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I. Int roduc t ion .  

We inves t i ga te  here cond i t ions  on a quas i - l inear  p a r t i a l  

d i f f e r e n t i a l  equation o f  second order  s u f f i c i e n t  t o  guarantee ex is -  

tence o f  a smooth so lu t i on .  More p rec i se l y  we consider an equation 

A. .u + o = o  
1 J  X * X  

1 j  

i n  a bounded reg ion  R i n  En sub jec t  t o  the 'condi t ion 

u = 0 on a R .  

'de use the subsc r ip t  xi t o  denote p a r t i a l  d i f f e r e n t i a t i o n  w i t h  

respect  t o  xi and make f r e e  use o f  the summation convention on 

repeated ind ices  (two terms w i t h  the same index are  summed over the 

common index ) .  The c o e f f i c i e n t s  Aij, D a re  func t ions  o f  2n v a r i -  

ables, the f i r s t  n being x = ( x ~ ,  ..., xn), and the second n 

We w i l l  seek so lu t ions  which together w i t h  t h e i r  de r i va t i ves  .. 
through second order ,  are un i fo rmly  Holder continuous, t h a t  i s  which 

belonq t o  the  Banach Space ( R )  , where a i s  a p o s i t i v e  number 

l ess  than one. Therefore we assume immediately t h a t  ai? i s  s u f f i -  

c i e n t l y  smooth, t h a t  i s  o f  c lass  C2+ol (see [l]), and t h a t  the  functions 

Ai j 

.+ 

&e "un i fo rmly  e l l i p t i c "  w i th  respect  t o  elements of C 2 + a ( R ) ,  

t h a t  i s  

2 n Aij(xYux(~))~.h 1 j -  7 const.lX1 , A =  ( x ~ ,  ..., A ~ )  E E , 

where the constant may depend on the  u E C z C u ( R )  

does n o t  depend on x. 

appearinq b u t  

-k 
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The approach taken will bc t o  rlivc sufficient conditions for  

the diffebrential operator invo1vc.l t o  !%lap one Eanach Space o f  t6lder 

continuous functions into another i n  a way sufficiently nice for  the 

theorem of Kantorovich on converaance of ;lewtons nethod i n  3anach 

Spaces to he annlied. 

Before proceeding t o  the proof of ou r  nain theorem \.ce must. 

male a survey of  S O M ~  prerequisite Raterial. 

11. Prel imi narics . 
The work done below rrill be carried o u t  in two 2anach Spaces o f  

Holder continuous functions, C2+a(P.)  and C,(R). The l a t t e r  consists 

of functions uniformly Holder continuous in 9 ,  and i s  normed by 
.. 

where [ 1, denotes 

hJa = l o l o  + H(O) 

the rnaximuni nom over :? and  

The former consists of functions which, toqether vi t h  their  derivatives 

th rough  second order, belong to C,(f?) a n d  i s  normed by 

1+12ta - l$l, t sum of C,  norm o f  derivatives t h r o u g h  2nd order. 

The reader i s  referred to  [l] for  relevant fac ts  a b o u t  these spaces. 

- 

We need two results on l inear e l l i p t i c  equations, which folloy 

frorn'theorems qiven i n  

a n  existence theorem. 

Ell7 the f i r s t  an a priori estimate, the second 

We consider an  equation 

+ b.u = f a .  .u 
7 J  X * X  1 xi 1 j  

in R together w i t h  prescription of zero boundary values. The functions 



a i  j ,  b i ,  f are  assumed t o  be elements of C,(R), and i t  i s  assumed 

tha t  
. n  A = ( a l ,  ..., x ~ )  E: E 2 

t A-a.  > rnlh.1 a i j  i J - 
where m i s  a positive number independent o f  x .  The needed resul ts  

are 

(1) There i s  a constant C depending only on a,R,m and a n  

upper bound on the Ca norms o f  a i j ,  bi such tha t  for  any 

solution u of the above l inear  problem t h a t  i s  an element of 
b 

(2) the inequality 5 + C i  

and 

( 2 )  Under the above assumptions for  any f i n  C ( R )  there 

i s  a solution u i n  C2+,(R) of the above l inear  problem. 
a 

I t  i s  worth n o t i n g  here t h a t  a solution of the above problem i s  

unique by the maximum principle. (See [21.) 
We assume t h a t  the reader is  familiar w i t h  elementary fac ts  

a b o u t  Frechgt derivatives, which we w i l l  ca l l  F-derivatives. (These 

are available in 131 o r  [4] for  example.) If X and Y are Banach 

Spaces, we denote by B(X,Y) 

ators from X into Y, and by B(X,X;Y) the space of continuous 

the space of continuous l inear  oper- 

biliiiear operators from x x x into Y. 

The theorem of Kantorovich on convergance o f  Newtons method is  ’ 

given below. P, proof can be found i n  [4] , 



-4- 

Theorem. (Kantorouich) Supposc! P i s  a continuous mapping o f  the 

sphere A = {XI Ilx .- xoll < R} in the Banach space X into the 

Bapach space Y ,  and t h a t  P i s  twice continuously differentiable 

on the closed sphere 

= { X I  1Ix - xoll 5 rJ, where r < R. Further, suppose t h a t  
AO 

(1) [PI  (xo)-j-l ex is t s ,  

(2)  II c p I ( x O n - l i i  L B, 

( 3 )  I I  p(xo) l l  L n 3  

* 
(4 )  1 1  P " ( x ) l l  5 K for x i n  A. - - 

Then, i f  h = KB2n < 1 /2  and ro = (1 - m ) B n / h  < r ,  the equation - - 
P ( x )  = 0 

has a solution x* i n  the sphere [XI Ilx, - XI{ 
sequence 

ro} t o  which the 

converges. I n  addition, the sequence 

'n+l - - 'n - [P' ( X n ) l  - l P ( X n )  

i s  well defined and converqes t o  x*. The followinq error bounds hold: 

IIx* - xnII 5 (2k )2n0 /h2n ,  - and 

Ilx* .. X$I - < (1 - d m ) n ' l n / h .  
I f  - 

. r < r = (1 + m ) B q / h .  1 

the solution x* i s  unique i n  Ao. 
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The space Y which we w i l l  u t i l i z e  i s  j u s t  C ( R ) .  A moments a 

r e f l e c t i o n  shows t h a t  the funct ions i n  C2+a(R) which vanish on 

a!?, form a Banach Space and t h i s  i s  the space X which we use. 

The operator P i s  def ined by l e t t i n g  P(u) be the  l e f t  hand s ide  

o f  (1) w i t h  u subst i tu ted.  Therefore we have t rans la ted  our pro- 

blem i n t o  t h a t  o f  existence o f  a zero i n  X f o r  the operator P, 

I I I ,  The Existence Theorem. 

The main task i n  what fo l lows i s  t o  show t h a t  under appropr ia te 

condi t ions the operator P, and the  spaces X and Y def ined above, 

s a t i s f y  the  condi t ions needed t o  apply the  Kantorovich theorem. 

f i r s t  step i s  t o  see t h a t  P does i n  f a c t  map X i n t o  Y. Ne 

mus t have 

The 

f o r  u i n  X .  Since Y i s  c losed under (po intwise)  m u l t i p l i c a t i o n ,  

i t  s u f f i c e s  t o  show t h a t  A. .(x,ux(x)), D(x,ux(x)) are un i fo rmly  

H6lder continuous f o r  u i n  X. L e t t i n g  F denote anyone o f  Aij, 

o r  D, we propose the  fo l l ow ing  s u f f i c i e n t  cond i t i on  on F i n  order 

1J 

f o r  x,y E I < l , l n f  L C  where K depends 

on ly  on c. 

Lemma 1. If each o f  hij, D s a t i s f y  E, P maps X i n t o "  Y. --- 



' 
where we have denoted the coefficient with uo ' substituted by the 

same superscript. We l e t  

D = D o  + A D  , 
u = u o  + h  

and ( 3 )  becomes 

+ A A .  .h 
1J X i X j  ' + A?.h 

'1J X - X  P ( u )  - P ( u o )  = A A .  .u 
l J  'iXj i j  

so t h a t  

Clearly then, a condition which guarantees t h a t  
I 
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through the mth order w i t h  respect t o  i t s  l a s t  n var iab les 

and which i s  such t h a t  i t  and a l l  o f  these de r i va t i ves  s a t i s f y  

copd i t i on  E i s  i n  Gm. 

Lemma 2. If Aij - and D -- are i n  G 2 ,  P - i s  continuous X. 

PROOF: Retaining the  above notat ion,  and l e t t i n q  F represent any 

o f  Aij, D as before, i t  s u f f i c e s  t o  show t h a t  

The assumptions on F c l e a r l y  a l l ow  a p p l i c a t i o n  o f  Tay lors '  

theorem and imply the v a l i d i t y  of 

( 4 )  

where e i s  a p o s i t i v e  number l ess  than one, 

Since funct ions which s a t i s f y  E y i e l d  elements o f  Y when 

elements o f  X are subs t i t u ted  i n  them, we have 

where F: denotes the appropr iate f u n c t i o n  from ( 4 ) .  I t  remains 
x .  x 

1 j  

, t o  show t h a t  there i s  an r > 0 such t h a t  IF: 1 a i s  bounded f o r  

'j 
L e t  G denote the  f u n c t i o n  Fu ( = , e ) .  We have, s ince 

x. x 1 3  



which i s  no t  greater  than 

o lhx (x )  - hx(Y) I  + Klx - Y l a  + Kluo,(x) - Uo,(Y)I  

- i 

f o r  x,y i n  R. D i v i d i n g  by I x  - y l a  and tak ing  the supremum f o r '  

x 9Y i n  R we ge t  the desired r e s u l t .  

We are now ready t o  i n v e s t i g a t e  d i f f e r e n t i a b i l i t y  proper t ies o f  

the operator P. 

belong t o  G3 guarantees the v a l i d i t y  of 

To t h i s  end we note t h a t  assuming each o f  Aij, D 

F(x,ux + hx)  = F(x,ux) + F (xyux)hxi + qu 
x. x j 

1 j  
uXi 

(x,ux + 0h )h h h 0 < 0 < 1 ,  + F u  u u x x .  x .  x 
1 J k  x '  1 'j 'k 

where F represents any o f  A i j y  D, and u,h E X .  Then we have 

+ A..(x,ux + hx)hx.x + D(x,ux + hx) 
1 j  

1 J  
P(u + h) = A .  .(x,ux + hx)ux.x 

1 j  
1.l 

1 J  
+ (,4..) ~ ~ . ~ . h ~  + ( A . . )  h h  = A.  .(x,ux)ux.x 1 J  Ux Ux  'X.X. 1 J  X K X 1 

CI l J  'xk i J k k 1  

h h h  ux.x.  x x x + (A! .) 
l J  'x k l m  'x 'x 1 J k 1 m 

+ A ' . ( x y u ~ ) h ~ . ~  + (A .  .) h X . X .  h x + (A. 1 J .) Ux Ux hX .X  .hXkhXl 1 J  

k 1 l J  
1 j  l J  'xk 1 J k 

h h h h  u u X.X. x x x + (A!.) 
l J  'xk x, xm 1 J k 1 m 

0 h h h  
'j 'k + D(x,ux) + Du h + D u u 

xi 9 'j 'k ux.x 
1 3  

xi xi 



where 

and 

+ 

A quick check shows 
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h * ( A * * )  ux,x, h +  
j xixj '' 'Xk 1 J k 

j ) u x  hxixj h +  x k  
k 'i 

h h h + ( A . . )  h h h  8 
1J Ux Ux X.X .  X X 

i j  k 1 DUX ux ux x.  x .  x 
i j k  1 J k  k 1  

that; f o r  f i x e d  u i n  X, Lu and Bu are 

elements o f  B(X,Y), B(X,X;Y), respect ive ly .  Therefore, a p p l i c a t i o n  

o f  the reasoninq used a t  the end o f  the proof  o f  lemma 2 t o  the terms 

o f  Ru(h) w i t h  the supersc r ip t  e proves- 

Lemma 3. I I f  Aij, D -- are i n  Gg, P - i s  F - d i f f e r e n t i a b l e  -- a t  each u 

- i n  X, - and P ' ( u )  - i s  g i ven  & (6). 

To proceed we must guarantee c o n t i n u i t y  of the mapping 

u -t P ' (u>.  
I 

Cons i der 

* - (AYj)u '5.  
* 'k 

[Pp'(u) - P'(v)l(h) = (A: 

+ (0; - 0; )hxk 
'k 'k rt 
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follows from the above t h a t  

where C i s  independent o f  u,v. We must  insure t h a t  this quantity_go t o  

zero a s  v approaches u i n  the norm of  X .  T h a t  this is  true for  

the f i r s t  and t h i r d  terms i n  brackets follows from the assuniption 

that Ai,., D belong to  Gg and the content 6f lemma 2. In order 

to  deal w i t h  the other term we denote ( A .  .> by F ,  observe that 
'k 

1J U 

V - F V x . x . l a  I I U x . x . l a l F U  - FVI + l F V l a l V  - I F U U X .  X 9 

1 J  1 J  1 j  

and again use the reasoninq applied a t  the end o f  the proof o f  lemma 2. 

Thus the hypothesis of lema 3 yields continuous different iabi l i ty  as 

well. Since I R U ( h ) J ,  i s  clearly of order 3 w i t h  respect to  the norm 

of X, i t  now follows that  P has a second Frech6t derivative a t  

each u ,  which i s  identified i n  the usual way (see ei ther  1131 or C d )  
wi t h  the b i  1 i near operator BU. 
ground just covered shows t h a t  w i t h  no further assumptions P i s  

In fac t ,  an unexciting return to  the 

tw i c e con t i n uou s 1 y d i f f e ren t i ab 1 e. 

Corollary ( t o  _. .- lemma 3 ) .  

F-di fferen t i  a b l  e .  

- I f  Aij, D t: G3, P _.- is twice continuously 

We now observe that  the assumptions we made i n  the Introductiod 

guarantee t h a t  the operator P'(u) is invertible for  each u i n  X. 
n 

In f a c t ,  the regularity assumptions, and the "uniform e l l i p t i c i ty"  

assumption made on the A i j  i n  that  section allow application of the 
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existence theorem for  l inear equations give 

Lemma 4. 

- i s  invertible -- for  each u 

I_ The uniform e l l i p t i c i t y  

To complete the preparation for use of the Kantorovich theorem, 

we give the following lemma which says, roughly, t h a t  the norm of 

P " ( u )  i s  bounded on spheres. 

Lemma 5. For each u in X, r > 0 there is a number K = K ( u , r )  

such t h a t  
-__. 

for  u I i n  S ( u , r ) .  - 

I 
PROOF: Looking back a t  the e,xpression g i v i n g  P"(u )  i n  (6) ,  we 

see that  one further application of the reasoning given a t  the end 

of the proof of lemma 2 suffices.  

By simply looking applying the Kantorovich Theorem to  the operator 

P we can now deduce the following theorem. 
* 
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(8) P(u*)  = 0 

to which both the Newton sequence and the modified Newton sequence 
---e 

(tjegun - ,  a t  u )  converge. 

Of course, the uniformly e l l i p t i c i t y  condition, and the as- 

sumption that the coefficients i n  P are  of class G3 have been 

implicitl-y assumed i n  order to obtain this theorem. 

We now deduce the following 

Corollary. For each u - i n  X --- there i s  a number H -- such that  
_I- 

around 

PROOF : 

i nequal 

t a k i n g  , 
cisely,  

implies t h a t  there is  a solution -- of the equation (8) -- i n  a sphere 
I_--- 

u i n  X. - 

We f i r s t  need to observe t h a t ,  f o r  f i x e d  u ,  the second of the 

t i e s  needed i n  the above theorem can always be fu l f i l l ed  by 

i f  necessary, a larger upper bound for IIP"(u) l l .  More pre- 

denoting ]lLP'(u)]- 'll '  by B,  f o r  any give; r we need only 

guarantee that  

* which i s  certainly possible since K is an upper bound. Then 

observing the f i rs t  inequality needed i n  the theorem we deduce tha t  

]P(u)I, < 1/2KB2 * 

implies that  there is  a solution o f  (8) i n  S ( u , r ) ,  and the-corollavCy 

i s  proven. 
.% 

, The conclusions o f  t Kantorovich theorem could also 

be used t o  deduce a "local uniquenes 

partial  differential  equation under consideration a solution can be 

resul t .  However, for  the 
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shown to  he iiniqtre u s i n q  the maximum principle (sep for  example 

[21), SO this i s  o f  limited interest  here. 

Remark 2. The theorem and corollary proven above say something 1 

essentially,about retention of existence under a perturbation. To 

see this more clearly,  suppose we assume for  the moment t h a t  the 

function u i n  the above i s  the function identically zero. Also, 

note t h a t  when 

D ( x , O )  E 0 
1 

the function identically zero i s  a solution of the equation being 

studied. Therefore, the corollary says that  under a suff ic ient ly  

small perturbation of the function 

D ( x , O )  = P(0) 

from zero ( i n  the norm of X )  there s t i l l  exis ts  a solution ( i n  X )  

of the equation. 

Remark 3. We qive here a more concrete class of coefficients 

which is contained i n  the class Gm util ized above. T h i s  class 

consists of functions w i t h  domain fi x En which are  polynomials i n  

the las t  n variables w i t h  coefficients t h a t  are uniformly Hilder 

continuous functions o f  the f i r s t  n ,  !'lore precisely we consider 

functions 

(recall  the summation convention) where v i ,  ..., v .  vary,-over the J 
ri 

lowest through the hiqhest powers appearing on c l ,  ..., E n ,  

respectively, and each function a is an element of Y .  i ... j 
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To see t h a t  such a function i s  in 

i s  closed under partial  differentiations w i t h  respect to any of the 

l a s t  n variables, and that 

Gm we note t h a t  this new class 

V F h , c )  - F ( Y , d  = [ a i e se j  ( X I  - a i . . . j (~$Xi  ... c n j  

V V 
+ a i  . . . j  (y)[sri ... sn j  - n l i  ... nXjJ 

and the f ac t  . . . j  The resu l t  follows from ttilder continuity of a i  

t h a t  a continuously differentiable function of n variables s a t i s f i e s  

a uniform Lipschitz condition on any compact s e t  ( the Lipschitz con- 
I 

s t a n t  dependinq, of course, on the compact s e t . ) .  

!Ale will deal w i t h  an equation whose coefficients are of this 

type i n  the appendix. 

Appendix. An - example: -. the Minimal Surface Equation. 

we apply the resul ts  obtained above to  the n-dimensional "minimal 

surface'' equation. We seek a function u satisfying 

(9 )  M ( u )  3 (1 + u i U i ) A U  - u . U . U  1 3 i j  = O 

i n  R ,  and 

' on a R .  lile have used here and will use henceforth the notation 

2 
j '  

u i  = au /ax i  , u i j  = a u / a x i a x  

t h a t  'is partial  derivatives are indicated simply by subscripts. 

In order to  pose this problem i n  the set t ing of the previous 

paraqraphs we assume immediately t h a t  the given boundary function 

i s  the rest r ic t ion to a R  of some function i n  C 2 + a ( R )  which we 

will also cal l  cp. Then, sett inq 

v = u - + ,  
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!.re obtain from (3)  the equation 

I 

for  v subject to a homogeneous Dirichlet boundary condition. Clearly, 

we may think of P as an operator mappinq X into Y ,  and a solution 

of the opera tor equation 

P ( v )  = 0 

i n  X i s  a solution of our  problem. In fac t ,  the l a s t  remark of 

paraqraph 3 toqether w i t h  the lemmas of t h a t  paragraph show that  P 

i s  twice continuously F-differentiable on X, and that the norm o f  

i t s  second derivative i s  bounded on spheres. I n  order t o  make use 

o f  the theorem of  pa raq raph  3 we need only show t h a t  the F-der iva t ive  

of P i s  a (uniformly) e l l i p t i c  operator for each v i n  X .  L!e have 

where the operator 11 is  defined i n  (E)) ,  and 

N ( V )  = ( v i v i  + Z + . V . ) A V  - V . V . V  

L ( V )  = (1 + $ . @ . ) A V  - + i d j V i j  - ? + . $ . . V .  + 2114 $ i V i .  

- 2 4 . V . V  + A @ V i V i  - + . . V . V  
1 1  i J i j  i J i j  i j i j ’  

1 1  1 1 J J 

I t  i s  c lear  t h a t  “ I ( @ )  i s  an element of Y and t h a t  the l inear 

, operator L defined above is  an elenent of G(X,Y). T h u s ,  the 

F-derivative of P i s  t h a t  of BI added to L .  (The derivative of 

a l inear operator i s  the operator i t s e l f  and  the derivative of a .L 

sum i s  the suin of the derivatives.) .  Routine manipulations show 

t h a t  

N(v t h )  = r l (v)  + Q v ( h )  + R v ( b )  
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wlicrc 

and Rv(h), f o r  f i x e d  v, vanishes q u a d r a t i c a l l y  i n  IhlZta as 

qoes t o  zero. Since the operator  (1, so def ined is  an . I hl2+a 

element o f  D(X ,Y)  we have 

qv = r r ' ( v ) .  

Therefore the p r i n c i p l e  p a r t  ( t h e  p a r t  i n v o l v i n q  on ly  second p a r t i a l s  

of h )  o f  : ! ' ( v )  i s  rl iven by 

p r  N ' ( v ) ( h )  = (vivi t Zg.v.)Ah - (vivj + 2+.v.)hij 
1 1  1 J  

and t h a t  o f  L by 

nr L ( h )  = (1 + +imi)Ah - 4 i $ j h i j  

so t h a t  

p r  P ' ( v ) ( h )  = (1 + ( Q ~  + v i h i  + vi))ah - bi + v i ) (@j  + vj)hij. 

Se t t i nq  u = 4 t v, the re levan t  quadrat ic  form i s  qiven by 

I Since, by the  Schwartz i n e q u a l i t y ,  

we hate 
L 

q ( x 1  L_ 1x1 Y 

and the requ i red  uniforr;i e l l i p t i c i t y  of the F-der iva t ive  i s  demonstrated. 
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\+!e arc now nhlc to  a p p l y  the  thcorerri of the previous pa rnqraph  

!de r e s t r i c t  ourselves t o  a s k i n g  whether a solu- to the operator P. 

t i o n  exists i n  a neiqhborhood i n  X of 0 for  the operator equation 

Let K = K(r) be such t h a t  

Then the above mentioned theorem quarantees that i f  

KB*lP(0)(a  < 1 / 2  , ' 

and 

where 

there exis ts  a s o l u t i o n  o f  (10) i n  S ( 0 , r ) .  We force the second of 

the above inequalities to h o l d  s i m p l y  by choosing 

K > 1/Br , 

t h a t  i s  by choosinq K to  be the tnaximum of 1/Br and some upper 

bound for I IP ' l (v ) l I  on S (0 , r ) .  Then, noting t h a t  

we know there i s  a solution of (10) i n  S(0,r) whenever 

We can now s t a t e  

Theorem. -- For each r > 0 __.- there is g number H depending o n l l  on r 

and a constant boundinq the Ca norms of the f i r s t  and second - de- -- - ----- 
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rivativcs o f  (p -- such t h a t  
I 

IN@)la < H 
I 

implies existence of a solution u -- o f  the equat ion (9)  -- such t h a t  

u -7 i s  i n  c;,(R), and 
l u  - < r. 

PROOF: tnle wil l ,  i n  f ac t ,  give a n  H expl ic i t ly  i n  terms of r ,  B, 

and Ca norms of the f i r s t  and second derivatives of +. The re- 

sult  then follows from the f ac t  t h a t  3 i s  the smallest constant 

possible i n  the a priori estimate 

b 

lh12, - < const. lP'(O)(h){, 

which holds for  the l inear  e l l i p t i c  boundary value problem 

P'(O)(h) = f (f i n  Y ) ,  

since these constants depend only on an upper bound for the 

norms of the coefficients of the different ia l  operator P' (0)  

C, 

(which are quadratic expressions in the f i r s t  and 2nd derivative of 

4 )  and the e l l i p t i c i t y  constant fo r  P'(0)  which is  one. I t  must 

be noted here t h a t  we have suppressed the f ac t  t h a t  such a constant 

also depends on a, n ,  and R so tha t  H does as well. 

We must now give an upper bound for 11 P"(u)ll on S(0 , r ) .  

We have 



so t h a t  

where 

T h u s ,  for  v i n  S ( O , r ) ,  we have 

We may then take 
K = maxCBF 1 , 4r + ~ ( g ) )  , 

i n  the expression 

1/2B2K 

for  H .  

Some l igh t  can be shed on the expression fo r  K by observing 

t h a t  for r - < ro, where 

- - A B  t4- 
8B 

- 
rO 

' we have 
1 - - > 4 r + X ,  Br - 

and . 

and for  r - > ro 
- - <  1 4 r + A  
Br - 
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and 

9 
1 

2B2(4r + a )  
H = -  

+ 
where ro i s  the unique value of r for  which 

- -  I - 4 r + x .  
Br 

Me also note tha t  ro i s  the op t iona l  choice 

t h a t  H has an absolute maximum for  th i s  cho 

goes t o  zero as  r e i ther  goes t o  zero o r  t o  

fo r  r i n  the sense 

ce of r, and t h a t  I 

j n f  i n i  t y .  

The above theorem i s  stated so that  the function $,  defined on 

a l l  of R ,  i s  somehow qiven t o  us. We could t u r n  the s i tuat ion around 

somewhat . 
Suppose we are  qiven a boundary function 6, which can be ex- 

tended t o  a function defined on R which i s  a n  element of C 2 + a ( R )  

and which i s  such that the C norms of the f i r s t  and second deri-  

vatives of a t  l eas t  one of the lrextensions" are bounded by some 

specified constant. Ne cal l  such extensions admissable. Yote then, 

t h a t  the numbers B and X used above are  determined by the constant 

used t o  define "admissable". Further, suppose we choose the value 

of r determined by this constant. The above theorem then 

a 

rO 

guarantees existence of a solution of the boundary value problem 

( i n  C2+or(R)) i f  $o has an admissable extension $ which is  such 

that;' 

IWI, < H = r o m  , 

t h a t  i s ,  the problem has a solution i f  there ex is t s  a function which 

i s  suff ic ient ly  close t o  being a solution i n  the above sense. 
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Remark. In connection w i t h  the above wc mention a recent resu l t  

of Jenkins an Serrin b1. They show that  for  a C2 region there is  

a ,number 4, depending on the region and the uniform norms of the 

f i r s t  and  second derivatives of the boundary d a t a ,  such tha t  i f  the 

oscil lation of the boundary data is  less  t h a n  6! there exis ts  a 

solution. The number d? i s  shown to depend i n  a precise way on the 

mean curvature of the boundary (mean curvature everywhere non-negative 

imDlies 8 = m ) ,  and the i r  resul t  i s  a l so  f a r  better than ours i n _  

other ways. 

a region whose boundary does not have an everywhere non-negative mean 

curvature (@ f i n i t e )  our resul t  gives a suff ic ient  condition for  

We would, however, l ike  t o  point’out that  i n  the case o f  

existence that involves relations between norms of the f i r s t  and 

second derivatives of an extension of the boundary function, without 

expl ic i t  res t r ic t ion on i t s  osci l la t ion on the boundary. 

Ne conclude by noting that the theorems we have presented are 
b 

constructive i n  that  by u s i n g  the Kantorovich theorem they produce 

a sequence of functions converging to  a solution, the elements of 

this sequence being solutions o f  l inear  problems. 
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