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ABSTI{ACT
t

_ This is Volume 2 of a five-volmne report

on the operation of the J-2 engines during

the flight, of Apollo/Saturn AS-502. Tills

volume presents the mlaiysis of _he prema-

ture shutdown of 5-2 engines 520_t4 and

J2058.

The volumes of this report are:

Volume 1: Flight Performance Analysis

_Volume 2: S-II Stage Failure Analysis

VoIume 3: S-IVB Stage Faiiure Anaiysis

VoIume 4: Flight Failure Verification Testing

Volume .5: Post-Flight Design Modifications ,,
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_.'TRODUCTION

This report presents results of analysis and investigation of S-If stage

j_o engine and related system operation during flight of tile AS-502 vehicle.

information as contained herein supplements the J-2 Engine Performance

Analysis Report fo,."i:light AS-502, S-If and S-IVB stages, and relates

primarily to flight anomalies associated _'ith early shutdown of S-II

engine 202 (J20!i_). Included are: _ summa_-__ of S-II events from AS-_02

vehicle Ill%off through S-II staging and final cutoff, including anomalies

noted; a description of the primary failure mode; conclusions with regard

to flight failure related anomalies; discussion of flight failure related

anomalies, including hypotheses or conclusions, analyses, calculations, and

corroborative data; discussion of anomalies no% related %o the flight fail

ure; testing accomplished in support of %he AS-502 fiigh%; and alternate

hypotheses considered.

D

R-7_ 50-2 1/2

UNTITLED-012



SDIMARY

DESCRIPTION OF EV_iTS

Operation of S-II stage J-2 engines was normal until approximately 220

seccnds range time, at which point a series of events commenced which

culminated in failure and shutdown of engine 202 (J20_h) and subsequent

shutdown of engine 203 (J2058). _le general hypothesis stated in the

following paragraphs was developed from analysis of flight data and engine

test data conducted in support of flight failure analysis.

220 to 260 Seconds Range Time

Observed Occurrences. Gradttal decrease of S-II engine compartment

temperatures.

Causes. Partial failure of engine 202 ASI fuel line downstream bellovs,

resulting in approximately 1 lb/sec fuel leakage into the engine compart-

ment, with attendant cryogenic chilldown of compartment area. Reduction

in ASI fuel flow resulted in ASI mixture ratio increase to above 2.5,

raising ASI combustion temperature, and initiating erosion of the ASI

nozzle (main injector).

260 go 319 Seconds Range Time

Observed Occurrences. Continued chilling of engine compartment area;

engine 202 components indicate chilling. Engine 202 gradual performance

decay becomes apparent. At 282 seconds range time, %he engine 202 yaw

hydraulic actuator _P indicates an increase and engine 202 F_AS (engine

actuation system) hydraulic temperatures indicate chilling.

C_uses. Gradual increase in ASI fuel line leokage to approximately 2

lb/sec, resulting in engine gradual performance decay of approximately

6 psi. Progressive ASI fuel leakage resulted in increased ASI mixture

R--70-2

UNTITLED-013



ratio to above 8, with attendant increased ASI combustion temperature

and accelerated erosion of the _t_I nozzle (main injector). Cryogenic

chilldown of the engine 202 yaw hydraulic actuator AP transducer resulted

n an erroneous AP indication. _lgine 202 EAS hydraulic temperature de-

creases resulted from increased ASI fuel line leakage.

319 Seconds Range Time

Observed Occurrences. Engine 202 rapid performance decay (22.9-psia

chamber pressure decrease). ,Engine 202 yaw and pitch hydraulic actuators

indicate compressive forces (7800 and 7150 pounds, respectively). General

chilling of engine compartment and engine components continues.

Causes. Erosion o" ASI nozzle progressed beyond penetration of the main

injector fuel manifold, resulting in structm'al degradation of the in-

jector face (Rigimesh) and oxidizer feed posts. A fragment of the central

portion of the injector face, fuel sleeves, or ASI nozzle broke away from

the injector, and was accelerated through the thrust chamber throat,

striking the interior wall of the thrust chamber near the exit prior %o

ejection from the chamber; rupture of several thrust chamber tubes with

aLtendant fuel leakage %o the interior of the thrust chamber bell occurred.

Lhgine performance degraded as _ result of the thrust chamber fuel leakage

(approximately 9 ib/sec). Fuel leakage to the interior of the thrust

chamber bell caused displacement of the engine thrust vector in such a

manner as to result in compressive loading of the yaw and pitch hydraulic

actuators to the values measured. Engine 202 rebalance occurred, stabil-

izing both ASI fuel line leakage and engine performance; performance con-

tinued to be relatively stable until _12.3 seconds range time. Main in-

jector internal erosion continued, including violation of oxidizer in-

jector manifold passages.

_12._ to _12.921 Seconds Range Time

Observed Occurrences. Engine 202 slight performance decay followed by

rapid performance decay, characterized by increase in oxidizer and fuel _ ;

R-7_50,-2
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flows and decrease in main chamber pressure. Engine compartment forward

temperatures and pressures increased rapidly with associated aft parameters

lagging behind. Operation of engine 202 terminates at 412.921 seconds

range time.

Causes. Continued erosion of the ASI nozzle finally resulted in failure

of the ASI-to-main inJector seal, providing a low resistance path for the

oxidizer, fuel, and hob gases pouring into the nozzle area. This oxidizer-

rich flow of hot gases past the ASI injector into the engine compartment

area quickly eroded into the oxidizer dome proper, resulting in a slight

initial performance decay followed by overboard flow of oxidizer, rapid

dropoff of performance, and dropout of mainstage OK (oxidizer injection)

pressure switches, and cutoff of the engine.

_t14.2 Seconds Range Time

Observed Occurrences. S-II engine 203 (J2058) operation was prematurely

terminated.

Causes. Cutoff of engine 203 was typical of a normal oxidizer depletion

cutoff, and was initiated by dropout of the engine mainstage OK pressure

switches. Engine 203 cutoff resulted from an oxidizer prevalve closing

signal originating in the engine 202 prevalve control circuit, i.e._

crossed oxidizer prevalve control commands between engines 202 and 203.

AS-502 S-II EVENTS

.,romThe AS-502 vehicle was launched on schedule _ launch complex 39-A at

Kenncdy Space Center on & April 1968. Events prior to liftoff were

normal, and the final 8 hours of cotintdo,'u proceeded without interruption.

R-7_50-2 5
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J
Flight events recorded during the S-IC stage and S-II stage boost portions

_,f the AS-502 flight are listed in Table 1.

Operation of J-2 engine J20_ti. S-II engine 202 (Fig. 1), is described

in genera] in the following paragraphs.

Fuel Feed System

Engine 209 fuel feed system operation (upstream of the main fuel valve)

was satisfactory through cutoff. Rapid decay of fuel inlet pressure at

cutoff has been attributed to a ruptured instrument sensing line and

not a major leak in the fuel feed system. Investigation of other system

parameters indicates that the fuel feed system upstream of the main fuel

valve was basically intact following cutoff. Flight data i.:dicate that

ASI fuel feed system leakage existed as early as 290 seconds range time

and that fuel feed system leakage do_cnstream of the main f1:_'lvalve re-

sulted from damaje to the thrust chamber at 319 seconds range time.

Oxidizer Feed System

Oxidizer feed system operation was satisfactory until cutoff, a_, -,.hJch

time system integrity appears *,o have been lost.

Gas Generator and Exhaust System

Severl anomalies occur in this system during flight and following engine

202 cutoff; however, system operation was generally satisfactory. During

the range time period from 220 seconds to _13 seconds, the gas generator

valve position trace indicates valve closure of approximately 5 percent.

Engine performance, however, does not reflect this change, and subse-

quent laboratory tests revealed that cryogenic chilldo_n_ of a gas gen-

erator valve !?otentiometer resulted in indication of the closing character-

istic observed in the flight data. At approximately _16 seconds range

.j

6 R-7P_50-2
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Figure l.. AS-502 S-II Engine Cluster Positions and
Serial. Numbers
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_ime (following cutoff of engine 202). the gas generator valve actually

reopened, as indicated by flight data. During the engine 202 atttoff

transient, gas generator chamber pressure spiked to z_50 psia; this occur-

fence is a result of the type of shutdown experienced by engine 20'-) .

Following cutoff, the engine 002 oxidizer turbine bypass valve did not

open fully.

Gaseous l_ydro_en Start System

Start system performance was satisfactory during engine 202 operation,

but system integrity was lost foll_wing cutoff, as evidenced by rapid

dropoff of start tank pressure.

Pneumatic System

Engine 202 pneumatic system operation was satisfactory until the cutoff

transient, at which time the oxidizer tt_bine bypass valve opening con- =,_,
,J

trol line appears to have been damaged. This damage resulted in slo=¢

opening of the OTBV and reopening of the gas generator valve following

cutoff. The gas generator oxidizer injection pm'ge appears to have been

obstructed at cutoff.

Instrumentation Systems

Operation of engine 202 primary and auxiliary flight instrumentation

systems was satisfactory, and valid data were given throughout the flight.

Fuel Pressurization System

Overall operation of %he engine 202 fuel pressurization system was satis-

factory throughout operation of the engine, with tank ullage pressure

maintained within the required limits.

UNTITLED-020



Oxidizer Pressurization System

Operation of the engine 202 oxidizer tank pressurization system was satis-

factcry until engine cutoff. Flight data indicate failure of the engine

202 heat exchanger outlet flex line downstream of the heat exchanger

outlet te'_perature transducer and upstream of the stage oxidizer pres-

surization manifold check valve.

Pmlated Systems and Conditions

Stage _draulic System. Operation of the stage hydraulic system associated

with engine 202 was satisfactory until 282 seconds range time, when abnormal

drift was indicated by the yaw actuator _P transducer.

S-II Engine Environment. The S-II engine compartment temperature environ-

ment during the AS-502 flight was lower than experien,.ed during AS-501

:_ operation. Environmental parameters exhibited normal trends until 220

seconds, at which time cryogenic chilling of the engine compartment was

noted. The chilling effect continued through the remainder of engine 202

operation.

CONCLUSIONS

Operation of AS-502 S-II J-2 engines was normal until approximately 220

seconds range time.

A leakage failure of the engine 202 ASI fuel line occurred at approxi-

mately 220 seconds range time, precipitating the following events and

eventuaiIy resulting in premature termination of engine 202 operation:

1. Cryogenic chilldown of the engine compartment area, engine com-

ponents, and stage components (chilldown continued until el:fine

202 cutoff)

R-TItSO-_ 11
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2. Reduction in ASI fuel flow, with attendant high ASI operating

mixture ratios and erosion of the ASI nozzle (main injector).

The erosion process continued, structurally weakening the

central portion of the injector until, at approximately 519

seconds range time, a fragment of the injector broke away,

was ejected through the thrust chamber throat, and struck the

interior of the thrust chamber nozzle near the exit, resulting

in damage to thrust chamber tubes, leakage of fuel to the inter-

ior of the thrust chamber, a shift in engine performance, and

loading of the gimbal actuators.

5. Degradation of ASI-to-injector sealing capability occurred at

approximately _12.5 seconds range time because of continued

erosion internal to the main injector, producing a leakage path

for oxidizer, fuel, and combustion products to atmosphere.

_. These oxidizer-rich hot gases escaping through the degraded ASI

sealing surface rapidly eroded and penetrated the oxidizer dome.

Engine performance decayed rapidly at approximately 412.7 seconds I I

range time and oxidizer injection pressure was lowered to the

point where dropout of the engine mainstage 0K pressure switches

occurred, signalling engine cutoff at approximately _12.921 seconds.

5. Hot-gas leakage to the interior of the engine compartment, com-

bined with oxidizer and fuel leakage external to engine 202, pro-

duced a fire within the engine compartment, as evidenced by rapid

rise in compartment temperatures and pressures. The fire at cutoff

of engine 202 produced other anomalies.

Engine 202 hydraulic actuator _ P anomalies occurring from approximately

260 to 519 seconds range time were erroneous, and resulted from malfunc-

tion of actuator _ P transducers whe) chilled to cryogenic temperatures.

Engine 202 hydraulic actuator A P indications noted at 519 seconds range

time resulted from creation of a loading moment about the gimbal bearing

created by leakage of fuel to the interior of the thrust chamber nozzle.

12 R-7&50-2

UNTITLED-022



Engine 202 hydra_]ic actuator A P indications following cutoff of the

engine are attributed to loading because of pressurization of the fuel

inlet duct.

Premature termination of engine 203 operation resulted from crossed pr_-

valve control signals between S-.II cluster positions 2 and 3, i.e., shut-

dotal of engine 202 resulted in closing of _he engine 202 fuel prevalve and

the engine 203 oxidizer pzevalve, thus precipitating on oxidizer depletion-

type cutoff of engine 203.

Performance shifts noted for S-II engines remaining in operation following

cutoff o£ engines 202 and 203 were erroneous, and resulted from a shift

in telemetry signal strength.

%

:f
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AS-502 S-II AY0MALIES

Anomalies discussed in this section are directly associated x_'ith cutoff

of engines 202 and 205, either as contribution factors or as resulting

from contribution factors.

S-I ] TII_k_t&L EN_IR0.k_,[ENT

Temperature Decay: Range Time 220 Seconds

Description of Event. Engine component and stage temperature parameters

indicate that portions of the S-II boattail region experienced a cooling

trend beginning at approximately 220 seconds range time. Temperature plots

(Fig. 2 through 28) illustrate boattail thermal characteristics as a func-

tiGn of time. The engine compartment cooling region generally reiated to

the area occupied by engines 201, 202, and 205, and extended from, the heat

shield forward to the base of _he oxidizer tank. Comparative da'ta from

a' flight AS-501 are included in Fig. 1 through 24 to illustrate that the

cooling trend was not encountered during that flight. The chilling trend

continued through S-II flight until cutoff of engines 202 and 203 (range

times h12.925 and 4U.'.277 seconds, respectively).

Hypothesis. Cryogenic leakage into the engine compartment resulted in the

area temperature decay. The s_uree of cryogenic leakage was primarily the

engine 202 ASI fuel line at or near the downstream flex section. The cryo-

genic leakage increased with time until i't reached approximateIy 2 seconds at

290 seconds range time. At 319 seconds range time, a fragment of the eroding

main in ieetor struck several thrust chamber nozzle tubes, resulting in an

engine performance shift. Cryogenic leakage continued after this abrupt

performance shift until engine 202 cutoff was initiated, maintaining ?he

compartment chilling trend. Data also indicate the possibil.ity of a small

cryogenic leak of similar nature in the engine 205 ASI fuel line. This

possible leak has no effect on stage operation other than Ioeal chilling.

:R Corroboration of tlvpothesis. Definite indications of engine 21)2 performance

decay commenced at approximately 260 seconds range time.

R-7_50-2 15
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Additional Comments. The overall pattern of engine compartment chilling

is difficult to attribute to a single leak source located at the downstream

end of the engine 202 ASI fuel system. In particular, thrust cone stringer

temperature 897, thrust cone forward ambient temperature, instrumentation

container aft surface temperature 51/_, and engine 205 main oxidizer valve

and closing control line temperatures C032 and C033 are relatively remote

from the hypothesized engine 202 ASI fuel line leakage location; these

parameters suggest the existance of several cryogenic leak sources, not

necessarily related to shutdo_'n of engine 202. In particular, data indi-

cate a small leak from the engine 205, possibly a failure of the ASI fuel

line.

Heat Flux Increase: Range Time 319 Seconds

Description of Event. The three heat flux measurements C665, C722 and

C858 around engine 202 indicate a step increase of approximately 10 percent

at 319 seconds range time (Fig. 2).

Hypothesis. A calculated fuel loss of approximately 7.9 lb/sec occurring

at 319 seconds would result in a thrust chamber mixture ratio change of

+0.4 to+0.5 mixture ratio units This increase in mixture ratio would,

in turn, cause the heat flux from the thrust chamber exhaust plume to

increase approximately 10 percent,, thus accounting for the indicated

flux increase.

Corroboration of Hypothesis. Calculations indicating the t0-percent heat

flux increase are based on MSFC-supplied *,hermal environment data which

yield an increase in O of 25 percent when changing the mixture ratio from

h.7 to 5.5. The indicated change in _hrust chamber mixture ratio of +0._

mixture ratio units was extrapolated from the HSFC data, yielding the

approxima ,Ü�xin heat. flux that was noted during flight. The

outboard location of the ruptured nozzle tubes is such that minimum effect

of the fuel discharging into the exhaust plume is seen by the calorimeters.

Thus, the calorimeters can sense the change in injector end combustion1

accurately.

16 R-7_50-2
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Iq_t: 0R%LNCE

I.:_ginc 202 Perfornuance Decay: .Range Time 260 to 319 Seconds

l)escription of l'w,r,t. A nmnber of engine paramelers indicated a _radual

,'l,.,cay in cn,aixw 202 performance beginning approximat.ely at the 260-second

vap._' time period and continuing to the 319-second point, a, which time

an idJz'upt tlOWtis}iil'l il, engim, pel'l'tJlqita.ce wits experienced. A li_l t_l'

en_im, paran:o',e,'s over this time interval is presente:t in Table 2. Graphic

]/l,_ls of main chamber pl'essllt'e and gas generator challlber pressure are pre-

senled i,._ Fi_. 29 and 30, illus_raling lhe gradual decay in these parame!ers.

l_Tpothesis. Cryogenic lealmge, which had began to chill do,.,_ the engine

compartment at approximately 220 seconds range time, was progressive in

nature, increasiig with time. After 260 seconds range time, it was of

sufficient magnitude to be noted in measured performance parameters. The

source of leakage was the ASI fuel feed system, in or near the downstremn

1/2-inch l:el]ows section. Based on the fuel pump flow coefficient rela-

tionship Q/N, leakt,4_e from the ASI rue/ line increased to a maximum level

of approxinuately 2 lb/sec at 290 seconds. At 319 seconds range time, an

abrupt performance loss occurred. The 3!9-second performance shif_ is

expla im_d in t.he nexl sect ion.

Corroboration of Ilypothesis. Fuel pump speeds and flows for all five

engines were compared over the 250 to .518 seconds interval (Table 3).

The ratio of _pmnp speed/_pump flow wa._ the lowest for tb.e No. 2 engine

fuel pmnp, snggesting a decrease in dog, stream resistance (fuel pmri)

outlet and main chamber pressure). Stage acceptance uata for this pump

were then compared ,',':er Lhe same portion of the acceptance test (Table 5).

A higher ratio of Apmnp speed/_pump flow was noted duriIN the acceptance

Lest thmi on the flight indicating that a change in engind 202 pump

speed/flow characteristics had occurred daring the flight.

hh R-7h 50-2
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t TAI]l.E '2

kN(;.L\_;: 202 PF_.FOFt3'.\Nr.!.; CHANGL_ , 250 to 518 SECONDS tL\N(iE I'I:,IE

(Engine ,J2Oldk In-lhm ]'light Performm_ce Shifts)

Parameter ._leasured l"ii,2:ht Shift

Nmnber Parameter (250 to 518 seconds)

'rempe.l:a _tre j 1,_
C001-202 Fuel Pump Discharge _0.03
C002-202 Oxidizer Pump Discharge -0.02
C003-202 l,'uel Turbine Inlet --0.7
C00h-202 Oxidizer Turbine Inlet -3.h
C008-202 Gas Generator Fuel Valve Inlel -0.52
¢00!}-202 Gas Generator Oxidizer Valve Inlet ,O.Oh

C0lh-202 >lain Fuel Injection +1.5
C326-202 Oxidizer Turbine Outlet -h.0
C329-202 Thrusl Chamber Jacket -1.0

C585-202 llea_ Exchanger 0utlet -65.7
C663-2o2 Engine Inlet Oxidizer -0.02
C66_-202 l_gine Inlet Fuel +0.03

Pressure, psi
D001-202 Main F_.el InjectiGn .h.0
D002-202 Gas Generator Fuel Injection +li.0
DO0h-202 Fuel Pump Balance Piston Cavity -2.1
D005-202 Fuel Pump Discharge -1.5
D006-202 Main Oxidizer Injection -2.5
D007-202 Gas Generator Oxidizer Injection +5.2
D008-202 ()xi,lizer Turbine Inlet _0 6
D010-202 Oxidizer Turbine Outlet -0.1

D011-202 Oxidizer Pump Discharge -7.7
D015-202 Thrust Chmnber -6.h
I)01h-202 (]as Generator Chamber -7.9

D091.-202 E,_ine Inlet Oxidizer +0.18
D092-202 l']_gineInlet Fuel -0.h9
D166-202 Yaw Actuator _1270.h
D167-202 Pitch Actuator +26° 1
I)191-202 PU Valve Outlet -O.l

D192-202 Oxidizer Pure 1) Primary Seal _0.5
D251-202 Fuel Tank Pressure Regulator Inlet -h.6

Flowra te gpm
F001-202 .Xlain Fuel +86.
F002-202 Main Oxidizer -2.2

Speed, _r_]_
T001-202 Fuel Pump +105.8

T002-202 Oxidizer Pump ,-22.2

R-7_50-2 /t5
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TABLE 3

CO)IPA_\TI_q']PI'RIF'()IDIgNCF,OF S-If E_GINES

l_mg e

Time, Ex%ine Nmnber

. eco,,a eol I, eo2 1 2o5
Flight Data AS-_()2

Fuel _,-pm o5i). 97._2!7 26 , bOO 27., Oh8 2{[ _,8.'2.0 2"..,__Z20
Fue:t rpm 318 27,515 20,5!)7 27,178 26,9 18 27,390

t'l)m 250 to +96 -.98 -, 130 -_98 *70
3i8

Fuel tq)m 250 7,901 7,803_ 7,83() 7,995 ,'_,119
Fuel gpm 318. 7,923 7,850 7 ,875 8 ,017 8 ,130
L_ g pm 250 t o _ 22 + 27 +39 -.-'2'2 -_11

318
/

Ik_rio /_ rpm,'_g pm _.36 2.08 3.33 zt._5 6°36

Oxidizer rpm 250 8,569 8,5_,7 8,611 8,620 8,603
Oxidizer rpm 318 8,56"_ 8,526 8,602 8,617 8:60! '

_'pm 2_50 to -b --21 -9 -3 -2
318

Oxidizer gt,'a 250 2, 8tt6 2,820 2, 85ti 2,8til 2,83;'
Oxidizer gpm 318 2,8_6 2,813 2,8_8 2,836 .,° 835
g_ gpm 250 to O [ -7 -6 -5 -2

I

Fue I rpm 250 - 26,625 .... I

l"ue 1 rpm .,18 - 26,773 - - - [
A rpm 250 to - +1'i8 .... !

318 [
l".m i gpm 250 - 7,8/i5 .....
Fue I _pm 318 - 7,895 - - -
/"_ _,,pm 230 t.o - +_8 - - -

318

.Ih_t,i o £X ,..pm.,.._._g;pm - 3.08 - - -

0xidi z c :" r pm o50 - 8,651 -
Oxidizer rpm 318 - 8,653 - - -

rpm 250 t.o - +2 - -
318

0xidizer _pm , ,w.,, '),85_

OxidiTcr gpm 318 - 2,856 ....
_;k gpm 250 t,o - +2 .....

, 318
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Oxidizer ptunp speed and flow relatienshlps for all five ei_,ir, es were also

compar_ _ (Table > ). ,_ver the 250- _o 5iS-second _ime interval, charac-

teristically _he oxidizer flows m_d speed are normally qui_e s_able. The

onlT, noteworthy observation was tha_ engine 202 oxidizer pLmlp speed de-

creased ,:'orethan t_'ice Lhe rpm of any other e_,:_ine (althouazh the rm___e

was small). _t_[e acceptav, ce da_a were then co,@ared over the same por_ioI_

of the accept_mce [est. Flight and accept_mce flov'rr.,.tes agreec, well in

char{_c_er_ bu'< the acceptance ptunp speed did no_. show the lull-oJ'f in rp,._

tha._ was observed during: the fiifht. lhe i,,nplica_ion is tha_ the decrease

in downstream resisr_mce _nmr,el), o_idizer ptm_p outlet pressure and main

chamber presstu'e) is a real phenomenon, since It was confirmed by beth

fuel _md oxidizer pump characteristics.

')f eight critical p. essure parameters related to %as generat._.r and ¢b_-ust

chamber operation, five indicaT.ed gradual decreases: gas lenerator

ch_nber, main chamber, oxidizer injection, mzd fuel and oxi!izer pmap

discharge presstu-es.

A 1.3 F increase in fuel :ajection temperature was no*.ed duri_ the 250-

to 3iS-second time interval: despite the slight increase in to_al e_ine

fuel flow in that s_w2e period, sug_-_'_ti_ thc, t less fuel _,'aspassi_

throt_<h the thr_s_ chamber,, The differe.,..ce bet:,'een less lhrust chamber

fuei flow m_d more e_tg',ne total fuel ,:low can be considered as eryogenir

leakage chilli__ _l:e e_Igine _rea.

)xidizer system resis*ance d,':,r.adtu'ing this performance do'_trer, d remained

mmffe,'ted, even holdi,_,: firm after the 510-second performance shift.

}[ence, the oxidizer system _n,e_:rity for el_iine 202 durit_ the .*.ime period

i_, T,,,estion is not suspect.

1)ata Not in .:_reement

In general, engine data over a 68-second interval are iur[,,t,,wvd hv mauy

separate t::,end characteristics, so that a clear eonfir_,m_tion or refutation

R_7t_SO_2 ?tt)
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ot' a t_rmtu_l stn_ll perfor.mnce degr_lda_ion i8 difficult. Solne of the

cont tad i_}lory data are :

1. Three crilic..'_l pressure parameters increased during this time

int_,rval: main fuel injection. _as ge,_et'ator fuel injection,

and gas generator oxidizer injection pressures. These contra-

dict the performance decay trend indicated by the other five

previously noted pressure measurements.

2. The possibility was investigated that the chilldown in instru-

mentation package temperatures was responsible for transducer

drift and, therefore, misleading measurements. Although such

drift can _ccur, the gas generator and main chamber pressure

downtrends halted after 319 seconds range time, despite continued

chilling of the instrument packages. Therefore, the temperature

effect, if any, on these transducers is not a factor in the ob-

served performance trend.

h_ine 202 Gas_Generator Performance Shift: Range Time 262 Seconds

Description of Event. The !00-sam.pie/second trace of gas generator cham-

ber pressure indicated ml abrupt shitt at 262 seconds range time_ Data

smnples taken before (261.5 seconds) and after (266.._ seconds) indicate

the gas generator chan_er pressure dropped tt psi (Fig. 30).

Conclusions. An instrament zero shift occurred at this point, giving a

false reading from this point on through the remainder of duration.

Corroboration of l{ypotheqis. Engine data reduction immediately before

trod after the indicated chamber presmtre shift revealed an increase Jn

both gas generator system resistances postshift. The system resistances

then remained essentially at their increased value for +,.he remainder of

the test (Table ti ),

_:,_ 50 R-7ttS0-2
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_ine 202 Performance Shilt: ]tmq_eTime _I_ Seconds

Description of l:vent. At 519 seconds range time, engine 202 experienced

a rapid performance shift. Changes in si_nil'ie_mt parameters are re-

corded in '['able 5 and sho_. in Fig. 51 throu_zh :_7. At the same time as

tim performance shift, er_:ine envirop_nent chilldo_m rates became greater,

indicati_ cryogenic leak_e of increased severity; further, hydraulic

_i' transducers on be|,] _, of the engine gimbal actuators indicated a com-

pressive loading of approximately 600 psi each,,

]Ly_thesis. The ez_gine 202 performance shift noted at 319 seconds range

time result, ed from partial failure of the main injector, a portion of

which struck tire inl, erio _ of tl _ thrust, chamber bell near the _xit plane,

rupturiw_ several fuel tubes. Gradual performance decay of engine 202,

con_nencing at 220 seconds, was caused by gradual failure of t, be ASI fuel

line, which resulted in progressive erosion of tire central portion of

the injector. At 519 seconds, the erosion had progressed to the point

that a section of the main in j( _tor broke away and struck the chamber. :'_

The ruptu_-ed thrust chambe: tubes leaked a total Jf 7 to 10 Ib/sec of

fuel, resultin:_ in the sudden performance shift and displacement of _,he

thrust vect, or with ati.endant loads of approximately 7800 pounds in each

actuator.

Corroboration of llypothesis. Initial analysis of flight data indicated

a decrease in all pressures, an increase in gas generator temperatures,

_ld an increase in main fuel injection temperature for engine 202 at 519

seconds range time. An initial postulation of external fuel leakage was

made, based upon flight data coupled with the decrease in environment_al

temperatures. Using engine model data and engine performance calculations

(Table G), [m oxidizer leak was rejected as a possibility.

Observed specific impulse shift of -15.0 seconds is equivalent to a 10.6

lb/sec fuel flow leakage upstream of the thrust chambe:, The following

52 It-7hSO-2
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TABLI,; 5

AS-502 S-iI IN-RUN l:l,Itill'l' I'EItI:OtL%_NCI';SIIIFTS

(L_g ine O201d_)

Parameter )leasured FJ ight Shift
Nmnber Parameter (.3i.9 _evonds)

_erat m'e LF
C001-202 Fuel Pmnp Discharge -0.31
C002-202 Oxidizer Pmnp Discharge -0.09
C003-202 Fuel Turbine Inlet -. 11.9
C00_-202 Oxidizer Turbine Inlet -,-10.0
C008-202 6as Generator Fue! Valve Inlet -O. 20
C009-202 6as Generator 0xidiz(u' Valve Inlet -O. 17
COLA-202 Hain Fuel Injection -_L3.,_

C326-202 Oxidizer Turbine Outlet ,7.')
C329-202 Thrust Chamber dack_ t -2.5
C585-202 Ileat Excham_er Outlet +16.7
C663-202 Engine Inle_ Oxidizer -,O.Olt
0661_-202 Engine Inlet Fuel _0.03

l'ressure LA2_
D001-202 Main Fuel Injection -31.I_

D002-202 Gas Generator Fuel Injection -15.9
( I)004-202 Fuel Ptmlp Balance Piston CaviLy -2ti.4

D005-202 Fuel Pump Discharge -P_l.9
D006-202 Main Oxidizer Injection -22.7

D007-202 Gas Generator Oxidizer Injection -lb.5
D008-202 Oxidizer Turbine Inlet -1.6

D010-202 Oxidizer Turbine Outlet -0.6
D011-202 0xld_zer Pump Discharge -28.2
D015-202 Thrust Chamber -22.9
D011i-202 Gas Generator Chamber -11.8
D091-202 Engine Inlet Oxidizer -0.16
D092-202 Engine Inlet Fuel -0.28

D166-202 Yaw Actuator _P +657.5

1D167-202 Pitch Actuator AI' _9__:91D191-202 PU Valve Outlet 0
ID192-202 Oxidizer Pump Primary Seal - �Œ(D231-202 Fuel Tank Pressure Regulator Inlet -3.9

Flowrate, gpm
I,'001-202 Hain Fue 1 +117.5
F002-202 Main Oxidizer -.7.tl

Speed, rpm

T001-202 Fuel Pump -83.o
T002-202 Oxidizer Pump -55.5

R-7_50-2 53
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Figure 32. Turbine Outlet Oxidizer Temperature
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Figure 33. Turbine Inle_ Oxidizer Temperature
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Figure 3&. Fuel Turbine Inle_ Temperature
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Figure 35. Gas Generator Fuel Injec'_or ]_essure
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Figure 38. )4ainst_ge Oxidizer Flow
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Figure 39. Oxidizer Pump Ou_le_ Preseure
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Figure &l. _ainstage Fuel Flo_

/

R.--7&50-2 65

UNTITLED-075



Figure _. Pump Interstage Fuel Pressure
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Figure _5. Injector Thrust Chamber _uel Temperature

R-7/,50-2 69
[

UNTITLED-070



• Figure &7. Mains%a_e Thrust Pressure
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calculation is P,sed on a ,_ain factor obtained from an inpu'_error eval-

uation of the ,-altitude reduction pro_r,xm: _1 lb sec input error in fuel

flow :: l.'_l .-:ecm_ds error it: specific impulse: therefore, for _he observed

spe2it'ic impulse shift of -15.0 seco,ds. -15.0 -l.hl = 10.0 lb sec (error

ot _udicated fuel flow leakage).

Effect of ASi Fuei Leak on AS1 Operation

Comparative analysis of Q/N ploxs for all five S-iI engines dtu-im_,tile

flighi (Fi_. hS) indicates that, at 220 seconds range time, a loss in

resistance began to appear on the fuel side of engine 202 (J204h). As

fiight time progressed; the Q/:\"plot departed ftLrther from the Q;'Nplots

of the ether four engines until the abrupt engine performance shift of

519 seconds. At that time, an extreme Q/N shift occurred. The Q/_N

shifts were then related to fuel leakage flow as sho_m in Fig° 69. From

this figure i_ may be seen that ASI fuel leakage, which began after 220

seconds range time, increased to approximately 2 Ib/sec at 290 seconds

range time. These data are consistent with compartment chilling data :_;

from a time standpoint. S-II stage compartment and engine temperature _

data do not indicate _ny source of "heating" until engine 202 cutoff;

_herefore, it is assumed that no reverse flow of warm ASI gases into the

engine compartment took place, such as is indicated for the S-I%U3 _tage.

Based on tileno-reverse-flow premise, it is hypothesized th:,*a partial

failure of the ASI fuel line occurred, sufficient "head" being maintained

to continue supplying the ASI with minimal fuel from 290 seconds range

time through the remainder of engine operation.

F--ore 270 seconds on, the ASI chamber was subjected to high mixture ratio

operation, which resulted in erosion damage to the main injector assembly.

There were no ASK flight flow measurements to determine _aat the ASI

mixture ratio was that caused this damage. Mixture ratio was first

estimated at 8.0, based on passing 0.1 lb/sec fuel to the ASI injector.
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t Tests were then couducted at both SSFL and MSFC, in which ASI fuel flow

was restricted to obtain ASI mixture ratios as high as 10:1 to establish

damage potential to the main injecL_r assembly. Erosion .capability was

Odemonstrated when the ASI was operated at mixture ratios of ,._ and above.

Rapid severe erosion was noted during MSFC test 217-!i, in which the ASI

mixture ratio was raised to between 9 and I0:1. During that test an

eroded injector fragment was expelled within I0 seconds of high-mixture-

ratio ASI operation. During flight, therefore, the ASI mixture ratio

passed through the 2.P_ mixture ratio erosion threshold and stabilized

at a value sufficient to deteriorate the main injector in &O seconds to

the point (519 seconds range time) where similar injector damage occurred.

Based on the data from the supporting erosion tests, an ASI mixture ratio

between 5 and 9 probably existed on engine 202 from approximately 270 sec-

onds range time lmtil the end of engine operation. An ASI mixture ratio

of 6 was assumed at the 290-second rang e time point, yielding a fuel flow

to the ASI of 0.13 lb/sec. The ASI fuel system was then analyzed to

determine what location could support an ex+.ernal leak of approximately

'2 lb/sec and still deliver the minimal amount of fuel to the ASI.

The ASI system is schematically represented in Fig. 50. The range of

oxidizer-side resistance and fuel-side resistance from the block to ASI

chamber pressure was determined from engine J2Oh_ ASI acceptance data.

The range of resistance from the block upstream to the thrust chamber

inlet manifold was that which could be expected from hardware variation.

Using these data, a 2-1b/sec le_; would have to be located between the

middle flex section and the do-_mstream 0.5-inch-diameter flex section to

permit the 0.13-1b/sec fuel flow to continue to the ASI injector. The

most probable location is in the downstream 0.5-inch-diameter flex sec-

tion. With a 2-pound le_ rate at 290 seconds range time, and a leM_

location within the downstream flex section as the basic assumption, the

ASI operation (weight flows and mixture ratio) was reconstructed from

220 seconds range time (normal operation) through to 326 seconds, i.e.,

after the abrupt performance shift (Fig. 51 and 52). No significan4

_ ch_lge in ASI operation is visualized from that time on to engine cutoff.
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.
_'lwn the _ o[ reaches high mixture ratio conditions_ it should be noted

that the system _P downstream of the leaJ¢ location is low (approximately

lj psi). A minor upward fluctuation in ASI chaJnber pressure would there-

{'ore have a large effect upon tile l'uel flow into the ASI. Fuel flow

variations, in turn, would have a magnified effecL on ASI chamber pres-

_,0 seconds range time is _,hus character-sure. The ASI operation after o,

ized by highly osci!latory pressure and flow functions. Burning of

parent metal (main injector and ASI) is intermittent, as the ASI mixture

ratio tends to swing from infinity (fuel flow stoppage) to 2:1 (as ASI

chamber pres,mre approaches main chamber pressure.

Other S-II-mounted engine temperatures suggest the possibility that cryo-

genic teakage emanated from engine 205 (J20&l). Chilling of the engine

205 main oxidizer valve actuator and closing control line, which began

at 250 seconds range time, are best explained by a cryogenic leak of

local origin. The data further .,'ugg'est that the ]eak direction is from

; the downstream 0.5-inch-diameter flex section of the ASI fuel line. Anal-

ysis of the chilling rates of these two measurements indicates 6he amount

of leak to be approximately 0.1 lb/see. A leak of this small amount is

beyond the flight measurement ability to discriminate, so there is no

flight data to confirm the analytically determined leakage rate. The

Q/N plot oi" engine 205 remains within the four-engine data envelope

_hroughou_ the engine operation (engine 202 is excluded because of

known le o2¢age).
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}IYDRAUL±C SYSTEM ANOMALIES

Engine 202 Yaw Actuator _ P Indication:

282 Seconds t{an__p/leTime

Description of Event. At approximately 282 seconds range time, the engine

202 engine actuation system (EAS) yaw actuator _ P measurement indicated

a _ P rise rate of 35 psid/sec; this indication continued for approximately

37 seconds. At 519 seconds range time, an additional step of +600 psid

was indicated; this step also was reflected in the pitch actuator h P

measurement. Yaw actuator _ P indicated a further rise to _2200 psid

following the 319-second shift. At 3h0 seconds range time, the yaw actu-

ator _ P measurement indicated a decay rate of 25 psid/sec which persisted

until engine 202 cutoff at 412.9 seconds; the indicated _ P at cutoff was

+250 psid. Following engine 202 cutoff, ya_ actuator _ P exhibited a step

rise to +1700 psid at h_2 seconds range time and then a decay to -500 psid

at 530 seconds range time (Fig. 53 ); _he pitch actuator _ P .indication also

was -500 psid at 530 seconds range time.

Related Engine and Supporting System Anomalies. During the period

250 to 518 seconds range time, there was a gradual decay of engine 202

performance.

Beginning at 220 seconds, there was general chilling of the engine compart-

ment area forward of the heat shield.

At approximately 250 seconds range time, engine 202 EAS hydraulic fluid

reservoir temperature started to decrease (Fig. 5h); comparison of this

measurement to EAS fluid reservoir temperatures for engines 201, 203, and

204 indicates a decay of 16 F by 519 seconds range time. A stage equip-

ment container located just forward of the engine 202 hydraulic fluid

reservoir indicated a cooling trend at 519 seconds range time; this con-

tainer was insulated and equipped with an internally mounted temperature

transducer.
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_0_ primary and auxiliary fli,.:ht instrumentation p. eka_o _ran.-'-

duc_'l '-a indicat, ed pro,zressivv chtlIltl_ _t;zrting at, ap! r.>:_makolx 2t_0

seconds ran,__e time and continuin_ _w.t il ,.qv__ine 20'-' cu_,tf. Th,_ I,rimavy

flight instrumentation f,acka_e exhil;_tt'd the ,..,_'eat,.'r t,emlwrature drop.

Corroboration of tl5"pothesis. Durin_ th(, raneot, im(.' interval "__'_2' to "5l[)

seconds, where the engine 202 yaw a( lmttor _ !J indication _,a- observed

gO l'ise, there, were no siffn,_ficant C}I_tllgP.'5_" ill COmlllillld O1' pOStfl;,l si. ffllttl_,

as shovel by Fig._3. This would imlicatc l.httt t.he }_cCilttc!;! £.v 1' _i,;llS-

dueer was affected by some influent:_' _external lo tht' {,llKi_l(' ::{'_!i_l[ i4;11

syst, em.

Chilldo_m testing of the hydraulic v.':tuat,,r i,e,:l'ormed a_.;., Space Division

of Nort,h American Roekwei1 Corporation. S_:al BeuLah, Caiilorn:a, indicates

tha_ Lhc actuator A 1' transducer i_ adw, rs(,ly aff(._(:lt'd _)x low :: q)erat.ure.

' The transducer is ot' tile double bourdori t.ui)t, tyt)o , and is lo,'ale:i on I;iw

outbdard side of the actuator (as inngal[ed ,m ih, enffin( ): a v_::-_istvnco

pol;entiometer modulates a signal i_: dire_t t,roportio_ a.,, the d?l2vv¢,n_.ial

[)r(_sSlll'e aeros.q tile actuator ].ow- attqd hi_si!-pt'oss_tt'o ., (Ip:v. "1:'' i_'s_ ill_

eonsi,_ted of monitoring the output, cf t,i:_. _:s [; t.-t,,.-duct, i t.,'l: _,' oh ll.in_

t;he gl'ansdueer with a liquid nitrogen; spray. :\s lilt" r.vansd_t(._.v w,_,._ ,.hi;led,

the A p output signal ramued upward ,:t tA_e va,o _! :_'i) !;.- iLl scc Lo at p-_ak

vaiue of 800 psid. As Lilt, ehillina COII'LIIXIIPd, t. ttl' _ [_ Vatl,q*_'d dowlp,,iat'd [;o

0 psid at about the same rate as the up_.,,avd: rmup. (;hill.down with the LN,)

spray was diseon_intwd and, shortly ;t[Lt, l'-,_tv(l. _}1, ./._ [' o_.i_:t _:,_ rap;.dly

Lo 2370 psid and then decayed to zeco (Fig.)5). '['[w tv-._; data ave ira Irood

agreement in the patterr_ indicated by fli._ht, date, i.e., a ,5 i' rise wUch

initial chilling, A p deeay with c,,nt iw:,>i ,.ht liin,_,:, end '?_ i' .;;r._,'c ,I,m

termination of ehilling (_..emovaI of h;akage sourees).

|
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Engine 202 Yaw and Pitch Actuator t_ P Shift:
]]p ,.'d.'cconds Ran_' Time

Description of Event. As 510 seconds range l, ime, engine 202 yaw and pitch

actuator ..._l' measurements indicated a shift of _000 psid. Th,' st,e l, in

pitch actuatvr _ P persisted ta1%i] cutoff (,t" (,n,_,ine 20 '), _:t which time lhe

ind:ication changed from --O00 to -bOO psid. The yaw actuat_or ._ i' me'lsur('-

men_, while indica_i,lg the -600 psid shit_t at. 51 () st'conds, failed to r_'_po::d

prolmriy because- of cryogenic chilling (Fig. 55 and 5({).

liypothesis. The engine '.!02 ym, and pi_('h a(:tuat0r Z_ I' .-:hire v_!_h occurred

at 519 seconds range Lime was cau_e(t by a force external to ',h,t ongine a,.:tua-

tion system.

The force resulted from a t)ortion of {he main injecl.or being ,.'iec/.ed from

the thrust chamber, and striking apd ._pliti:,ing _everal bub(,s n(,;tr the 5hrust

chamber exit in _be process.

f

Fuel .leakage (8 to 9 lb see) resulting from rupture ol/ t,hc Lhr:l,_i chamber

tubes produced a localized high-pressure area internal to (,he chamber near

the exit, and created a t)redominantly lafera] int,(,.rnal I_)a(l _):l the chamber

in the direction of the leak. This load was reflec_t,d by yaw and pitch

actuator ',_ P measurements.

Corroboration of Itypothesis. To ascertain wheChex' or 'dot, engine 202 actua-

tor A P shifts al 519 seconds were _'usul.t,s of a [ot'ce external to the engine

actuation system, an analysis was ma(t__ oi" stag(' guidance emmnonds relative

to actuator position changes:

1. The engine 202 performance shift (thru:_t:, decr_'ase) _,t, 519 seconds

would cause the vehicle to experience -,. pi. Cch and - saw.
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t 2. Tile required corrections determined by analysis are:

a. All engines must move -O.Ot_ degree pitch

Engine 202: extend

Engine 201: retract

Engine 203: extend

Engine 20!t : retrae t_

b. All engines must move -O.O!t degrre yaw

Engine 202: extend

Engine 201: extend

Engine 207: retract

Engine 20_: retract

c. Considering the possible thrust misalignment of all engines:

plus the compliance (springback) to the stage structure, a

roll correction of unkno_._ magnitude also woulti be required.

5. In accordance with the vehicle instrumentation mlit s2 _tem,

( commands given to the engines at approximately 519 seconds were

to correct for a + pitch and counterclockwise roll error of

approximately 1/7 degree.

Ii. Rocketdyne tests conducted on a llot-f_,":;[engine with tile gimbal

bearing chilled to -99 F indicate that a gimbal actuator load

change of 1°,000 pounds (resulting in an apparent thrust vector

rotation of 0..57 degree, as determined by actuator deflection)

occurs before gimbal friction is overcome. This test was con-

ducted at 170K sea level thrust with tile engine installed in a

battleship stand. At a 225K thrust level, the actuai_or force

would be 15,900 pounds and _he apparent rotation would be 0.110

degree. Because the spring rate of the vehicle may be expected

to be less than that of the battleship siand, it is possible that

thrust vector changes in excess of 0.5 degree may occur without

overcoming gimbal bearing friction.
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5. Engine compartment temperature data indicate occurrence of cryo-

genic leak (fuel) in the vicinity of the engine 202 fuel injection

manifold, beginning at approximately 220 seconds range time. The

elapsed time of al)l,'oximately 9()seconds between first indication

of the fuel lea]<and occurrence of the performance shift at 319

seconds could resul-_ in chiIidown of the gimbal bearing.

6. Command altitude corrections at 319 seconds were small enough in

magnitude not to overcome cold ,_timbalbearing friction for engine

202; therefore, the altitude corrections could be accomplished by

elastic deflection of the engine and mount structure (i.e., the

required actuator forces would be applied and maintained to resist

spriugback until another altitude correction command was applied).

T. Actuator pressure traces for all AS-502 S-Ii stage engines exhibit

small, fairly steady differential pressures with short-duration

pressure perturbations occurring whenever a command signal from

the instrumentat':on unit is given to change engine attitude. This

indicates that thrust alignment of each engine is fairly good,

requiring small actuator forces to keep engine freebody in equilib-

rium. The sudden compressive force in the engine 202 pitch and

yaw actuators at 3]9 seconds indicates the presence of a new force

on tile engine freebody that was reacted against by the actuators

to keep the freebody in equilibrium.

8. Analysis of actuator tapes revealed that tile engine 202 pitch

actuator was in a 0.13-degree retract position at 319 seconds

when the loss in engine thrust occurred. The pitch actuator then

moved to a 0.20-degree retract position (0.07-degree retract

motion) at 319.1 seconds; no co,and signal was given to cause

this mction. The pitch actuator started a corrective extend

motion when, at 319.9 seconds, an extend command was ordered by

the vehicle instrumentation system. The system actuator stabi-

lized at 322 seconds in the O.08-degree retract position (extended

0.05 degree from the pre-performance shift position) with a locked-in
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indicated /_ t) of 600 psi. Because no command signal was given

at 319.1 seconds, the actuator compression must have been caused

by an external load on engine 202.

9. Ana],tical and test results not in agreement with (3) through

(6) above arc as follows:

a. Rocketdyne tests on a hot-fired engine w_th the gimbal bearing

at ambient temt)erature indicates that a gimbal actuator load

change of 4500 pounds (resulting in an apparent thrust vector

rotation of 0.1 degree, as determined by actuator deflection)

occu:'s before gimbal friction is overcome. These sea level

data extrapolated at 225K altitude thrust result in a 6000-

pound force and an apparent rotation of 0.13 degree before

gimbal friction is overcome. No such forces occurred for

pitch and yaw actuators of engines 201, 203, and 2(}h at

519 seconds range time.

b. The mass of the gimbal bearing and the presence of the pro-

tective boot surrounding the gimbal bearing would result in

relatively slow chilldo_ra of the bearing. In laboratory

testing conducted at Rocketdyne to study gimbal bearing fric-

tion, a substantial period of time was required to cool the

gimbal bearing, even when the boot was removed and the com-

plete gimbal and the complete gimbal joint was submerged in

liquid nitrogen.

In addition to ascertaining the source of engine 202 actuator loads, an

analysis was made to determine the effects of gimbal bearing friction on

these loads in terms of moments about the gimbal bearing. Gimbal bearing

friction envelopes or hysteresis loops were generated by cross plotting

telemetered actuator position and pressure data at discrete points in

time. Results of this analysis are as follows:

1. Both the pitch and yaw actuator loads are compressive, i.e., an

external force attempted to rotate engine 202 in the direction

of the two actuators.
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2. 3ccounting for the gimbal bearing friction, the moment about

tile engine pitch axis is -65,200 in.-lb, and the moment about

the engine yaw axis is +77,075 in.-lb. The resultant moment

is 100,000 in.-lb, the force of which acted in a plane located

5 degrees clockwise from a plane bisecting the fuel and oxidizer

turbopumps (looking aft).

3. Calculations: The calculations are presented below.

Engine No. 2 Thrust Misalignment:

X = -0.010 I Engine 204_

Ttt= 225K [ Acceptance DataZ = +0.178 Test No. 62_i077

F TH
p - 16.78 (-) (_ Z - _ X) = -2520 pounds compression

TH

Fy - 16.78 (-) (_ Z + _ X) = -2270 pounds compression

where

F = pitch actuator force
P

F = yaw actuator force
Y

Engine No. 2 Inlet Separating Load:

2
Fuel Inlet = 28.5 psia Area = 62 in.

2
Oxidizer Inlet = _2.0 psia Area = 62 in.

Pf = 28.5 (62) = 1700 pounds

P = _2.0 (62) = 2600 poundsO o

M = -21.0 (2600 - 1700) = -18,900 Ib-in.
x

-18,900

F = F = _k [ul)tgnrO'_ll'8_ = -1120 pounds compressionP Y
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,ctuatol Loads With No Gimbal Friction:

F = -(2520- 1120) = -_50!_0pounds compression
P

F =-(2270- 1120) =-5590 pounds compression
Y

51 =-361J0 (11.875) =-h3,100 in•-ib
P

._l = (-) -3590 (11.875) =-',0,'_'00 in.-lb
Y

Actuator loads were essentially zero prior to 319-second failure, indi-

cating misalignment and inlet moment were carried by gimbal friction or

were less than expected.

Example: At 196 seconds, the pitch actuator indicated

zero load and the yaw actuator-1000 pounds

Because the No. 2 engine actuator loads were normally low on the AS-502

flight, it appeared that the gimbal friction might be carrying the moment

resulting from tllrust misalignmee +, and inlet differential pressure.

Actuator force and 1 ,sition data were then compared for the yaw actuators

of engines No. 1 and 2, as shown in Fig. 57. (Note the thrust alignment

bias of -3000 pounds on engine No. L) CaIeulations on engine No. 1 thrust

alignment and inlet loads indicate the yaw actuator should have had a load

of 2800 pounds compression for static equilibrium. Data indicate good

agreement with calculations. The No• 2 engine yaw actuator indicates

a force bias of -i000 pounds and calculations indicate it should have

had a -3hO0-pound bias. This indicates the effective thrust misalignment

of No• 2 engine was much less than expected• This is probably the resuit

of cimuging the gimbal bearing on this engine in the field.

The plots in Fig. 57 also show that a change in force occurs with approxi-

umtely a 0.2-degree gimbal motion. This indicates the point at which

gimbal friction is overcome. (Note for the point shown there is reason-

able agreement on the magnitude of the friction force for engines No. i
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Cross plots of the AS-502 engine Ne. 2 pitch and yaw actuator force nnd

position data were then prepared to determine tile magnitude ot' tile 11 Lc-

tion moment, as shown in Fig. 58 through 60.

Because the thrust alignment of the No. 2 enf:ine is different than expected,

it will be treated as an unknown.

Resolution of Actuator Forces at 519 Seconds (Prior to Failure):

J
_;v_,_c,f_'.'/,:.'f Gimbal friction is resisting

_l'_//'5 actuator extension and is

_,.;], +15oo
_ _ /_ N .______/)7;, : pounds

o =-11.s75 (500)
d -'(' +1500 (11.8"]5)

+M

yVf,_x:_.¢ M =-11.875 in.-ib
yu

///

_/'_/ ,_d/_f Gimbal friction is resisting

2¢v.,_,_ actuator extension and is!

• _a°'vA_ / -2000 pounds

/_') 0 = +2000 /_1"875)-2000 1.875)
+M

pu

I
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Resolution of Actuator Anomalies on No. 2 Engine at 318 _,o321 Seconds:

/

-, />,_.<,4

Looking Forward

YA._/

9_ R-7_50-2
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Figaire 58. Actuator Sign Convention

k;
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Figure 99 No. _9Engine Gimbal Exiction (Pitch)

f gure 60. No. 2 Engine Gimbal Friction (Yaw)
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Resolution of Actuator Forces at 321 Seconds (After Failure):

)zoo- Ac,J-'_,/_,.f Between 319.3 and 321 seconds, an

f_SoV _,,_,j extended motion of the actuator

]MP._o60 took place (0.24 degree) sufficient

>_/t_] ]_[, Lo lock in a maximum + friction

j:.)/. ,_ /'/t_ moment

SM =0
_;o Y

>)'i o i+3000 11.875
+M

yu

• a£¢ M = +63,200 in.-lb, .._. yu

fip_¢_ Zt/r,',._," Between 3i9.3 and 320.5 seconds,

,I_F" /f_.¢_ 17_//'_ an extend motion of the actuatortook place (0.12 degree) sufficient

43_ }(,z/ to lock in a maximum -- moment, but

fl,y]5 Y_/_p load then dropped !500 pounds.

Assume residual (-Mr) = -1500

_:O DM = 0
P

/% o -- 7ooo (11.s75)
-1.5oo (11.s75)
-FM

pu

_tT M =-65,200 in.-ib
pu

The applied unknown moment is the difference between the pre-failure and

the post-failure moments.

M = 65,200 - (-11,875) = +77,075 in.-lb
Y

M =-65,200- 0 =-65,200 in.-ib
P
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.... .f../.A

¢,...,II../ 7zoTs
io<--,°'°%./Z,

No. 2 Engine (Looking Forward)

An effort ,,as made to resolve the force i.e. to find the location, _

:]ir,)ction, and magnitude of a single force that would cause the engine 202

movements noted and vehicle movements as reported by NASA. Results are

as follows:

1. Analysis revealed that the movements were in.onsistenL. The

resulting equations could not be solved without simplifying

assumptions. The inconsistency is probably caused by the loss

of thrust in engine 202; this thrust loss would introduce a roll

moment of indeterminate magnitude on the vehicle because of in-

itial thrust misaligament and springback of the vehicle thrust

structure.

2. If the observed vehicle and engine moments are assumed to ha_e

resulted from a lateral force, this force would have a magnitude

of 800 to 8riO pounds, and would be located at the extreme aft

end of the thrust chamber. This force must act radially outboard

98 R-7_50-2
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t
m at an angle of 15 to 40 degrees from the + pitch axis toward

the - yaw axis. This would aid in corroboration of that portion

of the hypothesis wherein tile actuator /k ]) shift resulted from

a thrust chamber leak at the in_erior of the chamber near the

exit.

3. Calculations: Th_ calculations are presented below.

Force Resolution: NASA reports the unknown focce produced the following

moments about the vehicle centerline:

Pitch -025 degrees M = -10,900 ft-lb
mp

Yaw +0.103 degrees M = +a8,600 ft-lb
my

Roll -0.085 degrees M = -2080 ft-lbmr

Rocketdyne gimbai actuator analysis indicates the unknown force produced

the following moments about tile engine timbal centerline:

"Pitch M = -5_30 ft-lb
ep

Yaw M = +6_30 ft-lb
ey

Problem: Determine the magnitude and direction of the force

necessary to cause these moments.

... ,; / ,_,/ _, "e-_x'
I: ./" _ i i

'T!O ,¢, "'---. ./

_.r, --.._.. ..

Solu%ion is inconsis%en%

R-7_50-2 99

UNTITLED-109



,_1 - I,' ;, + I," _, 1)
rr p v y p

._1 = I: _, - F _, _2)
ey p a a p

M -r t • F , (-_)
Cl_ a 3: y a

.'1 - r ((,.19 -- '.p) -'-r v (0.19 - _ ) (")mr y " Y

_i = - i: (_2.3-.-_, _ F ((,.19 - _, ) 3)
m3 p a / ' a " "p

H -_ - I" (6 19 - ',,) -_ Fy (52.3-,-L ) ())mp it " _ a

As.qum(: H = 0
()1"

o _ -i,' _ , F t (7)
P Y Y P

(,'_3o _ -F ' - r _, (s)
p a a p

_Sp._o := +F _. + r _ (9)y a a y

-')o_o = F (6.194y) - ry (6.19- _p) (10)

,,8,60o = -F1) (52.3 + 4a ) + Fa (6.19 - 4p) (11) ....

-10 900 ,- +F (52.3 4a ) - Ira (6.19 - Ly) (12)' y

1,'rom Eq. 1 :

F t,

F =
p L Y

From Eq. 3 :

-5h30 - F t,a y (14)
_'a- F

Y

Substitutin_ in Eq. 2 :

a p
Ly
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LA

- a p a p
Y

L = 1.18%
P Y

Substituting in Eq. h :

1.18 L _[ (6.19 - % ) - F (6.19 - 1 18 L.)
-2080 ==Fy L v' ' y y " )

__ • 18_'/_v-2o8o : 6 19 (I.18) F - 1. 6.19 F , :

• y / Y // Y Y

-2080 = 1,115 F
5"

I_ = 1865 lbs

From Eq. 7 :

.(_, Fp = - 1865 L-._. Y

F = - 2200 lbs
P

Substi%uting in Eq. 5 :

_8,6o0 = - (-2200)(52.5 + La) + Fa (6.19 --Cp)

h8,600 = 115,000 + 2200 L + 6 19 F - F La " a a p

-66,&00 = 2200 _ + 6.19 F - F Z (16)a a a p

From Eq. 2 :

6_,30 = - F L - F 4
p a a p

-F _, : 6/_30 - 2200 L (17)
a p a

%£.
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Substituting Eq. II in I':q. 10:
/

-0(,,1_00 220ff'_ 0.19 F + 6_50 - ..

a b. 19

F :- - 11,750 pounds
a

irom Eq. 11:

0 :_ 6'_30 - 2200 L -11, 7_
a p

-- 2.92- 5.34 _ (18)
a p

From Eq. 6 •

-10,900 - 1865 (52.3 + 4a ) + 11,750 (6.19 - _y)

-10,900 : - 97,500 - 1865 _'a _-72,600 - 11,750 £Y

0 ::- 1_,000 - 1865 £ - 11,750 £
a y

o _ - 7.5 - _ - 6.3 4 (19)
a y

Substituting Eq. 9 and 12 in Eq. 13 :

0 : - 7,5 - (2.92- 5.5lt (1.18 &y)) -6.3 4y

0 : - 7.5 - 2.92 e 6.5 4 _ 6.5
Y Y

0 g -ll.58

Solution is in error; equations are not consistent.
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Q • Inclading the loss in thrust, .%kSA reports the following total moments

induced on the vehicle:

Pitch M = +26,100 ft-lb
mp

Yaw M -: +11,800 ft-lb
my

Iloll M = -2080 ft-lb
4y

Modify the equations to incorporate a -6000-pound thrust at gimbal center

and the above moments

o = -F + + F _ (20)PY YP

c_3o =-F _ -F Z (21)pa ap

_- -5_3o : +F Z +F _ (22)
._ ya a y

-2080 :: l,'p (6.19 - Ly) - Fy (6.19 - Lp) (23)

_1,80o = -l_'p(52"_.._) -6000 (,:.19), F,,(_.19- p_) (2,,)

26,100 = +6000 (6.19) + F (52.3 + Ca) - i;' (6.19 - £ _(25)y a y"

From Eq. 20:

r _=F _ (96)P Y
Y

From Eq. 22:

= a y (27)a F
Y

From Eq. 21:

| _ :=1.18+ (28)
P Y
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Substituting in Eq. 23 :

1.18 _; y (6.19 - Ly) - F (6.19 - 1.18 L )-2oso : r' _ y y yy

-2080 = 0.19 (1.18) 1" - t.]8 ir - 6.19 1_ + 1,18 F ZY Y 7 YY

-2080 = !.113 F
Y

F = 1865 lbs
Y

Frum Eq. 26:

F = -2200 pounds
P

Substituting in Eq. 2h:

0 = -_8,800 + 2200 (52.5 + Za ) + Fa (6.19 -.C )p ,.,,

0 :- -&8,800 + 115,000 + 2200 *. + 6.19 I" - F g-a a ap

0 :: 66,200 + 2200 Z + 6.19 I,' - F _ (29)a a ap

Prom Eq. 21:

-F 4 6n3o - 2200 z (3o)
ap a

Substituting Eq. 30 in Eq. 29:

0 = 66,200 4. 2200 g .4- 6.19 F + 6h30 - 2200a a a

-72,6_o
Fa - 6.19

F = -11,750
a
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i From Eq. 30 :

From Eq. 25:

26,100 - 57,000 - 1865 (52,5 * _ ) _ 11,750 (6.1q -C )a 3'

0 = -l_i.O + 19.85 -- 5_:.5 - /- + 59 - 6.5 L
a y

o = -7.45-4 - 6.3 4 (32)a y

Substituting Eq. 28 and 31 in Eq. 32 :

0 = -7.ti5 - 2.92

Solution in error[ equations are not consistent..

Assumed Lateral Force:

1. NASA Data

Ignoring roll moment, the vehicle moments caused by ?,he unlmo_nl

force can be resolved as follows:

/

&9,900 = F L _/o,_o /.
Missile center of gravity to aft of engine fist* 7wr-) _----7:--_-.._ /-)'Tc t_

4 = 52.3 + 119.5612 [ _._ 7/ "_/J

L = 62,3 feet ______ f_ _oxa

F = b2.t29.9_ ¢g$>xf/:ll_ \ f
62.3

I F = 800 pounds at aft end of thrust chamber
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2. ]h)cl<e {dyne Data

8#t00 I:'-'

_,,,o -r'-"_b'.""iv/o:_

"" ,'Q,) pounds at art end of i;"_/.......... "___¢#3oN/="
thrust chambov 7

.No. '_' Actuator ?uomalies : '_,,

If tile observed vehicle moments and engino momenes are caused by a single

side force, ,.leLernline the magnigude and location of ghis force.

Solution: 800 to 870 potmds in exhaust plane of the engine.

900 8_oo
(!) I" ()_.5_x O t: 9.o-x

Z

-- I' Io' ---_ ' i................. -- ..........

F.- i

...o, .....I'! i :. "
II ! i ,

'<1 5 I I '. 1# .--"-
.... 1.-!.............................................x&r_........

i, \ 6 ..................:-................

e, .,.........................:.....................__

<-. ', _,4,,->-/.......!---_-_.........................
'" -t-i-/.-------4

' •i ......... 7-
_k i ¢ _ ? !

I_¢T_,gA_ #"ae¢(_" - lao Z d'._
lo6 R_Tta50_2
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lku'ther corrobovo, tiun resulted fro,".' flight support testing ccmduct,)d at

tile _,ISI.(" high-pcessure thrust ,,hamber component stalltt Dltl'ill K tile second

of two tests conducted with high .'_$1 mixture ratios, and resuJtant e!'osi,_n

,_f the .',SI and main injector, t_,_ adjacent thrust chamber up tubes sus-

tained gate-type splits. The tube damage was located appt'oxb,mtely 5

J.nches from the nozzle exit, at th(, intetior {hot aas) std,.' of :he n,_zzie,

and was apparently ct_.ttsed ILv ejaete(t i:,,]ec,a,' dc, h,'i-_, i.l.tpl Fl,_w I';',,n tho

tube splits, estimated at 7 to 8 lb sec. produced a HtS.OOO in.-lb moment

load at the gimbal bearing. _\na!ysis of the ._Isi.C chrttst chamber compon-

ent test ing included calculations of leakage resulting from the thrust

chamber damage and calculations of resultal,t side loads. These calcula-

tions are presented below and on the ±'ollowing pages.

Leakage Calculations (MSFC), Flight _o2 Simulation:

A
LEAK FRO,-IHOLE IN TUBE 5.7 INCHES FROM EXIT END (UP TUBE)

_INJECTOR END MANIFOLD _3A_._

f.._ (LARGE) _ kWExW,N,,

WEX 3.7 LB/SEC

c,sEcV---
WINj - WEX --,---NO.3

WINJ__ --7 WEX i.J__2 .___,__J

O. 19 LBISEC'_ 7__.__7__

SECTION A-A

WEX 3.7 LB/SEC
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5i(le l.,,ad Test 5u:':'::ar:, (:.[5i:C), l"].ight 502 Simulatio11:

SII_ULA-FtOKI T_.CT gl"l- if"

_I,_"L)A;OFEXiT_/..La
ffPL i"I', TOBF-S _ '_ UJS Of: EXIT I"1._

• /

/ ' FUEL PL)FIP('IeEFEREHCE)

NIDE THeU_ Taft , _.."
5 IDE T!4f.U'£ T ._ 3'

(2lSO N-SHIi- 7") jj../_- ........... (N_'6LIGIBI. _ SHIFT)

%

/ _ A ' ( 0< 27

/

_, / 3
," 4.5 o //

i ... )_ o

r-
f

\
- /

/

"\ /
\ ."

- /"x. .

_.

\

/7777777-/

vtEw LOOK_NS A,FT
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bide Load Test S_m_nary (MSI,'C), Flight 502 Simulatiol_:

_"_L,_ = 67.,_B('A,X. IAL DIST. F-I_ON (_imL_AL _.)

TO L _'m,K

)<3_ = _lG--..5-,,_ = ;IO, L '_ (AXIRL. DI{F. O1::;&t:,.-A,l.(F-am,..

._ -- 116- S'=- Ill Ij

t.f_K

TN_g.EFo_:

_('EFFee.TIVF _'ID6: LO/'_D lr_ P/../,,Na ot: L_,_K-.)
_- N_ t4_.%O_ O_ o_

X._K lI0,6 131O '_

i..._p = F$ = I_IO' : 16_" S EFFECTIVE _SlD_ =

A,N IN'rEENAL

_xl'r
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L,,tal{aF:,, Calculations (MSI"C), i"tight 502 SimulaLion:

PA_T _ (LEAK,_E F_O_ _TU_N MAIUIFOLO- Wf_)

.--_----'t_3 --'.IS] ;N z"

po .?
/ jN'-

A_I--A3

.._ _._ IDol=, II1_" PSIA

_ I_E_I"U R_N MANIFOLD

AS_'OM P'r_ON _:
i,HOLE .,SI_E i)OES NOT P-,.EgT2.1CT FLOW

2,'7"EMPEI_ATUP.E = 60 R

3. 5TA(_NATION PP.E_;SUP.E 11%1P,.E'TUIP,.N M

WIAHIFOL.D (Pol) = I100 PSIA
t.}..W/AXIIV_UM FLOW Lih41TE.D BY (,.AVITA.TIoIY

AT Az. (Pz,: 150 P.S_,).,,; LE..g3 FLOW IF TH6-
p-.E SIS TANCE.S A_Z_ S'UFFIF-bENTL_" .I.-It_kl.

3.ST'AGNATION PKe_;_U_ LOSSES =
A, I VELOCITY" H&"A_ AT Aj

VELOCITY" HEAD ENTEANCE LO_;& A-T _,__._
C, _UD£)ENEXPAN<_ION _iz To_ (FO_ NON

(AVITA T'I/_G FLOW).

D, FIP.ICTIOPI _)ROP BETWk.;_CN SEE TION 3

,_ND V(FOf_ NON CAVI'IATiN_ FLOW).

B_' TRIAL. ANI5 EIP_OR W_,._ - 3,70 _/_EC FOP-. CAVITAT_N 4
FLOW. ¢HE(..W A_; F'OLL(_W_"

@ = bE'N_ITY _T EE'__.TION I = _,0_ t_/F T _ (FOe
P£ESSUP_E _, 1%00 PEIA ,AND Tt_NPEP.ATUR._=6,,Ot¢.._

VI -.= VELOCITY A.T sECTION I
_ 3,'t o_(i_4Y &SE FT/_EG
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Leakage Calculations (HS["C), I''_ight 502 SimulaLiott:(Continued)

= OF_.N$1TYAT EE(,.'TIDN 2,. = 3,9'¢.*/FTSi

_/_ -% VELO(. I TY A Se(.,TIOI,I 2

_ 9,7o_()vv_ "--loq;_ T/SEC
_,_a ,tELl

_Pot.oL= STA_NATIOR PI_-Ee_-qURE DROP FROM
SEE TtON

= 9¥,2 Pax#

= _58 /-¢IA

__ I.L %.

_'/N_E VAPOP,. PgK$/UI_.,_" =.t,,E'O p.flR_t_) (..HOWI_Fa
(.ONf,)ITIO_{ l£ M_T. AOD_TIONAL CHE(:K iS E_eL/I_IiO

TO DET_Ia._IJI_E IF FLO# lS f_,,_T£I('.TED BY
TUBE _I_2;iSTAN_._ AS FOLL_;W$ :

FOe SUDDEN i_XP_N$I(gN F_.O_ _E(..TIOI_ Z "TO SE{TION.9;

A_ "2"_¢_ = 79' 2/¢'= OF
A 3 _5"7

m

FO_ F_tCTION DP.OP FIz.0M SEETt01_ 3 TO -_E_-'T'!0,N Y:
L = LENGTH FP,..OD_ _ECT, 3 TO SECT _f "= E.&"

, f' = FP-,.ICTION PA(-TOI_ _--,Ot%_

D.= HYOP-.AUL_C"TOS_' D_AWi.=, ._a"

3._ _,_._'l
I_-7_ 5O-"q° III

I IMTITI pl-_ 4')4



l.(,aka_r,e Calculations (HSI"C), l:light 50'2 Simulation:

(ConLinued)

lu,H

5 3,V PstD

.'. F'_ - %_.- a%,-,_, - a Po_,.,,,,,-_g YsV__
=_5-g-Oo,v --E_.v-3"7-_

_NCE P_ iS LESS T_4AN VRPOR P_,ESSUP_OF msoos_J
FLOW 15 LIMITE_ _Y' (..140L<IN& IN _'C_l"lQt_ ;k

ANO

= a.,o F-o,MAN_FOL.OJr_TOem'_ _6 _,

..%INCE L FOI_. Tgfb_r-'_"$6 t l& LOS.S' TI4AI_ FOR

%

J

PA 12"T.j_L (L EAW,A_E" Fi_.0h_ INI_(:.'1"eP-.ENI3-Wm_, ) .'

_y T/_IIqL AtNL) E£_0(_ W_Na- = , 19 _/SEC.)(. H_Cl_'

A S FOL, LOVI/_ ,

K,,_0VF_ALL P.ESISTANCE TO L_'AKA&ff'- P0_NT
= _t,I tNC/SE _ {'AS DETEeI'41NE{_ Fk-_-_M

&om.PLtT6._ PRON0-_M WHl:'l_.e" ;

, aPj;

.S_C

co_ PV"r'o_._¢OGtA_.) -
_r= 4;) t_o

_-p W_" 3.'/x,19
= ?.too �I_'t= _-t9

= _ P_IA
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ii' Leakage Calculations (:'IS[,'C), Flight 502 Simulation:
(Colic luded )

j = AVG. DeNSIT'_' -,OOOI60/e t'k/IN 3

•r_ er_"FO R.£:

"i ',99 :I_/SlFF-, I LE "i('A_GE FROM ONe TUtD{r"

i

_,70+.18
I

|
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A review ,)f Ih_D testing accomplished at SSFL yielded further corrobaratiw,

evidence that l_hrust chamber tube split:; internal to the chamber near _he

exit would produce the type of lateral loading exhibited by engine 202.

1. INI) engine d021t-3 incurred thrust chamber damage (luring an injector

eombusti.n stability Lest ({)25-(105) when a bomb fragment was ejected

from the combustion zone and struck the int, erior of the thrust

chamber wall near the exit. 'l_,,,o tube splits resulted (one 1/h by

l-.1/h inch, located approximately 15 inches from the exit, and

one 3'8 by 1 '2 inch, located approximately li i.nches from the exit).

2. The following calculations of loads resulting from test ()2'3-005

thrust, chamber damage indicates ttmt the lateral force caused by

the fuel "?ok is located approximately 26 inches forward of the

,Amtnber exit, approximately ll inches forward of the most forward

(lamag_._ p,,)int; it is believed that the center of pressure of the

boy" shock set up by the fuel leak is forward of the actual leak ¢

location (Fig. 6i and 62). "_"
15,"

Engine 202 Yaw and Pitch Actuator A p Indications:

tt.I5-550 Seconds Rang 2 Time

Description of Even¢. M:, h13 to 590 seconds range time, i,e,, during the

period follo_qing engine 202 cut,ff_ the pitch actuator _P measurement

indicated -:J00 psid, signifying loading in tension. The yaw actuator

I-' measurement, apparently slow in responding_ indicated -500 psid at

approximately 530 seconds range time (Fig. 53 and 56'). There were no

engine or supporting system anomalies during this time period that would

eoz,trihutc to tl_e event in question; operation of engine 202 had been

terminated, and the EAS hydraulic reservoir associated with engine 202

had gone "flat", i.e._ had lost fluid.

1l_L lt__7tiS0.-2
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_' Figure 61. Engine ff02h-3 Tes% No. 62_005 Load Analysis
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|

GAI/3UIATE (F s) EFFECTIVE (S-SECONDARY LNJECTION)

(Fs) EFFECTIVE FOR TUBE 30!)= (Isp) EFF x hS0')

= 1{58 x 8:5 = (i12 P0t_DS

(lsp) EFF 0FOBTAINEDHsFCTEsTFROML1NE.,_ ENTtbkP01ATION

(Fs) EFFECTIVE, FOR TUBE 515

lh2,000 - 612 x 112 l&2,000 - 6rL,_O0__9_O_
- 101 101 10i

= 76() POLNDS

(Fs) EFFECT. = 012 + 7()b =: 1578 POUNDS

7t56
.-(Isp)FA, T TUBE 515 : 2:_'>3 - 292 SEC

= 2h5 SEC
(Isp)ACTUAL = (i.h8

K' (ACTUAL) = _ = 0.572h25

Figure 61 (Concluded)
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i
_)othesis Engine 202 was externally loaded in such a manner as to re-

sult in ten_ on loading of both tile pitch and yaw actuators; tile loadi_g

_,as being applied by tile pressurized fuel inlet duct.

Corroboration of Hypothesis° Corroboration that tension loading of ti:e

engine 202 pitch and yaw actuators was caused by the pressurized fuel

inlet duct was accomplished by balancing of pressure forces existing at

range _ime 550 seconds.

It was determined that the engine 202 fuel inlet duct _as pressurized to

_pproximateiy 80 psia at 5:50 seconds. Although tile fuel pump inlet pres-

sure measurement was lost at cutoff of engine 202 (_12.9 seconds), fuel

pump discharge and fuel pureI, interstage pressure measurements both indi-

cated approxim-tely 80 psia. The 80-psia pressure level results from

summation of the 35-psia fuel pump inlet pressure observed prior to engine

culoff and the t_0 +5 psid operating pressure of the stage fuel manifold

venl valve. Oxidizer pump inlet pressure at 550 seconds was zero, indi-

cating a loss of oxidizer feed system integrity.

The c_lculat'ons on the £oliuwing pages corroborate the hypothesis that

pitch anti yaw actuator _cnsion load,; observed ai. 551) seconds were caused

by the pressurized fuel inlet duct; the calculations also iz)clude the

case where the oxidizer inlet duc _, rather 6han the fue_ .inlet duct, is

pressurized, and show _hat in such a case the actuator loads would be

in compression instea( / of tension :_ud would be of grea*,er magnitudes _han

observed from S-If fligh_ data.

R-7_50-2 119
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d-2()tdt ACTUATOI( LOAD SHIFT FROM START TO POST-CUTOI;'F (550 SECONDS)

Actuator (-is Tension Load)

Pi£ch, poumls Yaw, pounds

bieasured l,oa,l Shift:

at 550 second.'_ -7150 -6900
at start -1300 -1300
Difference -5850 -560-(_

Calculated Load Shift:

w 80 psi HI HI2 duct
0 psi in LOX duct

Inlet Duct Loads

Pressure -7200 -7200

Ghnbal i ng +1800 -,-1800
Inertial Loads _ 700 + 220
To ta 1 -5320 -5800

Error (Heasured-Calculated) - 530 _ 200

Calculated Load Shift (Reverse A p Pressure After Cutoff)
w/80 psi iu l.OX JucL

O psi in l/if2 duct
Inlet Duct Loads

Pressure +5100 +5100

Gimbal ing _.1180 + 1180
Inertial Loads -_- 700 + 220
To ta i .,-6980 +6500

Error (Heasured-Calculated) -12830 -12100

ENGINE P-MtAb_-_2EILSUSED IN ANALYSIS

After Cutoff at

Parameter Start .650Seconds

Oxidizer Inlet Pressure, psia &2 0
Fuel Inlet Pressure, psia 28.5 80

G-Load 0 1.0

Gimbal Angle
Pitch 0 b.O (ext.)
Yaw 0 ("

hchmtor p_ P

Pitch_ psi - 100 - 550
Pitch, pounds -1500 -7150

ioo - 550Yaw_ psi .-
Yaw, pounds - 1300 -6900

Inlet Duct Spring RaLe_: L0X = tt35 lb/in.

IB 2 = h80 lb/in,

Engine CG and Weight (Dry): Weight = 3376 pounds "*
Y = 31.3_ inches

XG -- 0.760 inch

ZG = -0.135 inch120 R-7_50-2
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J; ACTUAT01i I_),_ DIH.'Et_CE BEI3qL.q_ L_(;INE START (ltt8 SI_JONDS)

AND M,'r_( SIilq_DOWN (mS00 SECONDS)

Start At Cutoff

I,OX Inlet Presmlre_ psia I_2 0

1112 Inlet Pressure_ l)sia 28.5 80-82
G-Load 0 1.0

Gimbal Angle_ degrees
Pitch 0 0 _.0 (ext..)
Yaw 0.0 _0

Gimbal Actuator A p

Pitchj psi - lO0 - 550

(-) tension, pounds -1300 -7130
Yaw, psi - 1OO - 530

F = A PA = -13 A P_ pounds -13OO -6900

_lgine Weight and CG:

X Z XG ZGY e e

Dry 3376 pounds 31.3_ 0.639 O._36 0.760 -O.135

Wet 3310 pounds 30.73 0.730 o. 117 o.61o -o.1t30

After cutoff, tire engine is closer to the dry weight

CALCULATION OF ACTUATOIt LOAD DII'R_I'aLENTIAL

FROM -START TO 550 SECONDS

Inlet Line Loads:

The actuator loads from inlet line loads are approxinmtely equal for

gimbaling or from pressurization. The loads can he appruximated from

the following equation:

x ¢21 - i,F) 4_ (_L " K_,)F -- 111.875\ - 11.87_ (PI,

i,

1__7tt50_2 I_1
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where

A --- Duct Area = ()2 in.

A = Duel D,_,fl,,eLion= 21 sin r_x = 0.366 _x

_x = t'rojecLi,m, ,,t' CanC Angle ,,n _x Axis

KIj ami I_F = Ducg Spring lhltes

KI_ - P135It, 'i,_, _I,,'_ V.l,,,.(,,,axi,.,,,,0

KF = It80 lb/in. Spec Value (maximum)

PL = Oxidize,' Inlet Pressure

PF = Fuel .[nleL Pressure

-F h _ Compression

For a li-.degree pitch (extension):

1t
: -2.80 degrees

c/x = _-

Combining terms, F becomes:

F = +77.5(PL-Pt,).. - _20 a[I x

At Start :

F -- +77.5 - 28.5)+ (o)
t, = +1050 pounds (compression)

AL +550 seconds:

F -- +77(0-80) - _20(-2.8)a

F -- -6150 + 118o poundstl

-F Start .-- -1050 + 0
a

F 55O : 6150 + 1180
a

A F = 7200 + 1180 =-6020 pounds (tension)
a

= F - F aFa a 550 Start

rChange in actuator loads from inlet lines

122 lb-7_50-2
('
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D CG Shift Effects :

At start, G load _ O

At 550 seconds, G load = lG

co POSITION (DRYWEIGI1T)

Y XG ZG

O Gimbal Angle 31.3_ 0.76h -0.135

Shift from /i-degree Pitch 0 0 -2.18

(31.31t siti _ degrees)

Total 31.3_ 0.76t_ -2.30
Pitch

Pitch F = 3376 _ F• a

a 11.873

= +655 pounds (compression) L
\ 3376 (m)

(4-0.76)
Yaw i,' = 3376 11.875 \ '

" -- - .15pounds(tension) ] \
- _- ,---,-- [ 2.30

TOTAL SItlFT FROM START TO 550 SECONDS

Pitch Yaw

-6020 -6020 Inlet

655 215 6 Load

pounds -5805 pounds (tension)

TOTAL MFASUIIED StlIFT

Pi tch Yaw

-(-1300) -(-1300)
-7150 -69O0
-585-'--"_pounds -5--6"_ pounds (tension)

Difference : - h95 pounds + 205 pounds

I_-7_50-2 123
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ENGINE 202 I'EItFOth_4ANCE DECAY AND CUTOFF

Descripbio, uf Events

Engine Performance Anomalies. Engine oxidizer flow began to increase at

It12.3 seconds I'a,,ge t, im_- and continued to rise until lt12.921 seconds_ at

_41ich time engine cutoff was signaled by dropout of the mainstage OK pres-

st{re switches (Fig. 63).

Engine f(lel flow increased_ starting at h12.3 seconds (Fig. 65).

Main oxidizer injectien pressure decayed very rapidly prior to main oxi-

dizer valve closing; oxidizer pump discharge pressure decayed more slowly 9

and more closely approximated a normal shutdown (Fig. 6Ji).

Thrust chamber pressure decreased 10 to 15 psi as oxidizer flow began to

increase aL /_12.3 seconds.
_x

Engi,e Compartment Anomalies. Engine compartment _as curtain and heat

shield forward temperatures increased starting at; lt12.3 seconds (Fig. 65

and 00).

Engine compartment pressures increased starting at ti12.5 seconds (Fig. 67).

H_xpothesis

Engine 202 performance decay (beginning a_ t_12.3 seconds range time) and

subsequent cutoff resulted from failure of the oxidizer dome_ precipitai_ed

by ),he following sequence of events:

1. Failure of _he ASI fuel line at 220 seconds range time resulted

in fuel leakage into the engine compartment and higher than normal

ASI mixture ratios; the high ASI mixture ratio initiated erosion

of the main injeetor//_,SI nozzle, which eont_inued until 519 seconds.

121_ i/-7tt50-2
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i,_l 2. At 319 seconds range time, erosion of the main injector_ASI nozzle

reached the peak of severity because of progressive worsening of

the ASI fuel line leakage; erosion at this time had progressed

into the inner row of oxidizer elements and some of the oxidizer

passages (doghouses) supplying these elements. Tile higher flow-

rate of oxidizer at this l,oin*, rosulted in a marked redaction in

the erosion rate. The injector had been so structurally weakened

by internal erosion that, at 319 seconds, a segment of the injector

came free and struck the chamber wall near the exit_ rupturing

tubes; f!__is resulted in a fuel leak oi' approximately 9 lb;'sec to

the interior of the thrust chamber, resulting in the observed

performance shift and actuator loading.

3. Erosion of the injector at the upper portion of the hSI nozzle

continued at a reduced rate until the ASI seal and sealing surface

integrity was destroyed at li12.3 seconds; oxidizer and combustion

products escaped into the engine compartment, causing further rapid

: erosion and perf_,rmance decay°i
_t. Oxidizer injection pressure decayed until engioc cutoff was sig-

naled by dropout of the mainstage OK pressure switches.

Corroboration of lt_pothesis

Inorease in oxidizer flow at h12.3 seconds precedes changes in all othez

engine parameters, indicating loss ef oxidizer system integrity downstream

of the oxidizer flowmeter.

Increase in fuel flow resulted from decrease in main chamber pressure.

Decreases in main fuel injection temperature, fuel t,,rbine inlet temper-

ature, resulted from a decrease in main chamoer and gas generator mixture

raties during the performance decay. The shift of mixture ratios resulted

from reduction of oxidizer flow to the thrust chamber and gas generator

because of failure of the oxidizer system downstream of the flowmeter.

|
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The oxidizer system failure occurred downstream of the main oxidizer

valve; oxidizer feed system integrity upstream of the main oxidizer valve

following cutoff is supported by data indicating that the system held

apprnximately 20-psia pressure until the oxidizer bleed valve opened.

Rapid decay of main oxidizer injection l_ressure, as compared wi_h oxidizer

I)ump discharge pressure and increasing oxidizer £1o% is indicative of

oxidizer system failure downstream of the main oxidizer valve.

Model studies based on the assumption t, hat oxidizer system failure occurred

downstream of the main oxidizer valve closely app.roaeb the actual cutoff

conditions (Fig. 65 through 76).

126 R-7_50-2
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":_ CUTOFF ._,\'0MALIES

)moma].ies discussed in -this section occurred immediately preceding, during,

or following the Engine 2uz cutoff transient.

Engine 202 Bleed Va!_:es Open Prematurely After C-toll

Description of Event. Following cutoff of Engine 202, the oxidizer bleed

valve left the closed position at cutoff plus 2.691 seconds and the fue;

bleed valve left the closed position at cutoff plus 2.335 seconds.

Conclusion. There is no anomaly associated with the Engine 202 bleed

valve operation, as compared with operation of bleed valves for the four

remaining S-If engine positions.

Corroboration of Conclusion. Comparison of Engine 202 bleed valve times

wilh operating times for the four remaining S-i[ engine positions is shown

in Table 7.

Engine 202 Gas Generator Valve Reopens Followin_ Cutoff

Description of E_ento A �h1_n...... _.v seconds railgetime, approximately 2 seconds

following cutoff, the Engine 202 gas generator valve started open; by

hl6.0 seconds the gas generator valve had reached 13 percent open, and

by 418.0 seconds the valve returned to 2 percent open and remained at

that position.

tlypothesis. Due to very slow opening of the oxidizer turbine bypass valve,

the oxidizer turbine bypass valve closing pressure gas was more slowly

vented into the main oxidizer valve sequence outlet port. When the fast

shutdown valve closed, the ven_ing gas opened the gas generator valve°

Corroboration of Hypothesis. Oxidizer and fuel system pressures at the

_ gas generator inlets were approximately 100 psia at _15.0 sec,mds; with
t

this pressure at the inlets, approximately 75 psia pneumatic pressure is

R-TPt 50-2 l J, l
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TABLE 7

AS-502 S-II _GIN-E BLEED VAkVE TIMUrxSAT CUTOFF

Bleed Valve Times Engine Cutoff to Open, seconds

Engine Position Oxidizer Fuel

2_1 2.383 2.700

202 2. 691 2.355

205 7. 668 5.226

2o_ 3. 167 3.13_

205 3. ',67 2.727

1_2 R-7hS0-2
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required to open the gas generator valve to the point of contact between

the valve actuator and the gas generator oxidizer poppet. Data nn oxiJizer

,_ turbine bypass valve closing cavity venting rates indicate that oxidizer
turbine bypass valve pneumatic closing (ca'_ity) pressure was 150 to 170

psia at _15.0 seconds_ Therefore, if the fast ._hutdown valve had closed

prior to 1_15.0 seconds and prevented further venting of gas generator valve

opening pneumatic pressure, the system pressure would equalize and result

in opening of the gas generator valve.

Oxidizer Turbine Bypass Valve Opens S!owlD, Following Cutoff

Description of Event. The oxidizer turbine bypass valve on Ensine 202

started open at cutoff plus 6.885 seconds, and reached a maximum open

position of approximately 95 percent at cutoff plus lO.&60 seconds.

Hypothesis. The oxidizer turbine bypass valve opening control pneumatic

line failed in such a manner as to prevent opening pressure from reaching

the valve. The failure resulted in slow opening of the oxidizer turbine

bypass valve by valve spring force only, thus venting closing pressure

much more slowly than normal. The slow venting of the oxidizer turbine&

_ bypass va]ve closing side is associated _ith %he anomalous partial opening

of the gas generator valve after cutoff.

Corroboration of Hypothesis.

Pneumatic simulator tests were conducted with test setups simulating both

a leaking oxidizer turbine b)Tass valve opening control line and a complete

opening control line failure. The leaking opening control line was simu-

lated by installation of a 5/8-inch solenoid at the oxidizer turbine bypass

valve opening port; this solenoid was energized prior to cutoff. Complete

failure of the oxidizer turbine bypass valve opening control line was sim-

ulated by disconnection of the line at the oxidizer turbine bypass valve.

The following oxidizer turbine bypass valve opening delay times were obtained:

I. Simulated line leakage, 715 milliseconds

2. Simulated line failure, _810 milliseconds

_ Oxidizer %urbine bypass valve opening travel times were not recorded during
the tests.

R-7_50-2 1_,5
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Engine 202 Start System Vents Followin_ Cutoff

Description of Event. The Engine 202 start system (start tank) exhibited

severe leakage/venting characteristics at h15.8 seconds range time. Figure

77 i]]usiratcs Engine 202 start tank pressure and temperature profiles from

engine cutoff unfit termination of S-II telemetry transmission (approximately

590 seconds range time). The initial leakage/venting flowrate was approxi-

mately 0.2 lb/sec of gaseous hydrogen, decreasing to an approximately constant

value of 0.017 lb/sec after 20 seconds.

Hypothesis. Leakage/venting of the Engine 202 start system resulted from

rupture of the start tank liquid refill line downstream of the liquid refill

check valve. Rupture of the liquid refill line occurred as a result of the

engine compartment hot-gas fire, which occurred during cutoff of Engine 202.

The decreasing leakage rate characteristic noted from flight data resulted

from incomplete burnfhrough or rupture of the liquid refill line (complete

burnthrough was prevented by the immediate cooling action of %he escaping

gaseous hydrogen,), followed by contraction of the liquid refill line as

fuvSher cooling of the line by the exFanding gas occurred. Figure 78 illus-

trates the location of the liquid refill line in relation to other engine

components and depicts initial and final.line rupture conditions.

Corroboration of Hypothesis. Analysis of flight data revealed that %he

start tank discharge valve had remained closed, and that the leakage/venting

could not be attributed to this component. Review of start system com-

ponent failure histories failed to reveal failure modes which would coin-

cide with the observed failure.

Analysis indicates that start system leakage, based on the hypothesis

stated above_ was polytropic in nature_ i.e., was initially close %o an

isentropic process, and later approached %he isothermal case, a_ may be

concluded from Fig. 77. Figure 79 is a plot of the calculated isentropic

and isothermal processes for flow diameters versus time from engine cutoff.

The following calculations corroborate the polytropic process and flow

area change mechanism:

1J_& R-7_'50-2
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Figure 78. AS-502 S_art Tank Blowdown Anomaly, Engine 202

;L

]
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Figure 79. AS-502 Start Tank Blowdown Anomaly, No. 2 Engine

B-7_50-2 1_7
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An isothermal start tank pressure decay can be approximated by the

following expression:

P = P e_t/#J (33)
o

where the time constant fi = PoV/Fn (3l')

for choked flow

CAP s (35)O D

 ,/Ko
and

P
o (%)

Po = R-Y-
o

Substituting Eq. 35 and 36 into Eq. 3_i yields

V K1 (37) _

o o o

Substituting Eq. 37 into 33 gives

_CXo@ ot/v t/Kl (381
e = P e

P = Do o

For an isentropic expansion of the start tank

P dV (39)
dQ = C dT +-- --= 0v J W

and from differentiating the equation of state

(_o)
PdV + VdP = dT

WR

: 1_8 R-7/i50-2
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j Substituting Eq. _i0 into Eq. 39

[PdV + VdP . P dV
CV WI_ J b' - 0

or

19

cv (PdV+ VdP) + R_dV= 0

Substituting R = Cp - CV in the above equation,

cv (.z,lv + V,lV)+ (cv - ¢v) v¢tv= o

Dividing by CV ¥_

dP Cp dV
_+ - 0
P CV V

OF

d P dV
_--+ k'_'- = 0

Rearranging the above equation

and

RT
O

av = -dW-'F--

Substituting

RT

o (_l)P = ¢¢-_- k

R-7_50-2 i_9
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For isentropic flow

CAPS
_'¢= --

O

Substituting into Eq. Ill

CAPS k RT CAS k_T- °
]_ = o = p

,/_v v
o

Integration by the LaPlace method yields

%/'I_T° CAS k
- V t

P = P e (_2)
o

- T_° ,/_:
P = P e (li2a)

o

V _.2 x i_

K1--_cAs ¢_ x,/_ OSd2

K1 27"8= 2
CSd

o

K2 =_
CkSd

o

Checking the No. 2 engine start tank pressure and temperature decays at

cutoff %o cutoff plus 10 seconds for approximation of isentropic flow,

the following equation suffices.

T = To (70) k-l/k (&3)

150 R-7&50-2
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for

P = 1430 psia, P = 950, T = ii0 R; T = 96, k = 2.5,o o

T = 110 (950/1430) I"5/2"5 = 86 R

£6Rcalculated vs 96 1l flight data and is, therefore, a polytropic process

as expected but appro_,:imating an isentropic oue.

Similarly checking the flow process after the abrupt pressure decay

change at cutoff plus 40 seconds to cutoff plus 80 seconds

P = 680 psia, P = 575, T = 84 R; T = 80, k = 3.5
O o

I

T = 84 (575/680) 2.5/3.5 = 8_ x 0.887 = 75

75 R calculated vs 80 R flight data also indicates a polytropic process,

but now more like an isothermal one. (Refer to Fig. 77.)

Since the start tank blowdown initially approaches an isentropic process

and later an irother_ml one, the required flow diameters will be calculated

for both situations and compared. Equa6ions 38 and h2 will be solved for
2

Cd ° using the start tank pressure and temperature transients over small
time intervals.

First, the isentropic case:

V/'R@° CAoSk
- t

V
P = P e ('_2"_

o

--_o/K2 " t
e = P e ( 2a)o

vK2-t¢ -cAs k
o

R-7_50-2 151
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1]2 (I,5)

Substituating into Eq. l_tlfor K2

V= t_.2 ft 3

R = 767 ft-lb/lb-R

2
CA = T_ Cdo

_,.2 x :1_1_ 27.8 (zig)

"I(,,_ _-_-x Cd 2 . rr/& x Sk Cd 2Sko o

c

For particular values during start tank blowdown,

.#

T = 110 R, T = 96 R, P = lh30,
%e/o = >te/o+10 see o o

P = 950 psia, k =- 2..5

Solving Eq.li5 times k

1/2 1/2

k 2 = 2oi, • 52.2 ('3"-'5"/

= k x _-1.6

kS = 11.6

Substituting into Eq.t_6 for K2

K2 = 27.8 11.6 - 2._
Cd 2 Cd 2o o

152 R-Ttt50-2
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i_, Substituting this value into Eq.a2 and solving for Cd 20

_n - t -
P k. 2. L,

0

2 2.zi P
_n 7

Cd° T_ t oo

2._ x O.h08

_ \195o1_3o) lO5 : 0.0093
Cd 2 2.4 _n _ =

o v4_ (lo)

2
Cd = 0.0093

0

For flow conditions after the knee

T = 8_ R, T : 80, k : 3.5,
te/o+_O see = >tc/o+80 see o

Po = 680 psia, P = 575

S = 3.5 x 32.2 = 3 == 5.i_

kS = 3.3 x 5.1_ = 18

kS = 18

into Eqo h6

I 2 7 t 8 1._03_
K2 = =2 2

Cd 18 Cd
0 0

Substituting Eq. h2

2 = 1.._. _n P
% ,A'-t F-o

R-7't50-2 15_
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Cd 2 1.Yt Zn {513__ = 0.258/367 = 0.00069

o (,,o)  68oI
Cd 2 = 0.00069

0

For third calculation,

=>_
te,/o =- J O0 sec c/o _ i50 sec

P = 530, P = _50, T = 79 R, T -_ 76 R, k = 3.8
O 0

h. 81
S = 3.8 x 32.2 _-_o = v_'2 = 5.21

k

kS = 3.8 x 5.2i

ks = i9.8

Cdo2 2K2 = 27.8/ 19.8 = 1.8/Cd °

Cd 2 1.8 .Sn P 1.8 6n [h__ = 6.6 x 10-h
o -v/_ t eo - v/_.79 (50) \530/

2
Cd = O. 00066

0

t T = 96 a, T = 89 It, P = 950 psia,
c/o + 10 see = > c/o + 20 see' o o

P = 750, k = 2.8

1/9

kS = 13.4

K2 = 27.8/Cdo 2 13._ = 2.08/Cdo2

ca 2 2.o8 _,n(75o_= o.oo5
o (lo)  95o/

2
Cd = O. 005

0

15h R-7lt50-2
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,_ For high Re values, which is the case for gaseous hydrogen flow in small-

diameter tubing, do/dline ratio determines the value of "C,"

For

(do/dline) _ 0.60, C = 0.5;

(do/dline) ="0.7, C = 0.7

Therefore, the effective flow diameters are as follows:

2
d Cd

tc/o- + o C o

0 to i0 0.115 0.7 0.0093

i0 to 20 0.091 0.6 0.005

40 to 80 0.054 0.6 0.00069

I00 to 150 0.033 0.6 0.0006

i Equation 38 represents the isothermal case

CA S _RT
o o

P=Pe- t
o V

which differs from tileisentropic expansion by a factor of k in the expun-

enb only.

Solving for the equivalent flow diameters under constant temperature

intervals

= I00 R
tc/o --> c/o + 10 sec

K1 = 27.8/Cdo2 S = 27.8/Cdo2 4.65

U1 --5.98/Cdo2 S

2 _ Ln (0.665) = 0.0224
Cdo = 105

Cd 2 = 0.0224

/_ o

R-7_50-2 155
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tc/ io / _ -- 92 R/o + sec = > c o + 20 sec

K1 = 27.8/Cd 2 _.8 = 5.8/Cd 2O O

Cd 2 5.8
o - 98 Zn (0.79) = 0.014

2
Cd = O.01_

o

tc/e + _0 see = > e/o + 80 see

K1 = 27.8/Cdo 2 5.1_ = 5.41/ca 2o

2 5,_1

Cdo = 9.18 (_0)' 4n (0.8h6) = 0.00242

2
Cd = O_00242

o

tc/o �150sec = > c/o + 150 sec

Cdo 2 2 ..UI = 27.8/ 5.21 = 5.33/Cd °

Cd 2 = - 5.33 '_n (0.85) = 0.00196
o (50)

2
ca = o. 0o196

For

C = 0.8 at do/d m 0.75 and C = 0.6 at do/d _ 0.5

d Cd 2
tc/o + o C o

0 to 10 0.167 0--0_" 0.022_

10 to 20 0.1_1 0.7 0.01_0

40 to 80 0.062 0.6 0.002_2

lOO to 15o o.o59 _o.__6_1o.oo196

156 R_TPJS0_2
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/'_'_ _ _ Liquid Refill Line

R = 0,180 inch _..

Calculation of the flow area formed by the line fracture:

Surface area of sphere = A = 4 _ R2

the included flow area being that portion of a sphere determined by O

AT= 2 0 R2

where

O = radians

Solving for the initial flow 8 i (c/o - c/o + 10 sec) by setting Eq. tl6

equal to the calculated area,

Ac =A T = 2 O (0.180) 2 = 0.0648 O in.2

(0"13f = 0.0132 in.2Ac = ' 4

8 = 0.0132/0.0648 = 0.204 radians

or

8 i = 17 degrees

R-7450-2 157
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Similarly, during the final phase of the blowdown,

o.oo2
Of - 0.0132 x 17 = 3.2

Of _ 3 degrees

Examination of the expansion/contraction mechanisms

where

e = 13 x 10 -6 in./in. F (stainless)

= refill line length

T = temperature chenge

Hot-gas temperatures of 5000+ F would have been necessary to rupture the

refill line. Assuming (-200 = > +8U, F) temperature plus or minus 1 foot

from the rupture would yield a _ _ by Eq. _7 of:

_ = i2 x 2 x i000 F x 15 x lO-6 = 0.512 inch

_ _ 0.5 inch (assuming unrestrained tubing)

This value results in sufficient expansion to produce the required 8,

158 R-7_50-2
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cos 7 = e = cos 12/12.15

= 9 degrees or 2 7 = 18 degrees

O = 18 degrees

it is quite feasible that such a rupture area could result from severe

heating of the tubing. The numbers were quite conservative in _ and _ T,

but neglect internal stresses.

Chilling of %he line by the cold gaseous hydrogen results in the eventual

contraction to the _ 5-degree 8 condition.

Engine 202: Loss of Oxidizer System.Integrity After Cutoff

Description of Even_. Oxidizer system pressures and temperatures for

Engine 202 decayed following engine cutoff, indicating loss of system

integrity. If system integrity had been maintained, pressure would be

locked up in the oxidizer feed system (e.g., 58 psia for engine 203)

after cutoff, and would indicate saturation temperature corresponding

%o the pressure.

Conclusion. The oxidizer system was not maintained intact after engine

202 cutoff.

Corroboration of Conclusion. Data plots of engh_e 202 oxidizer pump inlet

pressure (Fig. 80), PU valve outlet pressure (Fig. 81), and oxidizer pump

discharge pressure (:Fig. 82) indicate abnormal pressure decay following

engine cutoff. Engine 205 exhibited no such decays in these parameters

following cutoff.

The conclusion that the oxidizer system pressure decays resulted from

loss of system integrity is further supported by decreasing oxidizer feed

system temperatures (Fig. 85, 8_, and 85). Engine 202 oxidizer inlet tem-

!'__ perature, oxidizer pump discharge temperature, and gas generator oxidizer

inlet temperature (gas generator bleed valve temperature) decreased to

R-7_50-2 159
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approximately -508 F (transducer limit) by 65 seconds after cutoff; _lope

of the temperature curves at this point indicated that the temperature

decrease would continue.

Because il is concluded that integrity of the Engine 202 fuel feed system

was essentially maintained following cutoff, cooling of the oxidizer feed

system could only be caused by vaporization of oxidizer within the system,

i.e., decay of system pressure to below the oxidizer vapor pressure.

The location and size of the leak is inconclusive, based on available evi-

dence; however, if the assumption is made that heat required for vaporiza-

tion comes only from tileliquid oxygen, an approximate minimum hole size

may be ca]culatea. Results of the calculations shown below indicate that
2

a minimum hole area of 0.7 in. would be required.

Calculation of Hole Area. The following calculations were made:

1. Average temperature decay = 0.25 F/sec $

2. Heat input to liquid from vaporization:

Q = wcp_ T

dq w(0.!t) (0.25) = 0.1w Bt---Eudt " sec

where

w = weight of liquid in system

5. Heat of vaporization of oxidizer = 92 Btu/ib
0.1w ib

Rate of vaporization - 92 - 0.00109 W--sec

This rate of vaporization represents flow of vapor out of the

system if the leak is above the liquid level or if the flow of

liquid out of the system is being displaced by the vapor volume.

166 R-7_50-2
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f
_. Assuming that tile system is full (jldt pounds liquid oxygen),

then the floe'rate of vapor is:

_ = 0.00109 (3!i'_) : 0.375 lb see

5. Critical flow through a nozzle or well-rounded orifice is:

k+i

At -292 F, saturation pressure is 20 psia

2.J_5[( " 9to,45

2
A = 0.43 in. at nozzle throat.

6. If the discharge coefficient is assumed to be 0.65 for the hole,

.- then
?

0

A 0.66 •= in.

2
The major significance of the 4.9 in. area number is that it is larger

than the area ca]culated for vapor flow and indicates that the actual
2

hole size is probably in excess of 0.7 in. area. The flow through the

hole (leak path) is probably mixed phase (gas/liquid) rather than single

phase (either gas or liquid).

E_._a.£ne202; Loss of Fuel System Integrity at Cutoff ;

Lo2/!_Fuel Pump Speed Decay Following Cutoff

Description of Events. Some flight data suggest that following cutoff

of Engine 202 at 412,925 secunds range time, engine fuel feed system integ-

rity was lost, and fuel was dumped.

l
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Engine 202 fuel pump speed decay followinv cutoff was unusually long,

requiring l 1,; seconds to decay to zero rpm, as compared to approximately

P45 seconds for a normal engine shutdown.

Conclusions. The fuel feed system was basically intact at cutoff, with

only mirror leakage occurring. The engine fuel inlet pressure instrumen-

tation line (l/"_t-inch sta$:e line) may have ruptured at cutoff, dumping

fuel. The gas generator fuel valve reopened to allow a maximum of

0.]5 lb,/sec flow following engine shutdown. The fuel recirculation re-

turn relief valve was cracked open, venting the 80-psia return manifold

pres.cure back into the Fuel tank. No other leakages were found.

The long f_e] pump speed decay following engine 202 cutoff was the result

of the gas generator valve opening after cutoff, and of subsequent gas

generator foel valve opening and fuel flow, which supplied sufficient

turbine power to extend the speed decay.

Corroboration of Conclusions. The two anomalies are related, and corrob-

oration for both is presented concurrently in _he following paragraphs.

The sequence of significant events related to the anomalies, referenced

in range time, is as follows:

l. Pt12.925 seconds: engine 202 cutoff; pump speed decay begins

2. _JlPt seconds: engine 202 fuel pump inlet temperature pegs off-

scale (high); engine 202 ft2el pump in]e_ pressure pegs offscale

(low)

5. Pt]Jt.2 seconds: engine 203 shutdown

l_. !_15 seconds: engine 202 gas generator valve partially reopens;

gas generator pressure spike occurs

5. P_l!)-lt60 seconds: gas generator fuel valve leM(age occurs

168 R-7hSO-2

UNTITLED-179



(J. Jtl6 seconds: fuel bleed valves open (engines "20° and °05)

7. h26 seconds: engine 9-02 fuel pump inlet temperature pegs

offscale (low)

8. _i28 seconds: engine 205 fuel pump rotation stops

9. 520 seconds: engine 203 fuel pump rotation stops

10. 576 seconds: stage command shutdown

Figures 86 through 96 present fuei feed system pressures and tempera+_*,:res,

gas generator pressures and ten:peratures, fuel pump speed, and main fuel

flow for engines o02, 20"3, and 20/t. The same parm2,eters for engines 20]

and 205 are similar to engine 20_i, and are not included.

Following shutdown of engines 202 and 203, their fuel bleed valves opened,

engine 201, 20_, and 205 fuel bleed valves remained closed, and the stage

fuel recirculation return manifold shutoff valve remained closed. Fuel

feed systems for engines 202 and 205 were manifolded to the stage re-

circulation return manifold through the bleed valves and lines. In the

time period from hl5 seconds to 570 seconds_ fuel pump interstage pres-

sures, balance piston cavity pressures, and pump discharge pressures were

75 to 80 psia; at approximately 580 seconds, all of these pressures

dropped to 60 psia, Fuel pump inlet pressure for cngiue 203 pegged off-

scale high at 55+ psia, and the same parameter for engine 202 pegged

offscale low at 20 psia. Fuel pump ,lischarge temperatures, gas generator

fuel inlet temperatures, and engine 203 fuel pump inlet tempera±ures in-

dicated -ItlO F throughout this time period; fuel saturation temperature

at 80 psia is -h09,8 F.

Data indicate that fuel feed systems on engines 202 and 203 were intact

following shutdown. The systems were connected through the recirculation

return manifold because the engine fuel bleed valves opened at engine

shutdo_cn. The common system pressure of 80 psia was maintained by the

R-7_50-2 169
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i r,..lief valve in I.he stage fuel recirculation return shufoft' v.llye; this
+l0

relief valve has a cracking pressure of Pi5 _ 5 psia, with a fuel tank

pressure of 52 psia; the _O-psia pressure would indicate that the relief

valve was at. least partially open. Engiiie 202 extended turbopump rota-

tion after cutoff provided the energy source necessary to maintain the

80-psia fuel system pressure (converthlg turbopump kinetic energy t,) heat

in the t'uel_ forming a gas volu,le sufi'icient to maintain the pressure).

Engine 202 fuel pump inlet pressure pegged offscale low immediately at

engine cutoff and fuel pumo inlet temperature pegged high to -!_10 F at

cutoff (_,12.977 seconds), and then offscale low at Jt2(i seconds; loss ot

engine inlet pressure suggests e_ther that tile instrumentation lines

ruptured at cutoff or that other instrumentation mechanical failure

occurred. The upward temperature spike at cutoff is normal and occurred

on all engines. The downward temperature "q)ike at h26 seconds is

unexplained. Because the fuel feed syr_tem was intact following cutoff

and contained some liquid at this time, the -P,27 F temperature is con-

sidered erroneous and probably resulted from instrumenta±ion failure.

At Pll5 seconds, the gas generator valve partially opened, and then closed

again. Gas generator chamber pressure (Fig. 92) spiked to approximately

20 ps:a, decays to 5 psia, 'then rose back to 12 psia for approximai:ely

50 seconds. The latter rise appears to be the result of a leaking gas

generator fuel valve. The leM{ing fuel, picking up heat from the gas

geuerator combustor, entered the turbine at approximately ]000 F and pro-

vided sufficient torque t,I maintain fuel pump rotation far the extended

period observed. Table 8 presents gas generator and fuel %urbi.ne pa_am-

eC,er data versus time; it is assumed that fuel within the turbopump was

in a gaseous state and that the pump power load resulted f-ore windage;

turbine torques stated are sufficient to result in the ex{.._nded pump speed

decay,
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,. Engine 202: Gas Generator Chamber Pressure Spike

Cutoff Transient

Description of Event. At J_lS. lO seconds, gas generl,tor cham})er pressure

(en_(ine o o_O.) spiked to _15() psia from 580 psia.

_0_ gas generator chamber pressure spike follow-Conclusions. The engine o o

ing engine cutoff was a result of :_xidizer and fuel pump pressure increases

and closure of the gas generator valve o×idizer poppet.

Corroboration of Conclusions. .kt approximately PJlS.()5 seconds, oxidizer

pump discharge pressure began a rapid increase from hh0 psia. This rapid

increase resulted directly from closure of the main oxidizer valve. Fuel

pump discharge pressure continued to decay until PilS.10 seconds and then

began to increase because of closure of the main fuel valve. At approxi-

mately hlS.10 seconds, the gas generator valve oxidizer poppet closed,

stopping oxidizer flow to the gas generator. The gas generator spike is

caused by rapid buildup of oxidizer system pressure in associa±ion wi±h

the fuel system pressure decay.

Engine '202 Oxidizer Turbine Outlet Pressure Increase:

h]2._ to -_t]2._)_ Seconds Range Time

Description of Event. Engine 202 oxidizer turkine oot]et pressure increased

approximately 5 psi between h12.5 and hl2.9 seconds.

Conclusion, Erroneous data.

Corroboration of Conclusion, Figures 97 through 103 illustrate the

following conclusions:
J

1. Upstream pressures, i,e., gas generator chamber pressuye and

oxidizer turbine inlet pressure, (tit! not increase.

( "
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2. Upstream temperatures, i.e., fuel and oxidizer turbine inlet

temperatures, did not increase.

3. Oxidizer turbine outlet temperature did not change.

Pt. Oxidizer turbine bypass valve position did not change.

E__n_ine 202 Instrumentation Package _'emperaturg.s Rise at

Engine Cutoff: Ill5 Seconds Range Time

Description of Event. Engine 202 primary and auxiliary instrumentation

package temperatures changed at cutoff from a slow continuous decrease

trend to an abrupt rapid rise, and then leveled off during the remaining

lh0 seconds preceding cutoff of S-II engines 201, 20It, and 205 (Fig. 10h ).

It___%thesis, The temperature rise indicated by the engine 202 instrumen-

tation packages is attributed to a fire in the area of engine 202 (assoc-

iated with cutoff), followed by stabilization at a new environmental

condition with engines 201, 20h, ad 205 firing.

Corroboration of II_zpothesis. The abrupt temperature rise indicates

a very high Q in the areas of the instrumentation packages such as might

be caused by an engine area fire at cutoff. This condition is corrob-

orated by numc:'ous temperatur_ measurements in the engine compartment.

The new temperature level sought by beth instrumentation packages repre-

sents a more moderate level ef heat emission such as would exist with

only engines 201, 20h, and 205 in operation.

Engine 202: Decreased Helium U_age at Cutoff

Description of Event. Review of initial data indicated that engine 202

tmlium usage was low at cutoff.

18_ R-7h50--2
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Figure 98. Oaidizer T_lrbine Outlet l_eess_re
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Conclusions. "l'her,:_ was no anomaly associated with cutoff heli,m_ usage

for etlgine 202.

Corroboration of Coaclusion. A rutoft' helium usage equation that predi(,_cs

the normal pre._,sure loss ha,u been developed. This equation i.,3 based on

isothermal flow and has been modit'ied by an empirically verified coeft'ic.o

ient, This equation utilizes helium tank pressure and temprrature just

prior to cutoff,

_p = p _ p1/ff _
P

wh e r e

L_P = normal expected pressure loss

P = helium tank pressure prior to cutel'f

', T = helium tank temperature prior to cutoff

r/ = ratio of specifi c heat (1.67 for helium)

K = empirical coefficient = 0.36

Using the above equation, the predicted heiium usage for engine 202 was

5/t psi; actual measured heliqm usage was 60 psi, thus corroborating +.he

conclusion _,hat engine 202 helium usage was norma] and Hlat there is no

anomaly associated wi_ch decreased helium usage,

Englne 202: Loss of Oxidizer Pressurization Sy,stem Integrity

Following Cu__toff

Description of Event. Engine 202 heat exchanger outlet temperature

decreased to approximately -260 F for approximately 3 seconds following

engine cutoff, and then gradually increased to approximately -60 F at

S-II stage cutol'f. Figures 105 through'12_ describe AS-_02 S-II engine

,( heat exchanger and stage oxidizer pressurization system operation.
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Figure 106. Oxidi_er Manifdld Pressure
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Figure 110. Oxidizer Regulator t_essure Valve Position
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Figtu, e Ill. Oxidizer Regulator Pressure Outle?; Temperature
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_i Figure 11_. Heat Exchanger Oxidizer Outlet Temperature
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Figure 117. Engine 202 Heat Exchanger Outlet Temperature
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,_ Figure 12C. Flighg AS-502 S-II Heag Exchange Daga
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I[ypothesis. Integrity of the engine 202 oxidizer pressurization system

was lost du_ing cutoff of the engine; the point in the system at which

the integrity loss occurred was between the engine heat exchanger outlet

temperature transducer and the stage check valve (stage side of the

customer connect panel).

The dcarease in heat exchanger outlet temperature to -260 F following

cutoff indicates that heat exchanger oxidizer flow continued after the

heat source (turbine exhaust) to the exchanger had been removed; the

oxidizer flow continued until the heat exchanger antiflood check ._alve

closed (approximately 7 to 17 seco,aS after engine cutoff when heat

exchanger _P reached 20 psi). Flow should have stopped almost immediately

on cutoff, i.e., when heat exchanger inlet pressure was equal to or less

than the stage 02 manifold pressure. Because loss of heat exchanger out-

let line integrity upstream of the heat exchanger outlet temperature

transducer would not result in the observed temperature drop (i.e., no

oxidizer flow)_ and loss of line integrity downstream of the stage check

valve would result in permanent loss of stage 02 manifold pressure, it

is hypothesized _hat the integrity loss occurred between the two points.

Corroboration of Hypothesis. Engine 202 heat exchanger outlet tempera-

ture deureased to an unusually low temperature at cutoff, indicating

continuing oxidizer flow "(as compared to the engine 203 cutoff).

The loss of stage 02 manifold pressure at cutoff of engines 202 and 203

was temporary. The fact that stage 02 manifold pressure did not recover

¢o the level obse_:ed prior to cutoff of engines 202 and 203 is attributed

to increased heat exchanger oxidizer flow (decreased heat exchanger outlet

temperature) of the three engines remaining in operation.

Main Battery. Current and Main D-C Bus Voltage Suikes:

_12.8 Seconds Range Time

Description of Event. At range time _12.8 seconds_ main battery current

(stage) spiked up from a level of 55 amperes to 86 amperes. Main d-c bus

voltage (stage) spiked down from a level of 29.3 to 28.7 volts.

21_ R-7&50-2
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Iiypothesis. The current/voltage spikes observed in the flight data indi-

cate a momentary short circuit, probably resulting from a fire or insula-

tion breakdown. No evidence can be found to indicate abnormal operation

of any electrical equipment operating on the main battery at this time.

Corroboration of Hypothesis. Drawing of excessive amperage from the bat-

tery at the 412.8-second time is supported by the associated drop in main

d-c bus voltage (Fig.125 and 126), and is typical of short circuit or

insulation breakdown conditions. The possibility of an engine c_mpartment

fire as the cause of a momentary short circuit at approximately the same

range time as the current/voltage spike anomalies is supportud by environ-

mental data.

Engine 202 Propellant Utilization Valve Opens and

Closes Following Cutoff: _18 Seconds Range Time

Description of Event. At approximately _18 seconds range time, the engine
i

202 propellant utilization valve opened 6 degrees and then reclosed. Analy-

sis of flight data revealed that all S-II engine PU valves had exhibited

thu same anomaly. There were no engine performance changes, engine compart-

ment environmental changes, or _upporting system anomalies at this time

that would contribute to, or result from, the anomalous PU valve operation.

Figure 127 illustrates typical PUvalve position traces for S-II engine

during AS-501 and AS-502 flights. Burn time for engines 201, 204, and 205

was longer during the AS-502 flight than during AS.-501; therefore, the PU

valves remained closed for a longer duration.

Conclusions. The sudden change in vehicle velocity/attitude which occurred

at cutoff of S-II engines 202 and 203 resulted in sloshing of propellants

within the S-II tanks, Propellant tank liquid level sensors signalled

the PU computer to open the engine PUvalves and, when the Sloshing damped

out or ceased, signalled the PU computer to reclose the valves.

..
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Corroboration of Conclusions. The PU computer error signal corroborates

excursion of PU valves at 418 seconds. Figure 128 illustrates engine 202

' PU valve error signal (net error signal) at h18 seconds. No performance

shift was observed for the three S-II engines remaining in operation at

this time because the i_U valve has a 14-degree overlap in the closed

position.

Engine 202: Loss of }_draulic Fluid From the Engine

Actuation _,stem Following Cutoff

Description of Event. Approximately 5.5 seconds following cutoff of engine

202, data indicated loss of hydraulic fluid from the engine actuation sys-

tem as follows:

1. Sudden loss of hydraulic reservoir pressure, i.e., 170 psi/sec

as compared to 5 psi/sec normal pressure decay following engine

• cutoff (Fig. 129).

2. Sudden decrease in reservoir volume (percent of capacity) from

10 to 0 percent in 0.5 second, as opposed to a normal increase

to 75 percent approximately 60 seconds after cutof_ as a result

of reservoir filling from the accumulator (Fig. 150).

Conclusions. Loss of engine 202 engine actuation system hydraulic fluid

occurred following engine cutoff; the hydraulic fluid loss resulted from

leakage at the low-pressure side of one or both actuators. The cause of

the leakage is indeterminate.

Corroboration of Conclusions. The engine 202 accumulator pressure decay

rate following engine cutoff was approximately 30 percent slower than

anticipated. This reduction in decay rate indicates that fluid was not

leaking at the high-pressure line b_tween the accumulator and actuators,

but rather at the low-pressure side; the decay rate further indicates that

R-7_50-2 219
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_ viscosity of the hydraulic fluid had been increased by chilling of the

hydraulic system, beginning at approximately 260 seconds range time.

The accumulator bleeds do_ to the hydraulic fluid reservoir through the

actuator servovalves at a very I(:_' rate (approximately 0.2 _pm), and any

change in fluid viscosity will _.nversely affect the bleed rate.

The severity of hydraulic sys-Lem chilling is indicated by hydraulic lookup

of the engine 202 yaw actuator at approximately _200-psia accumulator

pressure (_15 seconds range time). The lockup function is performed by

a differential pressure valve_ connected across the actua_or cylinder

volumes, which is actuated whenever the _ P across _he actuator fa]is

between 1300 and 1700 psi. The lockup condition was achieved with 3400

psia at the high-pressure side, thus indicating that the low-pressure

side had experienced higher than normal pressure because of increased

fluid viscosity.

The engine 202 yaw actuator had indicated chilling conditions at 282 _econds

range time, as evidenced by erratic behavior ef the _ P tranuducer, a hypoth-

esis that has since *-een verified by laboratory testing of the transducer

at the Space Division of North American Rockwell Corporation, Sea[ Beach,

California.

Yaw actuator lockup was indicated by ]ack of change in actuator positio.

despite application of a signal commanding position change. Pitch actua-

tor lockup occurred at 490 seconds range time; accumulator pressure was

1700 psia, indicating a normal lockup sequence (Fig. 129 and 150).

ENGINE 203 CUTOFF: RANGE TIME P,IJ_.2 SECOND.

Description of Event

Operation of engine 203 (S-II cluster position No. 3, engine S/N J2058)

was prematurely terminated at _14.277 seconds range time, eo!!owing ....

off of engine 202.
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Engine Anomalies. No anomalies were noted £_ operaLion of engine 203

which would result in cutoff.

SupportinK System Anomalies. Analysis of flight data related to cutoff

of engines 202 and 203 indicates that events occurred in the following

abnormal sequence:

1. Engine 202 cutoff

2. Engine 203 oxidizer prevalve started closed

3. Engine 202 fuel preva!ve started closed

4. Engine 203 oxidizer prevalve reached closed position

5. Engine 202 fuel prevalve reached closed position

6. Engine 203 cutoff, initiated by dropout of mainsS_ge OK pressure

switches upon decay of oxidizer injection pressure

7. Engine 202 oxidizer prevalve started closed

8. Engine 203 fuel prevalve started closed

9. Engine 202 oxidizer prevalve reached closed position

10. Engine 203 fuel prevalve reached closed position

Conclusions

Control exercised over closing of the engine 203 oxidizer prevalve follow-

ing engine 203 cutoff should have been applied to the engine 202 oxidizer

prevalve; control exercised over closing of the engine 202 oxidizer pre-

valve following engine 203 cutoff should have been applied to the engine

20_ oxidizer prevalve; therefore, engine 203 cutoff resulted from an

oxidizer prevalve closing signal originating in the engine 202 prevalve

control circuit, i.e., crossed prevalve control commands.
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_ _NGII_ES 201, 20_, AND 205: I_Fff.P_L_CE SHIFT FOLLOWING

CUTOFF OF ENGLVES 202 AND 203

Description of Event

At approximately _15 seconds range time, the majority of instrumentation

paramebers for the three S-II engines (201, 20_, and 205) remaining in

operation at that time shifted.

Hypothesis

Electrical problem; it is believed that cutoff of engines 202 and 205

reduced the main battery load, causing a change in telemetry ground cur-

rents and shifting the telemetry system power level.

Corroboration of Hypothesis

Data indicated that shifts occurred simultaneously for engines 201, 20_,

and 205. it is unlikely that simultaneous shifting of performance would

occur in three engines at %he same time.

The performance shifts occurred in such independent parameters as helium

regulator out pressures, helium tank pressures and temperatures, and start

tank pressures and temperatures. Instrumentation parameters indicating

shifts, and the magnitude of the shifts for engines 201, 20_, and 205,

are listed in Table 9.

(
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TABLE 9

S-II ENGINES 201, 204, AND 205 APPARENT

PERYOPd{glqCE StIIFTS AT 1t15 SECONDS

S-II Engin_

Instrumentation Parameter 201 204 _-

Oxidizer Pump Inlet Temperature, F -0.13 -0.07 -0.13
Oxidizer Pump Discharge Temperature, F -0.07 -0.18 -0.14

Fuel Pump Inlet Temperature, F -0.03 -0.09 -0.05

Fuel Pump Discharge Temperature, F -0.06 -0.06 -0.08

Main Fuel Injection Temperature, F -4.5 -0.3 +3.5

Start Tank Gas Temperature, F -0.1 -1.2 -0.7

Helium Tank Gas Temperature, F ' -0.9 -0.i -1.5

Thrust Chamber Jacket Temperature, F -3.0 -2.4 -8.1

Oxidizer Pump Bearing Temperature, F +0. I -0.2 -0.I

Electrical Control Assembly Temperature, _ -i.I -i.0 -1.6

Auxiliary Instrumentation Package Temperature, F +1.7 +i.0 +j.8

Primary Instrumentation Package Temperature, F -0.6 +0.3 -i.0

Oxidizer Pump Inlet Pressure, psi -2.75 -5.70 -5.25
Oxidizer Pump Discharge Pressure, psi -4.3 -13.2 -10.2

Fuel Pump Inlet Pressure, psi +0.19 -0.&9

Fuel Pump Discharge Pressure, psi -7.4 -6.4 -]0.5

Main Oxidizer Injection Pressure, psi +i.i -11.6 -9.8

Main Fuel Injection Pressure, psi +2.3 -5.7 -4.3

Thrust Chamber Pressure, psi -1.5 -5.7 -2.8

Gas Generator Chamber Pressure, psi +0.8 +2.7 -3.8

Start Tank Pressure, psi -0.2 -6.3 -2.1

Helium Tank Pressure, psi -11.4 -19.8 -21.4

Engine Regulator Outlet Pressure, psi -1.6 --4.5 -4.9

Fuel Turbine Inlet Temperature, F +3.2

Oxidizer Turbine Inlet Temperature, F -4.3 -7.0 -8.8

Main Oxidizer Flow, gpm -ii.0 -5.8 -7.0

Main Fuel Flow, gpm -0.I -5.4 -7.5

Oxidizer Pump Speed, rpm -15.1 +2.7 -3.1

Fuel Pump Speed, rp_ -51.9 -19.5 -54.7
L___
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ANOMALIES NOT RELATED TO OR NOT GON'I_IBUTING TO

FLIGItT FAILURE

Engine 2C? anomalies discussed in this section are either unrelated to

the AS._502 S--II flight failure or are of a minor nat, ure not contributory

to the failure.

ENGINE 202 PI_FOILV_hNCE SHIFT: B___NGE TLME 215 SECONDS

Description of Even¢

At 215 seconds range time, engine 202 experienced a performance shift

characterized by a thrust increase of approximately 900 pounds followed

by a decrease to the preshift value. There were no discernible engine

comparLment or supporting equipment anomalies at this time.

Conclusions
(-

Through review and analysis of data, it is concluded that:

I. There were two performance shifts, i.e., one at approximately

218 seconds and one at approximately 226 seconds, as reflected

in main chamber pressure.

2. Performance (Pc) returned to its preshift value following each

shift.

5. The shifts resulted from minor gas generator oxidizer bootstrap

llne _P shifts.

_. No correlation has been established between these performance

shifts and subseqaen% anomalies.
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Corroboration of Conclusions

Possible causes of the performance shifts investigated and results of

analysis are as follows:

1. Pump inlet pressure change: none occurred

2. Pump inlet density shift: none occurred

5. Hydraulic pump horsepower change: none occurred; no gimbaling

at this time

&. ASI fuel line failure

Unlikely; performance5. ASI oxidizer line failure
returned %o original
value. Many values

6. Fuel pressurization line failure would shift in wrong
direction.

7. Gas generator oxidizer bootstrap

line _P shift

Table I0 presents shifts in selected engine parameters between 215 and

219 seconds range time in comparison to pirametric shifts normally as§o-

ciated with gas generator oxidizer bootstrap _P shift. It may be seen

that the flight shifts are in the direction of the bootstrap line 2%p

shift, but of lower magnitude, indicating a minor _P shift condition

as the causative factor.

ENGINE 202 GAS GEb[EttATOR 0XIDIZ_ II_JECTION PItESSURE

DECAY: RANGE TIME 350 SECONDS

Description of Event

Starting at 550 seconds range time, gas generator oxidizer injection pres-

sure began to decay from 760 psia. All other engine parameters continued

at the 550-second levels. By &12.6 seconds range time, gas generator oxi-

dizer injection pressure had decayed to 590 psia. At &12.7 seconds, gas

generator oxidizer injection pressure spiked to 590 psia, and then decayed

228 R-7&50-2
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_¢ TABLE 10

S-II, ENGINE J20_& CHAMB_2_PRESSURE SHIFT AT 215 SECONDS

Oxidizer Shift

Value at Shift at Bootstrap Line 215 to 219
215 Seconds 225 Seconds _P Shift Seconds

_emperatures

_lel Pump Discharge -&09 F 0 0 0
Oxidizer Pump Discharge -291.2 F 0 0 0
Fuel Turbine Inlet 1190 F +1 +29 +5
Oxidizer Turbine Inlet 785 F +2 +22 +2
Gas 6eneratcr Fuel Valve Inlet -408.6 F 0 0 0

Gas Generator Oxidizer Valve Inlet -292.8 F 0 0 0

Main Fuel Injection 200 R 0 0 0
Oxidizer Turbine Outlet 610 F +2 0 +1
Thrust Chamber Jacket -328 F 0 0 0

Heat Exchanger Outlet 220 F 0 0 0
Engine Inlet Oxidizer -296 F 0 0
Engine Inlet Fuel -422.4 F 0 0

Pressures

Main Fuel Injection 850 +5 +10 +5
Gas Generator Fuel Injection 730 +4 +11 +5f,-_

.thel l_lmp Balance Piston 500 0 +
Cavity
Fuel Pump Discharge 122& +6 +16 +7
Main Oxidizer Injection 943 +& +12 +5
Gas fienerafior Oxidizer injection 765 +3 +12 *5
Oxidizer Turbine Inlet 840 +0.2 + +0.1

Oxidizer Pump Bearing Coolant +
Oxidizer Turbine Outlet 33 0 0 0

Oxidizer Pump Discharge 1071 -1 +14 +
Thrust Chamber 759 +1 +9 +
Gas Generator Chamber 655 +0 +9
Heat Exchanger Inlet + +
Engine Inlet Oxidizer &2& 0 0 0
Engine Inlet Fuel 28.5 0 0 0

PU Valve Inlet + +

PU Valve Outlet 185 0

Oxidizer Pump Primary Seal 17 +0.6 0
Fuel Tank Ullage 0 0
Fuel Ullage 0 0

_el Pump Interstage 167 0 + +

Flowmeters

Main Fuel Flow, gpm 8568 -2 + 0
Main Oxidizer Flow, gpm 2878 +5 + 0
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during the cutoff transient (Fig. 131). During the period in question,

engine compartment and engine component temperatures indicated cooling

in the area of Engine 202.

_vpotheses

Detay of gas generator oxidizer injection pressure resulted from plugging

of the gas generator oxidizer injection pressure line, probably with solid

oxygen, between the gas generator oxidizer injection manifold port and the

tee to the gas generator oxidizer injection pressure transducer. Continued

pressure decay resulted from leakage past the gas generator oxidizer purge

check valve or from continued cryogenic chilling of the gas generator oxi-

dizer injection pressure line.

Corroboration of H_potheses

Engine compartment, and engine and stage component environmental data

indicate cryogenic chilling in the area of Engine 202. This chilling _

could result in freezing of oxygen in the instrumentation line when the

line was chilled to -_0 F. The gas generator valve position potentiom-

eter indicates valve closure of _ percent; this apparent motion is probably

due to cryogenic chilling of the gas generator valve body, with the same

cryogenic chilling source impinging on the gas generator oxidizer injection

pressure line. The pressure recovery noted is probably due to heating in

the engine area at cutoff, melting the plug sufficiently to allow the

recovery. Just prior to start of gas generator oxidizer injection pres-

sure decrease, the pressure was '760 psi. Therefore, assuming no decay in

manifold pressure at cutoff, the _P from P1 to P2 is 370 psi.

(370 psi)(l_ in.2/ft 2) = 70 ft
A head =

(70 lb/ft 3)

230 R-7_50-2
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By breaking the line into four segments, each with a resistance, the

Ahead is &head = hl + h2 + h3 + h/_, where h - K2
2g

Kv2
h -

2g

Entrance effect K1 = 0.50; i, 16-inch tube K2 = f (L/D)

Assuming Re = !O'_ f = 0.017

K2 = O, _

Exit effect from 1/16-inch tube

0,0625 2
lo ' 5.Tgg --o. lOOl/q- nch tube Ka = o.o17 _ \ ]

• 700 f_ = (0._0 + 0.!36 + 0.80 + 0.100)v 26q._

2 10h ft2 sec 2v =32x /

v = 168 f%/sec

= pAy

= (70 lb/ft3)(2.12 x 10 -5 f%2)(168 ft/sec) "

= 0.250 lb/sec

For a 0.026 lb/sec leak below the gas generator oxidizer orifice, fuel

turbine inlet temperature decreases 9.1F and P decreases 2.9 psi.C

• A 0.250 (-9.1) -87.1 F
TGG = 0.026 =

o,2 oAp = = -27.8 psic 0.026

Since the above performance shifts were not realized, the indicated AP

was no% due to flow.

Possible cause of the indicated pressure loss is plugging of the instru-

mentation line, accompanied by slight leakage of the check valve, thus

allowing the indicated decay.
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i_: APPENDIX A

FLIGHT SbTPORT TL_TING

Testing in support of analysis and ixwestigation into AS-502 S-II flight

problem areas was conducted oil both engine system and component levels at

vurious Rocl_etdyne facilities and at the _NASA-MSFC pressure-fed thrust

chamber test stand.

ENGI,N_ SYST_ TESTING

A combined S-II/S-IYB flight support test program was conducted at tile

Rocketdyne Santa Susana Field Laboratory, test stand VTS-2, utilizing

J-2 R&D engines J004-5 and J-16-4. Three of the tests conducted were

related to analysis of the S-II, Engine 202 anomalies, and ore described

in the following paragraphs.

- Test 313-03_ (Engine J004-5)

The primary objective of this test was to simulate partial failure of the

ASI fuel line, followed by complete failure of the line; i.e., two-stage

failure mode. (Figure A-I is a schematic presentation of the test setup.)

An initial ASI fuel line leakage rate of 0.5 Ib/sec was simulated; no

significant change in engine performance was noted. Complete failure

of the ASI fuel line was simulated by opening an overboarJ vent at the

thrust chamber manifold and closing the -_SI fuel valve. At the same time,

the simulated leakage rate at the downstream vent between tlle ASI fuel

line downstream flex section and the ASI injector was increased. This

resulted in failure of the tee fitting at i,he downstream vent due to com-

bustion of residual fuel in the ASI fuel line; overboard flow of ASI com-

bustion products occurred at the failed tee, but no dame e resulted from

the fire because of the relatively coo! temperature of the combustion

products (estimated at 300 to 500 F). No significant injector loss was

_. noted. Slight erosion of the ASI nozzle was noted; however, erosion pene-

tration of the injector fuel manifold did not occur.
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Figure A-1. Engine Configuration ASI Fuel Line Evaluation
(Test 313-055)

A-2 R-7_50-2

UNTITLED-246



i Te_.'t 313--036 (Engine JOOh-5)

The primary objective of this test was to simulate an i_itial [artial

failure of the ASI fuel !ine, progressing to complete failure of the line

Figure A-2 presents a graphic illustration of the test setup. Le,_kage was

simulated in the ASI fuel line between the first (upstream) and second flex

sections; the leakage rate was increased in such a manner as to obtain a

rapid ASI mixture increase. Engine operation continued with an oscillatory

flow condition in *,he ASI fuel line. until the overboard leakage rate was

again increased; at this time reverse flow from the ASI through the ASI

fuel line was obtained. Posttest hardware inspection revealed that eros:ion

of the ASI cavity and burnthrough into the thrust chamber injector f'tel

manifold had occurred.

Test 313-0hl (Engine J016-h_

The primary obj.ctive of this test was to obtain slowly increasing ASI

mixture ratio during engine operation, followed by simulated fa lure of

the ASI fuel line. During the test,, ASI mixture ratio was slowly increased

from 1.8 to 20. ASI erosion commenced at a mixture ratio of 2.5 and con-

tinued until after the simulated line failure. Severe AS_ nozzle erosion

occurred, with burn through into the main injector fuel manifold and into

two oxidizer elements. Figure A-3 illustrates the test setup.

MSFC THRUST CHAMBER CgHt)0NENT TESTING

ASI/thrust chamber component testing was conducted at HSFC, test p_sLtion

502, a high-pressure, LOK/LH2 compone , test sCand. Primary objectives

of this testing included determination of the extent of injector damage

incurred when operating with abnormal (high) ASI mixture ratio, and deter-

mination of the effect of a damaged injector on engine performance.

A series of four tests was conducted (217-1 through 217-h). Two of the

tests, 217-2 and 217-_, simulated tests applicable to S-II, intend,d to
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Figure A-2. Engine Configuration, ASI Fuel Line Eva!ua%ien

(Tesg 3_3-036)
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_, Figure A-5. Engine Configura%ion, ASI Fuel Line Evalua%ion

;, (Tes% 313-0111)
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approximate an ASI fuel line rupture and resaltant ASI mixture ratio of

10:l (o/f). The test setup utilized is illustrated in Fig. A-h,

The AS_ was utilized as the ignition source for the thrust chamber and

employed a sparks-on, 50-millisecond oxidizer lead start. The thrust

chamber was started using a full-flow fuel lead preceded by igniter oxi-

dizer to facilitate main propellant ignition. Both the ASI and the thrust

chamber used a fuel-rich cutoff. ASl-onty operation was restricted Lo less

than 1.2 seconds by means of sequencing and safety cutoff circuits. The

highest recorded ASI mixture ratio during start transient was 1._2 (o/f).

ASI fuel line leakage was simulated by closing the No. 1ASI fuel valve

(Fig. A-K) approximately l second after attaining stable mainstage operation.

Results attained during tests 217-2 and 217-_ are as follows. Main injector

damage was incurred during test 217-2. Severe continuous main injector

burning and erosion began at approximately 212 seconds mainstage and ap-

peared to quench af_erapproximately 7.1 seconds; short, sporadic bursts

of intense burning continued to occur from the initial quenching point

until cutoff.

The ASI nozzle erosion did not penetrate any oxidizer passages, but sub-

sequent vacuum checks disclosed a longitudinal crack that extended into

the oxidizer post of element No. 3, row 1.

Significant main injector, main chamber, and ASI seal damage was incurred

during test 217-_. A total of 15 oxidizer passages (including two oxidizer

"doghouses") were violated by erosion. Very intense continuous main in-

jector burning and erosion began immediately after the No. 1ASI fuel

valve (Fig. A-_) was ramped closed; the burning continued until approxi-

mately 3 seconds prior to cutoff at which time the burning appeared to

diminish slightly. Two thrust chamber tubes in the lower nozzle were

ruptured during test 217-_; analysis of test data and instrumentation

motion pictures and appearance of the ruptured tubes indicate that the

damage was caused by ejected injector material striking the nozzle interior
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wall. These ruptures resulted in (1) 8 to 9 lb/sec of main fuel being

dumped into the lower nozzle, and (2) application of significant side

loads to the thrust chamber,

h c _ efficiency "tail-off" of ] percent was observed during the latter

7 seconds of test 217-2 and the latter 12 seconds of test 217-_. The

following suggest that this effect primarily ::esulted from pressurant

(nitrogen) di!utio_ of _he main oxidizer,

1. The magnitude of c* efficiency loss was the same for both tests,

whereas the extent of main injector damage was markedly different.

2. The observed "tail-off" o,:curred concurrently with a rise in main

oxidizer temperature; the rate of "tail-off" increased with the

rate of temperature rise.

3. Oxidizer tank ullage was less than 50 percent during the "tail-

off" periods.

_. The oxidizer tank pressure (approximate] _" 1300 psig) was well

above the critical pressure of oxygen, permitting facile dif-

fusion of nitrogen into the oxygen.

Pertinent test results and data are presented in Table A-1 and in Fig. A- _

through A-9.

CONCI_JSIONS

The following conclusions were developed, based upon results of Rocketdyne

tests 313-.035, 313-036, and 313-0hl, and data acquired during MSFC thrust

chamber component tests 217-2 and 217-h:

1. Erosion of the main injector can occur over a relatively long

duration without generation of instability and without catas-

trophic failure.
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T,_I,E A- 1

HSFC TIIRUST CILL_BER TF£T It:

Thrust Chamber ASI

Fuel I lChamber Injection Chamber Inj

Test Date, Pressure, Mixture Temperature, Pressure, Mixture I Temp
No. 1968 E\,ent psia Ratio R psia IhaLio

217-1 2 May .............

217-2 3 May Prior to 766 6.15 226 86o .68
vaive ramp

Following 766 6. t8 22h 798 5.87
valve ramp

Cutoff 760 6.25 226 807 6.18

217-3 7 Hay ...............

217-h 7 Hay Prior to v 762 5.70 NG 906 .98 :
valve ramp

Fo 1 lowing 762 5.70 --- 829 9.15
• alve ramp

Po I lowing 750 5.62 & .... 806 9.15
tube rup-
ture

Cutoff 7/*0 5.63* --- 793 9.70

R.-7_50-2
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TEST I{ESUIJTS

Fuel

Injection Mainstage

Temperature, Duration,
R seconds Remarks }Iardware Condition

--- 2.0 High Pc limit }:9 cl.mnge in har'_',,az'e condition

cutoff; check-
out test

115 23.& Fuel depletion No damag, o thrust chamber. ASI fuel side

cutoff; simu]a- spark p? severely eroded. Main injector

tion test ASI noz: erod_ t;hrough to main fuel com-

115 --- partment _-60 _;egree:_. Erosion began 1 inch
downstrem_! :_ea] -_,,! . _nd extends outboard

to within 0.09 J_lch cz rou. No 1 oxidizer

108 ...... pas._ages. Vacuum check disclosed a iongi-
tudinal crack into element No. 5, row No. !

oxid:izer post. Damaged spart plug and main

injector were replaced.

--- l.O Observer cutoff No change in hardware condition
for fuel fire

NG 2.5.7 Fuel depletion Thrust chamber tube No. 562 has a full tube

cutoff; simula- width gate split from 5.75 to 7.25 inches

tion test upstream thrust chamber exit. Tube No. 565

......... has a full tube width split from 5°25 %o

6.25 inches upstream thrust chamber exit.

ASI fuel-aide spark plug severely eroded.

......... ASI lower lip severely eroded. ASI nozzle

severely eroded over entire length and out-
board to row No. 2. All elements in row

No. 1 eroded away. Elements No. tl and 5_

......... row No. 2 eroded away. Element No. 2, row

No. 2 oxidizer post penetrated at tip.

Oxidizer doghouses No. 3 and 8 violated by

erosion. Face plate eroded away outboard
to row No. 2.

A-9
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• " #7

Figure Posttest Injector Conditionj MSFCASI Fuel Line Failure
Simulation (View of Face)
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t_ '2. Thrust chamber P and c * efficiency were unaffect:,ed by erosion

and penetration of the main in,ie-'Lor fuel manifold, oxidizer

mae.ifold, and oxidizer elements in the vieiniL.v of the A.<I nozzle.

_. The e _ efficiency is vedueod by opening !. atmosph_.:e _,ny lmrLion

of the ASI injector or main in.ject,,,c.

*t. Erosion of the AS[ nozzle can occuI wiLh an ASI oxidizer'fuel

mixture ratio as low as 2.5.

5. Damage Lo the thrust chamber nozz]e vesu]ted from e.jec/ed in-

,jector frag_nents.

6. Side forces, i.e., moment l.ading aL Lhe gimbal bearing, can

result from failure of thrust chamber Lubes wi_;h at_en(tant fuel

lealcage flow £o ,*.he interior of the thrust chamber nozzle.

,r.

i

r_
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AJ'PI_DIX B

ALTITJ_ATL HYPOTI[ESIi',S

Specific hypotheses considered during analysis and investigation of major

AS-502 ._-[I flight problem areas are listed herein, along with brief s'_ate-

men_s of substan[iating information and/or dots not in agreement _,'i_h the

hypo#,heses. Hypotheses listed are referenced to range t, ime.

IL4NGI- TI:,_ 220 TO 318 SECONDS

Gradual engine performance decay, engine compartment and engine component

t_emperatures decrease.

Hyp0thesis 1

Progressive fuel leak emanating from fuel tank pressurization system

(thrust chamber injector manifold)

Substantiating ]:nfonnation.

]. Apparent performance decay at 260 seconds

2. _gine components began to chill at 220 seconds.

3. (ieneral direction of chilling source matches the location of

the fuel tank pressurization boss.

_. Amount of leakage required to cause _he apparent performance

decay (2.5 l.b/sec) is within _he flow capability of the fuel

tank pressurization system.

5. This system could %hen have ruptured at the 5].O-second time,

as noted in the material for that anomaly,

Data Not In Agreement With Hypot_hesi__._s.

z

"_ 1. l)ifficult to relate thi,_ failure mode to cutoff faill_re, _Js

n_*_ed in the 319-second anomaly

It-7_50-2 n-1
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2. No previous line failures

5. Site test data not in agreement with observed flight data

I_pothesis 2

Progressive fuel leak emanating from the ASI fuel line (thrust chamber

inlet manifold)

Substantiating Information.

I. ]_ak at the thrus% chamber inlet manifold fitting or in the

lower flex _ectlon could cause the observed chilling of engine

components beginning at 220 seconds range time.

2. Engine vibration could cause leakage to increase with time

(faligue) to the point where engine compartment temperatures

decrease, and finally to complete rupture of the line (519-

second performance shift).

5. Amount of leakage required to eanse the apparent performance

decay (2.5 Ib/sec) is within the flow capability of the ASI

fuel delivery system.

_. This failure mode can he related to the cutoff failure, as

noted in the 319-second anomaly.

Data Not in Agreement With Hypothesis.

1. Leak does no% contribute side forces to create observed actuator

loads after the 319-second performance shift°

_hesis 3

Progressive fuel leak at %hrust chamber heat shield (external)

UNTITLED-265



3;

Substantiating I)ata.

1. Failure of one or more tube-to-nozzle tension band braze ,joinl:s

due to heat shield loading and/or engine vibration rould cause

a fuel leak on the inboard side of Engine 202.

2. I_el leak from this area could cause engine components to chill

down, as it matche,_ the general coolant region defined by the

tempe rature measurement s.

3. A tube-to-band braze joint f,q;lure due to vibratiml can propagate

from tube to adjacent tube, thus g_,ving rise to progressive per-

formanee loss.

Pj. ;_nount: of leakage a4ct,ributed to this type of failure could sup-

i)or_; the noted i)erformance loss.

Da_a No! In Agreement h'ith Hypothesis.

i. Abrupt performance loss at 319 seconds would have te be caused

by sudden failure of a number of tube-to-band braze joints; 10

to 12 tube failures are reou_red to have a performance shift.

2. Diffieul5 to relate this failure mode to cutoff failure

3. Insufficient flowrate to create observed actuator loads

It_lmthesis h

Progressive fuel leak at exit of thrust chamber (external)

Substanl, iatij g Dat,a,

1. Tube leaks could cause chilling of hydraulic system anti engine

c omponenLs.

I_-7_o-2 n-5
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Data Not In Agreement With Hypothesis. "i

1. To be a progressive leak, it would have to be a tube-to-braze

,joint failure, such as Itypothesis 3, probably at the exit mani--

fo]d or aft hat band location. No known abnormal loading is

imposed in that area during flight in addition to the norma]

vibration load from engine operation.

2. This failure mode does not adapt readily to the abrupt per-

formance decay at 319 seconds nor to the cutoff failure.

t_pothesis 5

Dael leak at thrust chamber exit (il:ternal)

.Substantiating Data.

1. _,el leak wil] cause a performance loss.

Data Not In Agreement With Hypothesis.

1. Internal tube leak is not progressive and will not yield gradual

performance degradation.

2. Internal leak is confined to exhaust plume, therefore will "not

result in chilling of engine area as noted in temperature data.

RANGE TIME 519 _C0NDS

Engine 28hh rapid performance shift.

Itypothe_is 1

Fuel leak at thrust chamber injector manifold (pressurization hose)
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Substantiating Informalion.

l. Leak would be at least 7 lb'sec, which is close to the required

flow',ate at this manifold, and dir-_tionally matches the analog

model.

2. Leak at this manifold could cause chilling of tile hydraulic lines

and gimbal actuators and flight inst,_umentation packages.

Data Not In Agreement With tIypothesis.

]. I,eak at this manifold does not result in cutoff failure unless

the elbow and hose could physically twist around so as to strike

the area (C03a or the ignition detector probe) and rupture the

dome or cause a fire. l'orce generated by flow from the hose is

not sufficient to tear it loose in this manner. Also, lmocking

off C03a would not give enough flow area to match the cutoff

: failure.

2. Available flowrate will not create observed actuator loads.

tty_othesis 2

_ae] l:ak at thrust char:her inlet manifold (ASI fuel line)

Substantiating Data.

1. Result of leak at this manifold directional]y matches analog

model.

2. This leak could cause erosion of the ASI and ASI fuel line a_

the dome, _¢hich could eventually erode dome and cause it to

rupture under pressure.

3. Cold fuel irom this leak could spray on the flight instrumenta-

tion packages and hydraulic components causing _hem to chill

do_n.

I¢.--7_50-2 B-5
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_. Flow from this leak could match the 10 lb/sec required to pro- t

duce the shift if tile ASI fuel line boss on the thrust chamber

fuel inlet elbow failed (produces 7 lb/sec).

Data Not In Agreement With Hypothesis.

1. The fuel pump speed and actuator load changes that were noted

do not fit the model.

2. Available flowl ce will not create observed actuator loads.

Hypothesis 3

Fuel leak at exit of thrust chamber (external)

Substantiating Dat__aa.

1. Leak could cause chilling of hydraulic system and instrumenta-

tion packages. ,_

Data Not In Agree__ent With Hypothesis.

1. Leak would have to be on inboard side of thrust chamber to

create the observed actuator loads; however, this is highly

unlikely because the heat shield protects this part of the

bell from falling objects.

2. Fuel pump speed and thrust chamber jacket temperature go in

wrong direction to match model.

Hypothesis 4

Fuel leak at thrust chamber heat shield (external)

|
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Subs tantiating I)ata.

1. I,eak at this location would give actuator loads in tilt, ri_hl

direction.

2, Leak could cause chilling of hydraulic system and in_:!rtunen_a-

iion packages,

Data \ot in .\greement Kith Hypothesis.

l. If hea_ .,q_ield shifted and moved into engine, it _,'ould have t,o

breM_ nmnerous !arge-diameter st, ruts to do so, and would also

t,,it engines I, 3, and 3 because of the s;_mnetrv of the shield.

2. rim large t,urbine exhaust manifold inlet elbow is t, he first

thing t,ha t the shield _,'ould hit if it moved over into the engine.

This would cause only a hot-gas leak.

5. Fuel pump speed and thrust chamber jacket temperature change ir

wrong direction t,o match model,

h. Temperature measurements in this area do not indicat, e a leal,-.

Hypothesis 5

tMel leak at exit of thrust chamber (internai)

Substantiating Data.

1. Test results indicate that injector pieces may sLrike the thrust

chamber nozzle ereat Lng internal fuel leaks.

'2. 1.3_el Ieak 9f 7 lb/see a*, exit manifold would cause observed

actuator loads,

3. lhlel leak at 7 lb/see would cause observed 319 seconds per-.

formance shift.

R-71i50-2 B-7
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Data Not In Agreement _ith Hypothesis.

1. F_lel ptu_q_ speed and thrust chamber jacket temperature go in

wrong direction te latch model,

2. Patch on tube 123 could blow out, but resultant force, would be

on wrong side of thrust ch_,mber to produce observed actuator

toads.

"_he following hypotheses were investigated as possible causes for _he

performance shift and rejected for the reasons indicated:

I. Oxidizer system leak--analysis ;ndiea_es that 22 lb see oxidizer

leak is required to give the observed engine performance decay.

Engine data do not indicate a,-__yoxidizer leak.

2. Valve failure--review of data showed no engine ;:_rvehicle valve

position changes during the performance shift..

ILa,NGETItlE 319 SECON_DS

Engine 202 pitch and yaw actuator A p shift.

tb'po the s i s 1

Inboard external fuel leak of 17 lb'sec at thrus_ chamber enit

Substant ! ating Information.

I. _i_uld give required load

Data Not In Agreement With H_'_othesis.

1. Performance data iudicate only 7 to 10 lb/sec fuel leak.

2. Would not cause cooling fou,,d above heat shield

B.-8 R--7_50-2
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l _. Does not agree _¢ith calorimeter data

_. Ifould require object to drop from under heat shield: none

available

7. Does not match thrust chamber _ P

>

l_pothesis 2

Inboard external,fuel leak of 21 Ib/sec at heat shield attach point

Substantiating Information.
._ ?

2 - I. Would give required load

2. lteat shield curtain could damage thrust chamber.

• 3. An object from the interstage could strike the chamber.

_. Would give a cryogenic leak into the boattail

_; Data .Not In Agreement Wich Hypothesis.
J

_ 1. Pull tests on flame curtain did not damage thrust chamber tubes.

2. Flame cur±uin temperatures do n_t chill.

3. Flow rate does not match 7 to 10 lb/sec required for performancev

shift.
Y

_ _. Does not match thrust qhamLer A p
t,:

• Hypothesis 3 "

Inboard external leak from fuel tank pressurization hose of 15 lb/sec

_; with hose expanded to flame shield

_2

.Substantiating Information.

R-7_0-2 B-9
i i
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D_ata_.No.t..In Agreement With Hypothesis.. _

1, Flowrate not in agreement with 7 to 10 lb/sec required for per-

formance shift.

2. F1Bme curtain temperatures do not Chill.

3. _ tes data do not match performance shift.

4. Stage H2 presauri_ation system data shows line to be intact.

ASI fuel line failure I

__ Substantiating Information.

1. Data match observed performance shift.

2. Would chill boattail

Data Not In Agreement With t!ypothesis.

1. Would not give load of required direction or magnitude.

Hypothesis 5

Outboard internal thrust chamber fuel leak of 11 lb/sec at e_it

Substantlatin_ Information.

1. Would give required loads

Data Not,In A_reemont With l_pothesis.

1. Thrust chamber A P data do not support l! lb/sec leak.

2. Would not cause external chilling /_

B-lo n-Tto-s
ill I | II I I tit||t | I
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_: Inboard exhaust system leak of greater than 7 lb/sec

SubstantiatipgInformation,

1. I¢ould give required load'

Data Not In Agreement With Hypothesis.

:: 1. Temperatltres in boattail do not indicate hot-gas leakage.

5: 2, System analyzed to be intact at cutoff.
_f 2

44 3. Does not match performance shift

_: Jt. Requires a 72 in. 2 hole in exhaust system

:_d,- Itypothesis 7 -

_ Inboard oxidizer leakage o_ 180 lb/sec

_SubstantiRting Inf.orma.tion.

1. _ould give required load

2. Would chill boattail

Da,_a No.t In Agroeme_t |_ith Hypothesis_

1. Performance to_e was 7 to 10 lb/sec of fuel.

2. Leakage rate too high; engine data do not indicate any oxidizer

leak.

Hypoth_s is 8

Fuel inlet duct inner bellows pressurized
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Data No_t_In.Aar_em_ontwi__ _Hypothesi s.

1. Load in wrong direction

2. A8-502 stili had relief valves on annulus.

_hesis 9

Stage oxidizer duct support failed and loaded oxidizer side of engine.

Data_Not In Agreement With Hypothesis.

1. Duct _ould b_ supported by stage thrust structure.

2. Insufficient load.

_othes!. _]o

Hole through thrust chamber to hot gas to cause leak of 3,1 lb/sec just

above exit plane.

- Substantiating Information.

1. Would give required load

Data, Not __n Agreement With ]_pothesis.

1o Aft heat shield temperature does not rise.

2. Would require impact of object under• heat shield

3. Not indicated in performance data



t_ Substantiating In fprma t ion.

I. Would give required load

Data No,t In Agreement With Hypothesis.............. r = ,

1, Would heat boattail instead of cooling _t

2, P&D data comparison does not support failure,

3, Flight data do not confirm failure mode,

Failure of gimbnl bearing fabroid liner by effects of S-IC boost.

Data. Not In Agr_eement .wi!:h _Hypothes_is.

1

. [. Effects of S-IC boost not sufficient to overload and flake
•-_ fabro.t.d.

i

Hypothesis 13

Oxidizer or fuel pump support failure

Data No_ In A_reemen_ With Hypothesis,

1. Insufficient load

• _

Hypothesis 1_

Unbalance of 1,_-psi compartmen_ pressure across entire engine above heat

shield

0

R-740-2 B-I
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lLaMA, a . _

Data Not In Agreement_With Hypothesis.

I. Compartment interstage pressures do not indicate over 0.05 psia°

 thesis 15
.%

Inboard external leak at fuel tank pressurization manifold of 66 lb/sec

Substantiating Informatlon.

I. Would give required load

2. Would chill bestial1 _ _

Data Not In Agreement With Hypothesis.

1. 0nly 7 to 10 lb/sec flow loss indicated

2. 0nly 80 Ib/sec flow through main chamber r--"
,?

3. R&D test data do not match performance shift observed.

Hypothesis 16

Outboard internal thrust chamber fuel leak of 23 Ib/sec near turbine ex-

haust manifold

SubstantiatingInformstio_n.

1. Would give required loads

Data Not In Agreement With Hypothesis,

1. Not supported by thrust chamber A P data and transient data

2. Would not cause external effects and temperatures

B-I_ _7_0-2
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i
::,- 8 Hypothesis 17

Gimbal bearing failure

Substantiating Information.

1. Would give required load

Data Not in Agreement With Hypothesis.

1. Cannot explain mechanical failure to account for displacement

_ of gimbal bearing by this amount

_; Hypothesis 18

Heat shield supports failed and allowed shield to rest on chamber.

• (_ Sub s tan}ia.__ing Informs tion.

; 1. Loading in required direction

,_ Da_a Not In Agreement With IIypothesis.

1° gould require heat shield to move against gravity

2. Would not explain performance shift

_ Hypothesis 19

Large external indentation in thrust chamber of 10 to 20 in. 2 projected

-_ area

'_ Substantiating Information.

Ii _, I. Would explain loads .

R-749o-2 B-i9
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2. Impact from external object possible

3. External object could damage ASI fuel line.

Data Not In Agreement gith Hy_pothesis.

1. _/oul_ require 7 to 10 lb/sec fuel leakage to explain performance

shift

2. gould not explain boattail chilling prior to 319 seconds

3. gould require considerable impact to dent chamber (greater than

2000 ft-lb)

?

RANGETIHE &12.3 SECONDS

Engine 20_ rapid performance decay and subsequent engine cutoff.

,H_pothe sis 1

Burn through oxidizer dome (internally)

_ 1. Partial failure of the ASI fuel line at 220 seconds results in

high ASI mixture ratio and erosion of the ASI nozzle.

_' 2. Erosion of the injector continues until &12.3 seconds, at which

i time breakthrough to the oxidizer dome occurs and oxidizer flow

begins to increase.

i 3. Chamber pressure begins to drop and fuel flow increases; per-

i formance decays until cutoff is initiated.

Hypotb _sis 2

Burn through oxidizer dome (externally)

1. Partial _taluro of the AST fuel line at o20 seconds results in
hiEh ASI mixture ratio and erosion of ASI nozzle and injector.

........ B-lfi P.-7_5o-2
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t 2, CompJe_e sef_aration of _he ASI fuel linear 3]9 seconds allows

h_t ASI gases _o back flow through the ASI fuel line and impinge

externally on bhe oxidizer dome.

3. Erosion of oxidizer dome cvntinues until _12.3 seconds, at which

time breakthrough tc the Oxidizer dome _ccurs and oxidizer flow

begins to increase.

_. Chamber pressure begin_ to drop and fuel flow increases; per-

formance decpys until cutoff is initiated.

Substantiatin_ Information.

I 1. Oxidizer flo_ increase indicating failure downstream of flovmeter.

2. Pressure in oxidizer system is maintained for appruximatety 60

seconds following cutoff, ir,,ticating failure is downstream of

HOV.

C_ 3. Rapid decay of main oxidizer injection pressure compared to
oxidizer pump discharge pressure indicates failure downstream

o f HOV.

The following malfunctions were investigated as possible causes for the

rapid performance decay and rejected for the reasons indicated:

Fuel Fee d S_stems

1. Inlet Duct Failure

i_ a. Fuel injection temperature did not rise.

, b. Fuel turbine inlet did not rise.

c. Oxidizer _urbine inlet did not ria!.

4. Fuel flow should not increase.

2. Turbopump Failure
P
I_ a. Fuel inJec'_ion temperature did not rise.

b. Fuel turbine inlet did not riae.

1968026390X-009
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c. Oxidizer turbin, inlet temperature did not rise. _-

f d. Fuel flow should not increase.
I

_. High-Pressure Duct Failtwe

a. Fuel in jecti_ _ temperature did not rise.

b. Fuel t_rbine inlet temperature did not rise.

c. Oxidizer turbine inlet temperature did not rise.

d. Increasing fuel eliminates failure upstream of flowmeter.

_. Gas Generator Bootstrap Line Failure

a; Fuel and oxidizer flows should increase; _: - _

b. Fuel turbine inlet and oxidizer turbine inlet tempe_atures_:_ _,,

5. Gas Generator Bypass V_lve Failure £ . _

a. Position micro indiestes uroper operatioh. -- :_.:_-?i.:._i:.i:i---::_-

b. Fuel turbine inle „�andoxidizer turbine inlet temperatures =L

did no_ rise, :: i

6. Main Fuel V_lve Failure _{

= a. Position trace indicates proper operation.

b. Fuel injectio_ temperature did not rise.

c. Fuel flow should not increase.

_ 1. Thrnst Chamber

a. Fuel in_ection temperature did not rise.

b. Fuel turbine inlet and oxidizer turbine inlet temperatures

did no* rise.

-_2
_ Oxidizer Feed System

1. Inlet Duct Failure

_ a. Oxidizer flow would not increase,

_ b Oxidizer speed would increase.

_ c. System inte_ity i. m_tntained after cutoff.

_ _i_ 9. Turbopump Fat lur.

j a. Oxidizer flow would not increase.

] 968026390X-0 ] 0



flow would not increase.
b. Fuel

c. Bearing coolanl temperature indicated no problem.

3. High-r_'essure l_Ict Failure

a. Failure upstream of flo_neter would not result in increase

in oxidizer flo_.

b. Failure any place in duct would not result in system integrity

being maintained after cutoff.

4. Gas Generator Bypass Valve Failure

a. Position micro indicates proper operation.

• b. Failure any place in duct would not result in system integrity

being maintained after cutoff.

5. Main 0xidizer Valve Failure

a. Position trace indicates proper operation.

b. Oxidizer flow should not increase.

_i: Gas Generator and Exhaust S_stem

1. Gas Generator Va]-e Failure and Combustion:_ystem--Burnout,

_: Crossover Duct Failure, Oxidizer Turbine Bypass Valve Opens

L

,_ a. Failures indicated in this system would result in power

_ being removed from turbines with no increase in oxidizer

or fuel flows

,_ b. Gas generator valve and oxidizer turbine bypass valve

_: position traces and micros indicate proper operation.

_: _ ASI S_stem
i_

:_ 1. ASI 6xidizer and Fuel Lines

_ a. Loss of either line would not result in cutoff, unless failure

_i_: of fuel line earlier in test resulLed in erosion of ASI through

..... to oxidizer dome.

i.
R-7_50-2 B-19
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Start _stem

1. Spin Line Failure

a. Failure would result in power being removed from turbines

with no turbine increase in fuel or oxidizer flows.

y

_o0 R-7_50-2
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B _LPPENI)IXC

ENGIN_ 202 (J-2 ENGI._ J20_) HISTORY AND CONFIGURATION

S-II stage anomalies that occurred during flight of the AS-502 vehicle

appear to be centered around Engine 202 (J-2 S/N J20_); accordingly,

analysis of _he anomalies included a review of the history of this en-

gine from completion of buildup through vehicle launch. This complete

chronologicalhistory, including all significant engine events occurring

prior to launch, is itemized in Table C-I.

ENGINE ACCEPTANCE

J-2 engine S/N J20_ was subjected to a hot-fire acceptance test series

at the Rocketdyne Santa Susana Field Laboratory during this period 13

through 15 October 1965. The engine accumulated 676.1 seconds of main-

stage operatlon during the series, which consisted of four tests. The

_ engine was accepted by the Government on 15 November1965, following

completion of postfiring electrical _nd mechanical checkouts. Acceptance

testing of engine J20_ appears to have been normal in all respects.

STAGEACCEPTANCE

Engine J20_ wus subjected to two hot-fire operations during acceptance

of the AS-502 S-If stage at the Mississippi Test Facility, with respective

durations of 365.1 seconds and 367.8 seconds. The stage was shipped to

KSC on 20 May 1967, engine J204_ having accumulated 1409.0 seconds in six

starts, well within allowable limits.

-CONCLUSIONS

Analysis of the chronological history of engine J20_ (Table C-l) does not

reveal any relevance to the S-II stage anomalies that occurred during

flight of the AS-502 vehicle.

C

R-7_50-2 C-I
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