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ABSTRACT

This paper presents a significant improvement over the
hitherto available linear dominant system design techniques
for guaranteeing system response within prescribed bounds,
despite large plant parameter variations. Noteworthy
features of the new technique are:

1) The mapping of the plant parameter space into

the closed-loop system space is exact and permits
application to a much wider and more realistic

class of problems than previously possible;

2) It is shown how the loop transmission band-

width may be made very much smaller than in the
previous designs, thus congiderably extending

the applicability of the dominant approach,

because of its drastically reduced sensitivity

to internal noise.
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OPTIMUM LINEAR ADAPTIVE DESIGN OF DOMINANT
TYPE SYSTEMS WITH LARGE PARAMETER VARIATIONS

I. Horowitz
Dept., of Electrical Engincering, University of Colorado, Boulder, Colo.

A, Introduction

Despite the many recent advances in control theory, one of
the most fundamental problems is far from solved, This is the
problem of optimum design (for a given prescribed complexity)
of a system with parameter variations, so that its time
response lies within specified tolerances. By optimum is here
meant the very important practical problem of minimizing the
effect of high~-frequency sensor, amplifier etc. noise, because
this is usually the dominant factor in determining the practical-
ity of a theoretical adaptive design. It is true that many
nonlinear adaptive structures have been proposed in the litera-
ture, but almost without exception there are no design procedures
for tailoring their detailed design to any specific numerical
problem, which is an essential step for optimization in the
above sense, Thus any one of these nonlinear structures may
possibly be optimum for a given numerical problem or even for
a class, but neither the problem nor the class is known. Hence
nonlinevar adaptive theory is as yet an art, rather than a
science. On the other hand, some progress has been made in
developing such a science of linear adaptive theory but even

here the situation is far from satisfactory.

Consider the following basic problem: (1) There is a
single input-output plant with parameters which may lie (or
'slowly" vary) within a given region in parameter space; (2)
Specific bounds on (say) the step response are prescribed, such
as acveptable range of rise-time, overshoot and settling time;
(3) Linear, time invariant compensation is to be used for
which the rms effect at the plant input of noise lumped at the
sensor, is 1to be winimized. It can be categorically stated that
this fundamental problem in linear adaptive theory is not as




no

yet satisfactorily solved. The infinitesimal variations case has
been treated both for statisticallma and deterministic situa-~
tions.4 The deterministic case for large parameter variations
has been treated by means of frequency response,s’6 and by
s-plane6’7 techniques. with the latter confined to dominant-type
formulations, The dominunt approach is considered here and its
shortcomings noﬁed, which are alleviated to a significant extent
by the present contribution.

The Dominant Roots Approach

In many problems it is reasonable to have the system re~
sponse be determined primarily by a small number of poles and
zeros, which in turn readily permits time~domain performance
bounds to be translated into acceptable range of location of
these few dominant poles and zeros. The inevitable additional
poles are assigned "far-off'". The presently available tech-
niqueG’7 may best be described around the specific example of
Fig. 1, wherein ABCD is the region of variation of the complex
poles of a plant transfer function, whose dominant varying part
is

2
P =Xk s 488 P
/s (8748 p t p) (1)

k varies from 1 to 1000 in value; MNQR is the range of accept~
able dominant pole (with parameters Sr’ Pr) location of the
system transfer function

I

T(s) 2 PrpfF(S)/(s2 + 8,8 + P) (s + pp);rF(o) = 17; (2)

Pe is the closest far-off pole and F(s), contains within it all
other far-off poles and zeros; UVW is the boundary to the right
of which the far-ofif poles may not cross. One may argue over
the specific location and shape of the far-off pole boundary
UVW, but the important point is that such a choice must be
made if the design is to be of the dominant type. The range
MNQR, WINQR is approximately that which has been suggested as



acceptable in flight control.8

The design philosophy is to locate loop transmission [L(s)1
compensation zeros (%, %) in or uear MNQR, TRQR such that, with
sufficiently large gain factor, the dominant closed-loop poles
are guaraniced to be in the acceptable MNQR range, despite the
variations in Sp, Pp, k in (1). Suppose the far-off open-loop
poles of the loop trapsmission L(s) are assiguned say at Xy
Yl, X2 in Fig. 1. Thesge locations must be such that over the
range kmin < K o« kmax’ the far-off closed-loop poles remain to
the left of the boundary UVW. From root~locus considerations,

it is clear that the greatest danger of boundary crossing is
at k = kmax‘ 3
k = k a closed~loop pole precisely on the boundary , say
at J in Fig. 1. Write L(sg) in the form L(s) = kK'n(s)/d(s)
where n(s), d(s) are polynomials whose leading coefficients are
unity; K' is a constant. Let Y,¥ in Fig. 1 mark nominal plant,

In fact, in the optimum design, there is at

and therefore loop transmission, poles. Since 1 + L(s) =

1 + kK'n(s)/d(8) = 0 at s = 0J when k = kmax, it follows that

koK' = = d(00)/n(00; i.e.,
- 2 = 2
max (z3) (ZJ)

Let Y' represent a dominant closed-loop pole position (inside
MNQR, of course} when k = k_. . Then,

min
kK= . (07 (7¥) () ¢ SOENCE SOLNG 8 S IR ¢:15)
(ZY') (ZY')
Hence,
) 2 s ] 2 - ceemt v e s emveriema ok
knax _[ K1 D" D"E D) | oy (v3) F0)/2I) (Z3) 21,100
Fnin | (3 ¥) 2@ ¥ P (Y1) | (0Y) (YY) (TY1) /(2Y") (BY") Ky
) (4)
with
k. A oyn)(yy) (Fy') (z3) (ZI) - (0¥')(¥Y') (FY') (5)
1

(zy') (ZY'") (¥3) (Y1) (zy') (ZY')



because (ZJ) (ZJ)/(Y3) (¥J) & 1, due to J being far-off relative
to the dominant %, %, Y, V.

Suppose kmax lmin = 1000, In Bq. (4), Mnax (which is not
large) is determined by the geometrical pattern of Xl, XZ’ vesy
U,V,W and can be readily found in any specific problem. The
ratio OJ/K1 in Eq. (4) must bear the brunt of satisfying the
large change in the plant gain factor k___/k . This leads

max’ “min.
to large 0J; for example, it will later be found that even

in the optimized design |0J| < 5600, which is at least 500

times as great as the largest magnitude dominant pole. It is
next shown that large 0J means large bandwidth over which the
compensation, denoted by G(s), is performing at least secund-
order differentiation with its noise amplification problems.,.

One way to see this is aq follows, At s = 0J, the loop
tranbm1531on G(s)P(s) = L(s) T ?ut at s = 0J, iP(s)[

‘k/s(s +sSp4-Pp)| = ]k/s | = |k/(0J)d| 2 ¢ is generally ex-
tremely small; therefore, the compensation magnitude |G(s)| = 1/e
must be very large. Or, the above statement can be verified

by the following argument. At s = 0J, L(s) = G(s)P(s) = -1.
Hence, at s = 0J, /G(8) +./P(s8) = = 180° i.e., in Fig, 1
fz/x J + 2/X, J 599 j {LOJ + /YT + AYJ -~ /23 - AEJﬁ 4 8p + 84
180° But ed fg;oJ + LYT + [YT - [ZT - AZJ = /03 = 90° + 5,

5 small. Hence, @, 4 2/%, T + 2/%) T + [X,T = 90° - 4 < 90°

A pole at —-a has an angle of 45° at s = Ja Since 6p repre-
sents the totality of angles of the vectors from the poles of
G(s) to 0J and 0p < 900, it follows that their effective
average corner frequency must be larger than 0J. In the Bode
plot, |G(jw)| therefore has a positive slope (whose asymptotic
value is 40 db. per decade) commencing at y = 0Z and continuing
so beyond 0J. Thus G(s) performsvsecond-order differentiation
over a very large frequency range., If, in practice, the plant
has its own additional far-off poles then the compensation
network must have corresponding additional cancelling zeros
and performs even higher order differentation. From

Eq. (4), (OJ)(A/Kl) =k /k . = 1000 and since Apax 1S nOt

max’ “min
large, it follows that minimization of K defined by (5),

1



is extircemely important, in order to reduce the bandwidth of
the compensation,

The previously available design techniques are deficient
in the following important aspects: (1) The mapping of
ABCD into a region which lics in MNQR is approximate. Viz.,
if A, B, ..., map inte %*he points A;, B', ... (inside MNQR
of course) it is assuwed in the calculations that AA', BB',
BA', BB', ZA', ZB' ... may be approximated by AR, BR, ...
where R is a fixed centrally chosen point inside MNQR. Hence
the design technique is satisfactory if and only if (a) the
acceptable region MNQR is both relatively small in area, and
(b) well removed from the plant pole range of variation ABCD
and (¢) from the real axis, These are all significant short-
comings for in many, if not most, control problems there is
a fairly large acceptable closed loop dominant pole range

which often overlaps the range of plant pcle variation,

An additional significant shortcoming is that (2) over a very
large frequency range, the slope of |L(jyw)| is only -6 decibels
per octave so that the required gain margin of at least 20 log

lkmax/
as 6 x 10 = 20 log 1000), which could be significantly reduced

kminl requires many octaves (10 in the present example,

by using a larger magnitude average slope, say -9 or -10 db

per octave. (It is important to note that the largest noise
contribution is in the last few octaves. A reduction in L(jw)
bandwidth by x octaves reduces the rms noise by a factor whose
order of magnitude 1is Zx.) However, this would require a more
complicated L(s) far-off pole-~zero pattern, which is difficult
to include in a systematic s-plane design approach, but is

much more readily achieved by using frequency-response tech-
nigques in this relatively "far-off'" region. This paper presents
procedures for eliminating the above shortcomings.

B. Design in the Dominant Range -~ Case

Plant Gain Factor Alone Varies

If the plant pole and zero variations are small, although
the goin variations are large, it is possible to achieve a con-
siderably more economical (smaller bandwidth) L(s) than by the
previous methods. Ignoring the far-off poles except for the



nearest, Py (in the notation of Egs., 1,2) let the dominant
part of L(s) be

~ N 2 . 2 , A
Ld(s) = Kk(s“ 4 S@& 4 Po)/s(a T 88 4 PE) = Kk nd(s)/dd(s)

4

(6a)

and the corresponding dominant part of T(s) be

2 ) A
3 v 5 < s < ( LN - T
Tq(8) = Popo/ (6" + 8,8 + P)(s + py) Prpf/nd(s) (6b)
From (5,6b)

dd(s) + Kk nd(s) 2 Dd(s) (7)

Note from (1,6a) that not all the poles of the plant P are
necessarily in Ld; i.e., it may be helpful to cancel some poles
of P and replace them by others in Ld, which is no problem in
this case where only the plant gain factor k varies. This is
also the reason for replacing the p (indicating plant) sub-
scripts of Eq. (1) by the more general j (indicating loop trans-~
mission) subscripts in Eq. (6a). Equating the zero degree co-
efficients in (7) gives

kK = P po/P, (8)

* & %
Let Pr y Pg s Dd ; o denote Pr’ Ppo Dd’ ... at k = kmin

» - — * PR Y A: s . ™
with P, = (0Y')(0Y'). In Eq. (7), ud(s) = 0 at s = 0Y' when

k =Xk ., SO LI |dd(0Y'}/nd(OY')|, which is exactly equal
tn the extreme righthand side of (5), defining Ky i.e.,
" * * L
Knin £ 7 Pp Py /Po =K (9)

The importance of K1 minimization has been previously em~
phasized in connection with Eq. 4. Eq. (9) indicates that there
are three variables available for this purpose. The choice of
P
(which is on the negative real axis) lies to the left of the
boundary UVW in Fig. 1, for all kmin < k < kmax’
Eq. (7), ~pp lies on the root loci of 1 + Kk nd(s)/dd(s) = 0,

7 for K1 minimization is easy. The specs. redquire that ~Pg
According to

From a simple, rough sketch of these root loci, it is easy to
see that as k increases, the real axis root moves to the left;



icovy, Pp 2 f because pi' has been defiqed as the value of
Py at k = Imln. The minimum value of pf is thercfore pre~
cisely that permitted by the spees., i.e., by the intersec-
tion of UVYW with the boundary (at -16.2 according to Fig. 1).
The choice of Pr* in (9) fox Kl minimizatign is next con-
sidered. Obviously, the besl choice of Pr is the minimum
value of P, permitted by the MNQR spceification, Since\/§;
is the magnitude of the line from the origin to any point
ingide or on MNQR, the minimum value of Pr* corresponds to

a point at which a circle centered at the origin, just grazes
MNQR, as shown in Fig., 2, (Pr* is used in Fig. 2 to denote

a pole position but this should not cause any confusion). It
is necessary to guarantec that this choice for Pr* leads to

S., P, Py of (6b) which satisfy the specs., for all

k < k = k a For this purpose let the system dominant

min max’
characteristic equailon Dg (8) at k = k be denoted by

r,

min
d (s) 8 dd(s) + Kkmin nd(s) (10a)
and subtract (10a) from (7), giving

Dy (s) + K(k - ko ) nd(s) Dd(s) (10b)

Hence, the zeros of D,(s), i.e. the system poles, which the
specs. require to lie in MNQR in Fig., 2, are on the root loci

of
ng4(s)
1 + k(k - km. ) mnwn—m-& 0 (10c)
Dy *(s)

In the root-~locus pattern determined by Eq. (10c¢), the

* = K
open-loop poles are at the points denoted by ~Pg s Pr*’ P in

r
Fig. 2. The problem is to choose Z, Z, the zeros of nd(s), to
guarantee that the root loci of (10c) stay in the MNQR region

for k > k s k 70 achieve this, it is certainly necessary

max min’
that the direction of departure of the root locus from P be
into MNQR by a comfortable margin. Consider the vector deter-
mined by the lines Hlpr*’ HZPr* in Fig. 2. It is reasonable
to require that the direction of the root locus departing

from Py be inside this or a somewhat similar gector, in order



to cnsure that the root loci vemain within MNQR for k >k>kmin.

Obviously, there is some cut and try involved here. In any
casce, with this choice the requirement is that the root locus
angle of departure denoted by ed, is constrained by the
rolation 1289 « g . 2159 (seo Fig, 2). Using the 'angle of
departure' root-locus theorem (Ref. 6, p. 125), and letting

* e kL : . :
n, }/Zpr zt/»/ZPr , there is obtained the equation (see Fig., 2)

QOO b 23° 4 edg - 9 . ]800; giving 56° < Gy < 148°. The

0y
locus of %, 4 such that 9 is constant, & a circle through
¥ . K
Pr ; Pr and through a thlrd point X defined by //XP 0.5@2.

The two extrome values of 560, 148° for A, thus determine
corresponding two extreme circles Cl’ C2 in Fig. 2. Thusg Z
may be located anywhere between Cl’ CZ‘ From (9), it is
desirable 1o choose 7 as far from the origin as possible in
order to maximize Po and so minimize K1, But when kmax/kmin

is large, thn closed~loop pole at k = kmax) is very close to

Z. Hence an excellent choice for Z appears to be at the corner
R. However, one must check that the root loci of (10c) stay

in MNQR. This is done by finding the angle of eutry (ee) of
the root locus into Z (Ref. 6, p. 125). The result is

b = 94° if 7 is at R, This is clear] 1y unacceptable., Location
of Z at ~7 + j 0.5 gives 0o = 94° which is satisfactory. Thus
a value obviously very close to (Kl)min is found by means of
relatively little cut and try. The procedure for further
(marginal) minimization is obvious. The above choice gives
ny(s) = s + 14s + 49.25 and from (9), K; = 2.52. To find

Sz, PZ of Eq. éSa), Bq. (7) is solved for dd(s). The result
is dd(s) = s5(8” + 11.58 + 23.4), which will involve dnminant
plant pole cancellation and replacement. 1In order to decide
whetrer the economy in X, (and thereby in L(s) bandwidth and
in noise reduction), so obtained is justified, the optimum
(minimum Kl) design for specified (uncancelled) dd(s) is re-
guired. This case is included in the problem next considered.



C. Design in the Dominant Range -
Case Plant Poles and Gain Factor Vary

As an aid in presenting the design technique, consider
the case when the plant complex pole pair may range over the
region ABCD in Fig., 1. (Note the deliberate overlapping with
the acceptable system pole region which could not be handled
by the previous method6’7.) Equating cocfficients in Eq. (7)
and in the notation of Egs. (6a,b) (except that Sz, Pz are
replaced by Sp, Pp, since cancellation of plant poles is not
contemplated because of their large range of variation),
gives

!;\* 3 =3 ) é‘ W :,[:\'
X = 8, + kK S, + (KKP /P.) = x + Yy (with y = KKP_,
X 4 S,y ¥ & 1/P_.) (11 a,b,c)
r r
Y& P 4 kks_ = YXY L (12)
p o y
and

KKP_ = poP., (8)

The relating of open-loop pole fto closed~loop pole variations
is easily achieved in the X,Y plane because AX = Asp, AY = APp
at fixed k., (It will be seen that the variations in k are
usually more easily handled at a later stage by root-locus
methods). Therefore, the next step is to use Egs. (11), (12)
to map the acceptable MNQR region of Figs, 1,2 into the
X,Y plane, Since y is not a priori known, the mapping may
have to be done for several values cf vy, P does not in
practice have much of a permissible rang: of variation (~MNQR),
20 large y means large kK; i.e., large Kl. Hence one starts
with small v and tries larger y if the former proves unsatis-
factory. This will be clarified in the later design details.
‘It is obvious from 11, 12, or from the older method, '’ that
any minimum-phase probley can be solved by means of sufficiently
larg: kK.

A simple way of performing the mapping is by means of

loci of constant S,, P, in the X,Y plane. Thus Egs. (1la),

r



(12) may be manipulated into
2y2); Y= x(X - x) +yE& - x) "t

(13a,b)
which are readily plotted by computer and shown in Fig. 3 for
v = 600, The acceptable region M'N'Q'R' is also shown in
Fig, 3.

The final step is 1o map the plant variation region ABCD
of Fig, 1 into the X,Y plane in Fig. 3 and to see whether it
can be accommodated within the M'N'Q'R' region of Fig. 3.
Thus from (lla, 12) the plant pole variations ASp = AX,

APp = AY. The procedure is to first map the ABCD region of
Fig., 1 into an equivalent region A'B'C'D' in an Sp, P_ plane
whose units are the same as those of the X,Y plane. A'B'C'D'

Y= vyX 4+ (578 -y

mzy then be cut out with scissors and one attempts to [fit it
into the acceptable M'N'Q'R' region in Fig. 3. It is seen
that it cannot be precisely fitted inside M'N'Q'R, at Y = 600,
The mapping must be repeated at higher y (i.e., new loci of
constant Sr’ Pr with a resulting larger area M'N'Q'R; A'B'C'D'
is unaffected.) In this specific example, if A'B'C'D' is
located as shown in Fig. 3, the resultant s-plane closed-~loop
region is that enclosed by the A'B'C'D boundary in Fig. 4.

Let it be assumed that the indicated excursion outside MNQR
is acceptable, so that y = 600 may tentatively be used. (It
is fortuitous that part of the excursion involves an over-
damped range whose extremes are given by the B', for it will
be éhown that this permits a "far-~off'" L(s) pole to be in-
serted sooner than would ordinarily be possible.)

The tentative qualification is used in the above because
one must check whether acceptable Ps results and whether the
variations in k lead to satisfactory closed-loop pole varia-
tion, To check these matters, the parameters are evaluated at
v = 600, In Fig. 3 any suitable point is chosen, say X = 32.2,
Y = 220; Sr = 8, P, = 25; at which (by reading from the scales
on the portable A'B'C'D' graph) Sp = =3, Pp = 80. Since
(Eq. 1la), X = Sp + kK = 32,2, kK = 35.2 and PQ = Y/kK =
60°/35.2 = 17. Also, Eq. (12), 80 + kKSo = Y = 220, so kKS0 =
140 and S = 140/35.2 = 4, and Eq. (8), p, = kKP /P = Y/P_,

i

10



S0 (pf)min = 600/36, which is satisfactory (since it is on
the left of UVW boundary in Fig, 1), (Note that K, is 85.2
here as compared to 2,52 in Section B wherce there was no
open-loop pole variation, This is a difference of 29db which
it will be seen results in a difference of about 3 octaves
in L(s). This is discussed in detail in Section E.) To check
the effect of the variaticns in k, the equivalent of Eq. (10c)
is used

Dy (s) + K(k - kmin) ng(s) = 0 (14)

The roots of (14) for kmin

< k <« kmax give the

two dominant and one far-~off closed-~loop poles as a function

of k., Dl(s), replacing Dd*(s) in (1Cc) represents D(s) at

k = kmin’ Hence the zeros of Dl(s) may lie anywhere in A'B'C'D’

in Fig. 4, previously obtained at the fixed k = k One

must therefore consider all possible root-loci fo?lghe infini-
tude of zeros of Dl(s). It suffices to check the boundary of
A'B'C'D', by calculating the angles of departure. It is

found that over the entire boundary of A'B'C'D' the angles

of departure are all such as to lead to loci directed into the
interior of A'B'C'D'., If, in practice, it should not be so,
then one can be certain that sufficiently large y will give a

satisfactory design. The objective is to get by with as small a
g

v as possible,

D. Far-off L(s) Pole and Zero Locations

It has been noted that in the old design method, |L(jy)]|
decreases at the rate of -6 db/octave over a large frequency
range, so that the required minimum gain margin of [20 log

(kmax
decrease the L(jy) bandwidth, a larger slope is required, in-

/kmin)] requires many octaves. In order to significantly'

volving a staggering of poles and zeros in the higher fre~
quency range. This is difficult to do in the s-plane, and
much easier to design on a Bode plot. iHvwever, it is then
necessary to translate the UVW boundary constraint of Fig. 1
into an equivalent constraint in the frequency domain. There
is a complex pole pair which threatens to cross the UVW, TVW

11



boundary.
The parameters [pr we are closely

Let this pole pair be the zeros of s2

related (Ref. 6, p. 197) to

the Bode plot type frequency parameters Gm (gain margin in
nepers) , O (phase margin in radians), W (defined by
|L(wg) [= 1), w_ defined by Arg L(jy ) =-180°). The approxi-

mate relations are:

2 2 g, 2, 2
o Gy * By (w “/wg)
g~ 2 2
Ue G+ Op
(15a,b)
A eme (wTT - Yo
Ce 2 g2 )
O+ Cp W
They have been found to be fairly accurate~-see for example,
Ref, 6, p. 279 and later in the present section. As k in-

creases from k W increase

min Ye?

and B ? Gm change in value.

Hence, the UVW boundary constraint on the far-off system

poles, may be restated as constraints on the above Bode-type

frequency parameters, and used as
Bode plot in the far-off range.

such in shaping L(jy) on the

This may be done 1if one is

keenly interested in extreme optimization; i.e., an average

|L(jw)| slope close to -10 ~ - 11
may dispense with the above if he
slope of -9 db/octave hecause the
obviously be satisfied (the phase

most of the range in befween We
1

the crossover frequencies at kmin

However, these relations may very

db per octave. The designer
is content with an average
UVW constraints will then

c . o
margin is then ~ 45 over

and Wg > the latter denoting

2

and k_ respectively.)

usefully be used at Weo it=-

self in order that the last far-~off lag corner frequencies

which must be inserted at yp > Weos MAY be introduced at as

low a frequency as possible

(see Fig. 5).

The detailed procedure
region is straightforward.
region, the poles and zeros

equivalent to a single pole

in shaping L(jy) for the "far-off"
From the viewpoint of the far-off
in the dominant region are

0.

at s = Hence one begins the



Bode plot with a Bode sketch of L = Kkmax/s° The first
decision which must be made is at how low a frequency one
may insert a lag-corner~frequency (denoted by lacf); i.e.,

at which point may the first far~off pole be placed, without
significantly affecting the positions of the dominant system
poles assumed to lie in A'B'C'D' in Fig. 4. (Recall that in
obtaining A'B'C'D' in Figs. 3, 4, the far-off poles and zeros
were neglected.) Suppose a lacf at y = 30 (i.e., a pole at
-30) is used. The maximum phase effect of a pole at ~30, on
points in A'B'C'D', is 8°, The magnitude effect is given by
|PX'/P0O| where X' is any point in A'B'C'D' and P is at ~30.
There will consequently be negligible shifts in the assumed
root positions in the A'C'D' region but nonignorable effects
on the points near the B' region; for example, a pole at =30
is not "far-away' with respect to the root at -8.9. Is the
effect desirable or undesirable? A little thought indicates
it to be an extremely desirable effect; in fact the B' points
are thereby forced into the more desirable MNQR region. A
bit of work with the spirule predicts that the extreme B'
points roots move to -4.3 & j 1.75, (B" in Fig. 4) which is
well inside MNQR in Fig. 4. Thus there will now be only

the small region near Z (Fig. 4) outside MNQR, With regard
t? the UVW boundary, (Fig. 1) at k = kmin, We = Woq
Fig. 5) and since the approximate relation of Eq. 15a always

~ 28 (see

gives wf/wc > 1, the UVW boundary specifications of Fig. 1

are easily satisfied at k = k so long as the average slope

of |L(jw| is ~ =9 db/octave. mgﬁch an average slope is
obtained by staggering poles and zeros as shown in Fig. 5
(poles at s= -30, =600, zeros at ~125, -3000 but of course
this is not wunique).
The final step is the assignment of the last far-off poles.
One decides upon the desired excess of poles over zeros of L(s).
In this example an excess of 5 was chosen. Egs. (15a,b) may
be used, if desired, to economize to the utmost on the band-

width. There was no attempt to do so in this case. Rather,



with a little cut and try g, = 22°, G = 8 db (at k = k )
was considered satisfactory. The approximate relations of
Eqs. (15a,b) then give We 5600, gf = 0,17 compared to the
computer values of we = 5660, Ep = 0.187.)

The resulting L(s)

(35.2)k (24 48017y | TB0 * 1 Cmppp + L
2
L s(s +Sps+ Pp> (%U +1)(3%U +1) {}85%6)

Z 2
. £2)(0.3) S+1]
(16

Computer runs give very good verification of the‘design. The
points A', B", C', D' are found to be at -2.7 + j 4.06, -4.,44 +
j l.64, -3.0 + j 2,32, ~1,83 + j 3.34 respectively, in good
agreement with the design values in Fig. 4; as k increases to
kmax’ they converge towards Z inside A'B"C'D', The far-off
roots easily satisfy the UVW boundary constraints of Fig. 1.

Design Structure and Compensation Blocks

To complete the designh, a specific structure must be
chosen. Any two degree of freedom structur'e6 may be used;
for example, that shown in Fig. 4. The design has guaranteed
dominant system poles in an acceptable region, but the specs.
may possibly require other fixed dominant poles and zeros in
the system transfer function T(s) a C/R. Let these denoted by
r(s). The dominant poles and zeros of F and H are thereby
completely fixed, as willﬂbe seen., The designer can arbitrarily
assign far-~off poles and zeros to T(s) because these have
negligible effect on the system response, and a judicious
assignment may lower the complexity of F(s) and H(s). Let
the subscripts d,f denote dominant and far-off poles (or zeros)
respectively. Let D(s), sd(s) be polynomials represen11ng
t?e Zeros of 1+L, poles of L respectively. Let Df(s) D (s),
df(s), d (s) represent portions of the correspondlng polynomlals
w%th D(s) = Dy (s) D, (s) = D4 (s) D (s) D (s), de (8) = d (s)
df(s). As usual, the 1eading coefflclents in the d(s) D(s)
polynomials is unity. Then, in the structure of Fig. 4

14
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Fp Fk/(s“ + sSp + Pp)s

T(s) = = Y Ll
1+L D4 (S) Dy (s) Df(s)/(sz+ 88, +P,) s dg(s)

Fk dg(s) | (17)
Dd(s)Dé(s) D;(s)

If T(s) is set up as T(8) = k7(s) d;(s)/Dd(s) D;(s), then
equating this with (17) gives "
T (S) Df (S)
| e
Also, L(s) = FPH = kK(sz + B8, + Po)/s (sz + sSp + Pp) df(s).
Combining the latter with (18) gives
K (82 + S8, + Po)
H(s) = — T
de(s) 7(s) Dg(s)
From (18,19) it is seen that both F and H are simpli-
fied by letting Dg(s) = 1, if sufficient far-off poles

F(s) = (18)

(19)

have been assigned to L(s) to ensure proper high-frequency
behavior of F(s) and H(s). These far-off poles may be
appropriately divided between F(s) and H(s) for this pur-
pose.

E. PFeasibility of Pole Cancellation
When Plant Poles Vary
Section B considered the sensitivity problem for plant

gain variations with no plant pole variations, while
Section C considered the same spec. but with both pole and
gain variations. The difference in K1 was found to be 29 db,
which means that the final rapid decrease of ‘L(jw)[ must

in the second case be about three octaves further off (with
noise effects ~ 23 worse than before). Can this be
avoided? Consider, for the moment, the case where the com-
plex plant pole pair varies a "little.'" It may then be
feasible to cancel the poles and locate a fixed pole pair
at the optimum point found in Sec. B, and thereby use the
smaller Kl' However, due to the small plant pole variation,



there will be a dipole in that neighborhood, Hence one
must add another specification, say, the maximum tolerable
residue in the pole (of the dipole) of the system step
response. The latter can be related to the maximum dipole
separation, as follows

Let the loop transmission be written in the form

(s ~s,)
L(s) = L1<S) '-(g-':—s‘%y (20)
p

k)

Suppose the closed-~loop pole associated w;ﬁhﬁthe dipole is
at s, in Fig. 6; i.e., 1 + L(Sd) = Ll(sd) A/B = G, The
last complex equation is equivalent to the two real equa~
tions:

B/A = {Ll(sd)l, 6, * ep
Fig, 6., Let u, v be a set of

= - eLl(sd) with g, ?P defined in
axes as shown in Fig. 6.
The last two equations then become

~12 2

a2 + v - a(l + mz) _| _2am ,
(1 - mz) 1 - m;
i - (21la,b)
a 2 2 2 1
(u - ﬁ) + v o= at (1l + =)
A A N
with m = ]Ll(sd)], N = ~taneL1(sd) (22a,b)

The (u,v) values which satisfy (2la,b) are the coordinates

of s, in the u,v plane. Equations (21a,b) generate two

orthggonal families of circles, which are plotted in

Fig. 7 with m, N as parameters. To use them, a value of
Sq is assumed near the dipole, giving m and N. A rruson-
able first try is to assume Ll(sd) = Ll(Sx) with S, at the
origin of the u,v axis. This determines a point in Fig. 7
(e.g., if at estimated sy, Ly = 0.5/ -1€0° then point i

in Fig. 7 results). The point M is used as the new trial
value of S 47 etc. Assuming the point M is thus found,

the value of A (of Fig. 6) is that of |SZM] in

Fig, 7 (Note |s;sp| = 2a in Fig. 7). This enables

one to find the value of the maximum residue in the pole

at Sq (in Fig. 6), of the system step response. This residue

16
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(Lf |8484] = |§,84]). Since 54, for the postulated prob-
lem, is in the dominant region, the range of [T(sd) is
well known, so the range of R may be determined. If it is
satisfactorily small, then plant pole cancellation is
feasible and the more economical design of Section B may
be used.

1f .2 is too large, then a design intermediate between the
two extremes of Sections B, C may be¢ used, as follows. Let
Kl,mig K) max e the two values of K, obtained by the
methods of Sections B,C respectively. Iféfi (associated
with Kl,min
Kl because, it is clear from Fig. 7, the larger the value of m

) is too large, it can be reduced by increasing

(which is directly proportional to Kl), the smaller the
value of A in Fig. 6 and Eq. (23.) However, there is no
point, of course, in going so far as to take Kl > Kl,max
for with Kl,max’ by the method of Sec. C, there is no

pole cancellation and the attendant dipole and need for
consideration of the residue. Thus, when there is plant
pole variation as well as gain variation, the two methods
of Sections B, C may be considered as the two extremes and

AL -

the required K. will be somewhere between K
q 1 / 1,max

K1 min® When the plant pole variation is extremely large,
H

as in the example of Sec. C, then there is no doubt that
Kl,max‘Of Sec. C must be used.

F. Generality of the Design Philosophy

The methods given here are, of course, restricted to
dominat-type systems, thereby permitting dominant s-plane
design. The resulting loop transmission bandwidth is
larger than that required in non-dominant designs for which
presently there exist only frequency response methods,G’9
The former is, however, better in its correlation with
transient response. The treatment in Section D for the
far-~off poles is applicable to all problems of the dominant
type. The detailed design technique in Section C is,
however, restricted to plants with varying dominant plant

poles and gain factor. It is not directly applicable to



e

18

plants with varying dominant zeros, Nevertheless, the
design philosophy of Section C is also applicable to

this case. It is only necessary to formulate the new
equations, obtain the analogs of Eqs. (11,12) and proceed
in the same manner.,

G. Conclusions

This paper has presented techniques for designing dominant-
type systems subject to large parameter variations and with
specified acceptable range of dominant system pole posi-
tions. These techniques result in reduced loop trans-~
mission bandwidth and internal noise sensitivity which is
smaller by several orders of magnitude than that obtainable
from the previous dominant-type design methods.
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