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ABSTRACT

A finite element technique is presented for the plastic

f	 analysis of'structures subjected to out -of-plane bending, alone

or in combination with in-plane membrane stresses. The method

makes use of a linear matrix equation of finite element analysis,

formulated to include the effect of initial strains. This equa-

tion is applied to the plasticity problem by interpreting plastic

strains as initial strains, the material nonlinearity being in-

troduced through subsidiary stress-strain relations from an in-

cremental plasticity theory. In addition, the analysis is com-

bined with an incremental technique developed to account for

the effects of geometric nonlinear behavior. Thus, the present

analysis is capable of treating the combined effects of material

and geometric nonlinearity. Application of the procedure is made

to beam and arch structures in the presence of both types of non-

Y^	 rectangularlinearity, and to 	 plates for which material nonlinear-g

ity alone is present.
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F
I. INTRODUCTION

The description of plastic behavior presents some basic dif-

ficulties to the structural analyst. These difficulties are as-

sociated with a proper description of the material phenomenon and

the nonlinear nature of the resulting governing equation. Thus,

the mathematical formulation of the plasticity problem makes a

continuum analysis of all but the simplest structures a very

formidable, if not an impossible, task. Consequently, consider-

able attent'.on bts been given recently to the extension of finite

element tech»i ±ues to incl ,:Ae the effects of plastic behavior

(Refs. 1 . 51. These techniques have the advantage of being capa-

ble of treating the iffects of plasticity in complex structures

by utilizing various algorithms for linearizing the basic non-

linear nature of theP roblem.

Most of the current effort concerned with the application

of finite element techniques to the plasticity problem has

been limited to the treatment of structures in states of

membrane stress. In addition, the methods generally neglect

the effects of geometric nonlinearity. These limitations

are too restrictive for many important aerospace structures.

Consequently, it is the purpose of the present paper to extend

1



the methods already developed to provide for a plastic bending

analysis that accounts for membrane stress states and geometric

nonlinearity.

The present method makes use of a governing linear

matrix equation that relates the applied loading to the nodal

displacements and initial strains. For the purpose of a

plasticity analysis, the plastic strains are interpreted as

initial strains. Use of the initial strain concept, to

treat the effects of plasticity, re quires the development

of appropriate matrix relations based on assumptions for the

distribution of both displacement and initial (plastic)

strain within a finite element. The specification of a

distribution for plastic strain within a finite element forms

the basis on which the present plasticity analysis depends. 	 -

Inclusion of the effects of geometric nonlinearity is

primarily of concern in problems involving thin beams, plates,

and shells in the plastic, as well as elastic, range. A finite

element method that utilizes an incremental procedure requiring

a successive modification of the element stiffness properties

has been discussed in Ref. 6. This method requires the

introduction of an additional stiffness matrix to account

for the effects on the bending stiffness of the membrane

stresses generated as a consequence of geometric nonlinearity.

In addition,. the effect that changes in geometry have on	 -

s
2



subsequent deformations is taken into account. This incremental

procedure is incorporated into the plastic bending analysis

to treat the combined effects of material and geometric

nonlinearity.

II. MATERIAL NONLINEARITY-PLASTIC BENDING ANALYSIS

An important advantage of finite element techniques

is the ability to specify the distribution of displacement

and strain states within each finite element. This permits

assumptions to be made for the distribution of plastic

strain and the development of regions of plasticity within

an element. These assumptions considerably reduce the

complexity of the analysis by defining the distribution of

plastic strain in any element, once the nodal values are

determined. This feature is consistent with finite element

analysis, and allows us to be concerned only with quantities

at node points of the idealized structures.

For the case of membrane stress states, the plastic

strains are assumed to vary in a prescribed manner in the plane

of the element. For out-of-plane bending, an assumption

must be made for the distribution of plastic strain through

the thickness as well as in the middle surface of the element.

Specifically, the present analysis assumes the plastic strains

to vary linearly along the edges of a finite element between

adjacent nodes, and in addition assumes a linear variation

3



(1)

of plastic strains from the upper or lower surface of the

element to an elastic -plastic boundary (or boundaries)

located within the cross section of the element. These

assumptions require the determination of the position of an

elastic -plastic boundary based on its assumed distribution

within the element during the course of loading. Thus,

the present analysis utilizes the concept of a finite element

in which there is a progressive development of a plastic

region instead of the layered approach of Ref. 7 or the sand-

wick idealization of Ref. 8.

The above assumptions are made in the development of

the governing linear matrix relation, which has been formulated

to include the effects of initial strains. These assumptions,

as applied to a typical beam finite element for which pure

bending behavior has been assumed, are shown in Fig. 1.

The function for the displacement in the z-direction is 	
I

assumed to be of cubic 3rder in the coordinate x, and is

written in terms of the generalized nodal displacements as

2	 3	 2	 3

w  _ ^l - 3 &-+ 2 	 wi + (3 X2 -2}w^
1	 1

^L?	 l	 &- - &+ (x	 _l2 1 + 12/ w,xi + C 1 2 	 1)

4	 ^



In choosing a displacement function, it is important to include

all fundamental strained states and all rigid body terms.

Equation (1) satisfies these requirements for a beam element,

and in the case of a uniform bending stiffness, EI, allows for

a constant shear load and linearly varying moment along the

length of the element. The plastic strain distribution is as-

sumed to vary linearly in the x-direction from its value at the

upper (or lower) surface at node i, represented in Fig. 1 as

E oi , to its value at the upper (or lower) surface at node j,

represented as E Oj . This assumed distribution is written as

I

E	 \ _ —I [ Eoi 
(I	 .L) + Eoj \ 2/ J	 (2)

t z

where z represents the depth of the elastic -plastic

boundary. In addition, as seen from Eq. (2), it is assumed

that at a node, the plastic strain varies linearly from its

value at the upper or lower surface to zero at an elastic-plastic

boundary located through the cross-section.

The depth of the elastic-plastic boundary, which

propagates from the upper and lower surface, is measured

from the neutral axis for pure bending, as shown in Fig. 1.

In general, the depth of this boundary cannot be directly

related to the load. Hence, the value of z must be determined



from the total strain distribution, which is assumed to

vary linearly through the thickness in accordance with

Kirchoff's hypothesis. The functional form representing

the distribution of the elastic-plastic boundary is assumed

to be a linear function of the coordinate x and may be

written as

z = (z - z 	 i + Zi
j

where z i and zj represent the depth of the elastic-plastic

boundary at nodes i and j, respectively. Thus, with the

preceding assumptions, the elastic-plastic boundary consists

of a surface in the interior of the element that extends

over the entire area of the element and intersects the edges

along straight lines joining nodes, as illustrated in Fig. 1.

In addition, these assumptions eliminate the necessity of

determining an elastic-plastic boundary on the faces of the

element between nodes, but still require locating such

a boundary through the thickness.

The present assumptions are further extended to include

the effects of bending in combination with a membrane stress

state. As seen in Fig. 2, this extension necessitates the

determination of the position of the elastic-plastic boundary

(3)
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I
relative to both the upper and/or lower surface. The functional

representation of the plastic strain distribution and the

representation of the elastic-plastic boundary are taken

similar to Eqs. (2) and (3) written for both the upper and

lower surface. A second matrix, in addition to the usual

stiffness matrix, termed the initial stress stiffness matrix

(to be discussed in the next section), is also introduced

to account for the effects of the membrane load on the bending

stiffness. This problem also requires the introduction of

a second displacement component, u, acting in the axial

direction,

U(X)	 C 1 4/ ui + (4)U.
	 (4)

I It should be noted that although the functional form of

the plastic strain distribution, as shown in Fig. 2, does

assume the existence of a neutral axis located within the

cross section of the beam element, the present analysis is

capable of considering plastic sections in which the neutral

axis is not located within the thickness of the beam, i.e.,

the upper and lower strains are of the same sign. This
I

situation occurs with the application, or generation, of

large membrane stresses as compared to the existing bending
r
f	 stresses. The treatment of this situation is accomplished

r



by modifying the functional form of the plastic strain

distribution given in Fig. 2.

The present method has also been extended to treat

the more complex problem of the plastic bending of a plate.

A typical rectangular plate element is shown in Fig. 3. The

displacement function chosen is the one originally used

by Bogner, Fox, and Schmit, (Ref. 9), and is in terms of

products of first order Hermitian polynomials. The components

of initial strain are assumed to vary as products of zero

order Hermitian polynomials in the plane of the element and

linear.v through the cross-section from their values at the

upper (or lower) surface to zero at the elastic-plastic

boundary. The depth of the boundary through the thickness,

which must be determined at each of the four nodes of the

rectangular element, is computed from the total strains by

means of the following relation:

z	
oyieldt	

i = 1 2ij	 ., i	 s

(J2 max) ij

where

__	 ET_ Tl 2 	TT( T12
(J2 max) ij	 (1 + v) 2 ( e

x ey + exey + 4 
^xy

-	 + 
	 V	 r e  - eTl 2

(1-v)2` x 	 Y	 ij

and the superscript T denotes total strains.
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I
The function defining the elastic-plastic boundary in the plane

of the element is assumed to be in the form of products of zero

order Hermitian polynomials as shown in Fig. 3. The foregoing

assumptions associated with the plastic strain distribution and

the representation of the elastic:-plastic boundary ensure com-

patibility of these quantities along element boundaries.

A. Method of Analysis

Once the assumption is made on the distribution of dis-

placement, the total strain distribution can be expressed in

terms of nodal displacements by making use of the appropriate

^-

	

	 strain displacement relations in conjunction with the assumed

displacement function. This relation can be written in matrix

form as follows:

I I	 [W ] ld01
	

(5)

where Se TIis the vector of total strains

ld0 is the vector of generalized nodal displacements.

The assumed distribution of plastic strains can be written in

terms of their nodal quantities as

{E} = [WP ] 1E01	 (6)
where 

fIE	

is the vector of nodal plastic strains.1 01
The matrices [W] and [Wp J are, in general, functional

matrices which depend explicitly on the assumptions made for the

distribution of displacement and initial strain, respectively,

within the element. Specifically, the assumptions discussed

9



1

[k* ]	 [W] [E ] [Wp ]dV

V
p

10

(10)

above for the beam and plate elements are used in the formation

of [W] and [Wp ] in the present analysis. The element

stiffness properties in the presence of initial strains are

developed on the basis of these two functional matrices. They

are obtained by substituting Eqs. (5) and (6) into the expres-

sion for strain energy and then employing Castigliano's first

theorem. To this end, the expression for strain energy, exclud-

ing terms that are independent of displacements, which explicitly

contains the effect of initial strains may be written as

^	 ^	
1

U = 2
	

SeTj [E] leT dV -	
1eT^ 

[E3 
1e 

}dV	 (7)l	 1
V	 V

where the elements of the matrix [E] are the coefficients

associated with the appropriate linear stress strain relations.

Substitution of Eq. (5) and the assumed plastic strain

distribution of Eq. (6) into Eq. (7) leads to

U = 2 1d0
1

I [k] 1doI - 1d0I I [k* ] se
	

(8)

where

[k] _	 [W] [E] [W]dV
	

(9)

V



r
The matrix [k] represents the element elastic stiffness

matrix and depends only on the assumption made for element

displacements. The second integral, Eq. (10), represents

the initial strain stiffness matrix which is dependent on
F

the assumptions for both total and plastic strains. The

quantity P in Eq. (10) is the volume of the plastic region
in each element as determined by the representation of the

elastic-plastic boundary. Consequently, the elements of the

initial strain stiffness matrix [k* ] will be a function of,

among other quantities, the depth of the elastic -plastic

boundary at each node,and must therefore be continuously

r computed during the course of loading. The initial strain

matrix for the beam element subjected to pure bending and that

for combined bending and axial load are given in Appendix A and

the initial strain matrix associated with the rectangular plate

bending element is presented in Appendix B.

Application of Castigliano's theorem to Eq. (7) yields

the governing linear matrix equation for an individual finite

element

d_d } - J%J - [k] f %j - [k* ) fEOJ

0
(11)

where NJ is the vector of generalized nodal forces.

11



A similar equation is also developed in incremental form

in anticipation of combining plasticity with the incremental

geometric nonlinear analysis. This equation is written as

follows:

SAP 	 [kJ A 	 - [k] A 	 (12)

1

It should be emphasized that the initial strain stiffness

matrix associated with the increment of plastic strain i AEO 
I

in Eq. (12) is written as [k] to distinguish it from the ini-

tial strain stiffness matrix [k* ] associated with the total

plastic strain 1e 0l. These matrices may differ substantially,

since the functional form assumed for the distribution of

total plastic strain will not, in general, coincide with

the assumed distribution associated with the increment of

plastic strain. In the present analysis, e0 was assumed

to vary linearly through the thickness from the upper and/or

lower surface to the elastic-plastic boundary. This assumption

implies a bilinear distribution of Ae 0 . The specification

of a distribution of this form requires the determination

of a value of the plastic strain increment at some intermediate

point in the cross section, in addition to a value at the

upper and/or lower surface.pp	 _

12
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t

I

S

f

To avoid the added complexities associated with the

use of Eq. ( 12), we may alternatively use an incremental

form of Eq. (11) as follows:

aP0 }i 	[k] jAdO j' - jAqj'
J

where

( * i!
	

t	
* i,	 i	 i-1 J	 i-1

[k J	 EO}

i 

! _ [k J SE0} - [k * J 	e0^1

and the superscripts i and i-1 refer to the current and pre-

ceding loading step, respectively. In Eq. (13), the product of

the initial strain stiffness matrix and the total plastic strain

is considered as a vector of fictitious loads. The increments

of these fictitious loads, represented as lAqj, are determined

at any step by subtracting their current values from those com-

puted in the preceding step. In this manner, only total values

of plastic strain are utilized in the governing linear matrix

equation. The desired form of the equation is obtained by

grouping the increments of generalized nodal forces and ficti-

tious forces, resulting in the following equation:

[k]d0 }i = japol' + j6gj i-1 	(14)
iA J

(13)

13



Here, it is seen that the values of the increments of fictitious

loads introduced into Eq. (14) are values taken to be equal

to those computed in the preceding load increment. The use

of this type cf predictor procedure is necessary because

the depth of the elastic-plastic boundary (and the current

value of plastic strain) at those nodes of the structure

in the plastic range can be determined, in general, only

from the stress (or strain) distribution computed at the end

of the load step. The position o' the elastic-plastic

boundary is determined at the end of each load increment, and

is assumed to remain fixed during the next increment.

Equation (14) is written for each element in the structural

idealizatio- and then appropriately assembled to form the

over-all linear matrix equation for the entire structure.

This equation, not shown here, is identical in form to Eq. (14).

The incremental solution technique using this equation reduces

to a sequence of linear problems in which the applied loading

is constantly modified by the fictitious force vector.

B. Plasticity Relations

The foregoing matrix equations must be used in conjunction

with an appropriate plasticity theory. Plasticity is intro-

duced into Eq. (14) through subsidiary stress-strain relations pro-

vided by this theory. In the present paper, consideration is given

to both elastic, strain-hardening or ideally plastic material be-

havior. For both types of behavicr, the total strain increment

14



at a node can be written as the sum of an elastic and plastic
z	

component, represented as SAeeand SAEo}, respectively,1	 1	 1
in the following equation:

SAeT01 = 1Aee J + 1^ E^1	 (,15)

In addition, the increment of elastic strain is related to

the stress increment, 	 Jflo1 , by means of Hooke's Law.1J
Thus, Eq. (15) can be written as

SAe = [E ]-1 La1 + 10E }(16)

For an elastic, strain-hardening material, we make use of

a linear incremental relation between plastic strain and

stress

16	 [C] 
1^^J	

(17)

This relationship is represented in a general form by the

matrix [C] in Eq. ( 17). The formulation of this matrix

is directly related to the plasticity theory chosen fur use,

i.e., these elements may be determined by using an isotropic

hardening theory or the kinematic hardening theory of plasticity.

The elements of this array for plane stress, obtained by

15



using Drucker's postulate with the Prager-Ziegler kinematic

hardening theory, are explicitly given in Ref. 1.

Substituting Eq. (17) into Eq. (16) leads to an incremental

stress-strain relation given in the following equation:

	

[R]_1 
LeT^	

(18)

where

[R) _ [E 
] - 1 

+ [C)

It should be noted that there is no unique stress increment

for a given plastic strain increment vector. Therefore, the 	 -

matrix [C), given in Ref. 1, is singular. However, the

matrix [R], defined in Eq. ( 18), will possess an inverse,

thereby providing the necessary coefficients relating the

stress increment to the increment of total strain.

The increments in total strain at a node, 	 Ae0j,

are obtained from the increments of displacement by using

Eq. (5) in incremental form as follows:

LeT 	 [WC ) 1Ad01	 (19)01
where [WO ] is defined at a node. It should be noted

from the above equation and Eq. (5) that the functional

form chosen to represent the increments of total

16



strain, Lej 	 is identical to that used in the representation

of their fullJ values,	 eT	Thus, having obtained the incre-

ments of displacement from the solution of the total linear

matrix equation in the form of Eq. (14), Eqs. (15-19)

represent the necessary relations that must be used to obtain

the complete solution for increments of stress and strain,

assuming elastic strain-hardening material behavior. After

summing all incremental quantities, new values of the incre-

ments of fictitious load, fAq , are determined for each

element in the plastic range and the procedure is repeated

until the desired maximum values of the loads are reached.

Consideration of elastic, ideally plastic material be-

havior is necessary for predicting the collapse load of a

given structure in a given loading situation. The two con-

ditions to be satisfied for multiaxial el,.;tic, ideally plastic

material behavior are;

1) the stress increment vector must remain tangent

to the loading surface, and

2) the plastic strain increment vector must remain

normal to the loading surface, where the loading

function is the representation, in stress space,

of the initial yield function, or the subsequent

yield function after some plastic deformation

has occurred.

17



The above conditions are expressed analytically for the case

of plane stress and using the von Mises yield condition by

the following two equations:

(6x - 2 a ) d x + (a
y
 - 2 X) day + 3TxydTxy = 0	 (20)

de 	 de 	 dyx
( 
x _ a 6 ) _ 

(Q _ ^ x ) = 3̂
Y

= d^	 (21)
y	 y 

where dT is a positive scalar quantity.

If we consider the differential of the stress components

as incremental quantities, the implicit differential of

Eq. (20) provides a linear relation among the components of

stress increment, represented in matrix form as follows:

to al	 [E 10 a}
	

(22)

Expressing Dox in

yields the elements of thi

0

[E) =	 0

0

terms of Aay and ATxy

matrix [E] as

-Ml -M2

1	 0

0	 1

where

M1 = (a - 2 X)/(X- 2 a)

M2 = 3Txy/(vx - 2 6y)

18
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If we replace de ij by °e
i3
 , Eq. (17) provides a linear

relation between components of plastic strain increment,

written as

1°eJ

	 (23)

Then, expressing °ey and °'yxy in terms of oex gives
ti

the elements of the matrix [E]

1	 0 0
ti

LEI = M1 0 0

M2 0 0

It is apparent from Eq. (20) and (21) that only two of the

three components of stress increment and only one of the

three components of plastic strain increment are required

to obtain the remaining components. Thus, only three of

the six quantities are independent variables. The increments

of stress and plastic strain can now be written in terms of

a vector, jAwl, representing these independent quantities,

arbitrarily chosen as °ex , ° y, and . °Txy,

°e
X

°ay	 (24)

xy

19



Equations (22) and (23) may now be rewritten to relate the

increments of stress and plastic strain in terms of AZI I1J

1
S6 al[E ] IACUI	 (25)

J

and

SAE	 [E] low1	 (26)

A relation between the vector SAW
^ 

and the increment of

total strain is obtained by substituting Eqs. (25) and (26)

into Eq. (16)

S©eT F	 CE -All ] SACOI	 (27)

where

N
[E* ] = (El - 1 [E ] + [E1

Once again, as in the case of strain hardening behavior,

increments of displacement and total strain are obtained

from the linear matrix equations. The solution fo-: l^wl

from Eq. (27) and its substitution into Eqs. (25) and (26)

represent the procedure necessary to obtain the complete

20
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solution for displacements, stresses, and strains for any

increment, assuming elastic-ideally plastic material behavior.

III. MATERIAL AND GEOMETRIC NONLINEARITY

For the preceding theory and applications, it is

assumed that the strain-displacement relations are linear

although the stress-strain law is not. The implementation

of a nonlinear stress-strain relation for the characterization

of material behavior merely depends on the absolute magnitudes

of the elongations and shears existing in a body. When

they exceed a certain value, nonlinear material characteristics

become important and must be included to gain an insight

into the response of the structure to further loading.

Although the magnitudes of the shears and elongations may be

sufficiently large to necessitate the inclusion of plastic

effects, their values and the value of the angles of rotation

may still be small compared to unity. If this condition, and

the additional condition that the squares and products of

angles of rotation may be neglected as compared to the

elongations and shears, remain valid, then the use of 142.:1ear

strain-displacemenic relations is justified. Thus, material

nonlinearity can exist independently of geometric nonlinearity.

For flexible bodies (beams, plates, shells), the second

condition (that on the squares and products of rotation) is

not satisfied in many instances. Under these circumstances
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it is unjustifiable to neglect the terms containing the

squares and products of the rotations in the strain-displacement

relations. Furthermore, the linear equilibrium equations

are no longer valid and nonlinear terms consistent with the

inclusion of rotations in the strain-displacement relations

should be retained. Thus, stresses that multiply rotations

should not automatically be dropped in deference to those

that appear linearly in the equilibrium equations.

Geometric nonlinearity can exit independently of physical

aunlinearity since small shears and elongations do not imply

amall angles of rotation. Problems requiring the considera-

tion of geometric nonlinearity alone include the question

of stability of elastic equilibrium, the deformation of bodies

having initial stresses,large deflection of beams, plates

and shells, and torsion and bending in the presence of axial

forces. For these situations, the effect of geometric 	 -3

E

nonlinearity must be taken into account not only in the 	 -`

strain displacement relations, but in determining changes

in the length of line elements, and in formulating the

conditions of equilibrium of the volume element. In addition,

if the magnitudes of the strains become too large, it then

becomes necessary to include material nonlinearity through

the stress-strain relations.

In the following, the procedure developed for material
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nonlinearity is expandd to include geometric nonlinearity.

Although only elastic perfectly-plastic results are given,

the method is equally applicable and easily adaptable to

strain-hardening behavior using the procedure outlined in the

previous section. Representative structures chosen to illustrate

the significant features of combined geometric and material

nonlinearity are the restrained beam and the circular arch.
i

Martin (Ref. 5) has presented an incremental numerical

method, based on the direct stiffness approach, which is

generally applicable for the treatment of problems involving

geometric nonlinearity. This procedure approximates the

nonlinear behavior by a sequence of linear steps. Either

loading or displacement may be applied incrementally.

This procedure also requires the introduction of an

initial stress stiffness matrix, in addition to the

conventional stiffness matrix, to account for the effects

on the bending stiffness of membrane loads, i.e., the

effects of rotations on strains. Thus, the implementa-

tion of this matrix in addition to the initial strain

matrix represents the required modifications for the de-

Ivelopment of an incremental procedure to account for

both types of nonlinearity.

A general development of the matrices discussed above

and the method of solution to the problem of combined
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nonlinearity is obtained by following the procedure

outlined in Ref. 6 with modifications associated with the

inclusion of plasticity. The total elastic strain may be

written as the sum of three components, i.e.,

Jeej • feol + SAeTj - AE I 	(28)

JAee1
where Se

0
 } is the initial elastic strain vector (equal

to PO /AE J for the beam column, and related to the initial

stresses X, Qy 	
TO 

for the two dimensional plate

problem). The vector 1AeTj is the additional total strain

developed within the increment of load. This strain increment

is related to the increments of displacement through the

strain-displacement relations which must now include the

nonlinear rotation terms. For a beam column element, this 	 _.

relationship is given by

T 
d (Au) +	

z( d (Aw) 2 - d2 (Aw)
Ae dx	 2 \ dx ^	 2	 (29)^ 

where Au and Aw represent the increments in the axial

and lateral displacements of the middle surface of the beam.

The usual Bernoulli-Euler kinematic beam theory assumptions

were made to obtain Eq. (29). The first term in the above

equation represents the extension of the centerline of the

x^
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beam, the second term is the contribution to the extensional

strain due to lateral deflection	 the rotation term(	 ), and

the last term is the conventional bending strain term arising

from the condition that normals to the neutral axis should,

after deformation, remain straight and normal. to the center-

line and unextended.	 The corresponding strain-displacement

relations for a plate are

a du
oeT 	= a (ow) 2	 62 (Aw+ .1	 - z

x	 ax 2	 ax	 I	 6x2

a (Dv
oeT	

=

(6(4y) ^262f 
ew	

(30)+ 1  	 -
y	 ay

z
 ^j 	 y2	 y	 a 2

T	 a Du a (pv)	 a Aw	 a Aw	 62 Awoly=xy	 ay
+	 +	 - 2z

ax	 ax	 ay	 axay

The functional form for the increments in displacement

for the beam column is chosen to be identical to that given

in Eqs. (1,4) for the total displacement, i.e.,

2

AW x =	 (1) (x)Ow + H (1) (x)Ow,( )	 ^ Hoi	 i	 li	 xi
i=1	 (31)

2

Au (x) _	 H(0) (x) Dui

i=1
where the definitions of the Hermitian polynomials may be

obtained by comparing corresponding terms in Eq s. (1), (4),

and (31). A representation identical to that giver in Ref. 9
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may be used for the increment of lateral displacement for

the plate element. The incremental relationship between

total strain and generalized nodal displacements is obtained

by taking appropriate derivatives of the assumed displacement 	 -

functions.

The increment in elastic strain energy from an initial

elastic strain state, l
e0
1 may be written as

{e°}+(Aee}

AU =	 6 } ^ fdee dV	 (32)

V	 {e°}

Integrating the above equation between the prescribed limits

of strain and using the following relations:

J61 = [E 
Jee

Z J	 l ^	 `

fa 01	
[E Seo

and

lee } =1AeT j - 1A E }

we can write the increment of strain energy as

AU = 2
	

LeT [E J JAeT V - 	LeT [E ] SAC
1 ^ 	1 ^	 1 	 1 IdV

IL ;t	 t

 v (33)

+	 J6o
^ 

' JAeT dV + 2
	

Jdej [E J1 e jdV -	 jCtoj J--N.IEJO1	 11	 f

V	 V'	 v
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only those terms in the above equation that contain lAe },

which is a function of the increment of nodal displacement,

will contribute to the incremental load-deflection-initial

strain relationship. The remaining terms are arbitrary

constants. Upon neglecting higher order terms in the increments

of displacement, the first term in Eq. (33) leads to the

conventional stiffness matrix. The second term yields the

initial strain matrix, and the third term leads to the initial

stress stiffness matrix. In the development of the latter

matrix the work done by the in-plane stresses and the

generation of additional membrare stresses, resulting from

the effects of geometric nonlinearity, are both taken to be

zero during the application of an increment of lateral load.

These considerations constitute the linearization of the

procedure during an increment of load.

Consistent with the incremental procedure of the previous

section, the increment of plastic strain may be written as

IAei = 6i - 
E1-1

Substituting the above equation into Eq. (33) and then making

use of Castigliano's theorem leads to the following relation

for an individual element:
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JpP^^l	 [k (0)	 j]1©d0 1 + [k (1) I f Ado }i
1	 J

(34)
i	 i	 i-1	 i-1

_ Lk^` J 
1E^J _ 

Lk *J	
1E^1

where

[k(o) 
J = I	 LWJ LEJ [W]dV

J
V

the conventional stiffness matrix,

[k(1) ] 
=	 1W  [°U

 ] [W]dV

V

the initial stress stiffness matrix, and

[k^ J	 =	 ( LWJ LEI [WP J dV

J
V

p ti
the initial strain stiffness matrix. The matrix [WI relates

the increment of rotation to the increment of generalized nodal

displacement and therefore represents the nonlinear contribu-

tion to the strain-displacement relations. The matrices [W]

anti [Wp I are the same as those used in the previous section.

A predictor -procedure must once again be used to obtain a

solution because the location of the elastic-plastic boundary
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r

I
is not known a priori. Thus, the governing linear matrix equa-

tion is written in the following form:

[k (0) ] + [k (1) ]) !Ad^}i - SAP0 ji + 1pgji-1	 (35)

where Lqj is defined in Eq. (13), and must once again be

retarded by one step in the solution procedure. Equation (35)

is very nearly the same as Eq. (13) used in the previous sec-

tion for the plastic bending analysis. However, because of

the presence of geometric nonlinearity, the entire element

stiffness matrix [k] - [k (0) ] + [k(1) ] must be reformed at

every step using current stress levels and geometry.

Thus, the solution procedure requires that for a generic

step	 [k (0) ] and [k(l) ] are calculated by making use of

the geometry and initial forces existing at the start of the

step. The increment in the fictitious force, 
fAql, 

is cal-

culated using current and immediately preceding values of

the location of the elastic-plastic boundary. An increment of

load is then applied, and the corresponding displacement incre-

ments calculated from the total matrix equation obtained by

assembling Eq. (35) for each element. New internal forces are

calculated and total stresses, strains, and displacements are

obtained by summing incremental values. The new location of

the elastic-plastic boundary is determined from the total strain
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(or stress) distribution and the process is repeated until the

maximum specified load level is reached or the structure fails.

IV. RESUT,TS

As a demonstration of the feasibility of the plastic bend-

ing analysis, application of the method has been made to some

elementary, but representative sample structures. For two of

these structures (a simply supported and a cantilevered beam),

results from an exact solution to the governing differential

equation, assuming elastic-ideally plastic material behavior,

are available for comparison. As a consequence of assuming

elastic-ideally plastic behavior, and since both of the struc-

tures are statically determinate, an analytic expression can

be written which relates the depth of the elastic-plastic

boundary to the applied load. The finite element analysis is

initially applied to the beam structures using this relation-

ship, thus providing a means o= determining the validity of

assumptions made in choosing such quantities as the displace-

ment function, the plastic strain distribution, and the repre-

sentation of the elastic-plastic boundary.

Figure 4a represents a nondimensionalized load versus

central deflection curve for a uniformly loaded, simply sup-

ported beam. Six elements are used in the idealization of one-

half of the beam. In this figure, w 0 is the center deflec-

tion, w0 is the center deflection at the maximum load for
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which the beam is entirely elastic, and p represents the

nondimensional load parameter,

P	 P` ( a 2 •PO

Here, p is the applied load intensity, and p 0 = 4b x Qyield*

The results obtained from the finite element analysis compare

quite favorably with corresponding results from the exact so-

lution (Ref. 10), as shown in Fig. 4a. The collapse load, as

determined from the near vertical slope of the load-deflection

curve, is approximately 3 percent higher than the exact col-

lapse load which occurs at a value of p = 1.

The progression of the elastic-plastic boundary through

the thickness and in the plane of the element is shown in

a
Fig. 4b. From this figure it is seen that, although the depth

of the boundary at plastic nodes is exact, the assumption asso-

ci.ated with its distribution in the plane (i.e., linearly

varying to adjacent nodes), may lead to discontinuities in

its representation as evidenced in the figure for load values

c- p = 1.00 and p = 1.03. The appearance of these discon-

tinuities indicates that the actual boundary lies between the

_ nodes,on the upper and lower surface of the beam. The error

introduced by the assumption of a linearly varying boundary

in the plane can be reduced by increasing the number of ele-

ments used in the idealization of the beam. Also to be noted
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in Fig. 4b is the development of a fully plastic cross section

located at the center of the beam at a load of p - 1. In a

continuum analysis, the development of this fully plastic cross

section is sufficient to cause collapse of this structure.

However, in the finite Element analysis, collapse is not

indicated until both cross sections of the element contain-

ing the center of the ream become fully plastic.

Results in the form of a nondimensionalized load versus

tip-deflection curve for a uniformly loaded, cantilevered beam,

are shown in Fig. 5a. Elastic-ideally plastic material behavior

was assumed. A comparison with results from an exact solution,

shown as the solid curve in the figure, indicates good correla-

tion up to the collapse load. For this problem, as for the

simply supported beam, the depth of the elastic-plastic bound-

ary can be directly related to the applied load. This rela-

tionship was used once again, to obtain the results shown in

the figure.

The progression of the elastic-plastic boundary, through

the cross section and in the plane of the elements, is shown

in Fig. 5b. As indicated in the figure, the development of

the boundary is much more l,calized for this structure than

it was for the simply supported beam. Consistent with a con-

tinuum approach, collapse of this structure was indicatedn
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the finite element analysis by the development of one fully

plastic cross section at the root of the cantilever.

For both the simply supported beam and the cantilevered
['

beam, as previously mentioned, an exact relationship between

the depth of the elastic-plastic boundary at nodes in the

plastic range and the applied load was used to obtain results

using the finite element analysis. The justification for

using this relationship, which admittedly does not exist for

most structures of interest, was to check the validity of

assumptions made in choosing such quantities as the displace-

ment function, the plastic strain distribution, and the repre-

sentation of the elastic-plastic boundary. As indicated by

the previous results, the use of these assumptions for the

finite element analysis appears to be justified.

Since, in general, the depth of the elastic-plastic

boundary is not known at the current load step, results for

the cantilevered beam were recomputed and a load-deflection

curve, obtained by using an approximate value for the depth of

the elastic-plastic boundary,is shun in Fig. 6. The value

of the depth of the boundary used for any increment of load

is based on the total strain distribution determined at the

end of the previous load increment. The use of this procedure

cannot lead to the development of a fully plastic cross sec-

tion. Consequently, it is assumed that a fully plastic crossI
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section exists at a node when plasticity has developed through

a specified proportion of the thickness. The deflections and

the slope of the load-deflection curve for this structure, in-

crease quite rapidly beyond a value of load for which plas-

ticity has developed through 80 percent of the end cross sec-

tion. Thus, in the analysis this value was chosen as the cri-

terion to determine the development of a fully plastic cross

section. The degree of appro-'mation obtained by using pre-

vious values of the depth of the boundary, when compared with

the exact solution, is illustrated in the figure. As can be

seen, the results compare favorably for most of the load range

considered. The maximum divergence occurs in the vicinity of

the collapse load and is about 7 percent.

Results are also shown in Fig: 6 for the cantilevered

beam for the case of strain hardening material behavior. These

results, shown as the dotted curve, are compared with the cor-

responding results obtained using elastic-ideally plastic be-

havi,jr. The closeness of results for strain hardening and

perfectly plastic behavior can be attributed to the use of

Ramberg-Osgood strain hardening parameters chosen to ap-

proximate the elastic-ideally plastic stress-strain curve.

I
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The slope of the load-deflection curve for strain hardening

behavior illustrates that the beam still possesses some stiff-

ness beyond the theoretical collapse load predicted by as-

f	 suming perfectly plastic behavior.

rigure i illustrates the application of the procedure

to a simply supported beam subjected to combined bending and
Y 

axial loads. As previously discussed in Section III, the

analysis for this problem requires the introduction of an

initial stress stiffness matrix to account for the effects of

the membrane load on the bending stiffness. The determination

of the position of the elastic-plastic boundary relative to

both the upper and lower surfaces is also required for this

analysis. Results have been obtained for cases in

which a uniform lateral load acts in conjunction with a con-

stant tensile or compressive axial load, indicated in the

figure by T = +1000 and T - -1000, respectively. These

results are compared with the case of pure bending, indicated

as T - 0. As seen in the figure, the effect of the axial

compressive load is to reduce the stiffness of the structure, and

the tensile load increases the stiffness, when compared to the

case of pure bending. A solution to this problem by using a

continuum analysis similar to the one developed for pure bend-

ing in the plastic range does not appear to be available for
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comparison. For the case of the compressive axial load, the

lateral load was incremented to a value that resulted in the

failure of the structure. This failure is indicated in Fig. 7

by the near vertical slope of the load-deflection curve. It

should be noted that, for this problem, it was not necessary to

develop a completely plastic cross section for collapse to oc-

cur. The reduction of the stiffness, caused by the axial com-

pressive load and the progression of the elastic-plastic bound-

ary through only a portion of the thickness, was sufficient to

cause failure. This type of failure is associated with plastic

buckling ratner than the formation of a mechanism.

Application of the procedure for pure bending has been made

to a simply supported, uniformly loaded, square plate. Using a

36 element idealization to represent the quarter panel, load

versus central deflection curves for this structure, assuming

elastic-ideally plastic and elastic-strain hardening material

behavior, have been determined and are shown in Fig. 8. Once

again, as in the case of the beam, the proximity of results for

both types of material behavior is attributablf to the choice of

strain hardening parameters that approximate elastic-ideally

plastic material behavior.

The collapse load for this structure, determined by assuming

elastic-ideally plastic material behavior, is the value of the

load at which the pattern of fully plastic elements is such that
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I
1 the structure becomes a mechanism. The pattern of development

of the plastic region in the plane of the plate, and the pro-

gression of the elastic-plastic boundary through the thickness

of the plate, is shown in Figs. 9a and 9b, respectively. In

Fig. 9a the cross-hatched area represents those regions of the

plate in which plasticity has developed to some degree, but ex-

tends through less than 80 percent of the cross section. The

shaded area represents those regions in which plasticity extends

through more than 80 percent of the thickness. A consideration

or the latter region as being fully plastic leads to the develop-

ment of a mechanism of collapse formed along the diagonals of the

square plate, as shown in Fig. 9a. As in the case of the beam,

this criterion is necessary because the determination of the depth

of the elasti:-plastic boundary on the basis of the total strains,

cannot lead to the development of a fully plastic section.

The pattern of development of the plastic region in a narr.iw

rectangular plate (71- 0.3) is shown in Figs. lOa-10c, respec-

tively. In Fig. 10a the 80 percent criterion was once again

used to determine the pattern of fully plastic sections in forming

the collapse mechanism. From this figure it is evident that the

sections along the collapse pattern do not all lie on the diagonals

of the plate.

A comparison of available upper bound solutions for the load

carrying capacities of rectangular plates of various aspect ratios
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is shown in Fig. 11. The solid curve represents the solution

(Ref. 11) obtained using the von Mises yield criterion in conjunc-

tion with assumed collapse pattern (1), shown in the figure. The

dotted curve, obtained from Ref. 12, represents the upper bound

solution obtained using the Tresca yield condition in conjunction

with assumed collapse pattern (2). Results from the finite ele-

ment analyses are represented by the solid circles. The finite

element results indicate that the displacement pattern (2) pro-

vides a more accurate representation of the collapse mechanism

than does pattern (1). An upper bound solution using the second

displacement pattern in conjunction with the von Misses yield con-

dition is ' shown as the dashed curve in Fig. 11. The results from

the present analysis compare favorably with this latter solution

and are slighLly below it except for extremely low aspect ratios.

For such narrow plates, the use of the 80 percent criterion in

conjunction with the calculation-of the depth of the elastic-

plastic boundary from the total strain distribution of the pre-

virus step is not adequate. A relaxation of the 80 percent cri-

terion, based on a ^areful examination of the load deflection his-

tory, appears to be warranted. In addition, a possible alternative

might be the incorporation of an iterative procedure s in the method

of solution.

To illustrate the procedure associated with geometric non-

linearity and combined material and geometric nonlinearity, a
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simply supported, restrained beam, subjected to a uniform trans-

verse load, is considered. Load versus central deflection curves,

obtained for purely elastic and for elastic-ideally plastic mate-

rial behavior, are shown in Fig. 12a. The curve for the elastic

case is based both on a finite element analysis and an exact so-

lution from Ref. 13. Load versus deflection curves, for plastic

behavior, are presented for idealizations involving 6, 12, and

24 elements for one-half of the beam. Differences in the results

for these idealizations only appear after the end sections at the

suppcits become fully plastic. Beyond the value of load at which

this occurs, deflections increase quite rapidly, and collapse oc-

curs shortly thereafter with the development of another fully

plastic cross section. The counterbalancing effect of geometric

and material nonlinear'• •:- is vividly depicted in Fig. 12a, where

it ib seen that there is a region of the load-deflection curve

which is very nearly linear.
f

Figure 12b illustrates the growth of the plLctic regions of
}

the restrained beam. The dotte% lin g at P - 10.74 kips indicates

a jump in the representation of the plastic region when the end

s--ction becomes fully plastic.

The load-deflection history of a circular arch subjected to

a concentrated load is shown in Fig. 13. The elastic buckling

load compares fav;rably with that obtained in Ref. S. Load versus

center deflection curves, obtained by assuming elastic-ideally

a
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plastic material behavior, are shown for two values of yield

stress. The onset of collapse for this structure is appreciably

hastened with the introduction of plasticity. This is attribut-

able to the reduction of the stiffness of the structure resulting

from the effects of physical nonlinearity. For this structure

the effects of both types of nonlinearity are additive. As in

the case of'the uniformly loaded beam subjected to a constant

axial compressive load, the development of a fully plastic cross

section was not necessary for collapse to occur.

Figure 14 illustrates the load-deflection histories of the

same arch as that used in Fig. 13, now subjected to a uniform

load distribution. Once again it is seen that the effect of

plasticity considerably reduces the collapse load of the struc-

ture from its elastic buckling load.

Vo SUMMARY AND CONCLUSIONS

A finite element method that can account for material non-

linearity, alone, or in combination witl, geometrically nonlinear

behavior, is presented for the out-of-plane bending analysis of

structures. The initial strain concept is introduced into the

finite element analysis, formulated within the framework of the

direct stiffness method, to account for the effects of plastic-

ity. These effects are introduced into the analysis by means

of a fictitious load vector to be combined with the actual
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applied load. Thus, the method of analysiz can be readily in-

corporated into existing finite element procedures.

Application of the method, illustrating the plastic be-

havior of typical structures under pure bending and bending in

combination with applied axial loads, is made to simple struc-

tures and results presented. These results are compared with

results from analytical solutions, where possible, for beam and

plate structures. Good correlation is indicated for the load-

deflection characteristics of these structures as well as for

the prediction of plastic collapse loads. In addition, when

compressive membrane stresses are present, the present proce-

dure is capable of predicting failure resulting from a combina-

tion of plastic collapse and buckling. The correlation of re-

sults and the numerical stability of the procedure as applied

to the sample problems substantiates the assumptions made con-

cerning the form of the elastic-plastic boundary and the dis-

tribution of the plastic strain within each element, in addition

to the use of the predictor form of the solution procedure.

Since the phenomenon of plastic deformation may lead to

large displacements and rotations, the treatment of effects

arising from geometric nonlirearity assumes particular sig-

nificance in the solution of many important problems. Con-

sequently, the plastic bending analysis was combined with a
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method capable of accounting for geometrically nonlinear be-

havior. This combined procedure was applied to a restrained

beam and a simply supported circular arch. In the beam, the

effects of geometric

tion of stiffness cai

plasticity. Failure

development of fully

arch, the effects of

mentary, and failure

nonlinearity act cowLter to the reduc-

ised by the progressive development of

of this structure occurs only after the

plastic cross sections. For the circular

both types of nonlinearity are comple-

occurs as a plastic buckling phenomenon.
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APPENDIX A

INITIAL STRAIN STIFFNESS MATRICES FOR BEAM FINITE ELEMENTS

The initial strain stiffness matrices for a beam element in

pure bending, -nd for combined bending and membrane loading, are

derived on the basis of the assumptions shown in Figs. 1 and 2,

and are given in inLegral form in Eq. (10).

The matrix equation defining the fictitious nodal restoring

forces in terms of the initial strain stiffness matrix is shown

below for the pure bending of a beam with a rectangular cross

section,

i z 	 c 1 /2	 c2/ 2

i

Mi	 c3	 c4
_ El

P z	 t3	 -c 1 /.8	 -c2 /

J

M	 c5	 c6

Where

E	 ^zj - Z

y

) 2	 2	
Z i (t + z i)

E	 cl	 20	
+ t -	 2

e

9(z- - z i) 2	 (zi - z i) (2 z i + t)	
+

- 2	
z i (t + z i)

c2 =	 20	 +	 2	 t	 2

(7J - z i )	 (zj - z i) (2z i + t)	 2	 z i (t + zi)

c 3	 60	 12	 + t	 2

E

E
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( Zj - Z i)2 	 ( Z	 Zi) (LL i + t)
c4	 10	 +	 12

C = (Zj —
Z i ) 2 + (z.	 z i ) (2z i + t)

5	 15	 12

7(zj - z i ) 2 	5(z. - z i ) (2zi + t)	 2	 z i (t + zi)

c 6 -	 20	 +	 12	 - t + -	 2

and 1z and M represent the fictitious restoring force in the

lateral direction and moment, respectively. For this element, all

z's are determined with respect to the median surface. Other

quantities appearing in Eq. (A-1) are defined in Fig. 1.

The corresponding relation for the case of combined bending 	
I

and membrane stresses is shown below:

P z i I	 k11 k12 k13 k14

Mi k21 k22 k23 k24

U	 i

I EOi

Px i k31 k32 k33 k34 EOj

Ems-
2Pz
	 ^t 3

I

;r

-k11
*

-k12

k

-k13 kl4
/	 L	 (A-2)

EOi

Mj
k51 k52 k53 k54

L
EOj

P 	 . -k31 -k32 -k33 -k34
J

fl
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where

k1l = - (1 3 /40)c l + ( L / 4) c j

k1 2 = - (91 3 /40) c l - (ti/4)c 2  - (1/4) c3

k13 -'2 - (. 3 /40) c 4 + ( 4" /4 ) c6

r	 k14 = - OP/40)c 4 - ( 22 / 4) c 5 - ( 44) c6

k2 1 = (14 /120)c 1 + (13 /24)c 2 + (L2/4)c3

k2 2 = - ( 14 /20) c l - (1 3/24) c2

k23 = ( L4 / 1 20 ) c 4 + (83/24)c5 + (12/4)c6

k24 = - (,. 4 /20) c4 - (13 /24) cs

k31 =	 (1 3 / 8) c 7 - (312/8) c8

k32 =	 (d/4) c 7 - (312/8) c8

k33 = (^ 3 / 8 ) c9 + (312/8) cl0

k34 = (13/4) c 9 + (312/8)c 10
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and

k51 = -	 (14 /30) c l -	 (^3 /2<<) c2

k5 L = -	 (7. 4 /40) c l -	 (51 3 /24) c 2 -	 2/4) c3

k53 = -	 (24 /30) c4 -	 (1 3 /24) c 5

k54 = -	 (7.4/40)c 4 -	 (513/24)c 5 -	 2 /4) c 

c l =
_
U 	_
	 2

/(
z j	 - z	

2
i

c 2 - (
—
z
U—

- z
U
)lit - 2z^

j 	 i_	

•
U

c 3 = - z i (3t	 zi)

c4 = - (z^ - zL)	 / j2

5 = —I '
zYt

 - 2zC Z ;	 -	 ^L)

c6 =
_L	 _L2

2t 2 + tz i - zi
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T

C 7 = zj - 
Zi/

—U
C 8 = z 

c y = zL - zi)	 2
J

i - 2t
C10= z 

The terms, Px and Px
i

forces in the axial direction.

respect to the upper surface of

appearing in Eq. (A-2) are defi

represent the fic-itious restoring

Here all z's are measured with

the beam. All other quantities

ned in Fig.  2 .
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Ik*I 1E0^

(B-1)

J

Eyll

p
^xyll

EX21

EX12

5^.

APPENDIX B

INITIAL STRAIN STIFFNESS MATRIX FOR RECTANGULAR PLATE ELEMENT

The initial strain stiffness matrix for a rectangular plate

element in purE bending is derived on the basis of the assumptions

shown in Fig. 3, and defined in integral form in Eq. (10).

Pzll

Mxll/a

t Myll/b

Mxyll/ab

Pz21

Pz12

Pz22

Mx22/a

My22/b

Mxy22/ab^

=	 E	 L(i.J)	 G
3(1 _ v2)

	

(16x 12)	 (12,x 12)

EX22

Ey22

p

^xy22 ,

Here P 	 and the M's represent the fictitious restoring
	

g

force in the lateral direction and fictitious moments, respectively.

J
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AM

The matrix r- G ,^ is a diagonally partitioned array with 3 x 3

submatrices giver by:

b bv 0
a a

a aY 0
b b

' 0 0 1- v

'	 The coefficients of L(i,j) are given on the following pages,

!	

e.g.,

1	
L(l,l) = (-7120)(2L 2 

1) + (4/15)tz 11 + (1/12)tz 12 + (0)tz21

+ (0)tz22 + (27/140)211 + (39/1400)21 2+ 	 (-3/140)z2l

+ (-13/4200)2 2 2 + (33/350)z-11212 + (3/70)zllz2l

E	 + (11/1050):
11 z22 + (11/1050)z-11/1050)z12z21

t

+ (13/2100)z12z22 + (-11/1050)z- 21 Z_ 22

As in the case of pure bending of a beam all Ps are mea-

sured with respect to the median surface. All other quantities

appearing in Eq. (b-1) are defined in Fig. 3.
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COEFFICIENTS OF L(Id) FOR USE IN FORMING INITIAL STRAIN MATRIX

c	 •	 T••2 -7/ 2 - 4 -3 4
1	 •	 111 4/ 15 4/ is -9/ 10o of 1 if 12 -3/ SO
1	 •	 c12 1/ 12 Of 1 -3/ SO Of I of 1 -11 25
T	 + 1.21 Of 1 If 12 -3/ SO -4/ 113 1/ I^ -9/ 100
1	 •	 c12 Of 1 0/ 1 -l/ V, -1/ 12 of 1 -31 S1
11160 2 27/ 140 27/ 140 -1/ 25 3/ 140 33/ 700 -11 so
lA.c 00 2 39/ 1400 -3/ 140 _I/ SO 13/ 4200 -11/ 2130 -11 Jim
c[1 •• 2 -3/ 1*0 39/ 1400 -1/ So -271 140 9/ 280 -1/ 25
ccc • •1 -13/ 4200 -13/ 4200 -I/ too -39/ 1400 -10 280 -11 SO

cac	 •	 cic 33/ 350 3/ 70 -1/ 2S 11/ 1050 11/ IOSO -1/ SO
cll	 •	 c11 3/ 70 33/ 350 -1/ 25 -3/ 70 391 ?W -1/ 2S
All	 •	 L22 it/ 1050 it/ loin -1/ SO -11/ 1090 13/ ?100 -11 440
c.2	 •	 Ill 11/ 1050 11/ loin -I/ SO -11/ 1050 13/ 2:0A -11 So
a/c	 •	 111 13/ 2100 -l1/ 1050 -1/ 57 -131 2100 -13/ 1100 -11 SO
cc1	 • c22 -11/ 1050 131 2100 -I/ SO -33/ 390 1/ 140 -11 25

,1_ „

c -
i •	 cll l/ 12 Of 1 -3/ SO Of I 0/ 1 -1/

4
241

i • .12 1/ 1S -4/ 1S -9/ 100 Of 1 -1/ 12 -3/ SO
1 •	 X21 0/ 1 Of 1 -1/ 2S -1/ 12 of 1 -3/ 50
T •	 c22 Of 1 -1/ 12 -'/ SO -11 15 -I/ IS -a/ 100
c11 9• 1 33/ 700 3/ 140 -1/ SO 11/ 2130 11/ 2100 -L/ l')1)
c.2 •• 2 9/ 280 -27/ 140 -1/ 2S it 280 -331 700 -11 S0
11& •0 1 -11/ 2100 13/ 4 200 -1/ loo -33/ 700 If 2SO -1/ S0
c-0 0 2 -1/ 280 -39/ 1400 -I/ 50 -9/ 280 -9/ 280 -11 213

ccl •	 112 39/ 700 -3/ 70 -1/ 25 13/ 2100 -L1/ 1050 -I/ s0
111 •	 121 11/ 1050 11/ 1(1 50 -1/ SO -11/ loco 13/ 2100 -1/ S0
c// • c22 13/ 2100 -11/ 1050 -1/ SO -13/ 2100 -131 2100 -1/ 511
cic •	 121 13/ 2100 -11/ 1050 -1/ SO -131 2100 -13/ 2100 -11 S0
cac • c22 1/ 140 -33/ 350 -1/ 25 -1/ 140 -391 700 -1/ 25
[,Li • 122 -13/ 2100 -13/ 2100 -1/ SO -391 70o -1/ 140 -1/ 25

c _
- if
 - - _	 - -

T •	 cll 21 9 1/ 30 3/ 107 21 45 1/ 60 -11 200
T • 112 S/ 72 Of 1 1/ so If 72 Of 1 -11 300
T • 121 21 45 1/ 60 -1/ 200 -21 45 1/ 60 -1/ So
T • 122 1/ 72 Of 1 -1/ 300 -i/ 72 of 1 -I/ 71;
1.1 •• 2 3/ 20 3/ 140 1/ SO 1/ 35 3/ 350 of I
Liz* •1 13/ 600 -1/ 420 If 100 13/ 3150 ­ It 1350 01 1
cc0 • 2 1/ 140 9/ 1400 -1/ 300 -31 70 31 350 -i/ Im0
111 •• 2 13/12600 -1/ 1400 -1/ 600 -13/ 210.0 -11 1090 -11 200

.Lit • 112 11/ 150 1/ 210 If SO 22/ 1575 If 525 Of I
ccl • 121 21 35 3/ 175 0/ 1 1/ 70 9/ 700 -11 151
ca• •	 1.22 221 1575 11 525 01 1 11/ 3150 1/ 700 -1/ 300
[lc •	 121 221 1575 1/ 525 of l lit 3150 1/ 700 -i/ 399
[11 • c22 13/ 1575 -I/ S2S Of 1 13/ 6300 -1/ 7 O -11 3)0
cc1 122 11/ 3150 it 700 -1/ 300 -I1/ 525 if 525 -I/ 100

c
1 •	 [11 5/ 72 Of 1 1/ SO if 72 Of I -1/ 300
T • 112 if 18 -I/ 30 3/ too 1/ 90 -1/ 60 -11 200
T • 121 if 72 Of 1 -1/ 300 -I/ 72 Of 1 -11 7S
i • 122 1/ 90 -1/ 60 -1/ 200 -1/ 90 -1/ 60 -i/ SO
[li •• 2 11/ 3C) 1/ 420 1/ 100 11/ 1S7S it 1350 of 1
cic•• 2 1/ 40 -3/ 140 if SO If 210 -3/ 350 0/ I
[^1••2 11/ 6300 1/ 1400 -1/ 600 -it/ 1090 if IOSo -11 200
[110 . 2 If 840 -9/ 1400 -1/ 300 -1/ 140 -3/ 350 -11 100

111 • 112 13/ 300 -1/ 210 1/ SO 131 1S?5 -1/ 525 of 1
4.11 • 121 221 1575 1/ 525 Of 1 11/ 3150 1/ 700 -l/ 300
[11 • [22 13/ 1575 -1/ 52S Of 1 1%/ 6300 -11 700 -1/ 300
112 • 121 13/ IS7S -1/ 525 of 1 13/ 6300 -1/ 700 -I/ 301
112 •	 4L22 If 105 -3/ ITS of I 1/ 420 -9/ 700 -1/ ISO
111 • 122 13/ 6300 -1/ 700 -1: 300 -13/ IOSO -1/ 525 -1/ I00

F
3

1
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COEFFICIENTS OF W,J) FOR USE IN FORMING INITIAL STRAIN MATRIX
11_11

•	 ••2 _ -if
•	 L11 1/ 30 21 9 3/ 100 n/ l S/ 72 if q 

T • L12 It 611 21 45 -1/ 200 of l If 72 -11 inn
1 •	 L21 u/ 1 S/ 72 If Sn -11 30 If is 3/ 101
i •	 L22 0/ 1 1/ 72 -1/ 30n -1/ 60 If 9 1) -11 200
aaa 4• 2 3/ 140 3/ 20 1/ SO If 420 111 300 it Ion
lac 0• 2 9/ 1400 1/ 140 -1/ inn If 1400 It/ 630n -11 600
Lta 0• 2 -1/ 420 13/ 6nO 1/ inn -3/ 140 if 4m if 59
LLi •• 2 -1/ 1400 13/12600 -1/ 60n -9/ i400 If 84n -11 3n0

Lit • all 3/ 175 2/ 35 n/ 1 1/ 523 221 1575 n/ 1
L11 •	 L21 1/ 210 I1/ 150 11 SO -11 210 13/ 30e if SO
Lit • a22 1/ 525 221 1575 0/ 1 -11 525 131 1575 01 1
4. 12 •	 L11 if 525 22/ 1575 Of 1 -11 525 13/ ISIS 0/ 1
La g • 421 If 700 11/ 3150 -1/ 3!1n -I/ 700 13/ 630n -11 33n
L 4 • L22 -1/ 525 13/ 1575 0/ 1 -31 ITS if 109 of 1

t r	 •♦ - 1
I +	 L11 1/ 60 2/ 45 -1/ 20n Of 1 if 72 -I/ 300
T + L12 1/ 60 -21 45 -1/ SO of l -11 72 -1/ 75
1 + L11 G/ 1 1/ 72 -1/ 3nO -1/ 60 If 90 -1/ 2111
T • L22 VI 1 -1/ 72 -1/ 75 -I/ 6O -t/ 90 -1/ SO
L11 •• 2 3/ 350 1/ 35 n/ 1 if lOSG I1/ 1S7S n/ I
1,1 4.. 2 3/ 350 -'4/ 70 -I/ 100 If 1050 -11/ los r -1/ 2011
[, / 9 •2 -1/ 1050 13/ 3150 0/ 1 -3/ 350 if 210 Of I
til ••2 -1/ 1050 -13/ 2100 -1/ 200 -3/ 350 -I/ 14M -i/ inn

Lla •	 L12 9/ 700 If 70 -1/ 150 it 700 11/ 315 M -1/ 3^l
Lai • a21 1/ 515 221 1575 0/ 1 -I/ 525 13/ 157! Of 1
L.1 • 122 If 700 It/ 3150 -1/ 300 -t/ 700 13/ 6300 -1/ 3nO
iLL + 121 1/ 700 11/ 3150 -1/ 300 -1/ 700 13/ 63011 -11 3nO
Lac • L22 It 525 -11/ 525 -1/ 1On -1/ 525 -13/ 1050 -1/ 1110
LL1 + L22 -1/ 700 13/ 6300 -1/ 300 -9/ 700 If 420 -1/ IRO

Z • - -1 2 ./ 141 0 1 -1/ 30 -1/ 144
i	 •	 '

Lit
1/ 36 1/ -1/ 100 if 180 It 72 If 61"

T	 •	 L12 :/ 72 1/ L " 1/ 600 If 360 1/ 360 -1/ 3O n
T	 •	 L21 It 180 1/ 72 If 60n -11 180 if 72 if 15n
i	 •	 L22 1/ 360 1/ 360 -1/ 3600 -1/ 360 If 36 11 -I/ 9011
Laa 0• 2 1/ 60 it 60 -1/ 1D0 If 31S 1/ ISO n/ 1
lc* 0 2 11 200 11 1260 11 6D0 11 :OSO I/ 315n n/ 1
'La w 0 2 11 1260 It 200 11 600 -1/ 210 If 150 11 ?no

[tc •• 2 11 4200 11 4200 -1/ 3600 -I/ 700 11 31511 -1/ 1 2M
cal	 •	 L12 11 7S 2/ 315 0/ 1 4/ 1575 4/ 1575 Of 1
L11	 •	 L21 21 315 11 75 11 1 11 630 If lon If 300
Lit	 •	 L22 4/ 1575 4/ 1575 0/ 1 If 1575 If S25 Of 1
i.ac	 •	 a21 4/ 1575 4/ 1575 Of 1 if 1575 If S25 Of 1
Lit.	 •	 4.2i 1/ 525 If 1575 0/ 1 if 2130 If 2lo n -I/ 18110
[c1 • c22 it 1575 it 525 Of 1 -21 525 4/ 1575 of I

c •	 T•• -1/ 30 0 1 -1 144 1 Of 1 1/ 144
T •	 all 1/ 72 If 180 If 600 It 360 If 360 -11 36nn
T •	 L12 1/ 72 -1/ 180 If ISO It 360 -1/ 360 -11 900
1 •	 L21 11 360 1/ 360 -1/ 3600 -1/ 360 11 360 -1/ 930
T •	 a22 If 360 -1/ 360 -1/ 900 -1/ 360 -1/ 360 -1/ 225
411 •0 2 1/ ISO It 315 Of 1 21 1575 2/ 1575 of 1
Llc• • 2 1/ 150 -1/ 210 1/ 20n 2/ 1575 -1/ 525 of 1
Lta •• 2 1/ 3150 1/ 1050 0/ 1 -1/ 525 2/ 1575 n/ 1
Lct+ • 2 If 3150 -1/ 700 -1/ 1200 -11 525 -11 525 -I/ 400

111 • L12 If 100 If 630 If 300 it 525 if 1575 of 1
tai • 121 4/ 1575 4/ 1575 0/ 1 If 1575 If 525 of 1
Laa •	 L22 If 525 1/ 1S7S 0/ 1 If 2100 If 2100 -11 lenn
tae • Lit If 525 If 1575 0/ 1 11 2100 If lion -l/ 1890
4.x2 • L22 4/ 1575 -21 525 0/ 1 If 1575 -11 350 -l/ 600
LL1 • a22 If 2100	 1 it 2100 -1/ 1800 -11 3SO It 197 13 -i/ 6110
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COEFFICIENTS OF L(U) FOR USE IN FORMING INITIAL STRAIN MATRIX
IS.II	 I[ -I1	 I .

If.
-

- if
1 •	 all -4/ 1S If IS 9/ 100 n/ I it 12 3/ SOT •	 t12 -1/ 12 Of 1 3/ M of I of I it 25T •	 021 of 1 1/ 12 3/ SO 4/ 15 4/ IS 9/ 100
T • 022 Of I of l if 25 if 12 of I if SO
il.0•2 -27/ 140 9/ 280 t/ 25 -3/ 140 39/ 1400 it 50
c.i •• 2 -39/ 1400 -1/ 280 1/ SO -13/ 4200 -13/ 4200 if Ion
tc1 00 2 3/ 140 33/ 700 I	 it 50 271 140 271 147' If 25
Lit•• 2 13/ 4200 -11/ 2100 1/ Ion 391 1400 -31 140 1/ SO

tat •	 t12 -33/ 350 11 140 1/ 25 -111 1050 13/ 2100 it in
ill • 021 -3/ 70 39/ 700 If 25 31 70 331 350 If 211
i.l •	 022 -ll/ 1050 13/ 2100 If SO lit 1050 11/ 1050 1/ SO
tic •	 t21 -11/ 1050 13/ 200 if SO 11/ 1050 11/ los e, 11 SO
ttL • L22 -13/ 2:00 -13/ 2100 1/ SO 131 2100 -111 IOSO 10, 57
t&A • 022 11/ 1050	 1 11/ 1050 1/ SO 33/ 350 3/ 70 if ZS

15.71	 1a_•k
` • -

T •	 all -1/ 12 of l 3/ SO of 1 Of I if 2S
i • alt -1/ IS -1/ 1S 9/ 100 0/ 1 - 11 12 3/ S?T •	 t21 Of 1 Of 1 If 2S 1/ 12 Of 1 31 S1
1 •	 022 Of 1 -1/ 12 3/ SC If 15 -4/ 15 9/ loci
al I s * 2 -33/ 700 1/ 2d0 1/ SO -111 2100 13/ 420!► 1/ 100
L.c •0 2 -Q/ 280 -9/ 280 1/ 25 -1/ 280 -39/ 1400 11 SO
4... •0 2 11/ 2100 11/ 2100 l/ 100 331 700 3/ 140 if SO
4aa•42 1/ 280 -33/ 700 if in 91 280 -271 1 40 1/ 25

ttl •	 012 -39/ 700 -1/ 140 1/ 25 -13/ ?100 -13/ 2100 if SO
ttl •	 021 -11/ 1050 13/ 2100 1/ SO I1/ 1050 11/ IOSO if Si
tit •	 022 -1j/ 2100 -13/ 2100 1/ SO 131 2100 -11/ 1050 it SO
a.c •	 021 -13/ 2100 -13/ 2130 it SO 13/ 2100 -lit IOSO if SO
c-c • 022 -1/ 140 -39/ 700 1/ 25 If 140 -33/ 35n 1/ 25
Lct • a42 13/ 2100 -1:/ 1050 1/ SO 39/ 700 -3/ 7O if 25

a s	 ••t / 24 l 2 - 1/ 24
1 •	 tll 21 45 -1/ 60 -1/ SO -21 45 - 11 6C - 1/ 2?0
i •	 012 1/ 72 0/ 1 - 1/ 75 - 11 72 Of 1 - 11 inn
1 •	 021 -21 45 -1/ 60 -1/ 200 -21 9 -1/ 3n 30 Inn
T • X22 -1/ 72 Of 1 -1/ 300 -S/ 72 Of 1 it SO
taa 00 2 3/ 70 -3/ 350 -I/ Inn -11 140 -9/ 1400 -1/ 300
alc 0• 2 13/ 2100 1/ 1050 -1/ 200 -13/12600 If 1400 -1' AnO
cca •• 2 -1/ 35 -3/ 350 Of 1 -3/ 20 -3/ 140 11 in
act ► 0 2 -13/ 3150 1/ 1050 of 1 -13/ 600 if 420 1/ Inn

aaa •	 012 11/ 525 -1/ 525 -1/ 100 -I1/ 3150 -1/ TOM -1/ inn
tti •	 cll -1/ 70 -9/ 700 -i/ ISO -21 35 -3/ 1 7 5 M 1
tat •	 012 -11/ 3150 -1/ 700 -1/ 300 -221 1S7S -1/ 523 n/ 1
a.c • c21 -11/ 3150 -1/ 70n -1/ 300 -221 1575 -1/ 525 n/ 1
caa • 022 -13/ 6300 1/ 700 -1/ 300 -13/ 1575 If 525 Of I
ta. • c22 -221 1575 -1/ 525 Of I -11/ ISO -1/ 210 If Sn

c `
- 30 20 -1/ 2e, -1/ 24

1 •	 all 1/ 72 of 1 - 1/ 7S - I/ 72 n/ 1 - 11 3nn
I ► 	 012 1/ 90 1/ 60 -1/ SO -11 90 1/ 6C -1/ 2nn
1 • "el -1/ 72 n/ 1 -1/ 3n0 -S/ 72 Of 1 if Se,
1 • at2 -1/ 90 1/ 60 -1/ 200 -1/ 18 if 3e, it Inn
cl1••2 11/ 1050 -Ii 1050 -1/ 200 -11/ 6300 -1/ 1400 -1/ 6n0
Llc •• 2 1/ 140 3/ 350 -1/ 100 -1/ 840 9/ 141)n -1/ 3n0
c^t • 02 -11/ 1575 -1/ 1050 n/ 1 -11/ 30 A -1/ 420 1/ Inn
ccc •• i -1/ 210 3/ 350 n/ 1 -1/ 40 3/ 140 1/ SO

L.. • 012 li/ 1n5O 1/ 525 -1/ 1C0 -13/ 6300 it 7nC -1/ 30ci
cil •	 all -11/ 3150 -1/ 700 -1/ 300 -221 1575 -1/ 525 n/ 1
ttl • 012 -13/ 6300 1/ 7 110 -1/ 300 -13/ 1575 it 525 Of 1
Lie •	 c21 -13/ 6300 1/ 703 -1/ 3n0 -13/ ISIS 1/ S2S of 1
t.c •	 022 -1/ 420 9/ 70U -1/ 15n -1/ 105 3/ 175 n/ I
awl • 022 -l3/ 1575 1/ 525 0/ 1 -13/ 300 if 210 it in
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1

COEFFICIENTS OF L(I,J) FOR USE IN FORMING INITIAL STRAIN MATRIX
17.11	 17_71	 97t

1 •	 tll -1/ 30
- 31
If is -3/ 100 Of 1 S/ 72 -1/

4

90
T •	 412 -1/ 60 it 90 If 200 Of I If 72 it inn1 •	 [21 0/ 1 S/ 72 -1/ 50 If 30 2/ 9 -31 1 I
T • 422 Of 1 I/ 72 1/ 300 1/ 60 21 44 1/ 210
111 00 2 -3/ 140 If 40 -11 SO -1/ 420 13/ 600 -1/ In!)
[!t •• 2 -9/ 1400 If $40 If 300 -1/ 1400 13/12600 If 6nn
Ztl• • 2 11 420

it/
300 -1/ 100 3/ 140 3/ 70 -1/ •n

Ltt••2 If 1400 it/ 6300 If 6nn 91 1400 It 140 if 300
111 •	 112 -3/ 175 If 105 Of 1 -1/ 525 13/ 1975 n/ 1tll • 121 -1/ 210 13/ 30) -1/ SO If 210 I1/ ISM, -11 9n
111 • [22 -1/ 523 13/ 1575 Of I If 929 22/ 1575 Of 11.t • [21 -1/ S2S 13/ 1575 Of I If 525 22/ 1575 n/ I414 • 122 -1/ 700 13/ 6300 If 300 If 7 130 11/ 3190 if 300
[t/ • 422 If 525 221 1575 Of 1 3/ ITS 21 35 Of 1

.7_71	 n 7 .^

i t 	30	 (51•-	 4	 -	 Of	 I	 -1/	 24
i	 • '

Lit
	 -1/	 60	 if	 90	 If	 200	 Of	 1	 If	 72	 11	 inn

T	 •	 L12	 -1/	 60	 -1/	 90	 If	 SP	 Of	 1	 -1/	 72	 11	 7S
T • 421	 0/I	 If	 72	 If	 300	 it	 61)	 21	 45	 1/	 200
T •	 c22	 Of	 1	 -1/	 72	 If	 75	 if	 60	 -21	 49	 if	 SO
[1. •• t	 -3/	 350	 if	 210	 0/	 1	 -1/ 1050	 131 31Sn	 n/	 1
t.c•• 2	 -3/	 350	 -1/	 140	 If	 100	 -1/ 1050	 -13/ 2100	 If	 2nn
tt. • •2	 1/	 1050	 I1/ 1575	 n/	 1	 3/	 350	 If	 35	 n/	 1
[c4 0 02	 If 1050	 -11/ 1050	 1/	 200	 31	 350	 -3/	 71)	 If	 Inn

tll • tll	 -9/	 700	 If	 420	 If	 1Sn	 -1/	 700	 13/ 63n^	 1/	 3^^
111 •	 421	 -1/	 525	 13/	 I575	 Of	 1	 If	 525	 221	 ISIS	 n/	 1
1./ • 422	 -1/	 700	 13/ 6300	 If	 30r	 If	 700	 11/ lisp	It	 inn
tic • 121	 -1/	 700	 13/ 6300	 If	 300	 If	 750	 I1/	 315^	 if	 inn
ili • 422	 -1/	 525	 -13/ 1050	 If	 100	 It	 525	 -11/	 325	 it	 Inn
Lcl • 422	 If	 7 00	 11/ 3150	 If	 inn	 9/	 700	 If	 70	 it	 I"

c • 1 •0 2	 of	 1	 If	 3o	 -1/	 144	 -
	

2A	 It	 144
T	 • tll
	

If	 Ib0	 -1/	 72	 If	 ISO	 -1/	 I00	 -1/	 72	 If	 6nn
T • 412	 1/	 360	 -1/	 360	 -1/	 900	 -1/	 360	 -1/	 360	 -1/ 1An0
T	 • 421	 -1/	 190	 -1/	 72	 If	 bon	 -1/	 36	 -1/	 36	 -1/	 Pin
I	 • 112	 -1/	 360	 -1/	 360	 -1/	 3600	 -11	 72	 -1/	 Len	 if	 600
tll ••i If	 210	 -1/	 ISO	 If	 2 0 0	 -11	 1260	 -1/	 200	 if	 Ann
t/t •• 2	 If	 700	 -1/ 3150	 -1/ 1200	 -1/ 4200	 -I/ 4200	 -1/ 360%n
[cl ••2	 -1/	 315	 -1/	 ISO	 n/	 1	 -1/	 60	 -1/	 6A	 -11	 lqn
[t '0 0 2	 -1/ 1050	 -1/	 3150	 01	 1	 -11	 200	 -11	 1260	 If	 6nn

141 • [11	 21	 525	 -4/	 1`75	 Of	 1	 -1/ 1575	 -1/	 525	 n/	 1
111 • 121	 -1/	 630	 -1/	 170	 If	 300	 -2/	 315	 -1/	 7t	 '+/	 I
[.i • 122	 -1/	 1575	 -1/	 525	 n/	 1	 -4/	 1575	 -4/ 1S7S	 n/	 1
Ilk + 421	 -1/	 ISIS	 -1/	 525	 n/	 1	 -4/	 1S7S	 -4/ 1574	n/	 1
tat + 122	 -1/ 2100	 -1/	 2100	 -1/	 1800	 -1/	 525	 -1/	 1579	 n/	 I
it 	 • c22	 -4/	 157S	 -4/	 1575	 Of	 1	 -1/	 7S	 -2/	 315	 n/	 1

i
1
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i
i

i

r

i

i

t•	 44	 30	 0/	 1	 -1/	 144

i

48.71	 (8.81	 (8.91	 18.101	 14.111	 Ift.171

T • '
Lit	

If	 360	 -1/	 360	 -1/	 900	 -1/	 360	 -1/	 360	 -1/ 3An1)
i • 412	 If	 360	 If	 360	 -1/	 225	 -1/	 360	 If	 iii	-1/	 400
T •	 L21	 -1/	 360	 -)/	 360	 -1/	 360n	 -1/	 72	 -1/	 Len	1/	 6nn
T • 422	 -1/	 360	 If	 360	 -11	 900	 -1/	 72	 1/	 150	 l/	 1So
1.1• •2	 1/	 S25	 -21	 1575	 0/	 1	 -1/	 3150	 -11	 175 1)	 n/	 l
[lt • •2	 1/	 525	 1/	 525	 -11	 400	 -1/	 3150	 1/	 700	 -1/ 1200
[c/ •• 2	 -21	 1575	 -2/	 1575	 0/	 1	 -1/	 ISO	 -1/	 315	 n/	 I
Z de. • • 2	 -21	 1575	 If	 525	 Of	 1	 -1/	 ISO	 If	 21 0	If	 2nn

all	 • 412	 If	 350	 -1/	 1575	 -1/	 600	 -1/	 2100	 -11	 2100	 -11 IPMA
111 • 421	 -1/	 1575	 -1/	 52S	 Of	 1	 -4/	 1S7S	 -4/	 1S7S	 of	 I
t.l • 122	 -1/	 2100	 -1/ 2100	 -1/	 loon	 -1/	 525	 -11	 1575	 of	 I
t/2	 •	 421	 -1/	 2100	 -11	 2193	 -1/	 Tenn	 -1/	 529	 -1/	 157 15	 1)/	 1
111 • 122	 -1/	 157S	 If	 350	 -1/	 600	 -4/	 1S1S	 21	 52S	 Of	 1
acl	 • 421	 -1/	 52S	 -1/ 1!7S	 n/	 1	 -1/	 100	 -1/	 Ain	 It	 Inn



1

COEFFICIENTS OF L(1,1) FOR USE IN FORMING INITIAL STRAIN MATRIX

1 • - _
-it

4
r •	 all 1/ is -4/ 1S 9/ 100 Of 1 -1/ 12 3/ 50r •	 112 1/ 12 of 1 If SO of 1 of I l/ 25i • 421 Of 1 -I/ 12 31 SO -1/ is -11 is 9/ 1n0i • "22 Of 1 Of 1 1/ 25 -1/ l2 of 1 3/ SOlaa • •2 9/ 280 -27/ 140 1/ 25 It 200 -33/ 700 It SO114.02 33/ 700 If 140 If SO 11/ 2100 11/ Zion 1/ 100141 .0 2 -1/ 280 -39/ 1400 it SO -9/ 280 -9/ 28n If 25
1"" •• 2 -11/ 2100 13/ 42n0 1/ 100 -33/ 700 1/ 280 if SOa.l +	 112 39/ 700 -3/ 70 1/ 25 13/ 2100 -lit 1050 1/ Sna1. •	 1.21 1/ 140 -33/ 350 1/ 25 -l/ 140 -39/ 700 it 25all • 121 13/ 21J0 -11/ 1050 1/ SO -13f 2100 -131 2100 1/ SOaal n 	 111 13/ 2100 -11/ 1050 If SO -13/ 2100 -13/ 2100 1/ Snaae • a22 It/ 1050 11/ 1050 if 50 -I1/ 1050 13/ 210^ 1/ SO[,1 •	 a22 -13/ 2100 -13/ 2100 1/ SO -39/ 700 -1/ 140 if 25

19.71	 lo_A1	 1e e1

1 •	 all If 12 0/ 1 3/ 50 of I n/ 1 if 75i • 112 4/ is 4/ 15 9/ 100 of 1 If 12 If SOi •	 121 0/ 1 0/ l If 2S -1/ 12 of 1 If SO1 • 122 Of 1 If 12 3/ SO -4/ 15 1/ 15 9/ Inn011 0 •2 39/ 1400 -3/ 140 11 50 131 4200 -I1/ 210n 1/ 100
4. aa •0 2 27/ 140 27/ 140 1/ 25 3/ 140 331 700 1/ sna". •• 2 -131 4200 -13/ 4200 1/ 100 -391 1400 -11 280 1r SOL&,0 0 2 -3/ 140 39/ 1400 1/ so -27/ 140 9/ 280 1/ 213111 •	 112 33/ 350 3/ 70 1/ 2S 11/ loco 11/ 1050 it SOaaa •	 cel 13/ 2100 -!1/ 1050 I/ SO -13/ 2100 -131 2100 1/ SOaaa • 122 lit 1050 11/ 1050 it SO -11/ 1050 13/ 2100 I/ 5Mcat •	 121 11/ 1050 11/ 1CS0 1/ 53 -111 1050 13/ 210n if 51

4.a1 • 112 3/ 70 331 350 if 25 -3/ 7n 39/ 700 It 25a"1 • a22 -11/ 1050 13/ 2101 1/ SO -33/ 350 It 140 1/ 213

' •	 r0•
-3 / 20 1/"-14 24

1 •	 all 1/ 18 -1/ 30 -3/ 100 1/ 90 -I/ 60 if 2n1
1 •	 112 5/ 72 0/ 1 -11 So If 72 n/ 1 I/ 3n0
T • ,21 1/ 90 -I/ 60 11 200 -1/ 90 -11 6m It SO
1 • a22 1/ 72 Of 1 I/ 300 -11 72 n/ 1 l/ 71S
111 •• 2 1/ 40 -3/ 140 -I/ SO It 210 -3/ 350 Or 1
114 •• 2 11/ 300 1/ 42!- -1/ ion 11/ 1 1375 1/ 1050 Or 1
1[1 •• 2 1/ 840 -9/ 1 400 1/ 300 -it 140 -3/ 35n it lnl
a"1 +• 2 11/ 6300 1/ 1 400 If 600 -I1/ 1050 1/ 1050 if 2n0

111 •	 112 13/ 300 -1/ 210 -1/ S n 13/ 1575 -1/ 525 n/ l
111 •	 111 1/ 105 -3/ 175 1/ 1 1/ 420 -9/ 700 if lS1
ali •	 122 13/ 1575 -1/ °.25 Of 1 131 4,300 -1/ ?on if 3n0
Lid. • 121 13/ 1575 -1/ 525 Of 1 13/ 6300 -1/ 70n 1/ 11n0
a1, • 122 221 1575 1/ 525 Of 1 it/ 3M if 100 If 311
L •	 122 13/ 6300 -I/ 700 1/ 30n -131 1050 -1/ S25 1/ 100

/ 1 n_ 7 1	 / 1 r. -, 1	 I i n_ a 1	 NIA_ ...
" 0	 T*si - - 4
i •	 all 5/ 72 of 1 -1/ SO 1/ 72 0/ l If 3nO
i •	 12 21 9 1/ 30 -3/ In0 21 45 It 6n 1/ 200
1 •	 1,1 1/ 72 0/ 1 1/ 3(1 0 -1/ 72 n/ 1 I/ 7S
T • 122 2/ 45 1/ 60 1/ 200 -21 45 it 60 it 51
x11.02 13/ 600 -1/ 420 -1/ 100 13/ 3150 -1/ 1350 Or 1
1. •• 21 3/ 20 3/ 140 -1/ 50 1/ 313 3/ 3S0 n/ 1
1,1 .0 2 13/12600 -1/ 1400 it 600 -131 2100 -L/ IOSO if Ml
114 00 2 1/ 140 9/ 1400 1/ 300 -3/ 70 31 35(1 if 100

111 •	 al2 11/ 150 1/ 211 -1/ SO 221 1575 If 52S 0/ l
111 •	 121 13/ 1575 -1/ 525 Or 1 13/ 6300 -1/ 700 1/ 300
ila •	 122 221 1575 1/ 525 n/ 1 I1/ 3150 1/ 701 If 30O
ale •	 121 221 1575 if 525 01 1 11/ 31SO if 700 1/ 3n0
114 • 122 21 35 3/ 175 0/ I It 70 9/ 700 It 151
1,1 • 122 I1/ 3150 11 700 If 300 -It/ S25 1/ 52 1) 1/ Inn
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COEFFICIENTS OF L(Id) FOR USE IN FORMING INITIAL STRAIN MATRIX

r-
1 •	 cl1 -1/ 60 11

-
45 -1/ SO

-if
Of

30
1 1/ 72 -1/

24
7qT •	 L12 -1/ 60 -2/ 45 -1/ 200 of 1 -1/ 72 -1/ 3nn1 •	 a21 0/ 1 1/ 72 -l/ 75 it 60 it 90 -I/ finT •	 L22 Of 1 -1/ 72 -1/ 300 1/ 60 -1/ 90 -11 2^'►

L11002 3/ 350 3/ 70 -1/ 100 -1/ lOSO I1/ 105^ -11 10n
111" • 2 -3/ 350 -1/ 35 Of 1 -11 1050 -ll/ IS7S n/ ILcl0 410 2 1/ 1050 13/ 2100 -1/ 20^ 3/ 350 It 14 M -l/ Inn
Lct •• 2 1/ 1050 -13/ 3150 0/ 1 3/ 3SO -1/ 21 0 n/• 11.11 •	 112 -9/ 700 -1/ 70 -1/ 150 -1/ 70n -11/ 3150 -11 Ann

1L1 •	 1.21 -1/ 525 111 525 -1/ 100 If 52S 13/ 1050 -11 inncal • L22 -1/ 700 -11/ 3150 -1/ 300 if 700 -13/ 6300 -I/ 3nn
L1c • a21 -1/ 700 -111 3150 -1/ 300 it 700 -13/ 6300 -1/ 3nn
Lac •	 L22 -1/ 515 -22/ 1575 Of 1 1/ 525 -13/ 1575 n/ 1
L,i •	 121 1/ 700 -13/ 6300 -1/ 300 9/ 700 -1/ 420 -1/ 1Sn

111.71	 111_A 1_	 I, 1.01	 111

^T
- -I/ 14

cll -1/ 60 -21 45 -1/ 200 Of 1 -1/ 72 -11 3nn
T +	 L12 -1/ 30 -21 9 3/ 100 Of 1 -S/ 72 if Sn
1 •	 L21 Of 1 -1/ 72 -l/ 300 1/ 60 -11 90 -1/ 2^0
T •	 L22 of 1 -S/ 72 1/ 50 1/ 30 -11 111 3/ Inn1.1 • • 2 -9/ 1400 -1/ 140 -1/ 30^ -1/ 1400 -111 6300 -11 6mo
Zac •• 2 -3/ 140 -3/ 20 1/ SO -1/ 420 -111 300 ,1/ Inn
4cL •I, 2 1/ 1400 -13/12600 -1/ enb o/ 1400 -1/ 84n -1/ 3nn
act •• 2 1/ 420 -13/ 600 1/ In n 31 140 -1/ 4r 1/ 50

LlL +	 L12 -3/ 175 -21 35 Of 1 -11 525 -221 1575 n/ 1
1.1 •	 a21 -1/ 710 -111 3150 -1/ 300 1/ 700 -l3/ 6300 -1/ 300
all • c22 -1/ 525 -221 1575 n/ 1 1/ S2S -131 1575 Of I

It. •	 Lcl -1/ 525 -221 1575 1/ 1 1/ 525 -13/ 157 13 n/ 1
aac +	 A. -1/ 210 -11/ 150 1/ SO 1/ 210 -13/ 300 l/ to
Lc. •	 4L2,9 1/ 525 -13/ 1575 Of 1 3/ 175 -1/ 1n g ^/ I

1 1 7. 1,	 1 1 7_ 7 1	 1 1 7. 9 1	 1 1 1_ a	 1 1]_ a%	 1 1 7_ t. 1

• _

^T •	 111 -1/ 72 it 160 1/ ISO -1/ 36n It 36n -1/ III
1 •	 a12 -I/ 72 -1/ 180 1/ 60n -1/ 36n -I/ 360 -1/ w6A0
1 •	 4.21 -1/ 360 11 360 -1/ 900 11 360 -1/ 36n -1/ 225
T •	 a22 -1/ 361 -1/ 360 -1/ 3600 If 360 -11 360 -11 9nn
L1.• • 2 -1/ 150 11 210 11 200 -21 1575 11 525 n/ 1
cat •• 2 -1/ 150 -1/ 315 Of 1 -21 1575 -21 1575 Of 1
Lcl+ • 2 -1/ 3150 1/ 700 -1/ 1200 11 525 11 1525 -1/ 4n0
4t.1! 0• 2 -1/ 3150 -1/ 1050 Of 1 1/ 525 -21 1575 n/ 1

Lai •	 L12 -1/ 100 -1/ 630 1/ 30n -l/ 525 -i/ 1575 ^/ I
all •	 121 -4/ 1575 21 525 of 1 -1/ 1575 1/ 350 -1/ ^0
all +	 c22 -1/ 525 -1/ 1575 n/ 1 -1/ 2100 -11 210 0 -I/ ]sInn

LLl •	 L21 -1/ 525 -1/ 1575 Of 1 -1/ 2110 -I/ 219 0" -1/ IanA
Lac • 1t.2 -4/ 1515 -4/ 1575 n/ 1 -1/ 1575 -11 525 Of 1
LcI •	 a22 -1/ 2100 -:/ 2100 -1/ 1800 1/ 351	 1 -1/ 1574	 1 -11 Snn

1 1 2-71	 1 1 '1 _ G 1	 1 1 1_ 0 1	 1 1)_ 1 0 1	 1 1 7_ 1 1 1	 1 1 7- 1 7 1

t. •	 •• -If 144
T •	 cll -1/ 72 -1/ 180 1/ 6n0 -1/ 360 -1/ 360 -11 36nn
T •	 L12 -1/ 36 -1/ 36 -1/ Inn -11 180 -1/ 72 If .011
1 •	 L21 -1/ 360 -1/ 360 -1/ 3600 1/ 360 -1/ 36n -I/ 9nn
T •	 Ll2 -1/ 180 -1/ 72 1/ 60n it ISO -1/ 72 if 1411
1.La 00 2 -1/ 200 -1/ 1260 If 00 -L/ IOSn -1/ 3150 n/ l
1.1 •0 2 -1/ 60 -1/ 60 -I/ 10n -1/ 315 -11 ISO n/ I
Lt..+ 0 2 -1/ 4200 -1/ 4200 -1/ 3600 If 701 -1/ 31S r -1/ 120^
icl •• 2 -1/ 1260 -1/ 200 1/ Ern 1/ 210 -1/ ISO it 2"

cal •	 Llc -1/ 75 -21 315 Of 1 -4/ 1575 -41 157 13 n/ 1
ill •	 L21 -1/ 525 -1/ 1515 n/ 1 -11 2100 -1/ 2100 -I/ 1ann
Lii • c22 -4/ 1575 -4/ 1575 1/ 1 -11 1575 -1/ 525 n/ 1
iii • c21 -4/ 1575 -4/ 1575 Of I -1/ 1575 -1/ 525 ^/ 1
iac •	 122 -21 315 -1/ 75 Of I -1/ 630 -l/ Ion 1/ 3nn
icl •	 1.21 -l/ 1,575 -1/ 525 1/ 1 21 525 -4/ 1575 Of 1
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COEFFICIENTS OF L(I,J) FOR USE IN FORMING INITIAL STRAIN MATRIX
.12.1.	 .,

` - - 4

i •	 all -1/ lS -it LS -9/ 100 Of 1 -1/ 12 -31 s0
1 •	 a12 -11 12 Of 1 -3/ 110 0/ 1 Of 1 -I/ 23
f •	 a21 0/ 1 -1/ 12 -3/ so 1/ 1S -4/ is -91 100
I •	 a22 Of 1 Of 1 -1/ 25 If 12 Of 1 -3/ so
[14 .0 2 -9/ Ze ll -9/ 260 -1/ 25 -1/ 260 -39/ 14on -1/ sn
ilt••1 -33/ 700 11 280 -t/ SO -ti/ 2100 131 4200 -t/ 100
,,10 . 2 If 280 -33/ 700 -I/ s0 91 280 -271 140 -1/ 25
is.4 •0 2 11/ 2100 it/ 2100 -1/ 100 33/ 700 3/ 141► -11 so

a41 • alt -39/ 700 -1/ 140 -1/ 23 -13/ 2100 -131 210n -I/ SO
,al • ,21 -1/ 140 -39/ 707 -I/ 25 it 140 -33/ 390 -11 2%
cal • act -13/ 2100 -13/ 2100 -1/ so 13/ 2100 -it/ 1050 -1/ Sn
i41 •	 a21 -130, 2100 -13/ 2100 -11 so 131 2100 -it/ losm -11 so
iIt •	 a72 -1./ 1050 131 2100 -I/ so 11/ 1030 11/ 1050 -11 410
,cI • ,12 13/ 2100 -11/ LO SO -I/ SO 39/ 700 -3/ 70 -11 211

113.71	 119.01	 117_01	 1f7_1n1	 ,12.111	 .•^ .^•
- 3f - 71 -7f 20 IT 4

1 •	 all - :1 12 Of 1 -3/ 50 Of 1 Of 1 - 1/ 25
i •	 112 -4/ is I/ is -91 100 Of I If 12 -3/ 1101
1 •	 a21 Of 1 Of l -1/ 25 it 12 of 1 -11 1;0
T •	 a22 Of 1 1/ 12 -3/ so 41 is 4r is -9/ ton
[11 .0 2 -39/ 1400 -l/ 290 -1/ 5'IN -131 4200 -131 4230 -1/ l^0
!1a •• 2 -27/ 14C 9/ 280 -I/ 25 -3/ 140 39/ 1400 -1/ Sn
i.41 0. 2 13/ 4200 -11/ 2100 -I/ 100 39/ 1400 -3/ 140 -11 sn
,41 •• 2 3/ 149 33/ 700 -l/ so 271 140 27/ 140 -1/ 25

1a ♦ • 412 -33/ 350 1/ 140 -l/ 25 -11/ 1050 13/ 2100 -11 SO
cal •	 all -13/ 2100 -131 2100 -1/ s0 13/ 2100 -111 lost -1/ sn
,al • ate -11/ 1050 13/ 2100 -11 s0 11/ 1050 11/ 1 1390 -I/ SO
ila • 021 -11/ 1050 13/ 2100 -1/ s0 11/ 1050 11/ 1050 -1/ s0
t4.4 • 422 -3/ 70 39/ 700 -1/ 25 31 70 33/ 350 -1/ 29
i41 • 122 11/ 1050 11/ 1050 -1/ SO 33/ 350 1	 31 7t -1/ 25

1 I& -  1 1	 1 1 L,_ 2 1	 . 1 . 21	 1 1&_ 4.1	 1 1 &_ a 1	 1 1&_ t 1

t •	 •• - - - If 11 11 14
1 •	 all If 90 If 60 l/ 50 71/ 90 if 60 if 200
1 • cl2 If 72 Of 1 If 75 -11 72 of 1 it inn
T •	 421 -I/ 90 If 60 It 200 -1/ 16 1/ 30 -3/ 100
1 • 422 -1/ 72 Of 1 If 300 -S/ 72 of 1 -1/ 50
,41 0. 1 If 140 3/ 350 If 100 -1/ 840 91 1400 If 30ri
,11 10 1 I1/ 1050 -1/ 1050 if 200 -I1/ 6300 -1/ 1400 If bin
[, 100 2 -1/ 210 3/ 350 Of 1 -1/ 40 31 140 -11 •n
[42 0. 2 - 11/ ISIS -l/ 1050 Of 1 -11/ 3C0 -11 420 -1/ Ion

4&a. •	 a12 13/ 1050 If 525 If Inc -13/ 6300 it 700 it 300
,&1 • 421 -1/ 420 9/ 700 If 150 -11 tos 3/ 17 11 if 1
call 0 ,22 -13/ 6300 If 700 If 300 -131 1S7S If 525 if 1
,a.4 •	 a21 -13/ 6300 If 700 If 30n -131 1S7S it 325 0/
ilt • c22 -11/ 3150 -1/ 700 If 300 -221 1975 -1/ 525 if l
,tl • c22 -13/ 1575

1	
1/ 525 0/ 1 100___L If 210 -11 sn

. f&_ 7 1	 / l a_ a 1	 1 1 4. _ a.	 11&_ 1 n 1	 11&_ 1 1 1	 . 1 4_ 1 9 1

c •	 • -
T •	 all If 72 Of I It 7 5 -1/ 72 of I If inn
T • 012 Z/ 45 -1/ 60 If 51 -21 49 -1/ 60 if 2nn
T •	 a21 -1/ 72 Of 1 1/ 300 -51 72 of 1 -1/ sn
T • .412 -2/ 45 -1/ 60 if 200 -21 9 -11 30 -3/

Inc

,11 •• 2 13/ 2100 If 1050 If 200 -13/12600 If 1431 it bin
[41 00 2 3/ 70 -3/ 350 If 100 -1/ 140 -9/ 1400 If inn
X 4 9 .2 -13/ 3150 If 1050 Of 1 -131 600 If 42 M -1/ Inn
[.44 9. 2 -1/ 35 -3/ 350 Of 1 -3/ 20 -31 140 -1/ sn

,al • 412 I1/ 52S -1/ 523 11 100 -111 31 110 -1/ 700 11 Inn
,.1 •	 4.21 -13/ 6300 If 700 If 300 -131 1575 it Sts of 1
cal • 422 -11/ 3150 -I/ 700 If Son -221 1579 -11 925 0/ 1
t14 0	 lit -111 315 n -1/ 700 If 300 -22/ 1579 -l/ 52S if 1
aa4 •	 442 -1/ 70 -9/ 700 If ISO -21 35 -3/ 17s of 1
2cl • alt -221 1ST5 -1/ 525 of 1 -11/ ISO -11 210	 1 -1/ 'in
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115,71	 115,61	 115,91	 1 1 S

I

r

al	 .all l/

7010 ___

1/ 90 1/ 2On Of 1 -I/
2 e,
72

1/
if

t ♦
Inn1	 •	 a12 l/ l/ to -31 100 of I -it/ 72 -11 S^I	 •	 a21 ,./ 1/ 72 I/ 300 -11 60 -21 45 11 t0^1	 •	 a22 0/ 1 -S/ 72 -1/ se -1/ 30 -21 9 -3/ InP)ca1 •• 2 0/ 1400 -1/ 840 1/ 39 1 11 1400 -13112600 1/ 6111)..a •• 2 3/ 140 -1/ 40 -1/ 57 1/ 420 -13/ 600 -1/ 170aa.••2 -1/ 14)0 -I1/ 6390 1/ 6r 11 -9/ 1400 -I/ 140 11 Innaaa •• ; -I/ 420 -11/ 300 -1/ for -3/ 140 -3/ In -1/ Sn

aaa	 •	 a12 3/ 175 -1/ 175 n/ I II SIS -13/ 1575 n/ 1a.l	 •	 .21 1/ 7JO -13/ 630n If 30 r -I/ 700 -111 Ils e, it Innaaa	 •	 ale 1/ 515 -13/ 1575 If 1 -1/ 521 -221 3915 0/ 1aaa	 •	 [11 l/ SIS -13/ 1575 Of 1 -1/ Sts -221 1175 Of Ia.a	 •	 a12 1/ 210 -13/ 3uC -I/ Rn -1/ 210 -11/ isft -1/ 150aaa	 •	 a22 -t/ 52S -221 1575 Of 1 -3/ 175 -21 35 n/

1	
6	 l I a 1. 1	 ( 1519

c •	 •0 2 - 1 7 90 -If Zri if 144
1 •	 all -1/ 3o0 1/ 36(% -1/ 9nr It 360 If 360 -1/ 1 Me,
T •	 all -1/ ldo If 72 1/ 15n 1/ 150 if 72 11 A^n
1 •	 all 1/ 30) 1/ 360 - 11 3600 l/ 72 l / 150 l/ bn11

f •	 a1.2 1/ 180 1/ 72 If 600 1/ 36 if 36 -1/ Inn
al. •• 2 -1/ 700 1/ 3150 -1/ 12^r It 420n If 42 11 0 -1/ 0WO
aa. •• 1 -1/ 21n 1/ 1 S 1/ 2no 1/ 1260 11 20r 1/ 600
aaa •• a i/ 1059 1/ 3150 n/ 1 11 20 0 l/ 1260 11 6nm
a.c• • 2 1/ 315 1/ 150 bn 1/ 6e, -1/ 191

a.a • a12 -1/ 545 4/ 1575 ^/ 1 1/ I575 If 525 n/ 1
[.a •	 a21 It 21)0 If 1190 -1/ le e, 0 It 52S If 157 4 ^/ 1
La ► • a1i I/ 1515 1/ 525 r/ 1 4/ 1S7S 4/ 1 S7 ^/ 1
a.1 •	 411 1/ 1575 If 525 '% 1 4/ IS7S I	 44 1574 0/ 1
"L A. • a12 1/ 530 1/ 1n0 1/ 300 21 W If 74 01 1
aaa •	 .42 './ 151 4 4/ 1575 n/ I 1/ 715 21 311	 1 e, / I
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I
COEFFICIENTS OF L(U, FOR USE IN FORMIl+O INITIAL STRAIN MATRIX

`
1

t
• .il It

)
60

0/
l/

1
90

-1/
If

24
Sn

it 3e Ot 1 -11 24

1 •	 a12 I/ 6n -I/ 9 q I/ 20n
of
n/

1
l

If
-1/

72
72

if
it

79
3001

f
•	 a21
•

7/ 1 If 72 If 75 -1/ 60 2/ 44 if SO:22 ^/ l -1/ 71 1/ In0 -1/ 60 -21 4 4 t/ 2911aa.002 1/ 140 If Inn If lo g o 131 2100 it 200al. n •1 -1/ 219 n/ 1 if 1090 -131 3190 of 1A1 •• 1 -1/ 1030 11/ 1r 5 1) 1/ 200 -1/ 350 31 7e, If leea.a •• 2 -1/ I ng o -it/ I575 Of 1 -3/ 350 -1/ 39 Of 1aal •	 a12 9/ 7N) -t/ 42 11 l/ ISO 1/ 700 -131 630" It 300aaa •	 a21 If 515 13/ ICS9 If I nn -1/ 52S 111 525 it 11%11[.. •	 a22 1/ 700 -13/ 6300 If 300 -1/ 700 -it/ 31Sn It Innal. •	 a21 1/ 700 -13/ 6370 If 3^0 -1/ 700 -11/ 11511 If 3n0[la •	 a22 1/ Sls -13/ 1575 r; I -1/ S2S -221 1574 n/ IIt
 •	 a22 -1/ 700 -11/ 3150 1/ 30r -9/ 700 -I/ 7e, it IRA

,left)	 6	 (16,31(16 .51 	 (166AIr

pt

1 0 42
1 •	 all -1/ 360 -1/ 360 -1/ 225 11 360 -I/ 360 -1/ 9nn
1 •	 a12 -1/ 360 l/ 360 -1/ 9nr, If 3k 60 I	 if 360 - 11 34nn
1 •	 all 1/ 360 -1/ 350 - I/ 9n^ If 72 -I/ lei it 150
i •	 a[2 1/ 3^0 1/ 36n -1/ 360 0 it 72 if loft 1/ b n A
aa. •• z -1/ 525 -1/ 4125 -l/ 4nr If 3150 - I/ Ton - 1/ 17nn
aac •• l -1/ 52 15 2/ 1575 0/ 1 it 3150 if lose 0/ 1
!ca •• z 11 IS75 -1/ 521 0/ 1 If 150 -11 21r it 219
aaa •• 2 1/ 1575 2/ 1575 0/ 1 If ISO It 31! At 1

[la •	 ail -1/ 350 1/ 1575 -1/ 6^n If 2100 if Itom ft/ I
a. ► •	 4.21 1/ Isis -1/ 359 -1! 6r0 4/ ISIS -2/ 52S of l
aaa •	 4.21 If 2100 1/ 2100 -I/ ISM it 525 it 1575 n/ 1
aa. •	 c11 1/ 21)n 1/ 2100 -I/ 16r n if 52S If 1575 n/ 1
aaa •	 4.2; 1/ 1 15 75 If 525 c)/ 1 4/ 1S7S 4: 1571 0/ 1
aca •	 a22 1/ SIS 1/ 1S7S n/ I If Ion It 63n It inn
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