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INTRODUCTION

One "obj;ection" to the use of glass-like polymers as struc-
tural materials is their apparently inconsistent behavior with respect
to failure. Conditions under which fracture may be induced can vary
- widely and, to the casual observer, in an erratic way. Probably the
most disconcerting factor is the ability of polymers to carry ioads
for some time only, the time depending on the magnitude of the load.

In order to better understand the load carrying ability of such
viscoelastic materials, it is necessary to study the growth of cracks
in these materials. The prime difficulty in pursuing such studies
from the continuum mechanics viewpoint, is the fact that many hard
p(_)lymers exhibitl not only viscoelastic properties but also rate or
time sensitive phenomena reminiscent of metal yield. Such phenomena
may be associated either with microstructural decomposition of the
material or with geometric changes due to necking.

Berry [1], Cessna and Sternstein {2] and Kambour [3] as
well as one of the authors {4] have shown that the growth of cracks
in a variety of hard polymers is preceded by considerable ''plastic''
deformations at the tip of the crack and contained in a wedge-like
domain ahead of the cracks, as was observed in mild steel sheets
by Dugdale [5]. It was also shown by Kambour [3] that the "'yielded"
material at the tip of a crack is ""crazed'' and of lower density than
the bulk polymer and furthermore that the deformation properties of
the crazed material are rate sensitive. We shall deal here only with
materials that exhibit crazing phenomena or, to the extent that it is
appropriate in the following discussion, with materials which produce

necking in thin sections during the ''yield'' process. Although the linear
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theory of viscoelasticity is well understood, there is very little quan-
titative knowledge regérding non-linear viscoelasticity or viscoplas-
ticity. However, since we are interested primarily iﬁ investigating the
effect of viscoplasticity rather than be bound to precise, quantitative
predictions, we may be so liberal as to accept the viscoplasticity model
of Crochet [6] which contains most of the qualitative features of what
one would expect of a more complete constitutive formulation. The
Crochet model attempts to generalize the elastic-plastic stress-strain
law by replacing the elastic pcnjtion by a linearly viscoelastic one and
makes the yield stress dependent on the rate of deformation during the
initial, linearly viscoelastic deformation phase. It turns out that even
with this relatively simple material representation the mathematics of
the problem become very complicated, and a more detailed material .
representation would most likely lead to mathematical intractab.iliry.
In this paper we shall consider the growth of a penny-shaped
crack in a viscoplastic material with special emphasis on the time to
start crack pfopagation after load application, as well as on the effect
of load history. The effect of temperature may be incorporated
through time-temperature reduction if the assumption of thermo-
rheological simplicity is justified [7]. Since crack propagation need
not occur initially with a high rate, this work attempts to predict
only a lower bound on failure, since catastrophic fracture may not
occur until a considerable time later [4,8]. Although we shall deal
in part with simple viscoelastic material representation for mathe-
matical convenience, the prime purpose of this paper is to elucidate
the fracture behavior of materials possessing relaxation and creep
responses which span several decades of time,
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MATERIAL REPRESENTATION AND FAILURE CRITERION.

We have stated that the bulk material is to be represented by
a linearly viscoelastic solid. The stress-strain equations for such a

body are given, under isothermal conditions, by

3ei.('r)
Sij =f Gl(t~'r) ———J—-——-——aT dr
-
(1)
t
s = Gyt-m) 22 4s
-~ 00

where C':1 (t) and Gz(t) are the relaxation moduli in shear and iso-
tropic compression respectively, sij and eij denote the deviatoric
parts of stress and strain tensors, while 6i.s and 6ije are the hydro-
static parts of these tensors.

For materials exhibiting rate or load history sensitive plas-
ticity Crochet [6] suggested a viscoelastic-plastic constitutive
relation wherein the yield modulus Y dgp'ends on the history of load-

ing; its value is given b?
Y(t) = A+ B exp (-Cx) (2)

where A, B, C are material constants, and x is a function, of the

strain state

- ey, vV _ e

summation being implied by repeated indices; the superscripts ''v"'
and "'e¢'' denote the viscoelastic and purely (short-time) elastic com-
ponents of the strain. For strains increasing with time equation (2)

asserts that faster loading corresponds to a higher yield stress,
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while under constant stress it implies that yield occurs at a time
which is longer the lower the stress. For initially elastic response
under rapid loading eijv = Eije and Y(o} = A+ B while the minimum -
yield value is given by Y (o) = A, provided €i.v - €ije is sufficiently |
large as may be the case for viscoelastic non-linear* polymers.
Next we need to consider the criterion of incipient fracture.
We shall define fracture to start when the strain at the tip reaches a
critical value [9, 10,11]. This condition, known alternately as the
critical crack opening or displacement criterion, is a sufficient
criterion for fracture initiation, although, as pointed out earlier,
it is not a sufficient criterion for catastrophic failure in viscoelastic
materials. It has been used for metals by Goodier and Field [127 and
Olesiak and Wnuk {13] and for simple viscoelastic materials by

Williams [14].

*Non-linear in the chemical sense of ''un-crosslinked!'’.
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THE STRESS AND STRAIN DISTRIBUTION AROUND THE CRACK

Consider the axisymmetric geometry in Figure 1. The crack
proper extends over the domain 0 € r <.£ while the viscoplastic
material is contained in a Dugdale wedge [5] in the ring £ < r < aft).
Our‘immediate aim is to determine the displacement w normal to the
crack plane at the crack end r = £. '

The problem of a growing crack in a viscoelastic medium or
that of a crack of constant 1éngth but subjected to a time variation in
loading cannot, in general, be treated by the correspondence princi-
ple. For one important case, however, when the loading increases
monotonically with time, Graham [15] has shown that the distribution
of stresses and strains around a crack can be found by an extended
correspondence principle. His result for the normal displacement w

in the crack plane z = 0,

a(t) v
w(p,t) = %K(o)f .Zd‘;;_l_ f SP(S,t)dz;, N
p (V ~-P )2 0 (VZ—SZ)Z
(4)
¢ a(t-T) \4
2 ‘ dv (s,t-7)ds
+'7‘,fK('r)Re{f . 2—‘-foppz = }d'r
° P (vi-p7)2 (vi-s™)2
can be written as
b Rer)
W(pa t) = Wo(py t) + f K(O Wo(p,t_'r) dr (5)
0

Here, wo(p, t) is the short time or glassy elastic solution, p(p, t) is
the pressure applied at the crack surface 0 < r € a(t) (including the

zones of plastic deformation), and K(t) is defined as {15 ]
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2(2G. (8) + G, (s))

K(t).—:L'l[ e ;s—»t] (6)
8 (Gl(s) + ZGZ(B))Gl(S)

stars denoting Laplace transformed quantities and L_l denoting the
inverse of the Laplace transform. Formulae of the same type are
shown to be true for all components of displacement and strain tensors
while the stresses are the same as in an elastic solid.

1f one deals with viscoelastic behavior responses near the
extremes of the spectrum and avoids the intermediate transition
range, Poisson's ratio v can be assumed nearly constant*. .Then

relation (6) simplifies to
K(t) = 2(1-v) D(t) (7)

D(t) being the creep compliance.

Before recording the expression for the stresses, it is
appropriate to discuss the time dependence of the stress field from
a physical viewpoint as it arises out of the time dependence of the
material yielding at the crack tip. Under step loading there exists
initially a domain of yield, the size of which is determined by the
yield value Y(o), and the stress distrib\ition corresponds to that ob-
tained for the elastic-plastic case [13]. The distribution of the g,
stress in the vicinity of £ <€ r is indicated in Figure 2.a. The ensu-

ing creep increases the function X and causes the value of the

*This restriction is not very severe; it allows dealing with hard
polymers on the one hand and with soft rubbery ones on the other.
In order to simplify analyses v is often assumed constant over the
full time range.
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subsequent yield stress to drop* and consequently the size of the
pla:stic zone to increase. This may be viewed as a discrete, incre-
mental process giving rise to a stair-step like function of Figure 2b,
and in the limit of many such increments as the continuous stress
distribution in the same figure. Whether the actual stress distribu-
tion is like the one envisaged is not clear; nevertheless, the process
described is consistent with the assumed model of time dependent
plasticity.

It turns out that the process just described leads to intractable
mathematics and we shall therefore introduce a further simplification
and represent the stress distribution in the yielded zone by a time
dependent average ( Y(t)) which is constant over the domain £ < r < a(t)

as indicated in Figure 2c. Let this average be given by
(Yv©)) =3{¥()+ Y} (8)

where Y(t) is evaluated for the strains at v = a(t). With this physical
clarification in mind we may now use the results obtained by Olesiak

and Wnuk (13] and write down the stresses immediately, We shall

do this for the case when the load is applied as a tensile stress at

z — co. ** Let'p =1/l e,m(t) = L/a(t), kK =3(1-2v) (1+v), A(t) = P(t)/(Y(t))
We have then (cf. ref. 10) |

*The associated unloading poses no difficulty in the formulation of the
viscoelasticity problem.

*%The cagse where the load is applied as a pressure at the wall surface
is treated in detail in ref. [16
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0. = p(t) (k-1) 0O<sps<m
o = -plt) 2 +k)

o, = (Y)

o = (Y)[(1-X) (1-k) + x(-rgl)z] m<op<l

_ m,2
og = (Y) [(1-1) @vhi) -k BN (9)

L

2(Y . . A
z <7r> [—g—h-hsinl(—l‘;)ntsinl(lmz):]

fo] =
p -m
_;:
2(Y) m2q . i 1-m® .11
Or = p {1-K+K(—(—)‘) ]sm ;2-:';;1—2 -(1¢K)7tsm (-‘;)
p 21
2(Y) m,2 af 1-m?
0y = —% [2v +x-x(u5—) ] sin T———p 2 -

~(2v +Kk) A sin”} (-:;)

It can be observed that the stresses pass through a discontinuity at
p =m. It should also be noted that the outer radius of the plastic zone
is related to the (non-dimensional) load parameter [13] () =pt) /(Y (L))

by

N

m(t) = [1 - A(t)] (10)



The yield value ( Y(t)) is as yet unknown; in order to deter-
mine it we need to calculate the strains Qij atr = a(t) from the
stresses (9). Although the following calculations are possible with-
out resorting to approximations, the restriction that the yield stress
is much larger than the applied strain can simplify the analysis con-
siderébly. This simplification would be tantamount to ignoring the
problem of general yield emanating from the crack tip and consid-
ering only limited yield prior to fracture. Then A(t) << 1 and the

stresses (9) at r = a(t) reduce to

o, = (Y(t))
o = (Y(t) (11)
oy = 2v (Y(t))

while the corresponding short-time elastic strain ei.e are

¢ = Z-E'-‘g- (Y(t))

€ = -é—'é— (Y(®)) (12)

Eg being the glassy or short-time modulus.

The viscoelastic strains at the tip of the plastic zone are
given by

v _ v _ {Y(t)h 2K ¢ f((vZ
ez =€, = Eg 2K + —”Eg . K (o) (Y(t-'r)) dr |
(13)

¢ = %"ig (Y ()



and substitution of (12) and (13) into (3) renders the function x after

some manipulation as
L .
N2 o
X = ‘T j(;\p(’r)<Y(t—T)) dr . (14)

Here we have defined the normalized creep compliance y(t) = K(t)/K(o).
Recalling that 2( Y(t)) = Y(o)+ Y(t) we can write now a non-~linear

integral equation for Y(t) as

: t
Y(t)= A+ B expg- ngc [(A+B) [$e)-1] + [ § (&) Y(e- m) d-r]i (15)
0

This expression can be reduced by two-fold differentiation to the non-
linear differential equation

Eg  Y-(Y-A) Y

= 2(A*B) G (t) + G(t) ¥ . (16)
KNZT (Y-AF

With the definitions

yit) = Y(t) - A, a=2VZ&K £

P(t) =5 $(t), Q(t) = a(A+B) ¢ (t)
this equation simplifies to

52 - yy = yZ{P(t) ¥+ Q(t)] (1
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EFFECT OF TIME DEPENDENT YIELD

The solution of the non-linear differential equation (17) valid
for A << 1 poses a formidable task for general material properties
P(t) and Q(t), and must be accomplished, in general, numerically.
In one special, simple case however, the solution can be obtained
analytically and in closed form, namely when the bulk material be-
haves as a Maxwell solid. In this case D(t) = D(o) + nt, n being a

constant (viscosity), one has from (7)

t t
vo =1 giem = [ )

=0 =

V(6 = pigy ¥t 557 (18)
y=0 (@) =0

Equation (17) reduces then to
3 2 a 2
YY-Y:-Z—T—;YY (19)

where T, = K(o)/n. Noting that (W‘I. Y - ?)/YZ = -(%:- (’.Y/Y), equation (19)
*can be integrated directly, subject to the initial conditions of equa-

tion (15),
Y0 )=A+B
7(0") = - aB(A+B) § (o) = - oB 2L
(o]

to give the average yield stress

-1
(Y() =(Y(o)) {1 - zrargyexp [- 70 (@A+B)t]
18]

(20)
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It may be verified by substitution of the definitions -

. B
B = 7arB
¢ = \JZ2K C(2A+B) =§- (2A+B)

P(t)= 1+ B~ Bexp (-ct/'ro)
that (20) is reduced to
(Y(t)) = Y{o)/®(t) . (21)

Equation (21) gives the average stress ‘in the plastic zone surrounding
the penny-shaped crack. Figure 3 shows the decay of the stress in
the plastic zone. For the material parameters we have chosen¥*

A =100 psi, B =25 psi, C =400, v = 0. 3; the three values of ¢,

1 € ¢ €10 correspond to a range of Young's modulus of 5x104 s E s

c
5x105 psi.

Although the effect of C on the plastic relaxation is consider-
able, the same is not true when one considers the displacement
growth at the tip of the crack. Following [13] it can be readily shown
that the displacement w(l, t) at the tip of the crack (p = 1) for step
loading p(t) = Pl (t) is given by

t
w(l,t)= w_(t) =w(o)[&(t) + [ §@) &t -7)adr ] (22)
° 0

*These values were taken from reference [17]. Although they have
direct practical significance only for the filled polymer for which they
were obtained, these values are physically not without meaning. In
the absence of information on viscoplastic material properties, they
are more significant than a mere guess,
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2(1- v* ) p?
Q

E Y :
wg(O)

where w(o) =

Substitution of €(t), equation (21), renders for the Maxwell solid,

w (t)

w(o)

-ct/T
= 1+ (1+p);t-— + B - -i—) (1-e ° (23)
[e]

This relation is illustrated in Figure 4 and it is seen that the dis-
placement is considerably less sensitive to variations in ¢ than the
yvield stress.

It should now be recalled that we adopted from the beginning
a strain or displacement criterion of failure initiation, According to
| that criterion, crack propagation starts when the crack tip displace-

ment wo(t) reaches the critical value w¥ at time t*, i.e., when
wo(t*) = w (24)

The time to failure is then obtained implicitly from (23) upon sub-

3

stituting (24)

* £ 1
wioy TP AE A pll-g) [l exp ett/m](25)
To relate w*/w(o) to the load p, in a simple way lety = w*Y .
It has been shown in [18] that this is equal to the plasiticity parameter

in the Orowan-Irwin theory of fracture under limited, time-independent

ductility. Furthermore, let

p2 - mEg Y(o)w* _  7Egy

(26)
g 201 - vy 2(1 - vou

denote the Griffith stress pg to cause fracture propagation upon load

application in a brittle manner and without time delay. Upon using
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the definition of w(o) following equation (22) and the definition (26),

equation (25) may be rewritten as

o

2 -1+ (14 g);ﬁ—*— + B(1 - —i—) [1 - exp (—ct*/’ro)] (27)

g o

This relation between the time to initiate fracture and the applied
load is shown in Figure 5 as trace 1. Shown in the same figure is
the result for constant, rather than time dependent, yield, trace 2
and 3 corresponding to yield stresses at zero and infinite time re-
spectively, It is clear then that the decrease in yield stress with
time accelerates the deformation at the crack tip and causes earlier
failure than would be true if the initial yield stress were maintained.
Thus a fracture prediction is conservative only if it is based on the

constant, long time yield stress Y(w) in which case one has
' 1

p Y( )% :
o _ Q0
5 - %__.._Y(O)} {1 + t*/TO} . (28)

We have now investigated the inception of fracture propagation
in the presence of limited time dependent plasticity. Although use of
more ‘realistic material properties could lead to different numerical
results the qualitative behavior would probably be the same. In spite
of the restrictions imposed by the simple material representation,
it appears that time dependent plasticity does not lead to gross devi-
ations from what holds true for time-independent plastic behavior.
With'this qualitative feeling as an incentive we shall now consider the
time~dependence of the fracture process in the presence of time-
independent yield, but for more general viscoelastic behavior of the

unyielded material than a simple Maxwell model.
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DELAYED FRACTURE FOR TIME-INDEPENDENT YIELD

The simplification of time-independent yield properties
eliminates the necessity of solving the non-linear differential equa-
tion (17) and allows therefore a more general representation for
the bulk of the materiél. Furthermore, we need not necessarily
restrict ourselves to low values of \. The resulting expressions
to determine the times of incipient crack propagation a;'e so simple
that their usefulness in applications may benefit from this simplicity
more than they may suffer from their lack of a complete material
representation.

The normal crack surface displacement w(t) at p =1 is ob-
tained from equation (5) after substituting the elastic solution [13 ]

4(1-v%)

JeYo 2";2
Wo(l,t) = —-——-;;E—;—-—-—* {1 - (1-27) } (29)

The result is, with A(t) = P(t)/,YO,

4(1—v2)IYO 2
wit) =w(l,t) 2——“'7&-“-—-‘- 1-{1-l (t)]
g

(Sl

¥ 1
+ f $(7) {1—[1-7\_2(1:-7)] Z]d'r} (30)

0 1]
Let w* be the value of w(t) at the time of failure t*¥; furthermore,

define [12, 19]

= wk
'wao

p2= 7E y

g 2(1-v%)

Then (30) may be written as
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2

p 1 t* 3
Eo=2n1-(0a%m12+ [ b 1-(12%e-n]" ar (1)
Yo 0

which relates the load history Af{t) to the failure time t*, Note that
there exists a minimum crack size min{£] = £* below which the
applied load p(t) would have to exceed the yield stress to cause failure.
The size of £* is given by the condition that ng Yo' so that

wEéy wng*

1% = 5~ = (32)

2 - 2
2(l-v )YO 2(l-v )Y0

For cracks of initial length £ < {* general yield will therefore occur
rather than crack growth,
For a step load p(t) = pol(t) equation (31) becomes, with

k'0 = pOYO

. 5 1
B 1
(;f-) = 2y (t*) {1~[1-A(2)] 2} (33)

o

If we define the inverse function of
$(t) = D(t)/D (o) as  t=4  [D(t)/D(o)]

one may write the time of instability t¥* explicitly from (33) as
2

P
gx = gL {.;: (Yg) - ] (34)
Q

2)3
1-(1-2)

This time t* is a furiction of the crack size through (pg/Yo)Z and of
the applied load through X = po/Yo as long as £> £%, no restrictions
being placed on the size of the plastic zones at the crack periphery.

The function qfl is zero for arguments less than or equal to unity.
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Hence instantaneous fracture ensues if

2.
P 1
AL_8 1o 2.5
2(Y) €1-(1-1%) (35)
o
On the other hand, if the reverse is true, i.e., if
P\ 3
N 4 122y
"-(Y ) >1-(1 )\0) (36)

o
then t* is greater than zero which means that some time will pass
after load applic.ation before the crack starts to propagate. For
illustrative purposes we show in Figure 6 the time to failure of a
Maxwell solid and a standard linear solid. The weékening effect of
larger cracks is clearly illustrated.

If a crack is very much larger than the minimum size
fracture occurs at low load levels )\0 = po/Yo << 1 and equation (31)

may be written more simply as
2

P £*
(?ﬂ) =2%@0) + [ 3 (m) AP (exo) dr (37)
0

o

By multiplying both sides of this equation by Yi the yield stress
vanishes from the equation. Therefore, the fracture resulting from
large cracks at low load levels is nearly independent of the yield
process at the tip of the crack. This result is well recognized for
the rate-insensitive metals (18,20 ], For the particular case of

step.loading p(t) = pol(t) one obtains then the simple result
2

P
(1) - (k) (38)
Py :

which equation yields immediate failure initiation (t*=0) ifp =p
o g

and predicts infinite failure time when (pg/po)z = y{o0). It follows
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that if y(t) is bounded at infinity there exists a lower limit on P, below

which no crack propagation occurs. This lower limit is

P
2

Prnin = PglEe/Fgl (39)
where Ee is the long-time equilibrium rr';odulus. If (&;(qc)) is not
bounded, i.e., if Ee = 0, then such a limit does not exist and {racture
may always occur after long times.

It should be noted, with a view toward applications of (38) that
one need not know the value of pg' Suppose one conducts tests on
materials containing a crack (or several non-interacting cracks) of
size !1 and finds that a load Po1 produces failure in time t’i. Equa-
tion (38) can then be written as

Tk vy
g = 4,(,;;‘) (40a)

2 2
2(1-v )M 1Po1
and for any other load and crack size as

2E
g'Y

5 = Gt (40b)

2(1- vz)l P,

Division of (40a) by (40b) renders

192 = 4 p 2 v A e (a1)

which equation would permit simple extrapolation of a minimum of
experimental data to other loads and crack sizes.

Inasmuch as equations (37) and (38) do not contain the yield
stress they may be also applied to materials which do not exhibit
yi.eld-like behavior provided the applied stresses are small com-

pared to the intrinsic molecular strength of the material [18,20]}.
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CorreSpondingly, we show in Figure 7 the prediction of failure
initiation for Solithane 113 (50/50) the mechanical properties of
which are well documented in reference 21, It is interesting to note
that. a very similar result was obtained for the same material,
by Williams [14] who considered an energy criterion of fracture
for a spherical void under hydrostatic tension. In our current no-
tation that result is

p 2

(__&) = 2¢(t*) - 1 (42)

Po
This equation is also represented in Figure 7 for Solithane 113 (50/50).

In concluding this discussion of fracture initiation in visco-
elastic materials from a penny-shaped crack we comment on the
failure behavior in two-dimensional stress fields. It can be shown
in a straightforward manner that for two-dimensional geometries
the i)revious calculations follow through to give results which differ
only in detail from those presented here. : Indeed, equations (38-41)
are identical. A more detailed comparison of the two and three-
dimensional is presented in reference [15]. Si'milarly, the reader
may refer to [15] for a discussion on the effect of a temperature and
rate sensitive critical strain or displacemeﬁt w* at the tip of the

crack.
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FIG.1 CRACK GEOMETRY
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