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The test laboratory can be a valuable resource for the mechanism designer,

especially in determining environmental requirements, cost estimates for test

phases, clues to design pitfalls, and data references [or tests of similar mecha-

nisms. The designer should carefully define in writing the Junctional and environ-

mental requirements for the item he is designing. He should also be aware o[ the

"personality problems" (binding, galling, and fusing) of moving parts.

I. Introduction

The service test laboratory has a unique vantage point

for viewing company operations. First of all, it partici-

pates in almost all contractual activity which involves

hardware, and, secondly, it usually is not predisposed to

the goals or philosophies of any one program or group.

This second factor is important, since the test laboratory

must function as an unbiased agent in providing support

to engineering, manufacturing, and product assurance.

In this service capacity, the laboratory is afforded a

broad and uncluttered view of what is happening. It

frequently is in a position to provide constructive com-

ments concerning both hardware and nonhardware fac-

tors. However, the basic function of the test laboratory is

simply to subject the hardware to prescribed functional/

environmental requirements and present the results.

Seldom is this organization asked to evaluate or draw

conclusions concerning the quality of the design or

manufacturing process. Despite this operational mode,

the laboratory does become exposed to quality factors.

It sees the successes and failures, the good and bad

designs, and the good and bad manufactured products.

The purpose of this paper is to present laboratory obser-

vations gained from this vantage point as they concern

the design process and offer a set of suggestions to the

mechanisms designer.

II. Two Sets of Requirements

Before the designer of an aerospace mechanism can

proceed with his work in depth, two sets of requirements

must be established. One set is general and the other set

specific. The general set presents the mission objectives
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and the controlling overall environmental specifications,

whereas the specific set identifies the functional purpose

and use habitat of a particular part or assembly. In

theory, both of these guidelines should exist well in ad-

vance of full-blown efforts to design the hardware. Nor-

mally this condition is true for the general set; however,

advanced availability for the specific set is the exception
rather than the rule.

missiles. Examples of the variations are the long-term

exposure to the unfriendly conditions of deep space

experienced by an orbiting vehicle or space probe as

compared with the defensive measures exercised against

a missile warhead. However, regardless of the program

type, the general environmental requirements are broad
and concern the common needs of the total vehicle

rather than specifics.

III. The Stability of General Requirements

General requirements of the program are essentially

based upon mission objectives which are fixed by the

customer after many months and sometimes years of

research, engineering studies, and conceptual designs.

Once defined and released to the contractor, the mission

objectives remain relatively stable. Major changes in

their scope or timing are uncommon, since these events

have an impact on the national budget, and, therefore,

may involve congressional approval.

An important part of the general requirements is a

specification which prescribes overall environments. The

content of this document is determined by the character-

istics of the launch booster and the use habitat. Here,

again, the decisions of long-range planning will apply,

since they set forth the launch vehicle, the "on station"

mode, and the reentry phase if there is one. Major

changes in these areas, after contract award, are indeed

rare and, if they occur, generally constitute grounds for
schedule and cost redirection.

For the most part, the booster is selected from an avail-

able inventory of proven vehicles for which performance/
environmental characteristics are well known. It is

infrequent that a new booster and payload evolve

simultaneously with the resultant necessity to predict

system characteristics based upon wind tunnel and other

tests. For space vehicles and ballistic missiles, the launch

booster dictates environments of the ascent profile, with

particular attention to dynamics of vibration, accelera-

tion, pressure and thermal exposure. Usually, the ascent

phase constitutes the greatest challenge for payload sur-

vival, particularly in areas of mechanical environments.

However, certain reentry payloads are an exception,
since the mechanical conditions are sometimes more

severe during that phase.

It is accepted that environmental requirements will

vary considerably between space vehicles and ballistic

IV. The Dynamic Character of Specific

Requirements

The specific requirements for each identifiable assem-

bly, subassembly, and even, sometimes, each part, are

normally enumerated by the design control document.

For future reference, I will call this document the Design

Control Specification (DCS). The intent of the DCS is

to prescribe the functional/environmental requirements

of proposed hardware for the purpose of guiding the
individual designer. It seldom achieves this objective,

since it usually does not exist in a released and approved

state at the time that the designer needs the information

to begin his work. Even if an early release is achieved,

the first publication rarely establishes the final require-

ments. There is a practical reason for this condition,

which is recognized by the individual designer: the

requirements for aerospace vehicles, in total or in part,

seldom are static during the design phase, particularly

during the conceptual period. As a consequence, the

DCS will be revised throughout the life of the program.

The number of revisions is higher in the early stages,

and the paperwork system often falls behind in docu-

menting this reality of evolving requirements. During the

preliminary and conceptual phases, many changes are
not even introduced into the documentation network,

but are left to accumulate for a later group updating.

As a test laboratory, we have experienced instances

where the prototype specimen is fabricated and avail-

able, the design is in blueprint form, and yet the DCS
has not been released. In some eases, the best document

that is available is a red-lined mark-up of a comparable

document from another program, or an unreleased final

draft. This condition does not reflect a disregard for

configuration control. Nor is it peculiar to any one com-

pany. It is an industry-wide problem that is inherent in

the nature of the programs undertaken. The underlying
causes can be traced to factors such as the first-time

aspect of the mission; the complexity of the project,

encompassing both hardware and software; the need to
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perform concurrent development and sometimes inven-

tion; schedule squeeze; and the inertia of the contractual

paperwork system.

In view of these realities, it is essential that the mech-

anism designer exercise a good deal of judgment and

communication with his many interfaces when attempt-

ing to interpret and apply the DCS. This includes other

designers responsible for mating hardware and utilities,

and support engineering agencies such as those con-
eerned with stress, thermal conditions, and weights, to

mention a few.

V. The Unpublished Guideline

The ultimate objective of any mechanism design is to

provide a device that will balance technical, cost, and
schedule factors with the mission objective. To do this,

it must supply the needed function, perform adequately

under exposure to the use habitat, satisfy the life re-

quirements, incorporate simplicity, and achieve an eco-

nomic balance considering its own cost to produce and

its impact upon associated hardware and systems.

Indeed, this is a worthwhile objective and an over-

simplification of a real challenge. Considering this diffi-

cult goal and the generally unavailable state of the

DCS, the first thing that the designer should do is to

carefully evaluate and define in writing the functional

and environmental requirements of the hardware for

which he is responsible. The scope of this action will

vary, depending upon each situation; however, it is

recommended that this be an unpublished document

prepared in outline form. It should record the current

and realistic requirements as recognized by the prime

parties concerned. An early-release DCS is a starting

point, but a designer should not rely completely on this
source, since it often may prescribe needs that are out-

dated by the inability of the paperwork to keep pace

with a fast-moving program. It is especially recom-

mended that the designer go beyond those boiler plate
functional/environmental callouts of the DCS to specify

intimate factors that are peculiar to the individual

mechanism.

Each part to be designed has a personality all its own

as dictated by its particular functional requirement and

use habitat. For this reason, it is often dangerous to

accept the total vehicle or even subsystem parameters

as all-encompassing. In contrast to black boxes, most

mechanisms have special needs to be considered: namely,

the inherent features of displacement and motion. These

features introduce new dimensions to interpretations of

environmental and functional specifications. They place

added emphasis upon evaluating hardware performance
under conditions such as zero gravity, mechanical vibra-

tion, high vacuum, and temperature extremes. Many

designers have learned from experience that moving

parts of mechanisms, in contrast to fixed assemblies,

have "personality problems" that are often exhibited by

the binding, galling, and fusing of moving parts. These

unique personality problems of mechanisms must be

recognized early in the design and integrated into the

development plan. If the DCS is inadequate, then

the working guideline must specify these factors as ap-

propriate to the particular device in question.

Now another comment from the laboratory viewpoint.

At an early point in establishing the design plan, the

designer would do well to contact the test laboratory
and obtain leads concerning like mechanisms that have

undergone development and qualification testing. He

can then be directed to test reports that record in detail

the experiences of similar hardware. These documents

describe the test specimen, the environmental exposures,

the functional requirements, and the results.

However, this screening process should not be restricted

to in-house operations. Sometimes it is advantageous to
undertake a literature search of similar mechanisms

designed and tested by others in the industry. The gov-
ernment data bank of the Defense Documentation Center

can be of value in this regard. The individual technical
libraries are aware of these sources and know how to

interrogate the data banks. Results of these contacts and
discussions will frequently supply valuable information

concerning the successes and failures of others, as well

as furnish reliable cost data for testing. Also, these con-

tacts will help to compensate for the natural tendency of

designers to be optimistic concerning the ability of their

creations to pass the testing phase. It is expected that

the content of the working guideline will be influenced

by the findings of this communication.

Once the working guideline and plan have been estab-

lished, the individual designer has at least the latest basis

upon which to proceed. Furthermore, he personally can

keep this requirements paper up to date by his own edit-

ing, since it does not constitute part of the formal docu-

mentation process. This work sheet will also provide a

good foundation for eventual updating and final release
of the DCS. A written trail will exist from first concep-

tion through to the last configuration.
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Vh ConceptualWork

Now, with latest requirements documented and coor-

dinated, the designer can direct his full attention to the

hardware. He can, with reduced risk, proceed to resolve

the geometry and the selection of materials and parts.

Certainly, downstream changes will occur, but at least

action has been taken to avoid those major surprises that

arise from lack of adequate preparation and coordination.

As the design starts to take final form, the designer

should contact the test laboratory again for an informal

critique, at a point where the design is well conceived

but not yet frozen. There is a definite logic to this pro-

posed second communication with the testing personnel.

Generally, the assigned engineer has not been responsible

for the design and testing of all similar mechanisms for

a variety of projects within the company. Furthermore,

in a large company, he seldom has personal access to

the multiplicity of designers who have engaged in such

endeavors. However, the laboratories in the company

usually have been exposed to all these mechanisms and

the testing personnel have first-hand knowledge con-

cerning some do's and don'ts.

Generally, only one contact of this type is necessary,

since most companies do not duplicate the laboratory

function, because of the expense for equipment and

special facilities. Personnel who staff these laboratories

have had painful experiences that will be most helpful

to the individual designer in an objective critique of the

conceived approach. At the very minimum, such a

critique can assure the designer that he does not expose

himself to the known pitfalls of others.

VII. Development of the Hardware

After the design comes the testing of the hardware,

both prototype and end-item configuration. Two phases

of testing normally occur - the first concerned with evo-

lution of the design and the second with formal proofing

of the final product. Both of these phases should encom-

pass functional and environmental aspects. Again, from

a laboratory viewpoint, it is our experience that the

maximum emphasis of the designer in the development

phase tends to focus on the functional requirement.

Environmental factors are considered in catalog selection

of the parts that go into the assembly, but actual envi-

ronmental confirmation of these parts and prototypes of

subassemblies is, for the most part, deferred until the

qualification phase. Herein lie the seeds of disaster. As

design problems are encountered in the qualification test

program, two factors work against implementation of the
best solution. One is time, and the other is the packaged

state of the configuration.

Speaking from experience, I cannot emphasize too

strongly that all unproven parts and subassemblies

should be thoroughly evaluated under the use environ-

ment before final incorporation into the mechanism

design. For outside-purchased parts, the responsible de-

signer should be careful of interpreting or extending

vendor performance data. Remember that the vendor's

fact sheet is primarily marketing-oriented. Sometimes the

performance data may be optimistic and not fully sup-

ported by test exposure. To protect himself, the designer
should not hesitate to ask the vendor for the results of

his test program. Even here, caution must be exercised,

since the test data might not consider the effects of com-

bined environments, life expectancy, or mounting orien-

tation. If possible, as the design is evolved, prototype

subassemblies and assemblies should be subjected to
selected environmental conditions of the use habitat.

Breadboard and bench evaluations of the mechanism

from a functional viewpoint are only part of the assign-

ment. Neglect of the complementing environmental ex-

posure constitutes a gamble.

This expansion of environmental testing in the devel-

opment phase costs money, but it certainly has economic

and other advantages over incorporating a fix under

conditions of a schedule panic, or loss of a multimillion

dollar vehicle at launch, or loss of data from "on station"

due to malfunction of an "insignificant" part or mecha-

nism. This recommendation is not a make-work program

for the test laboratory. It is a recommendation born of

experience. Let me cite one example of a qualification

failure that could have been avoided by an adequate test

program in the development phase.

Figure 1 depicts a payout cable mechanism used in

one of the Agena configurations. Its function is to supply
an extended electrical connection between the booster

and Agena vehicles during the separation sequence. As

the Agena moves away from the booster on a rail system

inside the booster adapter, the stowed cable is fed out

at a rate of 5.5 ft/s. When the cable is fully extended

and the Agena has cleared the booster adapter, then the

force from the displacing masses is applied through

the cable to the mating connectors. This pull force en-

gages a mechanism in the Agena mating connector which

causes disengagement of male and female segments and
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Fig. 1. Payout cable installed in functional test fixture (top cover off)

release of the two vehicles. Magnitude of the load nec-

essary to activate the separation device was established

at 15 lb maximum. The amount of pull required was

considered important because of the unwanted effect of

a higher load requirement upon the orbit path. This

assembly ensures that if a hang-up occurs in the slide-

out phase, then the extended electrical connection will

permit destruction of the total complex if necessary.

Two mechanisms are involved, one for stowing and

guiding the cable, and a second for disengaging the

Agena mating connector.

The assembled specimen was submitted for qualifica-

tion without the benefit of a prior development test. The

specification called for exposure to mechanical environ-
ments of acceleration, shock, and vibration, with func-

tional tests before and after each environmental condition.

The. delivered specimen was installed in a test fixture

that simulated the exit motion of the Agena from the

booster assembly. This fixture was designed to duplicate

the mounting orientation of the payout assembly and

supply the prescribed motion rate and force load to the

Agena end connector as the cable was deployed.

In the first functional evaluation, the cable jammed in

the housing. It did not extend even when a pull force

in excess of 100 lb was applied. To correct this situation,

several design changes were made in the housing. These

changes provided greater clearance in the relationship of

the stowed cable and the feed-out guides. The reworked

specimen then passed the pre-environmental functional
test in accord with the specified feed-out rate and pull
force.

As the first environmental exposure, the specimen was

subjected to several levels of steady-state acceleration.
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While the specimen was under acceleration load, electri-

cal continuity was uninterrupted and the cable retained

a packaged position. A post-environmental functional test

was performed, and the system worked as required. The

next environmental exposure was a shock condition. All

proceeded well during this environmental condition, and

the subsequent functional test was satisfactory.

Finally, the assembly moved to the vibration environ-

ment. The vibration fixture and specimen mounting were

designed in a manner that simulated the vehicle config-

uration. With this setup, the specimen was exposed to

the prescribed vibration loads. Here, again, electrical

continuity was satisfactorily maintained during the envi-

ronmental exposure. Afterward, the specimen was re-
moved from the shaker and installed in the simulated

vehicle fixture to perform a post-vibration functional

test. The cable fed out as required, but the Agena con-

nector failed to disengage at the fully extended cable

position and the prescribed pull load. A visual inspection

of the connector revealed galling and pitting of the race
and ball mechanism which activated the male-to-female

release. Further testing established that a force of 121 lb

was necessary to achieve disengagement, as compared

with the design requirement of 15 lb maximum.

Since time did not permit the search for a new sepa-

rating connector, action was taken to decrease the vibra-

tion level experienced by the component. After several

changes in the mounting arrangement, an improvement

was made. As a result, the galling and pitting prob-

lem was minimized, and separation of the connector was

obtained at a pull force of 21 lb. These corrections were

made after a series of vibration exposures in different

mounting configurations.

The improved performance of the connector still was

considered marginal and, therefore, a backup separation

approach was begun. The backup system was based

upon a failure of the conductor strands at the point of

attachment to the connector housing. This safety arrange-

ment was to take over only if the connector failed to

disengage. A series of destruct tests was run to deter-

mine the load requirements for break-away of the con-

ductors from the plug attachments. Findings indicated

that with a multistrand cable of equal conductor lengths,
the force was well in excess of 100 lb. A load of this size

was not acceptable because of the effect upon the orbit

path. To correct this situation, the electrical conductors

were assembled in varying lengths so that the pull force

would be applied to each strand, one at a time. This

change lowered the force requirements to within accept-

able limits. In actual flight, the modified system func-

tioned well, and a clean separation was obtained.

Although, on the surface, the payout cable mechanism

appears to be relatively simple, the qualification test

program ultimately involved three development efforts.

These included a first effort for functional payout of the

cable, a second for mounting orientation of the con-

nector, and a third for establishment of a backup release

system. In addition to the specimen requirements, a

moderate development program was necessary to de-bug

the test fixture which simulated speed and pull force

of the deploying Agena vehicle.

This qualification test was originally estimated at

1215 manhours and was expected to be complete in

3 weeks. In the final process, the test effort required an

expenditure of 3076 manhours, and a time period of

6 weeks. Compounding the situation were extreme pres-

sures for resolution, since the flight schedule was rap-

idly approaching.

The purpose of this example is to demonstrate that

even in the simplest devices, there can exist unexpected

complications. These complications are magnified when

they are encountered for the first time in a qualification

test program. A development test program encompassing
both functional and environmental factors is a sound in-

vestment in the long run: it minimizes the chance of a

maior failure during the formal qualification demonstra-

tion, and it protects against those unplanned expenses

that occur when a major redesign must be developed and

incorporated as the flight date rapidly approaches. I am

sure that all of us have experienced the disappointments

of a last-minute test failure and recognize the problems

that result in cost, strained customer relationships, inter-

nal organizational conflict, and personal pressures. To

minimize these prospects, a good design plan must be

prepared early, and it must contain an adequate test

program.

VIII. Summary

In summary, I would like to offer the following

suggestions:

(1) Establish design requirements for the individual

mechanism in writing before proceeding with
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(2)

(3)

conceptual work. Consider both functional and

environmental factors. Do not depend upon the

availability of a DCS document. If a DCS is avail-

able, do not accept its content as the current re-

quirement without checking.

Take steps to identify those highly personal needs

of each mechanism. Thoroughly sort out potential

problems introduced by the factors of motion or

displacement peculiar to your mechanism.

Don't be reluctant to turn to the test laboratory for

assistance in determining the environmental re-

quirements, cost estimates for test phases, clues in

design pitfalls, and data references for tests of
similar mechanisms.

(4) Place maximum emphasis upon functional and

environmental testing during the development

phase in order to avoid cost disadvantages and

embarrassment associated with a failure during

qualification.

In conclusion, the test laboratory organization is a

source of knowledge and experience which can be valu-

able to the individual designer. Unfortunately, these

talents are rarely tapped in the planning, design concep-

tion, or development test phases. As a consequence, in

many companies the test laboratory functions almost

exclusively as a qualification shop rather than an arm of

engineering and design. I urge the mechanism designer

to take advantage of this available knowledge and make

the laboratory a contributing partner in the design.
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