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ABSTRACT

A finite element technique is presented for the plastic
analysis of structures subjected to out-of-plane bending, alone
or in combination with in-plane membrane stresses. The method
makes use of a linear matrix equation of finite element analysis,
formulated to include the effect of initial strains. This equa-
tion is applied to the plasticity problem by interpreting plastic
strains as initial strains, the material nonlinearity being in-
troduced through subsidiary stress-strain relations from an in-
cremental plasticity theory. In addition, the analysis is com-
bined with an incremental technique developed to account for
the effects of geometric nonlinear behavior. Thus, the present
analysis is capable of treating the combined effects of material
and geometric nonlinearity. Application of the procedure is made
to beam and arch structures in the presence of both types of non-
linearity, and to rectangular plates for which material nonlinear-

ity alone is present.
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I. INTRODUCTION

The description of plastic behavior presents some basic dif-
ficulties to the structural analyst. These difficulties are as-
sociated with a proper description of the material phenomenon and
the nonlinear nature of the re¢sulting governing equation. Thus,
the mathematical formulation of the plasticity problem makes a
continuum analysis of all but the simplest structures a very
fuormidable, if not an impossible, task. Consequently, consider-
able attention h:s been given recently to the extension of finite
elenent techui iues to incl:de the effects of plastic behavior
(Refs. 1-5). These technigues have the advantage of being capa-
ble or treating the ~=ffects of plasticity in complex structures
by utilizing various algorithms for linearizing the basic non-
linear nature of the problem,

Most of the current effort concerned with the application
of finite element techniques to the plasticity problem has
been limited to the treatment of structures in states of
membrane stress. In addition, the methods generally neglect
the effects of geometric nonlinearity. These limitations
are too restrictive for many important aerospace structures.

Consequently, it is the purpose of the present paper to extend

i




the methods already developed to provide for a plastic bernding
analysis that accounts for membrane stress states and geometric
nonlinearity.

The present method makes use of a governing linear
matrix equation that relates the applied loading to the nodal
displacements and initial strains. For the purpose of a
plasticity analysis, the plastic strains are interpreted as
initial strains. Use of the initial strain concept, to
treat the effects of plasticity, requires the development
of appropriate matrix relations based on assumptions for the
distribution of both displacement and initial (plastic)
strain within a finite element. The specification of a
distribution for plastic strain within a finite element forms
the basis on which the present plasticity analysis depends.

Inclusion of the effects of geometric nonlinearity is
primarily of concern in problems involving thin beams, plates,
and shells in the plastic, as well as elastic, range. A finite
element method that utilizes an incremental procedure requiring
a successive modification of the element stiffness properties
has been discussed in Ref. 6. This method requires the
introduction of an additional stiffness matrix to account
for the effects on the bending stiffness of the membrane
stresses generated as a consequence of geometric nonlinearity.

In addition, the effect that changes in geometry have on

-
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subsequent deformations is taken into account. This incremental

procedure is incorporated into the plastic bending analysis

py "EE e

to treat the combined effects of material and geometric
nonlinearity.

- II. MATERIAL NONLINEARTTY-PIASTIC BENDING ANALYSIS

An important advantage of finite element techniques
is the ability to specify the distribution of displacement
and strain states within each finite element. This permits
L assumptions to be made for the distribution of plastic
- strain and the development of regions of plasticity within

an element. These assumptions considerably reduce the

|
; complexity of the analysis by defining the distribution of
2 plastic strain in any element, once the nodal values are
determined. This feature is consistent with finite element
analysis, and allows us to be concerned only with quantities
L at node points of the idealized structures.

F : ‘ For the case of membrane stress states, the plastic

strains are assumed to vary in a prescribed manner in the plane

1 of the element. For ocut-of-plane bending, an assumption

must be made for the distribution of plastic strain through
the thickness as well as in the middle surface of the element.
Specifically, the present analysis assumes the plastic strains
i | to vary linearly along the edges of a finite element between

adjacent nodes, and in addition assumes a linear variation
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of plastic strains from the upper or lower surface of the
element to an elastic-plastic boundary (or boundaries)
located within the cross section of the element. These
assumptions require the determination of the position of an
elastic-plastic boundary based on its assumed distribution
within the element during the course of loading. Thus,
the présent analysis utilizes the concept of a finite element
in which there is a progressive development of a plastic
region instead of the layered approach of Ref. 7 or the sand-
wich idealization of Ref. 8.

The above assumptions are made in the development of
the governing linear matrix relation, which has been formulated
to include the effects of initial strains. These assumptions,
as applied to a typical beam finite element for which pure
bending behavior has been assumed, are shown in Fig. 1.
The function for the displacement in the z-direction is
assumed to be of cubic osrder in the coordinate x, and is

written in terms of the generalized nodal displacements as

2 3 2 3
wix) = (1 -3 jz + 2 j}) w, + (3 ?5 -2 js)wj

(1)
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In choosing a displacement function, it is important to include
all fundamental strained states and all rigid body terms.
Equation (1) satisfies these requirements for a beam element,
and in the case of a uniform bending stiffness, EI, allows for
a constant shear load and linearly varying moment along the
length of the element. The plastic strain distribution is as-
sumed to vary linearly in the x-direction from its value at the
upper (or lower) surface at node i, represented in Fig. 1l as
€9y tO its value at the upper (or lower) surface at node j,

represented as er' This assumed distribution is written as

€= (5—'%)[601 (1-%)+ €03 (%)} 2)

where 2z represents the depth of the elastic=-plastic
boundary. In addition, as seen from Eq. (2), it is assumed
that at a node, the plastic strain varies linearly from its
value at the upper or lower surface to zero at an elgstic-plastic
boundary located through the cross-section.
The depth of the elastic-plastic boundary, which
propagates from the upper and lower surface, is measured
from the neutral axis for pure bending, as shown in Fig. 1.

In general, the depth of this boundary cannot be directly

related to the load. Hence, the value of z must be determined




from the total strain distribution, which is assumed to
vary linearly through the thickness in accordance with
Kirchoff's hypothesis. The functional form representing
the distribution of the elastic-plastic boundary is assumed
to be a linear function of the coordinate x and may be

written as
2= G-z (B +3, . (3)

where ;i and zj represent the depth of the elastic-plastic
boundary at nodes i and j, respectively. Thus, with the
preceding assumptions, the elastic-plastic boundary consists
of a surface in the interior of the element that extends
over the entire area of the element and intersects the edges
along straight lines joining nodes, as illustrated in Fig. 1.
In addition, these assumptions eliminate the necessity of
determining an elastic-plastic boundary on the faces of the
element between nodes, but still require locating such
a boundary through the thickness.

The present assumptions are further extended to include
the effects of bending in combination with a membrane stress
state. As seen in Fig. 2, this extension necessitates the

determination of the position of the elastic-plastic boundary

e
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relative to both the upper and/or lower surface. The functional
representation of the plastic strain distribution and the
representation of the elastic-plastic boundary are taken

similar to Eqs. (2) and (3) written for both the upper and -
lower surface. A second matrix, in addition to the usual
stiffness matrix, termed the initial stress stiffness matrix

(to be discussed in the next section), is also introduced

to account for the effects of the membrane load on the bending
stiffness. This problem also requires the introduction of

a second displacement component, u, acting in the axial

direction,

a2 = (1 Bug + (S @

It should be noted that although the functional form of
the plastic strain distribution, as shown in Fig. 2, does
assume the existence of a neutral axis located within the
cross section of the beam element, the present analysis is
capable of considering plastic sections in which the neutral
axis is not located within the thickness of the beam, i.e.,
the upper and lower strains are of the same sign. This
situation occurs with the application, or generation, of
large membrane stresses as compared to the existing bending

stresses. The treatment of this situation is accomplished




by modifying the functional form of the plastic strain
distribution given in Fig. 2.

The present method has also been extended to treat
the more complex problem of the plastic bending of a plate.
A typicél rectangular plate element is shown in Fig. 3. The
displacement function chosen is the one originally used
by Bogher, Fox, and Schmit, (Ref. 9), and is in terms of
products of first order Hermitian polynomials. The components
of initial strain are assumed to vary as products of zero
order Hermitian polynomials in the plane of the element and
linear. v through the cross-section from their values at the
upper (or lower) surface to zero at the elastic-plastic
boundary. The depth of the boundary through the thickness,
which must be determined at each of the four nodes of the
rectangular element, is computed from the total strains by

means of the following relation:

(o] t
- ield
zij = L=C i,j=1,2
v (JZ max)ij
where
(J ), s = —E—s (eT -e )2 + eler + 2 ( T )2
2 max’1i] 1+ v)2 Xy & ny

+
1-w?

and the superscript T denotes total strains.
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The function defining the elastic=-plastic boundary in the plane
of the element is assumed to be in the form of products of zero
order Hermitian polynomials as shown in Fig. 3. The foregoing

assumptions associated with the plastic strain distribution and
the representation of the elastic-plastic boundary ensure com-
patibility of these quantities along element boundaries.

A, Method of Analysis

Once the assumption is made on the distribution of dis-
placement, the total strain distribution can be expressed in
terms of nodal displacements by making use of the appropriate
strain displacement relations in conjunction with the assumed
displacement function. This relation can be written in matrix

form as follows:

{eT} - W] {do} (s)

where {eT} is the vector of total strains

{do} is the vector of generalized nodal displacements.

The assumed distribution of plastic strains can be written in

terms of their nodal quantities as

fe} = 1,7 {eo} )

where {eo} is the vector of nodal plastic strains.
The matrices ([W] and [wp] are, in general, functional
matrices which depend explicitly on the assumptions made for the
distribution of displacement and initial strain, respectively,

within the element. Specifically, the assumptions discussed

{ ©
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above for the beam and plate elements are used in the formation
of [W] and [Wb] in the present analysis. The element
stiffness properties in the presence of initial strains are
developed on the basis of these two functional matrices. They
are obtained by substituting Eqs. (5) and (6) into the expres~-
sion for strain energy and then employing Castigliano's first
theorem. To this end, the expression for strain energy, exclud-
ing terms that are independent of displacements, which explicitly

contains the effect of initial strains may be written as

’ 4

U= % {eT} (E] {eT}dV - {eT} (E] {e}dv (7

\Y \%
where the elements of the matrix [E] are the coefficients
associated with the appropriate linear stress strain relations.
Substitution of Eq. (5) and the assumed plastic strain

distribution of Eq. (6) into Eq. (7) leads to

u=1 {do} (k] {do} - {do}’[k*] :{eo} (8)
where
(k] J [W] (E][w]av 9
v
[k ] = [ [W] [E][W }dv (10)
v,
10
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The matrix [k] represents the element elastic stiffness
matrix ahd depends only on the assumption made for element
displacements. The second integral, Eq. (10), represents
the initial strain stiffness matrix which is dependent on
the assumptions for both total and plastic strains. The
quantity Vb in Eq. (10) is the volume of the plastic region
in each element as determined by the representation of the
elastic-plastic boundary. Consequently, the elements of the
initial strain stiffness matrix [k*] will be a function of,
among other quantities, the depth of the elastic=-plastic
boundary at each node, and must therefore be continuously
computed during the course of loading. The initial strain
matrix for the beam element subjected to pure bending and that
for combined bending and axial load are given in Appendix A and
the initial strain matrix associated with the rectangular plate
bending element is presented in Appendix B.

Application of Castigliano's theorem to Eq. (7) yields
the governing linear matrix equation for an individual finite

element
E?%g? . {Po} - (k] {do} - k"] {eo} (11)

where {Po} is the vector of generalized nodal forces.

11




A similar equation is also developed in incremental form
in anticipation of combining plasticity with the incremental
geometric nonlinear analysis. This equation is written as

follows:
{APO} - (k] {Ado} - (%] {Aeo} (12)

It should be emphasized that the initial strain stiffness
matrix associated with the increment of plastic strain {Aeo}
in Eq. (12) is written as [k] to distinguish it from the ini-
tial strain stiffness mat;ix [k*] associated with the total
plastic strain {eo}. These matrices may differ substantially,
since the functional form assumed for the distribution of
total plastic strain will not, in general, coincide with
the assumed distribution associated with the increment of
plastic strain. In the present analysis, €y was assumed
to varv linearly through the thickness from the upper and/or
lower surface to the elastic-plastic boundary. This assumption
implies a bilinear distribution of A4e¢y. The specification
of a distribution of this form requires the determination

of a value of the plastic strain increment at some intermediate

point in the cross section, in addition to a value at the

upper and/or lower surface.

12
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To avoid the added complexitjies associated with the
use of Eq. (12), we may alternatively use an incremental

form of Eq. (11) as follows:
{APO}i = {(k] {Ado}i - {Aq}i (13)

where

and the superscripts i and 1i-1 refer to the current and pre~
ceding loadi.g step, respectively. In Eq. (13), the product of
the initial strain stiffness matrix and the total plastic strain
is considered as a vector of fictitious loads. The increments
of these fictitious loads, represented as {Aq}, are determined
at any step by subtracting their current values from those com=-
puted in the preceding step. In this manner, only total values
of plastic strain are utilized in the governing linear matrix
equation. The desired form of the equation is obtained by
grouping the increments of generalized nodal forces and ficti-

tious forces, resulting in the fcllowing equation:

(k] {Ado}i - {AQJi + {Aq}i'l (14)

13



Here, it is seen that the values of the increments of fictitious
loads introduced into Eq. (14) are values taken to be equal
to those computed in the preceding load increment. The use
of this type cf predictor procedure is necessary because

the depth of the elastic=-plastic boundary (and the cufrent
value of plastic strain) at those nodes of the structure

in the-plastic range can be determined, in gzeneral, only

from the stress (or strain) distribution computed at the end
of the load step. The position o7 the elastic-plastic
boundary is determined at the end of each load increment, and
is ass'med to remain fixed during the next increment.

Equation (14) is written for each element in the structural
idealizatior and then appropriately assembled to form the
over-ali linear matrix equation for the entire structure.

This equatiocn, not shown here, is identical in form to Eq. (14).
The incremental solution technique using this equation reduces
to a sequence of linear problems in which the applied loading
is constantly modified by the fictitious force vector.

B. Plasticity Relations

The foregoing matrix equations must be used in conjunction
with an appropriate plasticity theory. Plasticity is intro-
duced into Eq. (14) through subsidiary stress-strain relations pro-
vided by this theory. In the present paper, consideration is given
to both elastic, strain-hardening or ideally plastic material be-

havior. For both types of behavicr, the total strain increment

14 )
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at a node can be written as the sum of an elastic and plastic
component, represented as {Aeg} and {Aeo}, respectively,

in the following equation:

JAeg} - JAeg} + jAeo} (15)

In addition, the increment of elastic strain is related to
the stress increment, {Ad} , by means of Hooke's Law.

Thus, Eq. (15) can be written as

{AeT} = [E]'1 {Ad} + {Ae} (16)

For an elastic, strain-hardening material, we make use of
a linear incremental relation between plastic strain and

stress

JAe} = [C] IAG} 17)

This relationship is represented in a general form by the

matrix [C] in Eq. (17). The formulation of this matrix

is directly related to the plasticity theory chosen for use,
i.e., these elements may be determined by using an isotropic
hardening theory or the kinematic hardening theory of plasticity.

The elements of this array for plane stress, obtained by




using Drucker's postulate with the Prager-Ziegler kinematic
hardening theory, are explicitly given in Ref, 1.

Substituting Eq. (17) into Eq. (16) leads to an incremental
stress-strain relation given in the following equation:

{AG}

(18)

I
)
—

| ]
b
Dk__\
()
=3
—

where

[R] -1

[E] ~ + [C]

It should be noted that there is no unique stress increment
for a given plastic strain increment vector. Therefore, the
matrix [Cj, given in Ref. 1, is singular. However, the
matrix [R], defined in Eq. (18), will possess an inverse,
thereby providing the necessary coefficients relating the
stress increment to the increment of total strain.

The increments in total strain at a node, {Aeg},

are obtained from the increments of displacement by using

Eq. (5) in incremental form as follows:

{Aeg} = W) {Ado} (19)

where [WO] is defined at a node. It should be noted
from the above equation and Eq. (5) that the functional

form chosen to represent the increments of total

16




strain, }{Aeg} , 18 identical to that used in the representation
of their full values, {eg}. Thus, having obtained the incre=-
ments of displacement from the solution of the total linear
matrix equation in the form of Eq. (14), Egs. (15;19)
represeht the necessary relations that must be used to obtain
the complete solution for increments of stress and strain,
assumiﬁg elastic strain-hardening material behavior. After
summing all incremental quantities, new values of the incre-
ments of fictitious load, {Aq}, are determined for each
element in the plastic range and the procedure is repeated
until the desired maximum values of the loads are reached.
Consideration of elastic, ideally plastic material be=-
havior is necessary for predicting the collapse load of a
given structure in a given loading situation. The two con-
ditions to be satisfied for multiaxial el. stic, ideally plastic
material behavior are;
1) the stress increment vector must remain tangent
to the loading surface, and
2) the plastic strain increment vector must remain
normal to the loading surface, where the loading
function is the representation, in stress space,
of the initial yield function, or the subsequent
yield function after some plastic deformation

has occurred.

17




The above conditions are expressed analytically for the case
of plane stress and using the von Mises yield condition by

the following two equations:

- - i -
(ox % oy) dox + (cy 3 ox) dcy + 3Txydey 0 - (20)
P
dex - df)’ - d'ny = dA (21)
- 1 -
(ox 2 oy) (cy ox) 3Txy

where dMA is a positive scalar quantity.

If we consider the differential of the stress components
as incremental quantities, the implicit differential of
Eq. (20) provides a linear relation among the components of

stress increment, represented in matrix form as follows:

{Ao} = [E] {Ac} (22)

Expressing on in terms of Aoy and ATxy

yields the elements of the matrix [E] as

0 - -M

[E]=1]|0 1 0
0 0 1
where
M, = (o, = 1% crx)/(crx -4 cy)

18
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If we replace deij by Aeij » Eq. (17) provides a linear
relation between components of plastic strain increment,

written as

fAe} - (E] JAe} (23)
1 1
Then, expressing Aey and Avxy in terms of Aey, gives
the elements of the matrix [E]
1 0 o0

[E]=| M 0 O

It is apparent from Eq. (20) and (21) that only two of the
three components of stress increment and only one of the
three components of plastic strain increment are required

to obtain the remaining components. Thus, only three of

the six quantities are independent variables. The increments
of stress and plastic strain can now be written in terms of
a vector, {Aw}, representing these independent quantities,

arbitrarily chosen as Ae_, Aoy and . AT

’ X
Aex
{Aw} = Aay (24)
ATxy

Y’

19




Equations (22) and (23) mey now be rewritten to relate the

increments of stress and plastic strain in terms o:i {Aw}

{Ao} - [E] {Aw} (25)

and

{Ae} = [E] {Aw} (26) z
A relation between the vector {Aw} and the increment of -
total strain is obtained by substituting Eqs. (25) and (26) i

into Eq. (16)

A

5AeT} - [E¥]

i Am} 27)

—~

fonni

i

where

* -1 = ~
(E']1=I[E] " [E] + [E]
Once again, as in the case of strain hardening behavior,
increments of displacement and total strain are obtained

from the linear matrix equations. The solution for {Aw}

from Eq. (27) and its substitution into Eqs. (25) and (26)

represent the procedure necessary to obtain the complete
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solution for displacements, stresses, and strains for any
increment, assuming elastic-ideally plastic material behavior.
III. MATERIAL AND GEOMETRIC NONLINEARITY

For the preceding theory and applications, it is
assumed that the strain;diSplacement relations are linear
although the stress-strain law is not. The implementation
of a nonlinear stress-strain relation for the characterization
of material behavior merely depends on the absolute magnitudes
of the elongations and shears existing in a body. When
they exceed a certain value, nonlinear material characteristics
become important and must be included to gain an insight
into the response of the structure to further loading.
Although the magnitudes of the shears and elongations may be
sufficiently large to necessitate the inclusion of plastic
effects, their values and the value of the angles of rotation
may still be small compared to unity. I{ this condition, and
the additional condition that the squares and products of
angles of rotation may be neglected as compared to the
elongations and shears, remain valid, then the use of linear
strain-displacemenc relations is justified. Thus, material
nonlinearity can exist independently of geometric nonlinearity.

For flexible bodies (beams, plates, shells), the second

condition (that on the squares and products of rotation) is

not satisfied in many instances. Under these circumstances




it is unjustifiable to neglect the terms containing the

squares and products of the rotations in the strain-displacement
relations. Furthermore, the linear equilibrium equations

are no longer valid and nonlinear terms consistent with the
inclusion of rotations in the strain-displacement relations
should be retained. Thus, stresses that multiply rotations
should not automatically be dropped in deference to those -

that appear linearly in the equilibrium equations.

bnneng

Geometric nonlinearity can exit independently of physical
aunlinearity since small shears and elongations do not imply
small angles of rotation. Problems requiring the considera- E
tion of geometric nonlinearity alone include the question

of stability of elastic equilibrium, the deformation of bodies

i
having initial stresses, large deflection of beams, plates £
and shells, and torsion and bending in the presence of axial E
forces. For these situations, the effect of geometric -

nonlinearity must be taken into account not only in the

sl

strain displacement relations, but in determining changes

in the length of line elements, and in formulating the
conditions of equilibrium of the volume element. In additionm,
if the magnitudes of the strains become too large, it then
becomes necessary to include material nonlinearity through

the stress-strain relations.

o

In the following, the procedure developed for material

oy




‘ nonlinearity is expand=d to include geometric nonlinearity.

1' Although only elastic perfectly-plastic results are given,

1 the method is equally applicable and easily adaptable to

strain-hardening behavior using the procedure outlined in the

previous section. Representative structures chosen to illustrate

the significant features of combined geometric and material

nonlinéarity are the restrained beam and the circular arch.
Martin (Ref. %) has presented an incremental numerical

method, based nn the direct stiffness approach, which is

generally applicavie for the treatment of problems involving

geometric nonlinearity. This procedure approximates the

nonlinear behavior by a sequence of linear steps. Either

loading or displacement may be applied incrementally.

This procedure also requires the introduction of an

initial stress stiffness matrix, in addition to the

- conventional stiffness matrix, to account for the effects

on the bending stiffness of membrane loads, i.e., the
I effects of rotations on strains. Thus, the implementa~
tion of this matrix in addition to the initial strain
matrix represents the required modifications for the de~
velopment of an incremental procedure to account for
both types of nornlinearity.
A general development of the matrices discussed above

and the method of solution to the problem of combined
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nonlinearity is obtained by following the procedure
outlined ip Ref. 6 with modifications associated with the
inclusion of plasticity. The total elastic strain may be
written as the sum of three components, i.e.,

{ee} - {eo} + {AeT} - {Ae} (28)

T
{Aee}
where {eo} is the initial elastic strain vector (equal
to PO/AE for the beam column, and related to the initial

stresses cz, o s T:y for the two dimensional plate

y
problem). The vector {AeT} is the additional total strain
developed within the increment of load. This strain increment
is related to the increments of displacement through the
strain-displacement relations which must now include the

nonlinear rotation terms. For a beam column element, this

relationship is given by

d d(aw) 2 a2
se’ = éﬁu) +3 (-%) - 2 -::%ﬂ (29)

where Au and 4w represent the increments in the axial
and lateral displacements of the middle surface of the beam.
The usual Bernoulli-Euler kinematic beam theory assumptions
were made to obtain Eq. (29). The first term in the above

equation represents the extension of the centerline of the

24

tmmm»:



— wmt SR EES PEN N BN AN BN B SN SEN GEe G GBS IR W e

beam, the second term is the contribution to the extensional
strain due to lateral deflection (the rotation term), and

the last term is the conventional bending strain term arising
from the condition that normals to the neutral axis should,
after deformation, remain straight and normal to the center-
line and unextended. The corresponding strain-displacement

relations for a plate are

2 2
Ae: SAuz (a(AW)> ., d° (aw

ox ax2
2 2
d d (o
rel = éAvZ + 4 ( ﬂsz) -, 3~ (aw) (30)
y y 2\ dy ay2
T 2w |, 36w, W) dw) _, 3o(w)
Any dy ox ox oy Z 3xdy

The functional form for the increments in displacement
for the beam column is chosen to be identical to that given
in Eqs. (1,4) for the total displacement, i.e.,

2
Aw(x) = 2; (1)(x)Aw + H( )(x)Aw,xi

i=1 (31)

Au(x) = Z H(o) (x)Au

i=1
where the definitions of the Hermitian polynomials may be

obtained by comparing corresponding terms in Eqs. (L, &),

and (31). A representation identical to that giver in Ref. 9

25




may be used for the increment of lateral displacement for
the plate element. The incremental relationship between
total strain and generalized nodal displacements is obtained
by taking appropriate derivatives of the assumed displacement
functions.

The increment in elastic strain energy from an initial

. . o .
elastic strain state, {e } , may be written as

: | (e°)+(ne®) 1
' AU = J {o} {dee} av (32)

v | (e} ]

Integrating the above equation between the prescribed limits

of strain and using the following relations:

‘]
e°}

o} = [E]

e ey

f
1
{00} = [E]

e ey

and

{Aee}={AeT} - {Ae} s

we can write the increment of strain energy as

r.

| = b ||| feet) cefacthen - J o) t23faclar

(33)
(r ' | /

+ {oo},{AeT}dV +% J‘, {Ae} [E]{Ae}dv - {go} .{se}dv
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Only those terms in the above equation that contain {Aer},
which is a function of the increment of nodal displacement,
will contribute to the incremental load;deflection;initial
strain relationship. The remaining terms are arbitrary
constants. Upon neglecting higher order terms in the increments
of displacement, the first term in Eq. (33) leads to the
conventional stiffness matrix. The second term yields the
initial strain matrix, and the third term leads to the initial
stress stiffness matrix. In the development of the latter
matrix the work done by the in-plane stresses and the
generation of additional membrare stresses, résulting from
the effects of geometric nonlinearity, are both taken to be
zero during the application of an increment of lateral load.
These considerations constitute the linearization of the
procedure during an increment of load.

Consistent with the incremental procedure of the previous

section, the increment of plastic strain may be written as

Substituting the above equation into Eq. (33) and then making
use of Castigliano's theorem leads to the following relation

for an individual element:
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| jAPO}i - [k(o)]{Ado}l + kP ]{Ado}i

1
[k*]ijeo}i_ [k*]i-l{eo}i-l}

(34)

where

k@ - J[ w1 [E][Wlav ,

v H

the conventional stiffness matrix,

kD)= ||| W1 logl eV 1
v i

the initial stress stiffness matrix, and

) F

?
() = ||| W] [E]W Jav,
\
P
(™
the initial strain stiffness matrix. The matrix ([W] relates
the increment of rotation to the increment of generalized nodal
displacement and therefore represents the nonlinear contribu-
tion to the strain-displacement relations. The matrices [W]
ana [Wh] are the same as those used in the previous section.

A predictor-procedure must once again be used to obtain a

solution because the location of the elastic-plastic boundary

1
3
-
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is not known a priori. Thus, the governing linear matrix equa-

tion is written in the following form:

(@7 + By {Ado}i - {APo}i + {Aq}i-l (35)

where {Aq} is defined in Eq. (13), and must once again be
retarded by one step in the solution procedure. Equation (35)
is very nearly the same as Eq. (13) used in the previous sec-
tion for the plastic bending analysis. However, because of
the presence of geometric nonlinearity, the entire element

stiffness matrix ([k] = (k(o)] + [k(l)] must be reformed at

i P e Gy ey el Sy R

every step using current stress levels and geometry.

o

Thus, the solution procedure requires that for a generic

[}

step [k(o)] and [k(l)] are calculated by making use of

)

- the geometry and initial forces existing at the start of the
step. The increment in the fictitious force, {Aq}, is cal-
culated using current and immediacely preceding values of

the location of the elastic-plastic boundary. An increment of

load is then applied, and the corresponding displacement incre-
ments calculated from the total matrix equation obtained by
assembling Eq. (35) for each element. New internal forces are
calculated and total stresses, strains, and displacements are
obtained by summing incremental values. The new location of

the elastic-plastic boundary is determined from the total strain

29




i

(or stress) distribution and the process is repeated until the
maximum specified load level is reached or the structure fails,
IV, RESUITS

As a demonstration of the feasibility of the plastic bend-
ing analysis, application of the method has been made to some
elementary, but representative sample structures, For two of
these structures (a simply supported and a cantilevered beam),
results from an exact solution to the governing differential
equation, assuming elastic-ideally plastic material behavior,
are available for comparison. As a consequence of assuming
elastic-ideally plastic behavior, and since both of the struc-
tures are statically determinate, an analytic expression can
be written which relates the depth of the elastic-plastic
boundary to the applied load. The finite element analysis is
initially applied to the beam structures using this relation-
ship, thus providing a means o determining the validity of
assumptions made in choosing such quantities as the displace-
ment function, the plastic strain distribution, and the repre-
sentation of the elastic-plastic boundary.

Figure 4a represents a nondimensionalized load versus
central deflection curve for a uniformly loaded, simply sup-
ported beam, Six elements are used in the idealization of one~
half of the beam, In this figure, LA is the center deflec-

*
tion, wg is the center deflection at the maximum load for
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which the beam is entirely elastic, and p represents the

nondimensional load parameter,
2
2 (8.
Here, p 1is the applied load intensity, and p0==4bx.oyie1d.
The results obtained from the finite element analysis compare
quite favorably with corresponding results from the exact so-
lution (Ref. 10), as shown in Fig. 4a. The collapse load, as
determined from the near vertical slope of the load-deflection
curve, is approximately 3 percent higher than the exact col-
lapse load which occurs at a value of p =1,
The progression of the elastic-plastic boundary through

the thickness and in the plane of the element is shown in

Fig. 4b. From this figure it is seen that, although the depth
of the boundary at plastic nodes is exact, the assumption asso-=
ciated with its distribution in the plane (i.e., linearly
varying to adjacent nodes), may lead to discontinuities in
its representation as evidenced in the figure for load values
¢. p=1.00 and p = 1.,03. The appearance of these discon-
tinuities indicates that the actual boundary lies between the
nodes, on the upper and lower surface of the beam. The error
introduced by the assumption of a linearly varying boundary
in the plane can be reduced by increasing the number of ele-

ments used in the idealization of the beam. Also to be noted
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in Fig. 4b 1is the development of a fully plastic cross section
located at the center of the beam at a load of p =1, In a
continuum analysis, the development of this fully plastic cross
section is sufficient to cause collapse of this structure,
However, in the finite element analysis, collapse is not
indicated until both cross sections of the element contain-

ing the center of the t~am become fully plastic.

Results in the form of a nondimensionalized load versus
tip-deflection curve for a uniformly loaded, cantilevered beam, *
are shown in Fig. 5a. Elastic-ideally plastic material behavior -y
was assumed, A comparison with results from an exact solution,
shown as the solid curve in the figure, indicates good correla-
tion up to the collapse load. For this problem, as for the
simply supported beam, the depth of the elastic-plastic bound-
ary can be directly related to the applied load. This rela-
tionship was used, once again, to obtain the results shown in
the figure.

The progression of the elastic-plastic boundary, through
the cross section and in the plane of the elements, is shown
in Fig. 5b. As indicated in the figure, the development of
the boundary is much more lccalized for this structure than
it was for the simply supported beam., Consistent with a con-

i

tinuum approach, collapse of this structure was indicated in
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the finite element analysis by the develcpment 6f one fully
plastic cross section at the root of the cantilever,

For both the simply supported beam and the cantilevered
beam, as previously mentioned, an exact relationship between
the depﬁh of the elastic-plastic boundary at nodes in the
plastic range and the applied load was used to obtain results
using ﬁhe finité element analysis, The justification for
using this relationship, which admittedly does not exist for
most structures of interest, was to check the validity of
assumptions made in choosing such Juantities as the displace-
ment function, the plastic strain distribution, and the repre-
sentation of the elastic-plastic boundary. As indicated by
the previous results, the use of these assumptions for the
finite element analysis appears to be justified.

Since, in general, the depth of the elastic-plastic
boundary is not known at the current load step, results for
the cantilevered beam were recomputed and a load-deflection
curve, obtained by using an approximate value for the depth of
the elastic-plastic boundary, is shown in Fig. 6. The value
of the depth of the boundary used for any increment of load
is based on the total strain distributiun determined at the
end of the previous load increment. The use of this procedure
cannot lead to the development of a fully plastic cross sec-

tion. Consequently, it is assumed that a fully plastic cross
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section exists at a node when plasticity has developed through
a specified proportion of the thickness. The deflections and
the slope of the load-deflection curve for this structure, in-
crease quite rapidly beyond a value of load for which plas~-
ticity has developed through 80 percent of the end cross sec-
tion. Thus, in the analysis this value was chosen as the cri-
terion to determine the development of a fully plastic cross
section. The degree of appro—~imation obtained by using pre~
vious values of the depth of the boundary, when compared with
the exact solution, is illustrated in the figure. As can be
seen, the results compare favorably for most of the load range
considered. The maximum divergence occurs in the vicinity of
the collapse load and is about 7 percent.

Results are also shown in Fig. 6 for the cantilevered
beam for the case of strain hardening material behavior. These
results, shown as the dotted curve, are compared with the cor-
responding results obtained using elastic-ideally plastic be-
bavior., The closeness of results for strain hardening and
perfectly plastic behavior can be attributed to the use of
Ramberg~0sgood strain bardening parameters chosen to ap-

proximate the elastic-ideally plastic stress=-strain curve.
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The slope of the load-deflection curve for strain hardening
behavior illustrates that the beam still possesses some stiff-
ness beyond the theoretical collapse load predicted by as-
suming perfectly plastic behavior.

Figure 7 illustrates the application of the procedure
to a simply supported beam subjected to combined bending and
axial loads. As previously discussed in Section III, the
analysis for this problem requires the introduction of an
initial stress stiffness matrix to account for the effects of
the membrane load on the bending stiffness. The determination
of the pesition of the elastic-plastic boundary relative to
both the upper and lower surfaces is also required for this
analysis. Results have been obtained for cases in
which a uniform lateral load acts in conjunction with a con-
stant tensile or compressive axial load, indicated in the
figure by T = +1000 and T = -1000, respectively. These
results are compared with the case of pure bending, indicated
as T = 0., As seen in the figure, the effect of the axial
compressive load is to reduce the stiffness of the structure, and
the tensile load increases the stiffness, when compared to the
case of pure bending. A solution to this problem by using a
continuum analysis similar to the one developed for pure bend-

ing in the plartic range does not appear to be available for




comparison. For the case of the compressive axial load, the
lateral load was incremented to a value that resulted in the
failure of the structure. This failure is indicated in Fig. 7
by the near vertical slope of the load-deflection curve. It
should be noted that, for this problem, it was not necessary to
develop a completely plastic cross section for collapse to oc-
cur. The reduction of the stiffness, caused by the axial com-
pressive load and the progression of the elastic-plastic bound-
ary through only a portion of the thickness, was sufficient to
cause failure. This type of failure is associated with plastic
buckling rataer than the formation of a mechanism.

Application of the procedure for pure bending has been made
to a simply supported, uniformly loaded, square plate. Using a
36 element idealization to represent the quarter panel, load
versus central deflection curves for this structure, assuuning
elastic-ideally plastic and elastic-strain hardening material
behavior, bave been determined and are shown in Fig. 8. Once
again, as in the case of the beam, the proximity of results for
both types of material behavior is attributable to the choice of
strain hardening parameters that approximate elastic-ideally
plastic material behavior.

The collapse load for this structure, determined by assumirng

elastic-ideally plastic material behavior, is the value of the

load at which the pattern of fully plastic elements is such that
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the structure becomes a mechanism. The pattern of development

of the plastic region in the plane of the plate, and the pro-
gression of the elastic-plastic boundary through the thickness

of the plate, is shown in Figs. 9a and 9b, respectively. 1In

Fig. 9a the cross-hatched area represents those regions of the
plate in which plasticity has developed to some degree, but ex-
tends through less than 80 percent of the cross section. The
shaded area represents those regions in which plasticity extends
through more than 80 percent of the thickness. A consideration
of the latter region as being fully plastic leads to the develop-
ment of a mechanism of collapse formed alcng the diagonals of the
square plate, as shown in Fig. 9a. As in the case of the beam,
this criterion is necessary because the determination of the depth
of the elasti:-plastic boundary on the basis of the total strains,
cannot lead to the development of a fully plastic section.

The pattern »f development of the plastic region in a narrow
rectangular plate (n=0.3) is shown in Figs. 10a-10c, respec~
tively. In Fig. 10a the 80 percent criterion was once again
used to determine the pattern of fully plastic sections in forming
the collapse mechanism. From this figure it is evident that the
sections along the collapse pattern do not all lie on the diagonals
of the plate.

A comparison of available upper bound solutions for the load

carrying capacities of rectangular plates of various aspect ratios




is shown in Fig. 11. The solid curve represents the solution
(Ref. 11) obtained using the von Mises yield criterion in conjunc~
tion with assumed collapse pattern (1), shown in the figure. The
dotted curve, obtained from Ref. 12, represents the upper bound
solution obtained using the Tresca yield condition in conjunction
with assumed collapse pattern (2). Results from the finite ele-
ment analysls are represented by the solid circles. The finite
element results indicate that the displacement pattern (2) pro-
vides a more accurate revresentation of the collapse mechanism
than does pattern {1). An upper bound solution using the second
displacement pattern iﬁ conjunction with the von Mises yield con-
dition is shown as the dashed curve in Fig. 11. The results from
the present analysis compare favorably with this latter solution
and are slighily below it except for extreﬁely low aspect ratios.
For such narrow plates, the use of the 80 percent criterion in
conjunction with the calculation. of the depth of the elastic-
plastic boundary from the total strain distribution of the pre-

vicus step is not adequate. A relaxation of the 80 percent cri-

terion, based on a ~areful examination of the load deflection his-

tory, appears to be warranted. 1In addition, a possible alternative

might be the incorporation of an iterative procedure¢ in the method
of solutionm.
To illustrate the procedure associated with geometric non-

linearity and combined material and geometric nonlinearity, a
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simply supported, restrained beam, subjected to a uniform trans-
verse load, is considered. Load versus central deflection curves,
obtained for purely elastic and for elastic-ideally plastic mate-
rial behavior, are shown in Fig. 12a. The curve for the elastic
case is based both on a finite element analysis and an exact so-
lution from Ref. 13. Load versus deflection curves, for plastic
behavior, are presented for idealizations involving 6, 12, and
24 elements for cne-half of the beam. Differences in the results
for these idealizations only appear after the end sections at the
suppccts become fully plastic. Beyond the value of load at which
this occurs, deflections increase quite rapidly, and collapse oc-
curs shortly thereafter with the development of another fully
plastic cross section. The counterbalancing effect of geometric
and material nonlinear?! . is vividly depicted in Fig. 12a, where
it i> seen that there is a region of the load-deflection curve
which is very nearly linear.

i igure 12b illustrates the growth of the plcctic regions of
the restrained beam. The dottes lin2 at P = 10.74 kips indicates
a jump in the representation oi the plastic region when the end
scction becomes fully plastic.

The load-deflection history of a circular arch subjected to
a concentrated load is shown in Fig. 13. The elastic buckling
load compares favcrably with that obtained in Ref. 5. Load versus

center deflection curves, obtained by assuming elastic-ideally
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plastic material behavior, are shown for two values of yield
stress. The onset of collapse for this structure is appreciably
hastened with the introduction of plasticity. This is attribut-
able to the reduction of the stiffness of the structure resulting
from the effects of physical nonlinearity. For this structure
the effects of both tvpes of nonlinearity are additive. As in
the case of the uniformly loaded beam subjected to a constant
axial compressive load, the development of a fully plastic cross
section was not necessary for collapse to occur.

Figure 14 illustrates the load-deflection histories of the
same arch as that used in Fig. 13, now subjected to a uniform
load distribution. Once again it is seen that the effect of
plasticity considerably reduces the collapse load of the struc-
ture from its elastic buckling load.

V. SUMMARY AND CONCLUSIONS

A finite element method that can account for material non-
linearity, alone, or in combination witli geometrically nonlinear
behavior, is presented for the out-of-plane bending analysis of
structures. The initial strain concept is introduced into the
finite 2lement analysis, formulated within the framework of the
direct stiffness method, to account for the effects of plastic-
ity. These effects are introduced into the analysis by means

of a fictitious load vector to be combined with the actual
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applied load. Thus, the method of analysi: can be readily in-

corporated into existing finite element procedures.
i Application of the method, illustrating the plastic be=-
havior of typical structures under pure bending and bending in
combination with applied axial loads, is made to simple struc-
tures and results presented. These results are compared with
results from analytical solutions, where possible, for beam and
plate structures. Good correlation is indicated for the load-
deflection characteristics of these structures as well as for
the prediction of plastic collapse loads. In additiom, when
compressive membrane stresses are present, the present proce-
dure is capable of predicting failure resulting from a combina-
tion of plastic collapse and buckling. The correlation of re-
sults and the numerical stability of the procedure as applied
to the sample problems substantiates the assumptions made con=-
: } cerning the form of the elastic-plastic boundary and the dis-
tribution of the plastic strain within each element, in addition

to the use of the predictor form of the solution procedure.

Since the phenomenon of plastic deformation may lead to

large displacements and rotations, the treatment of effects

ik stk

arising from geometric nonlinearity assumes particular sig-
nificance in the solution of many important problems. Con-

sequently, the plastic bending analysis was combined with a
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method capable of accounting for geometrically nonlinear be-

i havior. This combined procedure was applied to a restrained

f beam and a simply suppprted circular arch. In the beam, the
effects of geometric nonlinearity act couuter to the reduc-
tion of stiffness caused by the progressive development of
plasticity. Failure of this structure occurs only after the
development of fully plastic cross sections. For the circular
arch, the effects of both types of nonlinearity are comple-

mentary, and failure occurs as a plastic buckling phenomenon.
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APPENDIX A

INITIAL STRAIN STIFFNESS MATRICES FOR BFAM FINITE ELEMENTS

The initial strain stiffness matrices for a beam element in
pure bending, and for combined bending and membrane loading, are
derived on the basis of the assumptions shown in Figs. 1 and 2,
and are g;ven in integral form in Eq. (10).

The matrix equation defining the fictitious nodal restoring
forces in terms of the initial strain stiffness matrix is shown

below for the pure bending of a beam with a rectangular cross

section,
PZ cl/ﬂ CZ/E
i
M. c c €.
i 3 4 0i
_EL “ (57 &% } (a-1)
sz t3 cl/ﬂ -c2/£ er 1 0
MB c5 c6 J
where
-— — 2 — —
. - (zj - z:) . cz _ zl(t + zl)
1 20 2
p— — 2 -— -— -— — ——
) 9(21 - zi) T (zj EL?(ZE; + t) _ tz . zi(t + z!)
“9 20 2 2
- - 2 -— p— - - -
= d= (zj - zi) ) (;j - zi)(222:+ t) . t2 i zi(t + zi)
3 60 12 2
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z; - zy)? (z; - z) (22 + ©)

4 = 10 T 12

C

5 15 12
7z -z 5(zy - 7;) (22 + t)
e = 20 p: 12

and Pz and M represent the fictitious restoring force in the

lateral direction and moment, respectively.

;(t+;)

- t°+-

2

——

For this element, all

z's are determined with respect to the median surface.

quantities appearing in Eq. (A-1) are defined in Fig. 1.

The corresponding relation for the case of combined bending

and membrane stresses is shown below:

P r e e
zi 11 12
x *

M, kyy Ky
k* k*

Pxi 31 32
= '%13 " K

sz 2%t 11 12
£ 3 *

" k51 K5y
* x

ij | =kg;  "Kqp
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where

Ky, = - (13/40)c, + (H/4)e,

k{z = - (93/40)ey - (32/4)c2 - (b/b)cy

Ky = - (13140 c, + (i/8)cq

#IA - - (@83/40)c, - (P/8)eg - (Ulb)eq
K, = (14/1200¢) + (Br2sye, + (Plbyey
Ky, = - 14120y, - (P/28)c,

Kyq = (4/120)c, + (£7/26)e5 + (42 14)cg
Ky, = - (14120)¢, - (2124)cq

Ky = - (£/8)c, - (32%/8) cg

Ky, = = (l0ey - (3£%/8) cg

Ky, = (£2/8)cq + (3:%/8)cy

Ky, = (P/8)cg + (342/8)ey,
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Ky = - 4/30)¢, = (P/21)e,
ks, = = (744/40)¢; - (563/24)cy = (4 /4)e,
Key = = (1*/30)c, - (/20 e
kg, = = (714/40)c,, - (583 /26)eg - (P /4)eq

and

=(ZU-Z”)2/22

o j i
cpm - R e - Y
c3=-;g(3t--z-i

PR
NS 7
cs = (Z;‘ - 23)(e - 22) /4
o= 2?4 ek T
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The terms, Px and Px ,» represent the ficiitious restoring
i =
forces in the axial direction. Here all 2z's are measured with
respect to the upper surface of the beam. All other quantities

appearing in Eq. (A-2) are defined in Fig. 2.
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APPENDIX B

INITIAL STRAIN STIFFNESS MATRIX FOR RECTANGULAR PLATE ELEMENT

The initial strain stiffness matrix for a rectangular plate
element in pure bending is derived on the basis of the assumptions

shown in Fig. 3, and defined in integral form in Eq. (10).

N

:
lel
M.,./a [ ¢ k
x11 x11
M_11/b - | 11
P
L Txyll
Peo1 €x21
: . el | Bl e L. . FalET e
\ - ) 3 2 >J . : 150
P (l-v) . €
212 (16x12)  (12x12) | x12
3 (B-1)
P22 €x22
M,,/a €y22
x22
. vp
My22/b L "y a2 ]
\MxyZZ/ab,

Here Pz and the M's represent the fictitious restoring

force in the lateral direction and fictitious moments, respectively.
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The matrix [~ G ~] is a diagonally partitioned array with 3 x 3

submatrices given by:

b v b 0
a a
a a

v b 5 0
0 0 l=-v

The coefficients of L(i,j) are given on the following pages,

e.g.,

L(1,1) = (-7/20)¢2e2) + (4/15)tz), + (1/12)tz,, + (0)tz,,

- -2 -2 -2
+ (0)tz,, + (27/140)z7; + (39/1400)z7, + (~3/140)z5,

&l i e T =
+ (-13/4200)1.22 + (33/350)21;212 + (3/70)211221

+ (11/1050)Z, 2,

+ (11/1050)211222

+ (13/2100)z,2,, + (-11/1050)Z,;2,,

As in the case of pure bending of a beam all z's are mea-
sured with respect to the median surface. All other quantities

appearing in Eq. (B-1) are defined in Fig. 3.

61




COEFFICIENTS OF L(1,J) FOR USE IN FORMING INITIAL STRAIN MATRIX

(1,1) 11,2) {1:3) l}‘“!'! _ __“mm_.ﬂ..u_‘_.
¢ ¢ Tos2 -1/ -1/ 20 1/ [Y -
1+ 411 4 15 & 15 -9/ 100 o7 1 17 12 -3/ %0
I = ()12 1/ 12 o/ 1 -3/ 50 o/ 1 ors 1 -1/ 28
T+ 21 0/ 1 17 12 -3/ %0 -4/ 15 17 1% -9/ 100
1T = (22 o/ 1 0/ 1 -1/ 25 -1/ 12 0/ 1 -3/ %9
Lilee2 27/ 140 27/ 140 -1/ 25 3/ 140 337 700 -1/ s0
Lic®®2 397 1400 -3/ 180 -1/ 50 13/ a200 =117 210 -1/ 1"
PILLY s =3/ 140 39/ 1400 -1/ sn =27/ 140 9/ 280 -17 25
PPPLL Y] -13/ 4200 =13/ 4200 =17 100 -39/ 1400 -1/ 280 -1/ %0
YV VS ¥ 33/ 359 3/ 10 -1/ 2% 117 1050 117 1080 -1/ 89
ll o+ (21 3 70 33/ 3% -1/ 25 -3/ 70 397 700 -1/ 28
cdl * (22 11/ 1050 117 10%0 -1/ S0 =11/ 10%0 137 2100 -1/ 80
cad * L2) 11/ 1050 117 1050 -1/ 50 =117 10%0 137 2300 -1/ 50
e * (22 13/ 2100 =11/ 10% -1/ % =137 2130 -13/7 2100 -1/ sn
il * (22 =11/ 1050 13/ 2100 -1/ S0 -33/ 3%0 1/ 160 -17 28
(1,7) 153) (1,9) (1,1 11,12)
r—"ﬂ'l?—¢ _17"1!!'—- _'47""'26 17 L3 k74 J*l__% 17 Y
T e cll 17 12 0/ 1 -3/ %0 0/ 1 o/ 1 -17 2%
T * (12 1/ 15 -4/ 15 -9/ 120 o/ 1 -1/ 12 -3/ sp
T+ 21 0/ 1 0/ 1 -1/ 25 -1/ 12 LY 1 -3/ 89
T ® (22 ors 1 -1/ 12 -3/ 50 -1/ 15 -1/ 15 -a7 100
Lilee? 33/ 7100 3/ 140 -1/ S0 117 2130 117 2100 -1/ 199
La2ne 9/ 280 =27/ 140 -17 2% 1/ 280 -33/ 7100 -1/ sn
Liave2 -11/ 2100 13/ 4200 -1/ 100 =33/ 700 17 280 -1/ sn
Lel®®? -1/ 280 -39/ 1400 -1/ 50 -9/ 280 -9/ 289 -17 25
«bl * (12 397 7100 -3/ 70 -1/ 2% 137 2100 =117 1050 -1/ 50
ll s 21 117 1050 11/ 1050 -1/ 50 -11/ 1050 137 2100 -1/ sn
il * (22 137 2100 -117 1050 -1/ s2 =137 2120 -137 2100 -1/ %9
ihe * 121 137 2100 =11/ 1050 -1/ %0 -13/ 2100 -13/ 2100 -17 %0
Lic * (22 1/ 140 =33/ 350 -1/ 25 -1/ 140 =397 700 -17 2%
Ll * (22 -13/ 2100 =137 21Mm -1/ S0 -39/ 700 -1/ 140 -17 28
(241) { (2,3 { ]
¢ ¥ 1veg =17 -1;"'“70— = -—ﬂ-l—"'—, %
T s (11 2/ 9 17 130 3/ 100 2/ &S 1/ &0 =17 2nn
T = (12 s/ 12 o/ 1 1/ %0 i7 12 o/ 1 -1/ 1300
T+ c21 27 &S 1/ 60 -1/ 200 -2/ &S 1/ 60 -17 so
T e 222 7 12 o/ 1 -1/ 300 L VA F o/ 1 -1/ 718
Liles2 /7 20 3/ 140 1/ S0 17 38 3/ 3%0 0/ 1
PIVLL Y] 13/ 600 -1/ 420 1/ 100 13/ 3150 -1/ 1350 0/ 1
PTLL ] 1/ 140 9/ 1400 -1/ 300 -3/ 710 3/ 1380 -1/ 1n0
VPPLL V] 13712600 =17 1400 - -1/ 600 =13/ 2100 -17 1080 -17 200
(1l o+ (12 117 150 17 210 1/ %0 22/ 15718 17 s2% os 1
il * (21 27 3% 3/ 178 LY} 1 17 10 9/ 100 -1/ 181
Ciio* (22 227 1575 17 525 o/ 1 117 3150 1/ 700 -17 310
Lle ® ¢21 22/ 15715 1/ 528 os 1 117 3150 17 7100 -17 399
Li2 * (22 137 1575 -1/ 52% 0/ 1 13/ 6300 -1/ 100 -17 390
el = 222 117 3150 17 100 -1/ 300 -117 %25% 17 S2% -1/ 100
| { 4 {2:2) “ﬁm‘—%%
[ ¢ TesZ B 1 =1/ 2%
T ¢£11 57 T2 o/ 1 17/ 50 17 72 0/ 1 -1/ 3n0
T e (12 17 18 -1/ 30 3/ 100 17 90 -1/ &0 -1/ 200
T s (21 7 12 o/ 1 -1/ 300 -17 72 0/ 1 -1/ 718
T e (22 1/ 90 -1/ 60 -1/ 200 -1/ 90 -1/ 0 -1/ S0
Lliee2 117 38) 17 420 17 100 117 1578 17 13s¢0 kY4 1
cleee? 1/ 40 -3/ 140 1/ 50 17 210 -3/ 3% o/ 1
leloe2 117 6300 17 1400 -1/ 600 =117 1050 17 1080 -1/ 209
Lec*®2 17 840 =97 1400 -1/ 300 -1/ 140 -3/ 350 -1/ 100
il ¢ ()12 137 300 -1/ 210 1/ S0 137 1578 -17 S2% o/ 1
L1l ¢ (21 227 15718 1/ 525 o/ 1 11/ 3150 17 7100 -1/ 300
41l * (22 137 1575 -17 528 0/ 1 13/ 6300 -1/ 7T00 -1/ 300
w2 * (21 137 15718 -1/ 528 o/ 1 13/ 300 -1/ 700 =17 30n
Ll ¢ (22 1/ 105 -3/ 175 0/ 1 1/ 420 -9/ 700 -1/ 1%0
el ® (22 137 6300 -1/ 700 =17 300 =137 1050 -1/ %28 -1/ 100
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COEFFICIENTS OF L(1,J) FOR USE IN FCRMING INITIAL STRAIN MATRIX

{3,1) (3:¢2) {3,3) I;." u.:ll - %
« * Je82 -17 -7 20 =17 !: = .
T s (11 1/ 30 2/ 9 3/ 100 [ J4 1 L14 T2 17 50
T = (12 1/ 69 2/ 45 -1/ 200 or 1 1 72 =17 30N
V21 u/ 1 S/ 72 1/ S0 -1/ 30 1 18 3/ 109
T & (22 o/ 1 1/ 72 -1/ 300 -1/ 60 1/ 9 -1/ 200
chive2 3/ 140 Vv 20 1/ S0 17 420 117 300 17 100
Ligve 9/ 1400 1/ 140 -1/ 30n 17 1400 117 6300 -1/ 800
Leiv®? -1/ &20 137 &00 17 1n0 =3/ 140 1/ on 17 59
Lecw®? -1/ 1400 13712600 -1/ e&00 =97 1400 1/ 840 -1/ 300
Lil * (12 3/ 115 2/ 35 0/ 1 17 %28 22/ 15718 (04 1
il % (21 1/ 210 11/ 150 1/ 50 -1/ 210 13/ 300 17 S0
el * 22 17 525 227 157% o/ 1 -17 852% 137 1578 0/ 1
Lle % 21 1/ 525 22/ 15715 0/ 1 -1/ 525 137 1578 LT 1
Cie ¢ (22 1/ 100 117 3150 -1/ 3N -17 790 13/ &30n =17 330
dea ® 22 -1/ 525 137 157¢ 9/ 1 -3/ 17% 17 10% 0/ 1
{3.7) {3,8) (3,9) 13,10) {13.11) {3,12)
< * [e82 -1/ 30 o/ 1 1/ 26 17 30 0/ 1 17 24
I * (1] 1/ 60 2/ 45 -1/ 200 o/ 1 17/ T2 -1/ 300
T & 412 1/ 60 -2/ 45 -1/ 50 ors 1 -1/ T2 -1/ 14 ]
1 * (21 o/ 1 1/ 72 -1/ 300 -1/ 60 1/ 90 -1/ 2M
T e (22 o/ 1 -1/ T2 -1/ ™ -1/ [ 14 -1/ 90 -1/ 50
clles2 3/ 1350 1/ 35 0/ 1 17 1056 117 1575 ny/ 1
Laiee? 3/ 350 -3/ 70 -1/ 100 17 10%0 =117 1050 -1/ 200
Lel*®? -1/ 1050 137 3159 0/ 1 -3/ 1350 17 210 o/ 1
Leiw® -1/ 1050 =137 2100 -1/ 200 -3/ 350 =17 140 -1/ 100
Cha % ()2 9/ 100 1/ 70 -1/ 150 1/ 7100 117 315n =17 3InnH
dad * (21 17 525 22/ 15715 0/ 1 -1/ 52% 137 1571% o/ 1
tal * 222 17 700 11/ 3150 -1/ 300 -1/ 700 13/ 6300 -1/ 1300
dle * (2] 1/ 7100 11/ 3150 -1/ 300 -1/ 700 13/ e300 -1/ 3In0
Lac * 22 1/ 528 =11/ 525 =17 100 -1/ 528 =137 1050 -1/ 110
el * (22 -1/ 7100 137 6300 -1/ 300 -9/ 700 17 420 -1/ 1%0
(6,]1) (4,2) (4,3) (&, (4,5) {
ERERLLT] =17 20 =1/ 20 VARYD olel =1/ 30 -1%"'{1‘—
T+ (11 1/ 36 1/ i -1/ 100 1/ 180 v T2 17 640N
T » (12 i/ 12 17 1#ar 1/ 600 17 360 17 3e0 =17 3600
T = 2] 1/ 180 1/ 72 17 600 -17 180 17 72 1/ 15n
T & (22 17 360 1/ 360 =17 3600 -1/ 380 17 360 =17 909
Laree? 1/ 60 1/ 60 -1/ 100 17 318 17 150 n/ 1
AV ri 17 200 17 1260 17 600 17 10%0 17 315n LV R |
Leav®2 17 1260 17 200 1/ 600 -1/ 210 1/ 150 17 200
Lecc**2 1/ 4200 1/ «200 =17 3600 -1/ 700 17 3150 =17 12n0
el * (12 1/ 75 2/ IS o/ 1 4/ 1578 &/ 1575 or 1
il o (21 2/ 315 1/ 75 kI 1 17 630 17 100 1/ 300
Cad % (22 4/ 15715 4/ 15715 0/ 1 17 1578 17 8528 o/ 1
Lo * 21 &/ 15715 4/ 1575 o/ 1 1/ 1578 1/ %25 o/ 1
Lhc * (22 1/ 525 17 1575 0/ 1 1/ 210 17 2100 =17 1800
el » 22 1/ 15715 i/ 525 0/ 1 -2/ 925 4/ 1578 0/ 1
{6:7) (4,8) (6,9) (4,10) {6,11) lm_
< ¢ Tesg -1/ 30 o/ 1 =17 144 (J4 1 07 1 17 166
T s (1] ¥4 72 1/ 180 1/ 600 17 360 17 360 =17 3600
T = (12 )/ T2 -1/ 180 17 150 17 360 -1/ 360 =17 900
T & (2] 1/ 360 1/ 360 =1/ 3600 -1/ 30 1/ 360 =17 -9%0
T e 22 17 360 -1/ 360 -1/ 900 -1/ 30 -1/ 360 -17 228
Lliee2 1/ 150 17 315 o/ 1 27 15718 27 1578 o/ 1
Lices 17 150 -1/ 210 1/ 200 2/ 1578 -1/ 52% o/ 1
deca® 17 3150 17 1050 0/ 1 -1/ %28 2/ 15718 0/ 1
Lec**2 17 3150 -1/ 700 =17 1200 -1/ 9528 -1/ 525 =17 &00
11 % ¢12 1/ 100 1/ &30 17 300 1/ 8528 17 1578 o7 1
Caa * (2] 4/ 1575 4/ 1578 o/ 1 17 1578 17 528 o’ 1
dad ® 22 1/ 528 17 1575 o/ 1 1/ 2100 1/ 2100 -1/ 1800
Lhe * (2] 17 52% 17 15715 A/ 1 17 2100 i/ 2100 -1/ 1890
(a2 * (22 4/ 1575 -2/ 525 0/ 1 17 1578 -1/ 3%0 -1/ 600
lel * (22 17 2100 1/ 2100 =1/ 1800 -1/ 3%0 17 1578 =17 e&00
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COEFFICIENTS OF L{I,J) FOR USE IN FORMING INITIAL STRAIN MATRIX

(5,1) (5,2) _(5,3) (5,4) ';.ﬂ '__B,..u_'_
< ¥ jeeg 7 - =17 [ =77 4 - -
T (1l -4/ 15 v 15 97 190 o/ 1 17 12 3/ %0
Te (12 -1/ 12 0/ 1 3/ %0 0/ 1 o/ 1 17 28
T e (21 o/ 1 17 12 3/ se &/ 18 & 1% 9/ 1n0
T e (22 0/ 1 o/ 1 1/ 28 17 12 o/ 1 7 S0
Llave =21/ 140 9/ 280 17 25 -3/ 140 39/ 1400 17 %0
La2¢92 -39/ 1400 -1/ 280 1/ S0 =137 4200 =13/ 4200 1/ 100
'PILL Y 3/ 140 33/ 7100 1/ %0 217 140 217 1e0 17 28
FPLLY 137 4200 =11/ 2100 1/ 100 39/ 1400 =3/ 140 1/ %o
Al % (12 =33/ 350 1/ 140 17 25 =11/ 1050 13/ 2100 1/ sn
il o+ (21 -3/ 10 39/ 100 1/ 25 3/ 10 33 350 17 28
Cal v (22 =11/ 1050 13/ 2100 1/ %0 11/ 10%0 117 1050 1/ %0
iz * (21 -117 1050 137 2i00 17 so 11/ 1050 117 1050 17 %0
ie (22 =13/ 2100 =13/ 2100 1/ %0 13/ 2100 =11/ 1050 17 %
cel * (22 117 1050 11/ 1050 17 s 33/ 13%0 ¥ 10 17 28
(5,7) (5,8 (5,9) _(5:10 ‘;.nh_%
<« * 1080 37 ﬂ__ﬂ'f'-'iﬂ =17 T -3/ -
Te (1l -1/ 12 0/ 1 3/ %0 S T 1 o/ 1 v 2s
T = (12 -1/ 15 -1/ 15 9/ 100 os 1 -1/ 12 3 50
T» (21 0/ 1 o/ 1 7 25 17 12 o/ 1 37 %
T s (22 o/ 1 -1/ 12 3/ se 17 18 -4/ 18 9/ 100
Clive? =33/ 700 1/ 280 17 %o =117 2100 13/ 4200 1/ 1no
PYPLLY: -9/ 280 -9/ 280 17 25 -17 260 =39/ 1400 17 %o
Lean®? 11/ 2100 11/ 2100 17 100 33/ v00 3/ 140 17 %o
lect®? 1/ 280 =33/ 700 1/ 5o 9/ 280 =27/ 140 17 28
Lal % (12 -39/ 700 -1/ 140 1/ 25 =137 2100 =13/ 2100 1/ %o
il o (21 -1/ 1050 13/ 2100 1/ S0 117 1050 117 1080 1/ so
LiL * (22 =13/ 2100 =13/ 2100 1/ S0 137 2100 =11/ 1050 17 so
tac % (21 =13/ 2100 =13/ 2100 17 %0 137 2100 =117 1050 17 sn
Lal * (22 -1/ 140 -39/ 700 17 25 1/ 140 =33/ 350 17 25
Ll * 22 137 2100 =117 1050 1/ so 397 700 -3/ 710 17 25
PRI (1) 07 I 17 30 17 26 -1 5
1 (11 2/ &S -1/ 69 -1/ % =2/ 48 -17 &0 -1/ 290
T » (12 | WA F] 0/ 1 -1/ 715 VA § ors 1 -1/ 300
1+ 21 =2/ 45 -1/ 60 -1/ 200 -2/ 9 -1/ 13n 3/ 100
T * (22 -1/ 12 o/ 1 -1/ 309 -5/ 12 o/ 1 1/ $9
Larsw 3/ 710 =3/ 350 -1/ 1600 =1/ 140 -9/ 1400 -17 300
PRVLLY! 13/ 2100 1/ 1050 -1/ 200 -13/12600 1/ 1400 -1 #no
ceive -1/ 35 -3/ 350 0/ 1 -3/ 20 =3/ 140 17 sn
Leeve? =137 3150 1/ 1050 o/ 1 =13/ 600 17 420 1/ 100
i o* (12 11/ 525 -1/ 525% -1/ 100 =11/ 31%0 -1/ 7100 -1/ 3nn
(il v 21 -1/ 170 -9/ 100 -1/ 1% =27 38 -3/ 178 o7 1
dil % (22 =11/ 3150 -1/ 700 -1/ 300 =22/ 1518 -1/ %25 0/ 1
Lac % (21 =11/ 3150 -1/ 100 -1/ 300 =22/ 1578 -1/ %28 (7 1
Lic * c22 -13/ 6300 1/ 700 -1/ 1300 -13/ 157% 1/ %25 0/ 1
ldes ® (22 -22/ 1575 -1/ 525 0/ 1 =117 150 -1/ 210 1/ so
16,7) _16:8) (659) (6.1 _H,,u#_
< ® TesZ 07 1 =1/ 30 17 2t 3/ - -1/ 2%
1% cll 1/ 12 0/ 1 -1/ 15 -1/ 12 0/ 1 -1/ 13nn
1+ (12 1/ 90 1/ 60 -1/ %0 -1/ 90 17 &0 -1/ 2no
T s (21 -1/ 12 0/ 1 -1/ 300 -5/ 12 o/ 1 17 sn
1% .22 -1/ 90 1/ 60 -1/ 200 -1/ 18 1/ 3n 3/ 100
clles 117 1050 -1/ 1050 -1/ 200 =11/ 6300 =1/ 1400 -1/ 600
Llce®? 1/ 140 3/ 350 -1/ 100 -1/ 840 9/ 1400 -1/ 1309
Lalveg =11/ 1575 -1/ 1050 n/ 1 =11/ 130N =1/ 420 17 100
PPLLY: -1/ 210 3/ 350 ny/ 1 =1/ 40 3/ 140 1/ %9
Las % ()2 13/ 1050 1/ 525 -1/ 100 -13/ 6300 1/ 7100 -17 309
il » (21 -11/ 3150 -1/ 700 =1/ 300 =22/ 1571% -1/ %28 0/ 1
il ® 022 =13/ 6300 1/ 10 -1/ 3np =137 1578 1/ S2% o/ 1
Lz » (21 =13/ 5300 1/ 7109 =1/ 309 =13/ 1578 1/ 528 o/ 1
Lac * (22 -1/ 420 9/ 700 -1/ 150 -1/ 108% 3/ 178 n/ 1
el % 22 =13/ 1575 17 525 0/ 1 =13/ 300 1/ 210 1/ %o
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COEFFICIENTS OF L(1,J) FOR USE

IN FORMING INITIAL STRAIN MATRIX

(741) (742) (7,3) (7:4) ”.2] ’__H...n.’__
< ¢ 1887 7 20 ~37 20 \ ¥4 28 =17 - [
T s ¢11 -1/ 30 1 ¥4 18 -3/ 100 0/ 1 14 T2 -1/ 50
T e (12 -1/ 60 1 ¥4 90 17 200 o/ 1 17 72 17 300
T s (2] o/ 1 S/ T2 -1/ 50 1/ 30 2/ 9 -3/ 100
T e (22 o/ 1 | V4 72 17 300 1/ 60 t 44 48 17 290
Lllee2 =3/ 140 | V) 40 -1/ 50 -1/ 420 13/ 600 =17 109
Ligen2 -9/ 1400 1/ 840 1/ 300 =1/ 1400 13712600 17 enn
deloe 17 420 117 300 =1/ 100 3/ 140 k14 20 -1/ &n
Lect®2 1/ 1400 117 6300 17 e&00 9/ 1400 17 140 17 1300
il ¢ ()2 -3/ 1718 17 108 o/ 1 -1/ 528 137 1578 n/ 1
cll o+ 221 -1/ 210 13/ 30) -1/ 50 1/ 210 117 15" -1/ sn
11 » (22 -1/ 525 137 15718 0/ 1 1/ %28 227 15718 o/ 1
lie » (21 -1/ %25 137 1578 0/ 1 17 %28 22/ 15718 n/ 1
tle ®* (22 -1/ 700 13/ 6300 17 300 17 7% 117 31%0 17 3Ino
L * (22 1/ 8525 22/ 15718 0/ 1 ¥ 118 2/ 38 o/ 1
(7,7) ill!, (7:9) ({7;1 {72110 122121
LR LY | V4 / 1 =17 26 -1/ o/ 1 -1/ 26
T & <11 -1/ 60 1/ 90 1/ 200 (J4 1 1/ T2 1/ 300
T e® (12 -1/ 6n -1/ 90 1/ se (J 1 -1/ 72 1/ 78
T e (21 0/ 1 1/ T2 1/ 300 1/ 60 2/ 45 17 200
T e 22 0/ 1 -1/ T2 1/ 7 1/ 60 -2/ 45 17 o
Llieng -3/ 1350 17 c10 07 1 -1/ 10%0 13/ 31%0 o7 1
Lai*"2 -3/ 350 =17 140 1/ 100 =17 1050 =137 2100 * 17 2nn
leciv®? 17 1050 117 15713 0/ 1 3/ 350 i/ 3s n 1
Lec® 2 1/ 1050 -11/7 1050 1/ 200 3/ 13%0 -3/ m 17 10n
i o (e -9/ 700 1/ 420 1/ 150 -1/ 700 13/ s30° 17 3
a4 » (21 -1/ 525 137 1575 o/ 1 17 8528 22/ 1571% ns 1
Lald * 22 -1/ 7100 137 6300 17 300 17 700 117 3150 17 3Inn
le & (2] -1/ 700 13/ 6300 1/ 300 17 7190 117 315" 17 3Inn
Lic * (22 -1/ 525 =137 1050 1/ 100 17 %28 -11/7 525% 1/ 1nn
ded * (22 17 700 11/ 3150 17 3no 9/ 700 1/ 70 17 18n
£8:4) (8:2) (8,3) {
< ® Tes2 40% 1 17 130 -1/ 148 I’ 20 H 2 " h:
I = (11 1/ 160 -1/ 72 1/ 150 -1/ 180 -1/ T2 17 &nn
Te (12 17 360 -1/ 360 =1/ 900 =17 360 =17 380 -1/ 3400
T s 21 -1/ 180 -1/ T2 1/ 600 -1/ 36 -1/ 3¢ =17 101
T s 222 -1/ 360 -1/ 360 -1/ 3600 -1/ T2 -1/ 180 17 600
cllesg 17 210 -1/ 150 17 anro -1/ 1260 -1/ 200 1/ enn
Lieee2 1/ 700 -1/ 3150 =17 1200 -1/ 4200 =17 4200 -1/ 3I&NH
Leleel -1/ 315 -1/ 1% 0/ 1 -1/ 60 -1/ on =17 1M
Lec*®2 -1/ 1050 -1/ 3150 o/ 1 -1/ 200 -1/ 1260 17 6&nn
2al ¢ (]2 2/ %525 -4/ 1575 o/ 1 =17 1578 -1/ 852% n/s 1
Lal ¢ (21 -1/ 630 -1/ 120 1/ 300 -2/ 319% -17 7 N 1
id % 122 -1/ 1578 -1/ 525 n/ 1 -&/ 1578 -4/ 1578 o7 1
lag » (21 =17 15715 -1/ 525 ny/ 1 -4/ 15718 -4/ 157% ny 1
Lac ® (22 -1/ 2100 =1/ 2100 -1/ 1800 -1/ 825 -1/ 157% 0/ 1
Lel * (22 -4/ 1575 -&/ 1575 o/ 1 -1/ 75 -2/ 31% o7 1
”,n !g,n 18:9) (8,10) (9.11) 1812
< ¢ 1882 1 1 17 164 17/ n!ii 0/ 1 =17 144
T * (11 1/ 360 -1/ 360 -1/ 9S00 =17 360 =1/ 360 =17 3400
T * (12 1/ 360 1/ 360 -1/ 22% =1/ 360 17 35 -1/ 900
T e 21 -1/ 360 -1/ 360 =17 360N -1/ 72 -1/ 180 17 60n
T # (22 -1/ 360 1/ 360 =1/ 900 -1/ T2 1/ 180 1/ 1%0
Lalee2 1/ 8525 -2/ 1575 o/ 1 -1/ 31%0 =17 13590 0/ 1
L1c®e2 1/ %28 17 %525 =1/ 400 -1/ 31%0 1/ 100 -1/ 12n0
(eiv®2 -2/ 157% -2/ 1575 0/ 1 -1/ 1%0 -1/ NS 0/ 1
Lece®2 -2/ 157% 17 525 o/ 1 -1/ 150 17 21n 17 2060
cdl * (]2 1/ 350 =17 1575 -1/ en0 -1/ 2100 -1/ 2100 =17 18nn
il & (2] -1/ 1575 -1/ 525 0/ 1 -4/ 15718 -4/ 1578 0/ 1
Al * (22 -1/ 2100 -1/ 2100 =1/ 1800 -1/ 5258 -1/ 1578 o/ 1
a2 ¢ (21 -1/ 2100 -1/ 2120 -1/ 1800 -1/ %2% -17 1578 LY/ 1
Lie * 22 -1/ 1575 1/ 3% -1/ 600 -4/ 1578 2/ 825 0/ 1
el v 22 -1/ 525 -1/ 1575 0s 1 -1/ 100 =17 637 17 3nn
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COEFFICIENTS OF L(1,J) FOR USE IN FORMING INITIAL STRAIN MATRIX

l’.l! (9,2) (9,3) (9:4) l’.al ﬁ.h
¢ ® Jeng -37 L {4 20 -17 & 37 !’ - [
T = (11 v 15 -4/ 15 9/ 100 0/ 1 -1/ 12 3/ 50
Te* (12 1 ¥4 12 o/ 1 ¥ 50 o/ 1 o/ i 1 23
T * 21 o/ 1 -1/ 12 v S0 -1/ 15 -1/ 1% 9/ 100
T % .22 o/ 1 0/ 1 1/ 25 -1/ 12 o/ 1 v 50
Lasve2 9/ 280 =27/ 140 1/ 23 1/ 280 =33/ 7100 | V) 50
Licve2 33/ 700 3/ 140 17/ 1) 117 2100 117 2100 17 1no
Lilve2 -1/ 280 =39/ 1400 17 50 -9/ 280 -9/ 200 1/ 28
Lec®%2 =117 2100 137 4200 17 100 -33%/ 700 17 280 l) L1
dal % ()2 39/ 700 -3/ 70 1/ 25 137 2100 =117 10%0 17 L]
chas * (21 17 140 =33/ 13150 1/ 25 -1/ 140 =397 700 1/ 25
chi o * (22 13/ 2140 =117 10%0 1/ 50 =137 2100 =137 2100 1/ L1}
cad v 21 137 2100 =117 1050 1/ se =13/ 2100 =137 2100 1 sn
che * (22 117 1050 117 1050 17 52 =117 10%0 137 2100 17 50
del * (22 =137 2100 =13/ 2100 1 S0 -39/ 700 -1/ 140 1/ 2%
—
= (9,7) (9,8) (9,9) (9,10) {9 (9.,12)
e ¥ 1997 =177 20 =17 20 =17 T Y7 20 - -17 [ 3
T = (11 1/ 12 o/ 1 3/ 50 o/ 1 n/ 1 v 2%
T = (12 &/ 15 4/ 15 9/ 100 o/ 1 | ¥4 12 ¥y 50
I e (21 0/ 1 o/ 1 1/ 25 -1/ 12 o/ 1 3 50
T » (22 o7/ 1 | V) 12 v sn -4/ 15 1 15 9/ 100
Lilee2 39/ 1400 -3/ 140 17/ 50 137 4200 =11/ 2100 17 100
LAc*8 27/ 140 277 140 17/ 25 3/ 140 337 700 = 5N
Lca®®? =13/ 4200 =13/ 4200 1/ 100 =39/ 1400 -1/ 280 17 50
Lce®%2 =3/ 140 39/ 1400 1/ 50 =277 140 9/ 2a8n 1/ 25
Cil % (12 337 350 3/ 70 1/ 25 117 1050 117 10%0 17 50
cad * (2l 137 2100 =117 1050 1/ 50 =137 2100 =137 2100 17 50
Lad ¥ 22 117 1050 117 1050 1/ 50 =117 10%0 13/ 2100 1/ 5N
cag * (21 117 1050 117 1C%0 1/ 50 =117 1050 137 2100 17 59
Lad * (22 3 70 33/ 350 1/ 25 -3/ m 397 700 1/ 2%
ecl % (22 =11/ 1050 137 2100 17 50 =337 13%0 17 140 1/ 25

Uy (10,2) (10,3) 0 _Hn,.‘h_
PR [T B 20 17 17 % H“"'L!__% -
Tl 1/ 18 -1/ 30 -3/ 100 1/ 90 -1/ &0 17 209
T+ al2 5/ 12 o/ 1 -1/ 50 17 12 o/ 1 1/ 300
T+ 21 1/ 90 -1/ 60 1/ 200 -1/ 90 -1/ o0 17 %o
s .22 v 12 o/ 1 1/ 300 -1/ 12 ool o7
(iiee2 1/ 40 -3/ 140 -1/ %0 17 210 -3/ 350 or 1
(1cve2 117 300 1/ 420 -1/ 100 117 1578 1/ 1030 or 1
FPICLY: 1/ 840 -9/ 1400 1/ 300 -1/ 140 -3/ 380 17 100
PPPET Y 11/ 6300 1/ 1400 1/ 600 -117 10%0 1/ 1050 17 200
Ll e 212 13/ 300 -1/ 210 -1/ %0 137 1578 -1/ s2% oo
al e 21 1/ 105 -3/ 1715 o7 1 1/ 420 -9/ 700 1/ 1%
al e 22 137 1575 -1/ %28 o7/ 1 137 6300 -1/ 700 17 300
e v 2l 13/ 1575 -1/ 52% o/ 1 13/ 6300 -1/ 700 1/ o
te ¥ (22 22/ 1515 1/ 525 or 1 * 117 3i%0 1/ 700 17 390
el v (22 13/ 6300 -1/ 700 1/ 300 -137 1050 -1/ 828 17 100
(10,7 ity (10:9) (39100 (el 110,121
< % je8g —pr— - 17 8 - =17 26
T sl 5/ 12 o/ 1 -1/ %0 17 12 o7 1 17 300
T2 27 9 1/ 30 -3/ 100 2/ a8 17 e 1/ 200
T el 1/ 12 o/ 1 17 300 -1 12 o7 1 17 718
T e (22 2/ 48 1/ 60 1/ 200 -2/ 4% 17 e 17 %
Cliee2 13/ 600 -1/ 420 -1/ 109 13/ 31%0 -1/ 13%0 or 1
Cagee2 3/ 20 3/ 140 -1/ %0 1/ 38 3/ 3%0 07 1
FPYLLY! 13/12600 -1/ 1400 1/ 600 -13/ 2100 -1/ 1050 17 200
122992 1/ 140 9/ 1400 1/ 300 -3 10 3 380 1/ 100
Giow 12 11/ 150 1/ 219 -1/ %0 22/ 1573 17 %28 57 1
Gl w21 13/ 1575 -1/ 525 ——1% 13/ 6300 -1/ 100 17 300
ell o (22 22/ 1515 1/ s52% o/ 1 117 3150 17 100 1/ 300
e e cal 22/ 1575 1/ 525 or 1 11/ 3150 1/ 100 1/ 300
le v 22 27 38 3/ 178 o/ 1 17 70 9 7100 17 1%9
el v 022 11/ 3150 1/ 700 1/ 300 -117 528 1/ s2s 1/ 100
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COEFFICIENTS OF L(I1,J) FOR USE IN FORMING INITIAL STRAIN MATRIX

(11,1 (11,2) (11,3) {11:4)
rom ami. o 7 7 au— ) v A £ O v ”hu'f_%
1% (11 -1/ 60 2/ a8 =17 %0 0/ 1 17 12 -17 7=
T * (12 -1/ 60 =2/ 45 -1/ 200 0/ 1 VA 7 =1/ 300
T e (21 0/ 1 17 12 -1/ 718 17 &0 1/ 90 -1/ 80
T * (22 o/ 1 -1/ 12 -1/ 300 1/ &0 -1/ 90 -1/ 2m
Lllse 3/ 350 3/ 10 -1/ 100 =17 1080 117 1080 -1/ 200
FRPLLY -3/ 350 -1/ 3% 0/ 1 -1/ 1050 =117 15718 ny 1
Lilee? 17 1050 13/ 2100 -1/ 202 3/ 1850 1/ 140 -1/ 1no
IPPLLY 1/ 1050 =13/ 3150 0/ 1 37 13850 -1/ 210 0/. 1
il o+ 212 -9/ 700 -i/ 710 -1/ 150 -1/ 7100 117 3180 -1/ 300
il s (21 -1/ 525 117 528 =1/ 109 17 528 137 1080 =17 1Mo
Ll o® (22 -1/ 700 =11/ 3150 =17 300 1/ 100 -13/ 6300 -1/ 300
Ll * (21 -1/ 100 =117 3150 -1/ 30¢ 1/ 7100 =13/ 630N =17 307
Lic ® (22 -1/ 525 =22/ 1575 o/ 1 1/ %25 =13/ 1578 0/ 1
lel ® (22 1/ 100 -13/ 6300 -1/ 300 9/ 7100 -1/ 420 -1/ 1850
‘ (11,7) (11,8), (11,9) (11,10) (11:11) 111,12)
=T v TV 720U 20 =17 2% =17 20 37 2f -1/ 24
T % ¢ll -1/ 60 -2/ &5 -1/ 200 0/ 1 -1/ 72 -1/ 300
T (12 =1/ 30 -2/ 9 3/ 100 0/ 1 -5/ 72 17 S0
T e (21 0/ 1 -1/ 712 -1/ 300 1/ 60 -1/ 90 =17 2n0
T e 22 0/ 1 -5/ 12 1/ %0 17 130 -1/ 18 37 10
Lalse? -9/ 1400 -1/ 140 -1/ 300 -1/ 1420 =11/ 6300 -1/ &n0
FIPLL Y -3/ 140 -3/ 20 1/ S0 -1/ 420 =114 300 1/ 180
PILLY] 1/ 1400 -13/12600 -1/ &00 9/ 1400 -1/ 840 <17 3nn
PPPLLY] 1/ 420 -13/ 600 17 100 37 140 -1/ ar 17 s»
cla % (12 -3/ 175 -2/ 3% 0/ 1 -1/ %2% =22/ 15715 o7 1
il ¢ (21 -1/ 100 -11/ 3150 -1/ 1300 1/ 700 -13/ 6300 -1/ 300
1l % (22 -1/ %525 =22/ 157% ny 1 17 s2% -137 1578 ns 1
Lie * (2] -1/ 525 =22/ 1575 0/ 1 1/ %25 137 1578 n/ 1
ile * 22 -1/ 210 -11/ 1%9 1/ s¢ 17 210 -13/ 1300 1/ =n
Lea * L2 1/ %25 -13/ 1575 o/ 1 7 1718 =17 10% ny 1
(12,1) (12,2) (12,3) 112,4) (12,5) (1248)
PRE 2B £ ¥) 17— 30 7 T =17 1<% 7 )| 17 18§
T e (1l -1/ 12 1/ 180 1/ 150 -1/ 380 1/ 360 -17 M
T+ 12 VA 7 -1/ 180 1/ 600 -1/ 1360 -1/ 360 -1/ 1600
1+ (21 -1/ 360 1/ 360 -1/ 900 17 1380 -1/ 360 -17 228
T % (22 -1/ 360 -1/ 360 -1/ 3600 1/ 380 -1/ 380 -1/ 9nn
Llise2 -1/ 150 1/ 210 1/ 200 -2/ 15718 1/ 52% n/ 1
VALY -1/ 150 -1/ 315 0/ 1 -2/ 1578 -2/ 157% 0/ 1
el -1/ 3150 1/ 100 -1/ 1200 1/ 52% 17 %25 =17 &00
FPPLL Y] -1/ 3150 -1/ 1050 o/ 1 1/ 525 -2/ 157158 n/ 1
il % (12 -1/ 100 -1/ 630 1/ 300 -1/ s2% -1/ 1571% LY 1
cll * (21 -4/ 1575 2/ 525 o/ 1 -1/ 1571% 1/ 3%0 -1/ &no
il o* (22 -1/ 525 -1/ 1575 0/ 1 -17 2100 -17 2100 -1/ 1800
il * 21 -1/ 525 -1/ 1575 o/ 1 -1/ 2190 -1/ 2100 -1/ 1891
(ae % Le2 -4/ 1515 -4/ 1575 0/ 1 -1/ 157% -1/ 525 0/ 1
el * 22 -1/ 2100 -1/ 2100 -1/ 1800 1/ 3%0 -1/ 1578 -1/ &nn
(12,7) (12,8) (12,9) { 1] 112:12)
< ¢ Te%] 1/ 20 17 20 Y7 1%¢ %% =17 144
T e (1l -1/ 12 -1/ 180 1/ &m0 -1/ 360 -17 360 -1/ 3600
T * (12 -1/ 36 -1/ 3 -1/ 100 -1/ 180 -1/ 12 17 &3
1 e (21 -1/ 360 -1/ 360 -1/ 3600 17 360 -1/ 3en -1/ 9nn
T e (22 -1/ 180 -1/ 12 1/ 600 1/ 180 -1/ 712 17 181
Lulee? -1/ 200 -1/ 1260 1/ 600 -1/ 1050 -1/ 31%0 ns 1
Lice®2 -1/ &0 -1/ 60 -1/ 100 -1/ 218 -1/ 1%0 ns 1
Leav®? -1/ 4200 -1/ 4200 -1/ 3600 1/ 700 -17 3150 -1/ 120n
L22%%2 -1/ 1260 -1/ 200 1/ &0n 17 210 -1/ 1%0 17 20n
il * Lz -1/ 15 -2/ 315 0/ 1 -4/ 1575 -4/ 1578 0/ 1
(il % 21 -1/ 52% -1/ 15715 o/ 1 -1/ 2100 -1/ 2100 =17 1800
LiL * (22 -4/ 1575 -4/ 1578 LY } -1/ 15718 -17 528 ns 1
Lid % (21 -4/ 1575 -4/ 1575 o/ 1 -17 157% -1/ S%2% LY 1
Lic * (22 -2/ 315 -1/ 15 9/ 1 -1/ 630 -1/ 100 1/ Inn
lel * (22 -1/ 1575 -1/ 525 o/ 1 2/ %2% -4/ 1575 o/ 1
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COEFFICIENTS OF L(1,J) FOR USE IN FORMING INITIAL STRAIN MATRIX

(13,1) { (13,3) (13,4)

e ¢ 1002 —37 iﬂ_ﬁ”'hqf 74 T s /e n—%—ﬁ“ =
T * (il -1/ 15 -1/ 1% -9/ 100 0/ 1 -1/ 12 -3/ 80
1012 -1/ 12 0/ 1 -3/ 80 0/ 1 o/ 1 -1/ 28
T e 21 0/ 1 -1/ 12 -3/ %0 17 18 -4/ 18 -9/ 100
s (22 0/ 1 0/ 1 -1/ 25 17 12 0/ 1 -3/ 80
VLY -9/ 280 -9/ 280 -1/ 2% -1/ 280 =39/ 1400 -1/ 8A
VLT -33/ 100 1/ 200 -1/ %0 =11/ 2100 137 4200 -1/ 100
PPSTLY 1/ 280 =33/ 100 -1/ %0 9 200 =277 140 -1/ 28
YPPLLY] 117 2100 11/ 2100 -1/ 100 33/ 7100 3/ 140 -1/ 80

Gl v dle -39/ 100 -1/ 140 -1/ 28 =13/ 2100 =137 2100 -1/ %0
il e (21 -1/ 140 -39/ 109 -1/ 28 1/ 140 =33/ 13%0 -17 28
(Ll % a2 =13/ 2100 =13/ 2100 -1/ S0 13/ 2100 =117 10%0 -1/ S0
Lag * (21 -13/ 2100 =13/ 2100 -1/ %0 137 2100 =117 1080 -1/ %0
Lle ® (22 -1i/ 1950 13/ 2100 -1/ %0 117 10%0 117 1080 -1/ 8
el ® (22 13/ 2100 =117 10%0 -1/ %0 39/ 700 -3/ 70 -17 28
(13,7) (13,8) (13,9) (13,10) ( 113,12)
r!""l"': . - 17 3 -1 2 - | VA

1% 411 -1/ 12 0/ 1 -3/ %0 o/ 1 o/ 1 -17 28
T e .12 -4/ 18 i 15 -9/ 100 os 1 17 12 -3/ 8n
1+ (21 0/ 1 o/ 1 -1/ 28 17 12 o/ 1 -3/ 80
T e (22 o/ 1 1/ 12 -3/ %0 4 15 o 18 -9/ 100
Lileeg =39/ 1400 <1/ 280 -1/ % =13/ 4200 =137 4230 -17 100
Llces2 =21/ 140 9/ 280 -1/ 2% -3/ 140 397 1400 -1/ sn
PPICLY 137 4200 =117 2100 -1/ 100 39/ 1400 -3/ 140 -1/ 80
PPPLLY 3/ 149 33/ 100 -1/ %0 217 140 277 140 -1/ 28

Las * (12 =33/ 350 1/ 140 -1/ 25 =11/ 10%0 13/ 2100 17 S0
il * 2l =13/ 2100 -13/ 2100 -1/ S0 13/ 2100 -117 105¢ -1/ 80
Lad * (22 -117 1050 13/ 2100 -1/ sp 117 1050 117 19%0 -1/ sn
dle ® (21 -11/7 10%0 137 2100 -1/ 50 117 10%0 117 1080 -1/ 50
Lag ® 022 -3/ 710 39/ 100 -1/ 25 ¥ 70 33/ 13%0 -1/ 28
el ® (22 117 1050 11/ 1050 -1/ %0 33/ 3%0 Y 10 -1/ 2%
(14:1) (16,2) {14,:3) (14,4 %%
PRI LY T 17 3 -1/ % k14 -
T 11 17 90 1/ 60 17 %0 -1/ 90 17 & 1/ 200
T e (12 (WA F o/ 1 7 s MY T o/ 1 17 300
1T e 21 -1/ 90 1/ 60 1/ 200 -1/ 18 17 30 -3 100
1 % (22 -1/ 1 o/ 1 1/ 300 -5/ 712 or 1 -1/ 80
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COEFFICIENTS OF L(1,J) FOR USE IN FORMING

INITIAL STRAIN MATRIX
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