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1.

Errata for "Fluctuations in Monatomic Gases"

by David Montgomery

page 1} last equatlon before bottom of page; 5

replace (S(‘U* ’U‘('ti)) by 5('\5‘ - ru* (t‘l)}

page 19, beginning with last new paragraph and continuing
on through page 20; replace t by T everywhere it appears
(a total of nine replacements).

)
page 21, Equations (22) and (24); replace :}"{’ by %%« .

page 21, middle equation should be numbered (23).

page 2k, Equation (26); replace t by 7T~ everywhere
(2 total of nine replacements). '



ABSTRACT

We treat the problem of calculating distribution-function auto-
correlations of the form ¢ f(E%JZE;\f(§;,§;,%E) Y for a dilute monatomic
gas. Two-time probability distributions of the type introduced by Rostoker
for the plasme case are used. A perturbation expansion in the density
is performed on the generalized BBGKY hierarchy which results. it is
shown that the problem of determining the fluctuation spectra can be
reduced to solving for a function which obeys the linearized kinetic
equation for & dilute neutral gas with a particular choice of initial
conditions, a result previously obtained by van Leeuwen and Yip,
using disgrammatic perturbation theory. In the limit of infinite
wavelengths and hard-sphere interactions, this equation reduces to

the linearized Boltzmann equation.



I. INTRODUCTION

Scattering from many~particle systems is often governed by
correlation functions referred to two points which are separated in
. 1 -
time ag well as in space, For example, in a wide class of scattering

experiments one measures the square of some scattered "amplitude"

s(%,t), where
oy = - - w3 -t .
s8(x,t) = Jhxldtl T (Xl’tl)G(X-XI?t-tl)n(xlftl)’

I(;‘E’l,tl) is the incident "amplitude”, G(;-J?i,t-tl) is some
known Green's function, and n(§3?tl) is the number density of a volume
distribution of scatterers. The integration JH?i runs over the
scattering volume, and the Jﬁtl over the duration of the incident
beam of particles or waves.

Exact calculations of 82 are usually far too hard to carry
out, and so one ends up averaging it over an appropriate ensemble
of distributions of scatterers. We shall denote such ensemble averages
by a bracket ( Y. Since I and G are assumed to be the same for all

members of the ensemble,



(sPEt) )= Jox, at, Jax,at, 1 (Z,1,) I (5t )G(x-xl t-t ).

) - -
G(x=%p, b-t,) ¢ n(X),t)n(Xy,t,) ).

It is clear from this expression that the quantity of cential

theoretical interest is the number density auto~correlation

- =3
( n(xi,tl)n(XQ,tg) Y
- -
The calculation of (n(xl, tl)n(x2,t )Y for classical many-particle
systems of point particles, in turn, depends upon being able to

calculate the auto-correlation of the particle distribution function

f(}?, ¥,t), because

(n(xl,t)n(x t))—n j'dvdv (f(x, t)f(xvt)),

where the exact distribution for N particles is

. N - o= - -
£ (1) = 05,7,0) =y B 6K (5)) 60 (5))

The average number density is n =N/V V is the (arbitrarily large)

volume occupied by the scatterers, and . (t), (t) is the instantaneous

phase space location of the itl particle at time t.

For thermal equilibrium systems, we must compute (£(1)f(2))



over an ensemble which is the Gibbs distribution. The evaluation of
thig average for dilute monatomic gases is the subject of this paper.

The same problem was considered some time ago for plasmas by
Rostoker, ? Dougherty and Farley,® Salpeter,® ang others. Recently, it
has been considered for neutral gases by van Leeuwen and Yip,® Yip and
Nelkin, ® and Gross? (for a comprehensive bibliography, see also Gross
and Wisnivesky®). In both situations, the calculation of (¢ £(1)£(2) )
regolves itself into the solution of the linearized version of an
-appropriate kinetic equation.

The proofs of Rostoker® and van Leeuwen and Yip® look as
dissimilar as BBGKY theory and diagrammatic perturbation theory
often do. The purpose here is, first, to re-cast Rostoker's
formalism in a sufficiently general way to include other physical
limits to which the BBGKY approach has been successfully applied
to compute single-time ensemble averages (for example, the low-density
limit, or weak-coupling limit). Secondly, we then specialize to the
low-density 1limit, and give what (to the author, at least) appears
to be a more intuitively accessible treatment of the problem
of van Lesuwen and Yip.5

The problem of calculating { £(1)f(2) ) is shown to be
eQuivalent to the solution of the linearized version of the kinetic

equation for dilute gases. As the authors remark,® this equation is



not quite the Boltzmann equation, but reduces to it for hard-sphere
interactions and long wavelengths. This observation was also made by

Bogolyubov? in 1946 when the equation first appeared in a different
context.



II, THE TWO-TIME BBGKY HIERARCHY

For shorthand, we introduce the notation

== =y =

o )
X = X1X2...XN = xlle2 2...XNV’N

as the 6N-dimensional vector which completely specifies the
rhase space location of the N-particle system. The probability of

finding a member of the ensemble at X is

D, (X) = exp(-Ey/0)
Jax e;cp(-EN/e) ’

(1)

where



The particle mass is m, the two-particle energy of interaction is
¢ﬁj;?(f§§‘§5‘) and § is the temperature in energy units. The [HX
is a 6N-fold integration which runs over all the phase space accessible
to the system, Clearly jHXDN=l, and Eﬁ is time-independent.

The joint probability by introduced by Rostoker is the
probability of finding the system at X at time t and at X’ at time

t+T:
by (%, £5X 7, £+ 7) =D ()8 (x-x(r)). (2)

X(7) = Xi(?)...XN(T) is that solution of the N-particle equations of
motion which passes through X at time T = O. The delta-function is

an abbreviation:

N N .
s(X/-X(1)) = 1 s(X/K, (7)) = T 8(E[-F, ()a(F/-F ().
’ i=1 i=1

AN will depend on T only, not on the absolute location of

t, and is normalized so that
~[‘dx fdx 'AN(X, t3X Ht+T) = 1

for all -,

In terms of AN we may express the probability of finding



particles 1,2,...,r at X':LX;E...X.r and particles 1,2,...,8 at

XIXé...K;, T seconds later, regardless of the coordinates of the

other particles:

. ) 7. _yXts ’ r
WK X, X X/KS X r) = V0 (g o X LA
12...r,12,..8

(3)

These W~functions play a role analogous to the reduced probability
distributions of the usual BBGKY theory,9§1° which are defined

(for equilibrium or non-equilibrium) by

s
s l"’Xé) =V IDNdXs+l"'dXN.

The W-functions are symmetric under the simultaneous interchanges

KXy
X{X
J
but not under either interchange separately., Such complexities

(beyond those in the usual BBGKY theory) as exist lafgely stem from

this lack of symmetry.
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Ay obeys the Liouville equation in the primed varisbles, Which

we write as

/

iy | oy = O (1)

where for any value of n,

’ n n
X l 12 =
H =3 '\,?I.—ﬁ—,-—— 5 M‘_.b_..
n S % aﬁa m i34 afa BVZ (5)

14

Primes on functions or eperators will in general indicate that
1

they are functions of the Xi rather than the Xi'

» 3 . . > ) ,
By integrating the Liouville equation over Xr+1"'XN and Xs+l

!
ree XN’ a chain of equations with a structure similar to that

of the BBGKY hierarchy results. In practice we do not neeéd all

of these, for it is readily shown that

(£(F,7,t) £ (,7,t+7) 5 = ¢ £(a)£(p) )

- hcd =) b d
..rdXDN f(xa,va,t) f (x.b,vb,t+'r)

N a(X %) N s(x X))
JHXdX'AN R e ¥ __fg_gl_

i=1 o j=1 By
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=Wy (X 5K 5m) A Wy ) (K 5% ) (6)

7

, » . I ] S T T
for any two points X, = XV and X = X,¥ ., Here W o= EE]W

1 1,12,
v

The problem is thus reduced to getting satisfactory

approximations to W. and W. .
1,1 1,12
_t . 7 & 4 .

Integrating Eq. (k) over X5+ X and XS +1° Xy &ives, upon

miltiplying by V' 'S,
4 X! ‘. =
Eﬁ;-+ ] W(Xl,Xl...XS,T)
1,12...s
(7)

4 . ’ 7/ .
Ls W(K,L’le,’ 'XS,XSH.’T)'
1,12,..s8 s+l

s

The operator HS‘ is defined by Eq.(5) and LS’ by Lsf =T L]f (i,s+1),
i=1

where

n 3! 3
’ (s ..o ’ 1, s+L
Ll (1, S+l) = _[’d.XS_Fl '—-L;——ax.i . -a‘?'j'.] .

(We have ignored s/l\T compared to unity -- i;e., we assume the
"thermodynamic 1imit" of N = o V = o, N/V = no). Egs. {7)

are quite similar to the usual BBGKY equations.
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The first two members are:

{'a%' * Hl(l)} 1,1

n ’
- .9 _ 98 3x¢ 0P ot
T oom P I 2 —-7?— W1,12(X1’X1X2’T) (8)
1 ax/

and

o] AW axy vy 1,123 (9)



13

The dilute gas problem now amounts to ocur finding a well-
behaved perturbation expansion to these equations in powers of

the density. Hereafter, we make the formal replacement

in Egs. (8) and (9), letting € = 1 at the end, after carrying out the
expansion in e.

Any such procedure necessarily leaves open some questions of
convergence for the larger values of s. Similar‘unsatisfactory
features exist in the ordinary BBGKY theory, 1° ultimately because we
know very few properties of the solution to the s~body problem., These
questions are swept under the rug in the usual theory, and will be here,
also. But it is not to be expected that the procedure given will

generalize readily to arbitrarily high powers of the density.
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III. DERIVATION OF THE KINETIC EQUATION FOR Wl 1
2

In the most abbreviated notation, the problem is to find

a well-behaved perturbation expansion for

._5__ / — 14 ~

{57 * Hl} Wi =W g (8)
and

9 ’ - % >

Bl Hz} W10 = Lo Wy 03, (9)

We shall write

_ 4 (0) (1) 2
wl,l "W1,1 + €W1,1 +0 (e7) + ...
_y (0) (1) 2
W1,12 'wl,l2 + e W1,12 +0 () +... . (10)

. . (0)
Wl,l will involve only Wl, 12°

We antilcipate the (easily verified) fact that a straight-

We see that the 0 (e) relation for

forward expansion in € leads to "secular", or T-proportional,

terms in W (1)

;7> and thus becomes useless for T >0 (1/e).
2
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[Rostoker would have found secular terms if he had gone to the next
order in the expansion of Wi,l in powers of the plasma parameter,

but he did not need to.] Thus anticipating, we introduce the multiple
time scale procedure of Frieman!l and Sandril® in the form presented
by the author.10 We refer to Ref. 10 for a discussion of the method

and the terminology.

We replace Egs. (8), (9) in the "extended domain" by

0 4 e . +H/'\ W = €L W.
3‘1‘0 a'rl e 1 l:l 1 l: 12: (11)
- I - H +H!/] W = €L/ W
3, ary T T2l TLie 2 1,123, (12)

The W-functions are understood to be functions of the "fast"

time variable T and the "slow" time variable T we need consider
no others if we are content with an O (€) theory,' These correspond
to the usual terminology of "initial stage" and "kinetic stage" 13

in BBGKY jargon.

The initial conditions to be obeyed by the W-functions at

T =0 are:
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-/ /. —
W(Xl...Xr,Xl...XS, T =0)
12...r,12...8

’ 7 ! o
VE (X XD 6(KK)e . 8(K X)), sz,

S ! !
v fr(Xl...Xr)a(Xl X/ ...5(XS XS), r> s. (13)

The equilibrium theory®:1° provides a well-behaved expansion in
¢ for the f_. For example, féo) = (m/éﬂe)3s/2 exp (-Es/e). The
problem is to find what these initial values evolve into as 7T increases
from zero.

Substituting Egs. (10) into (11) and (12) and equating the

0 (1) terms,

2 w (0) _ |
ar. TH)Wy" =0 (14)

It

’ 0 '
52+ 8 w, () o,

2| ¥i,12 (15)
The solution of Eq. (14) is
l(g) (Xl’ l) OJT ) =€ l(g)(xl’ 1903T )' (16)
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-T H'
. R o's .
The properties of the "streaming operators” e are discussed

many places.®:10:13 Eggentially they trace back along the s-body
trajectories To units in time, in the s~particle phase space.

The T, dependence is not determined at this stage; W (O)(X 50, T)

1

can at this point be any function of 7, which reduces to Vf(v')@(X i)

at Tl =0. [ fl($Z) is just a Maxwellian. ] In the manner characteristic

of the multiple time scale method, we shall choose the T, dependence

1
to avoid unbounded growth of Wi(i) for large 7. The "slow" (~nOT)
b

( )

time evolution of W is provided only by consideration of the first
order terms.

Similarly, W (0) (Xl;X£Xé;TO,Tl) is the streaming operator

TR 1,12
e © 2 applied to any function of Tl which reduces to
2 2
(v ) 4
=X 3 2 - b at . =0
Vs(X, %) (m/2me)” exp 55 =) )

Just as in the usual BBGKY theory it has been important to approximate

féo)(xl %530, 1) correctly in terms of f(o)(Xl;O,T ) in order to get
the kinetic equation, so here we must approximate Wi(lg correctly

in terms of Wi(g) The obvious choice is

(O)(X XIXI -ro l) -

l 12
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- '
TOHE (0)
l 12

-T H/ -
- e O w Qe sxgs0,m e ) { o %E/QH

e (X O;T )

-TH! v H/(1) TH/(2) (0)
—e 9% 01l T 01 (X sXsr , T )E (7))
11 1’0’ 1771 2

terms which = 0 as Toﬁ o

. . ) g
for finite ‘xl’ - xg’ | (17)
Now consider the O (e) terms of Eq. (11):
j_ ’ (1) et T - (0) ‘.
BTO + Hl(l) Wl,l (Xlﬂx 2 O ) + a'_rl Wl l (Xl)Xl}T Tl)
w(0)
—_— ! 2
=L/ W 1, 12(X s X X5 l) (18)
7
T H, (1)
Using Eq. (17) , multiplying through by e , and noting
that only 0(1) values of {}?Jf - }?2' | contribute to L, Eq. (18)
becomes
T H'(l) (1)
D |.o1 (x K37 T ) D (o)
5 |8 11 1 3T Wy (xlxl,o,'r)
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THN(1) -7 H' T H'(l) T H’(Z)
et Lle e e l(?.)(Xl X/sT ’Tl)fl("‘?é)

terms which - O after a few
units of T
o

(19)

(1)

To avoid 'To- propertional terms in W 1 at large To’ we see
2

that we must choose

(0)
_a%— W (XlSXlQOJ l)

’ - ’ 1 ‘
H(1) | -y T (1) ToHl(z)

1im =
T e L e e e (Xl,Xl, O'rl)fl(vg).
(20)
The content of Egs. (16) and (20) on the "physical line"
= T = - _i._ . —a_ .__a__ * e
To €, 1 et, where 3 = ato+€ alls.
- (0)
{BT * Hl} W (Xl Xl’t)
4
o, TEO B
TEew Ly e ( )(Xl, 1:t)f ("") (21)
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for t » a few durations of a twoAbody collision. The initial condition
to be satisfied by the solution of Eg. (21) is clearly Wl,(g)(t =0) =
ve(x, -X)£;(¥]). This is the desired kinetic equation. Its

relation to the linearized Boltzmann equation is discussed in the

next section,
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IV. RELATION TO THE LINEARIZED BOLTZMANN EQUATION

It is not yet apparent that Eq. (21) is the kinetic equation for
a dilute gas. The equation derived by Bogolyubov °’12 is, in the

pregent notation,

-eH, eH (1 2
Fo 0 1 )eEI{l( )f(XIt )£(X,, ).

{—aa’-r + Hl(l)} £(X,t) = féug o Ige

(22)

Bogolyubov showed® that for spatially uniform fl and hard~sphere
interactions, Eq. (22) reduces to Boltzmann's equation. (For a cléar
proof, see Uhlenbeck and Ford.l®) If we linearize Eq. (22) about

a Maxwellian, writing

3/2 -mw712/29

m — =
f - 2H9) e + g(xl)t) - fl(vl)+g’

and discarding second-order terms in g, we get

- © -gH, gL (1) &, ()
{—5@; + Hl(l)} g(xl,t) = %ng ol © 2eT LT [:fl(vl)g(xg,t)

+ fl(?z)g(xl,t)]. (24)
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0
Wl(l)

obeys the linearized dilute-gas kinetic equation, we must show that

Comparing Egs.(2h) and (21), we see that to prove that

%ig o L/ e—gHéeg}'I'{(l)egﬂi(Z) (O)

N Wy N (K sXgst)E (V) = 0. (25)

g (2)
The demonstration depends upon a property of e .
(O) (Xl, 2,t) which, while it seems physically obvious, it has
not been possible to prove rigorously directly from Egq. (21). We
must assume that e ( l(g)(Xl, 2,t) has a fimite range of
values of ]xl - x [over which it can be non-zero. Surely this

property is obeyed at t = 0, for

1

£, (7)€, (7)) exp{ (X%, + vg;& 8 (75 )6(§i~?2’+Vé§)

and is non-zero only at one value of ;i—ﬁg. Agsume now that the property

holds for all finite t, and consider the integral operator Li. Only

—
7

points ;i,xz which are separated by less than the range Qf the
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_ gH.(1)
interaction ¢ contribute to it. For purposes of Eq. (25), e 1

g
Just acts like the identity operator. The operator e§H2 traces back
a long distance along the two-particle trajectories to two points

i{(-g), EZ(—g). By virtue of our assumption, however, Eiﬁg(-g)'will
lie ocutside the domain where Wifg)
operation leaves us with xé(—g) near Ei.

larger €, this leaves us with a narrower and narrower range of solid

is non~vanishing unless the tracing

However, for larger and

angle into which a given pair of velocities IEZ | 5 l%g | have to be
aimed in order to lead to such a configuration. In the limit of
€ —» », the set which can contribute to jﬁﬁz is measure zero, and

Eq. (25) follows.

Note that no similarargument can be constructed for the non-
zero term of Eq.(21). For each value of Xi, there always exists a set
of Xl of finite measure over which the whole integrand contributes to
Eq. (21).

The question of the compact non-zero domain of the.joint
probability Wifg) is a sticky one. Initially it is true; but
such soluble examples of initially singular conditional joint
probability functions as exist (those from the theory of Brownian
motionl4 are the only ones known to the author) indicate that what

may happen is that the delta~function which Wifg)‘is initially,

is converted instantaneously into a function which fallg off
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exponentially at large separations rather than going strictly to

zero, Such a resﬁlt would also be adequate for a proof of Eq.(25).
But until much more is known about solutions to the linearized
kinetic equations than is now known, the property remains, strictly
speaking, only a plausible physical conjecture,

Finally, given the solution t0 Eq. -{21) and the definition of

W, ,, we have

1,2
' -TH
(O) = Jim ———-e {: (O)(X wi)
=, -a,_ﬂ,
£ () |1+ ey Xzﬂ}’
_CPJ:E/B . -
where G = e - 1 is the equilibrium pair correlation, After a few

times the duration of & collision, and on the physical line, this

becomes

v (0 .
1, (x 3%, 3t) =

dX’ -tH2 tH '(1) tH '(2) (0)

%‘-—oooj‘—— e e e ll(X Xlt)f (V’)

dX' ~tH/! tH (1)
im jL——-e 2 (e - l(g)(X X1 3t)

$H/(2)
.[e 1 fl(vg')] G(z! - %)) (26)
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This relation is similar to van Leeuwen and Yip's Eq. (2.33). They
agree at T = 0. We have not been able to establish agreement or

disagreement, however, for T > O,
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V. SUMMARY

We have shown how to express the density-density correlation
function of a dilute classical gas in terms of the joint probability
functions of Rostoker. We have shown how to obtain a well-behaved
density expansion of the hierarchy which these joint probabilities
obéy. The crucial function, called Wifg), turns out to obey the
linearized dilute gas kinetic equation (Eq.(21)) with delta-function
initial conditions. For hard-sphere interactions and infinite wave-
lengths, this equation reduced to the linearized Boltzmann equation.
Our conclusions, arrived at by quite different methods, confirm most
(but not quite all) the conclusions of Van Leeuwen and Yip.

Other expansions of the hierarchy (e.g., in the coupling
constant or the plasma parameter) will lead Wifg) to obey the

appropriate kinetic equation. We have not considered the related problem

of solving® the linearized kinetic equation (Eg. (21)).
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