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ABSTRACT 

In practice, the measurement of the covariance function (which 
characterizes a time and frequency selective fading communication 
channel) involves envelope detecting the received signals before corre­
lating. Envelope covariance is insufficient for an accurate evaluation 
of system performance and rather a complex covariance is needed. 
This paper presents a study of these two covariances for Rician sta­
tistics. The general properties of the Rician distribution are discussed. 
The relationship between complex covariance and covariance of the en­
velopes of a complex Rician fading communication channel is derived. 
It includes the well known case of Rayleigh fading. For the assumption 
of symmetric spectrum of the narrow-band random process there exists 
a monotonic relationship which allows the evaluation of the complex 
covariance once the envelope covariance is measured. An extension to 
unsymmetric spectrum is given. The results obtained show that the en­
velope covariance represents a lower bound of the magnitude of the 
complex covariance. 
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RELATIONSHIP BETWEEN COMPLEX-

AND ENVELOPE-COVARIANCE FOR 


RlClAN FADING COMMUNICATION CHANNELS* 


bY 
Erwin Mondre 

Goddard Space Flight Center 

INTRODUCTION 

The transmission characteristics of a time- and frequency-spread channel can be specified by 
the time-varying transfer function o r  its Fourier transform (the channel impulse response). Let 
s(  t )  denote the received narrow-band waveform resulting from the transmission of a sine wave at 
a frequency f + f ( f  = center frequency) through a fading channel. Then s(  t ) may be expressed 
bY 

s ( t )  = R e ( H ( f ,  t )  e x p j 2 n ( f  + f o ) t }’ (1) 

where H( f , t ) is the complex envelope of the received signal. Actually H( f , t ) is the time-variant 
transfer function of the medium, measured with respect to the center frequency f o .  Even i f  this 
function could be measured, using ibto characterize a given channel would be somewhat akin to 
using a sample function of a random process to characterize the process. As Gallager (Reference 1) 
has pointed out, these functions contain too much data to be useful without processing. We a re  in­
terested only in finding various averages of these quantities. The averages of most interest a r e  the 
mean value, the variance, and the correlation function (or covariance function). 

Let us assume that ~ ( f, t )  is a sample function of an ergodic channel which is also stationary 
in the wide sense-the statistical averages of H ( f ,  t )  do not change with changes in f and t (Ref­
erence 2). Then the complex time-frequency correlation function is independent of the location of 
the time interval and frequency band within which the measurement is made: 

where E indicates an ensemble average and * denotes the complex conjugate. 

*The research was  accomplished while the author held a National Research Council Postdoctoral Resident Research Associateship sup­
ported by National Aeronautics and Space Administration. 
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MODIFIED CORRELATION FUNCTION 

Bello (Reference 2) presents an experimental technique for the measurement of the complex 
time-frequency correlation function, using independent frequency standards at transmitter and re­
ceiver site. For this method it is necessary to have frequency standards with relatively good long-
term stabilities. Unfortunately, such frequency standards in the millimeter-wave region of the 
electro-magnetic spectrum are difficult to use in earth-to-space experiments, because of the weight 
and prime-power constraints on present-day spacecraft. 

An example of such restriction occurs on the ATS-E Millimeter Wave Propagation Experiment 
planned for launch in mid 1969 (Reference 3). In this case the long-term stability is not expected 
to be better than 1part  in l o 6  per year. Therefore a correlation function will be measured using 
only the envelopes (magnitudes of the complex envelopes) of the received signal. With 

H ( f ,  t )  = Hr  ( f ,  t )  + jHi  ( f ,  t )  = V ( f ,  t )  exp [ j B ( f ,  t)] (3) 

and Equation 1, we find 

o r  

s ( t )  = V ( f ,  t ) c o s  [ 2 7 7 ( f + f , ) t + t i ( f ,  t ) ]  . (5) 

The output of an envelope detector is now proportional to 

which is exactly the magnitude of the complex channel transfer function. 

The modified correlation function, denoted by e, is defined as  

While the modified correlation function is considerably easier to measure, it does not contain in­
formation about decorrelation of the phase of the transfer function. 
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T-m 

The following estimation shows that for an ergodic process the modified correlation function 
is always an upper bound of the complex correlation function 

On the assumption that the randomly varying transfer function H( f , t )  is a sample of an ergodic 
process, the correlation function for a certain frequency difference can be calculated by using 
the time average 

H ( t ) H *  ( t  + 7 ) d t  . (9)R(T) = lim 
1 1-1 

The validity of Equation 8 can be seen from 

Since the received process may have a nonzero mean (this is always the case if the signal en­
velope is measured), the function really desired is the covariance rather than the correlation func­
tion. For a complex random varying process, the two-dimensional covariance is defined (Refer­
ence 4)by 

n 
C ( 7 , n )  = E H ( f - T ? t  - E H  f - 9 %  t{[ ) { ( ) } ] [ H * ( f + ~ l  t + - r ) - E { H * ( f + p ’ t + T  

where m l  and m 2  a r e  the complex mean values 

m2 = E{H(f +: t)} . 

According to Equation 7 the modified covariance becomes 



From both covariance functions C and e,  the coherence time of the channel, Tc,and the coherence 
bandwidth, F, ,can be calculated. T, is an interval in T over which I C ( T ,  0) 1 is essentially nonzero; 
F~ is an interval in R over which IC(0, n)l is essentially nonzero (Reference 1). In a parallel man­
ner ?, and gc a re  defined as associated with e ( ~ ,R) . But we cannot say that the modified function 
lead to upper- (Reference 5) o r  lower-bound estimates on the coherence parameters. This follows 
from the fact  that a general expression similar to Equation 8 cannot be found for the covariance 
functions. It is necessary to make certain assumptions concerning the statistic of the channel 
transfer function in order to compare these two covariance functions. For a narrow-band Gaussian 
random process with zero mean (i.e., Rayleigh envelope distribution) the relationship between the 
envelope correlation function and the complex correlation function is well known (References 2 
and 6). 

For a channel with known statistic properties, the different average values can be calculated 
theoretically from the first and second probability distributions. Time averages, on the other hand, 
can only be used for  experimental measurement techniques. 

CHANNEL WITH RlClAN STATISTICS 

The communication channel between spacecraft and ground station can be considered as a 
multipath channel model with a major strong stable path and additional weak paths. The stable 
path is a result of line-of-sight propagation. The signal then seems to be the sum of a steady sig­
nal and a fading component, the latter having the usual Gaussian quadrature components. The sig­
nal envelope resulting from a transmitted continuous sine wave fluctuates according to statistics 
identical with those for the envelope of a sine wave plus additive bandpass Gaussian noise. This 
envelope statistic is usually called Rician fading (Reference 7). 

If we are  looking at the channel transfer function for a certain frequency f , the received 
narrow-band waveform is 

s ( t )  = Re(H(t)exp ( j 2 n f o  t)} * 

During an interval where the channel can be assumed stationary, the transfer function H( t ) is the 
sum of a steady (time-independent) component a t j,B and a random fluctuation x( t ) + j y (  t ) . The 
sample functions x( t ) and y( t ) have frequency components only in a narrow band centered on zero 
frequency (References 6 and 8). The random variables x and y ,  that refer to the possible values of 
X( t ) and y (  t ) , respectively, a r e  Gaussian random variables with zero mean and variance IC, 2 .  

The transfer function may now be written as 

H ( t )  = V ( t )  exp [je(t)]  , (15) 

where the envelope V( t ) and the phase e( t ) a re  slowly varying functions of time. Formally, such 
a representation need not be restricted to narrow-band signals; the concept of an envelope and 
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phase has significance, however, only when the variations of V( t ) and e( t ) a r e  slow compared with 
those of cos 2rr f ,  t ( f ,  is the carrier frequency). The first-order probability density of the envelope 
(magnitude) and phase of the complex transfer function H( t) can be found (References 8 and 10) as 

and 

l o  2 
otherwise, 

where 

P 
6, t )  - a r c  tan ,  . 

I, is the modified Bessel function of zero order and ,F, the confluent hypergeometric function. 

Figures 1 and 2 a re  graphs of p,  (v)  -or, more strictly speaking, p,  (v/fi&and P, (6 )  

for different values of z . As expected, the presence of the steady component shifts the average 

z = 3  
1 .o

0.8 

0.8-

m 

2
;0.6 -

a” 0.6 

v 

a” 0.4 0.4 

0.2 0.2 

0 

0 
0 1 2 3 4 5 6 I e 

V/JTJ.  ARC T A N  g 
Figure 1-Probability density distribution of Figure 2-Probability density distribution of 

envelope for Rician fading signals. phase for Rician fading signals. 
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.0001 

and the most probable values of the distribution to larger values of the magnitude. For sufficiently 
strong coherent signals, the most probable value of V coincides with the amplitude fw-of the 

steady component. No signal, z = 0, gives the 
Rayleigh distribution for the envelope{T exp (- ?)* for v 2 o , 

(19)P, (VI = 2 P  

for V o , 

and the phase distribution becomes uniform 

for 0 ( 6 ' 5 2 n ,  
P, ( 6 ' )  = t1  (20) 

otherwise. 
--20 

A s  the signal strength is increased relative to 
the r m s  fluctuation, the phases are grouped 
progressively closer about the zero-degree

.01 . l  .3  .5 .7 .85 .95 .99 
.999 .9999 

-30LJphase of the carrier,  until for no random sig­
.001 .05 .2 .4 .6 .8 .9 .98 .995 .9995 nal the density becomes a delta function at 

PROBABILITY THAT THE ORDINATE VALUE WILL BE EXCEEDED 
0 = arc  tanp/a (Bo = 0). 

Figure 3-Distribution of the resultant amplitude OF 
a constant vector plus a Rayleigh-distributed vector. Figure 3, taken from Reference 9, gives 

the distribution of V / i w  for several values 
of z on graph paper so designed that the distribution of the amplitude of a Rayleigh-distributed sig­
nal (Z = 0) expressed in decibels is represented by a straight line with a -45-degree slope. When 
the steady component becomes large, the distribution of the signal level becomes concentrated 
about the value of the steady component (the 0-db line). 

SECOND-ORDER PROBABILITY DENSITIES 

The following sections deal with the determination of auto-correlation function and auto-
covariance for a Rician fading channel. An extension to the cross-correlation is mentioned under 
"Covariance for Envelope Detection-Cross-covariance." 

To derive an expression for the correlation function it is convenient to calculate the second-
order probability densities. The joint second-order probability density function of real  and imagin­
ary parts of ~ ( t )is, as shown by Middleton (Reference 10): 
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I ' 
J/ 

where X is the column vector 

H - a- xl r 1 I 
W - (3 YI 

X 
'1 I 

:;; 

H - a-
r 2 2 X2 

H - (3 2 
I 2 Y2 

whose t ranspose is the row vector X' . The subscripts 1 and 2 refer to two time instants t I and t 2 • 

The time difference t 2 - t I is denoted by T . The covariance matrix 1\ of the random variables x l' 

Y I ' x 2 ' and Y 2 is defined by 

1 0 A 

0 1 - A r 
1\ 1/; 2 

- A (22) 1 0 
A r 0 1 

The determinant of the covariance matrix is denoted by 11\ 1. The mean square of the random vari­
ables is given by 

1 , 2 . (23) 

w( f) is the spectral power density, and f is always measured from the carrier frequency f o . The 
following statistical averages are functions of T :;; t 2 - t I and denoted by 

E{XI X2 } :;; E{y l y 2 } :;: r eT ) . 1/; 2 1: w(f)cos (217 fT) df , 

E{x l y 2 } :;: - E{x 2 y l } ACT) . 1/; 2 1: w(f) s in (217 fT) df 

(24) 

The corresponding joint-distribution densities of the envelope and phase may be found from Equa­

tion 21 by means of the transformations 

(
H 2 + H2 )112 

r 1 11 

(
H2 + H2\1I2 

r 2 1 2 ) 

H 
'1 

a r c t an H 
r 1 

H . 
• 2 

a r c tan H 
r 2 

(25) 
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Specifically, we have 

wher e the jacobian J of this transformation is 

J (26) 

The regions ( - 00 < H , H . , H , H . < 00 ) for the variables in a rectangular coordinate system map 
r 1 1 1 r 2 I 2 

into ( 0 ~ VI ' V 2 < 00 ) and ( 0 ~8 l ' 8 2 ~ '2;rT ) for V i and 8 i . Integrating over all phases 8 1 and 82 from 0 
to 2 7T gives P 2 (V I ' V 2 ; 7 ). These integrations can be performed with the aid of Equation B1l. 

To simplify considerably the calculation we may assume that the power spectrum w( f) is sym­

metrical about the carrier frequency f o• In the Millimeter Wave Experiment there is no reason 

that w(f) should be an odd function of f. Equation 24 shows that for an even function w(f) the term 

1\.(7 ) becomes zero. For the second-order probability density function of the envelopes, (Refer­

ence 10) gives: 

where, from Equation 24, p( 7 ) 

order m, and 

r ( 7 ) , since 1\. ( 7 ) - O. 1m (z) is the modified Bessel function of 

E m 2 for m ~ 1 . 

The power SjN ratio z is already defined in Equation 18. When there is no steady signal component 

(z = 0), Equation 27 reduces to 

for VI' V 2 ~ 0 . (28) 
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From these second-order probability density functions, the first-order probability density can be 
found by using the general relationship 

From p ( m )  = 0 and Equations 27 and 29, we obtain the result already found in Equation 16. 

COVARIANCE OF THE COMPLEX TRANSFER FUNCTION 

The correlation function of the complex channel transfer function may be determined by solv­
ing the fourfold integral (Reference 6) 

where P ,  is given in Equation 21. 

A more convenient way to obtain R(T)  is the following: From the definition 

R ( 7 )  = E{H(t,) H* (t,)} = E{H, H;} ’ 

with 

H,  = ai + x i  + j(p,  + y i )  , i =  1. 2 , 

E{.,} = E{yi} = 0 , 

the correlation function becomes 

(Note that Equation 32 is valid for  auto-correlation as well as for cross-correlation.) Combining 
Equations 24 and 32 gives 

(33) 
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With the mean values of the transfer function 

ml = E { H ~ }  = a l  + jPl , 

m2 = E { H ~ }  = a2 + jP2  , 

the covariance, defined as 

(34) 

becomes 

c(7) = 2$bz [ r ( T ) - j k ( ~ ) ]  = 2 $ b ’ p ( ~ )  . (36) 

This result shows that the covariance does not depend on the coherent part  of the transfer function, 

The value of C ( T )  for T = 0 is the variance of the random process. Equation 36 gives, since 
r (0)  = 1 andA(0) = 0 (compare Equation 24), 

C ( 0 )  = 232 . (37) 


The normalized covariance or  correlation coefficient becomes 

where p ( ~ )is the magnitude and + ( T )  the phase: 

The absolute value of the normalized covariance from which the channel parameters can be de­
termined is 

The complex normalized covariance depends only on the random part  of the complex channel func­
tion and therefore yields equal results for Rayleigh and Rician fading channels. On the other hand 
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(as will appear later) for envelope detection, the correlation function and mean value both depend 
on the ratio of the coherent and random parts  of the process. 

COVARIANCE FOR ENVELOPE DETECTION 

Auto-covariance 

The correlation function of the envelope 6(7) can be calculated by taking the average value of 
the second-order probability density function, Equation 27. Since this equation is only valid for 
X ( T )  = 0, this restriction is held throughout this discussion of covariance. The integral 

can be evaluated in different ways, as shown by Middleton (Reference 11). Because his results a r e  
incorrect, Appendix A gives one method in detail. 

The simplest way follows after expanding I, [pV1 V,/$J, (1- p z ) ]  according to Appendix B, Equa­
tion B9, and using term-wise integration with the help of Equation B10. This yields 

. 1 ~ :  (- n - 0 . 5 ; m t l ;  -

where ,F, (a ;  b; z )  is the confluent hypergeometric function, defined by 

az a(a  + 1) z z
,Fl(a ;  b;  z )  = 1 tb(l!) + ___- t . . .

b ( b + l )  2 !  

The mean value of the received signal envelope may be obtained from the correlation function 
Equation 41, by setting T = a. With ~ ( m )= 0, we find 

R(m) = 2 $ z T 2 ( 1 . 5 )  ,Ff ( - 0 . 5 ;  1; - z )  = 61' . (43) 
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The mean and mean-square values can also be calculated in a more direct way from the first-order 
probability density function, Equation 16. Equation B10 then gives 

Equations 43 and 44a yield the same result for fi, because I-( 1.5) = @/2. 

The normalized covariance for the envelopes of the received complex function becomes, using 
Equation 13, 

where 

The correlation function, the mean value, and variance a r e  defined in Equations 41, 44a, and 44b, 
respectively. Equation 45 shows a relationship between the normalized covariance 2 of the enve­
lopes of the complex process and the magnitude of the normalized complex covariance p (defined 
in Equation 39). 

Since this relationship is rather complicated, we develop Equation 41 in a power ser ies  of p 

up to p 2  to obtain an approximate value. This is also to compare the results with those calculated 
by Lawson and Uhlenbeck (Reference 6), where the correlation function is given also as a power 
ser ies  up to p 2 .  Combining 

with 
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and Equation B3, gives 

A, = I?* (compare Equation 43) 

A, = n$J2z[- ,F, (- 0 . 5 ;  2;  - z )  - ,F, ( - 0 . 5 ;  1;  - z)]’ , 

1 5 
+ q  ( Z 2 + 2 z + ~ ) , F : ( 0 . 5 ;  2 ; - z ) }  

The result is still too complicated; it is convenient to consider separately the cases where z < 1 
and z > 1. With the developments for the confluent hypergeometric functions, Equations B1 and B2, 
for small coherent parts of the transfer function ( z  < 1) Equation 45 becomes: 

For  large coherent parts (2  > 1) Equation 45 becomes 

In Reference 6, the approximations for the correlation function show only the first  term in each ex­
pression proportional to p and p z ,  respectively. Figure 4 plots b versus p ,  as in Equations 46 and 
47, for different values of Z. The curves a r e  valid only for p < 1, because only terms up to p 2  are 
taken into account. Due to the normalization, j3 must become 1 for p = 1 (which corresponds to 
7 = 0) and for all values of Z .  For the covariance, it is always true that 

whereas, for the correlation functions, 6 2 I RI (see Equation 8). 

For an exact calculation of G ( T )  Equation 41 is not very useful because it converges less  as P 

increases. Since the term ( 1  - p 2 )  becomes zero for p = 1 (7 = 0), the sum must become infinite 
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to provide a finite value for 6(0 ) .  For this 
- reason, another way of evaluating the inte­

0.8 - gral in Equation 40 will be used. This is 
achieved with the aid of the transformation 

- (Reference 11) 

0.6­
-
c ­
v 

<Q. V, = $vfi e p / 2  

0.4­

v 2  = $mfi e-p/2 , (49) 

followed by the successive application of the ex-
0 0.2 0.4 0.6 0.8 1 .o pression for the product of two Bessel functions 

p (T) and using the integral form of the modified 
Bessel function of the second kind. Appendix A 

Figure 4-Normal ized covariance of envelope versus 

normalized comdex covariance for Rician fadina. AD- evaluates this integral. The correlation func­


- I 

proximation valid for p < 1 .  tion in this case becomes 

T ( m  + n - k + 1 . 5 )  T(m + k + 1 . 5 )  
F ( - k - 0 . 5 , - n + k - O . S ; m + l ;  p 2 )  , (50)k! ( n - k ) ! ( m + k ) !  ( m i - n - k ) !

k = O  

lwhere Z ~ ( a ,  b ;  c ;  Z )  is the hypergeometric function, defined by 

( b ) k  
F2 1  (a ,  b; C ;  z )  = ( c ) , k !  Z k  9 

k = O  


with 

( u ) ~= a ( a + l )  ( a i - 2 ) * . .  ( a + k - 1)  , and ( a ) ,  = 1 

For the limiting case of zero steady component ( Z  = 0), Equation 50 reduces to 

l
go (7) 2 p r 2  ( 1 . 5 )  P ~ ( -0 .5 ,  - 0 . 5 ;  1; p 2 )  . 
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The hypergeometric function 2F1 may now be expressed in terms of the complete elliptic integrals 
of the first (K) and second (E) kind: 

4 2
2F1 ( - 0 . 5 ,  - 0 . 5 ;  1 ; ~ ' )  = %-E(p)  -?I ( 1 - p Z ) K ( p )  . (53) 

We find 

a well known relationship for Rayleigh-envelope fading characteristics (References 2, 6, and 12). 
In this case the mean value, by Equation 44a, becomes 

and the variance, by Equation 44b, becomes 

8 2  = E{V2} - G2 ( 2 ­0 

These values can, of course, also be achieved from the general formulas: 

R(") = m 2  

R ( 0 )  E{V2} (57) 

From p ( 0 )  = 1, P ( U )  = 0, and Equations B7 and B8, Equation 52 yields 

Go (") = $2n/2  

Figure 5 plots E (that is, k ' 2 $ ~ ~  versus P for different values of z .  The normalized covariance 
,E for the Rician envelope statistic as a function of the magnitude of the complex normalized co­
variance p,  as defined in  Equation 45, is calculated from Equations 50 and 44a and b for different 
values of z and shown in Figure 6. For Rayleigh distribution ( Z  = 0), compare Schwartz (Refer­
ence 7, p. 479). 

As expected, ,6 and p differ most for the Rayleigh statistic ( z  = 0). This difference decreases 
with increasing coherent part  of the received wave form (increasing 2). For z -m, we find ,6 = p. 
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1 .o/­
-

0.8­
2.5­ -

- 0.6­

c 

v 

'4 

-0.4 

1.5­

0 0 . 2  0.4 0.6 0.8 1 .o 
p ( 7 )  

Figure 6-Normal ized covariance of envelope versus nor­
malized complex covariancefor Rician envelope statistics. 

According to the definition of ,2 in Equation 45,3.. 
O O  0.2 0.4 0.6 0.8 1 this value must become 1 for p = 1, which ob­

p ( 7 )  tains when delay r = 0, since = @ o )  - & 2 .  Be­
cause of the monotonic relationship between ; 

Figure 5-Correlation function of and p it is possible to determine p ,  once p and
envelope versus ~(7). 

the parameter z are measured. 

The parameter z can be calculated by measuring the first moment (Le., the mean value or dc 
component) and the second central moment (i.e., the mean square of the varying component or ac 
component) of the recieved signal envelope. Equations 44a and b show that both a re  functions of IC, 
and z: 

71 
6 2  = E{V2} - G 2  = $ 2 { 2 ( l + ~ ) - - 7 j  ,F: ( -0 .5;  1;  - z ) } .  (59) 

Once the ratio S2/28' (which is only a function of z )  is calculated, the parameter z can be determined 
with the aid of the following equation: 

iii' - 1 4 ( 1 +  z )  
- 11-l

262 [v IF: (-0.5;1; - z )  

Figure 7 is a graph of Equation 60. 
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In case of Rayleigh fading (z = 0), 

6 2  - 0.5  
4 - 1.8299

282 - _  
7 7 1  

and, for  z -a,Equation 60 becomes 

z -t 0 .75  . 

Since C2 is the mean noise power at the 
output of the detector andlfi2/2 the mean signal 
power (1-ohm resistor), lfi2/2S2 is simply the 
power S/N ratio at the output of the envelope 
detector. On the other hand, the parameter z 

is a characteristic of the channel transfer 
function. It is defined (compare Equation 18) 
as the ratio of the mean-square values of the 
steady and fading components. 

Cross-covariance 

0 0.2 0.4 0.6 0.8 1 .o 
p 

Figure 7-Output-power S/N ratio versus input-power 
S/N ratio for Rician fading and envelope detection. 

Here the results of the previous sections a re  extended to the correlation between two signals 
at different frequencies. Now we must calculate the cross-correlation function of two signals that 
do not necessarily have equal coherent signal components. Since the normalized complex covari­
ance does not depend on the coherent components, Equation 38 is still valid for the correlation 
between two different signals. The modified correlation function (correlation function of the enve­
lopes), on the other hand, depends on the coherent parts. This is because the second-order prob­
ability density for the envelopes is a function of the two parameters z 1  and z,-the S/N ratios of 
the two different received signals (Reference lo), and is given by 

To obtain the modified cross-correlation function, we can use the method outlined above for 
the auto-correlation function. The integral in Equation 40 in conjunction with Equation 61 can be 
solved in the way that is shown in Appendix A. It is convenient to use the two parameters 
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instead of z 1  and z2 .  The cross-correlation for the envelopes becomes 

We obtain the relationship between the normalized complex cross-covariance p and the normalized 
cross-covariance of the envelopes p ,  ( 7 )  by 

where ic(7)  is given in Equation 63, and the mean values Si and standard deviations Bi a r e  speci­
fied in Equation 44. The subscript values i = 1, 2 refer to z1 and z 2 ,  respectively. 

It should be mentioned that y = 1 repre-

- 2,=0.5 
sents the case z 1  = z 2  = z 0  (e.g. auto-correlation 
The parameters y and z o  may be calculated 

0.8- from Equation 62 by measuring the dc and ac 

-
components of the two received signals and us-
ing Figure 7. Figure 8 is a graph of Equa-

0.6-- tion 64 for z 0  = 0.5 and different values of y. 

e 
1 

As expected, the curves for given values of y 
4Q and l/y are exactly the same. This can also 

0.4- be shown by replacing y by i/y in Equation 63. 
This leads to 

GC ( 7 ,  Y) = ic( 7 ,  l/r) . 

t 1 1 I L - 1 - I ­
0 0.2 0.4 0.6 0.8 I .o The modified covariance is highest for y = 1 

p ( 7 )  (auto-covariance) and becomes smaller if y 

Figure 8-,3(7)versusp(r) for zo = 0.5 decreases or  increases (different steady com­
and different values of y .  ponents of the two received signals). Note that 
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cross-covariance is normalized with respect to the variance of the two received signals and not to 
some car r ie r  variance. 

Channel Parameters 

The preceding consideration shows that for Rician fading channels the following expression is 
always valid (compare Figures 6 and 8 and see Equation 48): 

The difference p - p becomes smaller with increasing coherent signal component (increasing z). 

If the modified covariance functions a r e  used to calculate the coherence parameters of the fad­
ing channel (Le., no correction according to the correspondence between the two covariance func­
tions mentioned above is used), the coherence 
time fcand the coherence bandwidth F,, a r e  al­
ways less than the values calculated from the 
complex covariance: 1rB 

f ,  5 Tc 

Figure 9 is a 2-dimensional section ( p ,  7 )  

of a 3-dimensional figure with axes: p ,  7 ,  and 
n (it shows the case for n = 0). T, and fc a re  
shown, but not F= and I', (which would require Figure 9-Definition of coherence time and relationship 

a P, n graph). between modified and complex covariance. 

On the other hand, the frequency spread 6 and the time spread 2of the channel a r e  wider than 
their actual values 

C 1 L .  (67) 

since they a r e  derived from the scattering function, which is a Fourier transform of the two-
dimensional normalized covariance. 

Few experiments seem to have been made to verify the usefulness of the theoretically derived 
channel parameters, particularly in the millimeter region of the electromagnetic spectrum. If the 
results achieved from the Millimeter Wave Propagation Experiment on board the' spacecraft ATS-E are  
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corrected as outlined in the previous chapters, more useful data about the time- and frequency-
selective fading properties of the channel between satellite and ground terminal are obtained. Al­
though the stability of the instrumented oscillator allows only the measurement of the modified 
covariance, the magnitude of the complex covariance for the channel-transfer function can be cal­
culated if  the received random signal has the expected Rician probability distribution. From the 
magnitude of the two-dimensional complex covariance function, the coherence parameters of the 
channel are characterized and the communication-signal propagation effects of the channel can be 
determined. The corrected data represent a better description of the fading channel than the data 
achieved from the measured modified covariance, and allow better and more accurate planning and 
design of future communication links through the atmosphere for millimeter waves. 

RANDOM SIGNAL WITH UNSYMMETRIC SPECTRUM 

The modified correlation function in the preceding sections was calculated for a symmetric 
power spectrum. In the more general situation where A ( T )  # 0 (spectrum not symmetrical in the 
narrow band about center frequency) the second-order probability density function is much more 
complicated. By introducing polar coordinates in Equation 21 and integrating over all phases (with 
the aid of Appendix B, Equation B l l ) ,  we finally obtain 

where 

p s i n 46 = a r c  t an  __­p c o s  6-1 I 

and, from Equation 24, 
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Equation 68 can be found in Middleton (Reference 10) but there is a sign e r ro r  that leads to a C O S +  

term instead of cos (25 -4). For X = 0, Equation 68 reduces, of course, to Equation 27. 

To obtain the auto-correlation function of the envelopes, we use the same procedure as shown 
in Appendix A for the case A = 0. This leads to 

l - ( m + n - k +  1 . 5 ) r ( m + k  t1.5) 
__ 2F1( - k - 0 . 5 ,  - n + k - 0 . 5 ;  m +  1; p 2 )  . (70)cos [ “ -+ ) I  k !  ( n - k ) !  ( m t n - k ) !  ( m t k ) !

k = O  

The correlation function for a symmetric spectrum is a special case of Equation 70, and we ob­
tain Equation 50 by setting + = 0. Since the first and second moments do not depend on d, they a re  
the same as shown in Equations 44a and b. 

The graphs showing the normalized modified covariance versus complex covariance a r e  similar 
to those in Figure 8. The modified correlation function and therefore the covariance of the enve­
lopes, becomes smaller with increasing d (or A ) ;  this is due to the decorrelation effect of the asym­
metric spectrum. Since g6 is an even function of 6,the same results a r e  obtained for &+ or *A. 
A numerical calculation shows that the difference between the curves for d = 0 and Id1 = 7r/8 is 
less  than 7.5 percent for all values of p.  

If the spectrum is asymmetric about the center frequency, the complex covariance cannot be 
calculated by measuring of ; ( T )  alone, since the angle as well as the absolute value of the complex 
covariance a r e  unknown. The envelope detection yields insufficient information about the complex 
correlation function. Only for  the Rayleigh fading channel ( z  = 0), the above equations become in­
dependent of $. Therefore, in this case there is only one relationship between ,?>and / ’  valid for all 
values of a. In Rician fading channels (2  # 0) we must assume that A = 0 in order to have a definite 
relationship between p and p. A s  already mentioned, this assumption is quite reasonable for the 
received narrow-band signal. 

CONCLUSIONS 

This paper describes the properties of the modified correlation functions and presents a com­
parison of the modified and complex correlation function for the Rician fading channel. The modi­
fied correlation function, i.e., the correlation function of the envelope of the received signal, is 
considerably easier to measure than the complex function, and, in cases where the long-term sta­
bility of the measurement system oscillators is not good enough to determine the complex cor­
relation function, is the only function that can be measured. 
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It has been shown that for Rician fading statistics the modified covariance is a lower bound of 
the magnitude of the complex covariance. This leads to a useful estimate of the coherence param­
eters for the fading channel, as determined by the modified functions (under "Channel Parameter"). 

Because the relationship between P ( T )  and p ( ~ )is monotonic and single-valued if the power 
spectrum of the received narrow-band process is symmetric about the center frequency, we can 
determine the magnitude of the complex covariance P ( T )  by measuring the modified covariance & T ) .  

To test the equivalence of the probability density function for the sampled data to the theoretical 
Rician probability density function the so-called chi-square goodness-of-fit test described by Bendat 
and Piersol (Reference 13) can be used. As pointed out under "Auto-covariance," the S / N  ratio z 

can be calculated, once the mean value and the mean-square value of the received signal a re  meas­
ured. Since, in the relationship between P ( T )  and P ( 7 )  (Equations 45 and 50), p ( 7 )  is the independent 
variable, a numerical approximation method or the graphs in Figure 6 can be used to calculate p ( ~ )  

from the measured value P ( T ) .  As expected, the difference between p and p becomes smaller with 
increasing coherent part of the signal. The greatest difference can be found for zero coherent part, 
i.e., Rayleigh fading. The coherence parameters can then be found from the magnitude of the com­
plex covariance P ( T ) ,  and provide a better knowledge about the properties of the fading channel. 
For design of future communication links, these corrected data a r e  more useful than those calcu­
lated directly from the modified covariance. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, May 15, 1968 
160-21-10-01-51 
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Appendix A 

Evaluation of Integral of Equation 40 

To obtain the auto-correlation function for the envelopes of the received random signal, we 
must solve the integral 

where p, is given in Equation 27. To evaluate this integral we use the transformation 

where o L W  < m  and - m <  p <  m. The jacobian of this transformation from V, and V, to w and p is 

In conjunction with Equation A2, the arguments of the Bessel functions in Equation 27 become 

with 
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In addition, we need 

V 1 V 2  = $ 2 ( 1 - p 2 ) w  1 

vp +v;~­-- wcoshp . 
$J2 ( 1 - P2)  

The integral in Equation A1 therefore becomes 

The product of two modified Bessel functions can be written with the aid of Watson (Reference 14, 
p. 148, Equation 2) as 

For the hypergeometric function we use the power series representation, Equation 51: 

k =  0 

Since n is an integer, ( - n ) k  becomes zero for k ,n + 1 .  Therefore the ser ies  in Equation A8 con­
sists of a finite number of terms. The upper limit in the sum can be replaced by n.  

The integration over the variable p,  which may be written in the following form, if we use 
Watson (Reference 14, p. 182, Equation 7) yields 

where K2,-, is the modified Bessel function of the second kind and order (2k - n ) .  Now we must 
evaluate the integral over W .  Using Watson (Reference 14, p. 410, Equation 1)we find 

dww2+”’+”Im 
r ( m + n - k + l . S ) r ( m + k +  1 . 5 ) .  

2F1( m +  n - k +  1.5,  m +k + 1.5; m +  1; p2).(A10)(pw)KZk-,, ( w )  = pm___ ­
2-1-m-n T(m + 1)  
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With the relation 

and, by suitable rearrangement of the above formulas, the auto-correlation function becomes 
finally 

r ( m  t n - k t 1.5)T(m + k f 1 . 5 )  
, F , ( - k - 0 . 5 ,  - n + k - 0 . 5 ;  m + l ; p 2 )  . (A12)

~ ~~ 

k!(n- k ) !  (m + k ) !  ( m f  n - k ) !
k = O  

Note that in Reference 11 the factor m! as denominator is missing. 
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Appendix B 

Special Functions and Integrals 

This appendix is an assembly of some mathematical results used throughout this report. Other 
functions and integrals, already mentioned, will  be omitted. 

Hyper geometric Functions : 

The confluent hypergeometric function is defined by 

where ( F ) ~= a ( a  + 1 )  ( a +2 )  * . - ( a  + n - l ) ,  and ( a ) o  = 1. The asymptotic ser ies  for ,F, ( a ;  b;  Z )  for 
large values of z is 

There exists a set  of recurrence relations, which have been used in the major section on covariance: 

-zF,,  = b F o o  - bF,, . 
a F l l  = ( a - b ) F o l  + bFoo , 

abF1, = b ( a + z ) F o o  - z ( b - a ) F o l  , 

( b - a ) z F o l  = b ( z + b - l ) F o o  + b ( l - b ) F o - ,  , 

where the symbol F,J is an abbreviation defined by 

F k t  = ,F, ( a + k ;b + $ ;  z )  . 
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The relation 

= e-' ,F, ( a ;  b; z )  ,F, ( b - a ;  b; - z )  

is also needed in the discussion of covariance. 

The Gaussian hypergeometric function is represented by 

Useful relations a r e  

= 2F1 ( a ,  b; c ;  z )  (1 - z)=-'-~ 2F1( c  - b,  c - a ;  c ;  z )  

r ( c ) T ( c - a - b )
2F1 ( a ,  b;  c ;  1) T(c - a )  T(c- b )  

, Re{c} # 0 ,  -1, -2, 

and 

p1( a ,  b;  c ;  0 )  = 1 

Modified Bessel Function: 

The modified Bessel function (Bessel function of purely imaginary argument) of the first kind 
is defined by the power ser ies  

n= 0 

The following integral, used in the discussion of covariance, can be derived from Hankel's ex­
ponential integral; compare Watson (Reference 14, p. 394). 
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To solve an integral of the form 

Iexp (a cos 8)d8 , 

we can use the following ser ies  development: 

exp (a cos 8) = E,,, Im(a) cos (m8) 
m = O  

NASA-Langley, 1968 -I 31 
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