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Section 3

DEVELOPMENT OF ECGS COOLING PATCHES

3.1 ECGS COOLING PATCH AND COMPONENT DESIGN AND FABRICATION

Figure 2 shows a typical ECGS cooling patch. The patch is made up of five basic

layers. An inner and outer impermeable membrane, a wicking layer, a boiler void

layer, and a reflective foil layer. The inner and outer membranes are sealed

together around the edges of the patch to form a vacuum-tight bag. Within this

bag are the wicking layer, boiler void, and refle pting foil layers. T',e wicking

layer acts as a small capacity water reservoir and maintains a "wet" contact with

the membrane on the skin or cool side of the patch. This wicking layer is

attached to a boiler void layer. The boiler void proviaes a path for the

vaporized water to use in leaving the patch. Additional steam collector mani-

folds are provided between the boiler void and the foil layer to aid in removing

steam from the patch and reduce internal flow restrictions. The foil layer acts

as a thermal reflector, preventing radiant heat from entering the cooling patch

from outside sources thereby preventing unnecessarily high heat loads to the

cooling patch.

STANDARD SPACESUIT 	 —WATER VAPOR OUT
THROUGH LIMITING

IMPERMEAFILE	 ___________________ y =__= VALVE ORIFICE
MEMBRANE

M 20 in..^,--^-*-..—^^ —._'•^:, ..•,—y INTERCONNECTING
''""'' •̂ ":Y'' VOIDS TYPICALUNDERGARMENT

NON COMPRESS I BLE/	 BODY SKIN
WICKING MATERIAL

Figure 2. Patch Cross-Section
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F igure 3. Spirapstear.. Line - "Stretched" and As-received Condition

Figure 4. External Plumbing-Line Configurations

10



VEP, SOLDER TUBE TO BASE FITTING

:LAMPING NUT

CLAMPING WASHER

BASE WASHER

ILVER SOLDER WASHER TO BASE FITTING

- IA COPPER TUBE

The patch vacuum exit fitting is shown in Figure 5. The vacuum exit fitting

is designed to seal to the patch membrane with two soft rubber washers which

are compressed by the fitting base and a washer with the clamping nut. The

external vacuum line is connected to the fitting by slipping the vacuw,. lire

over the fitting exit and clamping it in place.

3.2 PREDICTED PATCH PEFFORMANCE

An analysis was made to determine the limitations on patch performance inherent,

in the basic design and to size the external vacuum lines. The results of this

analysis showed that hea p removal rates would be obtained which far surpass the

required 5,000 Btu/hr for a complete suit. External vacuum line plumbing layout

was estimated and prelimiriary line sizes were developed. The complete analysis

is included in Appendix A.

The flcJw characteristics were -alculated for two different types of Trilock

boiler void materials. Tests were run using air at low pressure, to determine

the pressure drop characteristics of each material. The data was reduced to

Reynolds' number and friction factor form and is shown in Figure 6. The method

of data analysis is shown in Appendix B.

BASE F

SOFT RU31
GASKETS

Figure 5. ECGS Patch Exit Vacuum Fitting
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3.3 WICKING 14ATERI AL TESTS

Tests were performed to evaluate several candidate materials for use in the

cooling patch wicking layer. The characteristics measured included wicking

flow rate and dry w 4-cking rate at a range of simulated external patch

pressures and for several layers of material. The results of these tests

indicated that Dexter Paper Ito. 195 was satisfactory for the proposed use.

The tests were run in a situp which closely simulated the conditions

to which the wicking material would be exposed in actual patch operation.

A typical wicking material test in progress is shown in Figure 7.

The test setup consisted cf a 1-in.-wide ly 15-in.-long test sample

supported by a plastic sheet. On top of the sample was a layer of

Trilock and on top of the Trilock was a plastic balloon. This whole

assembly was retained inside a rigid plastic enclosure. The oalloon

was inflated through a pressure regulator to simulate the external pressure

which an actual patch would encounter in operation. Water was supplied

n

sb.-

w+cK NG
TEST

i
	

SET- UP

F

Figure 7. Wicking-Material Test Set-up
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3.4 BOILER VOID OP TESTS

A series of tests was performed to determine the local pressure drop character-

istics of two candidate boiler void materials. The tests were conducted using

air at ambient temperature as the test fluid. The material to be evaluated

was cut to a 6-in.-square shape and enclosed in a plastic envelope. Inlet and	 \

outlet manifolds of 1/4-in. Spirap were provided to distribute the flow uni-

formly across the test section. A photograph of a typical boiler void test

section is shown in Figure 16. Instrumentation was provided to measure pres-

sure at the inlet to the test section, differential pressure across the test

section, and air flow rate. A throttling valve was included at the inlet and

exit of the test section. The exit of the downstream valve was ported to the

ECGS laboratory vacuum system. The test setup is shown schematically in

Figure 17.

The tests were run by flowing air through tho Lest section at a range of sub-

atmospheric pressures. Pressure differential across the test section and air

flow rate were measured. Reynolds number and flow resistance coefficient were

calculated from the test data. Tests were run for flow both parallel and per-

pendicular to the warp of the material. Figure 6 shows the results of these

tests. The method of data reduction and analysis is given in Appendix B. The

most suitable boiler void material, based on the test data, is Trilock No.	 •

6001-1. This material was used in all subsequent ECGS cooling patches.

3.5 INDIVIDUAL PATCH TESTS

All cooling patch tests were run in the ECGS laboratory. This laboratory is

e quipped with a large vacuum system, capable of simulating space vacuum pres-

sure at the exit of the ECGS vent system. Ample space is available in the

laboratory for full space pressure suit storage, assembly, and testing in con-

junction with the ECG S0 cooling garment. A treadmill and bicycle ergometer ar,e

available for generating the re quired metabolic rates to simulate the antici-

pated work loads astronauts may encounter during EVA or IVA while wearing S.

space pressure suit. Two methods of raising metabolic rate were used in the

tests which have been performed on ECGS patches to date. These are treadmill

walking/running and forearm exercise.
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Treadmill operation ie quite straightforward. A preselected speed and grade

are set and the subject walks/runs at these fixed conditions. Available test

data from other sources provide a good correlation between treadmill speed

and grade and test subject metabolic .-ate.

The forearm exercise was accomplished using a squeeze bulb similar to that

used to inflate a blood pressure cuff. A schematic of this system is sh rjwn in

Figure 18. In operation, the forearm exercise system requires the sub'ect to

squeeze the bulb at such a rate that a constant pressure is maintained in

the accumulator. A valve in the accumulator exit line regulates the air flow.

The flow,is measured by a flcwmeter downstream of the flow regulating valve.

The exercise rate can be controlled by changing the pressure or flow rate.

When using this form of exercise, the subject is seated upright with the hand

and arm which is exercising supported in a specific position. With this

restriction of position and the flow and pressure measurements, a very repeat-

able exercise rate can be accomplished.

Primary test instrumentation measured skin temperature under the test patch,

pressure inside the patch, and run time. Secondary data in(-luded patch weight

before and A fter a run, and vacuum system manifold pressure. All patch vari-

ables were recorded on an analog data system (ADS).

The ADS is shown schematically in Figure 19. This system provides analog

recording on an oscillograph of up to 30 thermistor temperature readings and

up to 40 pressure readings. In addition, five channels of strain-gage-type

instruments can be monitored. The temperature measuring capability is obtained

by sequentially scanning up to 30 thermistor inputs. The scanning rate is

limited to 30/min in order to get readable oscillograph records. Two channels

of thermistor data are continuously monitored and visual readout is provided

for these two channels. The pressure measuring capability of this data sys-

tem is obtained by sequentially scanning up to 48 individual pressure inputs

by using a scannivalve. This scannivalve sequentially ports the pressures to

a single strain gage transducer.
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The procedure used to test individual patches was as follows, with minor

modifications as required for specific tests:

1. Fill patch with water.

2. Weigh patch and record weight.

3. Apply thermistors to test subject.

4. Install patch on test subject and attach patch vacuum and
instrumentation line.

5. Operate patch and record data (subject may or may not be
exercised depending on run requirements).

Table II lists all individual patch test runs during the Task 2 effort. These

tests covered a wide range of variables and as such some served more than one

purpose. A brief discussion of the overall test program is presented in the

following paragraphs.

The first test series (runs 301 to 304) was run to obtain skin temperature time

history data to use as a comparison with future cooling patch data. These

runs were made both with and without a lower right arm patch in place to

determine the effect of the inactiv- patch on skin temperature. Data from

these tests are shown in Figures 20 through 23. It ^an be seen that the

inactive patch causes the skin temperature to rise higher than when the fore-

arm is exercised without any covering.

A run was made to investigate the effect on blood biochemistry of exercise,

fatigue, and local overheating of the forearm. This work was carried out with

IRAD funds as a parallel study which might have relevance to the ECGS program.

A detailed discussion of this program is included in Appendix C.

Another series of runs (308 to 310) was made to obtain data on forearm tempera-

ture while the forearm was being cooled with an ECGS patch. Forearm exercise

was included to show what effect it may have on the patch cooling character-

istics. Data from these runs (Figures 24, 25, and 26) show that the cooling

capability of the patch far exceeds the heat generated locally by the

exercise.

N

k.
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s	 3 7	 Ŝ	 Z 3	 a a a a a a a a a a a aa a a a a a a a a a a a a a a a a D o a	 ^D ::J ^D a

ri N L^ M lr U\ M M OT O CT \D to ri L\ O Lr N M O ri ri t- \D U\

(n N N -4 M N CT co _7 . -7 O0 t- CT -1 N N ..7 \D O CT t- J\ 00 M ..7
1-1	 1-1	 ri	 ri	 N	 r-i

O O O O O O O O O O O O O O O O -) O O O O O O O O
U\ri U\ ri U1 N M N M _; O CT _7 _7 \D N N \O N M W 1' M O 0T
-1 CO O O \D ri T r-I c0 CT CT cD t- O t- to N U\ co N O to N ri M
M M N U\ .-1 In N M M M N ri N In V\ \O U\ _7 M M M N M \D th

r r ti r r ti r ti r ti r r t— r r t— ti ti tî
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A further series of runs (313, 314, 317, and 318) was made to evaluate two

sizes of Spirap edging on the cooling patch. In these tests, the heat removal

rate was maintained constant for two runs, one on the upper left arm patch

(with the small Spirap) and one on the upper right arm patch (with the larger

Spirap). Four pressures inside the patch were recorded along with skin tem-

perature. Heat removal rate was calculated for each run from the weight of

water removed from the patch during the cooling process. The first two runs

resulted in unsatisfactory pressure data from the right arm patch. To provide

as similar conditions on each patch as possible, both hatches were retested

(runs 317 and 318). These runs were conducted in the same manner as runs 313

and 314. The results of these tests are shown in Figures 27 and 28. It can

be seen that the smaller Spirap edging increases flow resistance as evidenced

by the higher pressure differentials inside the patch. Also, the patch with

large Spirap shows a more rapid cooling of skin temperature than the patch

with the small Spirap. Although these differences in performance exist, both

patches perform sufficiently well to satisfy the cooling requirements of

5,000-Btu/hr full suit capacity. Anotrer factor in selecting the size of

edging Spirap is patch comfort and flexibility. In light of the bulky nature

of the large Spirap edging and its associated increased stiffness, the small

(1/8-in. diam) Spirap was selectP_ to be used on all future patches. In 	 y

areas where additional flow capacity is required, this small Spirap can be

doubled up to provide the required flow capacity without adding thickness or

stiffening to the patch.

One test was run in an attempt to adjust patch cooling -rate to obtain stable

skin temperature. This test (run 315) used the lower right arm cooling patch

and exercise was accomplished with the squeeze bulb forearm exercise equip-

ment. Unsatisfactory control of heat removal rate resulted in a final cooling

sequence at maximum cooling rate. After the run, leaks were found in the

patch outer membrane. The poor heat removal rate control was due to these

leaks. Further testing with this patch was discontinued until it could be

repaired.

The effect of overall exercise on patch cooling capacity was investigated by

using an upper right arm cooling patch while the subject was walking on the
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M _

treadmill. Patch cooling characteristics were observed at three different

metabolic rates (based on treadmill speed and grade). Run 319 investigated

upper right arin cooling at a metabolic rate of approximately 3,200 Btu/hr.

Runs 339 and 340 were made at 1,200 /Btu hr and runs 342, 343, and 345 were

made at 1,600 Btu/hr. Figure 29 shows the skin temperature history for each

of these runs. It can be seen that even at the 3,200-Btu/hr metabolic rate the

patch cooling capacity was much greater than that required to maintain constant

skin temperature in the nonperspiring temperature range. Run 341 was made

immediately following a 1,200-Btu/hr metabolic rate run to observe the cooling

characteristics under postexercise conditions. Figure 30 shows the skin tem-

perature history for this run. Run 349 was a similar test except no exercise

was done preceeding the cooling run. Figure 31 compares these two runs. The

effect of exercise prior to cooling is as would be expected. The postexercise

run failed to cool the skin as rapidly as the nonexercised related run. This

is accounted for by the increased metabolic lei •	n the postexercise run;

that is, more heat was being generated, and therefore 	 t the same heat

removal rate, slower skin temperature cooling occurred.

Two series of runs were made to document the performance of the upper right

arm patch. Two different subjects were used, one for each series. The runs

were made at fixed heat removal rates varying from equivalent full-suit cool-

ing of 2,000 to over 6,000 Btu/hr. Run time (to patch internal pressure drop

limit), heat removal rate (by the water weight change method), and skin tem-

perature versus time was recorded for each test. All these runs were made with

the subject passive, in a seated position. The data from these runs were

plotted in two forms, skin temperature versus time, and run time versus heat

removal rate. This data is shown in Figures 32 and 33. The skin temperature

versus ti;.,e curves give an indication of the heat removing capacity of the

patch. Variation in these curves, even at the same heat removal rate, occurs

from subject to subject. This is indicative of the difference in physiology

between subjects. Even the same subject will occasionally generate different

skin temperature versus time curves as a function of his physiological condition

at the time of the test. The same variation applies to the run time curves.

Data scatter, therefore, is apparent in all cooling tests. By careful inter-

pretation of the test results, a reasonable band of performance characteristics
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can be established which gives satisfactory evidence of the overall patch

performance.

It can be seen that the curves of run time versus heat removal rate separate

into two distinct lines, one for each subject. The basic characteristics of the

curves are similar. High heat removal rates lirt..t the run time while lower

heat removal rates permit longer operation before the skin-to-patch temper-

ature difference becomes too small to maintain a fixed heat removal rate. At

higher metabolic rates, these run time curves become less sloped, with a final

slope of zero when subject skin heat rejection rate equals EGGS system heat

removal rate.

On two of the above mentioned runs, water was added to the patch during the

cooling operation. The effect of this water addition was to momentarily raise

patch pressure with a corresponding increase in patch and skin temperature. A

small perturbation such as this is expected during water refill operaticn and

should not detract from overall s ,,-stem performance.

•	 Two tests were run using the upper right arm patch to evaluate the effect of

external thermal insulation on patch performance. Figure 34 shows the skin

temperature vs. time curve for this test compared with the skin temperature

observed in a similar test without the thermal insulation. The most signifi-

cant thing about the comparison is the rate of skin temperature recovery. The

uninsulated patch has a much greater skin temperature recovery rate at any

given skin temperature than the insulated patch. This indicates, quantitatively,

that external insulation on the patch does materially prevent enough heat flow

into the patch to cause observable differences. In the final patches, a layer

of aluminum foil is located on the outside of the boiler void to prevent radiant

neat transmission into the patch from external sources: This should eliminate

a large part of the heat leak apparent in the insulated patch tests.

A series of runs was made to document the performance of the lower left leg

patch. The data for these tests were recorded and plotted in the same way as

•	 those for the upper right arm patch. The same basic performance character-

istics are apparent in this data as for the upper right arm. The data are

shown in Figures 35 and 36. Maximum heat removai rates of over 5,000 Btu/hr,
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based on full. ECGS suit area, were obtained on several runs, indicating that

the patch is more than capable of removing its share of heat at a full-suit

rate of 5,000 Btu/hr.

The effect on ECGS patch performance of varying ballonet pressure was deter-

mined. Several runs were mare with the lower left leg patch at varying

ballonet pressure from 0 to 20 in. H 2O. The results of these runs is shown

in Figure 37. It can be s°^n that increasing ballonet pressure increases the
run time at a given heat removal rate. The improvement in run time with

increased ballonet pressure is due to two factors: (1) the patch is pressed

into more intimate contact with the skin, lowering the thermal resistance of

the patch-to-skin heat path, and (2) areas of the patch which were not con-

tacting the skin due to the local "hills and valleys" were formed to conform

more closely to the skin contours, thus increasing the skin contact area

through which heat could be transferred. The improvement in performance

appears to diminish with increasing ballonet pressure. Because of this trend,

and the fact that lower ballonet pressures are more comfortable, a compromise

pressure of 5 in. H2O was chosen for use on fugure ECGS systems. Further

testing with the full cooling garment may allow elimination of the ballonet

entirely from some portions of the suit if sufficient heat can still be
4L

removed from the system as a whole.

Tests were run to determine the effect of the skin-to-patch comfort layer of

nylon mesh on patch cooling performance. The results of these tests, as

shown in Figure 38, shows no appreciable difference in patch performance,

with or without the comfort layer. Based on this test data, the use of the

comfort layer mesh will be contiz.led in all ECGS patches.

A series of rur.s (362 to 365) was made to document the performance of the upper

left leg patch. These runs were made at two different ballonet pressures.

The data (Figure 39) show the same trend to improved performance with increas-
ing ballonet pressure as did the lower left leg patch data. Overall perform-

_	 ance was comparable to the other patches evaluated. A comparison of patc'.i

run time (limited by patch internal pressure drop) at constant heat removal

is shown in Figure 40 for upper arm, lower leg, and upper leg patches. The
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closely similar performance for each patch indicates approximately equal

cooling capacity in each patch. This is necessary if the predicted full-suit

cooling performance is to be accomplished. The slight variation between the

performance of the patches can be in part attributed to the varying physiology

between the parts of the body which were being cooled. Further research into

the quantity of heat rejected from various areas of the body under different

exercise conditions is required before the precise local body cooling require-

ments can be specified.

Two runs (369E and 369F) were performed to evaluate the difference in heat

rejection at maximum patch cooling capacity using the same patch in two

different body-locations. The upper right arm patch was used on both the

Location for which it was designed (the upper right arm) and on the bottom of

the feet. Almost identical performance was recorded for both patch locations.

This indicates that, for the locations tested, the ability of the body to

supply heat to the skin surface does not vary appreciably between the upper

arm and the bottom of the feet.

1*

A test was run to obtain the steady state skin temperature heat removal rates for

two different test subjects. A range of skin temperatures was investigated and

Figure 41 shows the results of this testing. An increase in the steady state heat
removal is apparent as skin temperature is reduced. Each subject has a different

skin temperature vs. seat removal rate curve. It should be noted that these tests

were run with the subject at rest. Further tests with the subject at higher meta-

bolic rates would gene-ate data which could make a family of curves of constant

subject metabolic rate These curves would show higher heat removal rates for a

given skin temperature than those in Figure 41. The range of temperatures over
which steady state skin temperature can be obtained indicate the wide operating

limits of the ECGS system.

By this time in the progren all of the ECGS cooling patches had been

fabricated and upgraded in readiness for assembly into the complete suit.

Final performance tests were run with the same vacuum line plumbing (line

length and ID) as would be used on the full suit. Data were taken at a

range of heat removal rates with the subject at rest. Figures 42, 43,
and 44 show the results of these tests. The performance of all patches

f
f
t
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fell within a narrow range, indicating that each unit is capable of about

the same performance. This is a desirable objective to assure the most

uniform cooling of the subject as possible.

3.6 MEASUREMENT OF ECGS PATCH HEAT REMOVAL RATE

The measurement of the heat removal by the ECGS system is necessary in order

to evaluate the system performance. Several methods of measuring this heat

removal rate have been evaluated. The heat removed is directly proportional

to the amount of water vapor removed from the patch. This fact makes the

measurement of hest removal analogous to water vapor removal. Thus, a

measurement of.water vapor flow from the patch is a direct measurement of

patch heat removal rate. The methods used to measure this flow include

metering orifices, calibration of vacuum pump inlet pressure versus flow, and

patch weight change during a run. The use of a metering orifice in the vapor

removal line presents problems in obtaining accurate readings. The vacuum

pressures are quite small; therefore, a very small pressure drop must be

maintained across the orifice if flow is to be kept in the subsonic range.

Calibration of an orifice is uncertain and measurement of the very small AP

is difficult with any degree of accuracy. The above mentioned problems

caused this method of vapor flow measurement to be abandoned early in the pro-

gram. Ca.libraticn of the vacuum pumping system to determine flow of water

vapor as a function of pump inlet pressure appeared to be a very simple,

on-line, method of measuring the required flow. Attempts to calibrate the

system included patch operation at fixed pump inlet pressure for a timed

period and determination of water loss from the patch by weight difference.

The results of these calibrations provided a rough indication of flow but the

accuracy was not entirely satisfactory. The method finally used for most

ECGS patch tests was a combination of pump calibration and weight change

in the patch. During constant heat removal rate runs, the flow from the patch

was throttled to maintain constant pump inlet pressure.

The test patch was accurately weighed before and after the run, giving the

amount of water used. The time duration of the cooling process was recorded

and, using the weight of water from patch weighings, the steady state or (in

the case of variable heat removal) the average heat removal rate for the run

was calculated.
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Section 4

DEVELOPMENT OF USAF ECGS CONFIGURATION

(UPPER ARMS WITH FULL TORSO)

4.1 CONFIGURATION DISCUSSION

A contract requirement specified that two complete configurations of the ECGS

be provided. The simpler of these configurations is the USAF version, which

would include the front and back torso cooling patches, the upper arm patches,

a water belt to supply the expendable coolant media, all vacuum lines, and all

related plumbing and instrumentation. The complete ECGS was designed with this

in mind; the upper and lower legs of the ECGS can be unzipped in one unit from

the torso, together with the removable lower erms and headpiece. Both config-

urations sham , the water belt, the main torso vacuum -collector mainfold, and

the multiple-pin thermistor plug for skin temperature instrumentation.

The ECGS torso suit splits from the hips to the armpits on both sides and the

upper arm patches also split along a line that continues from the armpit to the

elbow; this allows the complete garment to slip over the wearer ' s head like a

poncho. The simple velcro zippering of the torso and arm splits and the velcro

fastening of the torso bottom circumference to constant -wear slip on skin tight

shorts complete the donning procedure. The water belt splits at the navel and

is snapped in place with integral suspender straps. A single line connection

to a vacuum source provides immediate cooling capability.

Sharp bends at the torso were not a requirement in the first phase of the

program; therefore, no effort was made to provide flexibility. However, the

torso suit can easily be used on the treadmill at very fast speeds without

inconvenience to the wearer. If complete torso mobility is desired, it i;

entirely feasible to make the torso into four or more smaller artif ;ulated

patches instead of the two large ones now being used.
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The ECGS torso suit has been designed to integrate with the Apollo spacesuit

by the simple replacement of the LCG fitting with an appropriate ECGS vacuum

fitting. The spacesuit penetration holes would not have to be altered for

this conversion. 
All 

waterwater lines, together with pressure and thermistor

instrumentation lines, may be routed througk ,, the LCG/ECGS penetration hole if

desired. These lines are required only for test and evaluation and not for

flight hardware.

4.2 PRELIMINARY PERFORMANCE TESTS

The heat refection rates of the torso suit were converted to the full garment

area, as was the case for the individual patch tests, to compare torso suit

performance more easily with the 5,000-Btu/hr maximum-metabolic-rate design

cooling objective.

Two typical performance tests on the ECGS torso suit configuration were made

on the treadmill as shown in Figure 45.

Analysis of the data has established time-temperature curves for skin surface

temperatures at selected areas under the coaling patchea. These data are

shown in Figures 46 and 47. On the first run (Figure 46), the system was

operated with no throttling of the racuum exhaust until one of the skin temper-

atures ceased to decrease. This was interpreted as an indication that the ECGS

patch cooling in that area was running out of water. The cc:>ling was shut off

at this point, and the skin temperatures were allowed to recover at a normal

rate during exercise. Throughout the entire run, the subject was walking on

the treadmill at 4.5 mph and on a 2% grade. This corresponds to about

2,700-Btu/hr metabolic rate. The average ECGS torso suit heat removal rate,

eased on water used, was 1,895 Btu/hr or 4,630 Btu/hr for the full suit equiv-

alent. The heat removal rate was an average value, because under the full open

outlet vacuum valve type operation the heat removal rate begins initially high

and then decreases as patch pressure and temperature decrease. In later runs,

fixed heat-removal-rate tests were made to simplify the reduction of test data

and to give better control of skin temperature.
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The data from the second run (Figure 47) show approximately the same initial

cool down. When the point at which the patches stopped reducing skin temper-

ature was reached, water was injected into all of the patches at the theoretical

use rate. It was found, however, that too much water was injected into some

of the patches and this caused some liquid carry-over into the vacaum lines.

This loss of water made it impossible to calculate an accurate heat removal

rate for this run. The test subjects exercised at the same rate as in the

first run (4.5 mph, 2% grade) for the entire run. Further experimentation will

determine the time and quantity of water that must be injected into each patch

to prevent liquid carry-over. Because of a transducer calibration error,

recorded patch pressures are not reliable for either of these two runs.

Two additional runs were made with the steam exit throttle valve wide open.

The subject was wearing shorts and the USAF i-.CGS upper arm and torso garment

configuration. Exercise level for both tests was 3,420 Btu/hr, which was

obtained by having the subject walk on the treadmill at 4.5 mph and on a 4%

grade. Figures 48 and 49 show the skin temperature versus time for these runs.

Steady state conditions were not obtained in these tests. Figure 5C shows the

maximum and minimum pressure recorded in each patch during the second run.

Figures 51 and 52 show the pressure drop inside each patch and from each patch

to the collector respectively. The back torso pressure level is higher than

the other patch pressures; this may indicate a higher heat output of this part

of the body.

Two more runs were made to determine the suit performance at fixed heat removal

rates. Skin temperature versus time for these runs is shown in Figures 53

and 54. In both cases, the exercise level was maintained at 4.5 mph and on a 4%

grade on the treadmill; this produced an energy expended level of 3,420 Btu/hr.

In run 502 (Figure 54), a severe leak developed in the collector fitting at

about 30 min into the run. The exact time when the leak began is not known, so

the last ha-Lf of these data is questionable and is shown for reference only.
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A test was made to determine the conditions that were required to maintain

stable skin temperatures in the torso area. The data from this run are shown

in Figure 55. At each exercise level, vacuum manifold pressure (an indicator

of steam flow) was adjusted to obtain a stable skin temperature in the 85 0 to

90°F range. Insufficient time was allowed for conclusive stability determi-

nations in this first attempt; however, the temperature time data indicate that

some degree of stability was obtained at each exercise level, except that the

peripheral blood circulation in the upper arms appears to have been reduced

during the last half of the run.

Water was injected into the patches when it seemed, by skin temperature, that

the patch was not being cooled. The times when water was inje,:ted and the

patches to which water was added are shown in Figure 55•

In addition to the above data, heart rate was recorded during all the test runs.

These data are shown in Figure 56. Further analysis of cooled versus uncooled

heart rate will be made to evaluate the effect of various cooling rates combined

with exercise on a subject's heart rate.
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Section 5

DEVELOPMENT OF NASA ECGS CONFIGURATION

(UPPER AND LOWER ARMS AND LEGS WITH

PULL TORSO AND HEAD COOLING)

5.1 CONFIGURATION DISCUSSION

Aside from performance, the primary purpose of the complete ECGS suit design

was to develop a garment that could be comfortably worn for extended periods

and for at least 4 hours of sustained heavy treadmill work. The required

criteria were that full running mobility would be attained and that no Part of

the suit would sag or get out of position during the exercise period. A time-

consuming process of trial and testing was required before these criteria were

met satisfactc.rily. Some of the typical problems were as follows:

•	 Lower arm slippage to wrist.

•	 Lower leg slippage to ankle.

•	 Torso, arm, and leg patch abrasions at the corresponding split lines.

•	 Shoulder bone discomfort.

•	 Hip abrasions of torso.

•	 Suit adjustments to compensate for subjects varying from 140 lb

(5 ft, 10 in.) to 190 lb (6 ft, 2 in.).

•	 Test subject recovery from skin abrasions.

•	 Upper arm abrading armpit.

•	 Torso expansion to allow sustained deep breathing.

•	 Wearing out of flexing parts during many hours of testing.

•	 Abrasions caused by multiple thermistor harness (now integrated with

the ECGS) .

On several occasions, the cooling effectiveness was so great that the subjects

were insensitive to pain at the low skin temperatures and therefore had
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bleeding skin abrasions that were caused by friction with suit imperfections.

As much as 2 weeks was sometimes required before the subjects healed enough

to be able to don the suit agair for a high activity run (by this time, the

suit difficulty had been corrected).

During the time that the suit was not being tested or calibrated, it was being

modified to increase wearing comfort. These "bugs" have been worked out so that

the same suit ce.n now be worn by either of two subjects (one 30 lb lighter than

the other) during a 4-h6ur treadmill run with no discomfort.

Wearing comfort and ease of donning were both considered in the design of the

ECGS garment. Although the capability is not a requirement in the current

program, it is forseeable that the wearer of the ECGS could don the garment

without assistance.

The ECGS cooling headpiece was designed and tested under the MDAC IRAD program,

and was developed for use as a part of the complete ECGS system. The headpiece

includes a forehead and back-of-the-head skull cap with a wide-band cooling

chin strap. The chin strap can be alternately positioned on the front and sides

of the neck directly below the jaw. Heat re,jectio-- tests to determine which

position produces the most cooling have been inconc-usive. The headpiece also

includes the standard NASA Apollo earphone/microphone gear, which is fully

integrated with the ECGS.

5.2 INTEGRATION WITH SPACESUIT

The primary problem in integrating the ECGS with the Apollo space pressure suit

was to provide adequate clearance between the two suits. The problem was

accentuated by the size of the Apollo pressure suit that was provided for the

contract as GFE; this suit was somewhat tight for the 6-ft, 180-1b test subject.

Each patch was provided with an elbow exhaust vacuum fitting that protruded from

the patch surface about 1 in. This caused interference problems, particularly

in the lower arms and legs. Subsequent to the first design, all fittings were

replaced by thin-wall, elliptical cross-section elbows that protruded less than
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around a curve, would fatigue in time, and the patch would have to be

repackaged. Further development in this area could not be afforded, so the use

of PVC was elected as a compromise.

Membrane-to-Fitting Attachment

The patches had to be designed so that body weight (such as the weight from

leaning against the back torso vacuum fitting) would not tear away the 4-mil

thickness membrane to which it was attached. This problem was avoided by

sewing the fitting to the interior of the patch and leaving the membrane

unloaded, except for its vacuum sealing duty. There were occasional

membrane-to-fitting leaks, but not once was a vacuum fitting torn loose from

a patch.

Highly Flexible Vacuum Lines With Low Pressure Drop

All patches are vacuum connected to the ECGS "octopus collector" manifold

located near the heart. This requires that the arm, leg, and headpiece patches

have flexible vacuum lines at least in every body articulation area, such as

the knee ,joint. During a typical treadmill run of 2 t-)urs at 4.5 mph, the

knee point will flex through an angle of about 30 0 about 7,580 times; this is

sufficient to cause metal fatigue. Early in the program, Teflon corrugated

vacuum tubing made by Penntube Plastics Company was ordered to be used on

flexible joints. This tubing had excellent flex characteristics but the inside-

diameter sizes, internal pressure drops, and vacuum fitting sealing problems led

to the use of brass flex bellows tubing. The brass flex had all the advantages

of the Penrtube product, but the weight was high, and fatigue soon caused leaks

at the highly used articulation joints on the body. The brass flex tubing was

then encased in PVC thin-wall tubing with end joints sealed by heat shrinkable

plastic tubing; this soi , ed most of the leak problems but not metal fatigue. 	 3

The final solution was to use both materials (brass and Teflon flex) in

different parts of the EGGS. An acceptable performance compromise has been
}

reached on the delivery hardware, but reliability, weight, and bulk factors

can be improved.
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half the original distance. The vacuum lines and all of the plumbing and

instrumentation that would normally be outside of the patches were covered by 	
g

a zippered liner to keep the entire outer surface of the ECGS smooth and free

of obstructions. The only exception to this was the single outlet vacuum

fitting near the heart that served as the penetration through the LCG fitting

in the pressure suit. The changes allowed integration of the ECGS with the

Apollo pressure suit. Even the largest subject could don both suits and move

with relative ease. Figure 57 shows a subject in the completed ECGS.

i
There turned up an unexpected bonus on the donned ECGS with an open vacuum

valve, which will help the astronaut both with and without the spacesuit (during

IVA). All cooling patches are normally loaded with a wick water supply, and

roughly one-half the body area is in contact with this wet wicking as separated

by the thin patch to skin membrane. It was found that a 5-psia pressure exposed

to the open vacuum valve produces enough phase change as a result of normal

evaporation of .rick water, to provide low level cooling. This could reduce or

possibly eliminate the space suit ventilation air requirement during certain

low-level resting conditions.

A modified vacuum collector has been devised that can enclose all ECGS water

supply lines, pressure instrumentation lines, and each patch vacuum line; all

of these lines pass through the single LCG penetration on the spacesuit. A

:_vetch of this fitting is shown in Figure 58. The new fitting restricts the

steam flow passage more than the previous design, but eliminates the need for

a second suit penetration for water and instrumentation lines. Any part or all

of this restriction can be removed, but this depends on the percentage of the

pressure instrumentation used.

5.3 DESIGN AND FABRICATION PROBLVMS

There were numerous areas in the design of the ECGS garment that required

special attention. In every area, off-the-shelf materials and parts were used; 	 3

the sole objective was to get something quickly that would work well enough to

show the feasibility of the total concept in the laboratory. In many
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Figure 57. Completed ECGS
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instances, poor or improper materials and/or parts were used that caused

problems; however, these problems were tolerated in the interests of time

and economy. The design approach, by necessity, was strictly one of

serendipity, with no formal drawings and very few sketches. A typical component

was conceived, built under oral instructions, tested, and modified on the spot

as required; modifications were strictly guided by function and performance.

Reliability and quality assurance, again by budgetary necessity, were not

considered during the program.

The follor(ing list presents typical design problem areas; each will be discussed

in later paragraphs.

•	 Membrane-to-membrane sealing.

•	 Membrane-to-fitting attachment.

•	 Highly flexible vacuum lines with low pressure drop.

•	 Attachment of patches to vacuum lines.

•	 Water-line penetration.

•	 •	 Pressure-tube penetration.

•	 ECGS vacuum collector.

•	 Thermistor harness.

•	 Leaks in the vacuum system.

•	 Wearing comfort (see Section 5.1).

Membrane-to-Membrane Sealing

Two membrane materials were chosen for the patches, but neither of these should

be considered to be near the optimum. The materials were PVC and Vacpac, each

of which had advantages for the initial program. PVC heat-seals very easily,

but it has very poor abrasion resistance and cannot stand rough treatment. PVC

is also quite porous for vacuum work. Vacpac, on the other hand, has excellent

physical properties, but heat-sealing techniques were unknown. Experiments on

•	 a heat-sealing machine showed, however, that the material could be sealed; and

it appeared that an easy, early solution had been found to the material

problem, but such was not the case. It turned out that a heat-sealed joint,

and particularly an overlapping seal that had progressive tangential line seals
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;ttachment of Patches to Vacuum Lines

The normal maintenance and upgrading of the patches required that all

connections to these patches be quickly removable, such as vacuum, water, and

pressure lines. Soft gum rubber sleeves have excellent vacuum characteristics

when connecting two pieces of tubing, except for the need to resist tension at

the ,joints. On several occasions, some of these ,joints have parted during

heavy treadmill act_vity, and shutdown has been required to permit reconnection.

Again, a laboratory compromise route was taken.

Water Line Per.=tration

Early in the program, the water lines had their own separate penetration

points into t1,e patches. This caused undue complications and leak sources.

Subsequently, the patch water lines were terminated within the parch outlet

vacuum fitting; a slip-on connection is made through the fitting wall prior to

attachment of the vacuum flex line. This procedure works very well and only

one external water line per patch is required. Internally, the single water

line feeds a manifold that has multiple outlets to all regions of a given

patch. An internal patch water leak cannot be detected, and if one should

occur, the patch performance should not be grossly affected.

Pressure Tube Penetration

Pressure tube instrumentation would not be required for flight hardware except

as necessary for a sensor input in an automatic control heat rejection mode of

operation. Each patch has a six-tube pressure penetration through a single

hole. This hole is sealed by a type of bulkhead fitting similar to the vacuum

outlet fitting; internal pressures at six different locations can be measured

if desired. A second static pressure measurement penetration is located in the

patch outlet vacuum fitting, which can allow internal patch pressure drops to

be measured. A second static pressure top is installed at the ECGS "octopus	 •46

collector" manifold, which can allow each vacuum line pressure drop to be

measured.

l
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Thermistor Harness

Skin temperature measurements were very important in the ECGS development; the

thermistors were initially taped on various parts of the body, which required

considerable setup time for each run. A thermiAor harness was designed into

and became a part of, the final delivery hardware. Several times the thermistcr

leads were rerouted to minim.Lze wearing discomfort because the patches are gently

pressured into intimate contact with the body by means of the ballonet. The

best solution was to route the leads on the edge of the patch split lines; in

this position, they could not be felt b y the test subjects.

Leaks in the Vacuum System

The cost of eliminating leaks in any va,:uum system approaches do aby-mptote with

limiting zero absolute pressure. Therefore, in the interests of economy in

laboratory research, a hard vacuum should be avoided wherever possible. The

DCGS program was not an exception, and it was determined early that the highest

suit leakage rate should be allowed for all tests, provided that this leakage

would not appreciably affect cooling performance. The design criterion for the

maximum leak rate was fixed by the pumping capacity of the two-stage laboratory

vacuum pumps while pumping off air leakage and water vapor at the rate of

8 lb/hr, which corresponds to an ECGS heat refection rate of about 8,300 Btu/hr.
The air leakage rate for this condition was approximately 0.62 scfm; this value,

therefore, was the maximum allowable ECGS suit leakage for any test. Most

tests, however, we re run at a much lower value, and some patches consistently

operated as low as 0.0024 scfm. It was an easy maAer to determine the leakage

rate of the ECGS garment or of any of its parts, by connecting it to the

laboratory vacuum manifold and noting the pressure rise while the pumps were in

normal operatiur_. As long as the leakage pressure rise did not exceed 26011 of

mercury for the total system, the part was fudged acceptable for test.

•	 A study was made of the number of opportunities for leakage in the delivery

hardware. For purposes of discussion, a "leak opportunity" is defined as one

leak per homogenous piece of material. For example, a single unbroken shP::t of
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membrane material is one "leak opportunity." A component consisting of a plate

soldered to a tube and connected to another tube by means of plastic sleeve

would have seven "leak opportunities"; namely the plate, the solder point, `he

two tubes, and the two ends of the sleeve mating th^ tubes and the sleeve

itself. Any leak, whether it may be in series or in parallel in the system,

contributes to the manifold pressure rise as the ECGS is designed.

The "leak opportunities" on the design verification tent series reached the

surprising number of 888. Of this total, 485 could be attributed to instru-

mentation requirements and 403 to the basic ECGS. The current design comprises

10 body patches. Of this total, it averaged out that each patch as connected

to the complete ECGS system has an average of 24 "leak opportunities."

We have looked at foreseeable design refiner)-ants and can predict that eventual

light hardware could have as few as six "leak opportunities" per patch. This

low number, with individual patch valve redundancy, could assure that the ECGS

will provide adequate cooling with any predictable failure situation.

5.4 PRELIMINARY PERFORMANCE TESTS

At this time in the program, a complete ECGS suit, including the cooling

headpiece, was available for testing. All prior runs gave indications that

cooling could be expected at metabolic rates of 5,000 Btu/hr based on Rill suit

equivalent values; however, at first, it w pz not known if the human

physiology would allow heat levels of this amount to be conducted through the

skin for extcnAed duration activity.

The following data directly lead to the maximum heat rejection run. The skin

temperatures on the second series, in general, dropped at a .°eater rate than

the torso suit, thus showing greater heat removal z •ate. The subject at the

end of the 10-min. 5,200-Btu/hr run was uncomfortably cold, indicating the ECGS

cooling effectiveness.

The first series of testa was run at a fixed heat removal rate. The skin

temperatures are plotted versus time in Figures 59 through 66. The full suit
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UPPER ARMS AND TORSO
FIXED HEAT RcMOVAL RATE 3,890 Btu/HR
(FULL SUIT EQUIV.)

TREADMILL SPEED 4.5 mph,

TREADMILL GRADE 8 1/3% (5,200 Btu/HR)
SUBJECT J R	 RUN NO. 503
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Figure 62. Skin Temperature Time History Right Front Arm — Run 503
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UPPER ARMS AND TORSO

FIXED HEAT REMOVAL RATE 3,800 Btu/HR
(FULL SUIT EOUIV.)

TREADMILL SPEED 4.5 mph, TREADMILL
GRADE 8'/3`16 (5,200 Btu/HR)

SUBJECT J.B. RUN NO. 50.1
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Figure 66 Skin Temperature i ime History Right Front Arm — Run 504
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equivalent heat removal rate was 3,890 and 3,800 Btu/hr. The skin temperature
constantly decreased, indicating that steady statE heat balance had not been

obtained. This is to be expected in runs of such short duration. Lower

metabolic rate runs allow longer operation and provide sufficient time to

establish thermal equilibrium (if physiologically possible).

The second series was made to check the performance of the full ECGS without

the headpiece. The run was made with maximum cooling and a subject metabolic

rate of 5,200 Btu/hr. Figures 67 through 70 show the test data. Figure 67

shows heart rate versus time, and the other figures show the various skin

temperatures versus time. Pronounced cooling occurred in all patches. The

upper right front leg and upper right back torso show a marked decrease in

cooling rate at about 6 to 8 -in. into the run. This is probably ar. indication
of water depletion in these patches. The average heE.t removal rate based on

` water usage was 3,410 Btu/hr. No sweating was experienced by the subject
during the cooling run. Higher average heat removal rates can be expected

when water is added at the proper intervals.

A series of tests was made to obtain run time limits on the torso, upper arm

suit, and on the leg patches. These data are compared with individual patch

performance in Figure 71. The data follow a general curve as shown in the
figure with some variation between the several configurations tested.

101



4.

J
O	 2.

W Q	 N

-
- - I =

--
11

E

cr

-

In

ui
Ij

LU

OX

U W

o o

1 -
-

r -_

-:7z: -

LA

cr

ui 0wX 0
w

cr
V)

- -- --
_

O  ^	 p
^	 r

S31nNIV4 dSd SIV39 — 31VU 1HV3H

3

J

V

v

V

V

V

Lo
ID	 C

Dr

(U	 TW

C
2
G

W

N	 C
m

cm
d

cn
c

i

00

m

v

N

O
On

102



^,; - Tt
ia._.

J_	 Lam._	
..	 O wLL

C.
LL	 $ ^.	 a a

 .

O O_
r	

r'	
'.	 ..,I•  huo

CC

..1;	
y	 Q	

Q	 :1..rV)

(D

O
V7
Wr
D
7

I
W

Fa

N

O

N

r
a
s
J
a J

^ O
w a
¢ w
r ¢
a r — O= t = 2

E	 z
p	 ro Cl
^ a oX p O
a WLU

j m
L9 J
U O ~
W p W U
J Q p
J Wa m
D M ¢ D
W '- C7 N

O	 O	 O	 O
8	 T

(3o) 38nivH3dW31 NOIS

8	 00

( 3 o) 38niv83dw31 NIAS

0	 0	 0

N

O

O
LO
Wr
DZ

I
W
2r

N

_	 __

J	

—.	 _-	

Z

¢
,.0O 

w^	
777:77,

1 	 o (L-

1	 : o W	
r

1—r W	 ,— O Wa	 U	 ..	 .I
1 ^	 is	 ^	 r r

_l.

O

103



rJ

LU

c
<

W Lr X
Z

Z
LLJ

7K
LLJ

CUL,
to co

-i

L)
LLJ	 u

-i <
-J ujM CO

::) a:	 D
Li. r 00 o

O

cli

lA 
L)	 LL, 

ul

7
-J

0 uj
x

seLu

0 0

U.1

Z.

0
UJ

0 x
U Lu

-L-I

<
V)

0	 C)

(A.) 3dnivH3dA31 NINS

LU
V)

uj
U X

fr

V) cn

O

_j

z

LL

W
0

--t- A

-r

UJI

: ? u
U

LAJ

cc	 cc

j:

- __
7 7.

_

7—

:_

Vql

T.: r

t

0	 0	 Z)
LC

(:jo) :;8nivH3dVY831 NINE

O
O

4.

cc	
V)
LU

r"A

Go
LO

Z

uj

Ul')
G
:3

cma)—i

m

LL

O

cnLo

Ll-

104



r

Q

T

Q ^_ Z

O m z
w o

LU

¢ ry

d ^^

x _
g c

^ e wp
Q Q
S a x

In C7
J J m
J J ^

U	 `,w p p W

J w w m
LL H - N

g	 00

(3,) 38nit-83dA31 NINS

OOC	 r	 cJa

W,) 38nivk 3dVAI WAS

-
- - I -- -

_- ^ F _
..

_ :... - - _ -_
CL	 CL

—
.	 _ .. 0 U

a- -- --x
-- - -

cr X 

Mz

— - —
— -- -

Z U

_a a

0 O

P-,.:(o

¢

-Q-

'-

-

-

-- - - - -

-

_
- - — -

—

w
a-

0 X -
-U w

-

4- -
- - - --

- - — -_ -
--

_
--

p ¢ Q _

N

0

w
h

Z

C

7

W cc
^	 I

E

^	
Q

0

LL

L
N

n
CD	

no	-o

0N
c`

m

s

m

`m
N n

O	 _'
= I

I

E

co m
	 i

W
F ^

Z n

^ ^ E
I—

c
0

a

N
an

LL

O
O
to

105



V7
M

M

to
N

w
U
C
!O

E
0

z CL

o
N — cv

W C

E
~CDz
S a

Z 3
z

—' 
JO co0 =v ^

aO
C7
U

O	 LU

n
d
7
o^

LL-

LO

'O

o	 ^	 8	 ^	 8	 8
(p	 to	 Q	 M	 N

k !'/n18) 31VH LV3H 1N31VAmO3 vnS lln=i

106



Section 6

Fr).TA1L DESIG"? VERIFICATION TESTS

6.1 TYPICAL EVA MISSION PROFILE

The program performance objective was to provide cooling for a typical EVA

mission work rest cycle cf 4 hours, which would lead up to 5,000 Btu/hr

metabolic rate for the last 20 mins. Figure 72 shows the mission profile

together with equivalent treadmill walking speeds. The energy expenditure

during this period is equal to a nonstop walk of 17.5 miles at an :'kv .tage

speed of 4.39 mph. This schedule obviously will tax human effort and

endurance and it was hoped that the heat produced would be removed without

a physiological barrier. The ECGS had shown that extremely high heat

removal rates were possible, but to sustain these rates in a practical ca:a

could only be proved by demonstrating cooling in a thermal insulated

•	 garment at work levels such as those postulated in the EVA mission profile.

The profile then became the target design specification for not only the

,CGS, but also for the subjects who were to demonstrate the delivery

hardware.

6.2 TRAINING OF SUBJECTS ON TREADMILL

At about the program midpoint, it was discovered that healthy young

athletic male subjects could not perform the 20-min stint at 5,000 Btu/hr.

This was the crucial heat production case and was compounded by the

difficulty of trying to accomplish this work level at the end of an already

strenuous 4-hour treadmill run. It soon became apparent that a treadmill

training program was required. Seven subjects were selected on the basis

of athletic prowess, demonstrated by their ability to pass an Air Force

Class A flight physicLl. Subsequent to this, the subjects were given an
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altitude pressure chamber indoctrination course, which they all passed;

one subject was also given the Air Force pressure suit training course

to make him knowledgeable in spacesuit operations.

DLu•ing the treadmill training, five of the seven subjects dropped out for

one or more of the following reasons, when the metabolic rates were

reaching high levels:

1. Leg and muscle cramps.

2. Inability to reduce pulse rate fast enough during training.

3. Limitations due to loss of breath.

4. Lack of motivation.

The two remaining subjects completed the training and each was brought to an

almost identical level of performance. Heart rates, endurance, and high

energy runs were also remarkably similar at the end of the program. The

younger of the two subjects (E.H., age 25, 6 ft, 150 lb) had been an old
"pro" on the treadmill for various tests during the previous 2 years, and

required less training to rer.ch the required competence level. The second

subject (J.B., age 49, 6 ',,, 180 lb) had difficulties, but was highly
motivated and finally made the grade.

Period:.: physicals were given to the subjects during the training period;

these physicals included exercise electrocardiograms as heart rates were

pushed up to the 180 level during sustained treadmill runs.

A constant treadmill training speed of 4.5 mph was selected for two reasons;

first the average speed on the EVA mission was 4.39 mph, and any higher

speed would have required a running gait, which was believed to be

dangerous if the subject were to fall when exercising to fatigue.

Specialized pulse rate instrumentation was developed for and utilized on

all training runs. This system automatically records in a digital

conversion the average pulse rate for each 10 beats of the heart; this
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provides for the observation of dynamic heart rate changes in intervals

as short as 10 secs and yet assures an averaging function during the 10-beat
count. The three electrodes were placed on the sternum and symmetrically

at the side of the third rib location; no signal artifacts were observed

even during the heaviest exercise. An oscilloscope was provided for visual

inspection of the ECG; strip-chart recordings could be taken, and,

simultaneously, pulse rates were printed out on paper tapes.

A training run could be terminated for any one of the following reasons:

1. The medical monitor.

2. Test subject fatigue.

3. Limiting pulse rate of 180 (mandatory termination).

4. Any of the program personnel observing the test subject for any

reason.

Since endurance at high work levels was the goal, the training protocol was

to have the test subjects work out at least 3 days each week on the treadmill

at 4.5 mph to the previously mentioned run termination point. Exceptions

were made to this when a subject was too sore, ill, or had foot blisters,

which were common. Any given run was continuous, with no rest allowed.

Endurance was built up at each grade to a point of apparent diminishing

returns, and then the next grade angle jump of 2% was instigated. The lower

grades resulted in endurance up to 2-1/2 hours (11-1/4 miles), which

calminated at training peak of 5,000 Btu/hr for 1/2-hour duration.

Pulse rate versus time plots were prepared for all training runs. Thy

advantages of training in producing a progressive lowering of pulse rate

at a given work level were observed for all subjects. A complete pulse

rate training history from beginn'zg to end for the older of the two

remaining subjects is presented in Figures 73 through 79. The younger

subject did not have this complete a record, because he started from a much

higher conditioned level. The figures do show, however, that a healthy

individual, although older, can be conditioned to exceedingly high levels of

endurance and work.
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6.3 EFFECT OF ECGS AND ARCTIC GARMENT Ur: METABOLIC RATES

An Air Force arctic garment that had full body insulation, except for the face,

was -used on all design verification test runs. This suit is a double thickness;

the inner layer consists of quilted torso and pants, which are snapped together,

and an outer singlE piece that is a zippered rubberized fabric liner. Thick

insulated gloves and a headpiece are parts of the suit assembly. Thy outer

suit has a tight rubber seal at the wrists and the neck to preclude any body

thermal loss from internal to external heat transfer. Th y arctic garment can-

not, therefore, be worn without cooling provisions for more than a few minutes

at resting metabolic rates; without such provisions, the wearer would become

extremely uncomfortable and would sweat profusely.

A miner modification was made to the arctic garment to permit it to be worn

over the complete ECGS cooling suit (Figure 80). This modification required

two penetration ports, one for the LCC/ECGS vacuum line fitting and the second

for instrumentation leads. The arctic suit-ECGS combination Fas quite restric-

tive to mobility, particularly that .f the 6 ft, 180 lb subject; however, either

suit worn alc:ie did not cause such a problem. The test configuration mobility

problems increased the work loads at any given speed, probably near to what may

be expected with the space pressure suit, which actually helped in simulating

the typical EVA mission. Since the treadmill physical conditioning training

runs were made with shorts only (track clothing), the metabolic rates increased

greatly for any given treadmill grade and speed.

Figures 81 through 85 present theoretical treadmill performance curves that can

be typically compared with the actual test data shown in Figure 86. The effect

of an increased metabolic rate at a given treadmill condition with the ECGS-

arctic garment combination is shown in Figure 83.

6.4 FINAL WORK LOAD CALIBRATION TESTS

The EVA mission profile of Section 6.1 was broken down into specific ranges

of work levels that had to be set during the final design verification test.

Each condition had to be set on tae treadmill for the final two test

subjects who, in turn, varied in weight by about 30 lb. The setting of
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proper treadmill conditions was not a simple matter because of the following

variables:

1. The normal increase in metabolic rate with time from the

beginning of any giver. run.

2. Treadmill speed.

3. Treadmill grade.

4. Restrictions in mobility over the normal training run condition

(Section 6.3)•

5. Changes in metabolic rate with removal of heat stress during a

cooling run.

6. The effect of training enhancement with repetitive runs

(Section 6.2).

7. Normal metabolic rate instrumentation errors (believed to be

better than 3%).

B. Whether the maximum aerobic capacity had been exceeded

(undetermined factor).

9.

•

Dietary variation on the energy equivalent per unit volume of

oxygen. consumed (all data based on average diet, yielding

545 Btu/ft'3 oxygen) .

The most significant of the above factors will be discussed as relating to

the final runs as follows:

Metabolic Rate Tiicrease With Time

Most of the EVA work load changes were to take place after e. prior 10 --min ran.

It was therefore desirable to obtain the point in time during any given 10-m:n

run at which the metabolic rate should be measured. Figure 87 indicates that

the peak values do fall near the 10-min point; prior to this, anaerobic energy

pro`^c.biy has some contributary effect to the lower values until the body is

physiology stabilized. Therefore, in long durst;on funs like the 30-min design

verification fixed level tests, the metabolic rate wns sampled at the 15-min

point; shorter high rate rans such as the 15-min. 5,000 Btu/hr tests were

sampled at the 10-min point.
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Treadmill Speed and Grade

Since a.1.1 '.raining runs were _ade at 4.5 mph with varying grade, an attempt was

made to maintain to this value in the design verification runs. Any values

above 4.5 mph were deemed daiig^_-rous in the event of a fatigue fall on the tread-

mill; none occurred.

Heat Stress on Metabolic Rate

Heat stress at high work loads is probably the most significant and (at present)

the least understood of all the factors that relate to metabolic rate. The

metabolic calibration curves shown in figure 88 for the condition of full opera-

tional cooling ECGS plus arctic suit are based on cooling rates that were, in

each case, set by the desires of the exercising test subject. The design veri-

fication runs of constant work load at several fixed heat removal rates produced

heat stress at low heat-removal rates, and overcooling at the high heat-rejection

rates; these factors complicated the setting of any particular run, but the

final results were quite close to predictions.

When the data of Figure 88 were compared on the two subjects for a metab,)lic

rate per pound of body weight (plus load), it was shown that the apparent

discrepancy bet, een subjects was less than 10%, which is quite good. It was
then concluded t.-at the final calibration for each subject was adequate.

6.5 CALIBRATION OF VACUUM FACILITY FOR VARIOUS ECGS HEAT REJECTION RAZES

A technique was de ised for a direct readout of the ECGS heat removal rate as a

function of vacuum Jumping machinery characteristics. 'dhen a synchronous speed

vacuum pump evacuate3 a storage -tank, eventually the tank pressure equilibrium

will be reached ; the time depends on the pump capacity and the tank volume. A

fixed leakage is introduced into the tank, measured by a sensitive flowmeter;

from this, a pressure-leakage flow rate relationship can be established which

then simulates any c'cject that may be coupled to the pressure tank such as the

ECGS.
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A large warm water filled flask was then connected by a throttle valve to

the laboratory vacuum-supply manifold. Precise weighing of the flask and

contents to +0.01 gram was made before and after setting the throttle valve

at a particular manifold pressure setting. Water temperatures during

boiloff in the flask were recorded to obtain the stea ►c table heat of

vaporization data, which in turn was integrated, thus resulting in a heat

removal vs manifold pressure. Curves such as this were very accurately obtained

for various leakage rates as explained in the prior paragraph. The family of

pressure vs heat removal rates at various preset leakage rates were thar.

cross-plotted to the several design verification plan heat removal rates.

These data are shown in Figure 89. Checks were made by water weight loss in

ECGS body patches in cooling operation with nearly perfect correlation. ECGS

heat rejection rates can be instantly set or measured by this technique, which

is believed accurate to within 2%.

A micron pressure gage is a rather fast response instrument; monitoring

this gage (and the calibration curves) instantly shows the ECGS heat removal

or cooling characteristics on a real-time basis.

6.6 TYPICAL TEST OPERATION

A typical complete suit ECGS test operation can be described as follows

(Figure 90 shows a typical test):

1. The test subject tapes on the ECG electrodes and is then assisted

into the ECGS germent. (Skin thermistois are a part of the ECGS.)

2. The arctic suit is donned and the inner ear thermistor is

installed.

3. The subject gets on the inoperative treadmill, the LCG/ECGS

vacuum umbilical line is connected.

4. The basic ECGS/instrumentation leakage rate is established prior

to periodic injection of feed water. This determines which heat

rejection calibration curve is to be used; a rest heat removal rate

of 275 Btu/hr is set.
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5. The thermistor harness plug is connected to the data acquisition

system, and all instruments are trim-calibrated in readiness for

the run.

6. The ECG recorder is turned on, and a basal pulse recording is

obtained.

7. The treadmill is started after it has been checked for speed and

grade.

8. A countdown is started, and at time zero the subject steps from

a stationary straddle position to the walking belt position.

9. The data system immediately starts recording all instrumentation.

10. A test engineer monitors and controls (as required) the vacuum

throttle value, thus setting heat rejection rate, which is brought

to the predetermined rate in less than 2 sec.

11. The test conductor monitors all crew members and the data being

generated.

12. Metabolic rate determinations are started by collecting expired

air into a Douglas bag at predetermined times.

13. Oxygen consumption analysis is s-i;arted on a Beckman E2 oxygen

analyzer after four samples of 250 ml each are drawn out. The

Douglas bag is then evacuated through a sensitive flowmeter to

obtain minute volume, and metabolic rate is then calculated.

Short interval runs rely on bag storage for later analysis.

14. Subject comments are recorded during run; heart rates are observed

by the medical monitor as are other visual functions for subject

safety.

15. The treadmill run is carried to completion or is aborted by any

member of the operating crew for subject safety reasons.

16. At run conc]usion, a 5- to 15-min recovery recording is made;

during which time the heat rejection rate is set at 275 Btu;hr.

17. The subject is assisted out of the test setup in reverse to the

order described abcve, or, in case of another run, a skin

temperature stabilization period back to about 92° to 95 0F is

watched for and the next run begun.
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6.7 PERFORMANCE RESULTS, CONSTANT WORKLOADS WITH FIXED LEVELS OF HEAT REJECTION

A series runs with full ECGS plus arctic garment were conducted in preparation

for the formal 4-hour EVA mission profile tests. The purpose of these runs
was to establish the best estimate for cooling rates at steady state conditions

and to determine the maximum sustained cooling performance of the ECGS without

the necessary consideration of body comfort. In every test, the cooling and

metabolic rates were held constant for 30 min; each metabolic work level run

was comprised of three 30-min levels of cooling. The only exception to this

routine was the reduced duration runs at 5,000-Btu/hr work rate which was run

to a maximum of 15 min because of human endurance considerations.

Much ECGS operational experience was gained from this test series. The only

difficulty experienced was failure to inject the boiler water at the proper

time at high cooling rates. For example, if the water injection was delayed

too long, one or more patches would go dry and necessitate refilling

immediately to maintain full cooling efficiency. Occasionally too much water

was injected; this resulted in either the excess flowing out of the umbilical

vacuum line in the liquid phase or freezing in the ECGS "octopus collector".

It was found that the proper monitoring of temperatures and patch pressures

would provide injector information that could be used to eliminate the flooding

or freezing problems. For example, enough experience had been gained during

these runs to Allow completion of both 4-hour simulated EVA profiles
without ]problems.

Tables III and IV and Figure 91 present the design verification test plan; all

runs were completed except for the 4-hour mission profiles at cooling rates of
25% and 50% of the various step function metabolic rate levels. This deletion

was mandatory for subject safety because heat prostration resulted almost

immediately at these low cooling ratios at any reasonable exercise Level. The

100% cooling rate case (cooling equal to metabolic rate) was also eliminated

because extreme cold discomfort was reflected by the subjects and an alarming

reduction in skin and core temperature that was deemed medically unsafe. The

cooling headpiece was used on all runs, and by subject comment appears to be

mandatory to sustain cooling comfort at high metabolic rates.
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Table I

ECGS DESIGN VERIFICATION TES

Treadmill	 Heat
Metabolic	 Removal Run

Type of	 Config-	 Rate	 Speed Grade Rate	 Durati
Run	 uration	 (Btu/Hr)	 Subject (Mph) (%)	 (Btu/Hr) (Min)

Fixed heat	 Full ECGS 400 1 0 0 200 To Sta
removal	 with or 30

Thermal 400 2 0 0 200
Insulat-
ing gar- 400 1 0 0 300
ment (No
Head- 400 2 0 0 300
pieces)

400 1 0 0 400

400 2 0 0 400

1,600 1 Figure 88 800

1,600 2 Figure 88 800

1,600 1 Figure 88 1,200

1,600 2 Figure 88 1,200

1,600 1 Figure 88 1,600

1,600 2 Figure 88 1,600

"3,200 1 Figure 88 1,600

3,200 2 Figure 88 1,600

3,200 1 Figure 88 2,400

3,200 2 Figure 88 2,400

Full ECGS 3,200 1 Figure 88 3,200
with
Thermal 3,200 2 Figure 88 3,200 To Ste
Insulat- or 30
ing gar- 5,000 1 Figure 88 3,000
ment (No
Headpiece) 5,000 2 Figure 88 3,000 To Ste

Fixed heat or 15
removal 5,000 1 Figure 88 4,000



FOLDOUT FRAME

Table III

GS DESIGN VERIFICATION TEST OUTLINE (Page 1 of 2)

dmill	 Heat
Removal Run

d Grade Rate	 Duration	 Instr
(%)	 (Btu/Hr)	 (Min)	 Req

	

0	 200	 To Stability Table IV
or 30 min

	

0	 200

	

0	 300

	

0	 300

	

0	 400

	

0	 400

ure 88	 800

-.ure 88	 800

,ure 88	 1,200

-ure 88	 1,200

;ure 88	 1,600

.ure 88	 1,600

ure 88	 1,600

,ure 88	 1,600

cure 88	 2,400

•ure 88	 2,400

ure 88	 3,200

ure 88	 3,200	 To Stability
or 30 min

ure 88	 3,000

ure 88	 3,000	 To Stability
or 15 min

ure 88	 4,000	 Table IV

Test Objective
	 General Notes

To determine
optimum heat
removal rate vs
metabolic rate
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Table III (Page 2 of 2)

Type of
Run

Confi.g-
oration

Metabolic
Rate
(Btu/Hr) Subject

Treadmill

Speed	 Grade
(Mph)	 (%)

Hect
Removal
Rate
(Btu/Hr)

Run
Duration
(Min)

Fixed heat 5,000 2 Figure 88 4,00 To Stability
removal or 15 min

5,000 1 Figure 88 5,000

5,000 2 Figure 88 5,000

5,000 1 Figure 88 5,000
Fixed heat See Gen To Stability
removal Notes 5,000 2 Figure 88 5,000 or 15 min

Mission Full ECGS Fig.	 88 1 Figure 88 25% M.R. Figure 88
profile with
without Thermal 2 Figure 88 25% M.R.
space suit insulat-

ing gar- 1 Figure 88 50% M.R.
me nt

2 Figure 88 50% M.R.

1 Figure 88 75% M.R.

2 Figure 88 75% M.R.

1 Figure 88 100% M.R.

Fig. 88 2 Figure 88 100% M.R. Figure 88
Mission Full ECGS
profile with Fig..88 1 Figure 88 See Figure 88
with space space General
suit suit Fig. 88 2 Figure 88 Notes Figure 88
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F0!'i' ,4. i'h"

Inst
Req	 Test Objective
	

Genera Notes

ility Table IV To determine
'n	 optimum heat

removal rate vs
metabolic rate

To determine
	

Configuration for these runs to in-
ility	 optimum heat
	

clude head piece, full ECGS, and
'n	 Table IV ,ce.nol -i rite vs	 thermal insulating garment.

nc'.abolic rate

88 Teb_' e 1V To Lem-i. strafe ,100 Btu/ Hr metabolic rate will be
ECGS pt;-. i ormanr!e run a;: the option of the test subject
at a range of and ;he medical monitcr on al). mission
cooling levels -rc^ I i. le	 runs .

88 Table IV
To demonstrate Heat removal to be adjusted to best

88 Table IV ECGS performance level as determined from preceding
with best heat runs.

88 Table IV removal rate in
space suit.



Table IV

ECSG FULL SYSTEM TEST INSTRUMENTATION

Number
Parameter Sensor Range Readout Req

9 visuV"Skin Temperature Thermistor °F40-150 Visual and Contin-
uous Recording 72 total

"System Pressure Static Tap 0-2.0 psia Continuous Record- 48
to Press ing (multiplexed)
Transducer

Reference Pressure T/C Vacuum 0-500 mmHg Visual and Contin- 1
uous Recording

Ballonet Manometer 0-20 in. Visual 1
Pressure	 H2O Gage

Treadmill Speed Speedometer	 0-10 mph Visual	 1

Treadmill Grade Scale	 0-16% Visual	 1

EKG Std EKG Strip Chart	 i
Electrodes Recording

*Metabolic Rate Douglas Visual	 1
(PCO25 

P 2
, min. Vol.) Bag

Rectal or Inner Ear Thermistor	 90-110°F Visual and Contin-	 1
Temperature uous Recording

Respiration Rate Visual	 1
(Typical Values
During Rest)

Blood Pressure Visual	 1
(Pre and Post Test
Values)

*Several samples will be taken dining tests to verify existing treadmill
calibration.

"Skin temperature and patch pressure locations to be monitored are shown in
Figure 91.
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Typical detailed temperature, pressure, cooling rate, and metabolic data are

presented in Appendix E. From these results, summarized analyses that cover

all the fixed level cooling runs were made and this information is presented

in Figures 92 through 103.	 T

The fixed level cooling runs can be further summarized by the folio ing

subjects, each of which will be discussed in detail:

•	 Reduction of pulse rate by elimination of heat stress.

•	 ECGS capable of overcooling at 5,000-Btu/hr metabolic ratio.

•	 Apparent increase in work output with proper cooling rate.

•	 Preliminary values for skin comfort temperatures at high work

rates suggested.

•	 Preliminary values for heat rejection to maintain thermal balance

at high metabolic rates.

Reduction of Pulse by Elimination of Heat Stress

The lowering of any stress situation will result in a lowered pulse rate. The

quantitative values for complete removal of heat stress at limit work loads

are virtually unknown; however, the high rate EGGS cooling provides some of

these data and the results are presented in Figures 104 and 105. From

Figure 104, the maximum cooling torso suit has lowered the pulse rate from 172

to 150 or a 13% reduction at 5,000-Btu/hr metabolic rate. The tests were run

for the same duration on the same highly conditioned subject on consecutive

days, thereby minimizing any training advantage. The effect of heat

stress at 2,000-Btu/hr as compared to the full ECGS suit cooling is

similarly spectacular.

Figure 106 shows three pulse rate time histories at a metabolic rate of

5,160-Btu/hr and also shows the effects of removing heat stress. This

particular test series was conducted on the same highly conditioned subject on

consecutive runs a few minutes apart (the high cooling rate run last and the

lowest run first). The normal trend at constant cooling would have been to

show a higher pulse rate on the last run caused by the extreme energy output

and fatigue buildup. The trend was decisively reversed by increased cooling.
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ECGS Capable of Overcooling at 5,000-Btu/hr Metabolic nom.*%e

Figure 106 presents a summary of the boundary cooling conditions of several

full-suit cooling runs. For examl...e, the test run at 5,160-Btu/hr metabolic

rate resulted in excessive cooling as evidenced by a reduction in both skin

and core temperatures and the subject complained of being too cold during the

entire run. It would appear that the ECGS in its current design therefore has

a cooling capability that exceeds the approximate limits of human sustained

effort. The cooling dropoff with increasing time (except for the water

injection area) is caused by a continual lowering of skin temperature with the

net result in an inability of the body to reject the normal quantas of heat

through the skin. This then becomes a thermal-physiological limit that is

controlled by the blood flow in the skin capillaries. Because the cooling

patches in this condi;.ion are operating near freezing, no other cooling device

could remove more heat unless the cooled area were incerased. The current ECGS

area is 12.62 it  which is about 62% of the surface area of an average

Air Force male of mean height and weight (5 ft, 9 in., 164 lb).

Apparent Increase in Work Output with Proper Cooling

There have been numerous indications that if the cooling rate is set equal to

or near the metabolic rate, then less energy is consumed to do a

given task on the treadmill. For this reason it has been difficult to preset

a target work level with optimum cooling. The usual result has been to

undershoot the target metabolic rate in the 4,000- to 5,000-Btu/hr range by

about 7%; man's apparent work capacity or efficiency is increased by about 7%

in the high work level ranges if full thermal balance without heat stress or

sweating occurs. This shows another advantage of using the ECGS as a body

cooling system.

Preliminary Skin Comfort Temperatures

The steady statE cooling runs provided subject comments on the various cooling

rates at constant metabolic rates. These data are plotted for both subjects

and are reflected to the corresponding average skin temperatures for the
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particular runs. This gives midpoint temperature boundary for the entire

metabolic range; values above t } i line were hot aid promoted sweat, and below

tended to be too cold. The summary data for this condition can be seen in

Figure 107, which also shows the LCG comfort zone boundary as determined

under Contracts NAS 9-723, 9-3535. It should be pointed out that the new

ECGS data are too limited to be conclusive, but they are indicative of

general trends up to the higher metabolic rates tested.

Thermal Balarn p Heat Rejection Rates

A prelimir..s.ry analysis of the steady state runs indicated that the high level

cooling rates should range from about 67% to 78% of the metabolic rates for

a fully insulated cooling suit. When the metabolic rates are sustained Lt

5,000-Btu/hr, the optimum cooling rate should be about '(2% of this value,

approximately 3,600-Btu/hr. This tentative conclusion is based on core

temperttures, skin temperatures, pulse rat F:, work performance, and

subject comments.

Figure 107 presents two heat rejection curves versus metabolic rate for two

subjects. Core temperatures are also shown for these runs. The upper curve

shows a dropping core temperature, indicating too high a heat rejection rate

at the 5,200-Btu/hr point; the lower curve depicts the opposite effects at the

4,600-Btu/hr level. A compromise between these values might have been the

best choice. Further discussion on this will be continued in Section 6.8.

6.8 4-HOUR SIMULATED EVA MISSION PROFILE COOLING RUNS

Near the conclusion of the contract, all techniques, run procedures,

calibrations, operational experience, subject conditioning and the full ECGS

delivery hardware were ready for the 4-hour simulated EVA mission runs. It

was most gratifying to observe and record that every contract performance

target specification was met during these runs and also to note that cooling

capacity and work rates were not taxed during the final tests.
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The final runs were made with the complete ECGS tnd head cooling, while the

sub,jE t was fully insulated with the double arctic garment worn over the ECGS.

The test protocol is described in Section 6.6. Neither of the two tests was	 .

aborted during the runs nor did they require reruns caused by some subsystem

malfunction. it was originally intended that the EVA mission profiles would

be conducted within the A -6L spacesuit, but this was not possible because the

A-6 1, was returned to NIUSA-MSC by their regyiest prior to the final tests. The

runs with the arctic garment were far more demanding on the ECGS cooling

requirements as no cooling ventilation within the arctic garment was possible.

This would not have been the case with the spacesuit. All answers should

therefore be conservaci-t as compared to an actual spacesuit operation. The

arcti- garment tests did point out one important conclusion. The spacesuit

ventilation for bocV coo -L2ug comfort may not be necessary with an operational

ECGS at my metabolic rRi,e because body sweating was not observed. Dampness

was noticed on the ECGS, which was believed to be caused by condensing water

out of the air; however, the subjects were dry and cool (except for the face)

even after the 4-hour run culminating in 20 min of nearly 5,000-Btu/hr metabolic

rate.

The ECiS heat rejection rates were measured according to the calibration runs

of Section 6.5 and sec at predetermined levels as shown in Figure 107 of

Section 6.7. Metabolic rates were required as indicated in Section 6.1 and

were set as walking tasks on the treadmill as indicated in Section 6.4.

Figures 108 and 109 present the time history results of the 4-hour EVA

simulated mission profile. All variables such as average skin temperature,

core temperature, and pulse rates show remarkably similar trends.

In each case where rest periods were set up, the skin temperatures can be seen

to rise in a positive slope curve. Conversely during high cooling rates, such

as at the beginning of the runs, the temperature-time slopes are negative.

During constant work ra"-e periods longer than 10 min, the tendency for skin

temperatures to stabilize was observed as in the first run at time 16C to

220 min. The core temperatures for both runs were essentially constant at all

times, indicating good thermal balance had been maintained by the ECGS cooling.

158



91 I	 79 I	 105	 I 85 I	 107	 I 86

96.2 96.3 96.2 96.3 96.2 96.3
1,200 470 2,590 470 2,590 470

900 300 2,320 300 2,320 300

87 174	 110,

96.2 96.1	 9
1,200 470 2,E

900 300 2,:

86

2
9..
w
cr

Q

a
70

w
r
z_
YN

60
COOLING PRIOR TO
t o HELD CONSTANT Ca
300 Btu/HR
(SUBJECT AT REST)

I	 I	 I	 w	 I	 I	 I

hLDGUT s:,

180	 -

160	 TREADMILL TEST 150-LB SUBJECT WEARING COMPLETE
ECGS WITHIN FULLY INSULATED ARCTIC GARMENT
AUN 628

F	 140	 'BASED ON AVERAGE SPEED OF 4.39 MPH 0% GRADE
Q
cr
w
J	 120D
a

cr
Qw	 100S

80 -f U 1

81 109 113 88

96.1 95.9196.61 96.5 96.2
ccm 1,315 3,430	 1,315 2,590 470

1,200 2,850	 1,200 2,320 300

50.0	 20	 40	 60	 BO	 100	 120	 140
TIME (MIN)

I	 L	 1	 1	 1	 I	 I	 i	 1
0	 0.73	 2.18 2.55	 3.72	 4.93	 6.10	 7.27	 8.48

(EQUIVALENT ENERGY MILES)'



160

^
ING COMPLETE
GARMENT

96.1 96.1 96.3
470 2,590

300 2,320 300

9F.7

4,705

3,400

5,000

4,000

B/	 114 1 104

100

3.7

51 0% GRADE

AVERAGE CORE TEMP 96.6 OF
METABOLIC RATE 1,440 BTU/HR

COOLING RATE 1,200 BTU/HR

w
I-
Q

140	
Q
w
NJ

^	 7
0

12o	 F"Cr
Q
wI

1

96.2
1,200

900

AVERAGE SKIN TEMP

I
7F-m
w

3,000 Q
cr

U
J
O
m
Q
H
W
2

2,000

r OLDOUT Fr+A10

—	 —, 1 B0

METABOLIC RATE

	

	 I

STOP COOLING^

SUBJECT KEPT AT RESiL 1,000

STAR- MAX COOLING 

I	 I	 I	 I	 0
140	 160	 180	 200	 220	 240

E (MIN)

1	 1	 _	 _	 ^	 I	 J
8.48	 9.36	 13.76	 17.5('

T ENERGY MILES)'

Figure 108. ECGS Cooling Performance ReSLItS — 4-hour Haav;, Work Load Simula!Pd EVA Mission (150-111 Sutliect)

159



i8^
o

w
cc
D
H
Q
Ir
W
a

w 70

Z
Y
V1

60

PD.t,DOUT e,u. a

TREADMILL TEST, 185-LB SUBJECT WEARINC
ECGS WITHIN FULLY INSULATED ARCTIC GA
RUN NO. 629
-BASED ON AVERAGE SPEED OF 4.39 MPH 05A

156 1301	 142 102 106 92 1 36 98 134

97.4 98.2	 98.2 98.1 97.4 97.2 97.0 97.3 97.2

3,870	 1,480 1 2,770 470 1,290 470 2,770 470 2,770

3, 1.50
1	 1
1,320 2,%0

11

300 1,000 300 2,%0 300 2,%0

	

60 L	
i 	 i

	

0	 20	 40	 60	 80	 100	 12C	 140

TIME (MIN)

l l l^^ I I I ^
0.73	 2.18 2.55	 3.72	 4.93	 6.10	 7.27	 8.48

(EQUIVALENT ENERGY MILES

+i

180

160

w
Q 140

w
WJ
CL	 120
F

Q	 /^
W_

100

ao

102
60 

97.4

1,480

' 1,320

90

101 I 108 187 I 1

97.6 97.6 97.4, c

470 1,290 4'0 2;

300 1,000 300 2,



185-LB SUBJECT WEARING COMPLE=TE
Y INSULATED ARCTIC GARMENT

GE SPEED OF 4.39 MPH 0% GRADE

A	 180

160
W
F-
acc140	 W
J
J
7a

120
a
W
x

100

80

108 187 133 100 I	 AVERAGE PULSE 109

97.6 97.4 97 . 2 97.5 AVERAGE CORE TEMP 97.2

1,290 470 2,770 470 METAEOLIC RATE	 1,440

1,000 300 2,560 300 COOLING RATE 1,320

COOLING OFF -
WHILE INJECTING
WATER

169	 I	 5,000
98.6

4,805

3,860

4,000

iL
x

rm
3,000 W

H
Q

U_

J
0m
Q
LU
W

2,000 2

I	

r000

120

	

	 140	 160	 180	 200	 220	 240	
0

TIME (MIN)
I	 I	 I	 I	 I

8.48	 9.36	 13.76	 17.56
DIVALENT ENERGY MILES)'

-Figure 109. ECGS Cooling Performance Results — 4-hour Heavy Work Load Simulated EVA Mission (185-lb Subject)

160



Figure 110 points out the average pulse rates during the design verification

runs and suggests that this parameter may be used in the automatic control of

cooling rate as a future development.

Both subjects apparently built up an anxiety stress ,just prior to entering

into the last 20-min burst of energy, as shown by the pulse rates from 215 to

220 min. After cessation of exercise at the end of the first run, maximum

coe'_ing was set up for a 10-min period during recovery to demonstrate that

cooling capacity was still available. The second run had the cooling stopped

at the end of the run and therefore showed the immediate rise in skin

temperature as would be expected.

Each of the runs was further analyzed to explain the trends in skin temperature

and core temperature as a function of metabolic rate. These data are shown in

Figures 111 and 112. The first run (628) shows that a nearly perfect

thermal balance had been established in the resting area, and also in the

1,300- to 1,500-Btu/hr metabolic rate range; above this value a slight warming

tendency was observed, even though the test subject stated that the cooling

felt at optimum comfort during the entire run. The second run (629) displayed

a tendency for overcooling even though the core temperatures did not vary

more than ±0.6°F. The test subject felt on t he slightly cool side during the

entire run, which can be seen in the gradual downward slope of skin temperature

from beginning to end.

Figure 113 shows the preselected cooling rates against the measured metabolic

rates for the two runs. If one were to recommend the optimum cooling it could

only be selected between the two curves, with slightly higher cooling for the

150-1b subject at the highest work rate and slightly less cooling for the

185-1b subject at the lower work rates.

The two subjects were in supposedly peak training just prior to the design

verification runs; at that time the final work load calibration tests were

completed as described in Section 6.4 utilizing the full ECGS plus the

double-thickness arctic suit. The lighter subject tended to improve on
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I

subsequent runs; :ie was able to complete progresEively a given treadmill task

at a slightly lower metabolic rate than indicated by the prior calibrations.

The same tendency was noted for the heavier subject, but not to such a great

extent. The trend can be observed in the data of Section 6.7 where the
lighter subject usually ended up with a slightly lower metabolic rate than

the target value. Figure 114 shows this "training effect" for both subjects

as a result of the design verification tests that directly followed the work

load --atibration runs; the greatest variance shows up in the 2,000- to

4,000-Btu/hr metabolic rate.

The cooling data described in this report were derived from many threadmill

runs. The final two test subjects have logged over 300 miles and still the

"training effects" continue to be appreciable. This f_ct is brought up as it

may relate to an EVA operation in weightlessness. The astronaut training in

EVA tasks at Earth gravity or in neutral bouyancy are also faced with the

it
	 effect". Training will allow a given task tc be accomplished at a

lower metabolic rate. It would require large numbers of duplicate training

tasks to minimize the metabolic rates for a given task, and if training is

carried out to the point of diminishing returns, nothing short of extensive

additional training in actual orbiting 0 g will allow the full training

optimization to take place. The astronaut training described to reduce

metabnlic rates for a giver. EVA task is not economically practical. Therefore

our spacesuit life support systems should be prepared to provide an

environment capable of supporting the highest feasible metabolic rates.

It is impossible to design a system that can guarantee man will not sometir,,e

need to use his maximum sustained work capacity to cope with an emergency.

This program has demonstrated that useful work can be performed at 5,000-Bt-i/hr

metabolic rates for at least 20-min duration following 3 hours, 40 min of

heavy activity and be cool and comfortable at this task without sweating.

The ECGS performance breakthrough should therefore suggest a similar higher

level of performance requirement for other spacesuit life support

system parameters.

•

•
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6.9 GOVERNMENT REPRESENTATIVES WHO HAVE WORN THE ECGS

Th•: follovi:zg representatives from various government agencies have worn the 	 •

fwil ECGS suit with cooling headpiece under high work capacity treadmill

conditions. Tests ran up to 40-min duration and included short period metabolic

rates in excess of 4,000 Btu/hr. In each case, the ECGS had a reserve cooling

capacity that was greater than was deemed necessary to maintain a comfortable

heat balance. Overcooling could be established within a few seconds in any

work mode attempted.

1. NASA-MSC Crew Systems Division, represented by Mr. Fred Spross.

2. NASA-ARC Biotechnology Division, represented by Dr. Alan B. Chambers.

3. USAF-SAMSO Bioastronautics MOL represented by Capt. C. B. Harrah.
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Section 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The evaporative cooling garment system (ECGS) contract was programmed through

the research tasks of -cheory and design, basic laboratory tests, engineering

model fabrication, design verification tests, and documentation with Lardware

delivery. The development was carried within 14 months from a working proof of

principle concept to functioning hardware that was tested with very heavy work

loads simulating a 4-hour EVA mission profile. Numerous problems came up with

solutions covering the gamut from the search for highly specialized materials,

to the development of test techniques designed to evaluate the ECGS cooling

•
effectiveness on man working near the limits of endurance and energy

consumption.

It was most gratifying to the ECGS project team and to management to observe

that all aspects of the program were accomplished in accordance with contract

requirements; and that the target cooling performance was easily met. It was

shown that the test result cooling levels would push the prior state of the art

by over 250%. Not only were the high cooling rates demonstrated, but it was

shown that man could work in comfort ttaing the ECGS at levels heretofore

believed improbable of attainment.

Specific conclusions derived from the ECGS program ars as follows:

1. The ECGS has demonstrated its ability to exceed every cooing

requirement of the contract specified 4-hour heavy work load EVA

mission profile.

2. Short run cooling rates exceed 7,000 Btu/hr; and any duration at

this level over 2 min is limited only by the cardiovascular system's

ability to transmit internal body heat via the bloodstream capillary

bed to the skin surface.
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3. Maximum cooling rates can be instigated in less than 1 s°c.

4. Heat rejection rates have been controlled to less than 1% variation

in laboratory test hardware.

5. 1,500 Btu-hr of heat rejection are stored within the current ECGS

patches in the form of water; the cooling quanta cati be released in

15 min or extended through 10 hours before adding water.

6. The ECGS requires no power with a manual controlled vacuum valve.

`7. ECGS cooling of human activity up to 5,000--Btu/hr metabolic rate

carried to the limit of human endurance results ir. no measuraule

body sweating while maintaining thermal equilibrium.

6. The ECGS has mobility limits comparable with the full pressure suit,

wearing comfort is adequate for long-duration running speeds on the

treadmill.

9. The ECGS plus the double liner arctic suit have been worn with full

comfort and operated for 10 continuous hours during which 8.9 miles

were walked on the trF dmill.

10. The ECGS has ti =n worn with the A-6L full pressure suit. Full

integration ,eeds only the addition of a steam vacuum fitting to the

pressure suit.

11. A ccoling headpiece has been developed as a part of the complete

ECGS which has been integrated with full pressure suit inter,om

gear.

7.2 RECOMMENDATIONS

The following recommendations are made:

1. Continue development of the complete ECGS into potential space

flight hardware.

2. Initiate the development of automatic cooling valves and controls.

3. Study the problems of skin temperature comfort zones at high

metabolic rates and establish performance boundaries for same.

4. Optimize all components and materials.

5. Increase mobility and maintain full comfort with the increased

flexibility.
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