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I.l Introduction.

We investigate here conditions on a quasi-linear partial
differential equation of second order sufficient to guarantee exis-

tence of a smooth solution. More precisely we consider an equation

(1) A +D=0

Y
137%;%5

in a bounded region R in E" subject to the ‘condition
u=0 on B3R,

e use the subscript X5 to denote partial differentiation with
respect to X; and make free use of the summation convention on
repeated indices (two terms with the same index are summed over the
common index ). The coefficients Aij’ D are functions of 2n vari-
ables, the first n being x = (Xl’ cees xn), and the second n

being u, = (uxl, cees uxn).

We will seek solutions which together with their derivatives
through second order; are uniformly Hslder continuous, that is which
beTonq to the Banach Space 62+a(R)’ where o« 1is a positive number
less than one. Therefore we assume immediately that 3R is suffi-

2+
are "uniformly elliptic" with respect to e]ement; of C2+G(R),

ciently smooth, that is of class C,, (see [1]), and that the functions
Aij
that is .

2 - _ n
Aij(x,ux(x))xixj z const.[A]%, A= (g, .eey }n) e E",

where the constant may depend on the u ¢ C2+a(R) appearing but

does not depend on x.
“+
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The approach taken will be to qive sufficient conditions for
the differential operator involved to map one Banach Space of Holder
continuous functions into another in a way sufficiently_nice for the
theorem of Kantorovich on converaance of ilewtons method in Banach
Spaces to be anplied.

Before nroceeding to the proof of our main theorem we must .

make a survey of some prerequisite material.

II. Preliminaries.

The work done below will be carried out in two Banach Spaces of
Holder continuous functions, C2+G(R) and Ca(R). The latter consists

of functions uniformly Holder continuous in R, and is normed by

lol = lol, + Hs)

where [ [/ denotes the maximum norm over R and
H(g) = sup ’é(x) - ¢(Y){
X,yel  Ix - yl°

The former consists of functions which, together with their derivatives

through second order, belong to C_(R) and is normed by
l¢|2+a = |¢|a + sum of C_ norms of derivatives through 2nd order.

The reader is referred to [1] for relevant facts about these spaces.
Ye need two results on Tinear elliptic equations, which folloy

from theorems given in [1], the first an a priori estimate, the second

an existence theorem. We consider an equation

a..u + b.u = f
137%%; X

in R together with prescription of zero boundary values. The functions
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a5 b., f are assumed to be elements of Ca(R), and it is assumed

that

2 _ o =n
¢ 55 AAy > m|a| A= (Ays wes2) e B

where m is a positive number independent of x. The needed results

are
(1) .There is a constant C depending only on «,R,m and an
upper bound on the Ca norms of aij’ bi such that for any
solution u of the above linear prob]em that is an element of
C2+u(R) the inequality

,ulz.;.a < Cfﬂa

holds.

and

(2) Under the above assumptions for any f in Ca(R) there

is a solution u in C2+a(R) of the above linear problem.
It is worth noting here that a solution of the above problem is
unique by the maximum principle. (See [2].)

We assume that the reader is familiar with elementary facts
about Frechét derivatives, which we will call F-derivatives. (These
are available in [3] or [4] for example.) If X and Y are Banach
Spaces, we denote by B(X,Y) the space of continuous linear oper-
ators from X into Y, and by B(X,X;Y) the space of continuous
bi]iﬁéar operators from X x X into Y.

The theorem of Kantorovich on convergance of Newtons method is '

given below. A proof can be found in [4] .
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Theorem. (Kantbrovich) Suppose P is a continuous mapping of the

sphere A = {xll]x - xOH < R} in the Banach space - X 1into the

Bapach space Y, and that P is twice continuously differentiable

on the closed sphere

Ay =[xl llx = x Il = r}, where r < R. Further, suppose that

(1) [Prix ] exists,

(2) 11 P, 07N < B,

(3) HPx ) <,

(4) |IP"(x)|| <K for x in A.

i

Then, if h

k8% < 1/2 and v = (1 - ¥T- 2h)Bn/h < r, the equation

[

P(x) =0

has a solution x* in the sphere {x]lixo - x]] < ro} to which the

seguence

converges. In addition, the sequence

Xpt1 = % T [P'(xnf]-lP(xn)

"is well defined and converges to x*, The following error bounds hold:

Ix* = x || < (2n)*"a/h2", and
[Ix* = x!ll < (1 - ¥T = 20)™tash.

: rery = (14 J1 = Z2h)Bn/h.

the solution x* 1is unique in Ao.
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The space Y which we will utilize is just Ca(R). A moments
reflection shows that the functions in CZ+a(R) which vanish on
aR, form a Banach Space and this is the space X which we use.

The operator P is defined by letting P(u) be the left hand side
of (l)fwith u substituted. Therefore we have translated our pro-

blem into that of existence of a zero in X for the operator P,

I11I. The Existence Theorem.

The main task in what follows is to show that under appropriate
conditions the operator P, and the spaces X and Y defined above,
satisfy the conditions needed to apply the Kantorovich theorem. The
first step is to see that P does in fact map X into Y. We

must have

(2) P(u) = Aijux.x. + DeyY

LI

for u in X. Since Y 1is c]ésed under (pointwise) mu]tip]ication,
it suffices to show that Aij(x,ux(x)), D(x,ux(x)) are uniformly
Holder continuous for u 1in X. Letting F denote anyone of Aij’
or D, we propose the following sufficient condition on F in order

that this be true:
E) |F(x,8) = Fly,m)| < K[Ix - yI* + |& - n|]

for x,y e R |&|,|n] < c where K depends ,

only on c.

ks

Lemma 1. If each of Aij’ D satisfy E, P maps X into"Y.

PROOF: Using F as above, and applying E, we have
IFOu, (x)) = Flysu (D < Kix = y1%+ Jug(x) - u (1]
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where K is determined by ;Q; Then, since u e X,

. If(x,ux(x)) - Fly,u,(y)] iik[]xf_ yI® + K lx - y]%] = k(1 + Ky)|x - y!é’«f;

. .
and the lemma is proven.

In order to investigate continuity of P, suppose that we have

chosen uo in X and consider

’ 0y _ _ a0 .0 _n® .
(3) P(u) - P(u”) = Aijuxixj‘? A?juxixj +D-D",

~where we have denoted the coefficient with u®” substituted by the

same superscript. We let

. a0
D =0° +aD ,
u = T h

and (3) becomes

P(u) - P(u°) = AAijug_ + A%.h + AA. .h

X 3 XsXs ij

o,
i%3 ‘ i%j X3%3

J
so that

0 0 0 -
IP(U) - P(u )‘0( < lAAijla'Uxiija""Aijlalhxixj‘a + 'AA.iJIalhx.iX‘Jla .

Clearly then, a condition which guarantees that

lAAij|a and fAth go to zero as |h|2*a |

does‘wi1131mp1y continuity of P at u®

. We assert that it suffiqes
to assume that the first and\second derivatives of Aij% and D with
respect ib their "gradient“fvarfab]es satisfy the condition ;E giveh
‘above. For brevity we in%roduce the class of functions Gm: a real-

valued function with domain R x E" which has continuous derivatives
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through the mth order with respect to its last n variables
and which is such that it and all of these derivatives satisfy

copdition E 1is in Gm.
Lemma 2. If Aij and D are in G,, P is continuous on X.

PROOF: Retaining the above notation, and letting F repreéent any

of Aij’ D as before, it suffices to show that

lAFla >~ 0 as lh|2+a -+ 0.

»

The assumptions on F clearly allow application of Taylors'

theorem and imply the validity of

_ 0
(4) AF = F (x,ux)hX + F

0
u u_u (x,ux + ehx)hx.hx. :

X i X,
j i x1 xJ 1]

where o 1is a positive number less than one.
Since functions which satisfy E yield elements of Y when
elements of X are substituted in them, we have

0 ' 8
LR L T L S PR S LR Y L S LV
Xs j Xs xj i j

where Fg U denotes the appropriate function from (4). It remains
Xi X

LN
to show that there is an r > 0 such that IFﬁ " l is bounded for
%o X, 1O
T ]
]hl2+a < r. Let G denote the function Fu " (+,*). We have, since
Xi %y
Feéz,

P

IG(Xsug(X) + ehx(X)) - G(&,uz(y) + ehx(y))! <.

|6(x,u3(x) + oh (x)) - G(x,ui(x) + 6h (y))| + |6 (x,u(x) + eh,(y))
- Gyl (y) + oh ()]



which is not greater than

o 0 0
olh (x) = h (¥)] + Klx = y[7 + Klu (x) - u (y)]
‘ ~—
for x,y 1in R. Dividing by |x - yla and taking the supremum for

X,y in R we get the desired result.
We are now ready to investigate differentiability properties of
the operator P. To this end we note that assuming each of Ai&’ D

belong to Gq guarantees the validity of

F(x,ux + hX) = F(x,ux) + Fu (X’ux)hx. + Fu " (x,ux)hx.hx'
X i S i%j

+ Fu Uou (x,ux + ehx)hx.hx.hX , 0<8 <1,
Xs xj Xk i3 K

where F represents any of Aij’ D, and u,h € X. Then we have

P(u + h) = Aij(x’ux + hx)uXixj + Aij(x’ux + hx)hXixj + D(x,uX + hx)
= A..(x,udu. o+ (A.) u h  + (A..) u h. h
ij X ijj ij uXk xixj Xy ij uxkgx] Xixj X X1
* (A?j)u u, u Ux x.hx hx hx
X X1 X 17 kK 1T “m
+ A, .(x,>u_)h
ij x"'x.x. + (A;:) h h + (A..) h h.h
i ijlu, XX X 137U, u,  XxuX. X, X
X, 17 k X, Xy 17 k ™1
8
+ (A;.) h h.h_h
ijlu. U, U, XeXe X, Xq X
X Xy X 173 k "1 "m
8
+ D(x,u) +D h,  +D h, h, +0D h. h_h
: X U, X u Xy A U, U, U, X. X X
x; Xi%j i 7] X; Xj X 17 k
so that

P(u+ h) = P(u) + Lu(h) + Bu(h,h) + Ru(h)



J

-

where
(5) L (h) = A;.h (A;:) u, _h. +D h ,
u ijx, i%5 ij uxk X; K Uy Xy
\ 1
(6) B (h h) = (A13)u u, x.hxkhx] + (A ) hx.x hXk + Du u h
s 50 Kk 'Y X5
and
) R () = (AS) #ho . lh b
ij uxku ]u [ x1.xj Xixj]' X Xy X
8
+D h. h. h + (A;.) h h h
U, U, U, Xs Xs X ij'u, u x X
X; xJ X 173 k X Xy kK X9
A quick check shows that; for fixed u in X, Ly and B, are
elements of B(X,Y), B(X,X;Y), respectively. Therefore, application
of fhe reasoning used at the end of the proof of lemma 2 to the terms
of Ru(h) with the superscript e proves.'
Lemma 3. If Aije D are in "Gg, P is F-differentiable'ég_each u
in X, and P'(u) is given by (6).
To proceed we must guarantee continuity of the mapping
u > P'{u).
Consider ) o
i ] u
[erw) - prn] ) = Ay - Au)hx . + gy b ainy (3, Ve Jn,

5

where a function F with say u 'substituted is denoted FY. It

|
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follows from the ahave that

- (A v,
1] uxk xi‘xi o

[(aY.)

1P () = P () < € max{lAd - AY1 1Y

. u
ijla’ Uy XyX
k

i%J

{

U
%, "% L}
k k

whére'c iswjndependent of ‘u,v. We must insure that this quantityﬂgclto
zero as v approachgs u in the norm of X. That this is true for
the first and third terms in brackets follows from the assumption

that A.., D belong to Gy and the content of lemma 2. In order

to deal with the other term we denote (Aij)u by F, observe that

*k

[Fh, ., - Flv, | < lu |

L o B o T LT PR

and again use the reasoning applied at the end of the proof of lemma 2.
Thus the hypothesis of lemma 3 yields continuous differentiability as
well. Since lRu(h)la is clearly of order 3 with respect to the norm
of X, it now follows that P has a second Frechét derivative at

each u, which is identified in the usual way (see either [3] or L4l)
with the bilinear operator Bu‘ In fact, an unexciting return to the

ground just covered shows that with no further assumptions P s

twice continuously differentiable.

Corollary (to lemma 3). If Aij’ De Gy, P is twice continuously

F-differentiable.

We now observe that the assumptions we made in the Introduction
guarantee that the operator P'(u) is invertible for each u in X.
In fact, the regqularity assumptions, and the "uniform ellipticity”

assumption made on the Aij in that section allow application of the

2
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existence theorem for linear equations given in section 2, so that we
know P'(u) maps X onto Y. Then the maximum principle implies
that P'(u) 1is one-to-one, and the closed graph theorem guarantees

continuity of the inverse operator. We have

Lemma 4. The uniform ellipticity assumption implies that P'(u)

is invertible for each u in X.

a—

To complete the preparation for use of the Kantorovich theorem,
we give the following lemma which says, roughly, that the norm of

P*(u) is bounded on spheres.

Lemma 5. For each u in X, r> O there is a number K = K(u,r)

such that

1P (u)]] < K

for u in S(u,r).

PROOF: Looking back at the expression'giVing ’P"(U) in (6), we
see that one further app1icatioh‘of the reasoning given at the end
of the proof of Temma 2 suffices. | N

By simply looking applying the Kantorovith}Theofem to the operator ‘

P we can now deduce the following theorem.

Theorem. If ue X and r> 0 are such that

. (u,r) I @7 2, « vz,
and '

1/ Klu,e) 1P )] 7Y <r,

then there is an element u* in S(u,r) such that



-12-

(8) P(u*) = 0

gg_which both the Newton sequence and the modified Newton sequence

(Begun at u) converge.

Of course, the uniformly ellipticity condition, and the as-
sumption that the coefficients in P are of class G3 have been
implicitly assumed in order to obtain this theorem.

We now deduce the following

Corollary. For each u in X there is a number H such that

[P(u)], < H

»

implies that there i

a solution of the equation (8) in a sphere

around u i X.

PROOF: We first need to observe that, for fixed u, the second of the
inequalities needed in the above theorem can a]ways be fulfilled py
taking, if necessary, a larger upper bound for HPJ(u)lL More pre-
cisely, denoting H[P'(u[]-lu' by B, for any give% r we need only

guarantee that
K> 1/Br

which is certainly possible since K is an upper bound. Then

observing the first inequality needed in the theorem we deduce that

IP(u)] < 1/2K8?

4
-

implies that there is a solution of (8) in S(u,r), and the-corollary

is proven.

"Remark 1. The conclusions of the Kantorovich theorem could also
be used to deduce a "local uniqueness” result. Howevef, for the

partial differential equation under consideration a solution can be
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shown to be unique using the maximum principle (see for example

[2]), so this is of Timited interest here.

' Remark 2. The theorem and corollary proven above say something

essentially-about retention of existence under a perturbation. To
see this more clearly, suppose we assume for the moment that the
function u 1in the above is the function identically zero.A Also,
note that when

D(x,0) = O

>

the function identically zero is a solution of the equation being
studied. Therefore, the corollary says that under a sufficiently

small perturbation of the function
D(x,0) = P(0)

from zero (in the norm of X) there still exists a solution (in X)

of the equation.

Remark 3. We give here a more concrete class of coefficients
which is contained in the class Gm utilized above. This class
consists of functions with domain R x E" which are polynomials in
the last n variables with coefficients that are uniformly Holder
continuous functions of the first n. More precisely we consider

functions

o V. Va2
F(x,8) = ai.'.j(x)£11...gn3

(recall the summation convention) where Vis --.5 V5 vary,-over the

lowest through the highest powers appearing on E1s «ees g;,

respectively, and each function a; j is an element of Y.
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To see that such a function is in Gm we note that this new class
is closed under partial differentiations with respect to any of the

last n variables, and that

F(x,£) - F(y,n) = [?. .(x) - a, .(yi]gxi ‘e gzj

Teo

tag y)[& i.. 3 -n¥ nxJ]

The result follows from Holder continuity of a; j and the fact

that a continuously differentiable function of n variables satisfies
a uniform Lipschitz condition on any compact se; (the Lipschitz con-
stant depending, of course, on the compact set.).

We will deal with an equation whose coefficients are of this

type in the apnendix.

Appendix. An example: the Minimal Surface Equation.

We apply the results obtained above to the n-dimensional "minimal

surface" equation. We seek a function u satisfying

(9) M(u) = (1 + Ui, )Au - ugugU 0

in R, and
u=4é¢

on 9R. Ue have used here and will use henceforth the notation

- = 32, /oy
u; = dufox, , uj; = u/%xiaxj ,

that #s partial derivatives are indicated simply by subscripts.
In order to pose this problem in the setting of the previous

paragraphs we assume immediately that the given boundary fJnction

is the restriction to 3R of some function in C2+a(R) which we

will also call ¢. Then, setting

1

v u- ¢,
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we obtain from (9) the equation

P(v) = M(v +¢) =20

t
for v subject to a homogeneous Dirichlet boundary condition. Clearly,

we may think of P as an operator mapping X into Y, and a solution
of the operator equation

P(v) =0

in X 1is a solution of our problem. In fact, the last remark of
paragraph 3 together with the lemmas of that paragraph show that P
is twice continuously F-differentiable on X, and that the norm of
its second derivative is bounded on spheres. In order to make use

of the theorem of paraaraph 3 we need only show that the F-derivative

of P is a (uniformly) elliptic operator for each v in X. Ue have

P(v) = N(v) + L{v) + M(¢)

where the operator !1 is defined in (9), and
= -3 -2 -
N(v) (Vivi + 2¢1V1)AV viijij L¢ivjvij +BPVSV, ¢ijvivj s
L(v) = (1 + ¢.0.)av - B305Vi5  Dy0q4Vy t 200 44v4.

It is clear that M(¢) is an element of Y and that the linear
operator L defined above is an element of B(X,Y). Thus, the
F-derivative of P 1is that of N added to L. (The derivative of
a 1ingar_operator is the operator itself and the derivative of a .,
sum gs the sum of the derivatives.). Routine manipulations show
that

N(v + h) = il(v) +Q (h) + R (h)
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where

Qv(h) = (Vivi + 2¢ivi)&h - (Vivj + 2¢ivj)hij + 2/w(v1.hi + ¢ihi)

\

+ Zvij(vihj + ¢ihj) + 204 Vihi - 2¢ijvihj s
and Rv(h), for fixed v, vanishes quadratically in ]hlz_,_Ol as
Ihl,,, 9oes to zero. Since the operator 0, so defined is an

element o%' B(X,Y) we have

Therefore the principle part (the part involving only second partials

of h) of H'(v) 1is aiven by

pr N'(v)(h) = (v,v.

Vit 2¢1V1)Ah - (Vivj + 2¢1Vj)hij

and that of L by

nr L(h) = (1+ ¢i¢i)Ah - ¢i¢jhij
so that
pr P (v)(h) = (1 + (o5 + v)lo5 + vi))Ah - (og + vyl + vidhys.
Setting u = ¢ + v, the relevant quadratic form is aqiven by

_ 2

Since, by the Schwartz inequality,

- 2 2
ui“jxilj = (uixi) 5_(uiui)lxl ,

we have

alr) > [x]%,

and the required uniform ellipticity of the F-derivative is demonstrated.
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We are now able to apply the theorem of the previous paraqraph
to the operator P. We restrict ourselves to asking whether a solu-

tien exists in a neighbarhood in X of 0 for the operator equation
(10) P(v) = 0.
Let K = K(r) be such that

P (v)]l < K, v e S(O,r).

Then the above mentioned theorem quarantees that if

»

kB?|P(0)| < 1/2 ,
and
1/KB < r ,
where

B = I[P (0)] 1,

there exists a solution of (10) in S(O,r). We force the second of

the above inequalities to hold simply by choosing
K> 1/8r ,

that is by choosing K to be the maximum of 1/Br and some upper
bound for ||P"(v)]] on S(O,r). Then, noting that
P(0) = M(¢),
we know there is a solution of (10) in S(O,r) whenever
M)l < 1/2 K8,

We can now state

Theorem. For each r > 0 there is a number H depending only on r

and a constant bounding the C  norms of the first and second de-
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rivatives of ¢ such that
IM(e)], < H

¥
implies existence of a solution u of the equation (9) such that

u is i

—riame

Cé+a(R)’ and

‘U - ¢‘2+0. <r,

PROOF: We will, in fact, give an H explicitly in terms of r, B,
and Ca norms of the first and second derivatives of ¢. The re-

su]% then follows from the fact that B 1is the smallest constant

possible in the a priori estimate
[h12+a < const. [P'(0)(h){,

which holds for the linear elliptic boundary value problem
P'(0)(h) = Ff (f inY),

since these constants depend only on an upper bound for the Ca
norms of the coefficients of the differential operator P'(0)
(which are quadratic expressions in the first and 2nd derivative of
¢) and the ellipticity constant for P'(0) which is one. It must
be noted here that we have suppressed the fact that such a constant
also depends on o, n, and R so that H does as well.

We must now give an upper bound for ||P"(u)ll on S(O,r).
We hgye

P*(v)(h,h) = (Av-+A¢)hihi-(vij-+¢ij)hihj

»+ Z(Vi + ¢i)hiAh - 2(vi:+ ¢i)hjhii‘,
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so that

[P (v)(h,h)] < [Blv],y, + 180, + ?a§|¢ijla t2 m?xl¢ila](1h|2+a)2 ;
\ 3

and
1P (V)11 < 4lv] 5y, +2(6)

where

ro) = lAMa * ?a§l¢1'jla +2 m?xlq’ila'

Thus, for v in S(0,r), we have
P (v)l < 4r + x(s).

We may then take

K = max{%; , 4r + A(¢)} ,

in the expression

1/28%K
for H.

Some light can be shed on the expression for K by observihg

- aB +4/2%82 + 168

that for r < r , where

o © 3B ’
we have
-£1,;F3_4r+>\,
and
=TI
H = 55 >

and for r > r,

‘ l—-5_4r + A,
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and

1

H=-——2—.——-——-——-
2B%(4r + 1)

t
where o is the unique value of r for which

1 _
'8—F_4r+kc

We also note that o is the optional choice for r 1in the sense
that H has an absolute maximum for this choice of r, and that H
goes to zero as r either goes to zero or to infinity.

The above theorem is stated so that the function ¢, defined on
all of R, is somehow given to us. Ue could turn the situation around
somewhat.

Suppose we are qiven a boundary function ¢o which can be ex-
tended to a function defined on R which is an element of C2+Q(R)
and which is such that the Ca norms of the first and second deri-
vatives of at least one of the "extensions" are bounded by some
specified constant. ‘e call éuch extensions admissable. Note then,
that the numbers B and A used above are determined by the constant
used to define "admissable". Further, suppose we choose the value
o of r determined by this constant. The above theorem then
guarantees existence of a solution of the boundary value problem
(in C2+u(R)) if ¢ has an admissable extension ¢ which is such
that:'

Me)| < H=r /28,

that is, the problem has a solution if there exists a function which

is sufficiently close to being a solution in the above sense.
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Remark. In connection with the above we mention a recent result
of Jenkins an Serrin [5]. They show that for a C, region there is
a \number fﬁ, depending on the region and the uniform norms of the
first and second derivatives of the boundary data, such that if the
oscillation of the boundary data is less than B there exists a
solution. The number @ is shown to depend in a precise way on the
mean curvature of the boundary (mean curvature everywhere non-negative
“implies £ = =), and their result is also far better than ours in
other ways. = We would, however, like to point out that in the case of
a region whose boundary does not have an everywhere non-negative mean
curvature (B finite) our result gives a sufficient condition for
existence that involves relations between norms of the first and
second derivatives of an extension of the boundary function, without

explicit restriction on its oscillation on the boundary.

We conclude by noting that the theorems we have presented are
constructive in that by using the Kantorovich theorem they produce
a sequence of functions converging to a solution, the elements of

this sequence being solutions of linear problems.
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