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Abstract 

Pressure, force, and dynamic stability tests were conducted to compare theo
retically calculated coefficients and pressure distribution to data obtained by 
experiment. The Newtonian theory has also been included for completeness. 
Comparisons are made for an ideal gas and a real gas in equilibrium. The 
dynamic stability test for the real gas was omitted because of tunnel limitations. 
Pressure distribution was also measured for a real gas in nonequilibrium. The 
models used were 45-deg cones of bluntness ratios, RN/RB , of 0, 0.25, 0.50, 0.75, 
and 1.00. 
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Aerodynamic Characteristics of Spherically Blunted 
45-Deg Half-Angle Cones 

I. Introduction 

A method of calculating the flow field about a body 
in unsteady flight has been reported in Ref. l. The 
method uses a small perturbation technique in which 
the pitching velocity q, angle of attack a, the rate of 
change of q, and the rate of change of angle of attack 
are introduced to obtain perturbation from the steady 
state, axially symmetric flow field. 

The computation is carried out in two parts. First a 
complete solution of the steady state, a = 0, flow field 
in the shock layer is obtained by the method of charac
teristics. The starting line information for this solution 
is obtained by a blunt body flow analysis reported in 
Ref. 2. The second part of the solution is the unsteady 
flow field that results from the application of the per
turbation scheme to the steady state solution. The form 
of the unsteady field, which is described as a function 
of angle of attack and pitching rate in cylindrical co
ordinates, is 

[ 
L da] P = Po + P 1, Q a + P 1, 1 V 00 dt cos <P 

(1) 

+ [(P2 ,Q - P1 ,Q ~g) J: + ... ]cos<P 

JPL TECHNICAL REPORT 32-1327 

The coefficient P 1, Q gives the first-order effect of a small, 
steady-state angle of attack on the pressure field, and 
PI, I and P2 , 0 give the first-order effects of uniform plung
ing acceleration and pitching velocity, respectively. The 
stability derivatives result from the integration of the 
appropriate Pi,i over the body surface. For example, P1 ,o 

can be integrated to obtain the static stability coefficients 
Gm, and GM ",. 

A detailed description of the method is given in Ref. 1 
with results of a flow field calculation of a 10-deg cone 
at Mach number 10. A comparison of the calculation 
with experimental data for the 10-deg cone agrees rea
sonably well (Fig. 1). 

The method of calculation was used by Kyriss and 
Rie to theoretically investigate the stability of an entry 
vehicle in model Mars atmospheres (Ref. 3). Three 
models of Mars and the earth's atmospheres were 
used to demonstrate the adaptability of the method to 
study flow fields of various mixtures of gases. The vehi
cles were cone, sphere cones, and power-law bodies. 
Most of the data presented was for sharp and spherically 
blunted 45-deg cones, and showed that both static and 
dynamic stability increased with increasing velocity 
(Fig. 2). 

No experimental data were shown to verify the theo
retical results. Therefore, it is the purpose of this inves
tigation to experimentally determine the aerodynamic 
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characteristics of a family of spherically blunted 45-deg 
cones and to compare the results with the theoretically 
calculated characteristics at the same flow conditions. 
A JPL subcontract (Ref. 4) was given to General Elec
tric (GE) to calculate the aerodynamic characteristics 
for two flow conditions, one corresponding to an ideal 
gas and the other to a real gas in equilibrium. 

II. Experimental Measurements 

Because the aerodynamic characteristics are obtained 
by integration of the calculated pressure distribution, the 
prime objective of the experiment is to obtain pressure 
distribution at small angles of attack. This is done at sev
eral test conditions so as to investigate real gas effects 

2 

on the pressure distribution.1 It has been reported (Ref. 5) 
that the bow shock wave moves closer to the body when 
real gas effects are considered present. The closer prox
imity of the shock wave causes the characteristics to be 
reflected back to the body more quickly, thus causing an 
adjustment of the pressure distribution. The models for 
the pressure measurements were 45-deg blunted cones 
with bluntness ratios, RN/RB' of 0.25 and 1.00. The 45-deg 
half-angle cone was selected because of the availability 
of theoretical data already published and, because of its 

'The data from each phase of the report, the pressure and dynamic 
stability from JPL tests or the pressure and force from Wright
Patterson Air Force Base tests, can be obtained by writing directly 
to the author of this report, Jet Propulsion Laboratory, Pasadena, 
Calif. 
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bluntness, it is a possible entry configuration. Cones of 
greater half angles result in subsonic How over the model 
and, therefore, the theory is not applicable since the 
method of characteristics is employed in the analysis. 
Actually, for the ideal gas case, the How on the conical 
surface was subsonic, and a small adjustment of density 
was made to establish supersonic How (Ref. 4). Because 
of the effect of the real gas, this problem was not en
countered in the real gas case. The theory is presently 
being extended to handle blunter configurations that 
have subsonic conical surfaces. The bluntness ratios of 
0.25 and 1.00 were selected because they represent the 
extremes of the How fields expected. The 0.25 bluntness 
ratio results in a conical How being established aft of the 
spherical nose. With this configuration, the transition 
between spherical and conical How can be obtained. The 
1.00 bluntness ratio, which is a more probable entry con-
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figuration, allows a more detailed study of the spherical 
How field. 

The models were tested under ideal gas conditions in 
the JPL hypersonic wind tunnel (HWT) and under real 
gas conditions, equilibrium air, in the 4-MW electro
gasdynamic facility at Wright-Patterson AFB, Dayton, 
Ohio. Both the ideal gas and real gas tests were run at a 
nominal Mach number of 10. Additional nonequilibrium 
runs were also made in the electro-gasdynamic facility 
(EGF). 

A force test was also conducted in the EGF to obtain 
the static stability coefficients. A strain gage balance was 
used to measure axial forces, normal forces, and mo
ments on the family of 45-deg half-angle cones with 
bluntness ratios of 0, 0.25, 0.50, 0.75, and 1.00. The force 

3 

-0.76 

-O.~~--------------+---------------~~r-~~------~ 

Z « 
Ci « 
"" C"-
LJ.J 
0.. 

-O.~~--------------+---------~--~~--~~~------~ 

-o.n~--------------+-~----~~----~--------------~ 

----' -0.72~ __________ ~=-~ ______________ ~ ______________ ~ 

---------,,-' " '-...- --2.4 
Z 
~ 
0 « 
C"-

C"-
LJ.J 

~ -2.0 
;;;rr 

u 
+ 

.!j 

;;; 
u -1.6 

-1.2~ ____ L-________ ~ ______________ ~ ______________ ~ 

o 10 20 30 

FLIGHT VELOCITY, ft/s x 10-
3 

Fig. 2. Effect of flight velocity on moment coefficients for 45-deg pointed cone, Ref. 3 

bluntness, it is a possible entry configuration. Cones of 
greater half angles result in subsonic How over the model 
and, therefore, the theory is not applicable since the 
method of characteristics is employed in the analysis. 
Actually, for the ideal gas case, the How on the conical 
surface was subsonic, and a small adjustment of density 
was made to establish supersonic How (Ref. 4). Because 
of the effect of the real gas, this problem was not en
countered in the real gas case. The theory is presently 
being extended to handle blunter configurations that 
have subsonic conical surfaces. The bluntness ratios of 
0.25 and 1.00 were selected because they represent the 
extremes of the How fields expected. The 0.25 bluntness 
ratio results in a conical How being established aft of the 
spherical nose. With this configuration, the transition 
between spherical and conical How can be obtained. The 
1.00 bluntness ratio, which is a more probable entry con-

JPL TECHNICAL REPORT 32- J 327 

figuration, allows a more detailed study of the spherical 
How field. 
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gasdynamic facility at Wright-Patterson AFB, Dayton, 
Ohio. Both the ideal gas and real gas tests were run at a 
nominal Mach number of 10. Additional nonequilibrium 
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(EGF). 
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the static stability coefficients. A strain gage balance was 
used to measure axial forces, normal forces, and mo
ments on the family of 45-deg half-angle cones with 
bluntness ratios of 0, 0.25, 0.50, 0.75, and 1.00. The force 
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test in the EGF was conducted instead of a dynamic 
stability test using a gas bearing because the gas bear
ing and EGF facility were incompatible. However, a 
dynamic stability test using the gas bearing was con
ducted in the HWT for the complete family of 45-deg 
half-angle cones. 

III. Pressure Tests 

The pressure tests were conducted in the HWT and 
EGF on 45-deg half-angle cones of bluntness ratios of 
0.25 and 1.00. The angle-of-attack range was from -5 
to + 5 deg with roll angles, 1>, of 0, 30, 60, and 90 deg. 
One pressure orifice was located on the opposite side of 
the model for a flow angularity check. Under these con
ditions, fairly complete model pressure distributions were 
obtained at each angle of attack. The measured pressures 
were non-dimensionalized by dividing by the pitot pres
sure. The pressure ratio was then plotted versus a and 
slopes were measured at n = O. These values of 
liP t2 oP Ian I "='0 were then plotted versus SIRN , where 
S' is the surface distance from the nose of the model and 
RN is the radius of the nose. 

The models used for the pressure tests in the HWT 
are shown in Fig. 3. These models were made of steel 
with a base diameter of 5.5 in. The Mach number supply 
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than 2 % during the test, supply temperature less than 
1.03%, 1> was set to within ±0.3 deg, and a was set to 
within +0.005 deg. Based on repeatability of the data, 
the pressure, PIP t
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, varied less than 1 %. The pitot pres

sure, P t
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, was calculated for a perfect gas flow at 
Mach 10. Since the actual test Mach number was 10.08, 
the calculated Pt
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is approximately 1 % higher than the ac

tual stagnation point pressure. This accounts for the 
stagnation point pressure ratio of 0.99 (Figs. 4 and 5). 

Figures 6 and 7 show the pressure distribution for 
bluntness ratios of 0.25 and 1.00, respectively, at a nom
inal zero roll angle and various angles of attack. Excel
lent repeatability was obtained at each roll angle for 
a = O. It should be noted that an overexpansion occurred 
at the sphere-cone junction and that recompression to 
the sharp-cone value occurred on the 0.25 bluntness 
ratio model; however, recompression did not occur for 
the 1.00 bluntness ratio because the conical surface was 
too short. Pressure ratios for 40-, 45-, and 50-deg sharp 
cones are shown and it is evident that, for small angles of 
attack, pressures in the angle-of-attack plane can be pre
dicted by using n = 0 pressure of sharp cones whose 
surfaces make the angle with the flow. For example, the 

MODEL 45-100 

P S/RN 
P1 0.0000 

P2 0.1963 

P3 0.3927 

"\ P 4 0.5891 

P5 0.7854 

[ P
6 0.9211 P8 

P7 1.0574 

P8 0.9211 

NOTE: P
8 

IS 180 deg FROM P
6 

ALL DIMENSIONS IN INCHES 

Fig. 3. Pressure models for hypersonic wind tunnel 

4 JPL TECHNICAL REPORT 32-1327 

test in the EGF was conducted instead of a dynamic 
stability test using a gas bearing because the gas bear
ing and EGF facility were incompatible. However, a 
dynamic stability test using the gas bearing was con
ducted in the HWT for the complete family of 45-deg 
half-angle cones. 

III. Pressure Tests 

The pressure tests were conducted in the HWT and 
EGF on 45-deg half-angle cones of bluntness ratios of 
0.25 and 1.00. The angle-of-attack range was from -5 
to + 5 deg with roll angles, 1>, of 0, 30, 60, and 90 deg. 
One pressure orifice was located on the opposite side of 
the model for a flow angularity check. Under these con
ditions, fairly complete model pressure distributions were 
obtained at each angle of attack. The measured pressures 
were non-dimensionalized by dividing by the pitot pres
sure. The pressure ratio was then plotted versus a and 
slopes were measured at n = O. These values of 
liP t2 oP Ian I "='0 were then plotted versus SIRN , where 
S' is the surface distance from the nose of the model and 
RN is the radius of the nose. 

The models used for the pressure tests in the HWT 
are shown in Fig. 3. These models were made of steel 
with a base diameter of 5.5 in. The Mach number supply 

P 

P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
P10 
Pll 
PI2 
P13 

[P
14 

P15 
P16 

S/RN 
0.0000 

0.1963 

0.3927 

0.5891 

0.7854 

1.0582 

1.3309 

1.6036 

1.8764 

2.1491 

2.6945 

3.2400 

3.7855 

4.3309 

4.8764 

4.3309 

3 3 3 
16 16 16 

MODEL 45-25 

NOTE: P
16 

IS 180 deg FROM P
14 

pressure and supply temperature were 10.08, 1500 cm Hg, 
and 1000°F, respectively. Data were taken for angle-of
attack increments of 0.5 deg. Supply pressure varied less 
than 2 % during the test, supply temperature less than 
1.03%, 1> was set to within ±0.3 deg, and a was set to 
within +0.005 deg. Based on repeatability of the data, 
the pressure, PIP t

2
, varied less than 1 %. The pitot pres

sure, P t
2

, was calculated for a perfect gas flow at 
Mach 10. Since the actual test Mach number was 10.08, 
the calculated Pt

2 
is approximately 1 % higher than the ac

tual stagnation point pressure. This accounts for the 
stagnation point pressure ratio of 0.99 (Figs. 4 and 5). 

Figures 6 and 7 show the pressure distribution for 
bluntness ratios of 0.25 and 1.00, respectively, at a nom
inal zero roll angle and various angles of attack. Excel
lent repeatability was obtained at each roll angle for 
a = O. It should be noted that an overexpansion occurred 
at the sphere-cone junction and that recompression to 
the sharp-cone value occurred on the 0.25 bluntness 
ratio model; however, recompression did not occur for 
the 1.00 bluntness ratio because the conical surface was 
too short. Pressure ratios for 40-, 45-, and 50-deg sharp 
cones are shown and it is evident that, for small angles of 
attack, pressures in the angle-of-attack plane can be pre
dicted by using n = 0 pressure of sharp cones whose 
surfaces make the angle with the flow. For example, the 

P 

P1 
P2 0.1963 

P3 0.3927 

P4 0.5891 

P5 0.7854 

[

p 0.9211 

P~ 1.0574 

P8 0.9211 

MODEL 45-100 

NOTE: P
8 

IS 180 deg FROM P
6 

ALL DIMENSIONS IN INCHES 

Fig. 3. Pressure models for hypersonic wind tunnel 

4 JPL TECHNICAL REPORT 32-1327 



1.0 

0.9 1\ 
\ 

0.8 

0.7 

"-
~N 

----------
"-

0.6 

0.5 

1\ 

\ 
_\ 
\ ~ 1-0-

0.4 

0.3 
o 0.4 0.8 1.2 1.6 2.0 3.2 3.6 4.0 4.4 4.8 5.2 

Fig. 4. Pressure ratio vs 51 RN for 45-25 model HWT at cp ::::::: 0 deg and a = 0 deg 

1.0 ~ 

~ 
~ 0.9 

~ l'... 
~ 

"" ~ 
0.8 

0.7 

'" "" 
0.6 

0.5 i"-. " 

0.4 

0.3 
o 0.1 0.2 0.3 0.4 0.7 0.8 0.9 1.0 1.1 

Fig. 5. Pressure ratio vs 51 RN for 45-100 model in HWT at cp ~ 0 deg and a = 0 deg 

pressure on the windward surface for a 45-deg cone at 
- 5 deg angle of attack is essentially the same at the 
pressure on a 5O-deg cone at zero angle of attack. 

It is interesting to note that the sonic point is near 
the sphere-cone junction at -a = O. At angles of attack, the 
sonic point moves to the base of the model on the wind-
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ward side, but the pressure distribution indicates that 
supersonic conical flow occurs in the shock layer outside 
the "entropy" layer. The entropy layer is the layer of gas 
adjacent to the body that has passed through the normal 
part of the bow shock wave near the nose. An entropy 
gradient normal to the flow is characteristic of the 
"entropy" layer. 
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part of the bow shock wave near the nose. An entropy 
gradient normal to the flow is characteristic of the 
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A typical plot of pressure ratio versus angle of attack 
is shown in Fig. 8. Only the first five orifices are shown 
for clarity since the other orifices indicate pressures 

which are equal to P5' The linearity with·IX is good on the 
leeward side (+a) and is slightly nonlinear on the wind
ward side (-a) as the base of the model is approached. 
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Figures 9 and 10 show the pressure ratio slopes, 
1/P t2 oF/au la='>, as a function of body position for blunt~ 
ness ratios of 0.25 and 1.00, respectively. The Newtonian 
theory has been included for comparison. For each roll 
angle, except cp = 90 deg, the experimental values are 
less than the Newtonian values. 

The models used in the EGF were made of alumina 
to withstand the high temperatures. The alumina models 
are formed by a casting process and, therefore, the loca
tion of the pressure orifices could not be held to the same 
tolerances as for the steel models used in the HWT tests. 
The models had a base diameter of 2.0 in. This diameter 
was dictated by the core size of the test How in the EGF. 
The models, with orifice locations, are shown in Fig. 11. 
As in the HWT pressure tests, a single orifice was located 
180 deg from the primary orifices for a How angularity 
check. However, the uncertainty of the orifice location 
makes this check questionable. 

The 4-MW electro-gasdynamic facility was selected 
because it can produce near-equilibrium How conditions 
in the test section for a Mach number of 10 and altitude 
of 160,000 ft. Whether or not the test medium is in 
equilibrium has been investigated and reported in Ref. 6. 
The conclusion drawn, based on tests with a circular 
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cylinder normal to the How, was that reliable blunt body 
pressure data can be obtained with little concern for the 
detailed thermo-chemical state of the gas. However, this 
may not be the case for other blunt bodies where the 
pressure distribution may be affected by the location of 
the shock wave. Since the effect of the thermo-chemical 
state of the gas is uncertain, tests were also run at non
equilibrium free-stream conditions for comparison. 

Two test conditions were run. One was a near
equilibrium condition with Pt = 1690 psia and Ho = 2400 
btu/Ibm; this is the Mach 10, 160,000-ft altitude condition 
previously mentioned. The other condition has nonequi
librium test How with P t = 525 psia and H 0 = 2800 
btu/Ibm. A description of the tunnel and instrumentation 
is given in Ref. 7 and the How analysis and calibration 
are given in Ref. 8. The test conditions are tabulated in 
Table 1. Test conditions are more difficult to repeat in 
the EGF than in the HWT and are more difficult to 
maintain during the run. However, the variation in supply 
pressure during a run was generally less than 1 % and 
variation in total enthalpy was less than 8%. The nominal 
angles of attack at which data were taken were -5, -3, 
-1, 0, + 1, +3, and +5 deg. The angle of attack was 
set to within +0.1 deg. The roll angles, cp, were the same 
as those for the HWT test, i.e., cp = 0, 30, 60, and 90 deg. 
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The models, with orifice locations, are shown in Fig. 11. 
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cylinder normal to the How, was that reliable blunt body 
pressure data can be obtained with little concern for the 
detailed thermo-chemical state of the gas. However, this 
may not be the case for other blunt bodies where the 
pressure distribution may be affected by the location of 
the shock wave. Since the effect of the thermo-chemical 
state of the gas is uncertain, tests were also run at non
equilibrium free-stream conditions for comparison. 

Two test conditions were run. One was a near
equilibrium condition with Pt = 1690 psia and Ho = 2400 
btu/Ibm; this is the Mach 10, 160,000-ft altitude condition 
previously mentioned. The other condition has nonequi
librium test How with P t = 525 psia and H 0 = 2800 
btu/Ibm. A description of the tunnel and instrumentation 
is given in Ref. 7 and the How analysis and calibration 
are given in Ref. 8. The test conditions are tabulated in 
Table 1. Test conditions are more difficult to repeat in 
the EGF than in the HWT and are more difficult to 
maintain during the run. However, the variation in supply 
pressure during a run was generally less than 1 % and 
variation in total enthalpy was less than 8%. The nominal 
angles of attack at which data were taken were -5, -3, 
-1, 0, + 1, +3, and +5 deg. The angle of attack was 
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Fig. 11. Pressure models for the EGF 

Three runs were made with bluntness ratio of 1.00 at 
cf> = 60 deg. These data are plotted and show that the 
largest data scatter occurs at the stagnation point and 
decreases with distance along the model (Fig. 12). An 
estimate of the repeatability can also be made from this 
plot. A separately measured P t2 did not correlate with 
the supply pressure as well as did the model stagnation 
pressure, P 1,0; therefore, the data was non-dimensionalized 
by dividing by P

"
o. The pressure ratio for the 45-100 

model ata = 0 is plotted vs S/RN (Fig. 13). The large 
data scatter did not seem to be consistent with the 
scatter indicated in Fig. 12; therefore, it was decided to 
~verage the data at the repeated runs (Fig. 14 resulted). 
P is the average of the repeated data ata = ° at each 
orifice location. P, is the average of all the P, at a given 
roll angle. It includes the P,at angle of attack, since P, 
should vary only approximately 1 % throughout the 
angle-of-attack range. 

The pressure distribution for the 45-100 model at 
a = 0 for the nonequilibrium is shown in Fig. 15. The 
pressure distributions for the 45-25 model at a = 0 for 
the near-equilibrium and nonequilibrium cases are shown 
in Fig. 16. The HWT data have been included for com
parison. The ideal gas data obtained in the HWT and 
the nonequilibrium data obtained in the EGF agree rea
sonablywell while the near-equilibrium data obtained in 
the EGF are somewhat lower. This was also the case 
for the 45-100 model (Fig. 14), which appears to indicate 
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that the thermo-chemical state of the gas has an impor
tant effect on the pressure distribution. 

The plots of P /P 1,0 versus a were fairly linear for all 
the nonequilibrium cases except for the 45-25 model at 
cf> = 90 deg. A typical plot of this case is shown in Fig. 17. 
For the equilibrium case, the data for both models 
showed considerable scatter, with cf> = 0 deg for the 
45-25 model being the worst case. The slopes of the pres
sure ratio versus S/RN for the 45-25 model at cf> = 0, 30, 
and 60 deg are shown in Fig. 18. The variation in slope 
due to data scatter for cf> = 0 (the worst case) has been 
included to indicate data quality. The Newtonian values 
for the three roll angles have been included for com
parison. The data for cf> = 60 deg agree reasonably well 
with the Newtonian curve, while the data for cf> = 30 deg 
agree with the Newtonian curve near the sphere-cone 
junction and then approach the curve for cf> = 60 deg on 
the conical part of the model. The pressure ratio slopes 
for the 45-100 model for the near-equilibrium and the 
nonequilibrium cases are shown in Figs. 19 and 20, re
spectively. The curves are the Newtonian values and 
have been included for comparison. The data are incom
plete because some of the data were omitted due to the 
large amount of scatter on the spherical nose. This was 
particularly true at cf> = 0 deg. It can be seen that the 
nonequilibrium data agree better with Newtonian theory 
than the near-equilibrium data. This had been previously 
obtained for the 45-25 model in Fig. 16. 
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for the 45-100 model (Fig. 14), which appears to indicate 
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that the thermo-chemical state of the gas has an impor
tant effect on the pressure distribution. 

The plots of P /P 1,0 versus a were fairly linear for all 
the nonequilibrium cases except for the 45-25 model at 
cf> = 90 deg. A typical plot of this case is shown in Fig. 17. 
For the equilibrium case, the data for both models 
showed considerable scatter, with cf> = 0 deg for the 
45-25 model being the worst case. The slopes of the pres
sure ratio versus S/RN for the 45-25 model at cf> = 0, 30, 
and 60 deg are shown in Fig. 18. The variation in slope 
due to data scatter for cf> = 0 (the worst case) has been 
included to indicate data quality. The Newtonian values 
for the three roll angles have been included for com
parison. The data for cf> = 60 deg agree reasonably well 
with the Newtonian curve, while the data for cf> = 30 deg 
agree with the Newtonian curve near the sphere-cone 
junction and then approach the curve for cf> = 60 deg on 
the conical part of the model. The pressure ratio slopes 
for the 45-100 model for the near-equilibrium and the 
nonequilibrium cases are shown in Figs. 19 and 20, re
spectively. The curves are the Newtonian values and 
have been included for comparison. The data are incom
plete because some of the data were omitted due to the 
large amount of scatter on the spherical nose. This was 
particularly true at cf> = 0 deg. It can be seen that the 
nonequilibrium data agree better with Newtonian theory 
than the near-equilibrium data. This had been previously 
obtained for the 45-25 model in Fig. 16. 
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Table 1. Test conditions for real gas test 

</>, Po, Ho, P't2 ' P" 
Flow condition Model deg psia Btu/Ibm psia min Hg 

Pressure 

45-25 0 1700.161 2402 2.014 100.215 near-equilibrium 

30 1724.503 2389 1.967 99.747 

60 1686.629 2194 2.010 87.921 

90 1675.909 2158 2.890 91.446 

45-100 0 1673.808 2375 1.998 88.363 

30 1681.520 2367 2.682 92.973 

30 1712.124 2385 2.479 82.502 

60 1667.245 2330 2.404 84.258 near-equilibrium 

60 1669.884 2061 1.892 83.858 

60 1679.612 2304 2.094 94.259 

90 1672.306 2294 1.817 88.319 

45-25 0 525.258 2606 2.460 105.338 

30 533.027 2769 3.825 109.981 

60 526.259 2800? 3.364 102.486 

90 523.310 2800? 2.323 100.269 non-equilibrium 

45-100 0 552.954 2527 3.550 110.808 

30 517.782 2713 2.430 97.496 

60 521.178 2807 3.416 102.546 

90 518.271 2798 2.536 99.952 

Force 

45-00 1725 2550 

45-25 1747 2200 

45-50 1702 2250 

45-75 1685 2600 

45-100 1700 2630 
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IV. Force Tests 

Force tests were conducted in the EGF at the same 
flow conditions as the pressure tests. A strain gage balance 
was used to measure the normal and axial forces and the 
pitching moments on the models. The models were 
2.0-in.-diam 45-deg half-angle cones with bluntness ratios 
of 0,0.25,0.50,0.75, and 1.00. The angle-of-attack range 
and schedule was the same as that used in the pressure 
tests. The test conditions are tabulated in Table 1. 

Unfortunately, the pitot pressure and mass flux, poo Uoo , 
were not measured during the force tests at the EGF. 
However, using the results of the pressure tests, run at 
the same conditions, the ratio of pitot pressure to total 
pressure was calculated. After calculating this ratio and 
measuring total enthalpy, the Mach number could be 
obtained by using Ref. 9. The Mach number for the pres
sure tests remained at an essentially constant value of 
10.2. Again, referring to Ref. 9 and using M = 10.2 as a 
parameter, the ratio of dynamic pressure to total pressure 
was plotted vs the total enthalpy (Fig. 21). It is obvious 
that qoo, the normalizing quantity needed to find force 
coefficients and moment coefficients, can be obtained if 
the total pressure and enthalpy are known. This procedure 
leaves much to be desired; however, it was the only 
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course left open to reduce the data. No reference was 
known to exist in which the procedure applied above 
could be used to find the dynamic pressure for the non
equilibrium test condition. It is for this reason that the 
coefficient form for the nonequilibrium data cannot be 
given. The comparison of equilibrium as well as non
equilibrium to theory falls short in this respect. 

A typical plot of axial force coefficient versus angle of 
attack for the equilibrium test gas is shown in Fig. 22. 
The effect of angle of attack on C A was lost in data 
scatter for all cases. The axial force coefficient at zero 
angle of attack has been plotted versus bluntness ratio 
in Fig. 23, with the scatter bands being the maximum 
and minimum values of CA over the entire angle-of-attack 
range. No base pressure correction was made. 

A typical plot of normal force coefficient versus angle 
of attack is shown in Fig. 24. There was very little scatter 
in the data, and a linear curve represents the data well. 

A typical plot of pitching moment coefficient versus 
angle of attack is shown in Fig. 25. Although the pitching 
moments were small, the data appeared to be of high 
quality and linear curves represent the data well. 
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Unfortunately, the pitot pressure and mass flux, poo Uoo , 
were not measured during the force tests at the EGF. 
However, using the results of the pressure tests, run at 
the same conditions, the ratio of pitot pressure to total 
pressure was calculated. After calculating this ratio and 
measuring total enthalpy, the Mach number could be 
obtained by using Ref. 9. The Mach number for the pres
sure tests remained at an essentially constant value of 
10.2. Again, referring to Ref. 9 and using M = 10.2 as a 
parameter, the ratio of dynamic pressure to total pressure 
was plotted vs the total enthalpy (Fig. 21). It is obvious 
that qoo, the normalizing quantity needed to find force 
coefficients and moment coefficients, can be obtained if 
the total pressure and enthalpy are known. This procedure 
leaves much to be desired; however, it was the only 
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course left open to reduce the data. No reference was 
known to exist in which the procedure applied above 
could be used to find the dynamic pressure for the non
equilibrium test condition. It is for this reason that the 
coefficient form for the nonequilibrium data cannot be 
given. The comparison of equilibrium as well as non
equilibrium to theory falls short in this respect. 

A typical plot of axial force coefficient versus angle of 
attack for the equilibrium test gas is shown in Fig. 22. 
The effect of angle of attack on C A was lost in data 
scatter for all cases. The axial force coefficient at zero 
angle of attack has been plotted versus bluntness ratio 
in Fig. 23, with the scatter bands being the maximum 
and minimum values of CA over the entire angle-of-attack 
range. No base pressure correction was made. 

A typical plot of normal force coefficient versus angle 
of attack is shown in Fig. 24. There was very little scatter 
in the data, and a linear curve represents the data well. 

A typical plot of pitching moment coefficient versus 
angle of attack is shown in Fig. 25. Although the pitching 
moments were small, the data appeared to be of high 
quality and linear curves represent the data well. 
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V. Dynamic Stability Test 

The static and dynamic stability of models were mea
sured in the JPL HWT using a sting-mounted gas bearing 
and Optron Tracker. The testing technique and data 
reduction are described in Ref. 10. The test Mach number 
was 10.13, supply pressure was 1500 m Hg, and supply 
temperature was 1515°R. 

To accommodate the gas bearing and locate the 
CG at the base of the cone, a hemispherical shell was 
attached to the base of the model. This also provided 
the color contrast marking needed for the Optron 
Tracker. Figure 26 shows a typical test setup. The diam
eter of the hemisphere was less than the base diameter 
of the cone to prevent afterbody effects on the cone 
stability. 

Moments of inertia of the models were measured 
before the tests and are tabulated in Table 2. Since the 
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Fig. 26. Typical test setup for dynamic stability 
test in HWT 

frequency of oscillation is inversely proportional to the 
square root of moment of inertia, considerable care was 
taken to obtain low moments of inertia so as to have 
reasonable frequencies. 
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frequency of oscillation is inversely proportional to the 
square root of moment of inertia, considerable care was 
taken to obtain low moments of inertia so as to have 
reasonable frequencies. 
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Table 2. Moments of inertia 

Model I Ubf-in.-s2
) 

45-0 0.0085837 

45-25 0.0099030 

45-50 0.0105410 

45-75 0.0099593 

45-100 0.0101188 

The data were collected through a system that uses 
an Optron Tracker, a passive electronic device which is 
designed to follow the motion of an object without 
physical contact. The tracker requires a target having 
a sharp delineation in brightness to provide contrast. If 
the target is not on the model's center of rotation, 
angular deflection of the model will yield a vertical dis
placement of the target, and the Optron Tracker output 
will be a function of the angle of attack of the model. 
The instrument is calibrated statically by pitching the 
model to a known angle of attack and recording the 
output. The relationship between voltage output and 
model angle of attack is very linear between - 30 and 
+ 30 deg. The data necessary to determine model 
stability are oscillation amplitude and frequency, both 
of which are obtained from the output of the Optron 
Tracker. 

Substantial loads on the model lead to sting deflec
tions as the model oscillates. To determine the effects, 
if any, of this sting motion on the model's oscillatory 
history, the sting was instrumented with a strain gage 
bridge which provided a method of determining both 
loads and deflections. Output from the strain gage bridge 
was recorded along with data from the Optron Tracker. 
Sting deflections were insignificant. 

Test procedure consisted of checking frictional damp
ing of the gas bearing to ensure that it was negligible. 
This was done by mounting a low moment of inertia 
sphere, with an offset mass, on the gas bearing and 
observing its oscillation in the flow after it had been 
released from an initial angular deflection. The model 
was then mounted on the gas bearing and the Optron 
Tracker calibrated. The test runs were made by releasing 
the model from an initial angular deflection of 20 deg 
and allowing the model to oscillate until the motion had 
damped to approximately 2 or 3 deg. Each model was 
run four times at the same test conditions to check 
repeatability. 

20 

The test data were reduced on the premise that the 
pitching moment is linear with angle of attack and the 
prime contributor to angular velocity. The following 
equations were used: 

(2) 

and 

(3) 

Pitching moment is not linear with angle of attack over 
the entire range, but is linear to a good approximation 
for small angles where the theoretical calculations are 
expected to apply. The data reduction was performed 
on a IBM 7090 computer. 

A linear curve fit was made to loge CJ.e (envelope angle) 
as a function of time and this was used in Eq. (3) to cal
culate C M q + C MO,. A typical trace of the run data is shown 
in Fig. 27. A data-smoothing program was then applied to 
these data to yield Fig. 28. The data were cut off at 30 s 
and it can be seen that the curve is quite linear. A third
order polynomial curve fit was made to the data and 
compared with the linear curve fit. The third-order 
polynomial fit did not make a significant correction and, 
therefore, the linear curve fit was used throughout. 

Only the amplitude envelope and frequency are 
necessary for the data reduction. Each test run yields 
two amplitude envelopes, one for positive alpha peaks 
and one for negative alpha peaks, which were averaged 
to eliminate any fictitious alpha reading when the model 
is trimmed in the flow. Average amplitude envelopes are 
calculate CMq + CM iY.' 

The dynamic stability coefficient CMq + CM o, versus 
bluntness ratio is shown in Fig. 29. The open symbols 
are the linear curve fit of the data and the filled symbols 
are the averages of these data. The scatter shown is 
typical of the free oscillation method of testing, since 
the damping is produced by the unsteady flow field 
about the vehicle. The apparently greater stability of the 
0.50 bluntness ratio over the other blunted cones is as 
yet unexplained. This phenomenon warrants further 
study. 
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Fig. 30. Typical static stability coefficient, CM ", 

vsa from dynamic stability test 

The mean amplitude of oscillation between ao and at 
of Eq. (3), ii, is calculated by 

VI. Comparison of Theory With Experiment 

and is approximately equal to 

ao + at 
2 

The static stability derivative C M" varies only slightly 
over the angle-of-attack range, as can be seen in a typical 
plot (Fig. 30). The static stability derivative CM 0' versus 
bluntness ratio is plotted in Fig. 31. Thea used in Fig. 31 
is the same as that used in Fig. 29 for CMq + CM "" the 
dynamic stability coefficient. 
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The theoretical pressure distribution for the ideal gas 
case is compared to the data obtained from pressure 
measurements of the 45-25 and 45-100 models in the 
HWT in Fig. 32. The triangles are for the 45-25 model, 
the circles for the 45-100 model and are generally higher 
in pressure level. The theoretical curve is slightly low 
on the spherical segment while it agrees very well on the 
conical portion. Both the theory and experiment approach 
the pointed cone value further out on the conical sur
face, as is to be expected. The theory fails to calculate 
the pressure on the sphere-cone junction region as well 
as in the spherical or conical regions. This is the most 
difficult region for theory to predict because the radius 
of curvature of the body jumps discontinuously from RN 
to infinity. 

The theoretical pressure distribution for the real gas 
case is compared to the data obtained in the EGF for test 
flows in equilibrium and out of equilibrium in Figs. 33 
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The theoretical pressure distribution for the ideal gas 
case is compared to the data obtained from pressure 
measurements of the 45-25 and 45-100 models in the 
HWT in Fig. 32. The triangles are for the 45-25 model, 
the circles for the 45-100 model and are generally higher 
in pressure level. The theoretical curve is slightly low 
on the spherical segment while it agrees very well on the 
conical portion. Both the theory and experiment approach 
the pointed cone value further out on the conical sur
face, as is to be expected. The theory fails to calculate 
the pressure on the sphere-cone junction region as well 
as in the spherical or conical regions. This is the most 
difficult region for theory to predict because the radius 
of curvature of the body jumps discontinuously from RN 
to infinity. 

The theoretical pressure distribution for the real gas 
case is compared to the data obtained in the EGF for test 
flows in equilibrium and out of equilibrium in Figs. 33 
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and 34, respectively. Again, the triangles and circles 
represent the 45-25 and 45-100 models, respectively, 
whereas the curve is the theoretical calculation. The data 
scatter shows that the scatter for the equilibrium How 
condition is greater than that of the nonequilibrium 
condition. The testing techniques for both How condi
tions were the same and, thereby, no explanation other 
than general thermochemical effects can be offered as 
to the reason for the scatter. It should also be noted that 
the theory compares with the data for the equilibrium 
How better than with the data for nonequilibrium How 
on the spherical portion of the model, whereas on the 
conical portion of the model, the opposite is true. In 
general, the theory compares with the nonequilibrium 
How data better than with the equilibrium How data. A 
possible explanation is that the gas in the shock layer 
may not be in equilibrium for the near-equilibrium test 
How. Also, for the nonequilibrium test How condition, the 
gas in the shock layer could have been shocked to a 
near-equilibrium condition. Therefore, it is possible that 
the nonequilibrium How could yield better Hight simula
tion than the equilibrium How. 
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The normalized rate of change of pressure with re
spect to alpha at zero angle of attack, 1/Pt2 oPloa.!a=o, is 
shown in Figs. 35, 36, and 37 for the ideal gas case, real 
gas case in equilibrium, and real gas case in nonequi
librium, respectively. The theoretical and experimental 
data are shown for roll angles of 0, 30, 60, and 90 deg. 
The theoretical calculation for the ideal gas case com
pares very well with the experimental data obtained 
from the HWT. A comparison between Figs. 35 and 9 
shows that the theory represents an improvement over 
the Newtonian value. The data in Figs. 36 and 37 are too 
uncertain to make any judgment of the theory's capa
bility of predicting a real gas pressure derivative. The 
uncertainty is indicated in the pressure derivative at 
</> = 90 deg. The derivative should be zero at this roll 
angle as in Fig; 35 for the ideal gas case. 

The axial force coefficient for an ideal gas is shown in 
Fig. 38. The data are those of Ref. 5. Because of lack of 
data, it is difficult to draw a definite conclusion as to the 
validity of the theory; however, for the two data points 
given the theory seems to be in fairly good agreement. 
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and 34, respectively. Again, the triangles and circles 
represent the 45-25 and 45-100 models, respectively, 
whereas the curve is the theoretical calculation. The data 
scatter shows that the scatter for the equilibrium How 
condition is greater than that of the nonequilibrium 
condition. The testing techniques for both How condi
tions were the same and, thereby, no explanation other 
than general thermochemical effects can be offered as 
to the reason for the scatter. It should also be noted that 
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spect to alpha at zero angle of attack, 1/Pt2 oPloa.!a=o, is 
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librium, respectively. The theoretical and experimental 
data are shown for roll angles of 0, 30, 60, and 90 deg. 
The theoretical calculation for the ideal gas case com
pares very well with the experimental data obtained 
from the HWT. A comparison between Figs. 35 and 9 
shows that the theory represents an improvement over 
the Newtonian value. The data in Figs. 36 and 37 are too 
uncertain to make any judgment of the theory's capa
bility of predicting a real gas pressure derivative. The 
uncertainty is indicated in the pressure derivative at 
</> = 90 deg. The derivative should be zero at this roll 
angle as in Fig; 35 for the ideal gas case. 

The axial force coefficient for an ideal gas is shown in 
Fig. 38. The data are those of Ref. 5. Because of lack of 
data, it is difficult to draw a definite conclusion as to the 
validity of the theory; however, for the two data points 
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The theory also represents an improvement over the 
Newtonian theory if one is willing to put that much 
weight on this limited data. The axial force coefficient 
for the real gas case in equilibrium is given in Fig. 39. 
The data are given in Fig. 23 with the appropriate scatter 
bars. The theory agrees fairly well with the data and 
predicts the data better than the Newtonian theory. This 
result also gives support to the theory for the ideal gas. 

The normal force coefficient slope for an ideal and real 
gas in equilibrium is shown in Figs. 40 and 41, respec
tively. These curves were obtained from fIgures such as 
Fig. 24. Again, data from Ref. 5 are used for the com
parison of the theory for the ideal gas case. Although the 
data are not complete enough to draw conclusions for 
the theory in the ideal gas case, the conclusions for the 
real gas case are obvious: the theoretical calculation is 
a signifIcant improvement over that of the Newtonian 
theory. Similar conclusions would have been drawn for 
the ideal gas case had the data been more complete. 
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Figures 42 and 43 show the static stability coefficients 
that were obtained from fIgures such as Fig. 25. Data 
for the ideal gas case is from the dynamic stability test as 
well as Ref. 5. Unlike the previous results, the Newtonian 
theory predicts the data better than the theoretical cal
culation. This also seems to be the case for the real gas 
case (Fig. 43); however, the data have some scatter which 
makes any observation difficult. 

The dynamic stability coefficient, CMq + CMir , is shown 
in Fig. 44. The Newtonian values shown are for CMq 
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The GE theory generally does predict coefficients 
better than the Newtonian theory with the exceptions 
previously pointed out. 

VII. Summary 

The GE theory represents a significant improvement 
in the prediction of pressure distribution and stability 
coefficients over that predicted by Newtonian theory, 
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with the exception of the static stability coefficient, eM a' 
Although the dynamic stability coefficient, C Mq + C Mti' is 
predicted much better for an ideal gas than the Newtonian 
theory, there is still need for improvement. It is for this 
reason that the theoretical calculation of the dynamic 
stability coefficient for the real gas in equilibrium would 
have an uncertainty associated with it. This comparison 
of the GE theory with experimental data has given some 
guidelines of applicability and, it is hoped, will stimulate 
further investigations along these lines .. 
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