also i

were conducted during this time period. 9 i

20 R.-7450-.1 i
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b Following erection of the launch vehicle to the mobile launcher, the vehicle
_s transported to launch pad 39A on 2(_ August 1957 Launch vehicle inte-

grated tests and checkouts begun immediately and _,ere carried 4_1 concur-

rently with engine modifications. The enuine oxidizer pump primary seal

drain line modification (ECP J2-620) was satisfactorily accomplished on

both S-II and S-IVB sta_es, except for burst diaphra_ms that were added

following countdo_m demonstration t,_st (CDDT): All scheduled engine tasks

,,'ere completed on time.

CPT_._'TD0_ DE,_IONSTI_TION TEST

The CDDT milestone _3 successfully achieved on 13 October 1967, after

numerous holds and cancellations because of procedural lags, _round equip-

ment malfunctions, and compucer problems. However, difficulties and prob-

lems were generally expected because the facilities, procedures, and

vehicle _ere being tested for the first time as an integral unit With

5he exception of the oxidizer tank baffle problem on the S-II sta_e, which

0 xms discovered following CDDT, data from the test demonstrated that the

: AS-_01 launch vehicle and launch support equipment to be compatible and

operational. Followin_ CDDT, entry into the S-II oxidiTer tank (to replace

defective low-level sensors) revealed that the antivortex baffling in the _.

oxidizer tank sump had failed. A search was initiated that recovered all

of the broken baffle mat, al except for the equivalent of three small

pieces, A decision was made to inspect the oxidizer systems of all five

engines on the second stage; only one of the missing pieces was located

(in the volute passage of engine No. 5, J2028). Following repair of the

oxidizer tank baffle, a decision was reached to proceed with the launch.

FLIGHT RFADINESS TEST

The flight readiness test (FRT) was successfully accomplished on 26 October

1967, with no major problems.

•=74_0-I 21 :_
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_GIN_ FLIGHT CONTIGUR_TION

The J-2 engines utilized on the AS-501 launch vehicle conformed to Engine

Model Specification R-2158bs, dated 7 February 1966, and the engine con-

figuration for the applicable S-II and S-IVB stages is documented in the

Saturn J-2 Configuration, Identification, and Status Report of R-5788,

dated 1 November 1967.

The engine configuration, as flo_.n, is as follows:

62026 3x5 11x13 20._.x23x-2..5_28x_2x:3_. 38xhO __.7_xJ_951._x.5_.3_60x64x68 70x72x76

80._x82._.x8_._x8.._687x91x97x99x 10 lx 106x 111x 116 118x 122 12hx 127x 130

132x13_x138 143xlh8 1h9x151xl__x155x157 158x161x168x176

178x180x188x190x202x20_x218 219x221x22hx226 227x230x2__._

256.___x2ttOxgt_ttx2tt6 PA.2__.x251x256 257x259x276x278x284x289_x291x2_.__x299

J2028 3x5 11x1__. 20_...x2_.3_x2528x32x3_ ._x_O 51x53 60x6tix63 ._.x72x76

80x82x8_m36 87x_lx97x99xlOlxlO6xlllxl16 118x122 12ttx127x1__

132xl___x138 l_xl_9xlSlxl_xl,_ 158x161x165x16__8x176

178xlgOx198x202x20_x218 21_x221___x22522__x230x2__ 2_x238x240x2_x2_6 _

2_8___x252x256257x259x276x2_x28__x289x29 lx2__x29___9

J2030 3x5 ll__x1320__x23x25 O8_x32x3_ 38x_051x5360_ x6_x6870x72x2_6

80x82xS_x8687x91x97x99xlOh106107xlllxl16118x12212hx127_x130 ....

l_2xl__xl3S l_2xl_S l_9xlSlx122xl_22x157_Sx161x16Sx17__6
178x180x 188x l_Ox202x20_x218219x22 lx22hx22622_x230x23_

236x2hOx2_x2_6 2_Tx251x256 2__x259x2__

_57x_59x2.2S.6x_7_x_s_..__.x___x_9_x_._x_99

J2o51 5x5ll_._xl320._.x23x_.__8..._x3_x_.38x9_00._.x5361x6_x6870xT_x76

80xS_°xS_x8688x97x99_Ol._..x_05_07xI16I18x122___.x___.xl__O.

I__xl.!_9" l_3xl_t_88 151x155x155x158x160161x163x168___xl_26x180x18 _

18hx188xl_Ix200x21_ ._.x2_. 219...._x_23x2_.2_.x_._..q_31x__38x2_,...].1

2_2x2_x2h9x260__...x265267___x269___x271 272x275 276x28__..x288_.._x291x2_9.9_x301

aa B,-7450-.1
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II J2033 3x5 ll__xl'5 20x2_.3.xg..5.28x3-°x34 38x_9_02.Ax33 61x64x68 70_x72x76
80x82x84x86 88x97x99x101x106 108x116 118x122 12_.x12_.__7.TxlS0l_x13_x1_._58

lZ_/_x148 149xlSlx153x135x158x 16 ix 168x176 177x188x 190x202x203x218

219x221x22_x226 2_2 x230xO-_ 236x238x240x246 2_,8x2_x_

_x x x2_x2_x289x291x293x299

J2043 3x3 llxl_3. 20x2_3.x25 28xF0x32x3A 3Sx_0 51x_x6/_x68 70x72x76

80x82xSZtx86 88x97x.q..q_x10ix106 108x116 118x122xlS0 132x13Z_x137

lh_x l&8xl____" xl_x158x 16 lx168x 173x 176 177x179

180x188xlgOx202x20_x218 219x221xO21_x226 227x-22_qxgff_L 256x240x244x2P,6

2 _  2_ x256 2 x2s_ x29Ax2_ x2_9

lAUNCH AND FLIGHT DESCRIPTION

The AS-501 (Apollo h) vehicle is the first flight in the Saturn V Program

and the fourth flight of the Apollo Program. As an integral part of the

vehicle, the S-II and S-IVB stages had associated flight test objectives

C which are included herein.

Hission

The objective of the Apollo-Saturn V Program is to land men and scientific

equipment on the surfac= of the moon for _he purpose of manned exploration

of the lunar surface in the vicinity of the landing site, and to return

the men to earth safely. The program consists of a series of research and

development (R&D) test flights in which the primary objective is to flight

test and qualify the AS-501 space vehicle.

AS-501 is the first flight vehicle of the Saturn V series. The basic pur-

pose of the unmanned AS-501 mission is to develop the Saturn V launch

vehicle and the Apollo command and service modules for future manned flights.

£
_c
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Mission Objectives

Primary objectives are those that are mandatory; therefore, malfunctions

of launch vehicle systems, ground support equipment, or instrumentation1

that would result in failure to achieve these objectives will be cause

to hold or cancel the mission until the malfunction has been eliminated.

The following paragraphs define primary objectives as extracted from NASA

d1,'ectives.

The prima-y objectives listed below w_re obtained from National Aeronautics

and Space Administration, '_pollo Flight Mission Assignments" (Office of r

.Manned Space Flight, Apollo Program), M-D MA 500-11, SE 010-000-1,

1_ November 1966, _ashington, D.C.

1. Demonstrate the structural and thermal integrity and compatibility

of the launch vehicle and spacecraft; confirm launch loads and

dynamic characteristics

2. Demonstrate separation of:

a. S-II from S-IC (dual plane)

b. S-IVB from S-II

3. Verify operation of the following subsystems:

a. Launch vehicle: propulsion (including S-IVB restart),

guidance and control, and elect,'ical system

b. Spacecraft: command module beat shield (adequacy of block

II design for entry at lunar return conditions) and sel_c_

subsystems

_. Evaluate performance of the space vehicle eme-gency de,action

system in an open-loop configuration

5. Demonstrate mission support facilities and operations required

for launch, mission conduct, and CM recovery

2_ R-7450-1
!
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The primary objectives list,,d below" were obtained from ,NASA "SA-301 Launch

Vehic!e Hission Directive," revision A, Change 1, 29 June 1957, (;corse C.

_.Arshall ._Imce Flight Center, Huntsville, Alabama:

,, Determine in-flight launch vehicle internal environment

2. Verify prelaunch al, d launch support equipment compatibility

with launch and spacecraft systems

3. Demonstrate the S-IC stage propulsion system, and determine

in-flight system performance parameters

: _. Demonstrate the S-II stuge propalsioa system, including: pro-

_rammed mixture ratio shift and the propellant management system,

and determine in-flight performance parameters

5. Demonstrate the S-IVB stage propulsion system including the

propellant management systems, and determine in-flight system

performance parameters.

6. Demonstrate the launch vehicle guidance and control system during

S-IC, S-II, and S-IVB powered flight, achieve guidance cutoff,

and evaluate system accuracy

7. Demo:Astrate launch vehicle sequencing system

8. Demonstrate compatibility of the launch vehicle and spacecraft

9. Demonstrate the capability of the S-1W_ auxiliary propulsion

system during S I_,B powered flight and orbital coast periods to

maintain attitude ron_rol and perform required maneuvers

10. Demonstrate the adequacy of the S-IVB continuous vent system

while in earth orbit i

II. Demonstrate the S-_VB stage restart capability

The primary objectives listed below were obtained from NASA "Program Support

Requirements" (Office of bianned Space Flight, Apollo-Saturn V) Washington, i

D.C., dated 19 September 1966: _

1 1. launch environmental input from the Saturn V/spacecraft lunar _
module adapter (SIA) to the simulated IAi :_

R-7_50-1 25 _
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2. Determine the force inputs to the simulated Lbt from the SL% at
i

the spacecraft attachment struc%,re during launch )
5. Obtain data on the acoustic and thermal environment of the

SIA-simulated LH interface location during launch

4. Determine the overall simulated IM vehicle linear acceleration

r_sponse to the launch environment

5. Obtain data on the vibratory response of the simulated LM during

launch at selected locations in thc descent stage

6. Obtain data on the temperature of the simulated IM skin during

launch

Secondary. Objectives. Secondary objectives are those that are desirable

but not mandatory. Malfunctions that may result in failure to attain

these objectives may be cause to hold, but not cancel, the countdown as

indicated in the launch Mission Rules Document. The following paragraphs

define secondary objectives as extracted from NASA directives.

3
The secondary objectives ;isted below were obtained from NASA "SA-501

Launch Vehicle Mission Directive," Revision A, Change 1, 29 June 1967.

I. Detemine launch vehicle powered flight external environment

2. Determine attenuation effects of exhaust flames on RF radiating
i

and receiving systems during main engine, _etro, and ullage motor

firings

The secondary objectives listed below were obtained from NASA "Program

Support Requirements," (Office of Manned Space Flight, Apollo-Saturn V)

Washington, D.C., dated 19 September 1966:

I. Evaluate launch vehicle internal environment

2. Confirm IU/S-IVB in-flight thermal conditioning system

a6 a-75o-, i
i
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3. Determine CSH radiation shielding effectiveness and demonstrate

operational radiation monitoring instrumentation

_, Demonstrate satisf-_ctory operation of CSM communication subsystem

using the block II type X_IF and S-band omni antenna

3. Demonstrate satisfactory CS,_!subsystems performance in the space

environment before and after separation from S-IVB and during

entry

IAL_CH
r-

The launch vehicle countdown _s executed essentially as planned, with no

unscheduled holds. Liftoff occurred _t 7:00 AM EST on 9 November 1967.

: Preliminary evaluation of flight results indicated that all phases of

_i powered flight were satisfactory, including inserting the payload into
earth-parking orbit.

O The S-IVB restart milestone was achieved at IO:09AM EST as planned, follow-ing the second earth orbit. The engine in the S-IVB stage performed satis-

I factorily during the second burn, and all restart mission objectives wereattained. Re-entry and subsequent recovery of the command module was

I successfully accomplished at approximately 3:30 PM EST on the same day.

i The significant event times of AS-501 are shown in Table 3 •

f

t
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TABLE 5

SIGNIFICANT EV_T TIMES )

Range Time_ seconds

Event Actua 1 Predicted

First Motion -0._8

Liftoff Signal (IU) 0.265 --

Start Yaw Maneuver 1.3 --

Start Pitch and Roll 11.7 10.5

S-IC Inboard Engine Cutoff (IEC0) 135.5 135.0

S-IC Outboard Engine Cutoff (0EC0) 150.8 151.9

S-II Ullage Motor Ignition 151 2 152._

S-IC Retro Motor Ignition 151.4 152.o -

S-I C/S-II Separation 151._ 152.7

S-II Engines Start Com_nd 152.2 153.3

S-II Second Plane Separation 181.4 182.6

Jettison Launch Escape Tower 187.1 188.3

Jettison S-II Aft Cameras 189.8 191.0

• Initiation of Iterative Guidance Mode (IGH) 190.2 191.9 _IP

S-II Engine Cutoff 519._ 516.3

S-IVB Ullage Motor Ignition 520.4 517.0 -

S-II Retro Motor Ignition 520.5 517.1

S-II/S-IVB Separation 520.5 517.2

S-IVB Engine Start Command 520.7 517.3 !

S-IVB Ullage Case Jettison 532.5 529.I _

S-IVB First 6uidance Cutoff 665.6 656.0

Insertion into Parking Orbit 675.6 666.0 1

lS-IVB Restart Preparations (Time Base 6) 11,159.6 11,158.5

S-IVB Restart Command 11,486.6 11,_8_.5 |

S-IVB Second Guidance Cutoff Signal 11,786.3 11,799.4

Waiting Orbit Injection 11,'/96.3 11,809.4

S-IVB/CSM Separation 12,386.5 12,399.4

O
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D S-II STAGE ENGINE OPLIgATION I

THER_[AL ENVIRON.'YI_'T

Prelaunch

The prelaunch sequence from initiation of tanking to liftoff _s normal.

The prol)ellanttankin_ x_s accomplished in the following sequence:

I. S-IC fuel on board prior to start of countdo_

2. _-I_ oxidizer loading

3. S-II oxidizer loading

_, S-IC oxidizer loading

5. Oxidizer replenishing of all stages

6. S-II fuel loading

7. S-l_ fuel loading

The sigaificant tempcratures prior to liftoff, which were a result of the

thermal environment and engine preconditioning during this period, were

as follows:

I. Engine compartment gas temperature, F -35

2. M0V body temperature, F -75 :

3. MOVclosing control line temperature, F -20

h. Electrical control assembly temperature, F +70 to +80

5. Thrust chamber jacket temperature, F -250 to -278

Oxidizer was down to the bt0V for approximately _ hours. The _armer GN2 1

boattail purge in the S-II stage accounted for the warmer engine thermal

environment as compared with the S-IVB stage. The boattail purge was

initiated just prior to propellant tanking. ?

-¢
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Boost Phase,

!

The boost phase for the S-II stage extends from liftoff of the vehicle to

separation of the _-.¢/s-II stages. The S-II stage interstage environment,

encountered throughout the boost phase, _s below those predicted (Fig. 5).

The primary effect of the environment can be seen by considering thrust

chamber heating rates during boost.

The thrusf chamber jacket temperatures at liftoff were satisfactory; however,

they were on the low side of the predicted range. The five engines ranged

from -250 to -278 F. Warmup rates exceeded those predicted, which resulted

in actual rises of h2 to 65 F, as compared to a predicted rise of 38 F. The

high warmup rate experienced during the first 70 to 80 seconds after liftoff,

together with the low chill, resulted in nominal conditions at engine start

(Fig. 6 ).

The H0V temperatures were _ot as cold as expected. At engine start, the

HOV closing control line temperature on the center engine was -b5 F, as

compared to a predicted range of -100 to +50 F. However, the HOV body _1_

temperat, re on the center engine was -65 F, as compared to a rredicted

range of -130 to -235 F (Fig. 7 ). The warmer than predicted temperatures

are attributed to the relatively warm environment experienced during pre-

launch chilldoxm and the boost phase.

The stage environmental and component temperatures prior to liftoff are

shown in Table _ .

TABLE

ENVIROIOiENTALANDCOMPONENTTEqPERATURESPRIOR T0 LIFTOFF

Expected or Allowabl_ Data Temperature
Parameter Temperature Range, F Range, F :

Environmental Gas -100 to 60 -_0 to 20

Thrust Chamber Jacket -300 to -200 -280 to -250 i

Electrical Control Assembly -65 to lh0 70 to 80 ;

Primary Instrumentation Package -65 to 140 15 to 40

Auxiliary Instrumentation Package -65 to 140 0 to 25 '

t
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Separation

TLe S-IC/S-II separation occurred 151.2 seconds after liftoff. S-II stage

engine start command occurred 0.8 second after separation.

IL
The system for separating the S-IC/S-II stages uses a dual-plane separation

mode. First-plane separation occurs at S-If stage station 0, and second-

plane separation occurs at S-II stage station 196. The first-plane separa-

tion _equence is preceded by ignition of eight ullage motors, producing a

nominal thrust of 188,000 pounds for a duration of 3.7 seconds. Ullage

motor ignition occurs when the thrust of the S-IC stage decays to approxi-

matLly i0 percent. First plane separation starts at this time, _ich is

followed by ignition of the eight S-IC retrorockets, producing a nominal

thrust of 866,000 pounds for a duration of 0.67 seconds.

The S-II engines are ignited after first-.planeseparation while the ullage

motors are still at full thrust. The second plane separation occurs 30

seconds after S-II stage engine ignition (181._ secouds after liftoff).
_t

: During the initial 30-second portion of the S-II stage flight, the heat _

transfer coefficients were based on the predicted hot-gas recovery tem-

perature of 3100 F (MR at 5.5) and 2876 F (HR at _.7). No comparison of

the recovery temperatures could be made between the predicted and measured

temperatures on the base heat shield because the gas recovery temperature

was below the transducer range (1500 F minimum). It is postulated that

the predicted gas recovery temperature of 3100 F (Hitat 5.5) and 2876

(HR at h.7) used in calculating the heat transfer coefficients may have

been overestimated.

The heating rates measured on the S-If stage surfaces were generally below

the predicted design values. This _s also true of the convective heating

rate_ measured on the aft face of the bese hest shield.

1t-7450-1
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Base heating temperatures (aft and forward base heat shield) are presented

D in Fig. 8 and 9_ The actual measurements wero con._iderably lower than

those predicted. This was probably caused by the high design heating rate

predictions and high gas recovery temperature

The 5-II stage J-2 engine component temperatures during ergine operation

are shovel i,_ Table 5.

Z_BLE

-x rJ-2 L\'GINE COMP0._2.... I'_fPF_TLTtI:S

DURING OPERATION

Temperature to Which Data Temperature
Parameter Operation Verified, F Range, F

Electrical Control Assembly l:iO 75 to 85

(E_) (all engines)

(
Primary Instrumentation Package ]',01 _ 15 to _0
(all engines)

Auxiliary In3trumentation 140 10 to 3_
Package (all engines)

Itatband No. 5 (center en_,._ne) 600 -qO to 50

Gimbal Actuator Housing 500 _lq to 60

(outboard engine)

ECA Support Rod (outbovrd 150 0 to 20
engine}

Helium Regulator (outboard I_0 15 to 30
engine)

Hatband No o 1 (outboard engine) 500 -70 to 40

Hatband No. 7 (outboard engine) 500 -70 (,onstant) 1

600 -_ _,o 250* I "Armored Harness (outboard engine: (for ,_ minutes) !

*250 F reached 30 seconds after ignition, and decreased thereafter

_¢hen interstage _s jettisoned "
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START TP_NSIE\_ S

J

The start transient performance of the S-II stage engines were satisfactory

and within engine model specification limits.

The following ECP modifications affecting _tart operation were incorporated

on all enginp_:

EC:'J2-455--delayed gas generator timing to minimize excessive gas

generator temperature spikes and flow reversal

ECP J?-Sl3--retiming of nontemperature-compensated _ain oxidizer

valve; second-stage delay and travel compatible with predtct-d

thermaI envi_onment

ECP J2-575--installation of O.150-inch orifice in the oxidizer ASI

supply line to ensure satisfactory ASI operating temperatures

Table 6 shows engine start conditions for S-i _ flight and the most com- et

parative S-II test (test 028B) conducted at AEI)C. From the table, engine _M

J2052 initial conditions on test 028B were indicative of a faster stv.rt

than the S-II flight engines. Actually, engine J2052 did exhibit the

fastest power buildup, with engine No. _ representing the maximum flight

buildup and engine No. 3 the minimum. Review of sea level qcceptance

testing records indicate the same maximum/minimum engine start characteristics.

F;gure 10 compares oxidizer pump outlet pressure transients, S-II flight

envelope versus engine J2052 (test 028B). The AEDC test had a significantly

higher pressure potential at gas generator ignition, resulting in a faster

buildup and a higher percentage of steady-state overshoot. The faster power

buildup experienced on test 028B was primarily caused by a 50 F warmer engine

exhaust system temperature and a 50 F col2er start tank gas temperature that

resulted in increased spin-gas energy. The incre_med spin-gas energy pas-

sing through the oxidizer turbine csust,d engine J2052 spin speed to exceed

the S-II flight engines, as sho_n _t Fig. 11.

-' j
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TABLE 6 '

L-NGI.__ CONDITIONSAT ENGI_ START

AEDC Test
15")4-028B

Parameter (J2052) S-II Flight

Start Tank Pressure, psia 1306 1290 to 13_6

Start Tank Temperature, } -312 -2_5 to -262

Fuel Pump Inlet Temperature, F -_21.8 -_21

Fuel l_'mpInlet Pressure, psia .35.6 22

Oxidizer Pump Inlet Temperature, F -295.5 -296

Oxidizer Pump Inlet Pressure, psis 3-7._ 311.5

_hrust C,lamberSkin Temperature, F -169 -210 to -230

Fuel Lead, seconds l.O l.O

Mean Exhaust System Temperature, F 15 -40

M0V Closing Actuator Temperature, F -I_6 -60 to -85

l_ Valve PoEition Nail Null

0
1

: Fuel pump spin speed is primarily dependant on start tank pressure, is

only slightly affected by start tank gas temp_.-.ture, and is virtual!y

independant of turbine exhaust system temperature. The higher start tank

pressure levels experienced on the flight engines compared to engine J2052_

test 028B, resu!ted in higher fuel pump spin speeds, as shown in Fig 12 .

Figure 13 compares main oxidizer valve opening characteristics. The warmer i

than expected bol,ttail environment resulted in short plateau (l_-degree _\

open) times on all the f'.ightengines. Engine J2952 exhibited similar NOV _ :._i.

first position times on AEDC te_t 028B, the M0V being replaced prior to

test series 028 with a nominal friction valve ccmpare@ to the abnormally

high friction valve used for previous S-II testing. Flight. data ikdicate i

below normal vsl-re frtction on the flight engines, whirl, also contribute

to the short platem_ times.

,1
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Figure 11, Oxidizer Pimp Speed During Start Transient
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Table 7 compares main oxidizer valve sequence and engine hot-fire opening

times experienced st AEDC with the flight engines. The main oxidizer valves

used in the flight engines, and for the 16 S-If series tests conducted at

AEDC, _,erethe nonthermal-compensating type, timed to the sequence ramp

limits of ECP J2-513 (1390 ±_0 milliseconds). Although flight MOV opening

times were within AEDC test limits (Table 7), the first position delay

times approached the minimum satisfactory operational limit of _50 milliseconds.

The reduction of M0V plateau and ramp time decreases fuel pump stall margin

during the start transient. The faster M0V opening causes a higher oxidizer

flow and, consequently, fa=ter main chamber pressure buildup. Fuel system

resistance is increased because of the higher chamber pressure, resulting

in an increase in fuel pump head and a commensurate decrease in fuel flow,

i.e., reduced stall margin.

Figure i_ compares fuel pump head versus flow plots for the flight and AEDC

S-II series test limits. Adequate stall margin zs indicated from flight

data, even with the adverse effects of reduced HOV first 9ositlon times.

The fast MOVopening characteristics exhibited during flight operation tend

to reduce gas generator power buildup and its associated overshoot tempera-

ture transient. Oxidizer pump discharge pressure and, therefore, gas gen-

erator oxidizer injection pressure, are reduced when the M0V opens rapidly

(leaves the l_-degree plateau position) corresponding to a higher main thrust

chamber oxidizer flow.

Extrapolation of AEDC testing results in Fig. 15(fuel turbine inlet tempera-

ture profile limits) with test 0_8 forming a conservative upper boundary.

The limits of Fig.15 are indica_Ive of satisfactory gas generator transient

performance, and are far below a detrimental value.

The second thrust chamber fuel leak chilldown proved adequate during flight

operation, as shown in Fig. 16. Flight performance aFproximatedAEDC teat- /

ing with the name driving force (approximately 32-psia fuel pump inlet

pressure) Thrust chamoer resists, ca, proportional to thrua_ chamber _ i
.F

_4 It--74_0-.1 i
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D temperature, was still high after the second fuel lead, thereby maintain-
ing a desirably high ASI fuel feed pressure. The oxidizer feed system, as

discussed in the S-IVB section, does not chill down until after 1 second

of fuel lead; therefore, relatively low ASI oxidi_er flow was evident prior

to spindown. Because pump inlet conditions and engine power buildup were

normal, in addition to the above operational characteristics, ASI transient

operation appeared to be completely satisfactory°

PROPELIANT INLET CONDITIONS

The engine inlet propellant conditions for all five engines were within

specified limits at liftoff and at engine start command (T+152.2 seconds).

Oxidizer NPSH was well above the required 26-feet minimum (Table 8 ), with

an average value of 65 feet at liftoff and 43 feet at engine start command.

Fuel NPSH also was satisfactory (Table 8 ), with an average value of 740

feet at liftoff and 377 feet at engine start command, well above the re-

O quired 150-feet minimum. Engine No+ 2 was excluded from the averages be-

cause of an erroneous fuel pump inlet temperature (XC664-202) of -418.9 F

at liftoff and -_19 F at engine start command. These temperatures were

approximately 2 F high when compared with other inlet temperatures. Analy-
!

sis showed the problem to be caused by a stage instrumentation anomaly and

that, by biasing the fuel inlet temperature, the fuel NPSH for this engine

was determined to be close to the average.

Oxidizer pump inlet pressure (Fig. 17) behavior, through engine stert

command, was as expected. The large pressure drop is the result of re-

duced vehicle acceleration after S-1C outboard engine cutoff (OECO)o
I

Oxidizer pump inlet pressures prior to OEC0 had exceeded the maximum

calibratlon range (50 psia) of the inlet pressure transducers. A calcu-

lated value of 77.1 psia at 4.17 g was obtained at S-IC inboard engine

cutoff (IEC0, T+135.5 seconds) and 74 psia at 3.89 g was computed at OEC0.

_.
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TABLE 8

OXIDIZER AND FUEL LIFTOFF AND ENGINE SZaJtTNPSH

Engine No. Liftoff Engine Start

Oxidizer (26-feet minimum)

1 65.8 _1.5

2 62°9 i _2.9
;

5 65.2 4t_.9

6tt.O _.8

5 67.5 41.3

Fuel (150-feet minimum)

i
1 760 _0_

2* _81 183

5 79_ 4_5

tt 710 528
5 692 551

*Erroneous "!PSH because of

instrumentation anom ly

f

Figure 18 illustrates the adequency of oxidizer pump inlet pressures and

temperatures at engine start command as compared %o the engine model spe-

cification start limits The oxidizer pump discharge subcooled requirement )

(5 F) at engine start command was satisfactorily attained. An average
/.

subcooled value of 13 F was achieved (Fig. 19) utilizing the oxidizer

helium injection system. <
:7

The fuel pump inlet pressures (Fig. 20) exhibited normal behavior during _
vehicle acceleration changes occurring at S-1C 0EC0. A portion of the

pressure loss, approximately 8 psi, was the result of the stage fuel

recirculation pumps being sequenced off at T+150.9 seconds. The remaining ,_

q968026222-06 q
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pressure drop was caused by vehicle acceleration changes. The signai to

_equence off the fuel recirculation pumps also sequenced open the stage

fuel prevalves and sequenced off the oxidizer tank helium injection system.

_lel pump inlet pressures at S-1C IEC0 were approximately 47.3 psia, which

decayed to _6.0 psia before recovery to values indicated in Fig. 20.

Figure 21 illustrates the engine model specification start requirements

for engine fuel pump inlet pressures and temperatures at engine start

command. One engine (No. 202) was outside the grouping as a result of

the temperature measurement problem° By biasing this temperature, a value

of -_21.2 was obtained.

Figure 22 compares v cros3 plot cf fuel and oxidizer engine inlet pressures

at engine start command with the engine model specification start envelope

and the predicated value for all engines. The predicted fuel pump inlet

pressure differs from the actual average value by approximately 1.5 psi.

This has been attributed to a 1.5-psi decay in the fuel tank ullage pres-

S at start command because of higher than predicted fuel level
sure engine

ag_:ation which cooled the ullage gas temperature and, thereby, lowered

the pressure. Oxidizer tank ullage pressure at liftoff had decayed to the

minimal limit of 39 psia at liftoff. This has been attributed to an oxi-

dizer tank ullage heat loss to the fuel tank. Recommenuations are being

considered to: (1) evacuate the common bulkhead to reduce heat loss, or

(2) reduce the oxidizer tank ullage pressure limit from 39 to 36.5 psia.

A summary of the propellant inlet parameters is presented in Table 9.

The oxidizer bleed valve and fuel pump bearing temperature parameters on

two engines (No. _ and 5) were not recorded because the instrumentation

channels were utilized for monitoring MOV actuator and closing control

line temperatures on these engines.

L

Figure 23 depicts fuel pump interstage pressures for all five engines.

The pressurea, _'hich are indicative of fuel pump performance, were sat- _

isfactory. The spikes noted at the beginning and end of engine mainstage

It-7450-I 55 .-
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operation occurred simultaneously on different engine groupings, as noted.

Investigation of pertinen_ engine and fuel pump parameters failed to dis-

close the cause or effect of th_se spikes. The spikes are presently being

investigated as instrumentation anomalies.

START TAN_ SYSTEM

Start tank prelaunch and engine start requirements were met on all engines

(Fig. 24 and 25). After engine start, the systems functioned as expected,

with the tanks refilling and warming up at a rate of approximately 2 F/min.

Engine No. 1 reached a maximum pressure of 1465 psia with no a_parent vent

and relief valve operation. In-.house tests on this valve indicated a

cracking pressure of 1460 psig. Because the difference is in instrumenta-

tion accuracy, valve operation is considered satisfactory. The start tank

vent and relief valve on engine No. 5 did not relieve, and the _ank pres-

sure reached 1450 psia. Although in-house tests indicated a cracking pres-

sure of 1380 psig, the pressure of 1450 psia is within the maximum allowable

cracking pressure of 1500 psig. Therefore, the valve is considered satisfactory. J

HELIUM TANKSYSTI_4

Helium tank pressures and temperatures at engine start were satisfactory,

and are shown in Fig. 26. Following engine start, helium consumption was

as expected on all engines except engine No. 2. Excessive helium usage

was experienced on this engine during the start transient. The helium loss

abruptly stopped approximately 5 seconds after mainstage signal, and the

helium usage throughout the remainder of the flight was commensurate with

that of the other engines. The additional helium loss was approximately

100 psi/sac, as shown in Fig. 27, and closely approximates the helium

usage required for the oxidizer purge system.

Failure of the purge control valve to complete its closing cycle during

the engine start transient because of a contaminant particle between the

6o 740-1 i
i
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D shaft and })ore, or because of galling between these two members, was
suspected as the cause of the helium loss_ .ks corrective action, ECP

J2-_70 (replacement of the purge control valve with a similar vulve

incorporating an inlet filter), which was installed on production engines

J2083 and subs. was re-issued as ECP J2-470R1 to provide kits for all

delivered engines.

Following analysis of the AS-501 flight data, an investigative program

was conducted by Rocketdyne through bench and engine simulator testing

that verified that the abnormal helium loss was caused by the purge con-

trol valve poppet sticking in mid-stroke or slowly traveling through the

maximum flow range for a period of approximately _ seconds after mainstage

signal° The probable cause of the poppet sticking was gallin_ of the

shaft and bore or a foreign particle becoming lodged between the two°

Although the actual failure was not duplicated, sufficient testing of

the pneumatic system was completed to eliminate any other suspect com-

ponent, and to demonstrate that the purge control valve could cause the

O helium lo_s. A complete analysis of the purge control valve history re-
vealed no instance of leakage of this magnitude, and a 10,000-cycle endur-

ance test on the purge control valve failed to produce any valve malfunction,

although the poppet shaft and mating bore were found to be heavily galled

upon completion of the endurance test.

In addition to the incorporation of ECP J2-h7OR1 (the purge control valve

with the filtered inlet), R&I) engine tests are in progress to determine

if the vent port on the purge control valve can be capped. If engine tests

indicate that this feature can be satisfactorily incorporated, this helium

leak path will be positively eliminated.

The engine helium regulators performed satisfactorily throughout engine

operation. However, two instrumeatation anomalies were evident. Regulator

outlet pressure on engine No. 3 incurred a zero shift of +30 psia during i

the start transient, and data dropouts of up to _5 seconds were experienced

on engine No. 5.

@
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THRUST INCREASE

3
The flight buildup curves are shown in Fig. 28, together with an envelope

predicted from AEDC testing and the allowable thrust increase envelope.
i

All the thrust increase curves are within the allowable buildup envelope.

The curves agree well with the envelope predicted from AEDC testing.

MAINSTAGE PERFORMANCE

The engine steady-state performance during the flight has been evaluated

and is summarized in Table 10 for the S-II vehicle. Included in this

table for comparison are the respective values obtained during engine and

vehicle acceptance demonstrations. The values predicted for the flight

are based on engine acceptance tests and any significant preflight hard-

ware changes. In general, flight performance agreed with the predictions.

In the following part of this section, a general discussion of data reduc-

tion and evaluation procedures is presented. Also included is a detailed

evaluation of the performance of each engine. In addition, the results

of Rocketdyne's flight reconstruction model are presented. The mainstage
!

operating characteristics were reconstructed for all engines on the S-II

vehicle using measured engine interface conditions and PUvalve position.

t

Data Reduction and Evaluation of

Evaluation of the engine mainstage performance was made using data obtained

from the S-If stage contractor. These data were recorded on magnetic tape

at a frequency of I0 samples per second.

The data were processed by using Rocketdyne's digital computer steady-state

data reduction program (PT6_I). This program corrects performance to

standard altitude conditions so that compnrisons may be made between engine

66 R-7_50-1
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and vehicle acceptance and tile flight. These stand,_rd conditions include
the externnl engine variables influencing engine performance (engine

inlet pressures and temperatures, auxiliary brake horsepower extraction,

oxidizer heat exchanger flowrate, and hydrogen tapoff flowrate

A few general techniques have been used in reducing the data to obtain

more repeatable results. All flo_meter and pump speeds were counted from

the high-frequency oscillograph° In this way, any noise or data dropout

could be immediately detected and an accounting made. Also, all of the

pressure measurements sensing ambient pressure pre-en_ine start were "zero

shift" corrected by noting the differential between the measurement and

ambient pressure ,just prior to engine ignition.

Flight thrust and chamber pressure were calculated using specific impulse

and thrust coefficients as determined from engine acceptance testing. The

calculated main chamber pressure was consistantly higher than the measured

This supports evidence from the three 8-II vehicles static tested to date

O at MTF that an approximate 5-psi main chamber bias exists in the FM
telemetry systems.

A problem area exists with respect to the fuel pump inlet and discharge

temperature measurements. Ha lf-brid_es were used on the vehicle that do

not compensate for system wire resistance. At the very low cryogenic

temperatures of liquid hydrogen, wire resistance is significant in a

temperature-bulb measurement. Based on HTF static testing, whrre a full-

bridge static stage inlet temperature measurement is made in addition to

the half-bridge telemetry measurement, a correction factor of -1.5 degrees

was determined. This factor was incorporated into the data reduction

coefficients by the _-II stage contractor. Fuel pump discharge temperature

corre_:tions are presently being evaluated.

Engine Performance

The following are individual discussions of performance for the respective

engines of the S-II vehicle. Accompanying the remarks for each engine is _
%
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a table summarizing significant performance parameters during engine and

vehicle _cceptance and for the flight. The predicted flight performance /

values are based on engine acceptance testing and are adjusted for _ardware

changes, as applicable.

J2026 (Engine No. I). Table ii presents a comparison of engine J2026

performance. Predicted flight verformance values are the same as engine

acceptance values because thex_ were no significant hardware changes pre-

flight that would affect mainstage performance. The flight thrust agrees

well with the predicted value, but mixture ratio was higher than predicted. Ii=_
During engine acceptance testing, the mixture ratio varied test-to-t_st

from 5._7 to 5.58. This mixture ratio variation was attributed to shifting

in operating position of the fuel pump balance piston system, _:hichaffects

fuel pump efficiency. The flight mixture ratio agreos well with the 5.58

mixture ratio observed on the last engine acceptance test.

J20_ (Engine No. 2/. Table 12 summarizes significant performance param-

eters for engine J20_3. The predicted flight performance was based on

engine acceptance data, with compensation for expected performance _banges

resulting from hardware changes made following vehicle acceptance. Hard-

ware changes influenciag mainstage performance included the oxidizer turbo-

pump and the oxidizer turbine bypass nozzle. Component te_ data of the

turbopump indicated negligible differences with respect to the original

assembly. However, because of uncertainties in oxidizer turbopump replace-.

ment and the already higher than nominal mixture ratio, the engine was

recalibrated with an oxidizer turbine bypass nozzle change to preclude the

possibility of high performance. Flight performance was essentially as

predicted.

J20_P (Engine No. 3). Table 13 summarizee ei_nificant performance param-

eters for engine J2030. An oxidizer turbopump change, nm_q following

vehicle acceptance, wae accounted for in making the flight predictions.
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Comparison of component data from turbopump acceptance demonstration tests

indicated negligible effect on mainstage performance for the turbopump _)

change and, consequently, predicted flight values are the same as engine

acceptance. However, actual flight performance came in lower than pre-

dicted by -1100 pounds and -0.073 mixture ratio units. The flight values

of thrust and mixture ratio indicate the oxidizer turbine nozzle area of

the replacement turbopump to be significantly larger than the original

turbine nozzle.

J20_5 (Engine No. h). Table 1_ presents a comparison of engine J2035 per-

formance. Predicted flight performance values are the same a_ engine

acceptance values because no major hardware changes were made. Thrust

was as predicted, and mixture ratio was -0.0_ mixture ratio units lower

than engine acceptance.

J2028 (Fngine No. 5)° Table 15 summarizes the performance of engine J2028.

Predicted flight performance was based on engine acceptance values with

compensation made for an expected performance shift because of an oxidizer

turbopump change following vehicle a_ceptance. Component test data of the

replacement turbopump indicated it would lower the overall thrust and mix-

ture ratio of the engine by -2633 pounds and -0.088 mixture ratio units.

The flight mixture ratio was similar to that observed during engine accep-

tance and vehicle acceptance, indicating that the performance change result-

ing from the oxidizer turbopump replacement was less than expected. The

flight thrust agreed with the thrust determined from vehicle acceptance,

which was lower than that during engine acceptance because of shifts in

the gas generator oxidizer system resistance.

During the PU cutback, a PU system resistance shift occurred causing a

thrust shift of approximately -3000 pounds. This is shown in Fig. 29 at

_8 seconds (range time).
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"_ Flight Reconstruction

The mainstage operating characteristics have been reconstructed for the -_J

flight engines. The following parameters were reconstructed and compared

to the actual values; engine mixture ratio, main thrust chamber pressure,

oxidizer and fuel flowrates, oxidizer and fuel pump speeds, oxidizer and

fuel pump discharge pressures, and gas generator chamber pressure. In

general, the reconstructed performance agreed well with the actual flight

performance.

The flight reconstruction_s performed using linear influence coefficients

to extrapolate the predicted tag values (Table 11 through lb) to actual

flight using engine inlet conditions, pressurization flows, po_er extraction,

and PU valve positions. The independent parameters used from the telemetry

da_a are shou_ in Fig. 30 through 50, and include the following:

Figures 30 through _ Engine oxidizer in_et temperatures

} Figures 35 through 39 Engine fuel inle_ temperatures

Figures _0 through _ Engine oxidizer inie_,pressures

Figures _5 through _9 Engine fuel inlet pressures

Figure 50 Heat exchanger oxidizer flo_Tates

In addition, the following assumptions were made. The engine fuel inlet

temperature on engine No. 2 appeared to be biased by approximately 2

degrees, so an average of the o_her three outboard engines _as used.

The oxidizer turbopump auxiliary power _s assumed to be.a constant

horsepower for all engines except engine No. 5, which has no extraction

pump. Fuel tank pressurization flo_rate _s assumed to be a constant 0.7

lb/sec, with a step to 1.)5 i_/sec at _06 seconds (range time), except

for engine Ne. 5, which had no tapoff.

To make the PU valve position compatible with the flight reconstruction

program, the PUvalve angles (Fig. 51 through 55) were converted to voltage ""

ra_xo. The voltage ratios were used to compute the mixture ratio change.

for the 1_ excursi m using curves of mixture ratio versus voltage ratio

• 0
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Figure _7. Engine ._'o. _ Fuel Pump Inlet Temperature
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Figure 47. Engine No. _Fuel Inlet Pressure
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Figure &9" Engine No. 5 Fuel Inlet Pressure
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from engine acceptance (Fig. 56 through 60). These mixture ratio changes

l were input to the reconstruction program using the appropriate PU control

setting.

Reconstruction of the following parameters are presented in Fig. 61 through

iI_.

Figures 61 through 65 Engine thrust

Figuf_s 66 through 70 Engine specific impulse

Figures 71 through 75 Engine mixture ratio

Figures 76 through 80 Main thrust chamber pressure

Figures 81 through 85 Engine oxidizer flowrate

Figures 86 through 89 Engine fuel flowrate

Figures 90 through 94 Oxidizer pump speed

Figures 95 through 99 Fuel pump speed

Figures 100through 104 Oxidizer pump discharge pressure

Figures 105 through 109 Fuel pump discharge pressure

Figures ll0through 114 Gas generator chamber pressure

0
Actual measured flight performance also is shown for all parameters except

thrust and specific impulse. The flows and mixture ratio are based on

original telemetry_ tape data and, therefore, do not agree exactly with .,

values from Tables I0 through 15, which are based on oscillograph flows.

On engines No. 2 and No. 4, data scatter in the oxidizer flow measurement

resulted in the calculation of an erroneously high mixture ratio at 176

seconds (range time).

The engines operated for approximately 270 seconds with the PUvalve closed.

During this veriod, the reconstructed performance matched the actual per-

formance quite well. Primarily, differences between reconstructed and

actual values were attributed to the uncertainties in the predicted tage

values caused by the preflight hard.are changes, as discussed previously.

C
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Curves of mixture ratio versus voltage ratio (Fig. 56 through 60 ) show -.

that the flight PU excursion was as predicted except for engines N_, 3 _J

and No. 5. On these engines, the mixture ratio change for a given voltage

ratio was slightly greater than during engine acceptance. This is reflec-

ted also in other parameters such as chamber pressure, flows, pump speeds,

and pump discharge pressures, all of which show a greater than predicted

change during PU excursion. In the cases of engines No. 3 and No. 5,

major hardware changes were made prior to the flight which could influence

the PU excursion. On No. 3, the oxidizer turbopump was changed, and on

No. 5, both the oxidizer turbopump and PU valve were replaced

The flight mixture ratio excursion for engine No. 4 was as predicted (Fig°

59), but most of the other parameters changed less than predicted by the

reconstruction. This seems to be characteristic of this engine, as also

observed during engine acceptance.

Figures 71 through 75 show a slight decrease in mixture ratio during the

first 250 seconds of engine operation. This trend is the result of fuel

turbine warmup and, has been incorporated in the flight reconstruction _[

model. Figures 95 through 99 show that, during this same time period,

the fuel pump speed increased 200 to 300 rpmo This trend in pump speed

has not been completely simulated by the reconstruction model.

Table 16 presents reconstructed average thrust, mixture ratin, and specific

impulse for the region of maximum PU operation, starting at 90-percent

thrust (156.5 to _26 seconds), the region from PU cutback plus 50 seconds

to cutoff signal (576 to 520 seconds), and the region from 90-percent thrust

to cutoff signal (156.5 to 520 seconds).

9
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D TABLE 16 l

RECONSTRUCTED AVERAGE ENGINE PFIRFORblANCE

Ave ra ge
Average Average Specific Average
Thrust, Mixture Impulse, Flowrate,
pounds Ratio seconds lb/sec

High Mixture Ratio Region
(156 to 426 seconds)

Engine 1 229,369 5. 5087 _25.59 9-1.98-°

Engine 2 222 772 5 4516 4-4.98 52_.07

Engine 3 223,612 5.3975 _25.95 524.98

Engine _ 225,568 5.5302 421._3 535.20

Engine 5 225,493 5.3677 _2_.33 531.35

Average 225,362.8 5.zk511_ 424./tb 527.52

O 50 Seconds After Mixture Ratio
Cutback to Cutoff Signal
(476 to 520 seconds)

Engine 1 192,195 _. 7660 430 16 _5.52

Engine 2 183,097 4.6554 _29.78 _i2_. _3

Engine 3 186,018 4.6_2 _30.54 _30_51

Engine _ 185,730 4.7307 426.28 _35.12

Engine 5 189,140 4. 5980 _29.08 439.56

Average 187.236 4.67886 429.17 435.03

From 156 Seconds to Cutoff Signal
(156 to 520 seconds)

Engine 1 22 _ 063 3.3390 426.65 505.11

t_gine 2 21),964 5o2711 426.07 301.90 :=

Engine 3 215,28_ 5.2270 :127. O0 504.01
/

Engine 4 216,715 5.3_88 422.5_ 512.92 ;

Engine 5 217,35_ 5.19_3 _25.40 510.80

Average 210,876 5.2760_ 425.53 506.95

t[ '
ib
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Figure 92. Engine No. 3 Oxidizer Pump Speed
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Figure 11_. Engine No. 5 Gas Generator Injector End Premise t
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TANK PRF_Sb_IX_TION PERFORMANCE

The fuel tank pressurization performance is presented in Fig. 115 and 11_

The values are within the expected operating bands and consistent with

the data seen on vehicle acceptance.

The oxidizer tank pressurization system performance changed between vehicle

acceptance testing and the flight° The heat exchanger outlet temperatures

and pressurization manifold pressure are presented in Fig. ll7 and 118. Indi-

vidual engine heat exchanger flowrates were not measured on the flight so

it was necessary to estimate the flow. The flow was estimated from an

operating line based on engine and vehicle acceptance data of heat exchanger

outlet temperature as a function of flowrate. This was used to compare

vehicle acceptance and flight heat exchanger temperature and pressure for

the PU valve fully closed and o_en (Fig. 119 through 12_. Heat exchanger

performance was nominal during vehicle acceptance testing. During flight

AS-501, the heat exchanger system on engine No. 4 appeared to be obstructed

O as its flow was low relative to the other engines. This is shown also by
the decreased manifold pressure (increased resistance) for flight as com-

pared to vehicle acceptance at the maximum PU level where essentially

identical average engine performance and heat exchanger flow exist (Fig. 12_.
/

An analysis based on the tank pressurization volumetric requirements showed

that this obstruction in one heat exchanger forced the others to operate at

a higher mass flo_wate than during static testing. During minimum PU opera-

tion near cutoff, a mass flowrate was reached where the heat exchanger

system volumetric output was no longer capable of meeting the tank require-

ment. After this occurred, the oxidizer tank pressure decayed (Fig. 12_.
Y

The flowrate through the heat exchangers continued to be increased in an

attempt to control ullage pressure until the maximum regulator setting was :_

reached. At this high flow, the pressurant was at a saturated vapor condi-

tion (Fig.120). (The exact flowrate could not be determined by use of

temperature when this saturated condition was reached.)

N
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Figure 118. Oxidizer Tank PressurJ zation Manifold Pressure
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To prevent a reoccurrence of this problem, a heat e_.changer filter is

being designed to be inserted into the oxidizer supply line. This filter J

is a wire-mesh configuration that is designed to prevent particles from

plugging the heat exchanger and, at the same time, have an insignificant

pressure drop.

THRUSTDECREASE

The thrust decrease summaries for the S-II stage engines are shown in

Table 17.

The actual cutoff impulse values from the flight are about the same as

those from engine acceptance tests. This is due to the increase in im-

pulse due to the lower main oxidizer valve actuator temperature on the

flight being compensated for by the decrease in impulse due to the lower

thrust at cutoff on the flight.

The engine model specification limits on cutoff impulse to 5 percent of _)
rated thrust are 30,000 to 50,000 lb-sec. When the impulse is taken to

zero thrust, these limits become 36,&00 to 56,&00 lb-sec. All flight

cutoff impulse values at standard conditions meet the specification
/

requirements. The times from cutoff signal to 5 percent of rated thrust

also met the specification requirement (0.800 second maximum).

The thrust decrease traces from the flight are shown in Fig. l_,together

with the envelope from engine acceptance testing.

The main oxidizer valve actuator temperature at cutoff wvs -105 F for the

inboard engine. The temperature measurement for the o_tboard engine

failed to record prior to flight, l decision Js made zzot to replace

the transducer, i.

9
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TAb.'E17

ALTITUDE CIEOFF IMPDISE

Engine No. i 2

Engine S/N J2026 J20&3

Engine Engine
Parameter Acceptance Flight Acceptance Flight

Actual Cutoff Impulse,
lb-sec _5,7_8 39,510 _2,213 &0,025

Cutoff Impulse at Standard

Conditions,* lb-sec &3,790 37,860 _2,213 38,518

Time %o 5 Percent of Rated _,
Thrust, seconds 0.367 0.380 0.33_ 0.360

Thrust at Cutoff, pounds 202,3&0 189,500 200;9&9 183,900

MOV Actuator Temperature, F -_6"* -105"* 0"* -105"*

MOV Delay Time, seconds 0.087 0.071 0.076 0.061

MOV Travel Temperature, F 0.173 O.180 O.16& O.180

#Standard conditions: Null PU valve position; main oxidizer valve act
of 0 F; standard inlet c,Jnditions, pressurizati
and auxiliary power extraction

*_Assumed, not measured on this engine

R-7450-I
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TABLE 17

ALTrI'UDE CUf0FF IMPULSE TO ZEROTHRUST

,,/l"

2 3 _ 5

J20_5 J2050 J2035 J2028

Engine Engine Engine Engine
Acceptance Flight Acceptance Flight Acceptance Flight Acceptance Flight

_2,213 40,025 _a,657 _0,310 h_,Oh5 _,575 h2,626 gI,922

_2,215 38,518 _,657 39,200 _,0_5 _3,522 _2,626 _i,389

0.33_ 0.360 0.336 0,310 o.300 o.3_0 0.345 0.370

o 200_9_9 185,900 19_,989 177,700 29_,o15 191,_00 200,915 178,700

0_* -105"* 0_* -105"* 0_ -105_ 0"* -105

0.076 0.06] 0.082 0.061 0.087 0.081 0.076 0.091

0.16_ 0.18o 0.177 0._9o 0.170 0.210 0.162 0.190

main oxidizer valve actuator %emp_rature
conditions, pressurization flowra%es,
rac%ion

177
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ELECTRICAL SYSTEM

The battery voltages of the S-II stage are presented in Table 18. All

battery voltages appear normal. Although the S-II stage does not mea'_ure

ECA control bus and ignition bus voltages, it can be assumed that engine

voltage limits (Table 19) were met satisfactorily during the mission° No

problems are evident in the engine electrical system.

TABLZ 18

S-I I BATTERYVOLTAGES

Second

Measurement Measurement Engine Plane Engine
No. Name Liftoff Start Separation Cutofi _

M020-207 Ha in d-c 50.2 29.5 29.5 50.0
bus voltage

O M125-207 Ignition 26.5 50 _ *d-c bus

voltage

_Battery jettisoned

?.

TABLE 19

ENGINE VOLTAGE LIMITS

%

Control Power 22 to 51 4-c

Ignition Power 24 to 51 d-c

R-750-1 179 @.,
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ENGINE GIMBAL DATA

The engine actuation system on the stage performed satisfactorily during

flight, with no significant anomalies noted. The data below indicate the

peak actuator loads and maximum gimbal displacement incurred during the

boost phase.

Maxim.m Gimbal

Actuator Peal< Actuator Displacement _-s,
Engine No. Position Loads*, pounds u, grees

1 Pitch +5,200 "--0.9
Yaw -5,200 -1.0

2 Pitch --_,875 ±0.75
Yaw -_,550 +0.25

3 Pitch -7,800 +1.0
Yaw -5,850 -o.75

Pitch -10,_00 +1.1
Yaw +3,900 -1.3

*Actuator loads: (-) tension; (+)compression -_
_6imbal displacement: (-) actuator retract; (+) actuator extend J

There are no problems evident in the engine gimbal data.

VIBRATIONANALYSIS

Analysis of the J-2 engine vibration data, supplied by the KSFC facility,

from the S-II stage of the AS-501 flight produced limited valid results.

The S-II stage engine cluster data were considered valid during the S-II

stage operation, but the validity was limited to the oxidizer pump measure-

ment only during maximum performance for the engine _luoter operation, i
The remainder of the S-II stage engine operation vibratiun data -_ere !
questionable, baaed on the frequency spectra analyses that presented t

unrealiatically aimilar flat rnpon_e characteriotico for the three
p

engine locationa.

- ¢

t
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Start transient evaluation was seriously impaired by the cverranging of

the vibration measurements which were scaled for the lower mainstage

vibration levels. The engine vibration data, a_ supplied by HSFC, from

the S-II stage during the AS-501 vehicle flight, were analyzed for o¢er-

_11 instrumentation performance and response characteristics. _ total of

16 _ngine _ssociated measurements were recorded: the engine dome, oxidizer

pump and fuel pump for each engine, plus one gimbal pad measurement. All

engine measurements appeared operative _ring their respective stage

oueration.

The engine vibration data were reco2ded on a continuous h_sis_ The._SFC

facility provided oscillogram playback and power spectral density (PSD)

analysis of the vibration measurements during the S-IC stage and S-II s_age

operation. The majority of these data during engine operation were ques-

tionable. Three S-II stage operation time :nterva]s _ere sampled for PSD

analysis at flight times of 156, 165, and 171 seconds from lib..off (engine

cluster ignition _cvrred at 153.1 seconds). The time interval of 171

seconds has been invalidated (because of telemetry system noise) by the

_ KSFC evaluation group. With the exception of +he cluster eng_aes: oxidizer

pump data sample at 165 seconds, the vibration .ata during e_*g_ne operation

were characterized by a questionable flat amplitude re,posse ie_ei versus

frequency which ,_s similar fox the three engine )ccaticns. contrast _;:

to these results, static test data produced distinct frequency response

characteristics associated with the engine dome and with each turbo_ut_p

location• The possible validity of the oxidizer v_:p v.hration measurement

a_ 165 seconds was attributed to th_ lower vibration envirom_ent associated

_ith PU chahgc from nominal _o may_mum engine performance by reducing _he

oxidizer pump recirculation _iow.

As vibration le,,els exceeded approximately 7 g rms, the data became ques-

tionabl _. A cause of this deta condition may b_ the use of relatively low

calibration levels of _5 g rms as compared with the 1_0 to 200 g rma range

uses for engine static teats Although the 35 g rma calibration value ia

applicable for engine data for 50 to )000 Hz, the telemetry transmission

(
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bandwidth, the accelerometer, and airborne charge amplifier were operating

wideband, 10 to 20,000 Hz, which required the higher measurement range to

prevent the high-frequency harmonics from overdriving the amplifier out-

put. The remaining PSD analyses of the S-II stage measurements were made

during S-1C stage operation sampled at four time intervals: 1 second

(liftoff), 21 seconds, 67 seconds (Hach 1), and 86 seconds (max Q). The

maximum levels occurred at liftoff with values ranging from 0.5 to 1.3 g

rms, as listed in Table 17.

The HSFC oscillogram oxidizer pump data indicated that the engine cluster

performance changed from nominal to maximum at 157.5 seconds, flight time.

and that performance again changed at approximately _30 seconds, a decrecse

from maximum for propellant utilization. (A 0.10-second transient was

evident on the stage vibration measurements at 181 seconds, which _as

attributed to the interstage separation event.) The engine cluster cutoff

occurred at 519.5 seconds as referenced to the mainstage vibration level

decrease. Following cutoff, transient activity was indicated on all mea-

surements at 520.6 and at 525.0 seconds, but was not conclusively determined

to be data or telemetry system noise. ._

The S-II stage engine cluster's nominal main propellant ignition occurred

at 153.1 seconds from liftoff. The peak levels from the HSFC data were

20 to 30 g peak to peak at the engine dome. The high-speed data exhibited

a distorted or a shifted effect on these same measurements. The peak

activity on all engine measurements occurred 0.5 seconds later and was

concluded to be the oxidizer dome prime transient. The levels and dura-

tions of this transient could not be definitely determined from the over-

driven characteristic. The total duration also included the additional

time for amplifier recovery. By utilizing the pump measurements which

had the least severe levels, a rough estimate of the durations ranged

from 0.050 to 0.200 second for the five-engine cluster. The high-speed

data playback verified the priming time initiation of 153.6 seconds, but

the duration and apparent interaction of the measurements produced

questionable levels.

#/-/- 182 R-7450--1
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l

D Engine Start Transients

The engine start transient vibration data were analyzed for determination

of levels and duration during the ignition and transition into mainstage

periods° These data from the MSFC oscil[ograms al, d additional high-speed

oscillograms had overdriven or questior_ble portions during the S-II stage

engine start that prevented conclusive results. Direct comparison of the

flight transient data levels with static test results van limited by the

telemetry system frequency recording bandwidth of 30 to 3000 Hz. The major

energy content of static test transient data (recorded 10- to lO,O00-Hz

bandwidth) is in the 2000- to 6000-Hz frequency range.

Analysis of the S-II stage engine vibration data resulted in the following:

I. The maximum J-2 engine vibrationlevel during the S-IC stage

operation occurred at liftoff with a value of 1.3 g rms.

2. The majority of the S-II stage engine vibration data during the

cluster determined to be invalid. Thisengine operation were

result was attributed to use of the low calibration range for

the airborne amplifiers which were operated wideband from 10 to

20,000 Hz. This wideband system passed the higher frequency

harmonics that caused overdriven or limited amplifier outputs

to be fed to the telemetry transmission system.

BOATTAILLEAKAGE

The oxidizer pump seal leakage into the boattail of the S-II stage _as

alleviated by means of a burst diaphragm assembly installed near the exit

of the oxidizer pump primary seal cavity drain line, thus forcing the

oxygen to be routed thruugh the overboard drain line. The burst diaphragms,

one each on the respective engine, withstood the static leakage during the

S-IC boost phase, and the pressure in the oxidizer pump primary seal cavities

ranged from 0.5 psia on engine No. tt to 3 psia on engine No. 2.

0

/
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Performance of the diaphragms during the powered flight of _,he S-II stage

is presented below. )

1

Diaphragm Pressure Mean Primry Seal Cavity
Pressure

Time From ?ressure At

Engine Engine Engine Start, Break, During Maximum During Nominal
S/N No. seconds psia PU, psia PU, psia

J2026 1 12 22 10 to 15 9 to 13

J2043 2 26 22 8 to 12 8 to 9

J2030 3 8 21 12 to 20 12 to 17

J2055 _ 5 16-I/_ 7-1/2 to II 12 to 16"

J2028 5 268 19 1_ to 18 6 to 8

_Pressure rise attributed to increased tur_opump leakage

Insufficient volumetric flow resulted in the burst diaphragm on engine _t
J2028 being able to survive two-thirds of the S-II flight duration; the J

diaphragm ultimately ruptured, with the cavity pressure remaining low.

The burst diaphragms have performed as expected, and representative plots

are depicted in Fig. 12_ and125. The combined engine leakage rate during

propellant tanking operation was very low, and the gas analyzer registered

0.2_ percent concentration of oxygen as compared against a redline of 3

percent concentration.

0
4
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C S-Il_ STAGE ENGIN_ OPERATION

TItEIL_iALENVLrtONM_T

Pre launch

The prelaunch sequence from initiation of tanking to liftoff vas normal.

Th,: propellant tanking was accomplished in the following sequence:

1. S-IC fuel on board prior to start of countdown

2. S-IVB oxidizer loading

3. S-II oxidizer load ng

_. S-Ifi oxidizer loading

5. Oxidizer replenishing of all stages

6. S-II fuel loading

0
7- S-IVB fuel loading

The sigalficant temperatures prior to liftoff, which were a result of

the thermal environment and engine preconditioning during this period,
.r'

were as follows:

I. Engine area ambient temperature, F -70

2. biOVactuator temperature, F -130

3. MOV closing control line temperature, F -85

_. Electrical control assembly temperature, F +20

5. Thrust chamber jacket temperature, F -2_5 ._

Oxidizer was down to the blOVfor approximately _ hours. The warmer GN2
boat_ail purge in the S-II stage accounted for the warmer engine thermal

environment as compared with the S-IVB stage. The boattail purge was _

initiated just prior to propellant tanking. _

0
A
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Boost Phase

The boost phase covers the period from liftoff of the vehicle to separa-

tion of the S-IVB stage from the expended S-II stage.

The S-_-VB interstage environment experienced during boost in flight AS-_01

was below those predicted (Fig. 12_, but was similar to that of flight

AS-202 (Ref. R-6750-3) for the same period of boost (150 seconds). Yhe

aft interstage skin tempera Lure profile was similar to that predicted,

but peaked at a lower value, +165 F, instead of +_25 F (Fig. 126).

The thrust chamber jacket temperature at liftoff was within the predicted

band of -160 to -280 F (Fig.127). Rate of thrust chamber jacket warmup was

less than predicted, primarily because of colder than predicted aft inter-

stage skin temperature (Fig.126), which resulted in a reduced contribution

from radiation during the final boost phase. The low chill (-250 F at

liftoff), together with a lower than predicted aft interstage skin tem-

perature, resulted in the jacket temperature being out of the predicted

band of -80 to -180 r at engine start (-200 F at engine start). The thrust
4D

chamber nozzle exit heatup rate during boost was similar to that of thrust

chamber jacket heatup rate. As with the thrust chamber jacket tempera-

ture (Fig.129, the thrust chamber nozzle exit temperatures (C0385 and

C0386) were also out of the predicted band at engine start (Fig. 12_.

The M0V temperature in the S-IVB stage was slightly colder than in the

S-II stage at liftoff, and _as probably caused by the warmer GN2 boattail

purge in the S-II stage. _Iowever,the M0V temperatures were similar to

that experienced on the AS-202 and AS-203 flights at liftoff (Ref. R-6750-3

and R-6750-2), and within the predicted band at engine start (Fig.129).

The bi0Vclosing control line temperature was -78 F, as compared to the

predicted band of -20 to -100 F. The l_}Vactuator temperature was -I_5 F,

as compared to the predicted band of -Z40 to -250 F, Figure 129depicts

the two M0V measurements and engine area ambient temperature during boost

and J-2 engine operation. The rise in temperatures at J-2 engine start
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f

@ (Fig. 129) is caused by the retromotor exhaust plume (retrofire and separa-

tion). The significance of the MOVenvironment is discussed in the

Transient section.

Separation

Tb. S-II/S-IVB separation command occurred 520.5 seconds after liftoff.

The S-IVB stage engine ign_.tion occurred 0.2 second after separation

command°

The separation of the S-II/S-IVB stages is preceded by ignition of two

5_O0-pound-thrust ullage motors. The nominal burn time of the ullage

motor is 5.9 seconds. Separation command occurs 0.1 second after ullage

motor ignition followed by ignition of four 35,700-pound-thrust retromotors.

The retromotors burn for a duration of 1.5 seconds. The _-IVB stage engine

start command occurred at 520.7 seconds after liftoff (0.2 second after

O separation command). Separation was completed at 521.5 seconds after
liftoff. The heat flux experienced by two calorimeters (C2000 and C200_)

was approximately _0 percent less than that predicted in the J-2 engine

model specification.

The two calorimeters were provided to measure the heat flux from the TE-29

retromotor exhaust plume at the thrust chamber exit plane. The C2000

calorimeter was located along the retromotor centerline projection onto

the J-2 engine and experienced a maximum heat flux of 0.58 Btu/ft2-sec as

compared to the model specification value of 0.6 Btu/ft2-sec during retro-

motor firing.

The MOVactuator housing temperature (C2005) and MOVclosing control line

temperature experienced a rise of approximately 10 F as the engine passed

through the retrorocket plume impingement. The engine area ambient tem-

perature (CO010) indicated a rise of approximately 15 F. Figure129 de-

picts these measurements during boost and J-2 engine operation. These

R-7_50-1 193
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temperature rises are comparable to that experienced on flight t.c-202 c

(Ref. R-6750-3) and AS-203 (Ref. R-6750-2). " -_

Orbital Coast

An orbit is defined as one (approximately 90 minutes) revolution around

the earth. One of the primary mission objectives was to demonstrate the

S-IVB stage engine restart capability. S-IVB stage engine restart was

accomplished after a coast period of two orbits, iI,&86 seconds after

liftoff.

The thrust chamber jacket and nozzle temperatures during the orbital coast

period are shown in Fig. 130. The thrust chamber nozzle analytical pre-

diction represents the mean bulk temperature for the insulation portion

of the thrust chamber nozzle having a thermally controlled (clean) insu-

lated surface and no effect from the firing of ullage motors at S-IVB

stage first-burn engine cutoff. It is apparent that the measured data !

are close to the predicted temperature profile. Comparison of thrust .._

chamber temperatures between the expected range and actual measurements

on flights AS-501 and AS-203 for one orbit is presented ip Table 20.

The ullage motor operation at S-IVB stage first burn cutoff (88 seconds

duration) and at the S-IVB stage engine restart (327 seconds duration)

appears to have negligible effect on the thrust chamber heatup.

TABLE 20

THRUST CHA_I_ TI_PERATIRES DI_ING PARKING ORBIT

Expected Temperature Range Actual Temperature Data
Flight Subsequent to One Orbit, F Subsequent to One Orbit, F

AS-501 -80 to 0 (clean) -120 to -20

0 to 105 (dirty)

AS-203 -80 to 0 (clean) -80 to -20

20 to 125 (dirty)

l
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The effect on engine chilldown as a result of the thrust chamber tempera- 1_

tares and fuel lead of 8 seconds at S-IVB stage engine restart is discussed

elsewhere in this report.

The M0V temperature environment indicated no apparent response to the ull-

age motor plume inpingement at restart. No appreciable temperature change

was experienced from liftoff to second barn cutoff (Fig. 131). As expected,

a slight temperature rise was experienced at S-II/S-IVB separation (Fig. ).

Fuel turbine and oxidizer turbine inlet transducer measurements correlated

well with that measured on Flight AS-203 (Ref. R-6750-2). Figure 132de-

picts the actual fuel turbine and oxidizer turbine inlet temperature meas-

urements experienced on flight AS-501. As postulated in AS-203 report

(Ref. R-6750-2), fuel turbine and oxidizer turbine temperature transducer

measurements do not represent the crossover duct skin temperatures.

Figure 132 also compares the actual turbine and crossover duct temperature

measurements during the coast period to the fuel and oxidizer turbine in-

let temperatures.

The predicted and actual crossover duct surface temperatures during AS-501

orbital coast are depicted in Fig. 133. These compare very favorably with

the predicted curve. The crossover duct on AS-501 was painted black with

an emissivity of 0.9.

y

The crossover duct temperature at the end of the second orbit (at S-IVB

restart) was indicating 0 F; which is well within the predicted tempera-

ture band (Fig. 1_). The exhaust system temperature influence to engine

start transients is discussed in the Start Transients section of this

report.
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START TRANSIENTS l '

Initial Start

Engine J2031 flight transient performance during the first and second
engine operations was within mudel specification limits. Engine opera-

tion was also within S-IVB verification testing limits at AEDC on engine

J2052. Engine changes that significantly affect start transient perform-

ance were incorporated after engine J2031 acceptance, preventing a mean-

ingful comparison of engine acceptance testing and flight. These modifi-

cations were as follows:

I. ECP J2_155; delayed gas generator valve timing, to minimize

excessive gas generator temperature spikes and flow reversal

2. ECP J2-_58; incorporate necessary restart requirements

3. ECP J2-505; thermostatically orificedmain oxidizer valve, to

prevent variations in valve opening times resulting from tempera-

ture changes

4. ECP J2-51_R1; reduce HOV opening timing, to be comensurate with

optimum start performance
..,"

5- ECP J2-590; paint exhaust system with high-emissivity black

paint, to affect faster cooldown iL space prior to restart

6. ECP J2-598; installation of a smaller diameter ASI oxidizer

orifice, to prevent excessive ASI temperature transients during

engine start

7. Specially calibrated start tank vent and relief valve, to ade-

quately control tank energy during orbital coast

8. Engine restart with PUvalve i_ the full-open position, to com-

pensate for excessive oxidizer pump tranlient operation

Table 21 compares start conditions of the s-riB flight first burn with

AEDC (engine J2052) test 155_-026A, the test that most closely resembles /



TABLE 21

C05_4RISON OF FLIGHT VS AEDC ST_LRT CONDITIONS

Engine Conditions at S-IVB First Start

AEDC Test No. S-IVB Flight
155&-O26A First Start

Parameter (J2052) (J2031)

Start Tank Pressure, psia 1517 1275

Start Tank Temperature, F -175 -195

Fuel Pump Inlet Temperature, F _,21._ -_21.8

Fuel Pump Inlet Pressure, psia 55.& _2._

Oxidizer Pump Inlet Temperature, F -295.7 -29_

Oxidizer Pump Inlet Pressure, psia _0 _0

Thrust Chamber Skin Temperature, F -175 -200

O Fuel Lead Time, seconds 5 5

Mean Exhaust System Temperature, F -_5 -59

MOV Closing Actuator Temperature, F -69 -i_5
Y

PUValve Position Null Null



the flight. Although start conditions were q_ite similar, it appears
l

that the flight would have the more severe start transients. However,

J2052 in test 026A exhibited the more severe start characteristics

(oxidizer pump spin speed and M0V opening time) as evidenced in Table 22

and Fig. 134 and135.

Several items aid in explaining the transient performance differences.

J2052 had a sn_ller oxidizer turbine nozzle area than engine J2031, which

contributed to a higher oxidizer pump spin speed. Engine J2052 also had

a considerably higher main oxidizer valve internal friction which resulted

in a much longer plateau (l_-degree position) time on test 026A. The ex-

tended H0V first position on AEDC test 026A (Fig.135) resulted in increased

gas generator power which in turn caused the rapid power buildup of the

oxidizer turbopump (Fig.134). These differences do not invalidate com-

parison of the two engines, rather they make AEDC testing conservative

estimates of the AS-501, S-IVB flight performance.

AEDC testing indicates that the ASI oxidizer injection temperature approaches 3
a constant (liquid) value within 1 second after engine start. Thus, until

spindown is initiated, ASI combustion temperature is a function of thrust

chamber and ASI fuel line resistances controlling fuel f?vw. ASI fuel flow

decreases as thrust chamber resistance decreases, represented by main fuel

injection temperature. AEDC and flight operation exhibited similar fuel

lead charaeteristJcs with the same pump inlet characteristics (Fig. 136).

At the termination of the 3-second fuel lead, the fue_ injection tempera-

ture was close to a liquid condition which is more than adequate for soils-

factory main thrust chamber operation but adversely affects (high mixture

ratio) initial ASI operation. The smaller ASI oxidizer feed system ori-

fice incorporated on engines J2031 and J2052 by BCP J2-598 minimized the

effects of reduced fuel flow resulting from low thrust chamber resistance.

Figure 137presents the S-1TB first start fuel turbine inlet temperature

profile extrapolated from applicable AEI)C testing.



!

(_ TABLE 22

COMPARISONOF FLIGtIr VS AEDCTEST TRANSIENTS

Engine Start Performance S-IVB First Start

AEDC Test S-IVB Flight
Parameter 155_-026A First Starti

i Main Oxidizer Valve

Second-Stage Opening Delay, milliseconds 830 _50

Ramp, milliseconds 1850 !900

Gas Generator Overtemperature

Initial Spike, F 195_ *

Overshoot, F ].608

Oxidizer Turbine Speed

Spinup, rpm 3257 3150

O Decay, rpm 2964 3000

Chamber Buildup to 550 psia, milliseconds 2.00 2.00

• Not measured in flight

O

• -745o--1 2o3

]968026222-220



1000

900 8O0

__6 9..o__- o.- .--.

,, 700 600

:D

" 600 - d
&_ bU

_/ 500 "'

Q,.

400 ac

400 , d-' x

4 °,=., ]oo .......
N

S-IVB FIRST START

_._A SPEED: AS-SO1 200i SPEED: AEDC, TEST 026A --

OXIDIZER PUMPDISCHARGE

PRESSURE:AS-SO1 !00
" 1 OXIDIZER PUMPDISCHARGE --

PRESSURE:AEDC, TEST 026A , :_i

o 2 3 4 S ,_°
,N

TIME FROMSTDV SIGNAL, SECONDS _

Figure 13g. Oxidizer Pump Speed and I)isel_rge Pressure ._..:

During Start Transient e "IC"

, _

'4-

47

]968026222-22]



,, , -.-, _. • _,_,%:__ ,; _•. _- _..._ ,_,_-_.... ,.. _ -

t

110

o a 3 4 5
TIME FROMS'I'DVSIGNAL, SECONDS



J

5O0

i., 400 0 _ AS-501

0 AEDC

o= 3oc

..-I, I
I

"=' zoo
.=..

_ f

z
i- I00

-1 O I 2 3 _ 5 6 7 8 9

TIME FROMENGINE START, SECONDS i
Figure 136. Thrust Chamber Fuel Injection Temperature

During Start, Transient

206 E.-7/,50.--I

'j _ , _, ""' ' - .--._" __-_._'_ " ;-J," '- 'L_ .-.-.............. ................

]968026222-223



£

2400 • !

22oo I " 1,2000 - _ +

,,oo- t
u. 1600

1400
I'-"

1200
MJ

0 _"_ I000
,.J
Z
-- i
'_ 800 J 'Z

600 I ---
.J
uJ

P' 4oq - i

200

-200_ I

"4000 I 2 3

TIRE FROHSTDV SIGNAL, SECONDS

Figure 137. S-£VB First Staxt Fuel Turbine lnlet Temperature

C-'+ During First Start Transient Extrapolated
From AEI)CTesting



Figure 138 shows the adequate stall margin exhibited on both S-IVB flight

starts versus AEDC test experience limits. J

Restart

The S-IVB restart transient operation was as expected. Figure 139depicts

restart oxidizer pump speed and discharge pressure, and Fig. 140compares

oxidizer pump discharge pressure on the first and second starts. The in-

creased oxidizer pump performance during the second start was primarily

a result of the elevated prestart mean exhaust system temperature, 110 F

versus -39 5' on the first start, and slightly higher start ta_ energy.

The mean exhaust system temperature prior to restart was lower than the

predicted maximum of 215 F which is equivalent to approximately 160 rpm

less oxidizer turbine spin speed. The beneficial reduction in exhaust

system temperature can be attributed to the use of the high-emissivity

black paint per ECP J2-590, the particular orientation of the AS-501/

stage, and the lesser effect of ullage motor impingement. Although _
S-IVB

start ta_ energy (1285 psia/-212 F) for restart was higher than for the

first burn, it was still a minimum value because of the use of the speci-

ally calibrated vent and relief valve.
//'

The effects of elevated exhaust system temperature and start tank energy

on transient performance were reduced by restarting with the PUvalve in

the full-open positio_approximately 225-rpm oxidizer pump spin speed

reduction.

Figure l_lcompares the thermal-compensating main oxidizer valve opening i

characteristics on the first and second starts with sequence tests con-

ducted at KSC. The oxidizer valve trace on the restart operation exhibited

a slightly longer plateau time and the effects of a higher initial engine

power buildup. Comparison of KSC sequence time with flight times indicates

this particular valve overcompensated for the -150 F closing control actuator

temperature as evidenced in Fig. i41,the delay time to the beginning of ramp

was alightly shorter in flight.
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Figure 142 shows the proportional effect of fuel pump inlet pressure on
thrust chamber chilldown during the fuel lead phase of transient opera-

tion. Azoin, satisfactory ASI operation as well as adequate thrust cham-

ber conditioning was achieved during prestart.

Figure 143 is an extrapolation of applicable _kEDCtesting for the restart

fuel turbine inlet temperature transient.

Engine testing has shown that the initial temperature spike is normally

not detrimental to fuel turbine performance efficiency because of the low

flow rates and initially cold hardware. Overshoot GG temperature spikes

(the second temperature spike) will adversely affect fuel turbine effi-

ciency when above 2150 F. As noted in Fig. 137 and 1_, this threshold

temperature was not exceeded during the first or second starts.

PROPELIA_NTINLET CONDITIONS

The engine inlet propellant conditions at liftoff, engine start command

(ESC) for the first burn (T+520.7 seconds), and ESC for the restart

(T+11486.6 seconds) were within specified limits with one exception which

will be discussed in a subsequent paragraph.

The engine oxidizer NPSH (Table 23) at liftoff, S-IVB ESC first burn, and

restart were satisfactory with all values well above the 26 foot minimum.

Engine fuel NPSH (Table 27) at liftoff and S-IVB ESC first burn was well

above the 150 foot minimum. At S-IVB ESC restart, it was approximately

I0! feet. This was the result of fuel tank ullage pressure being 3.1 psi

below the minimum predicted value of 31 psia at ESC. The unexpected ull-

age pressure loss has been attributed as either an ullage pressurant dif-

fuser malfunction or a gaseous hydrogen bubble formation in conjunction
with the premature termination of fuel tank ullage repressurization that

occurred at the end of the second orbit. An erroneous continuous talc

__ vent pressure indication precipitated a mission rule procedure that called

%
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TABLE 23 8

ENGINE INLET _PSH

Engine Start Engine Start
Liftoff (First Burn) (Restart)

Oxidizer (26 foot minimum) 88.4 &5.6 51.0

Fuel (150 foot minimum) 81& 790 i01"

*At STDV signal, the NPSIIwas 283 feet.

for the sequencing off and on of the fuel tank repressurization system.

Unfortunately the "sequence on" function was inadvertently omitted. Itow-

ever, at the completion of the 8-second fuel lead, the fuel inlet temper-

ature had decreased sufficiently to produce a fuel NPSH of 283 feet, a

value assuring a safe engine start.

$
The engine oxidizer inlet pressure profile (Fig. I_ during vehicle accel-

eration changes occurring from S-If cutoff (T+519.8 seconds) through S-IVB

ESC was as expected. The initial pressur_ drop noted after S-II cutoff

was the result of vehicle acceleration changes having a marked effect on

the greater density of the oxidizer. At chilldown pump-off sequence

(T+520.3 seconds), an additional pressure decay of approximately 9 psi

was experienced. Just after ESC, a small pressure surge was noted. The

surge was a hydraulic hammer effect produced by the initial opening of

the prevalve which permitted tank pressure-fed oxidizer to rapidly pres- >

surize the engine oxidizer feed system which was at a reduced pressure. _
,<

The reduced pressure was caused by the opening of the engine ASI oxidizer .,_

valve at ESC, prior to the actual opening of the stage prevalve. %

:++
Figure _l_Sillustrates the oxidizer pump inlet pressure changes that 4,

occurred prior to and during S-IVB ESC restart. The entire pressure _

loss of 9 psi was attributed to the opening of the prevalve at T+II_75.8 _

216 R-7450-I <_"
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seconds which effectively terminated oxidizer chilldown. The chilldown

pump was sequenced off at T+ll&86.0 seconds.

The engine model specification oxidizer pump inlet start envelope (Fig.

14_ was met satisfactorily for both S-IVB starts.

The oxidizer chilldown system performed efficiently for both S-IVB engine

starts as evidenced (Fig. 147) by the 1_.5 F subcooled temperature achieved

prior to the first burn and the 15.8 F subcooled value obtained prior to

restart. A minimum oxidizer pump discharge subcooled temperature of 3 F

is requirea prior to engine start.

Figurel_8 illustrates engine fuel inlet pressure behavior from S-II cut-

off through S-IVB ESC. The pressure decay prior to ESC was caused by

vehicle acceleration changes. Shortly after ESC, an initial opening of

the prevalve caused a loss of chilldown pump head of approximately 7.5

psi. The pressure surge occurring at this time was caused by hydraulic

O hammer that came result of a of the engine fuel
as rapid pressurizinga

feed system which had been at a reduced pressure. The reduced pressure

was caused by the initiation of the 8-second fuel lead at ESC which opened

the main fuel valve while the stage prevalve was still closed.

A satisfactory fuel pump inlet pressure behavior prior to and through

S-IVB ESC restart is shown in Fig. 149. Once again thc upeniug of the

prevalve caused a loss of chilldown pump head of 6 psi.

Figure 150 shows data points of engine fuel inlet pressure versus engine

fuel inlet temperature as compared to the engine model specification start

envelope. The values for S-IVB restart are outside the envelope as a

result of the fuel _ank repressurization problem discussed previously,

?

A cross plot of engine oxidizer and fuel inlet pressures for both S-IVB ,!

starts as compared to predicted values and the J-2 Model Specification

start envelope is shown in Fig. 15l- The reason for the large engine fuel

I?
:2
fi
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inlet pressure discrepancy (+8._ psi) between actual first burn and pre-

dicted values is the selecting of engine inlet pressure at ESC rather )

than at some point beyond ESC where the inlet pressures have reasonably

stabilized. By going to the more stabilized region, a pressure value of

36.5 psia was obtained, or 2.5 psi greater than predicted.

The same reasoning was applied to the difference (-I._ psi) between actual

engine oxidizer inlet pressure (first burn) and predicted. By selecting

a more stable pressure, a value of &0 psia was obtained which is the same

as predicted.

For S-IVB ESC restart, the engine fuel inlet pressure difference (-2.5

psi) between actual and predicted was attributed to the fuel tank repres-

surization problem. The engine oxidizer pump inlet pressure deviation of

1.8 psi resulted from an unexpected increase in oxidizer tank ullage pres-

sure that took place between S-IVB EC0 first burn and S-IVB ESC restart.

It is believed the pressure rise was caused by a 5-degree increase in

ullage temperature. The temperature rise was perhaps the result of bubbles

of gaseous oxygen rising from the bottom of the tank to the ullage. This ")

brought the ullage pressure above the minimum required at repressurization

initiation. The helium spheres for repressurization were not needed.

Both the oxidizer and fuel recirculation systems demonstrated satisfactory

performance throughout the flight, as evidenced by the adequate propellant

inlet temperatures (Table 24) achieved prior to each ESC. Engine fuel

inlet temperatures were slightly warmer than predicted prior to S-IVB ESC

first burn and restart. A high prelaunch vent stack backpressure caused

a higher than predicted fuel bulk temperature. A modification to the +

facility hydrogen disposal system is expected to reduce the backpressure

on future flights. Table 24 aunmmrizes the propellant recirculation sys- i

tem performance at liftoff, S-IVB ESC first burn, and restart.
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START TANK CONDITIONS _)

The S-IVB start tank pressure and temperature were within the allowable

limits at liftoff, first start, and restart as shown in Fig. 152and!55.

The start tank vent and relief valve was operating prior to liftoff and %

maintained the start tank pressure level of 1290 psia throughout boost

and up to engine start. Start tank refill ,_as successful meeting model

specification requirements as sho_n in Fig. 15_with the pressure and tem-

perature at first burn c,ttoff reaching 1170 psia and 187 R, respectively.

During the first orbit, the start tank pressure reached 1290 psia and the

vent and relief valve maintained the pressure near that level. Star_

tank temperature instrumentation indicated temperatures in excess of

those possible (based on pressure increase) during the orbit as was also

typical on vehicle AS-205. Therefore, it became necessary to calculate

a temperature profile for the start tank so that helium tank temperatures,

which are also erroneous during orbit, could be obtained.

The calculated temperatures versus time are shown in Fig. 155. Curves
jnumbered 1 through 4 are based on start ta_ vent and relief valve char-

acteristics and start tank pressure measured during orbit. Curve No.

is for a vent and relief valve which has a high mass flowrate for a given

pressure (fast valve). Curve No. 4 is based on a valve which has a low /

mass flowrate for a given pressure (slow valve). The No. 1 curve is

based on component checkouts r,m on the valve installed on engine J2031.

HELIUM TANK

The helium tank pressure and temperatures were satisfactory at liftoff, _

firs_ engine start, and restart. Helium consumption during engine opera-

tion was as expected. However, a pressure rise, which was expected dur-

ing the orbit, was not realized. A comparison of calculated helium tank

pressures and actual flight data during orbit is shown in Fig. 156.
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It will be noted that the calculated helium pressure is above that meas- Q

ured. This variation is believed caused by a leak in the helium system 6

during orbit which amounted to a helium mass loss during the 3 hours of

0.13 to 0.22 pounds. These values must be used with caution, because

they are based on calculated temperatures which are dependent upon assumed

start tank vent and relief valve characteristics as discussed earlier.

The m._ximumhelium loss allowed during ground checkout of the S-IVB is

0.036 ib/hr. Areas considered in an attempt to identify the leak path

in the helium high-pressure system were: (i) helium regulator; high-

pressure relief, helium control solenoid, emergency vent solenoid, main

regulator seat, (2) helium fill check valve, (3) weld joints at trans-

ducers, helium regulator, and instrumentation line weld sleeves, and (_i)

seals at helium fill valve, helium regulator, and temperature probe.

Available flight instrumentation data were not adequate to conduct a sys-

tem analyses and no leakage was detected during the preflight helium

pressure decay test which might indicate a problem area. Therefore,

isolation of a leak path was not possible.

• $
The start tank-integral helium tank and the helium regulator were replaced

subsequent to engine delivery. A redundant pressure transducer and con-

; necting tubing were also added on the helium high-pressure system. The

change of regulators and addition of instrumentation were not accompanied

by a helium mass loss test as specified in the Rocketdyne Manuals. How-

ever, the aforementioned pressure decay test was accepted by Rocketdyne

as being adequate.

Helium tank pressures and temperatures from liftoff to restart cutoff are

shown in Fig.157. Figure 158shows that start tank-helium tank differen-

tial temperature at engine start was within the model specification allow-

able of 20 degrees.

The helium regulator operated nominally throughout the flight. The helium

regulator outlet pressure transducer had a zero shift of approximately

3 psi, which is within the allowable.

g
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THRUST INC'ItZASE

The flight thrust buildup curve for the S-IVB initial start is shown in

Fig. 159 and for the restart in Fig. 16(_ Also shown are the respective

predicted cnvelupes from _-J_C testing and the allowable thrust buildup

Iimits.

Both curves are within the allowable buildup limiLs and agree well with

the predicted envelopes.

._b_INSTAGEPI'_FOIL_IANCE

The cngine mainstage performance for the flight is summarized in Tablc _y.

Included for comparison are the respective values ,brained during engine

and vehicle acceptance demonstrations, plus those values predicted by

Rocketdyne for the flight. While performance was as predicted on the

:( first burn, it was higher in both thrum+ ann mixture ratio during the
second burn.

Data Reduction and .Evaluation

Mains%age perfor-_nce of the engine was evaluated using data obtained

from the S-IVB stage contractor. The data was rc,-orded on magnetic tape

at a frequency of I0 samples 9er second.

The performance evaluation was made using Rocketdy_e's digital com_uter ;

steady-state d:,,:a reduction program (PT 6hl). This program calculates

and reduces to standard ultitude conditions engine and subsystem perform- !

ance char_cteristlcs. By reducin_ the data to standard conditions, com-

parlsons moy be mde between engine and vehicle acceptance and the flight.

The standard conditions include engine inlet pressures and temperatures, :.
%

auxiliory pump power, heo% exchanger fle'_rate, hydrogen tapoff flowrate,

and ambient pressure. _-

.i
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To obtain more comlmrable results with engine and vehicle testing, the

.._ following procedures were used. All flowmetcr and pump _pceds were

counted from the high-frequency oscillograph to detect and account for

any noise or data dropout. All pressure measurements sensing ambient

pressure pre-engine swart were "zero shift" corrected by noting the dif-

ferential between the measureme_._ and ambient pressure just prior to en-

gine ignition. Flight thrust and chamber pressure were calculated using

specific impulse and thrust coefficients as determined from engine

acceptance.

Significant data anomalies encountered were a large apparent zero shift

in fuel pump discharge pressm_e (+25 psi) and a +Ji0 degree shift in fuel

turbine inlet temperature. This bias in fuel turbine inlet temperature

has been noted on other S--IVB vehicles.

Engine Performance

Table summarizes nminstage performance as determined from engine accept-
26

ance, vehicle acceptance, and the flight. Flight performance on the first

burn was essentially as predicted. IIowevcr, on the second burn, following

a 3-hour coast, thrust and mixture ratio were higher by +18_8 pounds and

+0.086 mixture ratio imits with respect to the first burn. The shift in

mixture ratio was attributed to both a shift in fuel turbine efficiency

and a change in operating point of the balance piston system. The tur-

bine efficiency shift was estimated %o be approximately -I percent. The

shift in the balance piston system was indicated by a change in the oper-

ating pressure of the balance piston sy._tem and a change in fuel pump _

efficiency. The balance piston system bleeds flow from the pump discharge

to balance the %urbopump's axial thrusts. A change in operating point of ii_

this szrstem causes a shift in the bleed flow and subsequently a change in

p_np delivered flow and engine mixture ratio. The thrust increase between

the first and second burn was caused by a decrease in gas generator nxi-

dizer bootstrap system resistance. During vehicle static testing, the

high thrusts on both burns and the shift between burns was attributed to

( resistance shifting of the gas generator oxidizer system.

R-7_50-1 2_3
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Flight B,construction

The mainstage operating characteristics have been reconstructed for engine

J2031 as flown on the S-IVB vehicle. The following parameters wore recon-

structed for both burns and compared to the actual telemetry values:

engine mixture ratio, main thrust chamber pressure, oxidizer and fuel

flowrates, oxidizer and fuel pump speeds, oxidizer and fuel pump discharge

pressures, and gas generator chamber pressure. The reconstructed perform-

ance was in good agreement with the actual except in those cases explained

by shifts in engine performance and instrumentation shifts.

The reconstructions were made with a linear model using influence coeffi-

cients 6o operate on the predicted "Tag" values. For engine J2031, the

predicted values were from cngine acceptance performRnce given in Table

26. The influence coefficients were used with the following independent

variables shown in the respective figures. In each case, the two figures

for each parameter represent the first and second burns,respectively.

@
Figures 161 and 162, Heat Exchanger Helium Flowrate

Figures 163 and 16&, Fuel Tapoff Flowrate

Figures 165 and 166, Engine Oxidizer Inlet Temperature

Figures 167 and 168, Engine Fuel Inlet Temperature

Figures 169 and 170, Engine Oxidizer Inlet Pressure

Figures 171 and 172, Engine Fuel Inlet Pressure

Figures 173 and 17&, PUValve Position

The plots of heat exchanger helium flowrate and fuel tapoff flowrate are

estimates from predicted flight performance by the S-IVB stage contractor.

All other plots are from telemetry data. Another independent variable,

the auxiliary pump power extraction, was assumed to be a constant _.0

horsepower throughout both burns.

Figures 175 through 196 show the reconstructed performance as compared

to the flight telemetry data, except in the cases of thrust and specific

R-7hS0-1 2/t5 _=-
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impulse where only the reconstructed has been calculated. The following c

figures are included for the respective parameters for first and second

burns.

Figures 175 and 176, Engine Thrust

Figures 177 and 178, Engine Specific Impulse

Figures 179 and 180, Engine Mixture Ratio

Figures 181 and 182, Nain Thrust Chamber Pressure

Figures 183 and 18_, Engine Oxidizer Flowrate

Figures 185 and 186, Engine Fuel Flowrate

Figures 187 and 188, Oxidizer Pump Speed

Figures 189 and 190, Fuel Pump Speed

Figures 191 and 192, Oxidizer Pump Discharge Pressure

Figures 193 and 19_, Fuel Pump Discharge Pressure

Figures 193 and 196, Gas Generator Chamber Pressare

The comparisons of actual and reconstructed are i_,good agreement. On

the second burn, several parameters did indicate some differences but D
this was attributable to the performance shift discussed in the previous

section. On both burns, fuel pump discharge pressure was in poor agree-

ment because of a zero shift in the flight measurement.

Table 27 summarizes the comparison between reconstructed and actual per-

formance at the full-closed PU _-'alveposition.

Table 28 presents the first and second burn reconstructed average thrust,

mixture ratio_ and specific impulse; for maximum and null PU operation,

and from 90-percent thrust to cutoff signal. These average values permit

general comparison_ with sinilar calculatisns by the stage contractor for

preflight predictions and for flight analysis.

2_6 R=7_50-I
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i

TABLE 28

A_rI_GE ENGINE RECONSTRUCTED PEP_011NANCE

Average Hixture Specific Propellant
Thrust, Ra_io, Impulse, _'iowrate,

Description of Engine Operation pounds o/f seconds Ib/sec

IlighMixture ILatioRegion

First Burn 223,278 5.52)i 423.28 527.83

Second Burn 222,_02 5.5291 _22.95 525.81

15 S_conds After _xture Ratio
Cutback to Cutoff Signal

Second Burn 19_,595 _.8915 _27.12 _Sh.9h

90-Percent Thrust to Cutoff Signal

First Burn 223,278 5.5231 _23.28 527.83 .mr

Second Burn 202,357 5.0677 _25.97 _7_.73 J_

2tt8 2t_8 1
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Figure 161. Helium Flow to Ozi_.izes" Tank Ullage (Fir_ l)u.ra)

R-7450-1 249

.......... --v-,.- '-- ......

!

1968026222-267



J
"L .1

5 *
4 i

J
J

°0

11100 116_11 _1 flill

TIME [SECONDS] _,_

Figure 162. Heli_ Flow _ O=idizer Tank Ullage (_econd Bur_)
t_

2_ _ R..74__!







I
11P4

-*'•-== _'=''i-" i=:_i ....... ' '" - ' _' - _''m 1,,,_ _ - - . ................... '_
/

'_ ' ' ,'"i "L ./....... _n n m
• ' " J, ' ,, -- .................. , , '-

]968026222-27]



_)



II
5O



5O

I ..... ! i¸

I , t
,,- I ! .i- ' ! 0 t

"' ! III

n,- I I
, i I

--- I iLLI
o I I I 1

i !El ...........
_:; i I j

< I _ i I i
uJ F- I ]
_- F- I I
_- I I" J i

f\__!.ll - I t ! I ,_il I1 ___ ,._.._--
w'-_j _L-_P_:'__'"- ' 'I_ _'_" _1 Il _.J-::_:;i]::,lt _'ii _'-I I I Ii:-_-:h-:J "":" t -- ._z --P_ _ "- ' i' " I
•-, I I i

>-- _"I , I I.:3 _ I
t

_j , t
LU 3,...... I I
:::) I t i
" --- I I

.... I I

I i [ i-..I
I 1 t

t • h,:.'_'©ENc,!'_

! I t J"'i'_"_°1' 1 -,o...... I I ! I I I i .
1:5oo lie_o 1,1_

TIME [ SECONDS ] _.,,,c

Tig_._'e 168. Fuel Pump Inlet Temperature (Second Burn)



|

Figure 169. Engine Oxidizer Inlet 7_ressure (First Burn) _
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TANK PRESSI_TZATI0N PERFORMANCE c

The fuel tank pressurization performance is presented in Fig. 197 and 198.

The values are within the expected operating band and consistent with the

data seen on vehicle acceptance testing.

The helium heot exchanger discharge pressure and temperature for flight

are shown in Fig.]99 through202, and a comparison of the values to vehicle

acceptance testing is shown in Fig. 203 and20_. The values are in good

agreement and within the expected operating bands.

TI_bST DECREASE

The thrust decrease summary for the S-IVB stage is shown in Table 29.

The actual cutoff impulse values for both the initial start and the re-

start were higher than the engine acceptance values, mainly because of

the colder main oxidizer valve actuator temperature on the flight. The

O high thrust at cutoff on the initial start also contributed to its high

cutoff impulse.

The engine model specification limits on cutoff impulse to 5 percent of ....

rated thrust are 30,000 to 50,000 lb-sec. When the impulse is taken to

zero thrust, these limits become 36,_00 to 56,_00 lb-sec. Both flight

cutoff impulse values at standard conditions met the specification re-

quirements. The times from cutoff signal to 5 percent of rated thrust

also meet the specification requirements (0.800 seconds maximum).

The thrust decrease traces from both burns are shown in Fig. 205 along

with the envelope of engine acceptance testing. The main oxidizer valve

actuator temperatures at cutoff were -155 F for the initial start and

-151F for the restart.
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Figure 200. Helium Heat Exchanger Ou%let Pressure (First Burn)
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Figure 202. Helium Heat Exchanger Outlet Pressure, Restart
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TABLE 29 S

ALTITUDE CUTOFF I_fl)IJ_SETO ZERO TImUST

Engine Flight
Parameter Acceptance Initial Start Restart

Actual Cutoff Impulse, lb-sec 43,907 52,389 47,318

Cutoff Impulse at Standard
Conditions, lb-sec _ 43,907 39,065 41,607

Time to 5 Percent of Rated
Thrust, second 0.334 0.390 0.340

Thrust at Cutoff, pounds 199,099 22h,307 195,079

MOV Actuator Temperature, F 0_-_ -155 -151

MOV Delay Time, second 0.081

MOV Travel Time, second 0.175

_Standard Conditions are: null PUvalve position; main oxidizer valve
actuator temperature of 0 F at standard
inlet conditions, pressurization flowrates,
and auxiliary power extraction. :

_Assumed, not measured on this engine
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ELECTRICAL SYSTEM

The engine control and ignition voltages (Table 30) for both the initial

start and restart are well within the engine model specification opera-

ting limits (Table 31). No problem i_ evident from the data in this

system.

TABLE 30

ENGINE VOLTAGES

i Engine Enginc
Parameter No. Parameter Liftoff Start Cutoff

Initial Start

HO006-_OI Engine Control Vnltage 29.3 27.5 28.6

blO07-_01 Engine Ignition Voltage 29.3 27.2 28.8

Restart

_06-_01 I Engine Control Voltage 29.3 28.6 29.3

M007-_01 I Engine Ignition Voltage 29.3 28.8 29.5
I

TABI_ 31

ENGINE LIMITS

Con±rol Power 22 to 3_,vdc [

Ignition Power 2_ to 21 vdc [
I

G
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ENGINE GIMBAL DATA

The engine actuation system on the S-IVB stage performed satisfactorily

during both first and second engine burn periods with no anomalies noted.

Pertinent engine gimbal data is presented below. The data indicate tlmt

engine loads and gimbal displacements were well within the engine struc-

tural design limits.

Actuator ] Peak Actuotor ] ,Maximum Gimbal
Position Loads, pounds* Displacement, degrees _*

First Burn

Pitch +_,9_8 +1.2

Yaw -5,65_ -0.9

Second Burn

Pitch +8,2_6 +1.07

Yaw -7,068 -1.55

*Actuator Loads: (-) Tension (+) Compression

Actuator Extend ) Actuator Retract for Yaw

There are no problems evident in the engine gimbal data.

VIBRATION ANALYSIS

Analysis of the J-2 engine vibration data, supplied by the MSFC facility,
2

from the S-I_ stage of the £S-501 flight produced limited valid results.

The S-IVB stage engine vibration data provided valid frequency spectra

data for the three eng'ne measurements based on a single time sample anal-

ysis for the two-stage operations. However, the composite vibration

levels for these data were 50 percen J greater than static test results; '_

but preliminary results from the stage contractor (responsible for final

stage performance results) showed composite vibration levels which cor- r.

O related closely with stage and engine static test levels. _i

R-7 b_0-1 297 /
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Start transient evaluation was seriously impaired by the over-ranging of l

the vibration measurements which were scaled for the lower mainstage

vibration levels. The S-IVB stage, second burn, transient data appeared

to be within the measurement range although the flight calibrations were

not recorded.

The engine vibration data as supplied by MSFC, from the S-IVB stage dur-

ing the AS-501 vehicle flight, were analyzed for overall instrumentation

performance and response characteristics. A total of four engine asso-

ciated measurements were recorded: the engine dome, oxidizer pump and

fuel pump, and one gimbal pad measurement. All engine measurements

appeared operative during their respective stage operation.

The engine vibration data was recorded by commutation of 5-second samples

at 12-second intervals. Frequency spectra analysis of the engine vibra-

tion data was limited to one sample provided at maximum performance 10

seconds into the first burn. However, there is a discrepancy in the

composite g rms energy level reported by bffF and the stage contractor.

The S-£VB stage contractor's preliminary results agreed with engine and 4_

stage static test levels and the HTF preliminary results were 30 to 50

percenb higher.

The S-IVB stage use of 50 g rms measurement range, as compared to the

S-II stage use of 35 g rms for the same measurements, was regarded as

the major difference of the two recording systems.

Review of the commutated 8-IVB stage engine vibration data from the oscil-

logram records indicated consistent mtinstage levels for the first burn

duration. These measurements were recorded for only the first 85 percent

of the second burn duration. At approxintately85 seconds into mainstage r_'.

of the second burn, 11,580 seconds flxght time, the oxidizer pump data

indicated a decrease from maximum engine performance for propellant util- _:_

ization. Data recording terminated at 11,753 _econds. Failure to record ..

the second burn flight calibration prevented direct comparison of overall

levels for the stage's two engine operations. _
l
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For the two S-IVB stage engine start transients, only the engine dome

measurement was being commutated (switched on) for recording of the en-

gine measurements. The gimbal pad measurement, stage-oriented, was re-

corded continuously. The first burn ignition transient occured at 525.3

seconds flight time, with a 65 g peak-to-peak level and a duration of

0.13 second. The maximum transient level at 525.8 seconds overdrove the

measurement range, similar to the S-II stage engine start characteristic.

This transient duration was estimated at 0.20 second from the MSFC oscil-

logram data. The high-speed playback record did not agree in transient

duration or with the commutation period of the engine dome measurement.

The engine dome measurement was commutated off at 526.6 seconds. Cutoff

occurred at 660.8 seconds referenced to the decrease of activity on the

continuous gimbal pad measurement, because all engine measurements were

off at this time.

The second burn engine start transient recorded levels apparently within

the engine dome measurement range. Using the first burn flight calibra-

tions, this ignition transient was 75 g peal; to peak for 0.03 second at

ii,_9_.53 seconds. The levels and durations indicated g.od correlation

of the MSFC records with the high-speed oscillograms. All recording ter-

minated at 11,755 seconds. '

Engine Start Transients

The S-IVB stage engine start transient vibration data were analyzed for

determination of levels and duration during the ignition and transition

into mainstage periods. These data from the MSFC oscillograms and addi-

tional high-speed oscillograms had overdriven or questionable portions ,

during the S-IVB stage, first-burn, engine starts that prevented conclu-

sive results. However, the S-IVB stage, second burn, engine start tran- 4

sient vibration levels appeared to be within the measurement range. _

Direct comparison of the flight transient data levels with static test

C results was limited by the telemetry system frequency recording bandwidth

.L3
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of 50 Hz to 3000 I{z. The major energy content of static test transient

i
data (recorded 10 ttz to 10,000 Kz bandwidth) is in the 2000 Hz to 6000

Hz frequency range.

Analysis of the S-IVB stage J-2 --_ine vibration data resulted in the

following:

1. The maximum J-2 engine vibration level during the S-1C stage

operation occurred at liftoff with a value of 1.3 g rms.

2. The S-IVB stage engine vibration data, limited to a single fre-

quency spectra analysis, agreed with stage and engine static

test results.

BOATTAIL LEAKAGE

The oxidizer pump seal leakage into the boattail of the S-IVB stage was

alleviated by means of a burst diaphragm assembly installed near the exit _%

of the oxidizer pump primary seal cavity drain line. The burst diaphragm .2

survived undamaged during the initial 520 seconds of the vehicle boost

with cavity pressure ranging from 5.0 to 5.5 psia. Performance of the

diaphragm is tabulated below and also depicted in Fig. 206. :

DiapkragmRupture Mean Primary Seal Cavity Pressure

Time From Pressure

Engine Start, at Break, During Maximum During Nominal

Engine seconds psia PU, psia PU, psia
• | !

First Burn

50 22 12 to 17 12 to 17
J2031

Second Burn

DNA DNA 12 to 19 Ii-I/2 to 16

During the initial 50 seconds of the S-IVB stage firing sequence, leakage

of liquid oxygen resulted in cycling of the cavity pressure with a progres-

sive pressure buildup which culminated in the diaphragm rupture at approx- _ ,
imately 22 psia.
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This behavior is understandable because engine J2031 was known to have a @
relatively high leakage rate. The engine, however, did not contribute

any oxygen to the boattail environment during the static condition and

the gas analyzer failed to register any measurable concentration of

oxygen.

t
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