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1. IXTRODUCTION 

The first document of this report, ‘‘Summary Report, ’’ lists and briefly 
describes various forms of the q u a t  ions of motion and the stAbility cri teria 
for predicting the stability characteristics of an elastic airplane and gives 
results of their application. This appendix is intended to give detailed 

developmefits and discussions of the material summarized in that document. 

In dealing with the stability and control of elastic airplanes the engineer is 
confronted with three distinct problems: 

(a) Equilibrium of steady-reference-state* flight conditions; 

(b) Stability of steady-reference-state flight conditions; 

(c) Response of the airpkne to control and/or gust inputs and the 
behavior during unsteady maneuvers. 

A s  specified in NASA Contract NXS 2-3662, no gust inputs will be considered. 
Also, since unaccelerated (interpret.ed as approximately constant speed) flight is 
the object of the study, no truly unsteady maneuver will be considered. 
Therefore, for the purpose of this report, problem c is defined as: response 
of the airplane to small control inputs. 

Other fundamental restrictions that apply to this contract are: 
4 

(a) Only free-flight conditions will be investigated (no takeoff, landing, or  
ground efiect). 

(b) No thermoelastic effects will be considered. 

(c) No electromagnetic effects will be considered. 

Any solution of problenis a, b, and c will require the definition of the shape 
of the deformed airplane. This implies that even in steady-reference-state 
situations the equatioiis of motion must be coupled with the state of internal 
equilibrium. 

To describe the for( ,s acting on the elastic airplane it is necessary to know 
the shape of the deformed airplane. Two possibilities present themselves: 

*Steady state is defined as that state for which no state variables change with 
time, with respect to a body-fixed asis system. 

1 



The airplane shapc is defined in s a n e  reference flight condition. This 
could be a midcruise condition, where the airplane shape is defined to 
obtain a given lift-to-drag ratio. 

The airplane shape is defined in the jig (jig shape). In this condition it 
is generally assumed that the structure is continuously supported 
(unloaded state, no internal stresses). 

' b  

To compute the stabiiity and control characteristics of the elastic airplane 
for all flight conditions it is necessary to know its jig shape. In case Mthere is 
no problem. In case althe jig shape must be determined first  by carrying out a 
so-cslled inverse aeroelastic solution. 

With this background in mind, a detailed development is presented of the 
equations of niotion for maneuvers of elastic airplanes during unaccelerated 
flight. After presenting the derivation of the general equations of motion for an-  
airplane, these equations are simplified and expanded into forms used in the 
solution of the following problems: 

(a) Equilibrium of steady-state flight conditions; 

(b) Stability of steady-state flight conditions; 

(c) Response of the airplane to smail control inputs. 
These equations are applicable t o  large, flexible supersonic airplanes that may 
operate in a flight regime extending to Mach 5 at 30 000 meters altitude. 

Emphasis has been placed on retention of BS much generality as possible in 
the equations of motion, A s  the equations have been expanded into forms that 
allow the solution of specific problems, the assumptions and approximations 
made in so  doing have been carefdly stated. In the text each asmmption is 
identified in the margin by the letter G, A,  S, or  D, followed by a number. For 
easy reference in reading the text all assumptions are summarized in Sec. 3. 

Static and dynamic stability criteria are derived for an elastic airplane. 
In their mathematical formulation these cri teria are the same for either elastic 
or rigid airplanes. The meanings of stability, stability criteria, and associated 
concepts are defined. 

Dynmiic f iability cri teria are developed with four methods: 
(a) Characteristic equations methods; 



(b) Time history method; 

(c) Energy decay method; 

(d) Lyapunov method. 

The Lyapunov method was included to cover the case of nonlinear and/or 
noiiautonomous equations of motion. 
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2. SYMEOLS 

This list includes the syrnbols found i n  thc SLinin1;1ry and  ;tppt'nJiscs. I n  diffcrtnt 
technologies sottie of the sytihols Iiive different meanings. For esamplr, E nic;liis 1lownw;tsIi 
angle to ail aerod) naniicist, but strain to ;I structural engineer. I n  these C;I:CS the several 
definitions have bwn  listed after thc sylnboi. 

General 

Aspect rtatio, nonclirnensional 

7 
[A1 Steady aerodynamic in flueiice coefficieii ts niatris. nit'tcrs-/radi;in 

Unsteady aerodynamic influence coefficients matriu, iiieter'-st.contls/ 
rdd ian 

(A1]  , [A, ] ,  -. [A3],  Arroclynumic matrices, newtons, newton-meters 

[A& I A j l  

a Rout of charactcristii: eqtiation, scconcl-' : l if t  curve slope, radian-' 

Speed of sound, niett.rs/second 

- Vertical tail elastic to rigid lift ratio, nondiriiensionril 

1 a 7 Acceleration, meters/second - 
b Wingspan, meters 

CY2 Cycles to damp to half amplitude, nonrliniensionril 

Cycles to (1 o ii b Ir: amp I it utle, no nri  irnen sio na 1 c2 

CD Drag coefficient, D / i s ,  nonditriensioiiai 

CDi 

CL 

cm 

induced drag coefficient, D~ / i s ,  nonciimensional 

Lift coefficient, L / i s ,  nonriimensional 

Rolling moment coefficient, XI, / $b, noridirnensionul 



I C  I 

IC',] 

C 

CR 
- 
C 

'ref 

D 

Di 

( D l  

d 

Pitching rnorncrit coefficient, hI 

Normal pressure force coefficient, N I qS, notdimensional 

Yauing moment coefficient, bl, / i S b ,  noticlitntnsional 

I ?SF, nonllimcnsiona 1 Y 

Presslire coefficient, ( P  - P,)/il,, nonJi;nensional 

Thrust coefficient, T / GS, nonclimc.nsional 

Side force coefficient, Fy / GS, nondiniensional 

Flexibility nia t ri x with re fere lice p i n t  f i  sed, nit' t e rs/ ne w to n 

Flexibility nia trix w i t h  reference point fisecl and wit I1 reference 
point rows and columns retiioveil, nizters/newton 

Flexibility matrix w i t h  reference point free, meters/ne\vton 

Residual flexibility matrix, metets/nt'wton 

Wing chord, meters 

Root chord, meters 

Mean aerodynamic chord, meters 

F for the 707 and CR. for the SST, rnrters 

Drag, newtons 

Induced drag, neivtollb 

Transformation iniiitrix froni fluid to stability tixis systeni, 
nondirnensional 

Elastic tlisplacrnient, meters 

Coiutnti inatrix of elastic ctisplact'tiient cuniyoncnts :it t l ie it'1 

ele tneti t.  meters 

Ma t r i .y of e las t ic 11 is p la ce ti1 c'n t p" i't n r  bit t io t i  , nic t t'rs 
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4 Inkrtial c n e ~  der Ay, newton-meters #kilogram 

c 

- 4  - Thrust force matrix, newtons 

Perturbation force nwtrix, newtons 

~ ~ % : P O ~ Y I N I I P I ~ C  perturbation Force matrix, newtons 

Thrust perturbation force matrix, newtor.:, 

Shear modulus, newtons/tneter2 

. Gross weight, newtons 

Structursl influence futictions in diadic fortn with reference point 
free, meters 3 /newton 

Aerodynamic influence soef'icien ts (sup~pSotric), newtons[radidian 



4,' 
hll 

( hn -' 1') 

iH 
A f i A  
i ,J,  k 
i, j, k 
--* 

J 

K 

K.. 
!! 

KN 

Ki 

Ky 

Maneuver poiti t posit ion, no ndi nit.nsional 

Neutral point position, nondiniensional 

Static margin, no titi inie risiot ial 

Velocity of panel noniinl to the streamwise direction, mett'rslseconci 

7 Monients and products of inertia, kilogram-mcters- 

lden t it y iiia t ri x, nonct i nie nsio nal 

Horizontal tail deflection, degrees 

Unit base vectors. notirlirtieasiotial 

Torsional constant, meters4/rarlian 

Angular deflection at the exposrl,.l liorizontil t3il due to a unit load 
at the tail, radians/ncwtoti 

Structural stiffness coefficient, newtons/tnt'tzr 

Ratio of aircraft nose lift to aircraft wing lift. nondiniensional 

Effective change in vertical tail angle of sideslip ilue to a unit change 
in rolling acceleration- nieasured at the exposed vertical tail. degreesf 
radianlsecond- 7 

Effective change in vertical taii angle of sideslip due to a unit change 
in yawing acceleration nieasured at the exposer! vertical tail, degrees/ 
radian/second 2 

Effective change in vertical tail angle of sideslip due to a unit change 
in side acceleration nieasured at the exposed vertical tail, degrees/ 
me ter/se cond 2 

Effect of lift carryover on the body due to the wing, nondiniensional 

Effect of lift carryover on the wing due to the body, nondiniensional 

Stiffness mat ix with respect to fixed reference point, newtons/meter 

7 



k 

E lenir n t s t iffnebs tiiii t rix , tic \v to tis/ r ne t er 

Stiffness matrix \c.itli respect to f ~ c .  reference pu.$it. nwtonsfmrter  

Generalized stiffness matrix ivith fret. reference point, IMVCUI~S/  

meter 

Thermal conductivity, new ton-me trrs~sccouii-~~~eter-tlt'~rctes Celsius: 
elastic constant, new:ons/metrr-; Strou1i;il niumber, noiitlinnr.ii~ioii:{t 

7 

Corrector matrix for influence coefficients. nr>nclimensio~ial 

Lift, newtons 

Mointnt arm, meters; characteristic length, nirttcrs; pressure diffrrwce - 

across surface, newtons/meter- 
3 

Wing cref/4 t o  horizontal tail cref/4, nirters 

Wing cref/4 to  vertical tail c&4, meters 

Direction cosines, nondimensiond 

Mach number, nondimensional; mass of the airplane, kilograms 

Moment, meter-newtons 

3 
Ine r t ial matrix, kilograms, kilogram-me trrs- 

Generalized mass matrix, kilograms 

Direction cosines, nondimensional 

Per turba tion moment. meter-newtons 

Mass matrix, kilograms 

Diagonal mass matrix, kilogranis 

Yawing momeii t ,  me fer-newtons 

Normal force, newtons 

Load factor, tiondimensional; number of elastically connected niass 
elements used to represent the airplane, nondimensional 



Qi 

(I- 
9 

Direction cosincs of the norinal surface, nondimensional 

Unit vector normal to the surface, nonJinirnsional 

Diagonal matrix ;f panel unit normal vectors, no~idimension~il 
' C  

Period, seconds 

Components of the anguhr velocity Gin the body axis system, radians/ 
secoii J 

3 TOM pressare, newtons/nieter- 

Aerodyrmiic panel pressure forces, newtons 

3 Static pressure, newtons/meter-; roll rate, radians/swond 

Perturbation components of angular velocitb i+, in the body axis 
system, raclia ns/srcond 

Generalized force, arbitrary dimensions " 
Matrix of generaliixd aerodynamic and thrust forces, arbitrary 
dimensions* 

Pitch rate, radians/second; rate of internal heat energy addition, newton- 
meters/second 

Generalized coordinates, arbitrary dimensions" 

Dynaniic pressure, newtons/meter 2 

Pitch rate, ycref/2V ,nondimensional 
C I  

Matrix of generalized coordinates, arbitrary dimensions" 

Matrix of generalized coordinates of elastic free vibration, arbitrary 
dimensions" 

Cantilever eignvectors, nondinienaional 

*The units of a generalized force times the generatized coordiiiates must be newton-meters. 

i 
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R 

Rk 

R 
c 

r 

A r 

r -L 

. 's 

L 
- r' 

-a 

'0 

S 

CSJ 

S 

T 

Univt.rsa1 gas consttin t, ut.~vton-rneters,'kilogi.aii~-il~~r~r:~ Lelviti: 
magnitude of position vector, meters: region of Xy plrtnr: not covered 
by the airplrtne or wake, nondimensional 

Reynolds number, nondimensional 

Position vector a t  an initial instant of time, meters; body force per 
unit volumo, newtons/meter 3 

Reference distance, meters; inagnitiide of the position vector, meters 

Yaw rate coniponsnt, r b / N  nontlimension~il 

Position vector relative to the body axis systtm, meters: position 
vector relative to tlis fluid axis system, meters 

-. - cl' 

Position vector of the center of gravity relative to the flitid axis 
system, meters 

Position vector rclative to the stability axis system. meters 

Position vector relative to inertial space. meters 

Position vector of the center of gravity relative to the inertial space, 
meters 

Position vector in the iinclefornied airplane relative to the body axis 
syste nit meters 

Matrix of airpknne positivi1 and orientation perturbations. meters, 
radians 

1 
Reference area, meters-; airplane's projection on the XY plane, 
nondimensional 

3 
Diagonal matrix of panel areas, meters- 

Complex frequency fitnction, 1 /seconds 

Kinetic energy , ne w ton -me t e rs ; t Iir Lis t , ne w tons ; ti ni e, seconds 

Time to damp to !S amplitude, seconds 

Time to double the amplitude, seconds 



U 

u, v, \v 

P v, 

\V 

x ,  Y, z 
x, Y I  

Rolling convergence mode root, I /seconds 

Spiral mode root, l/seconds 

Time, seconds; airfoil thickness, meters 

Nonrlimensioni~lizing time factor, seconds 

Potential energy, newton-meters 
a 

Cartipotients of velocity V, in the body axis system, rneters/second 

Perturbation components of tfie velocity in the body axis system, 
nieters/second 

Generalized coordinates, nondimensional 

Forward velocity coniponrnt, ii/Vc nondiinensionril 

Genera1i:zecl siqstic displaceriieri ts, meters 

1 '  

Lyapunov function, nondimensionaI; volume. meters3 

Equivalent airspeed, tiieters/second 

Velocity vector of the airplane center of gravity, meters/seconil 

Velocity vector, meterslsecond 

Perturbation velocity vector of the airplane center of gravity 
nieters/second 

Matrix of airplane linear 3nd rotational rate ptxturb:itions, meters/ 
second, radhns/second 

Matrix of airplane linear and rotational acceleration perturbations, 
meters/second -, radinns/second 3 7 

Weight, newtons; airplane's wake projection on the XY plane, 
nondimensional 

Matrix of panel centroid distances to the reference point, meters 

Body-fixed-axis system (app. A ) ;  fluid axis system (app. B )  

11 



x’, Y j ,  z’; 
x’, y: 2’ 

Y 

IN Ill 

lo1 

( 1  1 

U D  
Greek Symbols 

Bod y-fixed-a xis sys tein 

Axis system fixed to a material point 

Earth-fixedaxis system 

Side force, newtons 

Matrix of spanwise panel widths, meters 

Vertical displacement of st ruc t iiral reference point . met ers 

Matrix of vertical dispkicemrnts of each panel from equilibrium, 
meters 

Square matrix 

Colunin matrix 

Row matrix 

Diagonal niatrix 

Transposed matrix 

Matrix inverse 

Determinant of a matrix 

All zero elements 

Column matrix of ones 

“Jump” in enclosed quantity 

Angle of attack, radians 

Angular rotation of structural reference point, radians 
.- ,. - -  

Angle between X body axis and V, , radians 

Matrix of panel slopes, radians 
1 

1 :.? 



Angle of sideslip, rrtdiins 
\ 

P2 

r 

Y 

E 

5' 

9 

e 
e 

9 Circulation, meters-/second 

Structural influence functions with reference point fixed in di;idic 
form, nieters /newton 

Fliglit path an&, radians; ratio of specific heats for air, 
nondimensional 

Finite change in sonie parameter, nondimensional 

3 

Control surface deflection, radians: arbitrarily small number, non- 
dimensional; Dirac's function, nondimensional; thickness ratio, 
nondimensions! 

Matrix of displacements relative to a space-fixed inertial systeni. 
meiers 

Matrix of flexible displ;it.;:ii?i--l1tS relative to the structural axis system, 
I meters 

Downwash angle, rzdims; arbitrarily small number, nondimensional; 
strain, nieters/meter 

Change in downwash angle at the stabilizer per unit change in wing 
angle of attack, a</&, radianslradian 

Damping ratio, nondimensional; nondimensionalized coordinate, 
nondirnensional; dummy variable, nondimensional 

Efficiency factor, nondimensional; coordinate, notidimensional: 
dummy variable, nondimensional 

Euler angle, radians 

Perturbed Euler angle, radians 

Strearnwise rotction of panel, radians 

Node rotations, radians 

Rate of change of Euler angle, radians/second 

13 



Qe. i 

e 

h 

V 

R 

P 

0 

aR 

r 

Rotational rate of paneled airplane about axis of rotation, radians/ 
b 

i second 

Rigid-body rotation about center of gravity, radians 

Angle mode matrix, radians/metcr 

Eigenvalue, nondirnensional; taper ratio, nondimensional; bulk 
modulus, newtons/meter-; Lame’s constant, newtons,’metcr-; sweep 
angle, degrees 

9 9 

Roots of characteristic equation, 1 /seconds 

Reduced mass parameter, nondimensional; Lame’s constant, ncwtons/ 
meter-; extent of influence region, tiondimcnsion;il 3 

Cantilever niodc shape matrix, iiondimcnsional 

Matrix of all cantilever modes, nondimensional 

Poisson’s ratio, nondimciisioiial 

Coordinates, nondimensional; dumiiiy variablcs, nondinicnsional 

Constant, 3.141 59. . ., nonditnensional 

Density, kilograms/metcr 3 

3 Normal stress, newtons/nieter-; density ratio, tiondimensional: real 
root of characteristic equation, 1 /seconds 

Rotation of structural reference axis system, radians 

Rectilitiear trdiislation of structural reference axis system, meters 

Cocfficicnt of viscosity, kilogranis/mcter-sccortd; shear stress, 
newtons/riicter-: time, nondimensional 3 

3 Total vclocity potcntial. Iiieters-/sccond; Eider angle, radians 

Nc *rnalizetl natural the  vibration riioclcs of tlic airplanc, iionditiicnsional 



d 

c 

Q 

cp 

J, 

52 

Subscripts 

A 

a 

ac 

Perturbation velocity potential, mctcrs; perturbcd Eulcr angle racliuns 

Rate of change of Eulcr angle, radians/sccond 

Ftee-vibration niode sliapc matrix, nondimensional 
‘ b  

.Rigid-body mode shape matrix, nondimensional 

Stress diadic, newtons/metcr- 

Normal mode of gencralized coordinate, nondimensional 

3 

Velocity potential. nondimensional 

Arbitrary positive function of time, arbitrary dinicnsion 

Euler angle, radians 

Perturbed Euler angle, radians 

Rate of cliange of Eulcr angle, radianslsecond 

Inertia diadic 

Phase angle, radians 

Frequency, radians/second; imagijnary part of a pair of coinylcx roots, 
1 /seconds 

Undamped natitral frequency, radians/secoiid , 

Perturbed angular velocity, radianslsccond 

Acrody namic: airplane; aileron 

Aerody iiamic 

Acrodynaniic cciiter 

Body rcfcrcncc axis systcni 
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D 

E 

E 

E ff 

EqEl 

- 

F 

HB 

h, tit 

1 

L.E. ,  LE 

Is 

P 

R 

r 

s 

Centcr of gravity 

Ceii tcr of prcssiirc 

Duteti roll mode 

Equivalcn t clastic (Formulation 11): elcva tor 

Eqnivalcn t elastic (Formulation I )  

Effec tivc 

Equivalcn t elastic 

Experiniental 

Flutter 

Handbook mcthods 

Horizontal tail 

Inertia relief 

Lowcr surface 

Leading edge 

Lifting surface theory mc.tliod 

Phugoid modc 

Rigid; rudder 

Rolling convergence root mode 

Spiral root 

Short pcriod 

Stability axis systctn; spiral modc 

I 



Sea Ievcl SI 

t 

11 ’ 

v, vert, V.T, 

W 

WB 

WBT 

WT 

0 

1 

Tip; total 
I 

Upper s u r f m  

Vertical tail 

Wing 

Wingbody 

Wing-body-tail 

Wind tuiiiiel 

At a= 6~ = il, = Oo; initial state 

Steady state riiotion variables; triiniiicd condition 

Undisturbed condition 

17 



3.' ASSUMPTiONS 
e 

. Assunaptions used in developing tke equations mid methods are listed here for 
referctm. Wren: appropriate in the stti11miiry Eport, pertinent assump tioas used in 
ob taitihrg a result or equatioti are given. I-loiww, disciissioiis of the sssiiitiptialls as they 
come into tire developments are given ia the appendixes. Flirther descriptions and 
justification3 a x  iiicluded in those discussions. 



Gcneral Assumptions 

Airplane mass and rtlass distribution i W  constant with time 

No thcrmoebstic effects considcrcd 

No electromagnetic effects considcred 

Symnietric airplane 

Variation of air dctisity witn alti tudc is ncgligiblc 

No gust effects coiisiclcred 

Gravitational forccs oti the t?clcl arc ncgligiblc 

Small perturbtttioi~ thcory 

Large perturbation thcorp 

Origin of coordinatc systcrn is at tlic cctitcr of tnass 

Arbitrary purturbations 

Aerodyiiatriic Assiuny tions 

Potentia! flow thcory 

Thin body 

Slender body 

High aspect ratio 

Prandtl boundary laycr approxima tioti 

Perfect gas, thcrmally nonconducting and chctnically tronrcacting 

Isentropic flow 

Stcady tlow 

19 



Uristcady flow 

Inviscid flow 

Quasi-steady flow 

Aerodytianiic inkluence coeft'icien ts for iioiizcro sideslip 

63 
*@ 

@. 
@ Continuum flow 

@ No finite shock W ~ V C S  

@ Velocity field is irrotational 

Structural Assumptions 

Hooke's law applies 

Only small strain and dispbcemcti t gradients arc cotisiilercil 

Structural datnping is ncgligiblc 

Structural pcrturbatioiis can bc rcprosentcd by norinid iiioilcs 

Coniplctely elastic math  niodcl of clastic iiirpluIlc 

Residual elastic math tnodcl of elastic airplane 

Equivalent elastic math model of elastic airplatlc 

Rigid math niotlcl of clastic airplaw 

Airplaiic disylacctiictit vcctor ficltl is swI1 tliat tlic cciltcr of grivity 
docs not displace or rotate 

X component of cliistic detlcctioti is rwgligiblc 

Y cornpoiletit of clastic dctlwtioii is ncgligil-'c 

Tne striicturc cat1 bc atlcciuatcly rcprcsctitcd with beams 

Inertia of cadi tiuitc iiiass clcuicnt about its cctitcr of gravity is 
ncgligiblc 



Dynamic Assumptions 

Free flight only 

No spinning rotors 

Steady-state curvilinear fligti t 

Steady-state rotation is stntlll 

Zero-lag thrust deriva tivcs 

CL; is negligible 

Cy;,, Cy;,, C‘l ** , and C ** are ncgligiblc 

C is negligible 

Steady-state rcctilincar rtiotion 

Stick-t~xed-and-ii~ia~ip~ncn tetl airplane 

Tlirust perturbation forces arc ncgligiblc 

Steady statc, wings level, and t w o  sideslip 

Level flight (steady statc) 

Linear aerodyiiainic stability derivatives 

Tws-dcgree-of-frcedom loiigi tudinal motion 

YI I’Y* 

DY 
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4, GENERAL EQUA'l-xONS OF MOTION FOR AN ELASTIC AIRPIANE 

4.1 Introduction 
' b  

In formulatiug the general equations o€ motion for an elastic airplane under 
the ground rules of NASA Contract NAS 2-3662, the following restrictions 

Q ~ ~ ~ ~ T  No gust effects are considered, 

0 Only free-flight conditions are considered (no takeo€f, landing, or  
ground effect), 

@ e No electromagnetic effects a r e  considerecl. 

@ 0 No thei*moelastic effects a r e  considered. 

The flight domain of validity of the equations of motion will be pointed out 
as  the analysis proceeds, but will never be less extenshe than the one shown 
in fig. 1. 

Restrictions (GG), (DI), and ((33) are clear: however, ((32) deserves some 
comment. In aereepastic problems it is coninion to assume that changes i n  
strain distribution have a negligible effect on the tempel-ature distribution and 
the teaperature magnitude, However, changes in temperature distribution 
and magnitude may have significant effects on the strain distribution, In light 
of this, restriction (G2) is interpreted to mean that the temperature distribu- 
tion and temperature magnitude are known. 

In fig. 2 the airplane is shown as  a three-dimensional elastic body that 
is unrestrained in space. An inertial, rectangular Cartesian coordinate 
system (X', Y', 2') is used to describe the motion of the airplane relative to 
the earth. The airplane is assumed to consist of n finite mass elements, 

@each connected to (Xf , Y', 2') by a position vector The n mass 
elements a re  connected with each other through the elastic properties of the 
airplane structure. A mathematical description of this structural connection 
is given later, 

Assttmptioi S5 n no way restricts the validity of the analysis until a 0 
numerical value i s  associated with n . This will be done in most practical 
situations and leads to the familiar lumped mass representation of the air -  
plane, whereby it is recognized that not all masses a re  necessarily structural, 



Region covered 
in investigation 

Flight conditions 

0 SST-30' weep 
A SST-42' sweep 
0 SST-72' sweep 

I I 1 
1 2 3 4 5 

Mach number 

/ 

FIGURE 1. - FLIGHT ENVELOPE FOR INVESTIGATION 
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X'Y'Z' Earth-fixed axes 
XYZ Body axes, origin P 

P Lanter of mass 
always at mass center 

FIGURE 2. - ELASTIC AIRPLANE AXES 

a 



For the time being, n is assumed to be indefnitely large s o  that the analysis 
remains general and the eqtiations can be maintained in the integral form. 

A reference point P is selected in the airplane, and the prigin of an 
qrthogonat coordinate system (X, Y, Z) is fixed to this point. The origin at 
P is located in inertial space by the vector 
elastic airplane a r e  located with respect to P by the vector $ t  . The 
following relation is  now implied: 

-3 rd. . The mass elements of the 

Three components, each representing a translational degree of freedom , a re  
required to define $: completely. To define the orientation of (X, Y, 2) 

relative to (X', Yt , Zt) three orientation angles are required; each angle 
represents an angular degree of freedom. To locate n mass elements whose 
positions relative to P a re  defined by r , 3n components a re  required; 
since the components a r e  measured relative to P , however, there a r e  
(3n - 3) translational (elastic) degrees of freedom. To define the orientation 
of each mass element inside (X, Y, 2) requires (3n - 3) additional degrees of 
freedom, and this completes the description. In total, then, the eIastic 
airplane when represented by n finite mass elements (very large n ) has 
6n degrees of freedom. For  a rigid airplane the position and orientation of 
the n finite mass points remain constant in (X, Y, Z), 

A 

The first six degrees of freedom are analogous to conventional rigid- 
airplane degrees of freedom, The remaining (6n - 6) degrees of freedom are 
the elastic degrees of freedom. A total of 6n equations a re  needed to 
describe the motion of an elastic airplane, Fortunately, there a re  practical 
ways t n  reduce this large number of equations without significantly affecting 
the solutions to the equations of motion. It may be noted in the following 
discussion that when n is allowed to increase without bound ard the airplane 
is represented a s  a continuum, the rotational degrees of freedom of the mass 
points arc no longer distinguishable, In fact, the concept of elastic degrees 
of freedom i s  questionable in a continuous representation, 
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4.2 Equations of Motion for the Rigid Degrees of Freedom 

The six rigid degrees of freedom are  described by force and moment 
equations in accordance with tho laws of conservation of linew and angular 
rpomentiim. These equations in vector form are: 

-1 
The symbol R is defined a s  the body force per unit volume and i s  used here 
to represent gravity through the relation: 

J 

R 0 . 5  
3 

The symbol F is defined as the surface force per unit area and represents 
both aerodynamic and reactive (thrust) forces. The density per unit volume 
of the elastic airplane is represented by 
represented by the integral' of PAdV is 
This yields: 

MrP,dV JV , 

PA . The sum of the mass elements 
assumed to be constant with time, 

M = constant (4.5) 

Thus the airplane mass M is constant with time. The mass distribution is 
also assumed to be constant with time. Hence, assumption G1 also implies 
that fuel slosh is not accounted for. 

0 
It is convenient to define 9 as being always at the center of mass of 

the airplane. This implies that: 

(4.9 

Assumption C10 in no way restricts the validity of the analysis, but simplifies 
tho equations of motiion, 

0 
Even though P is always taken as  the center of mass, it  is not always 

associated with the same material point on the airplane. The consequences 
of this fact in defining elastic deformations are cliscussecl in par. 4.4, 



Because of equation (4. l), equation (4. G)  inipliss that: 

(4.7) 
' b  

&quatiom (4.4) anct ( 4 . 3  allow simptification of equation (4.2) as  follows: 

Substituting equations (4 , l )  and (4.4) into eguation (9.3) yields, after some 
rearrangement: 
--. 

(4.8) 

(4.9) 

These results a r e  algebraically identical to those coinmonly obtained for the 
equations of motion of a rigid airplane. 

Equations (4.8) and (4.9) describe the gross motion of the elastic airplane, 
In particular, equation (4.8) states that the center of mass P follows the law 
of motion for a single mass particle equal to the total mass of the elastic 
airplane ancl under the ac2ion of the resultant of all forces, Equation (4.9) 
states that the rate of change of moment of momentum about P is equal to 
the resultant moment about P . 

2 2 
However, F and r depend on the s b p e  of the elastic airplane and are 

therefore functions of the elastic degrees of freedom, (Just how $ and r 
are  related to the elastic degrees of freedom is the subject of later discussion.) 
Notice that in equation (4.8) the elastic properties of the airplane enter only 
into the right-hand side. In equation (4.9) the elastic properties appear Eo, 
enter the left-hand side as  well as the right-hand side, since r is a position 
vector inside the elastic airplane. How this affects the equations of motion 
will be come clear later. 

2 

A 

Equations (4.8) and (4,9) say nothing about the internal equilibrium of 
the airplane structure and a re  therefore not sufficient to describe the motion 
of the elastic airplane, Information on the remaining (en - 6) elastic 
(structural) degrees of freedom must be obtained by examining the internal 
equilibrium equations for  an elastic airplane, 



4.3 The Internal Equilibrium for an Elastic Airplane 
I\ 

Assunie that the force vector F (aerodynamic ancl reactive) for an 
‘ b  elastic airplane may be written in (X, Y, 2) a s  follows: 

(4.10) 

2 
At the surface 04 the elastic a:?ulane the components of F a re  related to the 
internal stresses by the boundary conclitions: 

(4*11) 

where $ is a unit vector normal to the surface and is positive outward. The 
scalar products are the components of $ and are the direction cosines 
defined by: 

- +  n -  L = cos(x,% 

The st ress  quant’ties o and T represent the nine components of the s t ress  
tensor In diadic notation, equations (4,’ll) may be written: - -L- 

F z F.4 (4. i3) 

where 5 stands for the s t r ew :isor (second crder). 

A convenient way to IOOIC at 7 is in matrix form: 
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Equation (4.13) then becomes a matrix equation: 

vyhere (n} rLpresents the three components of 3 . 
The eqiiations of motion (4.2) and (4.3) are  also applicable to consider- 

ation of tho interior of the elastic: airplane. However, the local (interior) 
surface stresses are represented by expression (4.13). Therefore, 
equation (4.2) in terms of the s t ress  tensor yields: 

Likewise, this yields for equation (4.3) : 

2 1  A 
With l?'= ro I- , the equation reduces to: 

The surface integral in equation (4.16) may be transformed into a volume 
integral by: 

accorc%g to the Divergence Theorem. Similarly in  equation (4.17): 

Equations (4.16) and (4.17) may now be written as: 
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and 

These equations are satisfied ~vlien thelutegraiicls are zero; therefore, the 
equations of internal equilibrium for an eIas tic airplane are: 

(4.20) 

The next task is to expand these equations into component form. 

Introducing 

i 
and 

it follows, after substitution into equation (4.20) , that 

(4.22) 

(4.23) 

(4.24) 

The result of expanding equation (4.21) and using equation (4.20) is: 

z y  =&, -2.h = r z x ,  Zjj = Z Y  (4.25) 

no 



This means that the s t ress  tensor is syniiiictric (ref, 8 ) .  

Equations (4.24) and (4.25) are riot sufficient to describe fiilly the state of 
internal equilibrium of the elastic airplane. The connection b+etween s t resses  
and strains, as well as compatibility between strains and disylacements, is 
lacking. Assuming that the strains and displacenieat gpxlieiits are small, the 
strains can be wri .en in ternis of displacements (app. B): 

‘ C  

(4.26) 

where u, v, and w are components of elastic deformations along (s, Y, z). 
A relationship between s t resses  ancl strains for lioniogeneous, isotropic, 
elastic bodies at constant temperature may be written as: 

- -- 

(4.29 @ 

Hooke’s law has been introduced simultaneously with the assumption of 
small displacements. This, coupled with the assumption of small strains 
and displacement gradients , has considerable significance on the interpreta- 
tion of equations (4.24) and (4.25). Those equations were developed from 
consideration of equilibrium of a deformed body; thus, the point where stress 
is evaluated in those equations differs froiii the point where strains are 
evaluated by the elastic displacement, The change in coordinates is taken 
to have negligible effect on the values of the stresses or strains; these are 
the usual approximations made in the classical theory of elasticity (ref. 8). 
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Eqmtions (4.24), (4.25), (4.26), and (4.27) form a sufficient basis to 
deteimine the forces and displacements in the elastic airplane as functions 
of time. Just how these eciuations can be cast in a form useful in analyzing 
stability problems of elastic airplanes is the subject of par. 4.4, where the 
doncept of influence coefficients is introduced. This concept is shown to be 
a direct consequence of assuinptions S1 and S2 , providod no local structural 
instability (buckling) occurs. 

' C  

0 0  
4.4 The Internal Equilibrium Equations 

Using Influence Coefficients 

Assumptions S1 and S2 restrict the validity of the analysis up to this 0 0  
poin: to cases with small strains and perfect elastic behavior (i. e. linear 
stress-strain behavior). This is justified because the strains are actually 
s r d l  in the safe operating range (from a structural viewpoint) of large 
elastic airplanes. It follows, therefore, that linear relations exist between 

@ forces and deflections. Moreover, froin the "perfect elastic'' assumption@ 
it follows that when external forces a re  removed the structure assumes its 
initial foim. To illustrate the physical significr,xe of this,  consider the 
following example. 

The linear relation between force and deformation can be written as: 

d = CF (4.26) 

where d is a deflection, F is a force along d , and C is a constant of 
proportionality that will be called an'influence coefficient. Figure 3 illustrates 
the meaning of equation (4.25). 

t '  

FIGURE 3. - LINEAR FORCE-DEFO&?lA TIONREL..! TION 
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In a more general sense it is possible to write ecliiation (4.28) in  diadic 
form: 

' L  
(4.29) 

This type of fonnulation of elastic deformations i s  extensively discussed i n  
ref. 42. 

In this case is a seconcl-older tensor, the components of which a re  
called. influence codFfcients. In the more familiar inatris forin, the com- 

i,Iated to the components of F by: 
2 2 

poileiits of d 4 

(4.30) 

The physical significance of the elements of matrix [ C 1 can be readily 
deduced from equation (4.30). 

ij  

The introduction of the concept of influence coefgicients represents no 
new assumptions or restrictions of the derivation. The influence coefficient 
concept is aa autoniatic result of assumptions S1 and S2 made in par. 4.3. 00 

Even though local strains are assumed to be small (assumption S2) a 
deflection of the structure can still be large. This is a well-known fact; 
typical airplane examples are the wings on Boeing models B-4'7, B-52, and 
70 7. 

0 

In airplane btructures, elastic buckling (nonlinear relation between di 
and F.) can occur even when local strains are small. In such cases it is 
theoretically possible t o  rewrite equation (4.30) in a nonlinear forin by 
allowing ICij 1 to vary with di, o r  to apply equation (4.30) locally, thereby 
constantly re-evaluating C.. . The consequence of such buckling on stability 
analyses is not considered in this report. 

1 

1J 

The concept of influence coefficients may be used to modify equations 
(4.24) through (4.27) and b:ing them into a more useful form. To do this, 
it is f i rs t  necessary to express these equations in  terms of displacenients 
u, v, and w rather than in terms of stresses. This may be done by 
inverting equations (4.27) : 
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where 

and 

(4.31) 

(4.32) 

(4.33) 

For more detailed discussions on these equations, see ref. 26. 

Substituting equations (4.31) through (4.33) into equation (4.24) yields: 

These a re  recognizable as Navier's equations. They are adjoined by a set  of 
boundary equations (conditions) that relate the surface traction I? to the 



surface displacements. These boundary coiiclitions follow by substitution of 
equations (4.31) through (4.33) into ecpation (4.11) : 

where 

Equations (4.34) may be written in vector form after introducing: 

This yields Navier's equations: 

(4.38) 

where .- 

$= a displacement 
2 R = a body force (gravity) 

f =  an acceleration 

Equation (4.38) can be written in symbolic form as foIlows: 

S-pAz= i5.a (4.39) 
u 

where 5 is now defined a s  a differential operator given by: 

Z=-LiCA+deRAD o/v + S+J (4.40) 
4 

It is now feasible to think of a new operator 2-l , inverse of , which 
has le r,rc.w "+y such that: 

N - 2  I 2 = & LP-/* 3) (4.41) 
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The attractive feature of this inverse operator is that it allows a symbolic 
explicit solut.ion for  d that represents the dePomecl shape of the elastic 
airplan@ as a function of (s, Y, Z). In addition, it allows tlie.iiitrocluctiou of 
the influence coefficient fitnction concept as a further generalization of 
kquatlon (4.30) . This is done by expressing 2-l in integral form as: 

-A 

L 

N I  
d E - f  = 4% JcigkfdP (4.42) 

where ? is a second-order influence coefficient function tensor, defined in 
matrix form by: 

Applying the Betti reciprocal theorem (ref. 8) , it is fw:! ,r! -that the tensor 
is symmetric: 

C#S = C z x ,  C Y 3  = C t v  (4.44) c x v =  C Y &  , 
The following physical interpretation can be given to C For example, rs* 

the functioii C,(X, Y, 2; 5 ,  q , S ) stands for the displacement of the 
structure in the X-direction at point (X, Y, 2) due to a unit load in the 
Y-direction at point ( 5 , q , c). These influence coefficient fuiictions can 
actually be computed or  deteFmined experimentally when there are a finite 
number of points (X, Y, Z ) .  A detailed discirssion is found in ref. 26. 

-1 
The solution for  the elastic deformation vector d can now be written as: 

Z=@( I dgd*&? (4.45) 

where the parentheses contain the applied forces. Equation (4.45) may be 
written in terms of the inertial and body forces as well as the forces at the 
boundary. Thus the surface force $ should be added to ($ - P5) at the 
surface. By introducting the concept of Dirac's function it is possible to 
write equation (4.38) as 



A 
where 6 ( 2  - r ) is Dirac's function, Tho vector rs is a position vector 
at the surface, Dirac's function 6 ( r - r s) is defined as follows: 

3 S 

The airplane is unrestrained; hence the boundary conditions for the 
structures problem are entirely in terms of forces. There are no displacc- 
meiit boundary conditions specified in the usual sense, i. e. that kinematically 
constrain the airplane. The surface aerodynamic forces obviously depend on 
the displacenients , but this dependence is of little assistance in the derivation 
of the influence coefficient tensor ? . A s  noted in the discussion on 
equation (4.43) the elements of 
X, Y, and 2 due to unit components of force at  , q , . To car ry  out the 
computation of these elements determinantly, some point (the reference point) 
is held fixed. However, this is not consistent with the unrestrained airplane, 
since in that case the reference point does not remain fixed. 

give the components of displacement at 

- a b  
The influence function tensor r = ro is computed with the airplane 

clamped at a reference point in the jig shape , The airplane jig shape is 
defined as the completely unloaded shape, i, e. without aerodynamic or 
gravitational loading, A jig shape coordinate system is selected as 
(Xo,  Yo, 2 ) with origin at Po , which is the reference point and is also the 
material point that represents the center of gravity (c.9.) of the jig shape. 
The geometric relation between coordinate 2ystems (X, Y, 2) and Po, Yo, Z0) 
is presented in fig. 4. The center of mass of the jig shape and the center of 
mass of the deformed shape are coincident in fig, 4 as seen by an observer 
in (X', Y', 2'). The reason for  this is obvious: the center of mass does not 
ohange its position in space when an equilibrium loading system is taken away 
from the airplane. In fig, 4, then, P is both the center of mass of the jig 
shape and the center of mass of the deformed shape, whereas Po is the 
material.point in the deformed shape that becomes P in the jig shape, 

0 
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Deformed 

Undeformed 

X Y 2 Earth-fixed axes 
XYZ Body axes, origin P 

always a t  mass center 
XOYrJo Axes tied to material 

Point Po, which 
coincides with P in 
the jig shape 

P Center of mass 

2' 
FIGURE 4. - AXIS SYSTEMS FOR THE DEFORMED SHAPE AND THE UNDEFORMED SHAPE 

OF AN ELASTIC AIRPLANE 

A consequence of the computation of P relative to Po, Yo$ Zo)  is that 
a transformation must be made in equation (4.46) : 

J 

I - &  (4.48) A ' A  -L 

d X,Y, 2 0 = dxvz - d e  - - ( V X d ) o  2 XT 
Applying the transformation equation (4.48) to equation (4.46) yields: 

-.A 
This equation defines the elastic c1eform.ation d in (X9 Y, 2) but allows yo 
to be specified in ( X o ,  Yo, ZJ so that it becomes a unique property of the 
structure rather than a function of the flight condition. 

I . .I 



4.5 Summary and Interpretation of General 
Elastic Airplane Eqiiations of Notion 

The general equations of motion of an elastic airplane as ,$eiivcd in the 
previous sections may be summarizecl as  follows: 

(4.9) 

(4.49) 

All  equations a re  written relative to an earth-fixe~ coorclinate system 
A 

(Xf, Yf , Zf) ,  which is assumed to be inertial, The motion vector rb 
describes the motion of the center of mass of the elastic airplane. The defor- 
mation vectors r and d a re  defined relative to a body-fixed axis system 
(X, Y, 2) with origin at  the center of mass of the elastic airplane. 

A 2 

1 

A complete list of assumptions on which equations (4. 8), (4,9), and (4.49) 
are based is given below: 

0 No gust effects are considered. (Strictly speaking, this is not true 
at this point because F could contain forcing functions if desired.) 

-I 

@ Only free-flight conditions are considered. (No takeoff, landing, o r  
- 

ground effect,) 

0 

0 

No electromagnetic effects a r e  considered. 

No thermoolastic effects are considered, 

0 The airplane consists of n finite mass points, where n is to be 
large if accurate approxirnaths to continuous solutions a re  desired. 

0 

8 

Airplane mass is constant with time, and no fuel slosh is accounted for 

The origin of system ( X, Y, 2) i s  at the center of mass, 

@ 0 Strains and displacement gradients a r e  small. 
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c@ o Nor ~ ' i v  is valid apd displacements a re  small, 

@ 6 Structural damping is negligible. 

A -A 
Coupling between elas 1 .ic and rigid degrees of freedom eiders the equations 

2 
through the vectors r and where F in general, is a function of r , 
From an analytical viewpoin 
behavior of the elastic airplahe is now solved, From the stability and control 
engineer's viewpoint, this is only the beginning, 

the problem of describing the static and dynamic 

The vector quantity go may be introduced to represent the rotation of 
Po, Yo, Zo) relative to (X, Y, Z): 

Equation (4.49) describes the elastic desplacement field at the surface of 
the airplane. With this substitution, equation (4.49) becomes: 

4.6 Use and Specialization of the General Equations of Motion 

Equations (4,8), (4.9), and (4.49) will be specialized to steady-state flight 
equations, The determination of motion variables and airplane shape in steady- 
state flight is needed to solve most dynamic stability and control problems, 

As will be shown in Sec, 6, where the equatiolis a r e  spwialized to form 
stability (perturbed motion) equations the steady-state motion variables 
inertial properties, and sb?tpe enter into the stability equations, making it 
necessary first to establish the steady state completely, 

2 
Solutions to the force equations can be obtained by adding to F the control 

deflections o r  other forcing functions, For linear equations, it is then possible 
to obtain explicit solutions by means of Laplace transforms, Nonlinear equations 
oan be solved numerically. 



5. STEADY-STATd EQUATlONS O F  MOTION 

6.1 Introduction and Definitions 
' b  

* The purpose of this section is to present equations from which the 
&pilibrium of steady-state flight can be determined, This determination is 
needed because the perturbed equations of motion, developed in Sec, 4, a re  so  
written that the perturbations take place about the steady-state condition. 
Several of :he steady-state characteristics such as inerti: , deformations, and 
aerodynamic forces affect the pertiwbecl state, and knowledge of these stepdy- 
state quantities is therefoze required, 

Steady-state flight is defined as a flight condition for which all motior, 
variables remiin constant with time relative to  a body fixed axis system. The 

' A  2 
three vectors defining the elastic airplane flight condition a re  vc, w , and d , 
the velocity of the center of mass, the angular velocity about the center of mass, 
and t!ie slastic deformation, respectively, This definition of steady-state flight 
implies that Vc, 0, and d axe constant in time. 

A 

If the atmosphere is inhomogeneous because of variations with altitude, 
steady-state flight implies that V,is horizontal, This follows tocause p will 

change in time if V is not horizontal; thus the aerodynamic forces will change 
in time, causing the deformed shape 2 to change, and so on, Howevera for 
sha1low.flight path angles, p may be taken as a constant for reasonable lengths 
of time. Hence assumption of constant air density p is introduced at this poiiit, 
This assumption must not be made, however, without careful checking. 

A 

A 

C 

Steady-state flight also implies that 7$ is vertical. (or approximately so  
for shallow flight path angles); otherwise unsteady flight would result, However, 
to include the important steady- state pallup maneuver in the equations (the 
steady state refers here to speed only), an exception x.!ll he nLade, 

Two important typos cf steady-state flight must be considered: steady-state 
rectilinear flight and steady-state curvilinear flight, Steady-sttb curvilinear 
flight will be considered in two parts: steady-state (approsinlately let cl) turning 
flight and steady-state symmetrical pullup, The following assumptions apply to 
these conditions: 
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St eady-st Rt e rectilinear flight. 

e 4 .  nt air  density 

', I ..w d constant 

0 o = o  

Steady-state curvilinear flight 

0 Constant a.ir density 

e Vc and d constant 

e o + 0 but constant 

o . (a) Level turn: P1 = 0, Q, and R1 constant 

Q PuZlup: P, = R1 = 0, Q, constant 

-1\ 

c 
-A 

A A 

3 

- 

The subscript L is used fron here on to indicate steady-state motion variables. 

Equations for both types of steady-state flight are presented in pars. 5.2 

and 5.3. In par. 5.4 the expressions for aerodynamic forces and moments a re  
developed in terms of stea$r-state motion variables. Finally, in  par. 5.5 the 
practical problems that r*nn be solved with the results of pars. 5.2 through 5.4 
are discussed. A sumll:..-j of assumptions is also provided in par. 5.5. 

5.2 Steady-State Rectilinew Flight 

For rectilinear flight, the conditions of steady rectilinear motion Irf:st be 
appliecl to the equations of motion (4.-8), (4.9), and (4.50). This yields: 

At this point it is necessary to expand equations (5.1) into Cartesian form. 
They are expanded one by one below. 

5.2. - Momentum ecluation. 0 -The momentum equation for steady-state 
rectilinear flight is: 



.cy +L/F&+ 0 (5.2) 

The expaision of this equation will allow for shallow climbs and clives, with the 
stipulation that assumption G5 ,constant air density) is not gr&sly violated. 0. 

The components of 2 in the bocly axis system (X, Y, Z) can be iclentifiecl 
only if the orientation of (X, Y, Z) relative to the earth axis system fit, Y1, Z1) 

is given (fig-, 2). To clo this the conventional system of Euler angles, q, , 0 , 0, 
is used (fig. 5) 9 

/ y' 
/ 

X'Y'Z' Parallel to earth's axes 

XYZ Body-fixed axes 

Rotation sequence is  

FIGURES. - EULER ANGLES 

-A 
It is readily seen that &Ig can be resolved as follows: 

where: 

2% = -3 

(5.4) . 
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The force per unit area $ consists of an aerodynamic component 
thrust coinponent. For convenience of notation, it is now definecl that: 

.. ' b  

2 
where FA and i?T have the dimension of force, not force per  unit area. 

and a 

(5.5) 

Using subscripts again to designate (X, Y, Z) compo~~ents, equations (5.2) 

in steady-state notation are: 

%x +FI,, *Mg case* cos $2 = 0 

5.2.2 $loment of momentum equation. - The nionieut of momentum 
equation for steady-state rectilinear flight is: 

, ,FXPdS  = 0 (5,Q 

& - J r ' W i ' c d S  =MA 4 r  (5.8) 

by introducing 
A 

it is easily seen that this equation, when written in component form, yields in 
steady-state notation: 

M& 'Ms,, = o  

M&, f kr& = 0 

MA& +M+* =o (5.9) 

5.2.3 Internal cquilibriim equation. - - The equation for internal equilibrium 
for steady-state rectilinear flight is: 

(5. IO) 

This equation represents a solution in continuous form and is written in terms of 
the elastic deformation vector d 

2 '  
It is now necessary to specify the structural 



M 

properties represented by the inlluence function tensor ro in practical (state- 
of-the-art) terms. To this end, the airplane is divided into a large number (11) 

of pmicls as in  fig. 6, A control point is located on each pane). The structural 
properties <we represeiited at each control point by a matrix of influence coef - 
ficients [C..] such as described in See, 6 and such that equation (5.10) is u 
written in matrix form. Equation (5.10) must now be written in matrix form 
because once a finite number is assigned to n , the integral formulation is no 
longer rneaningfiil. 

b 

FIGURE 6. - EXAMPLE OFA'PAN&LED AIRPLANE 

The. use of structural influence coefficients is based on assumptions@ @ 
@ @@ and@ In addition, an assumption must be made as to how the 
structure itself is broken down. The various possibilities available to the 
analyst a re  discussed in app. B. The mathematic21 form of the equation is not 
affected by this choice. 
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The general form of [C..] relates the six degrees of freedom of each Y 
coiitrol point to the six possible loads at each control point, namely, three local 
moments and three local translational forces. The general f o p  of the loacl- 

b 

deflection relation in analogy to equation (5.10) is as follows: 

Note that i = 1, 2, . . . , n inequation (5.11). A two-dimensional interpre- 
tation of equation (5.11) is provided in fig. 7. The transformation quantities 
do and Oo are clearly indicated in fig. 7; it will be seen, however, that these 
transformation quantities are not essential in a practical analysis. 

J 2 a  

Equation (5.11) is the most ambitious static aeroelastic analysis that can be 
undertaken in the current state of the art of structural analysis. Notice that each 
element in the matrix IC. .] is itself an'(n x n) matrix. There are two reasons 
why simplifications must be introduced: 

11 

@ e Aerodynamic theory has not, reached the point where meaningful matrix 
expressions can be generated €or forces in the Y-direction. This is 
further discussed in app. B. 

a Computer time and space are limited. 

@ It is generally assumed that the airplane does not deform significantly in the 
X-direction o r  as a consequence of forces in the X-direction. This results in 
zero matrices for all terms with subscript X in equation (5.11). 

Because of the state of the art of aerodynamic theory, no meaningful matrix 

along Y . This results in zero matrices for all terms associated with displace- 
equations can be presented for steady-state deforniatioiis involving displacements 

ments with subscript Y in equation (5.11). Thus the following analysis is 
.- restricted to zero-sideslip conditions, 



I 

' b  

Control point panel, 
deformed airplane 

Control point panel, 
jig shape 

All displacement quantities 
are measured relz5ve to XoYoZo 

I '  1 1  

I 

FIGURE 7. - CEOMETR Y OF PANEL DISPLACEMEIIVI'AND ROTATIOlV 

Furthermore, because of assumptions@@@ and@ it is not 
- 

necessary to  carry influeue coefficients involving ex and BZ. This reduces 
equation (5. ll), for practical purposes, to: 

(5. 12) 
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Finally, it is generally assumed that {Myo} =: 0, which really means that the 
control points i a re  selected s o  that at no time does a moment My occux*. 
Equation (5.12) therefore reduces to: b 

Note that the axis system used above is the body fixed axis system Po, Yo, Zo). 

Equation (5.14) relates the stretunwise elastic change of the angle of attack to 
the forces applied normal to the XoYo plane. 

Equations (5.13) and (5.14) represent the expanded form of the internal 
equilibrium equation of an elastic airplane in steady-state rectilinear flight with 
zero sideslip. 

5.3 Steady-State Curvilinear Flight 

For curvilinear flight, the conditions of steady curvilinear motion must be 
applied to the equations of motion (4.8), (4.9), and (4.50). Because the angular 
velocity vector o is nonzero, complications arise in the expansion of the 
equations of motion (4.8) , (4.9) , and (4.50). The differential operator 
can be written in bo@ axes as: 

-1 

d 
( ) 

(5.15) 

where a/8t indicates a time differentiation with respect to body axes. Because 
in steady-state flight a/& = 0, this yields: 

The momerltum . -sation (4.8) may now be written: 

(5. 16) 

(5.17) 



For the moment of momenttun equation (4.9), it follows that 

(5. 18) 

where stendy-state notation is used, Employing equation (5.16) , equation (5. 18) 
may be written: 

(5. 19) 

where: 

so  that 31 is the inertia tensor. In matrix form, the inertia tensor for a 
symmetrical airplane is written: 

(5.20) 

The moment of momentum equation (5.18) may now be written: 

(6.21) =L 

x f 3 L z t 1  = fZ X E d S  

The significance of the subscript 1 in the equation for the inertia tensor 
(5.20) is simply that its components are a function of the elastic equilibrium 
shape of the airplane in the particular steady-state flight being considered. 
This is a result different from rigid-airplane steady flight conditions. It is 
found here that with elastic airplanes, the inertia tensor is a function of the 
elastic properties of the airplane. 

The equation of interral equilibrium at this time is best left in the form of 
equation (4.50). Equations (5, 17), (5.21), and (4.50) will now be expanded one 
by one. 
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5.3. 1 Moms,ntitm equation, _c_ - The nionientum equation fo; steacly-state 
CII 

curvilinear flight is equation (5. 17): 

&22; x 2, Mjj + & Z d S  'r (5.17) 

A 
Allowing for  shallow climbs and dives and using the f and F of equations 

(5.4) ancl (5.5) yields in body axes: 

I & h ? 3 @ - Q t & I - M g c s s @ ~ c a s &  +E?z1 
. - 

However, since stability axes will be used to describe the motion, W 1  = 0. For 
shallow climbs and dives, since the vector $1 is directed approximately 
vertically, PI* 0 so  that equations (5.22) reduce to: 

5.3.2 Momentum of momentum equation. - Tne momentum equation for 
c-- 

steady-state curvilinear flight is eqiiation (5.29: 

Expansion, using the steady-state notation and employing equation (5.8), 
yields: 



Using the shallow climb and dive condition P1 = 0, equations (5.25) 
reduce to: 

I f i z z 8  -&,h€M = M A Z C  + &7-Zi : 
I 

- x x s *  .Es' = M** " M r y ,  

XZsd p a  @I E /di'Apd 4 M7S8 

(5. 25) 

5. 3. 3 Internal equilibrium equation. - from equation (4.50) the internal 
equilibrium equation :or steady-state curvilinear flight is: 

The acceleration 2 may be expanded as foliows, referring to fig. 4 and using 
the steady-state conditioii a/at( ) = 0: 

The second term of equation (5.27) vanishes upon substitution into equation 
(6.26), as a consequence of the definitiop of the center of mass, The first term 
of equation (5.27) is nonzero. However, since 01 = jQ1+ k R 1  because P i  = 0 
and since VCl = iU1  + jV1 because of the use of stability axes (W1 = 0), equation 
(5.29) after expansion is: 

d J  A 

- 1 2  J 

a;t. . =  -A3v 
&? = ea (5. 28) 

de = -Q:Ur 

Since only az is retained in the internal equilibrium equations (following the 
development of par. 5 . 2 , 3 ) ,  it follows that these equations reduce to: 



Notice tho slight difference between equations (5. 13), (5. 14), and equations 
(5,29), (5,’30). The latter a re  written in  stability axes, the former not 

necessarily .t 

The only complication, then, is that in steady-state curvilinear flight the 
elastic shape is also a function of Q1. If an estimate is made of the steady-state 
bank angle in a level turn, a reasonable estimate of this acceleration term 
results from: 

SO that: 

and 

But, since VCl U1, 

(5, 31) 

(5.32) 

(5. 33) 

(5.34) 

Notice that this term is certainly not negligible because even in a mild 30-degree 
bank turn g = 0. 87g and QIU1 - 0.29g so that g f QIU1 = 1.16g. 

zO zO 

For symmetrical puilup, the value of QIU1 may be found from: 

Q d L 5  (e-&)g (5.35) 

Depending on the load factor n being applied, Q1U1 can be very significant. 

5.4 Representation of Aerodynamic and Thrust Forces and Moments 

In this section the functional dependence of aerodynamic and thrust forces 
and moments is discussed. First, the parameters needed to define these forces 



and moments aL-e identified. Second, the math. .matical forms relating force.9 
and moments to motion variables a re  presented, Restrictions and assumptions 
made in doing so aw c:br >fully listed, 

, 

moments, - The aerodynamic force 

? 
' 4  

8.4. 1 Functional dependence of aerodynamic ar,d thrust forces and - 3- ..a I---." 

is a function of: 
-_I 

2 2  The geometry of the elastic airplane, ( d -+ r ) 

The altitude h which defines the air density P 

The Mach number M and the airplane speed Vc 

The angle of attack 01 

The angle of sideslip P 

The Reynolds number R e  

The angular velocity 6 
The controi surface angles 6.*, 6E 6R 

Airplane speed and air density (altitude) define the dynamic prescure: 

0's  $pq' (5.36) 

2 
The thrust  force FT is a function of: 

Engine control parameters 

The airplane speed V, 

The altitude h , which defines the air density P 

The Mach number M 

The angle of attack Q 

ThQ angle of sideslip 0 

The angular ve'ocity d 
The geometry of the elastic airplane, ( d + F ), in certain configurations 

a 

J A ' 

A 
The aerodynamic moment MA c'apends on +.he same pd.rameters as the 

aerodynamic force:@+F), f a  M, a,&?, p e  , 25, G A  4 , si)k, @&. 
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fn stea@-state flight the exprewions for the aerodynamic! forces and 
moments arts as follows: 



A244 = tc,,s, +Ch- X%& + zc,,&*3ps~-~ 
In settfng up these mpresslorrs €or the steady-strtte aeroci;ynamfc forces and 

momants, use hrts been made of the dsvelopment in app. B. Hotvever, terms 
not belonging to tho steady state haw been omitted. Convalrsely, ~ o m e  terms 

. n@E appeming in perturbed forces and moments have been added. Examples oE 

the latter are the CQ,, C L ~ ,  and Cpn, coefficients and C D ~ Z .  The coefficients 
GPO, and Cr>,2 are included to inclicate the; quadratic relationship hettvesn CD 
and a. 



There are many forms in whCcb tlia drag dep@nclence on a! caii be written. 
It is o n b  important to cletsnnine cD, + cDaal + ~ D ~ 2 t - t ;  = C D ( ~ )  suc.ti tlmt at 
the steady-st&te angle of Rttaclr a1 the value for CD comes out,correctly. To 
make the equations Pinear' it is of course possible to write the firat three terms 
as C D ~  CUI. The term 
ai, det6rmined to match ths drag at cy = 

b 

hers is a precleteriniuecl but artificial function of 
an&p = 6 = 0. 

It should bc kept in milid that all motion variables in equations (5'37) thmtgh 
(6.42) are steady-state mrttfon vayiables. The derivatives me employed here 
to d ~ ~ r f b ~  toti1 forces and moments; they are not merely perturbed forces and 
moments as fa common in perturlmtion aquathis. 

the calculatbu of aeroclyiiamic forces a i i d r i ~ o w ~ ~ t t  uadar zero sicleslip coiidb 
ths ,  the aoro@mmic force field can be rqrmernted by an fiifluence coefficient 
matrix. A g .  

Aero@mnic influence co&kient theory is dfscussed fn App, B, wvhwe the 
aesuuiptions on which this theory are based are Identified as@@ @@ 
and@ The application a€ this concept is ieorkeit out below. 

Figure 8 prese~tds the airplane in its rigid or jig shape. All angles are 
exaggerated for olaritg. The attftude of the airplane is clsfiiied by the attitude 
of (Its Y, Z), the body fkeci coordlntxte system with origin at the center of mass 
I? In the jig shape P is identified 8s soma material point. A stability axis 
Bystein (ICs, Ys, Zs) ie also shown. .The axis Y = Ys, and tieither of these is 
shown. Built-in twist and camber may be present (X, Y, Z). In additfoil, the 
existence of control angles is reoogniz,zd by fntroducing the scalar column {ai). 
The scalar column (ai) has zeros for all panels that are outside the boundaries 
of control siirPaces, and numbers between zero and 1 for all panels within. The 
term Q1&/VC.) is added to represent the panel angles of attack inctuced by the 
rotational velocity Q1, as ia a steady symmetriual puUitp. 

The aerodynamic forces on all panels i , using aerodynmnic influence 
coefficient theory, are giwren by: 



Note that the aerodynamic influence &efficient matrix [ A.. 1 relates panel angles 
of attack to loads perpenilfcuiar to each pane1. To obtain the force and moment 
components along stability axes, it is necessary to employ the angle Q! ~ i :  

13 

(6.45) 



To siianmarize, €or zero sideslip, the aeraclynnnzlc forces 
rigid airplane panelecl into n panels can be written: 

and moment of a 

(5.48) 

Fur noiizero sideslip, it is not possible in the current state of the a r t  to 
write rnsaningful expressions for  FA^,,  MA^%, and &'Inz in a way analogous 
to equations (5.48) through (5* 50). 

s 

6.4.4 Elastic airplane with equivalent elastic derivative thsoq. - Equiva- 
lent elastic derivative theory fs based OH the assumption that the rigid airplane 
derivatives of par. 5.4.2 can be modified for the effects of elasticity by multi- 
plication or addition of constants that account for the flexibility of the airplane. 
In app. B this is sald to apply if a reasonable natural frequency separation exists 
between rigid-degrees-of-freedom motions and elastic-degrees-of-freedom 
motion. The assumptions on which equivalent elastic cleri-rative theory is based 
are identified in app. B. 

This theory has particular value as a preliminary design tool because it 
does not require closed aeroelmtic solutions based on extensive paneling of the 
entire airplane. Aeroelastic correction factors can be evaluated on the basis 
of "large scale" iiifluence coefficients. For example, the elastic deformation 
of the body can be represented by displacements and rotations at the tail surfaces. 
This approach can be carried out for various sections of the airplane, such as 
wing, body, o r  tail. The elastic influence appears as a much smaller package 
than when the airplane is fully paneled. In practice, it is almost 8s fast and 



o w  t ainly more accurate to coa~ipwi: the aero el as t ic correction c onst ants with 
matrix methods (flexibility influence coeflicient) , but instead of having to find 
total airplane solutions, it Cs possible to apply these matrix n@iocls to the major 
airplane components separately. 

In equivalent elastic clerivative theory, therefore, the conventional "building 
block" mothod of considering each derivative as the sum of wing-body and tail 
contributions is usually followed. This means now that lateral and sideslip 
derivatives can also be evaluated and that the P = 0 restriction does not apply. 
In the equations of motion the derivative notation used for the rfgid airplaue is 
employed, but the subscript E is usually added to indicate that a derivative 
oorrected for aeroelastic effbots is implied. The aerodynamic forces and 
moments, therefore, have basically the sanie form as those of equations (5.3?) - 
through (5,429, but with the stibscript E adclecl. 

Detailed expressions for and derivations of the equivalent elastic derivatives 
am presented in app, €3. One example is given here to indicate the form of these 
equivalent elastic derivatives. The equivalent elastic lift curve slope of a 
oonveiitional wing-body-tail airplane can be shown to be: 

where: 

E 

is the tail-aff lift curve slope for zero load factor 

is the angular deflection at the tail due to a unit upload at 
the tail @<O) 

is the increment in tail-off lift coefficient per unit load factor 

is the change in horizontal tail angle of attack per unit load 
facztsr 



C is the t r im o r  ecluilibrium lift coefficient 
Ltrini 

, 

Methods for computing the elastic constant in equation (5.51) Qrz given in app. B. 

. 5.4.5 Elastic airplane --- with a e r a n a m i c  and structural influence coefficient 
theory. - - The developinents represented by equations (5. 14) and (5.43) will be 
used to show how the aerodynamic forces and 1nomerA.s are formulated for the 
completely elastic airplane. It was already esplained in par. 5.4.3 that, because 
of the state of the art of aerodynamic influence coefficient theory, only the case 

b 

of zero sideslip will be presented. Assuniptions 
developnients in this section. 

It is now necessary to  be more precise about the relationship between panel 
angles, flow angles, and the coordinate systems (X, Y, 2) and Po, Yo, Zo). 

See fig. 9, where a11 angles are exaggerated for cIarity. 

For the deformed airplane the aerodynamic panel force matrix can be 
written: 

in analogy with equation (5.43) and fig. 8. The elastic airplane panel angle may 
be written: 

where: 

*"E 
l i  

= elastic deformation angle of panel i 

= elevator reference deflection angle (not shown) 

= scalar column consisting of zeros for panels outside the 
control surface boundary and of numbers between zero and 
1 for panels inside the boundary 

The deformation vector {8yoi} was solved for in equation (5.14): 



' b  

--- 
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where FT represents t?ic thrust components along Z Therefore, the 

expression for the aerodynamic panel forces on the clelorined airplane, kccping 
in mind that { e  

0' Zoi 

.} = 0 (1) + { A ~ E . ) ,  and using equations (5.52) and (5 .53) ,  is: yo1 oy 1 

The substitution for A @ E ~  = ~9~~ - 8, can be carried out indefinitely. 
However, for practical purposes it is sufficient to assume that A c v ~ ~  is small. 
In addition, it is assumed that the built-in twist and camber 8 j i  as well as the 
control angle 6E are small, so  that: -. 

Thus: 

Notice that at this point gref is not necessarily small. From this equation it 
can be verified that a solution for {FA .} is: 

El  

The stability axis components of the FA forces and moments may now be 
Ei 

found by analogy from equations (5.48) through (5.50): 

(5.59) 

(5. 60) 

(5.61) 



If desired, the effect of initinl pitch rotation Q1 can be accounted for hy adding 
the term x .&. to equation (5. 53) and following through. 

1 1  

b 

5 . 5  Summary of Equations for Steady-State Flight 

5.5.1 Rigid and equivalent elastic airplzne equations of motion. - By --- 
substituting the expressions for aerodyiiainic forces and moments, equations 
(5.37) through (5.42), into equations of motion (5.23) and (5. 25), the complete 
steacly-state equations of motion are obtained. These equations are presented in 
table 1 for rectilinear as well a s  curvilinear flight. Those parts of the equ t' ions 
that apply only to curvilinear flight are clearly indicated. 

The steady-state equations of table 1 are valid also for the eci..livaleiit elastic 
airplane, provided th& all derivatives and inertial constants are ev'iluated to- 
account for quasi-static elastic effects. A complete summary of assumptions 
used in deriving the equations of table 1 is presented in table 2. 

The equations in table 1 represent a set of six equations in twelve vzriables 

Pi, 01, P I ,  Q1, Rl, 6A1,  6E1, dR1, €31, 01, U1, and F T ~ .  A total of Six 
variables must therefore be specified before a solution can be obtained. It is 
assumed that the mass M of the airplane is always known. 

In general, the preselected variables are: 
(a) For steady-state rectilinear flight: 

A 
0 Thrust F T ~  

e 

e Speed U1 

e 

Rotational ve!ocities P1 = Q1 = R 1  = 0 

Altitude h l  (density = p 1 )  

(b) For steady-state curvilinear flight: 

(1) Level turn: 

0 Bank angle 

0 

e Speed U1 

Sideslip angle P1 = 0 (coordinated turn) 
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NOTE: 1. 

2. 

For zero initial sideslip, substitute VI = 0, = 0 

For equivalent elastic airplane, aclcl subscript E to all 
derivatives and inertias. 

The subscripts 1 and S arc? interchangeable in the stability 
axis system. 

3. 



Curvilinew Flight 

RIGIF) AIBPLAKE 

Gcnerrl Assumptions @@@@@@@@ 
Rectilinezir Flight @ 
Curvilinear Flight 

t 

EQUIVALENT ELASTIC AIRPLANE 

General Assumptions 

Rectilinear Flight 
n 

(Equation (5.31) relates R,, Q,, and G1.} 

Altitude hl (= density PI} 

(2) Steady syrnnietricd pullup. (only lift and moment equations needed): 

e Bank angle (P1 = 0 

0 

e 

Sideslip angle 0, = 0 

Speed U1 (6A = aR = 0, R1 = P1 = 0) 

Altitude hl (= density P1) 

e Load factor n (determines Q, through equation (5.35)) 

A 
e Thrust FT 

-1 
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It is assumed that none of the sis thrust conipo:rents w e  variables. In general, 
these quantities are estimated so  that they me esseirtfally treated as k i io~i~~s .  
I€ necessary, iteration can be used to refine the solution. Th.q reason for this 
procedure is the coniplicatecl dependence of the thrust components on the motion 
variables. This relation is generally not given explicitly, but is provided in the 
form of graphs and tables by the engine manufacturer. 

b 

The problems that csii be solved with the equations of table 1 are as follows: 

(a) Determine the steacly-state motion variables when certain variables are 
preselected (cases (a) and @) above). 

(b) Along with (a) comes the possibility of determining trim characteristics. 
For  example, it is possible to conipute control deflections as a function 
of the preselected variables such as speed o r  Mach number. - 

In solving steacly-state flight problems it is not uncommon to solve the drag 
equation by intuition ancl thereby reduce the problem to five equations. Further- 
more, the lateral degrees of freedom are often not desired, so  the steady-state 
problem reduces to solving the lift and pitching moment eqbations. In this form, 
by using equation (5.35), these equations are also used to solve such problems 
as longitudinal control required per gravitational load (g). 

: 

5.5.2 Elastic airplane equations of motion. - As in par. 5.5.1, equations 
are presented here for steady-state rectilinear as well as for steady-state 
curvilinear flight; however, no sideslip o r  Y-deformations are considered. 
Steady-state curvilinear flight is therefore reduced to a consideration of steacly- 
state synimetrical pullup only. 

Table 3 presents the equations of motion for the elastic airplane and the 
assumptions on which they are based. These equations a re  obtained by substi- 
tuting equations (5.59) through (5. 61)into equations (5.23) and (5.25) and by 
using equation (5.58). Equations (5.68) through (5.71) represent a total of 
(n f 3) equations. Notice that there are (7 -F n) variables: eref, 6 ~ , ,  
Q,, Vcl, FT-, plus n elastic deformations eYi, which, however, are 
represented by the eqimtion for the elastic aerodynamic panel forces  FA^^. The 
flight path angle y1 is not listed as a separate variable, since y1 i s  determined 
by: 

p,, 

(5. 72) - '1 + 'ref = "ref 



NOTE: Friction drag left out. 

(5. 68) 

(5.6’3) 

(5. 70) 

(5. 71) 

ASSUh‘iPTlONS: @ RI = 0 

.I. . 

Four variables must be specified before a solution can be obtained. It is 

L 

0 
assumed that the mass M and the mass distributiou mi of the airplane are always 
known. 

In general, the preselected variables are: 
(a) For steady-state rectilinear flight: 

0 Altitude hl (=  density p,) 

SpeedVcl 

-A 
e Thrust F r r l  

a l3otational velocity Q, = 0 
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(b) For steady symmetrical pullup: 

e Altitude hl (= density P1) 
' b  

Speed VCl 

3 

1 0 Thrust F T  

0 Load factor n (determines Q, through equation (5. 35)) 

The problems that can be solvecl with the eqtiations of table 3 are  a s  follows: 

(a) Determine the steady-state motion variables (including the equilibrium 
shape of the elastic airplane) when certain variables a r e  preselected 
(cases (a) and @) above). 

@) Determine the jig shape of the elastic airplane if the elastic shape is 
given in some reference steady-state flight conclition. (This problem 
is further discussed in par. 5.5.3.) 

(c) Determine the trim characteristics of the elastic airplane. 

(d) Finally, the equations of table 3 can be used to compute elastic 
correction factors for rigid-airplane wind tunnel model data. This is 
necessary on very elastic airplanes because, in general, only one rigid 
tunnel model shape is tested throughout the Mach range of the airplane. 

Owing to the complicated matrix relatiotts between the elastic airplane 
equations in table 3, an explicit solution can be obtained only by linearizing 
these equations, which ineatis restricting the problem to small angles of attack. 
This is consistent with the current state of the ar t  of aerodynamic theory. 
Solutions for high angles of attack a re  possible, however, provided that the 
analysis: 

0 Programs iterative solutions. 

0 Determines a way to relate aerodynamic influence coefficients to the 
angle of attack OLE. in a nonlinear manner. 

1 

5.5.3 The jig shape problem. - An important problem that arises in 
stability and control calculations for completely elastic airplanes is that of the 
jig shape. The jig shape is defined as the undefornied shape of the airplane and 
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conies about by removing all inertial and aeroclynamic loacling from the airplane. 
The term'lig shapcis  used beceuse it is the shape in which tlie airplane structure 
is assemblecl in  the jigs, where it is ncarly continuously suppwtecl. 

. If a certain shape is desired for an elastic airplane in some flight conclition 
(for example, to adlieve an optimum liftjdrag ratio), an accurate knowlege of 
the jig shape is important to ensure that the desirecl shape is obtained. Four 
items are needed to determine the jig shape of an elastic airplane: 

e The aerodynamic loading in the "design" flight condition 

o The desired shape in the design flight conditic 

o The n i s s  distribution in the design flight conclition (structural as well 
as nonstructural mass) 

0 The structural properties 

With the aid of these items an "inverset' aeroelastic solution can be obtained. 
The term "inverse" is used because in most aeroelastic problems the 
task is to find the equilibrium (loaded) shape. In the jig shape problem, the 
task is to find the unloaded shape that when loaded in a known manner results . .a 

- in a known shape. 

Another important application of the jig shape should be mentioned. In 
testing rigid wind tunnel models, the characteristics of only one shape are 
found over a range of flight conditions (Mach number and angle of attack). By 
knowing the jig shape it is possible to compute the shape in other than the 

design flight conclition, and with this the stability and control properties. By 
also applying the theory to the rigid shape at the test flight conditions, it is 

possible to find the correction factors that should be applied to the rigid wind 
tunnel model data. 

A simplified approach to finding the jig shape of an elastic airplane is 
outlined in the remainder of this section. 

Applying approximation (5.56) to equation (5.54), the result is: 

<A&";? =/ca+ay{mg&s @~gp + f i g c -  p7se i $? (5.73) 

Substituting equations (5.52) and (5.53) into equation (5.73) yields: 

69 



(5. 74) 

+A&*3 f F & z q  ; 3 
If the equilibrium shape is known, this means that {AQIE~} for the design 

flight conclition is known. Equation (5.74) can then be used to solve for  {BJi}, 
since in the design flight condition the other variables y ,  ,gref, 6E,  and F T ~  

O i  
are also known. The coluniii vector {eJi} represents the desired jig shape. 
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6. PERTURBED EQUATIONS OF ILIOTION 

0 ' b  6.1 Introduction and Definitions 

. The purpose of this section is to present equations from which the stability 

of steady-state flight and the response to control deflections can be determined. 

To study the stability of an airplane in any steady-state flight condition, it 
has been found useful to write the state variables as the sum of a steady-state 
quantity and a disturbance (or perturbation) quantity, The algebraic manipula- 
tion needed to do so is called the perturbation substitution. In this manner, the 
steady-state equations are recovered ..then the disturbance quantities a r e  set 
equal to zero. 

In the past the reason for using the perturbation substitution was to derivk 
small disturbance equations of motion. Those equations a re  based on the "small 
disturbance assumption, '' which implies that prcducts and cross  products of 
disturbance quantities are negligible. A s  a result the equations of motion 
become lineal; but have only limited application, The developments of refs, 4 
and 36 are typical examples, It should be noted that the perturbation substitu- 
tion itsdf in no way restricts the validity of the analysis. Only when certain 
assumptions regarding the size of the perturbations have been made does the 
analysis become restricted in its validity. 

The following typical perturbation substitutions a r e  made: 

To assist in the identification of perturbation quantities either a lowercase 
symbol or a subscript p is used. Note that in par. 5.2 all motion variables 
were total variables, whereas in par. 5.3 all inotion variables were steady- 
state variables. 
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In dealing with perturbations, the fdlowitg phi1oso;Ay regarding their size 
.is introduced, Distinctions will be macle bcbvzcn: 

e Small perturbations 

e Large perturbatioris 

e Arbitrary perturbations, 

6.1.1 L Small perturbations. - Small perturbations a re  defined as having 
such a size that their products and cross  products can be neglected. It is not 
possible to associate any definite numerical values with such a definition. 
However, for purposes of discussion the following is suggested as a typical 
bracket for small disturbance va r iable s : 

The value 0,045 was  selected to satisfy the first inequality. However, the 
value 2.5 degrees is arbitrary. 

Lyapurov's stability theory can be used to compute the size of disturbance 
under which the small perturbation assumption can be made, as is shown in 
ref. 23. Classical stability theory cannot cope with this problem. Detailed 
discuseion of this subject is deferred to Sec. 9, 

6.1.2 Large perturbations. - Large perturbations are defined as having 
such a size that their products and cross products cannot be neglected. How- 
ever, it is still assumed that angular quantities satisfy the condition: 

I 

(6.3) 
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This means that the trigonometric relations involved in the pcrturbntion 
A 

components of g along X, Y, Z can still be written as  in equation (6.3).  The 
following arbitrary size brackets a r e  suggested: 

b . e  

7 . 5  4. 
(6.4) 

Aerodynamic theories used in stability equations for large disturbances 
should be able to account for large perturbation effecL in order to provide 
realism to large perturbation equations. 

6.1.3 Arbitrary perturbations. - In this case, no limits exist for the _ _  -. 
perturbed motion variables. Equations of motion involving arbitrary perturba- 
tions should be used in such flight conditions as severe upsets and airplane 
spin, Because such manelivers can hardly be classified as unaccelerated (in the 
forward speed sense), no detailed equations have been developed to cover these 
cases. 

The equations of motion are developed in perturbation form in pars, 6.2 

and 6.3. Paragraph 6.3 makes use of the lumped parameter representation of the 
airplane. The aerodynamic theory used in  the pertmbation expansions is 
discussed briefly in this appendix and in detail in app. B. 

6.2 Expansion of the Mom'entum and Moment of Momentum 
Equations for an Elastic Airplane 

6.2.1 Momentum equation, - The general form of the momentum 
equation (4.8) is: 

To write this equation in body axes it is necessary to substitute 
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After carrying out this substitution, equation (6.5) i n  expanded form is: 

The clot (.) indicates a rate of change apparent; to P? observer fixed to the body 
axis system. 

Typical perturbation substitutions are introcluced as  follows: 

Q *  Q, + 

e *  8 ,  + Q  

u *  u ,  -t. u 
& 

FA+ FA, + FA 
& -L A 
Frc/ TT, + F+ 

Substitution of equations (6.8) into equations (6 .  7) yields: 

The steady-state equilibrium condition (subscript 1) i s  coupled with the per- 
turbed state through trigonometric functions and products with perturbation 
variables. In the form of equation (6.9), the momentum equations a re  valid for  
arbitrary disturbances. 

FOP most practical purposes it will suffice to make the large disturbance 
assumptiyn: @ 

cos (perturbed angle) = 1 
sin (perturbed angle) = perturbed angle 

(8.10) 



Thus the steady-state form of the ecpations may be usccl to simplify the 
perturbed equations to: 

A -A 
Note that fA and fT arc perturbation forces. 

Eqvations (6.11) are dynaniically nonlinear, which means that products ancl 
cross products of perturbed translational and rotational velocities occur in the 
equations of motion. Whether o r  not the aerodynamic and thrust terms a r e  non- 
linear in the motion variables depends on the theory used to describe them. 

The perturbed monientum equations are not dynamically couplecl with 
elastic degrees of freedom. Aerodynamic and thrust coupling with elastic 
degrees of freedom exists, however, because these forces in general depend on 
the deformed shape. The extent of this coupling depends on the rathematical 
models used to describe fA and ET. Tn this section rigid. and equivalent elastic 
derivative theory will be used to eliminats elastic degrees of freedom from 
the equations. 

2 A 

Equations (6.11) will now be written in sta5ility axes. At t = 0 (before 
tho perturbations are introduced) the xs-axis is aligned with the projection of 
V, 3n the XZ plane. This implies W 1  = 0 by definition. Note that V 1  may be 
nonzero, which implies that steady-state sideslip is admissible. In stability 
axes, equations (5.11) yield: 

.J 

M ~ + M ( Q , W +  Q W  - R , v  - r V I  - r v )  

= -Mq 8 COS 6, * + F T , ~  

M C + M ( R , ~ +  r i r  + r u - P , v v - p w )  

= MS ( 4  c3, e, cos 4 ,  - e sir? el  sin Z, 1 + FAys+ F t y g  

= Mg ( -  8 sin 0, cos 9 ,  - 9 cos 6, sin 8 ,)+  FA,^+ FT,, 

M h + M i P , v + p V t  + ~ v - ~ I u - ~ U I - $ U )  

These ecpations are still dynamically nonlinear, 

(6.12) 
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The following hvs cases are most fi-eqiiently encountered i n  solving 
stability and response problems: 

0 Steady-state rectilinear flight: 0 

In steac7y-state 1-ectilinecqr flight the following conditions hold: 

No sideslip Small perturbations - 
e @  =: 0 
gw = 0 (cyclic) 

Equations (6.12) are recluced to equations (6.13) and a r e  presented in 
table 4. They have become dyii!imically linear. 

No sideslip 

VI = 0 
I 

Large pertux%xtions - 
€30 = 0 

qw # 0 (cyclic} 

Equations (6.12) are reduced to equations (6.14) a d  are presentecl in 
table 4. They reinain dynamically nonlinear. 

Sideslip 

VI f 0 

SlnaIl pertwhations 

e $ =  o 
qw = 0 (cyclic) 

bquations (6.12) are rec7uced to equations (6.15) and are presented in 
table 4. They have become-dynwiicalIy linear. 

Sideslip -- 
V I #  0 

Large perturbations 

eQ, = 0 
qtv f 0 (cyclic) 

Equations (6.12) are reduced to equations (6.16) and are presented in 
tablc 4. They remain dynamically nonlinear. 

0 Steady-state curvilinear flight: 
In steady-state curviIinear flight the following conditions hold: 





No sideslip 

VI = 0 

Equations (6.12) a re  reduced to 

Small perturbations 

e $ =  0 

qw = 0 (cyclio) 

cpations (6.17) and are pre 
table 5. They have become dynamically linear. 

No sideslip Large perturbations 

v1 = 0 e $  = 0 

qtv f 0 (cyclic) 

ented in 

Equations (6.12) a re  reduced to equations (6.18) and a re  presented in 
table 5. They reniain dynamically nonlinear. 

Sideslip Small perturbations -_  

v1 # 0 e $ =  0 

qw = 0 (cyclic) 

Equations (6.12) are reduced to equations (6.19) and are presented in 
table 5. They have become dynamically linear. 

Sideslip Large perturbations 

e6 = o 
qw # 0 (cyclic) 

Equations (6.12) a re  reduced to equations (6.20) and are presented in 
table 5. They remain dynamically nonlinear. 

Combinations of these momentum equations with the moment of momentiuri 
equations to form solutions of stability problems are disci tssd in par. 6.3, as 
is the development of expressions for  fA and fT. 

2 2 

6.2.2 Moment of momentum equation. - The general form of the moment 
of momentum equation (4.9) is: 

(6.21) 



6 ' L  

h 
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The perturbation substitution is to be nincle in this equation. In part, that 
2 

sitbstitutioii involves the relative position vector r such that 

(6.22) 

-5 2% 
where d 
position containing the steady-state elastic d 2fonnntion vector. 

is the perturbed elastic deformation vector and r1 is the relative P 

Siibstititting eqiiation (6.22) into equation (6.21) yielcls: 

In the body axis system the operator (cl/clt) is replaced by (d/dt +$x) so 
that: 

or after expanding: 

An assumption that was made in  expanding the left-hand side of eciiiaiion (6.21) 

is that the effect of spinning rotors on perturbed airplane motions is negligible. 

Because of assumption @ whereby all structural perturbations are 
defined as small, the fourth ancl sixth terms in equation (6.23) are negligible. 
Using nornial modes to describe the structural perturbations, it can be shown 
that the second, third, and fifth terms in equation (6.23) are not coupled to 



dynamic elastic motion by virtue of the noi*nial niocle properties to be int?.oclucecl 
by equations (6.45) ancl (6.46); tliese terms, then, will be ignored. The first  
teim is the dot product of the inertia tensor ancl the rotational.velocity, 
Equation (G,23) therefore recluces to: 

b 

(6.24) 

where F1 is the inertia tensor relative to the steacly-state shape anc1 wliere the 
right-hand sicle has been replacecl by a thrust and aeroclynaniic moment. 

In coinnion matrix notation, the inertia tensor, which is symmetrical, is 
writ ten: 

p s ,  -1yi5, f - ,  J 

where q1 is defined in steady-state notation by: 

(6.25) 

If the conimonly used symmetric airplane assumption is used, equation 
(6.25) reduces to: 

The important conclusion to be drawn from equation (6.29) is that the 
moment of momentum equation, like the momentum equation, is dynamically 
uncoupled frorn elastic degrees of freedom., Notice, however, that the left-hand 



side of the momentimi equation (6 .5)  uncouples iiaturally from the elastic degrees 
of freedom. The left-hand side of the moment of momentum equation (6.23) 
uncouples froin the elastic degrees of freedom only because of assumption SB, 

The elastic degrees of freedom a r e  coupled with the rigid degrees of freedom 
in the aerodynainic and thrust moment term on the right-hand side of 

equation (6.24). 

L 0 

Expansion of equation (6.24) in cai*tesian form yields: 

Equations (6.28) a re  valid ;or arbitrary perturbations of the motion 
variables except, of course, the structural perturbations. 



..A wIiere niA and ii;rr a r e  perturbation nioniciits. These ecpntions a re  
dynamically nonlinear. Whether o r  not the aerodynaiiiic and thrust terms are 
nonlinear depends on the theory used to describe them. 

b ' C  

Equations (6.30) are normally expressed in stability ases. Doing so does 
not change the forin of equations (6.30). It does imply, however, that all 
inertial constants becoiiie a function of the flight condition (in particular the 
angle of attack) selected for the steady reEereiice state, even for the rigid 
airplane. This is a well-known fact in rigid airplane stability analysis. 

The following ttvo cases a r e  most frequently encountered in  solving stability 
and response problems. 

0 Steady-state rectilinear flight: 
In steady-state rectilinear flight the following conditions hold: 

Small perturbations 

pr = 0 (cyclic) 

Equations (6.30) are reduced to equations (6.31) and are presented in 
table 6. They have become dynamically linear. 

Large perturbations 

pr  z 0 (cyclic) 

Equations (6.30) are reduced to equations (6.32) and a r e  presented in 
table 6. They remain dynamically nonlinear. 

o Steady-state curvilinear flight: 
In steady-state flight the following condition holds: 

Small pe rtu rba ti o m  

pr = 0 (cyclic) 

Enuatioons (6.30) are reduced to equations (6.33) and are presented in  

table 6. They have become dynamically linear. 
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L a r s  Derturbations 

pr z 0 (cyclic) 

Equations (6.30) a r e  reduced to equation (6.34) and aTe presented in 
table 6. They reinaiii dynaiiiically nonlinear. 

Notice that the distinction between sideslip o r  no sideslip in the steady-state 
condition has no effect on the form of the equations in table 6. Combinations of 
the nionient of moinentuin equations with the nioinentum equations are discussed 
in par. 6.3 ,  as is the development of expressions for mA and mT. 

6 . 2 , 3  Inrarnal equilibrium equation. - - The general form of the internal 
eqililibriuni equation (4.49) is 

The portnrbation substitution is to be made into this equation. But first it must, 
be noted that the body force is solely due to gravity, i. e. , 

and that the acceleration is: 

where: 

so that: 

(6.38) 

(6,39) 
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-s ,I A 
with i): a constant aiicl di*ol/’clt = V,. Espancling thc acceleration gives: 

In the perturbation substitution: 

(6.41) 

Thus the acceleration vector is written: 

d G  ad”, 
a =  + &  dt + (G, + G p ) X ( i L , f V l c p )  4- -p -I- Z(S, i- w p ) x x  

+ 9 x ( GI -t- Zp) + ( w”, + Ls p J % [(SI + G p) x [ 5 c Zp)] 

(6.42) 

On separating into steady-reference and perturbation quanti ties, it follows that: 



€1 cnce f o r arbitrary pe it u rbat i o m  the in t e rnal equilibrium equa t i oils bec om e : 

In the steacly-reference flight condition the internal ccpilibrium is given by: 

For arbitrary perturbations, thd equations for the steady-reference flight 
condition cannot be used to simplify the perturbed equations. This comp1:cation 
arises front the gravitational term 2 as it did in obtaining the momentum 
equations (6.12). The substitution of perturbed Euler angles into equation 
(6.36) does not admit this type of separation because of the trigonometric terms. 
The Separation becomes possible when the large perturbation approximation is 
introduced. 

Free vibrations of the airplane are governed by tk-., . : SI equilibrium 
equations with all applied forces set equal to zero and the airplane lnoviilg a t  a 
constant velocity wi thci!t rotation, Thus, 

Under these concli tions the internal equilibrium equations become 

In addition, the momenturn and moment of momentum equations become 

(6.47) 

(6.48) 

(6.49) 
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(6.50) 

2 A 2 - A  
Because P’ = rb + ?+ d and d2FL/dt2 = 0,  the momcntiini equation beconles 

(6.51) 

A Further, because w = 0, the nioiiieiit of momentum eqt:ation becomes 

A 
Neglectilllg- prodiicts of tine elaslic displacement vector d,  th-2 reduces ;0: 

(6.52) 

Thus the equations of motion for the freely vibrating aiiylane are given by: 

(6.53) 

A solution to eqnations (6.53) may be obtained by writing the time-va.rying 

vector field d@, Y, Z ,  t) as a product function, i. e. 
2 

(6.54) 

Substituting into the equations of motion yields: 



A separation of variables may be can-iecl out with the introcluciion of a separation 
constant o . It follows that: 2 

b i' + W L T  0 ' 4  (G. 56) 

and 

It is seen froin the foim of equation (6.56) that the dependence on tiine is siinple 
harmonic with freqnency o. The vector 8 is termed the free-vibration mode 
shape, Ecpation (6.57) is an eigenvalue problem having an infinity of solutions 

2 consisting of eigenvectors Qi,  which correspond to eigenvalues w i. 

2 

A 

The equations of motion for  this case are linear, so  it is possible to forin 

an infinite sum of solutions as: 

(6.5s) 

This result is also a solution if the infinite se t  of eigenvectors (mode shapes) $i 

can be generated, 

The equations o€ motion may now be written in terms of the free vibration 
modes as: 

dV = 0 

A A = ?  
The constant vectors gi(0) and 1/2(v x $i)oXr may be evaluated ancl eliminated 
froin the formulation. Multiplying the internal equilibrium equations by PA 

ancl integrating over the volume, it follows that since 



(6.61) 

-1 
Foniiing the cross product of tlie internal ecpilibrium equation with p ‘i= and 
integrating over the volume results in: 

A 

(6.62) 

But the Ie€t-hand meinher of this espression may be written in terms of the 
inertia tensor such that: 

where: 

- 

so that: 

A 
Milne (ref. 43) noted that equation (6.55) leads to elastic deflections dpi, which 
a re  measured relative to the mean coorclinate axis system, The mean axis may 
rotate relative to the directions of the axis of principal moments of inertia of 
the airplane. If the second condition of equation (6.60) is replaced by the 
conditions 

(6.65) 

_,. ‘ i ‘ i  
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then the elastic deflections are measured relative to a principal a,.iis system. 
For most airplane coilfigurations iii which the dominant elastic deflections a;e 
transverse to a radius vector froin the c. g. the inwn and pr i iqpa l  axis systems 
are identical within the order of approximation of this analysis. 

b 

By defining a new structural influence function as 

the internal equilibrium equation for f ree  vibration be-comes: 

(6.67) 

where the syninietry of F, in (X, Y, 2) and ( E ,  q ,  5 )  has been used to 

and 

The above result represents an infinite set  of integral equations of the 
homogeneous, Fredholm type in which the components of the tensor a are the 
kernel functions. The equations are satisfied i f  $i is a zero vector, but this 
is a trivial solution. An infinite number of nontrivial solutions are found by 
solving the eigenvalue problem represented by equation (6,67). These non- 
trivial solutions a re  termed characteristic solutions $i (eigenvectors) and 
correspond with values of m i  termed characteristic values (eigyvalues) . 
These eigenvectors have properties of orthogonality, which are found in the 
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following maimer. Forming the scalar procluct of p 3'. with ttie internal 
ecpilibrium equation as given by eqwtiorr (6.59) and integrating over the voliiiiie, 
the sjmmetry OP ro may be used to write: 

A J  

.a 

e 'b 

But this is precisely the result that would be achievccl b ~ -  starting with equation 
(6.59) written in terms of the jtll eigenvector as: 

3 Integrating the scalar product with p ~ g  i then results in 

Comaining the above two expressions leads to: 
(6.72) 

(6.73) 

If wi f w . ,  it follows that: J 

and conversely, (6.744 

where ri is the geiieralizecl flexibility associated with the ith mode. SimiIar 
reasoning leads to the orthogonality property 

(6.75a) 



wliei-e iiii is the gcncraIizec1 mass associatecl with tlie ith iiiocle. 
J 

The vectors Qi. are the free-vibration mode shapes. Dividing the mode 
shapes by & one may ctefine normal inocle shapes $i s o  tliqt: 

(6.76) 

The orthogonality expressions, equations (6. 74a) ancl (6.75a), niay be written 
in terms of the noi*nialized modes: 

and 

’ 0 )  i + $  
(6.75b) 

Returning to the internal equilibrium equation with the arbitrary perturba- 
tion substitution, that expression may be written in terms of the new structure 
influence functions 8 as 

Introducing the large perturbation appro-ximation, it follows that 

so that the steady-reference motion equation (6. 77) becomes 

(6.78) 
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The internal ecluilibriuin equations in the perturbation forin may now be written: 

m 
or, in terms of r,: 

The perturbation elastic displacements may now be written in ternis of the 
normal modes as: 

;tjp E +i ui 
i= I (6.82) 

Recalling the form of the perturbation acceleration froin equation (6.44), 

that vector field may be written in terms of the normal modes as 

The first six terms of equation (6.83) do not contain the mode shapes and are 
essentially rigid-body perturbation accelerations, They will be denoted by: 



The final three tcrms of equation (6, 83) enter scalar products with yo when 
equation (6.83) is substituted into (6.81). These may be written: 

Equation (6.85) introdiices the coupling between elastic deformation and 
airplane rotation, If the properties of the norinal modes developed above are 
used, all these terms vanish. This cannot be taken to mean that this coupling 
does not exist. It means that it is ignored when the normal modes are generated 
from the eigenvalue problem represented by equation (6.59) and are introduced 
into the analysis. This tacit assumption is always included in elastic airplane 
analyses in the literature, but is not always described. The assumption of 
small rotation rates and rotational accelerations, which is taken to be valid i n  
these reports, justifies the deletion of these terms for the present analysis. 
The rotational accelerations and rotatiow rates of large airplanes are indeed 
small. Hence the proclucts of these quantities with the perturbation elastic 
deflections and perturbation elastic deflection rates a r e  ignored. The terms 
in equation (6.84) represented by equation (6.85) a re  dropped from the analysis, 
and the v e c b r  a" is reduced to: P 
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With th.ese approxiinations the perturbation form of internal ec~uilibriuin may be 
w- r i t ten : 

This result is valid for large ancl sniall perturbations of large elastic ailylanes 
having small rotational rates and rotational accelerations 

Equation (6.87) may be foiinecl in a scalar product with PA< and integrated 
over the volume V. Using the orthogonality represented by equations (6.74b) 
and (6.75b) as well as equation (6. FiSa), it follows that: 

m 
The symmetry of To may be used to write equation (6.85) as: 

Recalling equation (6.5914, it follows that: 

(6.90) 



Subst.itiiting' (6. 90) into (6. 89) leads to: 

The last term of this expression 
of the conservation of linear and 

vanishes as a consequence of perturbation form 
angular momentuin. Hence the internal 

equilibrium equations in terms of the normal modes a r e  given by: 

2 Multiplying equalion (6.90) by pA+j, integrating, and using the orthogonality 
of equations (6.74b) and (6.75b).leads to a determination of u2 as 

j 

(6.92) 

so that equation (6.92) may be written: 

Finally, defining generalized aerodynamic and thrust perturbation forces as 

(6.94) 

the internal equilibrium equations may be written: 

The quantities l?. may be denoted as generalized flexibilities, and iii may 
3 j 

be denoted as generalized niasses. Equations (6.95) represent an infinity of 
ordinary differential equations, They are coupled only through the generalized 
forces Q 

aerodynamically with the rig-id-body motion of the airplane, 
In general, they a r e  coupled not only with one another, but also j* 
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The elastic perturbation displacenients z;, which are related to the 
generalized displaceinents u 
space. They are changes in position relative to a mean asis system when 
equation (6.60) is used as a condition in the formulation o r  refative to a princi- 
pal axis system when equation (6.65) is used. It is clear that equations (6, 95) 

no longer contain the perturlmtion acceleration and gravi,ty forces. I-Iowcver, 
the generalized forces Q. also do not contain the entire aerodynamic and 

J 
thrust perturbation forces. The operations leacling from equation (6.89) , con- 
taining (gp - 3'') PA, to equation (6.91) remove a distribution of aerodynamic 
and thrust forces that balance the perturbation inertia and gravity forces 
(gp - E$ PA at every point of the airplarie. 

a r e  not changes in  position relative to inertial 
j y  

2 a - A  

If the dependence of r0 on ti I2 coordinate through the thickness of the 
structure is eliminated in the above formulation, as it usually is in practice-,. 
the above assertion is morC acceptable. Aerodynamic and thrust forces that 
just balance (g - a ) p x (thicliness) a r e  subtracted. The computation 
IS, (f, - f l )  @dS, which is the difference between the upper and lower 
surface pressures integrated over a middle surface of the structure SM, is 
calculated froin the deviation of (f, - f l )  from the pressure difference that 
just balances (g - a ) PA x (thickness) at every point of the suiface, 

A &  

A P P A  

L A  

2 7 2  
Y P  

These considerations arc: vital to an appropriate formulatim of residual 
flexibility. In that formulation, some of the normal modes are eliminated 
from the problem. The deflections of the structure associated with the 
eliminated modes am treated as quasi-static. Inertia relief and gravity force 
perturbation must be retained in the formulation, 

Consider the structure to be platelike, s o  that the component of elastic 
displacement in the direction of thickness is independent of the coordinate in 
that direction. Let the direction or * : c h e s s  (norKa1 to the plate) be denoted 
by the unit vector A .  Also introduce a coordinate system r, s, t, with t in 

the direction of A. Then internal equilibrium may be expressed as 

A 

2 



where 7~ is the mass distribution per unit area of SM, ?rid 11 i s  the surface 
aerodynamic and thrust s t ress  difference across SM. 

Ignoring the inflitence of forces in directions other than th9 direction of k ,  
the influence function 

(6. 97) 

may be introduced so that equation (G. 96) becomes: 

(6. 98) 

where: 

For free vib 'ations equation (6.98) reduces to  

This result may be developed into an eigenvalue problem such that 

(6. 99a) 

(6.99G) 

( 6 . 9 9 ~ )  



00 

Letting (6. 100) 
LC=l 

this  expression may be introduced into eyuattion (6. 98) to find . 
- b  

As previously dolke, use the symmetry of yo to write the final two integral 
terms as 

n 

1ntroducir.g equation (6.99a) written as: 

these two terms beccme, as a consequence of the last two expressions of 
equation (6. loo), 



The first  integral may be macle to vanish as a consequence oE the conservation 
of linear and angular moinentunz. But one may also let 

such that: 

and: 

-. 

while: 

: .- 

With these substituted into expression (6. 102), the first integral vanishes itlcnti- 
cally while the second integral becomes 

Clearly, this must reduca to: 

so that: 

The portion OP the surface load represented by TA is orthogonal to GAi. The 
resulting internal equilibrium equations are given by 

(6. 103) 
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This espression represents the appropriate form of internal equilibrium. The 
generalized aerodynamic and thrust forces represented by 

have been shown to be computed from surface aerodynamic and thrust pressures 
that deviate from those that just balance the pepturbation inertia and gravity 
forces. 
vibration niocle sk,apes, the effects of inertia and gravity forces are eliminated. 

Thus, when internal equilibrium is expressed in terms of free- 

6.3 Lumped Paraineter Representation 
of Equations of Motion 

I ~ I  the preceding sections the momentum equations and the internal eciui- 
librium equation were fornzulated i n  terms of perturbation quantities. For the 
approxiniatioiis called large perturbations o r  small perturbations, the momentum 
equations were given by tables 4, 5, and 6. 

Internal equilibrium has been formulated as a system of integral equations 
that treat the airplane as a continuous body. The kernel functions for these 
integral equations cannot be found except for very simple structural forms. 
For complicated structures such as that of an airplane another, but ecluivdent, 
approach must be used. This alternate approach is based on the lumped 
parameter formulation of the equations of motion. 

6.3.1 Lumped parameters. - The L-rplane is divicled into a large number 
n of volume elements so that its total volume is given by: 

v =  
; = I  

The mass associated with the ith element is then 

(6. 104) 

(6.105) 
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and is termed the ith luinpecl mass. Its position relative to the airplane c. g. is 

(6.106) 

If the c. g. undergoes the virtual displacement b?', and virtual rotation 
6G0, the position of the ith lunipecl mass relative to inertial simce, i. e. , 

undergoes the virtual change in position. The virtua: change is 

Now, if the components of 6i?\ are denoted by the column matrix 

(6. 107) 

(6. 108) 

(6.109) 

and the components of the other vectors a r e  similarly written in natrix form: 

A v; % { i;} 5;; = {I ")- '6z,,== f:l/ (6.110) 

8 Z e  6 P* 
the above expression for the virtual displacement relative to  inertial space 
becomes, in matrix form, 

0 0  

0 -E; 0 

1 y; -xi 0 
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The rectangular (3 x 6) matrix is terined the rigicl-body mode matrix of 
the ith lumpecl niass. It is denoted by 

I 0 0 0 Z L  -y; 

0 0 I yi ' X i  0 
0 I 0 =EL 0 x i ]  [&] = [ (6. 112) 

and for all masses an airplane rigicl-bocly mode matrix is defined by the 
(3n x 6) matrix: 

(6. 113) 

In conjunction with this definition a (3n x 3n) diagonal mass matrix is 
defined as: 

€4 c 1 
J mll 

mn 

(6.114) 

The matrices defined by equations (6. 113) and (6. 114) may be combined 
into 

I 

M O O 0 0 0  
O M 0 0 0 0  
O O M O O O  
0 0 0 1% 0 - 1 x  

0 0 0 0  fY 0 
0 0 0 - L E  0 f 3  

(6.115) 

104 



where the nioiiieiits aiicl products of inertias a re  only approsiinate because the 
lumped niasses a re  finite and their inertias relative to their own centers of 
gravity a re  neglected. They become exact only as the lumped masses become 
infinitesimals. Also, the moments and products inertias differ for the reference 
and perturbation flight conditions because of the perturbation elastic deforma- 
tion. This difference is ignored as small, so that ?i in equation (6. 1.06) is 
taken to be the position in the reference flight condition. This approximation is 
used throughout the following development. 

- 

' C  

Now introduce the further definitions 

as the c.g. velocity matrix and 

(6.116) 

(6.117) 

as the c. g. position matrix. 

In cerms of these definitions the momentum and moment of momentum equations 
- for general curvilinear flight, (PI, Q1, R1) f 0, and small rotation rates 
- (so products with perturbation elastic displacements can be ignored) may be 

written in matrix form as 

where 

and where fxi, fyi, and fii are the components of aerodynamic and thrust 
forces acting on the ith lumped mass. 
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For large perturbations: .-- - 

(6.119b) 

where in equation (6. 119a): 

(Qi  +%) 1 - 1 e  1 x 2  + Ix, ( I Y  - 1 x 1  
2 1xIe - I Y a  

A =  [ 



and, for small perturbations, 

(6. 120a) 

(6. 120b) 
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where in equation (6. 1204: 

' C  

E = O  



Finally, equations (6. 118) constitute the laws of conservation of linear ancl 
angular momentum. They are in the desired lunipccl parameter fornlulation as 
a single matrix equation. 

. 
general equations of motion for tk.e airplane as a body with six clegrees of 
freedom have been derived in the preceding sections of this appendix. In 
addition, internal equilibrium equations were derived using the laws of con- 
servation of momentum, the concept of internal stress,  and Hooke's law. The 
internal equilibrium ecluations a re  essentially equatioiis of motion governing the 
elastic deformation motion of the airplane. 

. b  

6.3. 2 Internal equilibrium equation in lumped parameter form. - The --- 1_-- 

Those equations are given by: 

. .  
(6. 121) 

where the acceleration is 

dz> 
d t2 

+ -  dZ 8 c -- = -- 
d tZ d t 2  (6. 122) 

The dynamic ef€ect of elastic motion enters from the acceleration component 
d2$/dt2. 

Internal equilibrium may be expressed in lumped parameter form by 
introducing the following definitions. 

The displacement vector field is replaced by the mean value of displace- 

ment of the lumped masses given by: 

(6.123) 

Then the column matrix of displacement components may be introdcicecl as: 
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The structt. iluence function ro is replaced by the matrix [ C ] .  l’hc 

c.g. of the airplnne is clamped for this matrix to be consistent with the clefinit io11 

of To. The matrix [C]  is of size (3n + 3)x(3n 
(n .t 1)x(n t 1) array of (3 x 3) submatrices. The i, jth si&atris is 

b\ 

3) ancl is $omposed of 311 

A typical element, CxY, gives the component of memi displacement in  the 
X-direction at the ith lumped mass due to the coniponent of force. in the 

Y-direction at the jth lumped mass. The three rows ancl coluins of [C]  

corresponding to the clamped point at the c. g. contain zeros. Thus the niatris 
[ C ]  is singular. The reduced matrix obtained by deleting those three rows and 
columns is nonsingular. This will be true unless the structure is  a mechanism. 
The reduced matrix is denoted by [C,] and is (3n x 3n) in size. 

The matrix [C,] has an a v e r s e  denoted by 

[ e o ] ”  = [KI,] (6. 126) 

and is the stiffness matrix for the airplane clamped at its c.g. The stiffness 

matrix for the free airplane is 

(6. 127) 

The matrix represented by equation (6.127) is singular, and the defect is 

matrix [KZ21 is the force at the reference point due to a unit displacement 
at the reference point, [KZl] is the force at the r5ference point due to a unit 
displacement at the ith lumped mass with all other lumped masses held fixed, 
and [Klz] is the force at the ith lumped mass due to a unit displacement of 
the reference point. 

removed by deleting the submatrices [KIZl 9 [KZl] 9 and [KZ21 The sub- 



Further, introduce thc imtrix 

(G. 125) 

which is the displacement of the reference point (c. g.of the airplane befor? 
loa4ng) relative to the c. g. of the deformed airplane. 

With thest; definitions plus those of par. 6.2.3, the expresc r for internal 
equilibrium, eqwtion (6,35), is written in lumped parameter form as: 

This resul: is written in perturbation form and holds for large and small 
perturbat; :iiS, depending on the choice of thc matrices iM I] o r  (Mz]. 

The terms on the right-hand side of equation (6,129) are a self-equilibrating 
system of forces. Hence the total deflection of the structure cannot Xive rise to 
a change in position of the center 01 niass o r  to a rotation of the airplane aboct 
its center of mass. Thus, if the perturbation displacements of equation (6.129) 
are multiplied by the matrix consisting of [$I T[mg , the result must be: 

(6.130) 

Using the definition of equation (6.128), the matrix '{B) may be determined 
to be: 

(6. 1;;) 

This result substituted into equation (6.129) gives 
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(6. 133) 
b 

The flexilAity matrix [ E ]  relates thy d:spla?ements of the lumped masses 
to the airplane's c. g. l'he resuh of niulti2lying this flexibility matris by an 
arbitrary set of sePf-eqLi:lil,rating-i~ forces is a set of displacements that do r:.t 
give r ise  to a rigid-body motion of the airplane. A similar analysis is carried 
out for tine continuo-1s airplane fa gar. 6 .2 .3  and by Bisplinghoff and Ashley in 

Chapter 9 of ref. 1. They arrive at the following espression: 

(6. 134) 

However, as pointed out by BIilne (ref. 43), this result describes elastic 
deformation relative to mean axes and riot relative to  principal axes as implied 
above. However, the apprc,riniations in equation (6. 133) lead to coincidence of 
the mean and principal axe-. 

The similarity to equation (6. 133) is apparent. Yhe structural influence 
m 

function !GI is the contiauous analog of the matrix IC]. . 

6.3. 3 Free-vibration normal mode shapes. - The form for the intern 
equi1ibriu:n eqlrations given by equation (6.132) is not the most convenient. 
These are 3n coupled equations of motion for the n lumped masses. They 
may be uncoupled by introducing a change of variables, and the mathematical 
process for doing this for the continuous airplane is contained in the preceding 
subsection. An aralogous de1 elopment is presented here for the lumped 
parameter form of equation (6.35). 

Let the airplane be vibrating freely in empty space. The internal equi- 
librium ecliiations then reduce to 

(6. 135) 



If the displacement matrix is written as 

where u is a fhnctioii time alone ancl {@I is a matrix of con$tants, then 
equation (6.135) beconies 

(6.136) 

This result separates into two equations: 

(6.137) 

(6.13s) 

alicl .. 
u + u22A = 0 (6.139) 

where w 2  is the separation constant. Physically, o represents a natural 
freqiency of the f ree  vibration. Equation (6.138) represents an eigenvalue 
problem. The eigeiivalues me denotecl by w ~ ~ ,  ancl the eigeiivectors by (gi). 

The matrix [e] is siiigxtlar becmse 

(6- 140) 

The defect in [e] is of order six. Hence the number of inclepeiideiit eigen- 
values obtainable from ecpiatioii (6.138) is 3n - 6. This is e c p l  to the number 
01 elastic digrees of freeclom df an airplane represented by n lumped masses 
.that are granted only translation degrees of freedo;? relative to the center of 
mass. These results do not lead readily to a derivation of the orthogonalify 
properties of {gi}. The problem must be reforniulatecl in ternis of stiffness. 

To simplify writing, let 

so that ecpation (6.129) may be written as 

(6.141) 

and equation (G. 118) may be writfen as 

(6.143) 
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Equation (6. 142) represents internal equilibrium, while equation (G. 1-13) 

represents conservation of linear and angular momentum. 

The internal equilibrium may be expressed in terins of s%j.ffness by multi - 
plying equation (6.142) by 1~111 = [c,I-’ to find 

If this result is multipliecl by T, the riglit-hand member vanishes as a 
consequence of equatioiis (6.130) and (G. 143). This leads to 

(6. 145) 

s o  that equation (6.144) may be written: 

where: 

The matrix [K! is singular because 

[K][6] = 9 (6.148) 

but it is a symmetric matrix. The defect in [E;] is of order six. Assume 
that the elststic motion is simple harmonic, such that 

(6.149) 

Equation (6.146) becomes 

For free vibrations, {$” -Fm’[+JfX] = 0 and internal equilibrium is 
given by 



A s  previously noted, [K] has a defect of order six. Equations (6.143) and 
6. 151) iiiiply that there a re  six vectors that satisfy equation (6. 151) with 
u2 = 0. These are the six coluiiins of the rigid-body mode matrix [$I . 
Further, letting. 

(6, 152) 

where u is a fiinction of time alonc, there a re  (3n - 6) vectors (eigenvectors 
{$i}) that satisfy equation (6.138) and correspond to (3n - 6) distinct eigenvalues 

W$. Thus there are (31 - 6) solutiolis to equation (6. 151) that satisfy 

(6. 153) 

The stifhess and the mass matrices are syminetric. It follows from this that 

and 

Define xi and mi such that 

- 0  

and 

= o  

For i = j  (6.154) 

For i # j *  

' = j  

# j  (6.155) 1 
These are termed the orthogonality properties of L e  free-v ration mode 

shapes (Q i}. A free-vibration mode shape matrix may be defined as: 

(6. 156) 



6- , With this dcfinition, equations (6. 154) ancl (6. 155) may be written: 
i r  

and 

The elastic displacements (clp} may now be written: 

(6. 157) 

(6. 158) 

(6. 159) 

where {u} is the column matrix of (3n - 6) generalized elastic displacements. 
These are linearly independent, while the physical displacements dp a r e  3n 
in number and are seen to  be linearly dependent in consequence of equation 
(6. 130). 

2 

The formulation above must be distinguished from an alternate formulation, 
appearing often in the literature, that does not distiilguish between internal 
equilibrium and conservation of linear and aiigular momentum. The equations 
of motion are initially written in terms of the positions of the lumped masses 
relative to an inertia reference system. The connection between the two 
formulations may be demonstrated by noting that (r’p} defines 3n components 
of displacement relative to inertial space; hence, 

and it follows from equation (6.159) that: 

= CW {v} 

(6.160) 

(6. 161) 



where: 

' b  
(6.162) 

(6,163) 

From the foregoing it follows that the eigenvalue problem represented by 
equation (6. 151) may be replaced by 

This formulation introduces the rigid-body degrees of freedom into the problem. 
The matrix [K,] has zeros in its first  six rows and columns. The first  s ix  
scalar equations contained in equation (6.164) may be used to write 

w ' [MI {Y&) = C 

This represents the perturbation equations of motion of the airplane as a rigid 
body in free space r1-i .bout reference motion. If appropriate forces are added 
to the right-hand members of these equations, the result may be made to 
correspond to small perturbation equations of motion for an airplane in steacly, 
rectilinear, level ilight. 

Equation (6.164) was introducecl to emphasize the distinction between the 
formulation of internal equilibrium, equation (6. 142), and fluher problem 
formulations. In a flutter problem formulation the displacements (dp} in 
equation (6. 142) are directly replaced by {rtp}, i. 3.  pertwbation displacements 
relative to inertial space. Also, the stiffness matrix [ICl1] is replaced by 
the stiffncss matrix [K'] given by equation (6.127). This distinction must be 

clearly recognized to avoid confusion. Rigid-body motions are not usually 
included in a flutter analysis. The defect of order six in [K'] gives rise to 
six zero values for eigenvalves corresponding to the rigid modes [SI ; the corre- 
sponding generalized coordinates, however, are given by {B} . Motion which 
might bs te+. * :-;qic?-bc,cly motion is the motion oP the structural reference 

117 



point relative to the airplane's c. g. In many cases the characteristics of that 
motion are nearly identical to the Characteristics of the airplane's rigid-body 
motion. This tends to obscure the distinction bettvcen thc two forinulations. 

Internal equilibrium equations appropriate to the conipletely elastic airplane 
b 

may now be obtained by introducing equation (6. 159) into equation (6 .  1-46) to 
find: 

This expression may be premultipliecl by [PI T, and equations (G. 157) and 
(6. 158) may be usecl to find 

__ 

(6.166) 

These internal equilibrium equations are uncoupled in the left-hand member. 
The right-hand member represents generalized aerodynamic and thrust 
perturbation forces: 

- 

(6. 167) 

Thus it is seen that Qi is a "force" acting on the ith free-vibration mode shape. 

6.3.4 Generalized perturbation aerodynamic forces. - - In the preceding 
subsection the internal equilibrium equations were transformed by introducing 
free vibration modes. The result given by equations (6. 166) and (6. 167) is 

(6. 168) 

The ger,xalized aerodynamic forces were obtained from the aerodynamic 
forces on the lun . .*: masses, i. e. if}. The aerodjwamic pressure at the 
surface of the airplalie is represented by the vector F in the continuous 
representation of the internal equilibrium equations. Considering only the 

A 
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perturbation part, the coniponeiits of the perturbation aerodynamic pressure 
force on the $11 luinpec1 mass a re  given by 

(6.169) 

For an inviscid fluid the pressure is in the direction noimal to the surface 
denoted by i?, A mean normal to the surface may be defined by: 

Hence the colunin matrix {f) may be written: 

and the generalized aerodynamic perturbation forces are: 

(6.170) 

7 

As a consequence, the generalized forces may be ohtained from aerodynamic 
influence coefficients. It is shown in app. B that 

where the matrices [A1], [AZ], [Ag],  [Aq],  and !As] contain the aero- 
dynamic influence coefficients and certain aspects of the airplane geometry 
in lumped parameter form. 
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6. 3.5 Eqivtions of motion for conipletely and equivalent elastic airplanes -- I - 
in lumped parameters. - This subsection is essentially a suinmary and 

compilation of the preceding. All the formulation of the equaiions of motion 
for completely and equivalent elastic airplanes has been carried out. The 
central results are the niomentiiin equations and the internal equilibrium 
equ at i om. 

The momentum equations were combined into a single matrix expression 
for either small cr large pertiirbations: 

A s  shown in app. B, the perturbation aerodynamic forces are: 

{ F l  = [A,] {VP} f [AZ] {Cp} 4- [A31 {+I + [AJCd'P} + [ASlcd"P} (6- l74) 

Also, the internal equilibrium equations were given by equa-Son (6.132), i. e. , 

(6.175) 
- co] 

This set of equations represents the equations of motion for the completely 
elastic airplane. The airplane is taken as n lumped m:.2:ses, and the effects 
of rotations of the lumped masses about their centers of gravity are ignored. 
Thus each lumped mass has three degrees of freedom; these are three 
translations relative to the c.g. of the airplane and the mean or principal axis 
system. These are (3n - 6) degrees of freedom (termed elastic degrees of 
freedom) :;.at enter the problem through the elastic displacements { dp}. 

There are three translational and three rotational degrees of freedoin for 
the airplane as a whole, Thus, in total, there a re  3n degrees of freedom, 
and the above equations are 3n in number. They are therefore a determinant 
set af equations. 
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The equivalent elastic airplane formulntion results by neglecting the 
* e  

generalized inertial forces 
of the structural motion [61 l'[a41 {&I} and 
remains unchanged except in the eqress ion  for aeroclyaamic perturb'ation 
forces. The internal equi.1 briuiii equation becomes 

lm] (clp} ancl the aeroclynaniic Camping ancl inertia 
[A5] {Ai}. Equation (G.  173) 

Combining equations 
motion for the equivalent elastic airplane: 

173),  (6. 174), ancl (6. 176) results in  the equation of 

(6. 177) 

The first t.m terms on the right of equation (6.177) contain the aerodynamic 
stability derivatives. The effect of elasticity is introcluced into those stability 
derivatives by including the factor 

If the airplane is taken to be rigid, ths flexibility 
terms of equation (6.177) reduce to the stability 

vanishes and the first two 
derivatives for a rigid air-  

plans. The final terms of ecpation (6. 177) contain stability derivatives related 
to inertia and gravity force perturbations. These terms vanish for a rigid air- 
plane, e. g. for a rigid airFlane o r  a completely elastic airplane the stabi.lity 
derivative CL does not exist. e 
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This stability derivative is present, however, in the equations of motion of 
an equivalent elastic airplane. It arises as a result of the change in direction 
of the gravity force vector relative to the airplane in going from steady- 
reference fl-ight to perturbed flight. This introduces a chang; in airplane 
shape, hence a change in aerodynamic forces. This does not occur in a rigid 
airplane. In a completely elastic airplane formulation, all elastic shape 
parameters are held constant cluring a e perturbation. 

* 

6.3.6 Residual flexibility. - The equivalent elastic airplane has six degrees 
II 

of freedom, and the perturbation equations of motion a re  very similar to those 
used to describe the perturbation motion of a rigid airplane. The sole differ- 
ence between perturbation equations of mcition representing a rigid airplane 
and those representing a n  ecluiva!dnt elastic airplane is in the stability deriva- 
tives. Those for the equivalent elastic airplane contain a correction that adjusts 
the stability derivatives of the rigid airplane to account for the yaasi-static 
elastic deflections of the equivalent elastic airplane. For the completely elastic 
airplane, additional degrees of freedom are  introduced to describe the elastic 
motion arising from structural dynamics. The method of residual flexibility 
leads to perturbation equations of motion that combine features of both the 
equivalent elastic and completely elastic representations. The -esult is a set 
of perturbation equations of motion that lead to a mor2 accurate evaluation of 
the motion of elastic airplznes than mcy be achiev'ed by either the equivalent 
elastic or  the completely elastic perturbation equatioiis of motion. 

Consider the manner in which the elastic airplane is represented, Although 
it is a continuous body, for computation it is approximated by a large number 
of lumped rliasses silbject to Perodynamic forces and connected b j  the elastic 
str ix tur  e. 

In the equivalent elastic airnlane, the only inertial forces considered to 
act on the lumped ma,sses ar ise  as a consequence of accelerations of the air-  
plane's s. g. Thus the deflected shape of the airplane at any instant is due 
entirely tc t:.s applied aerodynamic forces and the inertial forces resulting 
from motion of the airplane as a rigid body. This represenmtion neglects all 
structural dynamics, i. e. the inertial and clamping fcrces due to motion in thc 
elastic degrees of freedom. 



The differences bctwecii tlie equi.valent elastic nncl completely elastic air-  
plane representations nicl: 'le illustrated by a siniple esnniple, Consicler an 
airplane clainpecl at i ts  &.le of symmutr-y, as shmrn in fiy. 10,. The airplnne is 
subjected to a siiiusoidally varying forcc of frequency b at its wingtip, The 

4 

deflection of the tip for  the equivalent clastic airplane is given by 

(6.178) 

where K is an elastic conntamt repr-esenting the effeclive stiffness of the wing. 
Under these condilions, the deflection is always in phase with the load and in  

constant proportion with the load. When the loa5 is aeroclynaniic, ihe problem 
is complicated by the fact that the load is dc:)endent on the clefleclion. However, 
this complication does iiot c4ange the essential features illustrlttecl by the 
example. 

When the airplane is completely elastic, the inertia force v p a s t  be 
included (where M is an effective mass of the wing). A differenilal eq1:atian 
now governs the elastic deflection, i, e. , 

M X  + K A  = P e a t  

This differential equation is solved by 

(6.179) 

I I ccl A =  - P, -- (s inwt  - - sin W e t )  (6.180) K I - - - .  0 2  wo 
w,' 

where do = ) x , t h e  natural frequency of the wing. 

Mote that, as M - a, wo - 0 and the soiution tends toward that of the 
equivalent elastic airplane. Consider what happens when oo 2 2 w .  In 
this case, 

M 

I A = 1.33 -- K P, ( sin ut - 2 sin Z u t )  (6.181) 

The deflection now exceeds that of the equivalent elastic sirplane arid is no 
longer in phase with the applied load, The excet, .\re dcilection i..; rzferred 
to as "dynamic overshoot. '' 
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The effective mass end effective stLF€ness of the wing depend on the 
deflected shape. For a continusirs wing there is an iiSnite li~111bel* of free 
vibration shapes and associated natural frequeucles. Howeve:, with the wing 
represented b j  n luinpeb n-iass~x and coilsidering inotiou only in the direction 
of the applied load, the number of free-vibration mode shapes arid frequencies 
Is n. These may be denoted by 

b 

mi == JZ (e. 182) 

natural frequency of i th 
free-vibration inotle shape where: w = i 

Ks = effective stiffness of th free vibration mode shape 
Mi = effective mass o€ L . th free vibration mode shape. 

The deflection of the €th niorle shape is given by 

where Rr is the participation factor for the ifh niocle with Po and the total 
deflection is 

-n 
A = E  AL (6.184) 

5 = I  

Now assume that the f i rs t  five nattiral freqnencies a r e  +i the order of 
magnitude of the frequency of the appIied load and that all the remaining natural 
frequencies are higher olx~er frequencies. Then one may write 

ri 
+ $ P, sin wt 

i = 6  

That is, the total deflection is the sum of a dynaniic part and an  equivalent 
exastic part. The latter portion, due to the higher order free-vibration mode 
shapes, is  referrecl to as the deflection clue to residual flexibility. 

.I 
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hitrociticing thc free-vibration modcs from equation (Go 152) on the left-hand 
s*%de of equation (6 . 146) , preniultiplying by [8 IT, and using the orthosonality 
relation equation (6 156) ). results in 

(6 185) 
It then follows that: 

In terms of these partition nmtrices equation (6.187) may be written: 

PremultipIying equation (6.191) by [@I leads to: 

The eqiations of motion in terms of the flexibility matrix [E 1 were given by 
equation (6 132). Comparing eqwttions (6.132) and (6 192) we see that 



Introducing the definition 

(6.194) 

-# f~~~--~c7~--.J~E7~3Zl (6.195) 
This result is used Inter hi the discussion to avoid tlm iiecessity of doteuiiiniilg. 
tlie free-vibration modes [Q 2] . 
The tI.esidiial flexibility” of the strwAure is fomd xvlieii the flexibility associated 
with the generalized elastic displacements of the clpmiiically iiicluded niodes, 
{u$, is si&tmcted froin tlie total flesibility of the structure [el, Ho:.vxer,. it 
is iniportaiit to recall that tlie fiexi1Ji1ity represented by r‘di is different from 
that usually terined tlie flexibility of tlie structure. It is defined by equation 
(6.133) as 

The term %!esidual flesibility” folloavs from tlie clefinition of equatioii (6.194). 

(6 . 196) 
Even throu& the matrix [Co] has an inverse defined a s  [I< ) the flexibility 
matrix t-dl does not possess an inverse. When multiplied into a se t  of self- 
eqiilibrrtting froces, [GI yields a set of meaniiigful deflections. .HoiveveP, the 
f i r s t  column of [ E l  cannot be regarded as tlie stirrctural deflections resulting 
from a unit load applied at the first structural mode, a s  in the case of [Co]. 

The formulation of the equations of motion for residual flexibility results 
by assunling that the inertial loads represented by l%$J(u,} are small enough 
to be ignored. The only intrinsic stivchzral effect that resists the deflections 
{ uZ) will be that represented by the residual flexibility. 

the dependence of the aerodynamic ancl thrust peturbation forces{f } on tlie 
elastic displacements Recall equation (6 . 172), i .  e., 

11 

The above result is incomplete because no consideration has been given to 
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Sntrocluce the partitioned mode shape matrix and write eqwtion (G.197) as 
r 7 

For the residual fl:aibility forintilation, let 

and 

(6.198) 

(6.199) 

- -  

(6.200) 

so that equation (6,198) may be replaced by the approximate relationslCp 

(6.201) 

Expand equation (6.191) for { u2)using equation (6.154) and 

with the result 

(6.202) 

Similarly, using the same approximation as above, equation (6.195) becomes 

(6,203) 



Conibiniug equations (6.201) through (6.203) results in 

Eqiiah'on (6.204) describes the perturbation aeroclynaniic forces acting on the 
airplane in the residual flexibility formthtion. It is now necessary to obtain 
the appropriate foi-ni for the internal equilibrium equations. Recalling equation 

(6.146) one may introcluce the partitioned mode shape matrix of equation (6. lSS) 

Prenwltiplying this expression by the transpose of the partitioned inocle matris, 
it follows from equation (6.155) and equation (6.167) that: 

where: 

(6.206) 

(6.20 7) 

Equations. (6.118), (6.204), and (6.206) represent the equations of motion for 
the residua1 flexibility representatioii of the airplane. Their expaiided forms are: 

[MI ((GI -+ [MJ fVp) + [MJ {rip)) [$I' [[I] - [A31 [G]-J[ [A,] {VP) 
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The similarity Gf the rigid-body equations of iiiotioii for resiclunl flesibili ty, 

equation (6.20S), to those for equivalent elasticity, equation (6.17'i), is app:~reut. 
If all elastic degrees of freedom are treated as quasi-static, then 

b 

anc7 equations (6.177) and (6.20s) are identical. Also, since thc rigid and 
coinpletely elmtic airplane formulations niay be olSalnecl from equations (6.202) 

and (6.209), this set  of equations is clearly the most general form. Further, 
if [ E ]  = 0, 

These are the equations of motion for a rigid airplane. 

6.3.7 Potential application of resiclual flexibility t h e q - .  - The potential 
application of residual flexibility theory by stability and control engineers may 
be discerned by considei:ing certain practical aspects of the preceding analysis. 
This subsection poini F out those considerations. 

The. completely elastic airplane representation is the most precise math- 
ematical model for assessing the dynamic stability of an elastic airplane. 
However, the limitations of computers that will be available in the foreseeable 
ftitwe for carrying out the numerical computations forbid its use. These 
limitations are a consequence of the large number of elastic degrees of 
freedom involved in adequately describing the elastic airplane. 

A discussion of the number of free-vibration mode shapes required for 
the airplane's representation is included in app. C. In that discussion i t  is 
pointed out that the stability and control engheer is usually concerned with 
dynamic participation of only a small number of vibration modes, This 

follows from the fact that he is primarily concerned with the six-degree-of- 
freedom motion of the airplane c.g. A free vibration mode participates 
dynamically with the motion of the airplane c. g. if the nahwal frequency of the 
free vibration mode is nearly equal to the frequency of the c.g. motion. The 
stiffness and mass distribution of most airplanes i s  such that only a very few 
free vibra.tion modes have natural frequencies low enough to participate 



dyn~wiicnlly. However, there i s  quasi-static motion, clue to the higher fre- 
quency modes, that can have a significant effect. on airplane stability and control. 

Without the residual flexibility foriiiulation of the equatioii.3 of motion, the 
skability and control engineer is facccl with two alternatives. €Ie may include 
the free vibration modes that contribute the major quasi-static elastic deflec- 
tions as  dynamically participating. Or  he may ignore all structural dynamics 
and base his stability and control analysis on the equivalent elastic airplane 
representation. Either choice carries a penalty, In the first  case, numerical 
accuracy is lost because of the coniplexity of the equations of motion. In the 
second case, the mathematical model does not accurately represent the air- 
plane. Residual flexibility theory provides a middle ground between these two 

alternatives, including the quasi-static deflections of all elastic modes that 
do -lot participate dynamically. Thus residual flexibili ty theory may be 
expected to give optimal accuracy in predicting dynamic stability of elastic 
airplanes. 

The sole difference in the equations of motion introduced bj7 including 
' 

t residual flexibility is seen by examining equations (6.208) and (6.209). This 
difference is represented by inclusion of the square matrix a s  a factor: 

where . I accorclance with equation (6.189) : 

(6,212) 

All  the matrices contained in this factor must be available for the analysis 
neglecting residual flexibility. No new information i s  required, However, the 
computation of the factor involves the inversion of a matrix of large order. 
This appears to be the only drawback associated with residual flexibility theory 
but i t  seenis to be adequately offset by the advantages. 

6.3.8, Connection between equivalent elastic airplane stability derivatives 
and -- completely elastic airplane stability derivatives, - This section discusses 
the difference between the stability derivatives appearing in the equations of 
motion for completely elastic and equivalent elastic airplanes, The theoretical 
basis of this difference appears in  this section and in app. B. 
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A previous discussion at the begiimiag of par. 6 . 3 . 6  illustrates the 
motion due to elastic deformation of an airplane €or simple loading. This 
motion was shown to be different for the two airplane represcnt:itions, It is 
this difference in the elastic motion which leads to the dilfereiices in the 
stability derivatives appearing in  the equations of motion for the two cas-s. 

The difference in the elastic motions arises as a consequence of the inertial 
and damping forces generated by the elastic motions. Thcse forces a re  
neglected in the case of the equivalent elastic airplane, In that case, the 
elastic deformations a re  in phase with and in constant proportion with the 
loads causing the deflections. For  the completely elastic airplane, the 
inertial and damping forces generated by the elastic motion lead to dynamic 
overshoot (nonconstant proportionality) and a phase difference between the 
time of maximuin deflection and maxinium applied load. 

c 

Recall the general form of the equations of motion given by equation (6.118): 

- 
1 The illation variables a re  the elements of the column matrix {Vp) a s  given by 

equation (6.116). They consist of the three components of the perturbation 
translational velocity of the c. g. and the three components of the perturbation 
rotational velocity of the airplane about its c. g. The first  two terms on the 
left-hand side represent the perturbation inertial forces on the airplane. The 
final tern1 on the left is the perturbation gravity force, The right-hand term 
is the perturbation aerodynamic force. 

1. 

For a rigid airplme, equation (6.213) may ;)e brought directly iil;o the 
form of the equations of motion given by Etldn (ecluations (4.15,7) and (4.15,8), 

ref. 4). This is done by introducing the stabi!!ty derivatives for  the rigid 
airplane and neglecting some of them in accordance with the development of 
ref. 4, 

For the completely elastic airplane, additional motion variables must be 
introduced to include the elastic motion, 'These enter equation (6,213) through 

V 



the right-hand term. To scc how t'nat occi1rs, note that the perturbation 
aerodynamic forces on the airplane panels are given by equation (94) of the 
suiiimary report as: b 

L 

(6.2 14) 

In keeping with the concept of a stability derivative, al? :!le perturbation 
variables except one must be set equal to zero in equation (6.214) in order to 
compute the "stability derivative" corresponding to the nonzero vkriable. 
Thus the appropriate equation for the quasi-steady aerodynamic perturbation 
forces due to elastic perturbation deformation is obtained with u/U1 = 0 and 
is given by: 

(6.215) 

where the perturbation flow incidence angles a re  functions of the perturbation 
elastic defonnation only. Following the development of the preceding and the 
summary report, the perturbation elastic deformation is represented in terms 
of the free-vibration mode shapes of the airplane. The components of elwtic 
rotation at each panel, f l ~ ~ ,  $q, and $ E ~ ,  defined in app. B, may be computed 
from each free-vibration mode ehape. Denoting some arbitrary free-vibration 
mode shape by a ,  the elastic rotatlons due to a unit amplitude for that mode shape 
are denoted as $ Q ~ ,  Qia, and Y q  

(O'E]~, (e~}~,(a}~, which may be regarded as the mode shapes theniselvss. 
F'urther, in accordance with app. B, it follows that 

One may then construct column matrices 
a 

(6.216) 
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These forces are directed aloig: 'the nokmds to the paiiels, A matrix pi.3 may 
be defiiiecl as: 

so that: 

(6.218) 

(6.219) 

where (f } is the matrkx of components of panel perturbation aeiwlynnmic 
forces defined by equation (6,118). It ~ O ~ ~ Q W S  that: .- - 

Finally, in accordance with the right-hand teim of equation (G. 213), the 
perturbation aerodynamic forces am1 mommts on the airplane due to u are 
found as: 

gt b m & ? n t J f % &  a, 

where, for example, 

(6.321) 

.. . 



(6.228) 

The ttstability derivatives" consist of the multipliers d tia! in a non- 
dimensiond form. 'I'hsS continuing with the examples, 

(6.224) 

Now considcr the eqiiations of motion associated with the elastic motiou 
that were derived in the preceding. These are: 

where: 

because of orthogonality of the mode shapes. Thus, 

(6.225) 

(6.226) 

(6.227) 

The f i rs t  term represents the generalized inertial forces associated with 
each motion variable representing the elastic motion. The term "generalizecl 
force" is appropriate because the use of free-vibration mock shapes has 
introduced a transformation to the generalized coordinates ua. The second 
term involves the generalizecl stiffness OP the airplane structure. The right- 
hand term gives the generalized aerodynamic forces. 
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The stabillty derivatives give the change in  the aeroclynamic forces and 
~-3me:its acting on the airplane clue to small changes in the motion of the 
airplane. Different stability derivatives must be used, depending on 
whether the airplane is considered completely o r  equivalently elastic. 

L 

The matrix [$$I is definecl by eqiiatioa (6.149) as the matrix of frec- 
th vibration niocle shapes. If 6u, is talieii to be a virtual change in the CL 

elastic generalized coordinate (elastic motion variable) , premultiplicatio~i 
of the right-hand member of eqttation (6.159) by ( 6 1 ~ ) ~  gives the virtual 
work of the aerodynamic foraes in a virtual elastic deforinatioii of the 
airplane, 1. e., 

The first  column of [a’], denoted a s  {fl}l of equation (6.149), gives the 
displacements of the panels due to a unit value of ul. This  {@Il T{F} is the 
force that does work in the displacement of the first  mode. It appears appro- 
priate to define 

as the force associated with an arbitrary free-vibration mode shape. 

Recalling equation j6.220), the aerodynamic force component matrix due 
to the elastic deformation is: 

(6.230) 

where the rectaiigttlar matrix 
(6.219): 

has colurrms in accordance with equation 

(6.23 1) 



Also recall equation (152) from the suiniiiary report, which gives the 
aercirlynaniic lwessure forces due to niotioii of the airplane: 

(6.232) 

Consider only the first and third terms for simpiicity. This espression can 
then be written: 

(6.233) 

using the notation of equations (151) in  the siiiiiinary report. 

The matrix of aerodynamic force components arising from perturbation __ _. 

elastic deformation as well as perturbation motion in  the rigid-body de& ol-ees 
of freedom is given by equation (6.233). Comparing the matrices appearing 
in equation (6.233) with those of equation (6.230), it is possib!e to write: 

Finally, this result may be introduced into equation (6,229) to find the 
component of force in the "direction" of the ai*bitrai-y free-vibration moc?c 
shape: 

The "stability derivatives" for  elastic motion may now be found as 

(6.236) 

and so on. 
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Using ecpation (6.229), the equations of niotion for  elastic cleforination 
are given by 

-. L 
However, it has been shown by equation (6.235) that this may be written: 

(6.235) 

Unsteady aerodynaiiiics and aerodynamic effects of displacement rates have 
been neglected so that there are no generalized damping forces contained in -. 
equation (6.23s). 

For the equivalent elastic airplane, the generalized damping and inertial 
forces are set  equal to zero in equation (6.238). The resulting expression 
may be solved for column matrix (u} to find: 

(6.239) 

This result may be used in equation (6.235) to fincl: 

(6.240) '. 

This result may finally be introduced into equation (6,213) to find the 
equations of motion for the equivalent elastic airplane. 



7. STATIC STABILITY CRITERIA 

7.1 Introduction 

The purpose of this section is to derive and discuss the static stability 
' b  

criteria for an elastic airplane. These criteria will be shoivn to follow logi- 
cally by esaiiiiiiiiig the definitions of the words "static stability" and "static 
stability criterion" and then applying these definitions. The definitions a r e  
intended to provide a precise basis for the ensuing discussion: 

e Static stability is here defined as the tendency of the airplane to 
develop forces or  moilleiits that directly oppose -11 instantaneous 
disturbailce of a motion variable from a steady-state (i. e. 
or trim -s tat e) flight condition. 

equilihrium 

For example, when the nose of an airplane is raised relative to the 
flight path mid as a result the airplane develops a nose-down moment, 
the airplane is said to be statically stable for such a disturbance. 
Static stability criterion is here defined as a rule by which steady-state 
(i. e. , ecpilibriiun o r  trim-state) flight conditions a re  separated into 
the categories of stable, unstable, and neutrally stable. 
In another context, the term has been used as a requirement for an 
arbitrary minimum static margin. For example, the military speci- 
fication for flying qualities (ref. 10, par. 3.3.1.1. ) requires a negative 
value of Cm at all times, which implies a positive static margin. In 
still another interpretation,. the civil airworthiness requirements (ref. 44, 
articles 4b. 151-155) associate stability criteria with stick force versus 
speed behavior. 

o 

a 

The reasons for defining static stability criteria in the form given a re  
these: 

0 The definitions a re  clear. Judgment and opinion a re  eliminated as 
factors, 
The definitions lead directly to important aerodynamic derivatives 
and show how these a re  related to the static stability behavior of the 
elastic airplane, 

0 
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Note that thesc definitions are largely indepcnclent of notions of stability 
and stability criteria associated with control force o r  control surface displace- 
ment. Specifically, this report does not deal with: 

Stick-force stability involving si: rface hiage inonleiits 
Stability as affected by the feel system, including bobweights 
Stability augmentation systems in general. 

I 

' b  

0 

0 

0 

It is recognized that when control surfaces are alloived to float o r  when 
springs o r  other devices are added, the longituclinal stabilit3- derivatives and 
associated control characteristics can be significantly affected. Such effects 
have not been discussed directly in this report; however, the discussions on 
the effects of derivatives are applicable. 

The steady-state motion of an airplane was defined as that motion for 
which speed V,, rotational velocity $, and elastic displacement field d 
(exterior shape of the airplane) remain constant with time in a body-fixed 
axis systeiii (X,Y,Z.). (See fig. 4). Relative to the inertial reference system 
(X:Y;Z'), the steady-state motion at any time t is completely described by 

A A 

-). 

a/ 4 -: the quantities gZ, and 2 
? 

In more commoii language, steady-state flight is defined as having con- 
stant speed, constant rotational velocities, and constant load factor. This 
type of flight is frequently encountered in straight and level cruise and in 
steady turns. For the elastic airplane, it is also required that the exterior 
shape remain constant in steady-state flight. 

A 
The momentary position of the center of mass in inertial space, r' is 

not important for calculation of stability behavior. * The state vector com- 
ponents, X1', Yl', and Zl',  will therefore not be included in stability consider- 
ations, and neutral stal$?ity with respect to changes in these motion variables 
is accepted. A similar statement can be made with respect to heading angle, 
Q , attitude angle el, and bank angle 6 ,  which are needed to describe the 1 1 
steady state for zero rotational velocity$ 

is accepted also with respect to 9, e ,  and Qi. 

O r  

In other words, neutral stability 1' 

*There is a small exception in that the atmosphere is not homogeneous, which 
means that density is a function of 2' . In discussions of static stability, this 
fact will be ignored. 



The state vector (i. e. the steady-state description) of the airplane for  

discussions of stability is therefore clsfined as  having the components U IT1, 
W , P , Q , R , and components of cl 

are described by the coiiiponents u,  v, w, p, q, r, and coniponents of 

-A 1' 
Disturbances from t!ie steady state 1 1  1 . 1  1' b 

Kolk (ref. 16, p. 2) states that stability "can be defined along and about all. 
axes, and in respect to any parameter one may choose. '( In applying the 
definition of static stability here, the "tendency to oppose disturbances" is 
judged in terms of the instantaneous force and moment behavior of the air-  
plane to disturbances from a steady-state flight condition. In deterinining 
which combinations of forces, moments, and disturbances a r e  to be singled 
out, the following arbitrary rules have been followed: 

8 

e 

e 

Velocity disturbances are initially opposed only by forces. 
Rotational velocity disturbances are initially opposed on1.r by moments. 
Angles of attack and sideslip disturbances obtained by interpreting the 
velocity disturbances v and w as p = v/Vc and a = w/Vc are 
initially opposed by moments . 1 1 

By consistently applying these rules and the definition of static stability 
to the instantaneous force and moment behavior of an airplane, criteria for 
static stability evolve, The results are stated in table 7. An airplane will be 
considered statically stable in a motion variable if  it satisfies the correspond- 
ing criterion of table 7. 

Neutral and unstable criteria follow by deduction. For convenience , each 
static stability statement in table 7 is accompanied by a Statement involving 
the most important derivative in each case. 

Note that the criteria of table 7 are equally valid for both rigid and elastic 
airplanes. In the formulation of the inequalities of table 7, the behavior of the 
structure is not important except that struck?ral stability is implied. 

Notice also that the nriteria expressed in table 7 are expressions of local 
slope behavior. For that reason they also apply to situations where aero- 
dynamic forces behave in a nonlinear manner, This is important because 
airplanes in many instances do behave in a nonlinear fashion, Typical examples 
are stall arid pitchup. 

14 1 





Even though the st:itic stability criteria of table 7 evolve froin the defini- 
tions and rules selectcd here, there is a wide variation in  iinportance among 
the ten criteria tabulatecl. For example, 8M / a a ,  (-Chi,) i,s of much greater 
practical importance than  IF / a v  (-c 

Y 6 

) Y YP 
Note that under the adopted definition of static stability, the partials 

aMy/t3u (-Cm ) and 8&ix/8v ("Ca ) do not belong in table 7. This implies 
that for static stability under the current definition, the signs of Cmu and 
C 
practical case and will therefore be cliscusseci. 

U. P 

are not important, However, these derivatives are important in the 4 

An unusual feature of table 7 is that it includes moment derivatives with 
respect to rotational velocities. Such derivatives are normally associated 
with dynamic stability and not with static stability, The reason for  their 
appearance in table 7 must be found in the definition of static stability. The 
physical justification for  including these nionient derivatives in static stability 
considerations is that steady-state flight can actually involve constant rota- 
tional velocities. 

--: 

An important point is the following: table 7 merely states the conditions 
necessary for  static stability as defined herein. This does not imply that 
static stability is o r  should be required. Whether o r  not static stability with 
respect to a particular motion variable is desirable is a question of handling 
qualities. It is not the purpose of this report to deal directly with this question. 
However, there a r e  significant connections between handling quality paranieters 
and static stability criteria which will be pointed out. 

7.2 Static Stability Criteria for  Speed Disturbances 

7.2.1 Forward speed disturbance, - - 
Criterion 7.1 
From table 7,  an airplane is statically stable for  a forward speed 

- 7 

The physical meailing of criterion 7. 1 is that, as a consequence of an 
increase in €orward speed u (along the X-axis), a force must be generated that 
opposes the increase in speed, 
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The consecpences and significance of criterion 7. 1 will noit; t c  csxiiiiiiccl 

in detail, In stability ases: 

' b  

Px, =  FA^^ + Frx C-x, ~ S W  

(Cr,., - CIS) y sh/ (7.1) 

Application of ci-iterion 7.1 yields: 

(7.2) 

If the steady-state flight condition is level, it  follows that: 

(CTX,, - c D I )  0 

-. In that case, the static spced stability criterion reduces to: 
.. . 

CXS,  -CD&) c 0 (7.3) 

The subject of static speed stability is treated in many different fornis. Esam- 
ples are Seckel (ref. 13, p. 120) and Etkin (ref. 4, p. 148). 

Intuitively, it seems that Cx c0 is a desirable characteristic in an 
SU 

airplane. When C < O  is satisfied, the airplane tends to maintain i ts  sped. 
xS 

U 
In addition, in approximating the phugoid behavior of an airplane, Etkin (ref, 
4, p. 148) has shown that Cx <O is needed to ensure a stable phugoicl. 

SU 

An unstable sign of 8FX/8u is considered unclesirable in approach flight. 
The reason is illustrated in fig, 11, where induced drag is the primary came 
of the behavior of F versus speed. 

xS 
At a fixed throttle setting, the airplane has speed stability in steady-state 

flight (trimmed) at point B . (Note that the slope of F versus speed is not 
xS 

treated as a partial derivsrtive here.) An increase in speed 11 leads to a force 
which tends to slow the airplane down again. Also, an increase in thrust is 
needed to increase speed, a decrease in thrust to decrease speed, 



IIowever, at point A , where many airplanes fly i n  the approach, the 
airplane is unstable with respect to speed changes. A decrease in speed leads 
to a force that tends to slow the airplane down even more. If $he airplane has 
a limited thrust margin at point A 
available and thrust required is small) o r  if the throttle rcsponse is sloiv, it 
is possible to get into a situation from which recovery is possible only by 

diving. This is of course not reasonable in  an approach, and the result may 
well be a crash, However, Roeing experience has shown that speed stability 
is not required if  good thrust response and pitch control are provided. 'In 
particular, when an autothrottle system is provided, speed instability can be 

artificially masked. A s  indicated on the figure, this discussion has been 
concerned wit11 the special case of lg flight. The balance of pitching n:oments 
is usually of great importance in cases where EIF /au produces significant ' 
effects, This is especially true in the case of an autothrottle involving pitch 
effects due to thrust moclulp.tion. 

(i. e.  the difference between thrust 

X 

Drag 
force 

Propulsive 
force 

FIGURE li. - EXAWLLE OFSTABLE AND UNSTABLE SFEED BEH.4 VIOR 
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On fig. X I ,  etirphiies Wall'' at speeds to the lrtft of the minilrum point. I€ 
= 0 line the unst&Ie branch of the mn,\irnuni i: ust curve intersects the f: 

at a speecl greater t h n  the stall, the airspeed will cliverge an6 result in a stall 
unless the pilot dives. The instability accompanying the clivei*geucc. is usually 
considered R performance factor ,and will not be further discussed here. 

% 

In cruise flight at hip$ speeds, &Iach nunlbcr effects become important; it 
in the transonic speed range. If it is possible to have a11 adverse sign oi C 

is necessarr to fly in this speed range for long periods, an autoinntic Mach trim 
5 3  U 

compensator and/or an autothrottle system may be used to obtain cle facto 
stability. The effects of elasticity OH C a re  thought to be veiy  small. 

xS U 

7.2.2 Si& sgeecl disturbance. - - -----_I_ 

4- 

From table 7, the airpIane is statically stable for a %Me speed 

i o  distwbance v if: - d Fu 
d V  

The physical meaning of this criterion is that as a consequence of a side 
speed disturbance v (along the Y-axis) a force is generated that tends to 
oppose v . The a.pproximation B " p  V, will be used. 

1 
Sta-+ing h r n  a symmetrical flight condition (zero sideslip} and using 

stabilfty ams, 

(7.4) 

This relation assumes that side force effects due to tlirnst a r e  negligible. 
Assliming that the side speed disturbance v does not affect dynamic pressure, 
application of criterion 7.2 yields: 

CYp O (7.5) 



Therefore, a requirement for  static stability is that the sicleforce cocllicient 
be negative. This coiiditioii is satisfied by current configurations for angles 
of sideslip below that where flow separation is important, Tlae in i l i t aq  
airworthiness recpirenients of ref. 10 (par. 3, -1. S) recpire inecluality (7.5) to 
be satisfied. The sideforce derivative C 
tant in affecting static stability. 

is generally thought to be unimpor- 
yP 

However, C does produce two practical static effects. Sideslip angle 
YP 

is very difficult for the pilot to perceive, and C 
ity" by forcing symmetricd airplanes to bank in steady sideslips (ref. 10 , par. 

3.4.8 and ref. 44, par. 25.177b and c). It also allows the pilot to perform 
skidcling turns at very low altitude, where bank angle restrictions may have 
to be observed because of terrain. 

< 0 increases its "visibil- 
YP 

- 

In its effect on dynamic stability C is frequently neglected, as stated by 
YP Etkin (ref. 4, p. 167). The derivative in some cases affects damping of 

lateral oscillations; i ts  capability in dissipating lateral kinetic energy has been 
illustrated by Roskam (ref. 23, pp. 65-75). 

Effects of elasticity on sideslip enter mainly through the vertical tail and 
the fuselage. Even though the derivative C is of little importance to basic 
airplane stability, effects of elasticity a re  usually accounted for because the 
data required for so  doing are also required for correcting C 
discussed in  par. 7.3. 

* P  

as will be 
93' 

7.2.3 Vertical speed disturbance. - 
Criterion 7 . 3  
- 

From table 7, the airplane is statically stable for a vertical speed 
disturbance w if: - C)FE < 0 

.b W 

The physical meaning of criterion 7.3 is that as a conseqiience of a 

positive velocity disturbance w (along the Z-axis), a force is generated that 
tends to oppose w The approxi.mation w= a VC1 will be used. 
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In stability axes: 

F t S =  FiiiES -1- Fris =i. Cn, $ Sw 

(7. G) 
=(-c,+c-r Z S  ) p w  

Apply.ing cri.terion 7.3 and using the fact that w =: a! 1' , while neglecting 
c1 

the effect of w on dynamic pressure, yields: 

The variation of C T ~  and a! reflects the behavior of the noimal force at 

the inlet of a jet engine o r  at the propeller disk, as well as the basic change 
of thrust with angle of attack. 

S 

- 

Etkin (ref. 4, p. 69) has shown that for the noimial force: 

(7.8a) 

so that, neglecting the change of basic thrust with a, 

-- dCrr. = m ' 2  ( I +  y$) 
dcc Aif? ~ S W  (7.89 

Since dc./da is norinally sinal1 but positive, criterion 7.3 is certainly 
J 

satisfied if: 

C L o c  > o  t 7.9) 
Thus lift curve slope C must be positive for static stability against a 

LF disturbance w . This condition is always satisfied for angles of attack below 
stall. Mach number does affect C strongly, but as long as the flow remains 
attached, the condition set forth in equation (7.9) is always satisfied. Usually 
C 
with Mach niiiiibmr in the supersonic speed range. In the transonic s p e d  
range C 

La 

increases with Mach number in the subsonic s p e d  range and decreases 
La! 

can behave erratically, depending on the configuration. 
La! 



Lift curve slope has always bcen recognized as an iin portant derivative. 
It directly afIects the hanclling qualities of m airplane in two ways: first ,  in 
deterniiaing the load factor response clne to  angle of attack (tlijs also has strong 
implications on the ride qualities of an airplane) and second , in cIai1iping tlic 
short-peri :I oscillations. The first effect is  obvious, as incleccl C 

the funclaniental means of controlling the flizlit path in conventional aircraft. 
The &?concl effect may be seen by inspection from tlie approximation of short- 
period damping ratio g?ven by Etlcin (ref. 4 ,  p. 211). Replacing C 

Vc CL , the interpretati,.n as a damping factor is physically clear. 

4 

provides 
La 

by 
IJCY 

l w  

ing the sign, :Iiich is ol course undesirable. Because of thi.s, the structure 
must be such that C 

Aeroelastic effects gelierslly tend to decrease C fo r  high aspect ratio and- 
highly swept configurations. On delta configuratio is, -xroel.astic effects tend 
to be weaker and in fact can sometimes cause C 
decrease. 

Aeroelastic effects on C can be very large, even to the point of revers- 
La 

sign reversal does not occur inside the flight envelope. 
La 

=CY 

=a 
to increase rather than 

7.3 Weathercock ( p and a) Stability Criteria 

7.3.1 Static directional stability. - 
Criterion 7.4 

From table 7, the airplane is statically (directionally) stable for 
a sideslip disturbance p if: 

t aM 3 0  
Jfi 

The physical meaning of criterion 7.4 is that as a result of an angle of 
sideslip disturbance p the airplane weathercocks into the new relative wind. 

The term "static directional stability" i s  used because it agrees with 
conventional usage of the word. Strictly speaking, this usage is not correct 
because thz word "directionaltf implies heading, but heading stability 
(8Mz/8JI < 0 ) is not needed in an airplat . ;  in fact, all airplanes have neutral 
heading stability. 

4 
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In stability axes: 

(7.10) 

Applying criterion 7.4: 

Cn, + C + n p  > o  
(7.11) 

If the thrust dependence on sideslip is negligible, then: 

(7.12) 

It ;s generally folt that static directional stability is desirable because it 
gives the airplane the tendency to return to a straight flight path. When the--' 
airplane is flying a straight flight path with initial sideslip, the steady-state 
yawing moment coefficient is nonzero, C 

for directional stability is: 

# 0. In that case, the requirement 
"1 

(7.13) 

This means that the local slope of Cn versus p must be positive. This is what 
is required in the military airworthiness requirements (ref. 10, par. 3.4.3- 

3.4.5) , which state the requirement fo r  directional stability in terms of 
characteristics involving rudder position and rudder force. For conventiona1 
rudder control arrangements and effectiveness, this implies inequality (7.12). 

The civil airworthiness requirements of ref. 44 take a similar position in par, 
25.177 but, in addition, require criterion inequality (7.12) to be satisficd. 

Inequality (7. 13) specifically covers situations involving nonlinear variation 
of yawing moment with sideslip angle. Such nonlinear variations occur quite 
often. A typical example is the XE-7OA. 

Mach number has a strong effect on C For SST-type configurations, a 
high Mach number and a large angle of attack can combine to seriously deter- 
iorate C . In such cases, the requirement C > 0 can be a serious design 
problem, In recent years it has beccjiiie a custom to specify a minimum value 
for some un€avoraLle combination of Mach number and angle of attack. It is 

no 

"P "P 
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not clcar at present whctlier or  not such. a recpirenient shoulcl be replaced bg 

a recpiremcnt for certain minimum acceptable clynaniic response character- 
istics. One approach, suggested in ref. 13, p. 62, is to specify a miiiiinuni 

rate of dissipation of latcral-directional kinetic energy. This idea is further 
discussed in  par. 7.4 of this report because it is more a niatter of dynamic 
than static stability. 

k4.Y 

. 

Aeroclastic effects on C can be quite significant. In fact, scveral 
"P current configurations can fly at values of dynamic pressure close to local 

structural reversal of the vertical tail. 

7.3.2 Static -___ lon&tuclinal stability. - 
I Criterion 7.5 

From table 7, the airplane is statically (longitudinally) stable for - -  

an angle-of-attack distui-bance Q! if: 

I 

,-- , 

.A- ! 

The physical significance of this criterion is that as a result of an angle- 
t 

of-att.ack disturbance Q, the airplane weathercocks into the new relative wind. 

In stability axes: 

Applying criterion 7.5 yields: 

(7.14) 

(7.15) 

The sign of CT depends not only on the basic variation of thrust and normal 

forces with angle of attack, but also on where the engines are located relative 
to the center of mass. 

For several current subsonic transport configurations the effect. of power 
on static longitudinal stability is significant, On current SST configurations the 

15 1 



engines are  located directly betienth a 1:wge lift ins surface. Therefow, tlw 
effect of CY on thrust nil1 be very s1sa11 s o  that criterion 7.5 rtdiiccs to: 

(7.16) 

This is the familiar condition for static longitudinal stability. 

It is generally felt that static longitudinal stabilitr is clcsirable because 
it implies that an airplane, once disturbed from a trini angle of ntt:tcl;, teiids 
to return to i ts  trim angle of attack. A coliinion fecling about a st:ibilitX 

criterion such as C 
manner as the ftforbidcleiif' boundary of ClllCY = 0 is crossed. Such is not thc 
case. Instead, it has been found from both flight and simulator tests that the 
precision of control and the ffforgivenessf* of the total systeni steadily decrease 
as static longitudinal stability is deci*eased and goes positive. The clegive of 
pilot attention required increases, and the pilot generally niust add lead with 
positive C 

able to control the svstem. Boeing SST simulator studies have shown that 
flight at positive \allies of C is possible. In this connection it is interesting 

i ma 
to observe lhat the British airworthiness recpirenioiits of ref. 11, par. 5.1, 

specify a maximum allowable negative (unstable) static margin of -0.05. 

< 0 is that something disastrous happens in a stcpvise 
n1CY 

, thereby increasing his workload until finally he is no longer 
m(X 

- 

The tie-in between Cnl and some other important static longitudinnl 
CY 

handling qualities parameters is discussed in  par. i. 7. 

Mach nv.mber has a strong effect on C ; increasing Mach number gener- 
negatively) 

ma 
ally results in an aft shift of tile center of pressure (increases c ' 
in the subsonic speed range. In the supersonic speed range, the variation of 
C 
ing on configuration. In the transonic speed range, C 

ically, again depending on configuration. Aeroelnstic effects on C 

quite important and, In fact, can be useful as a design tool in counteracting 
the effect of Mach number on C 
consequence of aeroelasticity which has been observed from wind tunnel tests 
of elastic niodels is a "straightening outff of Cm versus (11 curves: when rigid 
models exhibit nonlinear Cm versus a! behavior, corresponding elastic models 

M a !  

with &Iach number is such that it can either decrease o r  increase clepencl- 
ma 

can behave errat-  
ma! 

can be 
m a  

on some configurations. Anottler important 
Wl! 

have almost linepr C versus a! behavior. m 



7.4 Static Stability Criteria for Rotational 
Velocity Distui-bances 

7.4.1 Roll rate disturbance. - 
Criterion 7.6 

Froin tabie 7, the airplane is statically stable for a disturbance in 
roll velocity p if: 

b __________ c-- 

-- dMx < 0 

dP 
- 

The physical meaning of this criterion is that a s  a result of an increasc in 
rolling velocity p a moment is generated which teiids to oppose the increase 
in rolling velocity. 

In stability axes: 

MXS = M A X y g  +Pf77xs 

Neglecting any roll effects on power and noting that: 

E 
t 

it follows that criterion 7.6 

M A X *  = CJ 9 S L J b  

c-’p-= 
implies that: 

(7.18) 

(7.19) 

The derivative C is recognized as the conventional roll damping deriva- 
IP 

tive. For a rigid airplane without sigaificant flow separation, the condition 
indicated by equation (7.19) is always satisfied. 

Roll damping is an important handling qualities parameter, particularly in 
rolls and in Dutch roll. The airworthiness repirements  of refs. I O  and -14 do 
not specify sign or  minimum values for Cp directly. Reference 10 does, 

however, specify roll performance and Dutch roll response requirements. 
P 

Mach number can h a w  a fairly strong effect on roll damping, but more s o  
for low sweep angles than for high sweep angles, Aeroelastic effects on C 

can be strong, particularly in high-aspect-ratio structures. 
IP 
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Roll clamping is affected primarily by the planform and in particular the 
wing, ahough  the vertical tail can also make a significant contribution. 

b 7.4.2 Pitch rate disturbance. - ‘ b  
PI__. 

Criterion 7.7 
From table 7, the airplane is statically stable for a disturbance i n  
pitching velocity q if: 

a/Ls’y 

2 9  
c_I 4 0 

J 

The physical meaning of this criterion is that a s  a result of an increase i n  

pitching velocity q a moment is generated which tends to oppose the increase 
in pitching velocity. 

In stability axes: 

M y  = & ’ A ~  +M7* 

= (CVA fC7L.J ij s w  E 
(7.20) 

Application of criterion 7.7 therefore yields: 

i o  
(7.21) 

The derivative C pitch damping due to thrust effects (inlet or  propeller 

disk noma1 force or  jet damping) is normally neglected. This is conservative, 
since it is seen by equation (7. Sa) that C 

C, 

q 

is usually negative. Neglecting 

4 
Tm 

, inequality (7.21) reduces to: 

The derivative Cm is, of course, the conventional 

tive. It is very impoytant to handling qualities because 
determines the damping of the short-period mode. 

4 

Unless flow separation is a factor, condition (7.22) 

(7.22) 

pitch damping deriva- 

together with C it 
La 

is always satisfied. 
Pitch damping is affected by Mach number as well as by aeroelastic effects. 
In both cases the effects are very much configuration-depenclent. 



7,4,3 Yaw rate clistiu.b,znce,- 
.~ 

Critcrion 7.8 

Froiii table 7, the airplane is statically stable for a disturbance in 

yawing velocity r if: 

- 

4 0  
aM2 ---. 

a!- 
The physical 'meaning of this criterion is that, as a result of an increase 

in yawing velocity r , a moment is generated which tends to oppose the 
increase in ymving velocity. 

In stability axes: 

(7.23) 

Neglecting the effect of thrust, applicalion of criterion 7.8 therefore, yields: 

(7.24) 

The derivative Cn is the conventional yaw damping derivative, It is 

very important in handling qualities because it strongly affects Dutch roll 
r 

damping. The main contribution to C comes from the vertical tail. The 
nr 

magnitude of Cn depends strongly on Mach number, angle of attack, and 

aeroelastic effects. In general, as long as no serious flow separation takes 
place, condition (7.24) will be satisfied. For high Mach numbers coupled with 
high angles of attack, it is possible that C 

r 

deteriorates seriously. 
nr 

7.5 Discussion of C and Cp 
P 

7.5. 1 Pitching moment due to forward speed, Cm . - Under the definition 
c__ 

U 
of static stability used in this report, the partial differential 8My/8u (-C 

does not qualify as a static stability parameter, However, as  will be shown, 

) 
9.l 

C has important consequences to longituclinal stability f roni the viewpoint of 

the pilot. In addition, in much of the literature this parameter is identified 
with longitudinal stability. 
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A positive sign of ah l  /au > 0 nicans physically that as a result of an Y 
increase in forward speed, the airplane noses up. This tends to slow the 
airplane down because of the resulting drag increase plus the ipcrease in 
gravitational pull along the body X-axis, Therefore, an airplane will have 
stable pitch inonleiit versus s p e d  behavior i f :  

t 

> o  
In stability axes: 

Mys + &7VS 

(7,25) 

(7.26) 

Application of inequality (7.25) to equation (7.26) yields: 

If the steady flight condition is such that Q1 = 0, so  that (Cm -t CT ) =: 0, 
1 "I 

this reduces to: 

If the thrust pass2s through the center of mass o r  if C 

condition becomes: 

is negligible, the 
U 

Tm 

Whether noi* not C is negligible depends strongly on the configuration. 

is not negligible on the 707 series of transports, whereas 

T 
"U 

For example, C 

on the 727 series it is, 
U 

Trn 

k 



The sign mcl magnitude of the derivative C depend strongly on plantorni 
LI 

m 
and on Mach nuniber. Aeroclastic ePfc cts can also be significant but, in 
general, no specific trend can be given. In current transport %on€ig-ira. :oris, 

condition (7.28) is frequently violated because of the s€t shift in cciiter of 
pressure with increasing subsonic Mach numhar. In that case, the airplane 
is said to have tucl<-under. This characteristic (C < 0) causes the airplane 

to tend totvarcl a dive. If the accompanying consecpence is a loss i n  longituclinal 
control effectiveness (such as might Ee the case due to the resulting higher 
Mach number o r  aeroelastic effects), the pilot may have difficulty recovering. 
Whether o r  not an airplane hxs satisfactory handling qualities in pitch does - not 
necessarily depzncl on meeting inequality (7,2'1), because the behavior of C 

DU 
interacts strongly with Cm . For example, an unstable G niay be accept- 

U m 
U 

able if i ts  effect is checked by a large drag rise, 

Most of the current family of transports have rather mild tuck-uilcler. 
Certifying agencies have significantly cli€€ering opinions about this charazter- 
istic. The FAA requires complete stick-force speed stability, and this 
generally leads to incorporation of Mach trim cornpens-.tors to hide uiis!able 
C characteristics from the pilot. The military authorities do not requir,1 

complete stick-force speed stability (ref. 10, par. 3.3.3). .A:+ -,. 

commercial 707 airplanes are equipped with Mach trim compensators, while 
the military versions (KC-135) do not have these devices. Experience has 
shown that the KC-135 airplanes handle well in the transonic s p e t ~ l  regime. 

"U 
msecluence, 

It may be concluded that mild violations of Cm > 0 are  acceptable. Just 
U 

what is meant by "mild" can only be settled through Ilight testing. 

7.5.2 Dihedral effect (lateral stability) Cl , - Under the definition of P -- 
static stability used in this report, the partial differential 8M,/8 v < vClp ) 

does not qualify as a static stability parameter, Neverthelcss, this derivative 
has an important effect on stability and handling qualities. 

In sta.bllity axes: 
M x s  = M A # s  'C'Mrr., 

(7.29) 



Neglecting the effcct of thrust and considering 831 /8v < 0 with v = p Vc 

to be the condition for stability, it  fullsws that 
1 x 

'. 
0 (7.30) 

must be satisfied for stability. The dcrivative Cn 

lateral stability, sonietfh.ies dihedral effect. 

is sonietinies called 
P 

It has brJeii a lwg-standing practice to design airplanes with negative 
dihedral effect, i. , 

Gp 

The physical significance of this is that for a positive sideslip disturbance 
(nose left), the airphiie tends to roll away from the disturbawe, i. e. to the 
left. If the airplaiie rolls about L.s stability X-axis a s  a result of this, this 

tends to diminish the effective sideslip angle. For this reiison soiiie investi- 
gators identify CQ as  a lateral stability parameter even though strictly 
speaking the derivative should not be considered a s  such. The niilitaiy flying 
quality requirement (ref. 10, par. 3.4.7) states that the left aileron force 
shall be reqnirecl for left sideslip. For conventional control arrangements 
this implies that Ca 

s 
' 

0 inust be saiisfisd. 

is strongly affected by Mach number, sweep angle, 
P 

The derivative C m p  
lift coefficient, and configuration. The effect of aeroelasticity is little known, 
and much research is needed in this.area. 

It has been found that large negative values of C can be very detrimental QP 
10 damping of the lateral response characteristics of an airplane. Large 
sweep angles and large wing di.hedrals contribute to negative values of Cp . 
It will be shown that unclcr certain simplifying assumptions, C < 0 is 

needed to keep the spiral mode froiii being divergent. 

P 
.pP 

7.6 Connections Between Static StabiIity 
Parameters and Handling Qualities 

The handling qualities aspects to be discussed in this section a re  those 
associated with longituclitial control only -- i n  particular, with C and C 

m a  



To the pilot such relationships apj~ear through st.icI~-force-vcl.sus-speecl nncl 
stick-forcc-per-g behavior. In the discussion that follows, it is assunierl 
that a change in  stick force autoniatically leads to a change in  control surface 
position of the same sign. This makes it possible to eliminate the feel system 
charac to ris ti cs f roni the ensuing discus si on. 

. 

7.6.1 Control displaceiiient versus speed (constant load factor). - A t  
constaiit load factor and zero pitch rate, the following expression can be 
written €or moment coefficient: 

The quantity Cm symbolizes the effect of fuel shifts on Cm due to a 
% 

change in attitude, while C 

L e s e  quantities are of considerable importance for several subsonic trans- 
ports, they will be neglected in the following discussion. However, the 
restriction imposed on the discussion by this siniplification should be kept 
in mind. With the simplification, the moment coefficient can be written: 

is the thrust moilleiit coefficient. Evan thoug6 
Tm 

For a trimmed flight condition Cm = 0, so  that: 

- -  - cme -/-cmeuL 
%k?,, 

c”6E 

(7.31) 

(7.32) 

The parameter of interest, control displacement versiis speed, is 

obtained by differentiating equation (7.32) : 

For a rigid airplane and negligible Mach effects, 

(7.33) 
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s o  thzt the expression reduces to: 

Since in a tviiiimed flight conclition, also approsiniately, 

L =w = CLpV 

=/eL, +cL,oc + c~. &I g St, 

which yields: 

(7.34) 

(7.35) 

(7.36) 

it is found that: 

: Substitutecl into equation (7.34), this yields: . 
d%?IM ~ c c i 7 o c .  2CL rR,M 
dV C-sg cr, (7.38) 

Definition 

A stable gradient of elevator displacement versus speed is one for which 

Because control power C is usually arranged to be negative, it 
"6E 

follows that (d6 /dV) In = 1 will have a "stable" gradient i f  Cm < 0. 
Etrim cy 

Figure 12 illustrates such a stable gradient. It is seen that these simplified 
relations connect the static longitudinal stability parameter C directly to 

ma! 
the handling quality parameter (clGE/dV) I n = 1. At least in smooth air, this 
is one way for the pilot to judge the stability of an airplane. Note that for 
C = 0, which means that the c.  g. and aerodynamic c .nter coincide, no 
elevator change is required for a change in speed. For this reason (clGE/dV) I ma! 

n = 1 {as evidenced to the pilot through (clF /clV) I n = constant) has been 
strongly identified with longitudinal stability. 

S 
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FIGURE 12. - EXAMPLES OF ELEVATOR DEFLECTlOiV VERSUS SPEED GRADIElVTS 

For an elastic airplane o r  an airplane flying at  transonic speed the 
variations of Cm , Cm Cm with speed can be very large and should no 

0 6E 
longer be neglected. In such cases the complete relation (7.33) should be used. * 
However, the relation behveen elevator 6 
airplane is a very complicated one. 

and speed V for an elastic E 

For an elastic airplane the derivative C evaluated at  constant load 
ma! 

evaluated at constant speed. The difference factor is not the same as C 
is caused by inertial effects (called inertia relief in the case of airplanes 
with conventional tail arrangements). For calculating the elevator-versus- 
speed relation at  constant load factor, the inertia relief must be left out. 

ma 

A similar comment applies to C , although experience has shown that the 
"6E 

effect of inertia on C 

(SST) . 
is very small. This is the case even on the B-2707 

m6E 

*In fact, the effects of thrust and fuel displacement shoitld also be accounted for. 
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It can be shown that in eqiiqt' c 1011 (7.33) the espression 

approximately represcnts the spcecl derivative Cnl . A positive sign of C 

has a stabilizing effect on (cl6 /clV) I n = 1. The connxse  is also true in that E 
a significant sign reversal i n  C E 
to change sign. This is illustrated in fig. 12 by the dotted line. Ecpation 
(7.33) also shows that a positive sign of (dCnl /dV) I 11 = 1 is cletriniental to 

a stable gradient (cUiE/dV) I n = 1, but this effect is masked by a decrease in 

U 
m 

U 

(tucli-unclei*), can cause (c16 /c~v) I 11 = 1 
U ni 

6E 

itself. A typical relationship betwecn control power C and speed 
W E  -_ 

V is illustratecl in fig. 13. Largely owing to aeroelastic effects, C 

tends totvarcl zero, resulting in steepening of the gradient (c16,/dV) I n = 1. 
n16 E 

operational placard 
(+I I 

FIGURE 13. - EXAiClPLE OFAEROELASTIC DEGPL4DA TION OF CONTROL EFFECTIVENESS 

1. ti2 



The discussi. stability ancl control at constant load 

factor. A paramet e consiclerecl in coiijiinction with 
( c I ~ ~ / ~ v )  I n = 1 is p.- '1) colibioi wcpirec1 per g. 

The pilot may not object to a milcl sign change in  (cl6 /clV) I n = 1, pro- 
J!4 

. 
. E 

vicled the airplane retains the correct (stable) gracIient of control clisplaceinent 

per g. Some aspects of the latter paranieter are discussed in the nest 
paragraph. 

7.6.2 Control displacement versus load factor (constant speed). - Using 
the same siinplifiecl relationship between moiiient coefficient and control angle 
as in  par. 7. 6.1, but accounting for pitch damping Cmcl, it is found that: 

Qr 5 emo +fC,,=+ em, zv,, 
~SY-.-.m = -  

(7.39) 
C T 5 G  

In a steady symmetrical p ~ l l u p  the following relationship is found between 
pitching velocity Q and load factor n : 1 

(7.40) 

From eqmtions (7.39) ancl (7.40), the control displacement vcrsw load factor 
gradient at constant speed is found by differentiation: 

For a rigid airplane the coefficients do not change with load factor, and this 
results in: 

/ (7.42) 

163 



Assunling that the following relation holds approximately: 

n w = CL(St s w  
it is seen that: 

w -  q 5 w  - C L T R ~ M  

Substitution into equation (7.42) yielcls: 

(7.43) 
' L  

(7.44) 

(7.45) 

Definition 

A stable gradient of elevator displaceiiient versus load factor is one that 
satisfies: 

--I_ , dn 
(7.46) 

From equation (7.45) it follows that the above definition is satisfied 
when 

The center of mass for which the elevator per  g is zero is cailed the 
maneuver point. It coincides with the aerodynamic center for negligible pitch 
damping. From relation (7,47) it can be seen that at altitude the term on the 
right becomes less important, indicating that maneuver point and neutral point 
approach each other. Thus, once more c", direct relation is established be- 
tween a handling qiiality parameter and static longitudinal stability C . 

ma 



Note that: 

For  a rigicl airplane without pitch clamping, a stablc gradient 
(cIS,/dn) 1 vC implies a positive static margin. With pitch clamping, 

it implies a positive maneuver margin. 
Fo r  a rigid airplane with negligible pitch clamping term or  flying at 

1 

high altitucle, C 

ment foy the control gradients (c16E/cln) I Vc and (clGE/clV) I n = 1 

< 0 is both necessary and sufficient as a require- 

1 

n1cY 

to be stable, 
Fo r  a rigid airplane in the transonic range, C 

gradient (clgg/dn) I V 

n = 1 to be stable, the aclditional requirement Cnl > 0 is needed. 

Fo r  an elastic airplane, the situation is more complicated. The 
gradient elevator per g can depend strongly on the elasticity of the 

< 0 assures the 
ma! 

to be stable, but for the gradient (d6 /dV) i E c1 
. . 

U 

structure, which determines the values of (dCm /dn) I Vc and 
0 1 

/dn) I Vc . It is evident from equation (7.41) that when 
(dcm, 1 
aeroelastic effects cause C to approach zero, the elevator per 

"6E 
g gradient steepens considerably. 

7.7 Summslry of Static Stability Criteria 

In this section the static stability c r t e r i a  of an airplane have been shown 
to evolve logically from the definition of static stability and stcztic stability 
criteria given at the beginning of par. 7.1. 

The question of whether o r  not certain forms of static stability are cle- 
sirable was referred to handling qualities, but some aspects of this question 
were briefly discussed. The physical significance of stability derivatives 
appearing in the static stability criteria has been discussed. A summary of 
static stability criteria is presented in table 8. The viewpo;-ts expressed as 
requirements (criteria) by military and civil flying quality specifications 
(refs. 10, 11, and 44) are included in this table. 
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TABLE S.-SWJIIZIAR Y OF STATIC STABILITY CRITEIUA 

Needed to maintain 
straight flight path. 

I 

Pars.  3.4 .3 ,  3.4.4,  
3 .4 .5  interpreted to 
mean C&>o . 

GENL. FORM 
O F  STATIC 
STAB. 
CRITERION 

Affects time his- 
tory of pitch re- 

APPROXIRM TE 
OR ALTER- 
NATE FORM 

Par. 3.3.1 inter- 
preted to mean 

cxsy<o 0% 

CD*> 0 

(No thrust 
effect) 

(No thrust 
effect) I 

I 

IMI?ORTANCE TO 
HANDLING 
QUALITIES 

Neeclecl for stable 
phugoid. Not im- 
portant if throttle 
response i s  good. 

_ _  

MIL-F-8785, REF. 10 

- 
Par. 3 . 3 . 6  limits phu- 
goid divergence. No 
di re c t r equi rein en t . 

Helps pilot perceive 
sidcslip. Allows 
skidding turns at  
low altitude (wings 
level). 

Pars. 3 . 4 . 3  and 3.4.8 
interpreted to mean 
C j p O .  

Primary means for 
flight path control. 
Significant to short 
period, Always 
satisfied before stall 

Par. 3.3.3" specifies 
short period recpire- 
ments. No direct 
requi rein ent . 

sponse. C < O  
"a 

can be tolerated on 
large A/P. Affects 
stick force behavior. 
Affects time history 
of roll response. 
Affects Dutch roll 
damping , 

- 
Affects damping of 
short period (in- 
creases pitch 
stifhess). 
Affects Dutch roll 
damping (increases 
yaw stiffness). 

- 

Par. 3.4.1* specifies 
Dutch roll recpire- 
ment. Par. 3.4.16 
specifies roll per- 
form ance . 
Par. 3.3.5" specifies 
short period require- 
ments. No direct 
recpirement. 
Par,  3.4 .1*  specifies 
Dutch roll recpire- 
ments. No direct 
requirement. 

. *MIL-F-S785 recognizes augmentation-on and -off cases. This document deals 
only with unauginentecl cases. 



- 
GENL. FORhI 
OF STATIC 
STAB . 
CHITERION --- 

i5Yf.Y -20 

-4 a%, 0 
a Y  

APPROXMATE 

NATE FORM 
OR ALTER- 

IMl'ORTANCE T O  
I-IANDLING 
QUALITIES 

Improves speed con- 
trol, Warns  of in- 
advertent over 
(under) s p e d .  Af- 
fects stick force 
behavior. 
Warns of sideslip, 
Allows enie rgen'cy 
roll control, Af- 
fects Dutch roll, 

--- 

---__-.._ .- 

fiIIL-F-S785, REF. 10 
b 

_- 
No direct i*equirement, 
bw par. 3.3.3 implies 
that vio1,ation is al- 
lowed transonically. 

Par. 3.4.2, 3.4.6, 
and 3.4.7 inter*>1-etcd 
to niean c, 4 -=Q. 

. .. 

. 
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SEWL, FORM 
3F STj.\,TIC 
3”AC. 
CRITERION 

APPROXIIIATE 

NATE FORhl 
OR AL8TER- 

FAR--1’AR‘l’ 25, 
REF. 44 

BRITISII CAR, 
SEC‘I’IOND, REF. 11 

--- 
Czr,, 4. 0 on 

COU =4 0 
(No thrust, 
effect) 

No direct 
requirement, 

No direct 
requirement. 

Par. 25.177 (c) 
interpreted to mean 

Par. 7.3 ;nterprcted 
to mean c,& e o. c,,- 

(No thrust 
effcc t) 
-I__.-- 

C& 3Pc3 

cVp< 0 
-_ 

No direct No direct 
r ecpi rem en t . reqtii rem en t. 

:Jar. 25.177 (a) 
interpreted to nieai: 
c m f l  3 0 8  

Par ,  7.2 interpreted‘ 
to inean cm> >o.  

No direct require- 
ment, but pars. 
25.173 & 25.175 
interpreted to mean 
c,, 4 0. 

Par. 2. i requires 

No direct 
requirement. 

No dir tz t  
requirement . 

No direct require- 
ment, 5u t  par. 
25.181 requires all 
short periods to be 
heavily damped, 
No direct require- 
ment, but par, 
25.181 requires all 
short periods to be 
heavily damped, 
P 25.175 (c) 
implies that viola- 
tion is not allowed. 

I -___ 

No direct require- 
ment, but par. 8.1 
requires all short 
periods tc be heavily 
damped, 
No direct require- 
ment, but par. 8.1 
requires all short 
periods to be heavily 
damped. 
Par. 31.2 implies 
that violation is not 
allowed. 

4 0 _1 

a r  

Par. 25.177 (I]) 
interpreted to mean 
c4 4u. 

Par. 7.1 interpreted 
to mean CJ~ .G u 



8. DYNAMIC STABILITY’ CRITERTA 

8.1 Introduction 

, This section presents dynamic stability cri teria for rigid and elastic air-  
planes. The majority of current airplane dynamic stability analyses are for 
controlled airplancs and employ the root locus method of allalysis, based on 
linear theory (i. e. , linear approxiniation of the equations of motion). Ttis 

report, however, deals only with the uncontrolled (controls fised) airplane. 
The subject of dynamic stability is here tyeatecl from a general viewpoint. 
This means that methods of dynamic stability analysis other than those based 
on linear theory will be examined. The definitions of dynamic stability and 
dynamic stability criteria to be used a re  stated below. 

Definition 

Dynamic stability is the tendency of the amplitucles of the perturbed motion 
of an airplane to decrease to zero o r  to values corresponding to a new steady 
state at some time after the disturbance has stopped. - 

For example, when the airplane is disturbed in pitcll from steady-state 
flight and the resulting pei.turbecl motion is damped out aftel* some time, 
although the ne*r steady state is not significandy different from the original 
one, the airplane is called dynamically stable. The example and the definition 
indicate that the subject of dynamic stability deals with the behavior of the 
perturbed motion of an airplane about some steady--state flight path, r separated into the categories of stable, neutrally etable, o r  unstable. 

- -I - - 
Definition 

A dynamic stability criterion is a rule by which perturbed motions are 

In other context dynamic stability criteria have been interpreted as 
requirements for  specific response characteristics o r  for meeting specific 
frequency damping relations. This type of interpretation is embodied in the 
military specification for flying qualities (ref. 10) aiid i ts  proposed revision 
as documented in ref. 12. The flying qualities specificatioris of ref. 1.0 and 
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12 arc  here viewed as handling qualities criteria; as such, they m e  beyond 

the scope of this report. €Iowe't-er, there are  important conncctions bctivecu 
dynamic stability criteria (.c.iewecl as mathematical stateiiients.of stability) and 
+he handiitg quality criteria of refs. 10 and 12, Therefore, where neeclccl for 
physical interpretation of the stability cri, \i-ia established in this ,ek)ort, the 
sonnectioiis with handling qualities a re  pointed out and discussed. 

- 

- b  

The static stability criteria evolve from applicatior, of the definition o€ 

static stability to the instantaneous forces and moments. For dynamic sta - 
bility criteria, such a development is not possible. Dynamic stability is asso- 
ciated with the response beliavior of an airplane as a result of disturbances. 
Because this response behavior is express& by differential equations of 
motfou, the study of dynamic stability behavior of airplanes relies heavily on 
the theory of stability of differential equations. The differential eqwations of 
motion of an airplane can be cast in many different forms, ancl the form 
selected in a particular case clepends on the similarity of the mathematical 
mode1 to the real physical problem. Differential equations of motion of an 
airplane can be linear, nonlinear, autonomous, or nonau!;onomous. In each 
case, the cori-espmding theory of stability is, or can be, different a s  will 
become clear from the developments to follow. 

- 

Exprience has shown that in many cases the dynamic behavior of air-  
planes can be satisfactorily represented by assuming that perturbations away 
from steady-state flight are  small. In that case, the equaticns of motion can 
be approximated by a set  of linear second-order differential equations with 
constant coefficients. These equations are called sinall perturbation equa- 
tions. The stability theories most coninionly associated with these equations 
arc called characteristic equation methocls. 

In general, it can be said that linear approximation methods have given 
satisfactory results in representing airplane dynamic behavior. In other 
words, it has been founcl that when airplanes satisfy stability and/or handling 
qualities criteria based on such approximations, their real-life dynamic 
characteristics a re  roughly as predicted. There are important exceptions, 
however. For example, the mildly divergent; Dutch roll behavior of the 



Boeing 727 a t  altituclcs above 26,000 feet was not predicted by the linear theory, 
Also, as  s11on.n in  rcf. 23, it is possible for certain slender aircraft con- 
figurations to exhibit significant nonlinenr behavior even when the aeroclynaiiiic 
forces are assunied to be linear. Finally, there a re  cases &&e nonlinear 
aeroclynaniic bchavior is important. An example is the nonlinear variation of 
directional stability with sidcslip, a s  founcl 011 the XU-70A. 

It is apparent that there is an incrmsing iiuinber of cases where linear- 
ization of the equations of motion is no louger permissible. For  that reason, 
it was felt necessary to inclucle in this report several more generally valid 
stability criteria. 

Perhaps the most general way of determining stability behavior of air- 
planes with significant nonlinear effects is a brute-force integration of the 
complete (noidinear) ecpations of niotion. Such integration results in time 
histories of motion. 

A general description of time history generation (integration) and the 
corresponding stability criteria are presented in par. 8.3. 

Some dynamic stability criteria which are based on an energy decay method 
are presented in  par. 8.4. In this case no particular form is recpirecl for the 
equations of motion, although the perturbed form (linear o r  nonlinear) seems 
to be preferred. 

Paragraph 85 presents a dynamic stability criterion, based on Lyapunov's 
stability theory, which applies to nonlinear as well as linear differential equa- 
tions of motion. 

Finally, par. 8. G provides a summary of dynamic stability criteria. 

8.2 Dynamic Stability Criteria Based 
on Characteristic Equation Methods 

When airplane dynamic behavior can be approximated by assuming that 
motion perturbations (excursions) relative to a steady state are small, it is 
possible to reduce the equations of motion to a set of linear, second-order 
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differential eqrntions with constant coefficients. These equations can bc 
reclucecl to the following general form: 

where I A] is a inatrix of constant coefficients and (3 represents a column 
matrix, the eleiiients of which are the nioiioii variables. For example, in 
the case OP rigid-airplane longitudinal small perturbations: 

The purpose of this section is to establish clyiiainic stability criteria for 
airplanes ir, cases where the equations of motion can be brought into the form 
of equation (5.1). 

The basic form of equation (8.1) applies to the rigid*, the ecpivaXent 
elastic*, and the coinpletely elastic* airplanes. For  that reason, stability 
cri teria decluced froin equations of motion to the foi-ni of equation (8.1) apply 
to the rigid as well as to the equivalent elastic and the completely elastic . 

I airplanes. 

The expanded forms of equation (8.1) for  the rigid and equivalent elastic 
airplanes are given in  tables 4, 5, and 6. For the completely elastic airplane 
equations 6.166 and 6.16s are representative of the form of eqw+ion (8.1). 

Stability of equations of the type (8.1) can be determined with the aid 
of their characteristic equation. The following development shows how this 
characteristic eqnation can be obtained. 

*As shown in Sec. 9, the rigid airplane has sis degrees of freedom. The 
same is true for the equivalent elastic airplane, but now the aerodynamic 
derivatives are corrected for static effects of elasticity. In the completely 
elastic airplane, dynainic response of the structure is accounted for by 
separate equations of motion. T ~ U S  there are 6 f n degrees of freedom, 
where n is the number of structural degrees of freedom accounted for. 



TaMiig the 1,aplace trans€orin* of cqiiation (S. 1), i t  follows that: 

s = cr* j w  = comples frequency variable 

and the srtbscripts s and t are used to distinguish between the functional 
relationsliips { xs} ancl { x ~ } ~  

Solving equation (s. 2) for . !s)} ,  

Equation (S.3a) forms the frecl~~ency-doiiiaiIi (Laplace domain) solution to 
equation (8.1). It can be shown (refs. 4 and 45) that time-domain solutions 
to equation (8.1) are obtainecl by applying the inverse Laplace transform to 
equation (S. Ea) with the following results: 

(8.3b) 

where Xi(t) are the components of {Xt(t)} 

D.. 
1J 

Q j 

= constants determined by the initial. conditions 

= constant phase angles to be determined froni initial 
conditions 

The quantities u . and o. are respectively the real  and the imaginary parts of 
J J 

the roots S. of the charactei-istic equation 
3 

Since w 

and Q .  are constants, it follows that the motions Xi (t) are governed by the 
real parts u. of the roots S. in the following manner: 

*For discussion of thc Laplace transform, see ref. 45. 

the motion frequency, is always positive o r  zero ancl since all D.. 
j' 13 

3 
J J 
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a) 

b) 

If each 0 .  < 0 ,  the amplitudes D. .e 'jt will c1ec:iy exponentifilly ivith tillle 

(fig, 14a). 

If at least one a = 0, say ai , while all other Q. < 0, at least one rcsiclu:Il 
perturbation of constant amplitude will be obsei-ved (fig. 14b). 

If at least one (T > 0, the corresponding amplituclc will gron. esponentinlly 
with time (fig. 14c). 

J 11 

j J L 

j c) 

Thus, the behavior of the motion is seen to be governed largely by the roots 
of the characteristic equation (8.4). Expanding equation (8.4) yields a poly- 
nomial in S of the forni: 

T S ' A i  = 0 
f =CY (8.5) 

where the A. are constant coefficients and n is the order of the matrix [A]: 

Sometimes equation (8.5) is also callecl the characteristic equation. 
1 

There are three basic techniques that can be used to determine airplane 
stability from equation (8.5). Application of these techniques leads directly 
to a corresponding dynamic stability criterion, as will beconie clear from the 
development that follows. 

t 

The most widely used technique is to solve for the roots S. of equation 
1 

(8.5) and discuss their significance to the motion. A dynamic stability 
criterion based on this technique is presented in par. 8.2.1. 

The second technique deals directly with the coefficients Ai of eqiiation 
(8.5). It leads to a dynamic stability criterion known as Routh's criterion, 
and is presented in par. 8.2.2. Routh's criterion is not widely used in 
practice, but it provides a logical oonnection between static and dynamic 
stability. This connection is important and is discussed in detail. 

The third technique consists of a collection of methods that are largely 
based on linear control theory. Because a detailed discussion of these methocls 
is beyond the scope of this report, only a brief summary is presented in par. 
8.2.3, with several references where detailed discussions may be found. 



In these examples 
it is assunid that 
the djsturbance is 
introaitced at t imet = to 
and also removed 
at t = to, i.e. a "pitlse." 

Time, t 

0 Time, t 

FIGL.e 4. - EXAMPLES OF SAfALL, PERTURDri TION AIOTION BEfIA VIOR 
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8.2.1. Dynainic stability criteria based on the roots of tlis characteristic 
equation. -- The roots of equation (8.5), Si = c. f ju. (i = I., 2,  . . . , n) 
can be obtained by class.ica1 techniques. For  n < 4, this can bp clone by 
hand -- foi’ esample, by the methods of ref. 46, pp. 22-24, o r  ref. 16, 

pp. 271-2 73. For  higher order equations the roots are generally calculated 
with digital coniputers, using niethods such as presented in ref. 47. The 
roots of equation (S. 5) are iclentical with the eigenvalues* of [A]  for linear 
equations with constant coefficients. They determine airplane stability by 
virtue of the signs of (T 

ing dynamic stability criteria can now be forinulated. 

-- 1 1 

the real part of S. as discussed -hove. The follow- i’ 1 

with a positive real part. I 

Criteria 8.1 
If the airplane ecpations of motion a re  linear an4 autonomous, then 
the airplane stability behavior is said to be: 
Stable, i f  the real parts of the roots of the characteristic equ.i:!’on 
are all negative, 
Neutrally stable, if there are one or  more roots of the characteristic 
equation with zero real parts and the remaining roots have all negative 
real parts, axt 
Unstable, if there is at least one root of the characteristic equation 

A simple proof of criterion 8. l a  is given in app. C. The dynamic 
stability criteria 8.1  are both necessary and sufficient. These criteria have 
formed the basis for most dynamic stability work cluiiiig the past decacles. 
In most of the standard literature (refs. 4, 13, 14, 15, and 16) dynamic 
stability of airplanes is treated from this viewpoint, which finds i ts  justifica- 
tion in the assuniption that airplane dynamic behavior can be described by a 
set of linear second-orcler differential equations with constant coefficients. 
The handling qualities cri teria (specifications) of refs. 10, 11, and 44 also 
rely heavily on this assumption and consequently on criteria 8 . 1 .  

*For a discussion of eigenvalues, see ref. 12. 



The application and interpretLttion of criteria S, 1 to the rigid, equivalent 
elastic, and completely elastic airplanes is discussed i n  more detail below. 

It is shown in Sec, 6 that the possiliility exists for  [A]  in $quation (8.1) 

to have elements that a r e  lmown functions of time. This occurs in  steady 
climbs and dives when dynamic pressure is allowed to vary. A typical 
example is discussed in app. A ,  where it is shown that the SST in certain 
areas of the flight envelope violates the constant a i r  density assumption 
made in deriving the equations of motion. In such a case, equation (8.1) is 
still linear but is called nonautonomous, and the equations asstime the form: 

For this type of equation, no simple stability theory is known. The stability- 
theory of Lyapiinov, discussed in par. 8.5 and Sec. 9, could be used. The 
writers of this report feel that the following simple approach to stability 
determination of equation (8.6) is valid; however, they have not found a proof. 
The approach consists of applying the characteristic equation method to 
equation (8.6) with the following modifications. The characteristic equation 
considered is: 

.' 

The time-variable coefficients in [ A(t) ] are bounded by the physical 
aspects of the problem as discussed in Sec. 6. The following dynamic stability 
criterion is postulated. 

c .  

When the real parts of the roots of the characteristic equation 
(8.7), are negative for t = 0 as well as for t = tl, where t is the 
practical limit* of the time interval considered, the airplane is 

1 

*The practical limit is, for example, determined by the time to reach the 
ceiling of .the airplane o r  the time to reach the ground. 
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A s  stated, this criterion rieecls proof. To niake it feasible, the following 
coiisiclerations a re  offered. Define the quantity E 

dE kinetic energy of the airplane in  the perturbecl state and also clpfine E = E 
In that case, E 
If criterion 8. Id is satisfiecl, it can be interpreted to mean, according to 
Lyapiuiov's theorem 1 (Sec. 9), that E 
of the time interval. This indicatcs that energy is being dissipated at  t = 0 

and at t = tl. The writers of this report feel that the proof of criterion 8. Id 
hinges on the sign behavior of E 

a s  equal to the total 

b 

takes the place of the Lyapunov function in theorem 1, Sec. 9. 

0 

is negative at the beginning and end 

for  0 < t < tl, 

Whether o r  not criteria 8.1 a re  satisfied in a practical case can be 
determined by solving directly for the roots of the characteristic equation. 
A technique for determining stability behavior from the characteristic 
equation without sdving for the roots, known as Routh's criterion, is dis- 
cussed in par. 8.2.2. 

8.2.2 Rauth's criterion (dynamic stability). -- Routh's criterion can be 
used to determine whether o r  not criteria S. 1 are met without solving lor 
the roots of the characteristic eqiiation. This should not be confused with 
what is sometimes called the Routh-IIurwitz criterion. Routh and Hunvitz 
developed similar but not identical criteria. However, from the standpoint 
of calculations, Routh's is the more direct approach. * 

The result of expancling equation (8.4) is a polynomial in S 

n .  

of the 
following form: 

where n is the order of the matrix [A]. Routh's criterion is stated as a 
series of conditions involving the coefficients Ai. Before ,stating the necessary 
and sufficient form of this criterion, i t  is necessary to develop the relations 
between the coefficients Ai that a r e  used in the formulation of this criterion. 
These relations a r e  called test functions. 

*For a discussion of the Hurwitz criterion, see ref. 48. 
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The test fiitictions are constructed by i i rs t  writing down the coefficients 
of the polynomial as follows: 

. . .  A n  A & - 2  A, -4- ' b  

. .  A,-, An-3 An-5  

A necessary but not sufficient condition €or stability is that all of these 
coefFicients have the same sign. Next, additional rows and coluinns a re  

determined by the following scheme: 

. 

. 

where 

I etc. P3, An-5 - P33 An-1 --- 
p3 I 

p4Z. = 
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ancl P. for (i = 3,  4, , , . , n i- 1) all have An-l 9 1 9 1  
If the test functio, 
the same sign, no u,i.,.dble root occurs, This is both necessary and sufficient, 
The rows will be found to become shorter by one element eveiy two rows and 
to be (n -t 1) in number. 

' b  

It has been shown by Duncan (ref. 49) that the vanishing of A, ancl F n-1,1 
represent significant critical cases. When a design parameter for a stable 
airplane is altered so  RS to cause instability, the following coliclitions hold: 

a) If only A. charges sign, one real root S. of equation (8.8) changes its sign 
from negative to positive. This implies that a pure divergence (instability) 
occurs in the solution. This is called flight path diverqence. 
If only Pn-1, 1 changes sign, the real part of one comples pair of roots 
changes from negative to positive. This implies that a divergent (unstable) 
oscillation occurs in the solution, This is called clynaniic o r  oscillatory- 
flight path divergence, 

J 

b) 

.. 

The type of divergence in  a) is not to be confused with the type of static 
instabi.lity discussed in Sec. 7. The instability in  Duncan's sense implies 
divergence of the perturbed flight path away froK the steady-state flight path. 
Static instability in the sense of Sec. 7 merely means the tendency of not 
instantsneously opposing a disturbance of the steady-state flight path. Figure 
15 graphically illustrates four extreme examples, There a re  some dtrong 
connections between the two types of instability; these a re  discussed in Sec. 6. 

The interesting result according to Duncan is that A, = 0 represents a 
boundary between divergence and convergence of the flight path, I ,  hile 

= 0 represents a boundary between oscillatory stability and instability, * pn-l, 1 
*It is noted in ref. 48 that a change in sign of any Pi,l implies that a complex 
pair of roots crosses the imaginary axis i f :  

a) When Pi, = 0 ,  the two preceding rows Pi 2, and Pi . have the same - 9 J  
- 

number of nonzero elements j and are such that the ratio of corresponding 
elements in the two rows is a constant, i, e. Pi,z, j/Pi-l, = a constant 
for each j . Also, in ref. 48 , if a) is not satisfixl, then: 

b) There is at least one root in the right half plane, and the airplane is 
dynamically Wnstable" and not neutrally stable, 

* 

This constitutes a contracliction of Duncan's work. The writers of this report 
have not resolved the discrepancy. 



Perturbed 
angle of 
attack, 

CY 

I satisfies criteria 8.2a or, 
If all AI are  positive, m d  condition a of the footnote following equation 
(8.9 ) is satisfied, 

b) 

a0 - 
cc 
I 

Dynamically unstable: i.e. divergence 

- Statically 

I 
Dynamically stable: 
i.e. convergence . - ~.~ 

stable 

Time, t 
*O 

FIGURE '5. - EXTREME EXAMPLES OF THE DIFFLRE'NCE BETWEWSTA TIC STABII,ITY 
AND FLIGHTPATHSTABILITY 

From the preceding discussion, the following aecessary and sufficiviit 
dynamic stability criterion is deduced, 

r -7 Criterion 8.2a -- 

I If all Ai in the characteristic equation are positive and if the test 
for i = 3,  4, , . . , n -+ 1 are all positive, the airplane 

is dynaniically stable, - 
Two different conditions indicate dynamic neutral stability: 

Criteria 8.2b 
If A. = 0 and the reduced equation 

L=O 
= 0  

I .--- -- I Ithen the airplane is dynamically neutrallj ..;table. 
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The1 - a re  three cliffemit conditions that indicate dynamic instability: 
--.-.---_ :: critir; S . B ~  

If thcre is  a s L  
b) If all A. are po5tir-e but one P. 

If all A. are positive ax1 onc Pa 
the airplane is dynamically unstable. 

*ige in Ai, (i = 1, 2,  . . . , n,) o r  5 

= 0 01 

is negative, 
1 9 1  

1 .*1 
-- -- - ---- 

The relationships A, = 0 am1 Pn-l, I = 0 have Zlreacly been identified as 
stability boundaries. It is possibie to construct relations betu LCT: 5- ,-w 

more stability derivatives (or inertial parameters) for which A = 0 and/or 

' n - l , ~  
because they identify coinbinatioiir of values of derivatives (or inertial 
parameters) for which instabilities occur. 

0 
= 0 a re  satisfied. Such relations are also called stability boundaries 

Et is unfortunate that the espressions for P. are usually so  complicated; 
they can be used in  practice only ic conjunction with a computer. Expressions 
for A. are more easily handled; because they deal with the important relation- 
ship behveen static and dynamic stability, they are discussed in Sec. 6. 

1 9 1  

Ronth's criteiion can be applied to equation (8. 'i) as well as to equation 
(8.4). This would lead to an 
functions would now be polynomials in t . It would then be possible to solve 

:. :ay like equations (S. 9), where the test 

for the values of t that would allow any P 
that t < 0 or t > tl, the eigenvalues h .(t) wodd have negative real parts for all 
t of interest. It may be possible tqdevelop the needed proof for criterion 

= 0. Sf rhese values were such 
f ,  1 

1 

8. Id along t'iese lines. 

In addition to the tecluiicpes described so far,  there a re  other approzclics 
to the problem of determining stability behavior of the small perturbation 
equations of motion of the form of equation (S. 1). These 81% briefly discussed 
in the nest paragraph. 

8.2.3 Other techniques associated with characteristic equations. -- Many 
techniques used in systems analyses and synthesis technicpes (control theory) 
may be applied to the perturbed airplane equations of motion of the form of 
squ? ion (8.1). Scme of the more widely used -- for example, Bode diagrams, 



Nichol's charts, Nyquist criterion, root locus plots , phase trajectories, etc. -- 
can be found in literature such as  refs. 13, 19, 20, 21, and 22. hIost of thcsc 
techniques were gencratecl for special types of problems, and Jheir use is 

restricted be cat is e of linii ta ti oils im pos ecl by ass urn p t i ons anrl/'o r effort re -. 
qiiired in their application. However, they a r e  generally quite useful in 

approaching the problems of handling qualities, i ide qualities, and control 
system (closed loop) analyses. 

h 

An adequate description of any of these techniques would require much 
more space than can be given here. However, some of thc useful applications 
of these techniques should be noted, An example is the process of varying 
design parameters to stabilize an airplane which is unstable for certain flight 
conditions. F o r  another example, the effect of "closing the loop" when aclding 
,n augmentation system can he assessed by using the Bode diagram , Nichol's 
chart, Nyquist criterion, o r  root locus. 

Many of the special techniques involved in nonlinear analyses are just 
more sophisticated linearizing techniques that allow the engineer to apply 
linear techniques to approximate transfer functions. 

Linearized o r  quasi-linearized airplane and system models are usually 
described by transfer functions, i. e. outputs -f inputs, where output = variable 
behavior and input = disturbance behavior, It is assumed that the transfer 
function approach to the relationship of rigid and elastic degrees of freecloin 
for  the 
sense, 

where 

smalI perturbation equations could become a valuable tool. In this 
the transfer functions could be: 

Xi  (S) = rigid degree of freedom 
X (S) = elastic degree of freedom 
G ( S )  = transfer function 

The amplitude and phase relationships obtained by applying some of the 
above techniques to G(s) wouId lead to a more enlightened viewpoint of the 
influence of the elastic degrees of freedom on the rigid-body degrees of 
freedom and vice versa. This approach is used i n  conjunction with root loci 
in ref. 50 for considering' the problem of flutter. 



Many applications of the various systems annlysis techniques mcntionccl 
above have not been discussed here. However, most of them tvould pro1xhly 
lead into the areas of handling qualities, ride qualities, or  coijtrol sxstem 
analysis o r  synthesis. Thereforv, the pursuit OI knowledge in  this area is 
left to the reader while subjects more per! -nent to pure stability behavior 
analyses are  pursued. The neb% section deals with stability critcria basccl 
on the time history approach, which is  of particular interest for flight 
situations where the small perturbation assumption is not valid. 

. 

8.3 Dynamic Stability (,riteria 
Based on Time Histories 

It was stated in par. 8.1 that today there a re  several practical cases 
wixre nonlinearities in  the equations of motion (dynamic or  aerodynamic) a re  
too large to be neglected. When the equations of motion of iir. airplane a re  
nonlinear, it is nat possible to apply the characteristic equation methods 
described in par. 8.2. It has been common practice in such cases to base 
judgment of siabilitj- behavior on time history solutions of the eqnation of 

motion. A time history is a set of data that describes airplane motions as 
a function of real time, i.e. (x} = {X(t)}. 

! 

Time histories have the advantage of >rob J i n g  a clear physical picture 
of the motion of the airplane. In addition, they allow a direct comparison of 
analytical with experimental data. 

Time histories can be generated by integrating, with respect to time, the 
complete airplane equations of motion or,  for that matter, any of the ecpations 
of motion shown in Sec. 6. .The integration technique may vary, but the 
approach is generally the same for any type of computer. The airplane 
(equations; must be trirrimed (equilibrated) either esqerior to o r  in conjunction 
with the problem to be solved, i. e. the solutions {XI} of the algebraic steady- 
state equations must be obtained and used as  initial concli'ions. The program 
is executd (started) with t = 0. At some time t 3 0, a disturbance {AX}is 
introduced and the response {X(t)} calccdated for to e t e tl, where t - to is 
usually a time interval long enough to establish stability behavior but not so  
long as  to involve mass o r  other changes that would significantly affect assump- 
tions macle in deriving the airplrne equations of motion. 

0 

1 



Ir. this fashion, stability behavior can be deteriiiiiied by observation, i. e .  
By ttjjc.dg;ingt' the behavior of the variables of the resulting time historj. 

a) 
b) 

Stable if the motions remain i n  proximity to the steady-state 
Neutrally stable if the motions a re  undamped and oscillatory about 
some steady state -. 

The juclginent of stability behavior through the use of timc: histories I\ ill 
be referred to as stability criteria S. 3. These criteria are formulated as  
follows : 
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For the linearized, uncoupled, small perturbation equations of motion of 
tables 4 ancl 6, only one arbitrary clisturlxtnce is  required for each mode 

(longituclinal o r  lateral direction). Linearity implies that the psponse 
behavior is inclepenclent of the size o r  tjpe of disturbance in that mode. 
However, time history generation for the linear sniall-pertiIi~~atioii equ a t' 1011s 
is not necessarily the most efficient approach to stability analysis. 

L 

The major advantage to using the time history (integration) appyoach i s  
that it i s  i n  ternis of real time. The analyst can experience more of a 
"physical feel" for the problem, since he is observing motions similar to 
those which the airplane woLilc1 be experiencing in flight uncler the same condi- 
tions. Most of the disadvantages of the time history method are  not really 
pertinent to the problem of stability behavio?. 
nature, such as  hardware and facility accpisition, upkeep, availability, man- 
hour expenditures in programming, data preparation and reduction, etc. The 
advantages and disadvantages involved in choosing an analog, a digital, o r  a 
hybrid computer a re  not pertinent to the discussion and will not be considered 
here. For  detailed discussions of numerical integration techniques, see ref. 
47. For an extensive discussian of analog colrgutation methods, see ref. 51. 

Instead, they a re  of an economic 

The next section deals with stability analysis techniqiies called "energy 
decay methods. (' 

8.4 Dynamic Stability Criteria 
Based on Energy Decay Methocls 

A relatively new and unknown area of stability analysis is the energy decay 
method. This approach is discussed in refs. 23 ancl 24. 

The fundamental idea. behind energy decay methods is that energy E is 

dissipated in dynamically stable systems. For linear differential equations 
with constant coefficients, it is possible to show the inverse; that is, if  energy 
is being dissipated, the corresponding system is dynamically stable. Extension 

of this idea to nonlinear equations of motion can be justified by applying the 
Lyapunov stability theory of Sec. 9. 



It: is possible to forniulatc stability criteria based on this idcn of energ!. 
d:ssipation. Two esaniples of F U C ~  criteria a re  discusjed bclo!:.. The first 
one deals with the lincar cciuations of niotion of the tjpe used in par. S. 2 ,  n.1iilc 

the seconct deals with nonlinear equations of niotion of the types uscd in par. S. 3. 
.b 

For equations of motion of the type of equation (S. 1) , the approach can Ije 
stated i n  the iollowing steps: 

a) 
b) 

Derive expressions for the total pertui-bed energy, E ,  of the 2.ir.plane. 
From a) derive the AE recpired to make the airplane appear to be a 

conservative system in the first half-cjcle of oscillation, i. e. neutrally 
stable. 

The following dynamic stability criteria can now be formulated. 

Criteria 8.4 
If: 
- 

a) A E  > 0,  the airplane is stable. 
b) AE = 0, the airplane is neutrally stable o r  not distiwhecl. 
c) AE < 0, the airplane is unstable. 

A theoretical approach to applling these criteria is given in ref. 24. 

Because of algebraic complexities, it is not considered practical to use 
criteria 8.4 in cases involving nonlinear equations of motion. For  nonlinear 
equations of motion, Ha1;n (ref. 25) suggests an energy decay method based 
on an idea by Lebeclev. This idea is further developed by Roskam (ref. 23, 

pp. 55-72). There, stability is connected with energy decay through the 
pammeter: 

where T is the perturbed kinetic energy, tl is the beginning of a time interval 
during which the motion of the airplane is being studied, tg is the end of that 
time interval, and t2 is the midpoint of that time interval. The criteria for 
stability in this case woulcl be as follows: 

187 



- - ~ -  
Criteria 8. 5 

If: a) F < 1, the airplane is stable, 
b) F = 1 , thc airplane is neutrally stable, 

c) F > 1, the airplane is unstable, 
. b  

____.I - 
It is sh0n.n in ref. 23 that F < 1, indicating stability, is satislied in  the case 
of stable, linear sinal1 perturbation equations of motion, The advantage of 
criterion 8.5 is that they apply to nonlinear equations of motion. A dis- 
advantage is that considerable nunierical work o r  a computer program is 

requi recl . - 
The potential application of energy decay stability criteria is believed to 

be in the area of stability in limited time intervals. From the discussion at  
th.e beginning of this sub-section it is seen that for linear and autonomous - -  

small pertvtrbation equations of motion, stability according to the character- 
istic equation method implies 6 < 0 and therefore AE > 0 and F < 1. The 
condition 6 < 0 follows straightforwardly from Lyapunov's theorem 1 (Sec. 9) 

by using the total perturbation energy E a s  the Lyapunov function. Because 
of the analytical difficulties involved in treating the problem in general and 
because of lack of time, this approach is left as a suggested area for future 
research. 

An area of stability analysis that is relatively unknown to airplane 

stability and control engineers is based on Lyapunov's stability theory. This 
is discussed in the par. 8.5. 

8.5 Dynamic Stability Criteria 
Based on Lyapunov's Method 

In par. 8 .3  the time history method was suggested as a way to determine 
the stability behavior of the airplane when the equations of motion a r e  non- 
linear. However, with the time history method, it is necessary to sohe  the 
equations of motion. I I apunov has devised a stability theory for both linear 
and nonlinear pert;urbLu differential eqnations of motion that obviates the 
necessity to solve these equations. 



Lyapunov's stabi.lity theory is an approach to determination of stabilitl 
behavior that has received little attention from airplane stability and control 
engineers, For  this reason, an introduction to this theory and some pertinent 
definitions and theorems are givcn in  Sec. 9. The potential applications of the 
analysis techniques devised by Lyapunov and those who have followecl his 
approach a re  virtually unlimited. The reason for this is the generality of the 
approach. Rather than solving any particular problem , T,capunov realized that 
the stability of dynamic systems (moving bodies , etc.) cct tc: be approached bj. 
studying the behavior of differential equations in general. i-ie cle-rised two 
classes of approach, one for  equations whose solutions are known functions 
of time and another for  the equations of motion written in perturbation forin. 
The first approach (known solutions) is similar to the stability criterion for 
time histories given in  par. 8.3.  

b 

The seconcl approach is called the "direct" o r  'fseconclf' method of Lyapunov. 
This method, the essential details of which are discussed in Sec. 9 requires 
choosing a "Lyapunov function" and relating its behavior to the behavior of the 
differential equations OP motion, A particularly attractive approach to the 
problem o€ nonlinear airplane stability behavior using Lyapunov's direct 
method derives from a theorem attributed to Zubov. Because of similarity, 
it is felt that Zubov's theorem should appear as a logical extension of the 
more familiar characteristic equation approach. In fact, as shown in Sec. 9, 

it is possible to prove criteflon 8.4a (stable roots foi- characteristic equations) 
using Zubov's theorem for linear, autonomous equations. However, the 
application of Zubov's theorem would bc more useful for nonlinear equations. 

It is shown in Sec. 6 that the large perturbation equations of motion of 
an airplane can be written in the form: 

(8.10) 
Nonlinear small perturbation equations, with nonlinear aerod:-namic cross - 
coupling terms, can also be written in this form. Before stating the stability 
criterion for these nonlinear equations , the follmving definitions are required: 

i 
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The equation 

will be called the "quasi-characteristic equation" where (X } and t a r e  
defined a s  values belonging to a "representatiw set" of x and t . By a 

representative set, the following is meant: For  given initial disturbances, 
the solutions to the equations of motion (8.11) yield a time sequence of values 
of thc motion variables { X } .  In most practical cases the en; oineer will have 
an idea of the practical limits of the perturbed motions that his airplane can 
experience. In other words, the engineer can make a reasonable estimate of 

the "cylindrical neighborhood'' surrounding the time axis, within which the 
motion takes place. Figure 16 illustrates such a cylindrical neighborhood 
for a case with only two motion variables, The idea is readily estended to 
cases involving more motion variables. Combinations of values of time 
t and values of the motion variables in and inside this cylindrical neighbor- 
hood are called a representative set. 

R R 

t = o N  ' 

FIGURE 16. - ILLUSTRATION OFA REPRESENTATIVE SET OF TINE AND MOTION 
VARIA RI, ES 



In addition to limitzitions on thc size of niotion variables, there is  a limita- 
tion to the time interval during u7hich niotion bchavior is considcred. It i s  shown 
in See. 5 and in the summary report that there are definite limits on time 
because of the assumption of. constant airplane mass, For  example, i t  i s  shon~n 
that the constant-mass assumption for  the SST can beconie qiiestionnble for 
time intervals beyond 150 scconds. 

' 4  

Choosing discrete values of (X} and t ,  called (X } and tR, within 
practical limits reiatecl to the steady-state €light condition in accordance with 
these ideas generates a representative set" of (X} and t. An analogy to 
the represcntative set  is the selection of combinations of Mach nuni?)ers, 
dynami.: pressures, angles of attack, and angles of sideslip.for which wind 
tunnel data are to be obtained o r  for which stability is to be assessed in the 
usual analysis approach. 

R 

The eigenvalues A that will satisfy equation (8.11) are called the eigen- 
t alii e s of the quasi -characteristic equation. 

Using the above definitions, the application of Zubov's theorem as a 
dynamic stability criterion is postulated as follows: 

Criterion 8.6 
If the eigenvalues of the quasi-characteristic equation a re  nm- 
positive (SO) for each (X,} and t i n  a representative set of R 

c__ 

I { X} and t ,  the airplane is considered stable. 

A s  opposed to the other stability criteria presented in this section, this 
criterion has no neutral o r  unstable counterparts. It is shown in Sec. 9 that 
this technique has its limitations and the existence of positive eigenvalues 
does not necessarily imply instability. In fact, in a numsrical exampls, it is 

shown in Sec, 9 that applying Zubov's theorem directly to a set of linear, 
autonomous equations yields no conclusive information about the equations a id  
that applying the characteristic-equation approach shows conclusively that 
the equations have stable behavior, In other words, criterion 8.6 is necessary 
but not sufficient. 

It is emphasized here and in Sec. 9 that using Zubov's theorem as a basis 
for determining stability has i ts  limitations and disadvantages. Particularlj  
iniport,tiit is the consideration that proving Ziibov's theQrem rc?cluires the use 
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of a particular Lyapunov function, which may lead to very rough stability 
analyses. This i s  further discussed in Sec. 9, 

Another disadvantage OP this approach is the loss of "physical feel" for  
the problem until familiarity with and understanding of the direct m e  tliod a re  
achieved. This is one aspect where the tin13 history appioach has a distinct 
advantage, because the engineer can 'Iseett the predicted molions. 

The question of when it is valid to use the linearized form of the equations 
of motion is raised in ref, 23 and is also discussed in Sec. 9. 

It is obvious that the application of Lyapmov stability theory to airplanc 
stability problems is an area where further research is needed, 

-. 8.6 Summary of Dynaniic Stability Criteria . .  

Dynamic stability criteria were established covering the linear a i d  noii- 
linear equations of motion of an airplane. These criteria apply to rigid, 
equivalent elastic, and completely elastic descriptions of airplnnes, provided 
the corresponding equations of motion a re  written in the form required by 
the criteria. Table 9 presents a summary of dynanic stability criteria and 
their relations to the various forms of the equations of motion, The arrange- 
ment of the equations of motion into the required forms is discussed in Sec. 9. 

The combinations of criteria and equations that a re  most commonly used in a i r  
plane ;stability analysis are identified with heavy lines in table 9. 

; 

The question of whether or  not dynamic stability is required has not been 
discussed in this chapter, The handling quality criteria of refs, 10, 11, 12,  

and 44 require dynamic stability of all short period oscillations, References 
11 and 12 do not specify rec1ii:raments for long period oscillations o r  for 
divergences o r  convergences. References 10 and 12, however, do specify 
maxinlrm allowable times to double for such cases, It is the opinion of the 
writers of this report that dynamic stability should certainly be recprecl of 
the airplane when considered as a controlled system, whether control is 
exercised by the human pilot o r  by an automatic system. Whether o r  not 
this means that the uncontrolled airplane should have dynamic stability and 
to what extent is largely a matter of opinion ancl depends on such factors as 
airplane mission, configuration, flight condition, ancl the reliability nncl 
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capability attached to i ts  controller, wlietlier huiiinn o r  automatic. It is not 
the purpose of this report to den1 \r.itli this matter in any detail. 

Because of the analyticnl complesities involved in the application of energy 
decay criteria and Lyapunov criteria, no interpretations of the significance of 
incliviclual aeroclpamic or inertial terms in relation to thesc criteria have 
been presentecl. For time history criteria, such interpretations can only be 
given after carrying out specific niimerical integrations. Sucla interpretations 
can be more easily given for  cri teria based on characteristic equation methods. 

Paragraph 8.6.1 siiinniarizes the aclvantages , disaclvantages , and limita- 
tions of the various stability criteria established in  this chapter. Areas for 
further research are suggested in par. 8.6.3, 

8.6.1 Limitations, adrmitag-es, and disaclvaiitages. - 
8. %. 1.1 Clmracteristic equations method: Applications of the character- 

istic equatio:is metl id  are limited to linear differential eqimtions of motion. 
This imposes a restriction because it is expected that sigiificant nonhearit iee 
will be encountered in future desigms. Examples of nonlinear cases were 
pointed out in par. 8.1. However, when the eqit8tious of motion can be 
linearized, the characteristic equations nietlrod repmeseiited by criterion S. 1 
is a most efficient technique for deteiiiiining airplane stability behavior. In 
ac7clition to determining the stability Behavior, the roots of the characteristic 
equations can be used for other analyses. For example, the frequency and 
damping characteristics, imaginary .and red parts of the roots, are used 
extensively in handling qualities analyses and stability augmentation systems 
design. References 4, 12 thi-oiigli 16, 36 and 49 are typical esamples of such 
cases. 

The application of the characteristic equations method to the h e a r  non- 
autonomous eqiiations was presented as a valfd estension of this approach. 
Routh's criterion, 8.2, peimits a connection between static and dynamic 
stability considerations, and this was discussed fn par. 8.2.2. 



8.6.1.2 Time history method: There are no coiiceptiml restrictions to 
the time history approach to any of the equations of motion. The only re- 
strictioiis a r e  those iiiiposed by the assumptions used in  deriving the equations 
to  be considered. A particular adrantagc to this approach is that i t  presents 
a physical picture of the niotions iiwolvecl. Another advantage is that it a1lon.s 
a coniprrrisoii of aiialytical and experimental data. Most of tlie disadvantages 
of time history method w e  inliei-eiit in tlie computer itself (storage space, 
etc.) o r  the integration techniques used. 

.b 

8.6.1.3 Energy decrtJ. methods: Energy decay methods have not heeii 
widely appliecl. A s  a result, the limitations, advantages, and disadvantages 
have not been assess&. It is felt, however, that there should be few Iiinita- 
tions because of the gei,er*al nature of the approach. For  linear, autonomous, 
small perkwlxxtiix eqiiatiocs of motion, this approach will probably prove 
less e€€icient tlian the characteristic equations method. However, it mai- learl 
to a better insight into the effect of certain stability derivatives an stzhility 
belwior.  

8, G. 1.4 Lyapunov stability metlid: The particular inethotl presented 
here (Zubov's theorem) has no restrictions with regard to t!ie types of per- 
turbed equations to which it can be applied. However, the criterion only 
pertains to dynamlr: shhility, and there are no iieutralo19 unstable counter- 
parts. Also, it will rot  aie'ays predict stahilitj for  stable airplanes. Here 
again, this approach has aot been sufficiently explored to truly assess its 
value. 

9.6.2 Suggested areas for fitrtker reseai.eh. -- 
8.6.2.1 Characteristic equations: A mathenlatical proof of criterion 

8. Id is required. Wlietlier it is proved o r  disproved, the work Involved 
should result in more insight into the dynamics of airplanes requiring non- 
autonomous mathematical modes. 

8.6.2.2 Time histories: The research aspects for time histories are 
involved in computer sophistication and a re  not pertinent to this discussion. 
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k 8. 6.2.3 Energy clecay: Further investigation in this area is requirccl. 
t The niain objective would be to dcvelop the necessary energy expressions 

and a p p l ~  the criteriz to practical cascs. It is \vortliwhile to Qotc tllat the 
"first half-cycle" may not be a sufficient time interval for stabiIity clcter- 
mination using criterion So 4. This may require valiclation using the clireet 
method of Lyapunov for limited time intervals (re€, 25). 

0 

The separation into easily identifiable modes of inotfon (pliugoicl, Dutch 
roll, etc.) is a property of the linear sinal1 periiwbation equations of motion. 
For  nonlinear equations, siicli a separation does not occtir. Bccause non- 
linear behavior is expectecl to be dbminant for future designs, the question 
of how to specify dynamic stRbility requirements must be faced. It was 

suggested in par. 8.4 that the energy decay paimneter F be considered as 
one \vay of specifying dyiitunie stability r- 31 : ;emeiits for situations involving 
noidinear belxtvior. A coasideralile amoulat of research is neeclecl before 
t h i s  can be done. 

8.6.2.4 Lyapnov stability2 Ziibov's tlieorein: Owing to the "rougIil~ess" 
I of Zubov's theorem, as d i s c ~ ~ a e 8  in Sec, 9, aiicl because of i ts  similarity to 

the charactelis tic equation approach, some refinement of this approach may 
lead to more efficient stal>ility assessnient €or nonlinear and/or iioimitonomoiis 
equations than the Hine history approach currently offers. Whether o r  not this 
refinement can be accomplished requires additional study. 
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9. LY APUNOV STABILITY 

9. 1 Introcluctioa 

The purpose of this section is to explain the second OF direct method of 
0 ' b  

. 
Lyapunov. This method and its clerivatives allow the determination of the 
stability behavior of nonlinear and nonaiitonomous ordinary differential equations 
01 perturbed motion without solving these equations. It will be sho~vn that when 
applied to orclinary, linear, autonomous differential equations of perturbed motion, 
the direct method of Lyapunov yields the same resultr as the faniiliar character- 
istic equation method described in par. $. 2. In that sense, the chwacteristic 
equation method is essentially a special case of the direct method of Lyapunov. 
A dpiamic stability criterion for nonlinear airplane equations of motion is 
developed on the basis of Zubov's theorem. This criterion has practical 
significance since i€ allows the establishment of stability when the equations of 
motion have a general form - namely, the large perturbation form. However, 
as will be shown later, stability obtaiiiecl in this nianner has its limitations. In 
addition, a method is presented by which it is possible to determine the condi- 
tions under which the linear small perturbation equations of niotion give the 
correct answer of stability, 

An appreciation of thc scope and potential of the direct method of Lyapirnov 
in solving problems of stability determination can be gained from reading one 
or more of refs. 25, 52, 53 and 54. An example of the potential of the method 
is shown in Hahn's book, "Theory and Application of Lyapitnovts Direct Method'' 
(ref. 25), where more than 20 different kincls of sta5ility and instability are 
discussed. References 25 and 54 combined contain more than 30 pages of 
bibliography and references, an indication of the scope involved. 

Before stating the two main theorems of the clirect method of Lyapunov, it 

is necessary to define the mathematical meaning of stability used in conjunction 
with the method. Reference 25 gives the definitions for stability (stability of 
the equilibrium) of the perturbed equations of motion as follows: 

The perturbed equations of motion may be written in the general form 
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where {R( (x} , t}} is a column matrix of hnctional relationships betmen the 
motion variables x i  ancl, if the equations are nonautonomous, t. It can be 
demotistratted that this forin can be obtained for the ecluatioas ?f motion con- 
sidereci herein. Setting { 6 } = {o} and carryin, out tlie matEis multipiicatioii 
[F( {x}, t}] {x} results in: 

The pai-€icular solutions for 8 set of initial disturbances, {xo) , introduced 
at to are given by: 

The equilibrium is the state before initial disturbance, given by: - 

9.2 Definitions of Stability According to Lyapunov 

By Lyzipunov's definitions, the equilibrium is: 

a) - Stsble - if there exists an E > 0 and a 6 > 0 such that: 

implies 

(9.3) 

- 
The significauce of a) is that for small enough initial disturbances, 
{x,}, the motion (s} = {P} remains close to the equilibrium 
(undisturbed motion}, i. e. the solutions (motions) are not divergent. 

b) Quasi-asyritotically stable if there exists a 6, > 0 such that when: 

then: 

(9.7) 



The significance of b) is that f u r  small enough initial disturbances 
{.yo} and no additional disturbances for t 2 to the perturbation 
variables eventually return to zero (condition for t <:to), which is 
exactly the original ecpilibrium. 

c) Asymptotically stable if it is both stable and quasi-asymptotically 
stable. 

It follows that for a), a new equilibrium may be achieved o r  a condition of 
neutral stability, in the usual sense, niay exist. Conditions for unstable 
equilibrium as well as some enlightening remarks concerning b3th stability and 

instability may be founcl in refs. 25, 52, and 53. 

It is observed that satisfying b), and hence c), with respect to the limiting 
process (t-w) can only be done in the analytical sense, i. e. if the solutions 
are expressed as explicit functions of time. Also, in order that physically 
realizable limits are not violated, it may be unrealistlc to apply this liniit even 
in the aualytical sense. When it is necessary to use numerical integration 
techniques to solve the equations, it is obviously not possible to satisfy b). 
Thus it may be deduced that only the most ideal problems can be trezted in this 
manner and that most real, physical problems require the use of a more 
sophisticated approach - for example, "stability in a finite (time) interval. '' 
(Reference 25 presents a disciission of this approach. ) For practical purposes 
of stability behavior determination, if an airplane appears to behave in a finite 

time interval in such a manner that equation (9.7) would be satisfied if (t - 00 ) , 
it may be considered to have asymptotic stability. This is, of course, a liberty 
being applied without mathematical proof. 

Lyapunov has derived a technique that does not require knowledge of the 
solution o r  its behavior for t-..aJ. This technique, known as the "direct 
method, If is discussed in par. 9.3. 

9.3 The Direct Method of Lyapunov 

Lyapunov studied the relationship between an arbitrary function and the 
differential equation of perturbed motion (equation 9. 1), and decluced the 
following stability criteria (theorems), 
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Theorem 1 
{x} = (R((x}, t)} has a stablo ecluilibriium if there exists a positive 
de€inite function V = V ((s}, t) whose total clerivative ,% 

c__- 

for the differential equation is nonpositive. 

Theorem 2 

{x} = {R((s}, t)} has an asymptotically stable equilibrium if, in 

addition to thec?reni 1, 

for all t 2 to and dV/dt is negative definite. 

Proofs of these theorems may be found in ref. 25. However, further 
clarification of the theorems is important for a better mderstancling of the 
direct method. Fur that reason, the following interpretation is presented. 

The total derivative of V is given by: 
k 

since a%,/at = <;, 

or 

- = - 4 -  d V  
dt a t  

As already defined in equation (9. l), and in the theorems above, 

-A 

(9.10) 
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the ref or  e: 

(9. 11) 

This establishes the relationship ketween V and the equations of motion. Now 
consider asymptotic stability for a. two-dimensional problem. Regardless of the 
behavior of 

and because of theorem 2, the geometric relation shown in fig. 17 holds 

between V and {x}. 

+X1 

+" I 

2' 

-. __ 

FIGURE 17. - GEMETKIC REl~ATlONSkllP BETWEEN THE L YAPUNOV FUh'CTION V AND THE 
MOTION VARIABLES X i  b..VL'X2 
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In fig. 17, the curves CI and C2 are  the projections of V({P}, t) on 
the (V, -xi) planes. This nialces sense because V > 0 for all ({x}, t), since 
it is positive definite. Furthermore, theorem 2 implies that: ., 

L 

i =: 1 , 2  1 a) If Xi < 0 and increasing, then: V-c 0 

b) If Xi > 0 and decreasing, then: V-c  0 

due to I {x} I - 0. This gives the following relations (from fig. 17): 

Returning to the general case, where i = 1, 2, . . . , n, consider the 

isolated situation where: 

a v - - = o  J V  
a t  ax i  _I- 

for i except k, Then, for  dV/dt < 0, from equation (9.10): 

(9.12) 

(9. 13) 

(9.14) 

If Xk > 0, then from inequality (9.12) a v/a Xk > 0,  

If 8v/8xk > 0, then fk < o to satisfy inequality (9.14). 

Therefore, the relationship: 

< 0 (xk  B o )  (9.15) 

holds and automatically implies that xk,= Pk (t, {xo}, to) is converging toward 
Xk = 0, kk = 0, A similar argument fo r  inequality (9.13) yields a similar 
conclusion (stationary or convergent) for Xk < 0: 

(9.16) 

Since theorem 2 requires dV/dt b be negative definiti?, Xk is converging 
toward zero. Thus the motion is rsturning to the equilibrium x k  because 1 
X k 4  0 implies that x k  = xkl f Xk approaches xkl. 



This approach may be extended to the case aV/at @ 0, 8V/8xi f 0 for any i. 

Since relations (9. 12) and (9.13) hold for all i, assume that in 
' C  

iiot all (aV/asi) ki are negative, bllt clV/dt < 0, 
(1) 8V/asi, Ai  c 0 01' (2) aV/ X i ,  ?i > 0. Consider (1) as depicted in 
fig. 18. 

For (aV/axi)ki > 0 ,  either 

Let xi be positive and diverging and $ < 0 and observe V = V 

(si (t)t t)* 

The projections of V(xi(t), t) onto the (V, x), (V, tj, and (xi, t) planes 
give the curves V(Xi), V(t), and xi(t), respectively. It is i'vious that for 

OV/axi > 0 (case (1)) and %'/at < 0, ki > 0, s o  case (1) is nclt acceptable; 
that is, the projected curve x'i(t) for xti < 0 would not intersect V(xi(t), t). 
A similar discussion of case (2) would lead to its elimination also. Therefore, 
all terms av/axi jri must satisfy: 

(9. 17) 

and further must satisfy one o r  the other of inequalities (9. 15), (9. 16). Similar 
arguments and rationalizations can be used to consider all the possible 
variations of dV/dt and theorems 1 and 2. The major point to be established 
is the relationship of dV/dt to the differential equations of motion, as in 
equation (9. 11), and the resulting implications, namely inequalities (9. 15) and 
(9.16). Theorems on instability and -more elaborate discussions concerning 
phase space (n dimensions) may be found in refs. 25, 52, and 53. 

9.4 Connection of the Direct Method With 
the Characteristic Equation Method 

9.4. 1 Derivation of Criterion. - Lyapunov functions are rather arbitrary, 
as nientioned previously, but there are some convenient forms that are easier 
to work with than others. Because of their definiteness properties, quadratic 
forms a r e  particularly convenient. For example, the familiar characteristic 
equation method can be proven using the direct method of Lyapunov with. the 
Lyapunov function: 

-- 

(9. 18) 
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Tile familiar rigid-airplane, autono1~1ous, linear, smalll perturbation equations 
of motion may be written: 

0 ' b  

(9.19) 

where IA] = [Aijl = coiistmt ii x 11 matrix. The usual procedure in 
solvilzg these equations is to take the Laplace transform of {9.19), giving: 

I 

This reduces to: 

the solution of which is: 

(9.21) 

(9.22) 

The denominator of the right-hmid side of equation (9.22) is the characteristic 
form: 

The roots Si are founcl by solving the uth-degree polynomial in s: 

(9.23) 

(9.24) 

From dynamic stability criterion S. 1 of Sec. 8, it i s  aireacly known that if 

the real parts ai of the roots Si = Oi + jOi a r e  negative, the airplane is 
called stable. The reason for this statement of stability is that solutions to 
equation (9.22) can be written in the familiar form: 
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Now coiisider the direct method of Lyaptinov, using Lyaptu~ov function (9. IS). It 
is II positive definite quadratic forin, The total derivative of V is given by: 

o r  

Substituting eqtiations (9.19) a!icl (9.26) into equation (9.25) yields: 

dt = { X T +  [ [ A p  [KJ] {x)  

Equation (9.28) is a real symmetric quadratic form and has definiteness 
properties determined by the eigenvalues of: 

Let the necessarily real 
solving the determinant: 

(9.26) 

(9.27) 

(9.28) 

'I[ CAIT+ PJ] (9.29) 
z 

eigenvalues A of expression (9.29) be determined by 

The eigenvalues hA of [A] have real parts Re(AA) such that: 

Amin. Re( AA) zs Am,,. 

(9.30) 

(9. 31) 



which can Le concluded from ref. 25, p q e  37. 

From theorem 1, equation (9. 19) will have a stable equilibrium if clV/dt 

(equation (9.28) is n6gative (nonpositive) . Since the light-hand sick of eqiiation 
(9.28) is a qwdratic form, then for stability the eigenvalues A must satisfy: 

A S 0  (9. 32) 

However, to rule out neutral stability, it is necessary to assume asymptotic 
stability. From equation (9. lS), it is obvious that 

and if, instead of espression (9.39, the inequality 

is satisfied, then theorem 2 will be satisfied. Using inequality (9.33), 
inequalities (9. 31) may be rewritten: 

From this it immediately follows that: 

(9.33) 

(9.34) 

(9.35) 

This corresponds exactly to the stability criterion .)f characteristic equations 
as expressed by 8.1. This demonstrates that the characteristic equation 
method is a consequence of the more general direcf: method of Lyapunov. 

For more complex problems than those repres .:nted by the conventional 
equations (9.19), the application of the direct metb-d becomes very complicated 
and the matrix manipulations unwieldy. Consider as an example the case where 
the perturbed equations of motion a r e  nonautonomous but linear: 

A Lyapunov function that allows a statement of a sufficient condition for 

(9. 36) 

(9. 37) 
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as shown in ref. 25. A qiticl; asscssment of the complicated forni dV/dt will 

assume should show that a more practical (even though perhaps less accurate) 

'. approach is desirable. ' 0  - b  

- . One choice that' has proven fruitful is a Lyapunov function representing 
energy. For exaiiiple, if the motion velocities are given by { z 3, a Lyapunov 
function eqtial to the kinetic energy will be: 

.~ 

(9.38) 

where Did is the diagonal matrix oi inertial characteristics. Another example 
is the total energy: 

where 

(9.39) 

1 represents the potential energy. 

In the general case of equation (9.36), however, this can be as difficult 
to  deal with as solving the equations of motion by numerical integration. 

The choice of Lyapunov functions is unlimited. For a particular Lyapunov 
function it will usually be found that for disturbances within some bound, say 
l{xo]l I hi, stability will be guaranteed and for some h2 > hl, if l{xo}l 2 h2, 

instability may be guaranteed. If hl-tO, there is no instability, i. e. the 
equilibrium is stable for all disturbances and h2 does not exist. On the other 
hand, if h2 -0, there is no h l  and the equilibrium is unstable for all dis- 
turbances, no matter how small. This is because hl and h~ are always 
positive and h2 cannot be less than hl. If h l  and h2 are equal, then hl 
(or h2) is a bound,ary of initial disturbances between stability and instability, 
i. e. a "stability hoiindary. f1  However, in general, hl f h2, and for 
h l  4 I{ xo}I < h2 neither stability nor instability can be deduced. Choosing a 
different Lyapunov function can shift hl and h2 , providing hl + h2, This 



does not change the stability behavior, but it is possible that the size of the 
"gray" area hl < l{xo}l < h2 can be reduced. If several Lyapunov functions 
are tried, the greatest hl and the least h2 define upper ancl%lo\ver bouncls for 
stability and instability respectively. Thus it is observed that there should be 
a "best" Lyapunov fitnction which n-ill give the most accurate values of h l  and 

h2. However, it may be impossible o r  at least impractical to t ry  finding a 
"best" Lyapunov function which gives the most accurate stability bounclary. 
The definition of an appr0simat.e stability boundary is better than no boundary 
at all, s o  with a view toward practicality, a straightforward approach using a 
theorem attribiited to Zubov is now presented. 

The equations of motion for an elastic (or rigid) airplane may be written 
in the general matrix form: 

(9.40) 

where [F]  may be any form factorable from {R( {x) , t)} of equation (9.1). 

Zubov, according to Hahn in ref. 25, proved the follotving theorem for 
CF] = [F((x}, t)}. 

Theorem 3 

The equilibrium of equation (9.40) is stable if all eigenvalues (depending 
on {x} and t) of the matrix 

2 

are nonpositive in a certain domain Rh, to; that is, if the roots Xi of 
the equation 

satisfy the following conditions: 
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This theorem can be proven using the Lyapunov function l7 = 1/2{s}T {x} , 
in a manner similar to the one usecl in shming equivalence o f  Lyapunoifs 
direct method and the characteristic cquation method. Fortuiptely, most 
airplanes hare practical limits for admissible xi values. * This allows 
determination of an h where: 

' b  

n 

(9.43) 
i = 1  

Also, it is not possible to test all {s} ancl t satisfying f{s}] s h 
and t 2 to, since there exists an infinite number of each. €lowever, a 
representative set** of {x} and t can be substitnted into [F] ancl the 
eigenvalucs h i  found for the specific values of {x} ancl t. 

- 
Stability as determined by Zitbovfs theorem requires hi < 0 as a criterion. 

For convcnience, equation (9.41) will be called the quasi-characteristic 
equation when {xR} and tR are chosen from a representative set  of {x) 
and t and substituted into the equation. Thus the quasi-chrtracteristic 
equa-tion is: 

where: 

(9.44) 

'With this definition ancl 011 the basis of theorem 3, the followirg dynamic 
stability criterion will be defined for equations of the type of (9.40). 

*Already discussed in par, 8.5. 

**A discussion of what is meant by "representative setff is given in par. 8.5. 
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Dynamic Stability Criterion ___. 

' b  An airplane whose equations of motion are given by 

will be called stable if the roots of the quasi-characteristic equation 
(9.44) are all negative (nonpositive) for a representative set of the 
variables in Rh, to. 

Stability Boundary 

An approximate stability boundary for an  airplane whose equations of 

motion are given by 

will be those values of {xo} for which at least one of the roots of 
the quasi-characteristic equation vanishes and for which values 
1{xR)l > ~ { x ~ } l  yield one or more positive roots. 

~~ 

It is believed that this criterion, once properly computerized, could be a 
significant breakthrough in the analysis of airplane stability in nonlinear and/or 
nonautonomous situations. There are some limitations, however, and these a r e  
discussed next. 

9.4.2 Limitations. - In using Zubov's theorem 3, it is recognized that 
using a particular Lyapunov function (V = 1/2 { x } ~  {x}) does not necessarily 
give a 'best" stability boundary. In fact, the existence of positive eigenvalues 
of the quasi-characteristic equation does not necessarily imply instability. 

This is a serious limitation that must be recognized when applying Zubov's 
theorem. A simple example will illustrate it. For a very simple form of 
perturbed equations of motion (linear and autonomous), assume the following: 

(9.45) 
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Using [AI from equation (9.45): i_ - 

and the eigenvalues are given by the roots h of: 

Expanding equation (9.45), the following is obtained: 

which may be factored into 

b 
(9.46) 

(9.47) 

(9.48) 

Therefore, Zubov's theorem is not satisfied because of 

Now consider the characteristic equation approach. As shown previously, 

> 0. 

the following determines the stability: 

This reduces to: 

(9.49) 

i 
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and .further to: L 
4-45 + - 3  +7 = o  

This niay be factorecl into 

giving ths roots: 

5 ,  , z  

- 0  

(!I. .5 I )  

These indicate a stable solution. -. - 

9.4.3 Conclusions, _I - If the equations of motion of an airplane satisfy 

Zubovfs theorem, stability is guaranteed. However, the simple esnmpl e :I!) )\.c 

shows that positive eigenvalues do not necessarily imply instability and, i n  fnct , 
a stable system was shown to violate the condition of Zubov's thecreni. J3cc L~u.-;c 

of the ltroiighness" of this approach, a more accurate approach may be reciiiirtii. 

Research into this area seems to be needed. (::: 
9.5 Stability According to the First Approximation* 

The development up to here has shown how Lyapunov stability theory 
applies to nonlinear and/or nonautonomous equations of motion, What is yet tn 

be cleared up is the question of what conditions must exist for the linearized 
equations to  be used as an approximation to the nonlinear equations. This 
question has two aspects: respo,ibr, m d  stability. It is entirely possible that 
linearized equations yield the correct answer with regard to the stability of 311 

airplane but yield unacceptable approximations to the response behavior. 

The answer to the question of response behavior can be obtained through 
generation and judgment of response time histories, Without the benefit of Such 

time histories in a particular situation, engineering judgment plays the dominxit 

role. Reference 23 formulates such conditions that must be met by the 
linearized equations to adequately predict airplane response. 

-.-, 

*That is, according to the linearized equations 
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The answer to the question of stability can be obtained by using the direct 
- - method of Lyapiunov, as will be discussed in the remainder of this section. t 

Consider the Iarge-perturbation equations of motion in thq form: 

where {K( { x}, t)) is a column matrix of higher order terms; i. e. , it contains 
products of motion variables, etc. This can be demonstrated for the large 
perturbation equations of motion. 

Setting (6) = (0) ,-ind all xi = 0 in [F( {x} , t)] , then using sgn(si) = 0; 
(Xi = 0): 

Further: 

For the autonomous case: 

In the following it is implied that the nonlinear terms {K((x) , t)} are 
"sufficiently" small, The meaning of "sufficient" has not been clearly 
established. The following theorem can be proven: 

(9.53) 



I Theorem 4 (theorem 2G. 2 in ref. 25) 

If the motions of the linearized differential equation given'below have 
intensive behavior*, then thc complete and thc linearized differential 
equations have the same stability behav;or where: 

a) 
b) 

--___ L I  

The complete ecjuatiw is given by equation (9.52) o r  (9.53). 
The reclucecl (linearized) equation is given by: 

(9.51 

I c) For the autonomous case, the reduced equation becomes: 

(9.55 

Equations (9.54) and (9.55) are called "first approximations. 

Note th3t there are two conditions to be satisfied here: 

a) The nonlinear terms must be sufficiently small, 

b) The behavior of the first approximation must be exponentially stable 
or unstable. 

Also observe that both are necessary conditions, Condition b) can be 
relatively easy to satisfy in the autonomous case. The follov ".g cliscussion 
of items a) and b) for the autonomcus case has been extracted from ref. 23, 

par. 2.3,  pp. 15-19, with appropriate changes to fit the discussion here, 

9.6 The Validity of Linear Small Perturbation Equations 
of Motion in Predicting Stability Behavior 

For sufficiently small perturbations the linear approximation theorem of 
Lyapunov (theorem 4, herein) is applicable. For such Sufficiently small 
disturbances, this theorem merely restates the well-known fact that the stability 
characteristics of the uncontrolled airplane can be obtained from the roots of 
the characteristic equation of the linear approximation to the equations of 

*Intensive behavior means that every motion admits, along at. least one of its 
branches, exponential stability or  instability for all {xo] o r  t > to. See 
ref. 25 for further discussion of intensive behavior. 
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i iiiotion. In otlicr worcls, if all the roots of equation (9.55) have negative rea l  
p3rt.5, the airplane is stable. If one the roots has a positive real part, the 
airplane is called unstable. If one of the roots is  zero, the s@ of cquatioiis is 
critical xcordiiig to fynp~iiiov*' and the etability characteristics' must be 
obtained from the nonlinear cquations. 

i-. 

b 

It was stated above that the theorem c?f linear appmximattion is valid for 
sufficiently sinal1 perhirb2tions. It is i~tuitively acceptsble that for infinitesi- 
mally small disturbances (initial conditions leading to a motion deviating SI@ tly 
from the flight considerecl) a linear approximation will yield correct results. 
This Iinoivledge is of little value to the airplane designer, siilce stability must 
be ensured in an environment of finite (and sometimes quite large) distmbaices. 
The pmblem is therefore to define a domain of initial disturbances within which 
the smal1-ciistupbaa:ce theory will correctly predict the stability belravior of the 
airplane. 

Te& on airplane stability and control, such as refs. 13 through 16, either 
fail to bring this problem up or  to solve it in a useful manner. This is surpris- 
ing because the key to its solution csn be found in applying Lyapunov's direct (-*; 

- method. The following development will clarify this point, 

For the linear, autonomotis equations of motion (equation 9.55) it is 
always possible to construct a Lyapunov fimction V (ref. 53, p. 57). Construc- 
tion of this function V can be carried out as follows. Assume: 

=e 

If V is to be a Lyapunov functim for the linear part of equation (9.53) , it must 
satisfy: 

i "For further discussion of the meaning of C Y ' ; ;  - k v i o r ,  see ref. 25. 
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where C is any negative definite form. It is convenient to select: 

(9.5s) 

. The coeKicients ai are the elements of [A] in equation (9.55). It turns 
out that [B] will be positive definite if CUM.. only if the eigenvalues of [A] have 
negative real parts. A unique solution for [Bl can always be found (ref. 53, 

5 

p. 57). 

The function V ob€ainecl in this nianner is a Lyapwov function for the 
linear eqitations. It is also a Lyapunov function for the nonlinear equations in 

some small neigIhorIiooc\ of the origin ("(0)) = {o] if it satisfies theorem 1 

in the sense that €or the complete equation (9.53): 

(9.59) 

It is emphasized that even though V has been derived for the linear 
equations, si in inequality (9.39) must be computed for the nonlinear set. 
Thus, in (9.59): 

By checking inequality (9.59) systematicaEly for combinations of values of 
initial disturbances, a domain of initial disturbances is found within which the 
linear approximation is valid. 

The ibmain of small disturbances founcl in this manner guarantees the 
vzlidity of small-disturbance theory for disturbances inside the domain. 

. Outsid2 the domain there still exists il possibility that small-disturbance 
theory applies. Because this method of constructing the domain will at least 
verify whether o r  not the domain is large enough to be practical, this last fact 
is not considered a serious disadvantage. Chetayev and Xalkin have discussed 
the problem of enlarging the domain of initial disturbances in ref. 52 and in 
ref. 53 (pp. 71-73) respectively. 
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A useful obscrvatioii is the following. It is possible to include in the 
noidinear part {I<({x} )} 
XineaiSties in the aeroclpainic forces and moments. In this ~iynner the 
effect of aerodynamic iionlinearitics on the size of the cloinain of initial dis- 
turbances can be determincci. 

of equation (9.52) expressions representing noii- 
t- 

Having coinputed the domain of validity of the linear approximation, 
attention can be focused on metl ids  to determine the stability behavior. It 
is assumed that the domain so found has a practical size, meaning that it is 
not infinitesiiiial in nature. 

An additional possibility is observed in the following: If in equation 
(9.56) [B] = tl3 is arbitrarily chosen, and if at the same time {I< ({x})) 
factorable into [K' ({x})] {x} , equation (9.53) can be written: 

is 

01': 

( '1 

Since, EOW, 

it is observed that Zubovf 

v = -L, 2 {qT{x)  

(9.60) 

(9.61) 

(9.62) 

theorein (theorein 3), is consequence of th 
previous discussion. Note also that although Zubov's theorem may yield less 
accurate answers, it eliminates the need to solve for [B]. 

If the nonautonoinous case is treated, the approach is the same, but [B(t)] , 
and sometimes an arbitrary positive function 'P (t) , is required as  indicated 
in equation (9.35) : 
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If [B(t)] = r l J  alid V(t) = 1 are clicsen arbitrarily, then the most general case 
of Zubov's theorem, 

follows immec7iatelj-. Elere again the need to solve for  [B] = [R(t)] is elimi- 
nateC along with choosing 1"(t). 

It should be evic1c:iil that even in the liniitecl presentation given here there 
are  apparent practical ak ,dic:\tioiis of Lyapunov stability theory in  ai rplanc 
stability analysis. More research in this area may uncover even more prac- 
tical appliciltions or bef l;er ways to approach current problciiis. 

f 
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10. CONCLUSIONS AND RECOafilIENDATIOXS 

A careful derivation of the equations of motion f o r  an elxsjic airplane has 
L 

been presented in Secs. 4, 5, and 6. The aerodynniuic and structural operators 
necciccl to solve the equations of motion a r e  discussed in Sec. 6 and in app. B. 

The development of equations of motion for the coinpletely elastic air- 
plnnc relies on the influence coefficient concept for both structural and 
aerodjnaniic representations. The advantage of this concept is that, i n  

itself, it does not require a conimitnient to any particular aerodynamic o r  
strw'iiw? model escept that superposition must be valid. This restricts the 
aerodynamic theory (whatever it may be) to small angles of incidence, and 
restricts the structural theory (whatever it niay be) to small strain ancl dis- 
placement and Hooke's law. 

Several assmnptions macle in the derivation have important consequences 
with regard to the restrictions imposed on the analysis. By carrying out 
additional research it would be possible to remove several assumptions from 
the analysis. The most restrictive assumptions are listed below, together 
with reconmiendations for additional research. 

Constant mass and mass distribution. - It was stated that this assumption - 
implies that no fuel slosh is accounted for. This assumption can be removed 
realistically only by assuming a model for the fuel tanks, the baffling arrange- 
ment, etc., and then including ecpt ions accounting for the dynamic behavior 
of the fuel ancl i ts  effect on the entire airplane. This has not been done in  this 
report and would require additional research. 

SninlI strains and displacements, - For elastic airplanes with very long, --- 0 
slender bodies or  wings, it is possible that the linear force-deflection relation 
is violated. If this is ever felt to be important, a careful investigation must 
bc made of the static and dynamic structural representations useci i n  this 
report. This will require additional theoretical and experimental research, 

\ f  .! Aerodynamic influence coefFicients for  zero sideslip. - An important 
consequence of the restriction to zero sideslip of aerodynamic influence co- 
efficient theory is that a t  present no matrix expressions can be generated for 
sideslip forces and moments on total airplane configurations. The restriction 
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to zero sicleslip i n  aerodynaiiiic influence coefficient theory also makes it 
impossible to develop matrix equations clescribing the steady-state equilibrium 

of elastic airplanes under sideslip conclitions. To remove this. restriction will 
require additional theoretical and exlxxiinental research. Another iniportant 
limitation of aerodynamic influence coefficient theory is that it i s  valid only 
for small angles of incidence. 

The static and dynamic stability criteria have been derived for an elastic 
airplane. It has 'been shown that the basic i'orni of these criteria is  the same 
for rigid, equivalent elastic, and completely elastic airplanes. 

Static and dynamic stability criteria have been summarizecl i n  tables 8 
and 9 respectively. 

Physical interpretations have been presented for those derivatives that 
appear in the stability criteria. Where practical, the stability criteria have 
been related to known flight experience. Also, the relationship between 
stability parameters, stability criteria, and handling qualities has been 
discus sed. 

Specific conclusions that were reached can be sunmiarized as  follows: 

a) The mathematical formulation of stability criteria is the same for the 
rigid, equivalent elastic, and completely elastic airplanes. 

b) . Static longitudinal stability is, in general, a prerequisite for dynamic 
longitudinal stability. 
Static stability is not necessarily required for good handling qualities. c) 

The following areas a r e  recommended for additional research: 
A study should be made of the effect of airplane elasticity on the behavior 
,of phagoid and short period with all speed derivatives properly accounted 
for. 
It will be necessary to develop a capability €or calculating time histories, 
including elas tic .degrees of freedom and unsteady aerodynamic effects. 
The energy decay method for judging stability behavior and i ts  rel,,tion 
to flying qualities neecls to be further explored. 

a) 

b) 

c) 

22 1 



cl) 

e) 

More research is neeclecl to establish the practical application of Lyapunov 
theory to airplane stability analysis. 
Further research is needed before a generally acceptal~1e.proceclu~e can 
be defined with which a decision can be made as to the iiiinimuni number 
of elastic degrees of freedom that a re  needed in stability and response 
sttidies. 
A discrepancy was found with regard to the inttiyretation of Routh's test 
functions. Reference 49 was fouiicl to disagree with ref. 48. This dis- 
crepancy has not been further investigated. 
Not considered under the scope of this contract is the case of stability 
under continuously acting distiu.lbances (for example, gist). It is felt 
that a thorough understanding of this type of stability is essential in  

studying the upset and recovery behavior of airplanes. It is highly 
reconimenclecl that study of this type of stability be initiated. 
This report does not deal with controlled airplanes. Research is needed 
to establish the stability criteria (qualitative and quantitative) for an 
elastic airpl a when controlled by an automatic system. 

It has been shown that the conventional notion of associating static longi- 
with stability of the flight path is generally correct onlj- 

#. 

L 

f) 

g) 

h) 

I .. 
+.; 

6 

tudinal stability C 
if the speed derivatives CL , and Cm can be neglected. In addition, it has 

been shown that this holds true for  steady climbs 2nd dives provided dynamic 
pressure remains reasonably constant. The additional assumption that the 
thrust derivatives be negligible is also required. Whether o r  not this assump- 
tion is justified depends on many factors, particularly on the location of the 
engines. 

"a! 

U U 

.Directional stability C has been shown to affect stability of the flight 
path (spiral stability). Positive C actually hurts spiral stability, It has 
been shown that positive dihedral effect Cp < 0 is necessary for the spiral 
mode to be stable, but it was reasoned that some degree of spiral instability 
must be tolerated in view of the detrimental effect of Cp on Dutch roll, 

nP 
"P 

s 

P 
For the completely elastic airplane, it is concluded that a numerical 

evaluation is neecled to determine the effect of normal modes on stability of 
the flight path. Tp 
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