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ABSTRACT

The problem of flow over a sphere is investigated within the
framework of kinetic theory of gases. Solutions are sought which
describe the Zlow field for a large range of fluid densities. The gov-
erning equation for all density levels is the Boltzmann equation, which
is a nonlinear integro differential equation. Instead of attempting to
solve the Boltzmann equation exactly, one may be concerned primarily
with certain mean quantities such as velocity, density, pressure, etc.,
but not the distribution function itself. One is then led to consider the
moment equations of the Boltzmann equation or the Maxwell equation

of transfer.

The essence of the moment method consists in finding the un-
known parametric functions introduced in the velocity distribution
function § . In practice, the moment method can best be initiated
with full knowledge of § in the free molecule flow limit. For the
problem of flow over a closed body this information is often not avail-
able. It is found that in the free molecule flow limit the distribution

function for the flow over a sphere can be represented by

§=$ =57+ G&D

for all molecules which have velocity vectors lying in a cone subtended

by the sphere, and

fafi= S+ QD

for all molecules whosc velocity vector is directed into the region ex-
ternal to this conical region. The functions S:u), !;L‘“‘ are Maxwellian
distribution functions evaluated by the conditions at the sphere and the
free stream respectively. The function G\(X-l-{) is determined by

satisfying the moment equations from the homogeneous Maxwell equa-

tion of transfer and the boundary conditions on the solid surface.
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The formulation for studies in the transition regime is accom-
plished by introducing parametric functions into Sf:‘ and GEF) .
Closure of the moment method is accomplished by taking the number

of moments equal to the number of parametric functions.

The present investigation for flow over a sphere is restricted
to the two limiting cases; low speed flow, where the Mach number is
very small, and the high speed approximation for very large Mach num-
bers. In the low speed approximation the solution is found by solving
the six moment equations corresponding to; continuity, radial momen-
tum, tangential momentum, energy, shear stress, and radial heat flux.
Analytical solutions are obtained for the six equations and the computed

drag and heat transfer compare favorably with existing measurements.

For the high speed case four moments are taken but the gov-
erning partial differential equations are nonliﬁear and a simple separ-
ation of variables cannot be found for the general case. However, if
an expansion for small angles (&<<\) is assumed, the resulting
ordinary differential equations can be integrated numerically. Fur-
thermore, if one also makes the assumption of large mean free path,

an analytical solution can be obtained. The results from the high

speed analysis are found to show acceptable agreement with the drag

and density measurements.
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CHAPTER I - INTRODUCTION

The motion of a finite body in a fluid of infinite extent for all
density levels is in general characterized by two parameters; the
Mach number, M , and the mean free path, A (henceforth abbre-
viated MFP). The two extremes of the MFP, \=6 and M © , cor-
respond respectively to the continuum limit and the free molecule flow
limit (henceforth abbreviated MF limit). In the continuum limit the
particle density is high enough so that collisions between particles
dominate whereas in the FMF limit the collisions between particles
are of secondary importance in comparison to collisions between par-

ticles and solid boundaries.

The governing equations in the continuum limit are the Navier
Stokes equations whose solutions in general differ greatly between sub-
sonic and supersonic flow. In the FMF limit the mean quantities such
as density, pressure, and temperature at the solid surface are found
directly by making mass, momentum, and energy balances. The solu-
tion in this limit was investigated for simple convex geometries by
Ashley1 and Heinemann2 for all values of the Mach number. For any
value of the MFP between the two extremes there exists the transition
region. When the MFP is not small the transport relations which are

normally adopted in the continuum regime will no longer be valid.

The Boltzmann equation for the distribution function, ‘p(‘-f,'{,-t) ,
is generally accepted as the fundamental equation for the entire range
of MFP. The Boltzmann equation may be written

DSGie t) = 95, 2F I o _
-5&(2‘ W b{+ 2,8 3'i'. + %%\T?{; = (%:>collisions (1.1)



where

-
*Sd) &5 A = number of particles in the com-
S( gt) OF AR bined volumes dx and Jg at the
same time
XL —~ ~  particle velocity
St=E s
= Rt 2.3
€= 5- @ExT
‘-. L 3
= instantaneous local angular velocity

associated with coordinate curvature
~» = R .
(_Q_ x€ Y= 0O for Cartesian coordinates

The collision integral is given by

&) =

Equation (1. 1) in orthogonal curvilinear coordinates is given in

Appendix (A).

SE"‘{\AS_ SSS (§#pro887) IR (1.2)

collisions

If the Boltzmann equation is properly nondimensionalized and

all the normalized quantities are designated by a tilde, (~), we find

X.s XL TE_ (3 2% (1.3)
'3‘€+ Tt +\ R (_Q_x?)\] ~. K“(

collisions

K‘y\ = .LL: Knudsen Number



In the continuum limit (K= ©) the collision integral vanishes. This
leads to the well-known Maxwellian distribution function which de-
scribes a situation in which the collisions between particles are so
numerous that local equilibrium is always maintained. For the FMF
limit (Kw® «©) Equation (1. 3) becomes the homogeneous Boltzmann equa-

tion
";:’L - (1. 4)

which may be solved by the method of characteristics.

The difficulties in solving the Boltzmann equation for a finite
value of .K.,are obvious. The Boltzmann equation is in general a non-
linear integro differential equation to which an exact solution for a
realistic boundary value problem has not been found. In view of these
difficulties, various methods of approximations have been applied to

the Boltzmann equation as summarized by Lees. 3

The most well-known approximation is the Chapman Enskog4

method which assumes an expansion in the Knudsen number

g_: S(°)+ K S(\\ N oo

where

g@ -

= local Maxwellian distribution function

The convergence of this expansion has never been shown and one would

conjecture that the expansion is valid only for K“<< i,

An analogous expansion for the other extreme of the MFP is the

Knudsen iteration

g___ ‘S‘FNF+ _é:\g_(\)_\_.“



where {FMF = FMF distribution function

Applications of this method to flow problems between parallel pla'ces3
have shown that the Knudsen iteration is invalid for this choice of ge-
ometry. Although no general statement of validity can be made about
this scheme, it appears to be more questionable than the Chapman-

Enskog expansion.

Another familiar approximation is to replace the collision in-

tegral by a simple relaxation equation

&) = »(9-9 (1.5

collisions

Y = characteristic frequency

This simple kinetic model is most often referred to as the BGK5 model
and the resulting simplified Boltzmann equation is usually called the
Krook equation. Although this "linearization" (Equation 1.5 is linear

if {_(o) is a constant Maxwellian) greatly simplifies the Boltzmann equa-
tion, the relationship between this linear model and the full collision

integral has never been fully established.

Most of the previous attempts to solve the problem of a sphere
moving in an infinite fluid have employed one or a combination of the
preceeding three assumptions. For example, in attempting to extend
the continuum solution into the transition regime, one can utilize the
Chapman-Enskog expansion to make a correction to the continuum re-
sult. This is usually accomplished by modifying the ''no slip'" boundary
condition at the solid surface. From a simple kinetic theory model the

slip velocity is found to be proportional to the MFP.

For large MFP, many investigators have made use of the
Knudsen iteration to obtain the near FMF solutions. These results are

characterized by complicated computational procedures and the validity

fit5he i oo



of extending these solutions into the transition regime remains ques-
tionable. The great effort expended to obtain approximate solutions to
the Boltzmann equation is further indication of the difficulty in finding

solutions for all values of the MFP.

Instead of attempting to solve the Boltzmann equation exactly,
one may be concerned primarily with certain mean quantities such as
velocity, density, pressure, etc., but not the distribution function
itself, One is then led to consider the moment equations of the

Boltzmann equation or the Maxwell equation of transfer,

s



PRBGEDBHIG PAGE BLANK NOT FILMED.

CHAPTER II - MOMENT METHOD SOLUTION OF
THE BOLTZMANN EQUATION

II.A Maxwell's Equation of Transfer

If §(§t) is any function of particle velocity, the mean value of

is defined by

g = Sf& aT (2.1)
where for @=| the number density is given by
W= S $4%

Multiplying the Boltzmann equation by & (§:) and integrating over

velocity space, cl?" , one obtains the Muxwell equation of transfer

3 (W) %@9%} (BE-URYe | = AT e

where

2% = s (@a) sy B

(2.3)

('!!Z% _§) = change in$ due to collision

If an infinite number of moments are taken (an infinite number
of §’s) and the resulting equations are satisfied, the solution is equiva-
lent to solving the Boltzmann equation exactly. But to solve an infinite
set of equations would be at least as difficult to solve as the original

Boltzmann equation.

The problem of evaluating the collision integral remains, but
in this case the integration is extended to the six dimensional velocity
space 0‘? ’A? which simplifies the computation. Furthermore, if

3&) is taken to be any of the five scalar invariants for perfectly



elastic collisions; mass ( §=w) momentum  ( §=v0g, ,
=122 )  and energy (E=mMP/2) , theintegral AP
vanishes since §=§*’ for these moments. For moments which cor-
respond to nonzero A§ a great simplification is achieved by adopting
Maxwell's inverse fifth power law for the force field between colliding
particles. This force field corresponds to an intermolecular potential

given by

I\P — a (2. 4)

where
Q. = constant

For this potential, the collision integral is independent of the relative
velocity of colliding particles \'é"—'{\ and can be readily in’cegra‘ced.35
It was shown by Maxwell that the collision integral ,A§ y for the non-
vanishing moments corresponding to the stress (§=- misi\\ )

. 35
and’to the Leat flux (§: Yhi!g2/z) are given by

A (mig) = 2T Ae) P%— A Pike (2. 5)

A2@®= pure number
and

— 3 P
A3 (wey2p) = 3WA M %“l—%m +.§: %a@c{l (2. 6)

The viscosity coefficient for the Maxwellian molecuie is found to be35

Al = 2 7= E“EL: [.-é‘ (2.7)
2TA@ TG \%)

Assuming Maxwell's relationship between the viscosity and the MFP

at the free stream conditions one obtains



/C(,,:—\i-ww\“ XQE (2. 8)

where T = Iak—L’/W‘M

and substituting Equations (2. 7) and (2. 8) into Equations (2. 5) and

(2. 6), one obtains
36 “L\&E -
A @ (S, - MmN . (2.9)
TiTe) = ( Wak

and

k -
4% () = % (%5{'% QS*%\ R,JRA (2.10)

Although this choice for the intermolecular potential is highly idealized
it affords the greatest simplification while preserving the nonlinear
character of the collision integral. If a more accurate description of

a real gas is found to be necessary more realistic intermolecular po-
tentials can be used. However from previous investigations(3'16‘17‘23)
in which the Maxwell inverse fifth power law was utilized gross aero-

dynamics quantities compared favorably with the experimental results,



II.B

)
vi ALl NU""*“"‘

o
TR LY A

-;\Cﬁ‘tiéi‘é“ﬁxé‘of the Moment Method
Two major criticisms of the moment method are

(1) Truncation of the Equations
(2) Closure

(1) Truncation of the Equations

(2)

A finite numoer (N) of moments is normally taken in all
schemes involving the moment method. This necessary trunca-
tion is one of the main criticisms, nevertheless it allows the
introduction of some physical insight at a very early stage.

For example, by taking the moments corresponding to the five

scalar collision invariants, the integral A® vanishes and a

set of equations is obtained which reduces to the familiar con-
servation in continuum fluid mechanics. For a given problem

some moments are more important than others. As a rule of
thumb, knowledge of the lower moments which have obvious

physical meaning are preferred. The error made in truncating

the equations cannot be determined since no convergence of the

moment method for the Boltzmann equation has been studied
systematically.

Closure problem

A second difficulty in the moment technique is that the
N'® moment equation contains the (N+\)%" moment. A clo-
sure problem exists since a complete formulation requires that
the number of dependent variables be equal to the number of
equations. The genzral procedure to effect the closure is to
assume that the distribution function may be expressed in

terms of "N'" parametric functions of the spatial varijables,

$=5 RN, 0e®, ..., H®)

11
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where
H.(®)= parametric functions

The "N" moment equations now result in "'N'"' equations in the
"N'" unknown parametric functions (W, Wz eee o, HW) - The
shortcoming of this procedure is that there is no unique method to
choose the parametric functions. This is a common failing of most
integral techniques; e. g., the Raleigh-Ritz Method or the Karman-
Pohlhausen Method in boundary layer theory, but the validity should be

judged by the results preduced.

In spite of these valid criticisms, the moment method appears
to offer the most promise to obtain results for the complete range of
fluid densities while retaining the essential nonlinear features of the

Boltzmann equation.

12



II.C Moment Method Solutions
(1) Grad's Thirteen Moment Method

Grad assumed a distribution function which was a
perturbation over the local Maxwellian by the local

stresses and heat fluxes

S() %\ 2 T\)c\c) - 2 q;c; 1'59;\-\13 (2.11)

=1 )=\ = T

Whenthe moment equations corresponding to the five
scalar invariants are computed, thirteen dependent var-

iables appear in the five conservation equations. These

thirteen functions of the spacial coordinates are
'Y]3C\\)T) h(‘.}) Qi

The stress “C() is a symmetric tensor and represents

only six unkncwns.
As pointed out by Lees, 3 Grad's method gives qualitatively good re-
sults for relatively sir.ple problems such as the low speed Couette
flow, butl introduces undesirable couplings between stresses and heat
fluxes for more difficult problems. The chief criticism, however, is
that in using polynomials in the particle velocity the distribution func-
tion is continuous in velocity space and thus cannot exhibit the dis-
continuity in velocity which is essential in the FMF limit for flows

with solid boundari-s
(2) Mott-Smith Bimodel Method7

Mott-Smith employed a bimodel distribution function

to study the structure of a strong normal shock wave.

13



He assumed that the distribution function was given by the

sum of two full range Maxwellian type distributions

= g 5

where g;‘(“) represents the supersonic upstream particles
and Sém represents the subsonic downstream particles.

The Maxwellian distribution for S{:) was assumed to be

SM\ - '“g(*) o X’ “% \L‘(X)_S (2 12)
(TR TR

and for »% is replaced by g. In general each of the

(W)
()
distribution functions contains five parametric functions
(‘Y\M'TA) -\74\) which must be determined from the
moment equations. If this model is applied to problems
with solid boundaries the bimodel distribution would be

incorrect in the FMF limit.

(3) Lees Two Stream Maxwellian3

Lees generalized Mott-Smith's formulation so that
the following requirements were satisfied by the distri-
bution function. First, the distribution function must
have a discontinuity ih the velocity space which is essen-
tial in the FMF limit, second, the distribution function
must be capable of providing a smooth transition from
the FMF limit to the continuum regime, and; Ll‘_u‘_r_d,
that it lead to the simplest set of differential equations and
boundary conditions consistent with the first two require-

ments.

The first condition of discontinuity in velocity or two-sidedness

of the distribution function is fulfilled if one could generalize the FMF

14



solution. The time independent Boltzmann equation with no external

forces in cartesian coordinates for the FMF limit is given by

&Y % Y S &.=0 (2.13)

The characteristics of Equation (2. 13) are given by

I = A = My = AN = M8 = SN (2.14)
Y 2 2 ey o) o)

which shows that the distribution function is constant along the particle

trajectories

where b= constant

These characteristics are straight lines in the physical space

( %,%2,%a ) moving with unchanged velocity ( %,=%,,%:= %2, Sy )
in both directions from solid surfaces. As stated by L(—:es3 the distri-
bution function at a given point in physical space is governed by the
"line of sight" principle of geometrical optics. Lees separates the

space into the two regions shown in Figure 1.

According to the "'line of sight' principle the effect of the body
at a point E(X\,YQ,XQ (Figure 1) is confined to the conical surface
generated by tangent lines from  P(x,%,%) to the surface. For
the simple boundary conditions of diffuse reemission (see Section
III. B) at the solid surfaces the distribution function for all the par-
ticles with velocity vectors in the cone, region (1), directed away

from the surface is the Maxwellian characterized by the velocity and

15



temperature of the solid surface. The remaining velocity vectors,

region (2), are characterized by the free stream Maxwellian.

Based on these observations Lees generalized the FMF solu-

tion by the following representation:

For —{ lying in region (1) the distribution function is given by

§= g.(m(§>i)= &) exp i \5- “&3_\ % (2.15)

(TRT, )% BEGRGE

and a similar expression for region (2)

The quantities, W (X) , WX, Wi X) 5 t=u2 , represent
ten parametric functions of X which can be determined from
ten partial differential equations resulting from taking ten moment
equations. Since the distribution function is completely determined
once the parametric functions are found all microscopic quantities

such as velocity, density, and pressure can be computed.

The particular choice of the ten moment equations is not
unique. But in all problems the goal is to satisfy the conservation
equations and at least one moment resulting in a nonvanishing col-

lision integral.

Although the method proposed by Lees has obvious shortcom-
ings, it has been sucessfully applied to problems concerned with a

fluid of finite extent and/or nonlinear problems with plane boundaries.
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I.D Free Molecule Flow Solution

Any method which proposecs to be true in the FMF limit, such
as Lees' Method, must begin with the correct FMF distribution function.
The correct FMF distribution function results from solving the
Boltzmann equation in the limit Ky—> o , where the collision in-
tegral vanishes. The time independent Boltzmann equation with no ex-

ternal forces is given for spherical coordinates (Appendix (A))
o% 2
f5 o BR LD F v e si-nw) &

— (Tferhp e 2 | =0

(2. 16)
where symmetry with respect to the angle & has been assumed.
The characteristics of Equation (2. 16) are
é%:: A8 = & = i&‘_(‘___ = AT - -aﬁh (2. 17)

c la O (B9 A (ohe % -2w0) FHlotedetyriay)

In cartesian coordinates the characteristics for the homogeneous
Boltzmann equation were found from a simple integration (Section
II.C.3). But in the spherical case the equations given by Equation

(2. 17) are much more difficult to integrate.

The following exposition illustrates this difficulty. Lees3
assumed that the distribution function could be generalized from a

cartesian type Maxwellian (Equation 2, 15)

U@y M exp —X?—ﬁ’;&ﬂz\s (2. 15)
@vRTE))¥2 2RTL )
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where

Y- (Y‘,G,¢)
Ui (Ure Uogy Uey)

When Equation (2. 15) is substituted into Equation (2. 16) the solution
requires that

FUF
[U\"L("ﬁﬂ = KL(”CDS e
FM
(uez(r,e\] F = KL(Z) SING '
FNF @) (2.18)
[ ‘Y\L(ﬂe‘)—] =K%

(TL (\'@] PME Ké#)

where

)
-K'x = constant

Uy = O

from symmetry
The uniform flow conditions in the free stream (\~= ©)

requires
that the following boundary conditions be satisfied for all values of the
MFP

‘S:"'S:z

Ue(08) = —q 080

uel(w’e) = - %n SWOe (2. 19)
'v‘z (")Q) = “co
To@e)= T

These conditions are consistent with the requirements of Equation
(2. 18)

The boundary conditions for diffuse reemission at the surface

of a stationary sphere (T: (o) requires (see Section (III. B)) that for
all values of the MFP
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‘S"S’\

Uy, (fo,0) =0

Ue, ((,8)=0

-rl (To,93= T\a

(2. 20)

In order to satisfy the condition of zero mass flux at the surface in the
FMF limit the number density of the reflected particles is given in

Appendix E to be

WL et @]y o

Since the reflected particles are identified as group (1), Vi at the
surface is identified with ), and must be a function of the angle ©
to insure the condition of zero mass transfer at the surface. - There-
fore, only three of the four conditions given by Equation (2. 18) are

satisfied at the sphere surface.

Equation (2, 21) shows that a generalization of the cartesian
type Maxwellian distribution function cannot satisfy the boundary con-
ditions on a body with finite curvatures and the Boltzmann equation in
the FMF limit. If the homogeneous Bolizmann equation is not satisfied

the resulting moment equations cannot be correct in the FMF limit.
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CHAPTER 1II - PRESENT FORMULATION

III.,A Definition of the Distribution Function

It was shown in the preceding section that the solution for the
FMF distribution function in spherical coordinates requires a solution
of five complicated first order differential equations., Even if a solu-
tion could be found it would most likely be too complicated to general-
ize for use in the moment method. An approximate method to satisfy
the homogeneous Enltzmann equation is to modify Lees' formulation

by defining the following distribution function (Figure 1)

M)
§= 6= @D+ GED  mregionwy  ©D
and
(M)

-¥= gl—“— > (7'?,_{) & G‘(,i‘)":?) in region (2) (3.2)
(M . . : .
where g;_ (;\‘)?) is the generulized cartesian Maxwellian given by
Lees.
The function G(?;?) is determined from the following con-
ditions
(1)  The boundary conditions are satisfied.
(2) The moment equations are satisfied in the FMF limit.
(3) G(?E) takes the simplest form consistent with (1)
and (2).

The average value of any function of particle velocity becomes

7 = | (37 = (Ve k (e (G2 o0
Yeq\on() Yeq1on(2) Yegen yawd (2)

The advantage of defining -(;.\ and -S:,_ so that they both contain the

same function G(’i‘,?) is indicated in the last term where the
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integration extends over the complete velocity space. This will lead

to a great simplification in computing the moments.

The explicit form of the function G‘G\.ﬁ“ ) is determined by

the following considerations,

The cartesian type Maxwellian -Sé“) satisfies the Boltzmann
equation in the FMF limit but not the boundary conditions on the curved
surface. If G)G‘ﬁ“) is taken to be zero except at a finite number of
points in the velocity space,g\ and SZ. would satisfy the Boltzmann
equation except at these fiunite points in velocity space. Since the mo-
ments of the distribution function are integrals defined in velocity
space, ﬁ&‘)?) must be integrable over that space. A quantity having
these two properties is the Dirac delta function. The function G (X,¥)
will be assumed to take the following general form in terms of the

delta function and its derivatives

3 \))
G&H= 2 2 3(86?3 &) 0GW) " “Y_S € 3. 4)

o
W=o =y &?
8

where the cyclic order of permutation of the indices ( L) must

be followed and

s@y= 4 186]
a5

This choice of representation for C—_‘G:,'s?) is certainly arbitrary,
just as the functional form of the distribution function S} . However,
the consideration of the unique representation of -S- has never been a
major issue in any integral method. The simplification of integrating

the function (—;(’;?)?) over the complete velocity space is apparent
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since the integral of the delta function over a finite interval depends
on whether the argument of the delta function lies within the interval.

A physical interpretation of G(X:?) is given in Appendix M,
From the definition of G&A4) the contribution of & to the

average vaiue of ® is found to be

|aeme @47 = 6.9
region (1) and (2)

©

SSK GRREEMT = 2, %—-S‘ 3‘2“@[ ‘9%%?21

In arriving at Equation (3. 5) the following integral property of the delta

function has been used

JM "0, =\ A &i}_:.é‘_l
\pr(;q ZG“[S(H ] & =0 ) ox,

To conserve the total number uf particles the requirement that

o]
W a5 =0
-
is imposed. This condition is satisfied if
© ., .
A F=0 =1,2,3 3.7)

It is found that the simplest form for G‘(}(",?) for the flow
over a sphere is an expansion in terms of derivatives with respect to

the radial particle velocity, %‘\, . The particle velocity vector is

—?.-': (?m ?65 ?QS
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and the spatial coordinates are
= () &,8)
Therefore, for spherical symmetry

Gl(?ﬁ) = C‘q(\’,é’,_s‘:)

and the integral is found to be

Sﬁ(ne;?@ G S 4T = zél\mg“(\;e)i A_“%%%q . 8)

?FO

The function G‘((‘,g-)??) is determined in terms of the param-
ctric functions appearing in ‘g’t(m(‘)e's—%) and thus introduces no
additional variables into the distribution function. For example, in
the problem of the flow over a sphere with spherical symmetry the
number of parametric functions becomes eight:

'Y\L((‘ve\)

Tt (ve)

We = (Ut (5ey, Uec (ve), O)
Ug =0 from symmetry

.L=\)2.

These eight functions are determined by satisfying eight ...o0-
ment equations. Once these functions are determined, all mean quan-

tities such as velocity, density, and pressure can be computed.

In spherical coordinates Maxwell's equation of transfer is

given by (see Appendix A).
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L %rzg?@g,ﬁ? +

P 1

< SLSlneS\‘e@ %ﬁ%

‘rsmev
—LAs{ e W) 2 vl t3 %‘a;]

~[ctennrat] £ 38 = AT
(3.9)

The eight moment equations necessary to determine the eight
parametric functions will be chosen to correspond to the equations of
continuity (3, =, A% =0) , radial momentum (§.,_ ws,, AP, = )
tangential momentum (&= w%e, AB270) , energy (D= 3wz,
A%4=0), shear stress (Dg= Mo 8. =(E) feo ) ,
radial stress ( =M%, DB= (X%) Tee ) , tangential
stress ( &= Moy OBn= (§)§w> , and the radial heat
flux ($g="Y IR A= @Ta) Y:%Tiv * Qe A TLQE’Q )

The eight moment equations are given in Appendix B.

As stated by Lees3 no integral method can be expected to pre-
dict phenomena such as flow separation or the details of wake forma-
tion behind bluff bodies in the continuum limit. In addition, the inves-
tigation of flow over a sphere will be restricted to the two limiting
cases, M<«\ (low speed) and ™M >>\ (hypersonic). In the
low speed case the solution can be investigated from the FMF limit to
the Stokes flow regime which spans a large range of Knudsen numbers.
For the continuum hypersonic limit the flow in front of the body is
relatively unaffected by ihie wake on the rear portion of the body and
again a wide range of Knudsen numbers may be investigated. These two

limiting cases are discussed in Chapter IV and Chapter V.,
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III.B Boundary Conditions

The determination of the boundary conditions at a solid surface
is in itself one of the most fundamental and difficult problems in rare-
fied gas dynamics. For simplicity, diffuse reemission from solid
boundaries will be assumed. Referring to Figure 1, the incident par-
ticles at a convex solid surface belong to group (2) and the reemitted
particles belong to group (1). From the definition of the two stream
distribution function all particles with velocity vectors directed away
from the surface belong to group (1) and all others to group (2). For
diffuse reemission the emitted particles have a Maxwellian velocity
distribution corresponding to the wall temperature and the local sur-
face velocity.

Therefore, at the body surface

_a_q

X=Ky, ¢

WEY= Ty
TED= W

The condition of zero mass transfer at the wall is satisfied by

() g DN =0« TN,

NORMAL NORMAL

The free stream is assumed to be in equilibriuin and the djs-

tribution function is given by the local Maxwellian 8-_-, g () with

1
_{TL(_‘”B = ?iao
—E(‘D) = Too
N2 (o) = Noo
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Also since

§=§—;M + C‘-l(‘()es?) in region (2)

6@%?) must vanish as > .

For the flow over a sphere with symmetry with respect to "' &' the

boundary conditions at Y=eoO becomes

(O Ur(ooe) = —qpw oS0
(W) Ug(m 0y = q,SWme
(& Roe) = Two
) Yo(@e)= Vo

(3.10.a)

..a
If the sphere is stationary, WUy =0 , the boundary conditions at the
surface ¥=Yo becomes
(v) u\'\ (fo,9)=0
Gi) Ue (r)e)=0
ity T oy = To
(T, is constant if the sphere is

assumed to have infinite
conductivity)

i) () epo= ©
To satisfy boundary condition (viii), the radial velocity is com-

puted from Equation (3. 3) by taking = $e

(3.10.Db)

ﬁr?‘ g :mir g gzm\?rcl? Al gﬁ 3cd¥ (3.11)

() @ (Hand (@)

The last term is found from Equation (3. 8) to be

laemndd = -~ 9 0o .12
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It will be found later that %m(r,e) has the following form

) e
TN
This satisfies the condition that G(Ge;§) vanishat Y=o
Furthermore, this behavior of %m is analogous to the effect of a

doublet (or dipole) at the center of the sphere.

For invicid, irrotational, and incompressible flow over a

sphere, the velocity potential is given by

A
P (8) = Y¥ws® + Y Cos ©

ALY
PAES
The first term is the effect of the free stream and the second term
represents a doublet at the center of the sphere. The doublet guaran-

tees the vanishing of the normal velocity at the surface of the sphere

A
(%A o ﬁ) = O
=Co PAg ) 'Y
Analogous to the situation in potential flow theory, the appear-
ance of C&,m effectively reduces the velocity of the imupinging free
stream particles by placing a particle source at the center of the
sphere in such a way that the boundary condition of zero mass trans-

fer at the body is satisfied.
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III.C Grad's Asymptotic Solution

H. Grad8 presented a survey of the flow regimes for the prob-
lem of flow over an object. In discussing some of the more interesting
limiting cases he observed that even for large MFP the elementary
FMF theory is not uniformly valid at large distances from the body.
The FMF theory is valid for a distance Y from the body which is
small in comparison to the MFP, )\ . At a distance ¥ comparable to

)\ the incident and reflected streams interact and both will be
altered. In the limit as ¥ becomes very large the Knudsen number
based on ¥r ; Ky\‘: 2\‘:' , becomes zero for any finite value of the
MFP and an equilibrium situation or continuum flow conditions exist
far from the body. This nonuniformity in the.flow field is not con-
fined to the case of very large MFP but exists for all values of X
and depends only on the length scale of interest. For example, if the
MFP is small the region of FMF cond:tions lies in a very thin layer
of order )\ from the body. Thus in every case FMF conditions exist
near the body, continuum flow conditions far from the body, and a

complex transition zone in between.

Grad's interest was with the correct limiting solution of the
Krook equation far from a small object. In cartesian coordinates for

steady flow and no external forces the Krook equation becomes

¢ a—§m =v({®-§) (3. 13)

Far from the small body located at the origin the disturbance produced
by the body appears as a point singularity. This observation led Grad
to modify the Krook equation by the addition of a point source at the

origin.

2 V(9 A T@S 69

31



The source V{§) is a function of the particle velocity and
2(X) is the delta function.

Sirovich9 showed that the source term is given by

TEY= - SA‘@\ EHTdR +o (L—.‘_}s (3. 15)

-h A -N .
where (X)T,‘) is the perturbation distribution function when-g is

linearized about the free stream Maxwellian and

A
L

surface of the body
characteristic body length

The integral (3. 15) represents the perturbation mass flux from
the body and T'(?g‘) may be interpreted as a particle source which
adsorbs and emits particles such that the total number of particles is
conserved. To order (—-\‘;'_‘? the source is completely determined by

the boundary conditions on the surface and the body geometry.

M. H. Rose10 applied Grad's formulation to the computation of
the drag on a sphere for the near FMF limit in the high speed limit.
She found that as the Knudsen number becomes infinite the source,
V‘(?), becomes the net mass flow from the source of the FMF pertur-
bation solution. This solution represents the difference at any point
in space between the stream of particles reflected by the body and

those unable to reach the point due to the presence of the body.

The source term introduced into the Krook equation can be
compared to the assumed form of the distribution function in the pres-

ent study

So= $0 oD+ Geyd)
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The function G‘(v,e{«;;") was introduced to satisfy the boundary con-
ditions at the surface of the body and the FMF limit. This is analo-

gous to the function of Grad's source term, T&).

A further comparison can be made after taking moments of the
Ay . : . — X
modified Krook equation corresponding to ) E_ﬁ = ‘W\)'YY\?C ) 'TY_'!S?: 3

which results in the five scaler conservation equations
Continuity (& =")

%ic(mt\: ™ 3 &) ST a3 (3.16.4a)
Momentum (§ :m;;a

e == 2+ 2 - 56O \ v

3% X2

+ &) | Ty o

(3.16.b)
Energy ((®= mg%/2)
™Y, %ﬁ(\w ) = (a)%a R)
8% (W % )S TR + —g'(?)—‘:)gq—iz&? (3. 16. c)

Recall that these equations are asymptotic forms far from the body and
the terms involving T('f) represent the disturbance due to the body
at the origin. This disturbance can manifest itself in many ways but

it must behave as a momentum sink if there is to be drag and an energy
sink if transfer of energy between the free stream and the body occurs.

From Equation (3. 16.a) conservation of mass requires that
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%V'('i')Ai’:O (3. 17)

which guarantees that the total number of particles is conserved. If
there is no exchange of energy between body and stream Equation

(3.16.c) requires that

gv(f')gzazgzo (3. 18)

These restrictions on the integrals involving the source V"(c;\')
will be shown to be analogous to the integral properties associated

with the function C*_\(\’,e')?) in the present formulation.

Although the similarities between Grad's formulation and the
present one are numerous, Grad considers the asymptotic solution for
the Krook equation far from the body whereas in the present study no
approximation is made for the collision integral and the entire flow

field is considered for all values of the MFP,
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CHAPTER IV - LOW SPEED FLOW
IV.A Introduction

The drag and heat transfer for a sphere at low mean speeds
will be investigated within the framework of the general formulation.
Near the continuum regime for small MFP Basset11 made a slip flow
correction to the Stokes' drag formula. Goldberg12 presented results
according to Grad's thirteen moment equations for small Knudsen
numbers. For large MFP the technique of Knudsen iteration has been
employed by Liu, Pang, and Jew13 for the Boltzmann equation and by
Willis14 using the Krook equation. Recently Lees and Brinker (pri-
vate communication) have obtained numerical solutions for the drag
based on the moment method, but the assumed form of the distribution
function and the number of moments are all quite different from the
present investigation. In their studies detailed analysis of the singu-
larity in the governing equations is made and an elaborate numerical

scheme is devised for the integration.
In the present study the distribution function was defined to be
.9: g\ =1, (‘-’gﬁ) - Cq (r,e;s;) in region (1)
and (4. 1)
() =
§= Sr?_ = g,_ (\;eﬁ) =+ E\ (\',93‘{) in region (2)
M
where &E) is the generalized cartesian Maxwellian distribution func-

tion given in spherical coordinates with angular symmetry with respect

to 4) (Figure 2)

(M)
&“ ey = -2
o) explo | (Ui +Te Vo) F+ 58
(ZTR-TC (v,6))¥2 Pg[ L 2 RTe(n9) Tg
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where

ue (ve) = W (58)

Ne(ne) = Uell(ge)

To compute the moments it is convenient to trransform the rectangular

velocity space (1‘,)?9 ’5‘& into spherical coordinates Q‘)co’)h,) .
From Figures 3 and 4

{= {TPi+sd

S= =\ v
= k {3795+ ?&)

= -\ if
V= TN K%)

(4.3)

The angle @ is the conical angle which separates the velocity space

into two zones

‘&::S—\ for O<US<-%"°( (4. 4)

—§—=$z_ for 1{-&(@( w

where -\ (Yo
4= s (¥)

The integration limits for ‘1* and ) are

0 £ 3>
0 LMW

The differential volume in spherical velocity space is

I = fZswes dgdos Ay
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and the average value of _é (9;) becomes

§§\M 2 s dgdw dey

§ -g;u\ ‘il SN & &? dw_ dos

(4. 5)
L o
2 A"$ (5,09
N 2 T \inVv
v 2:““ 3" (%) "n LY

All mean quantities can be evaluated in terms of the eight parametric
functions but the integrals are complicated by the form of g,f“) .
However, a great simplification is achieved at this stage by introducing

L)
the low speed approximation into -gf ). Making the approximation of

low mean speed; i. e.,

U (68, vire) « (Ko

the squares of the mean velocities can be neglected and %;_ becomes

,(“3 o __ ¥ UL Cosed + TV SINd Qos
: (n RT0)*2 ST K
[
o W K_ W Feos @Y Jsme cos{\exg

(4. 6)

Thke moments that appear in the eight moment equations are given in
Appendix B. They are computed from Equations (4. 5) and (4. 6) and
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are listed in Appendix C. The functicn G\(ﬂ%?) contributes to
only three of the moments; ﬁ’r ) E\' , and  Byyr ,» which

M @ @)

contain; C} . % , and , respectively.

The function C}m(r,e\ is determined by satisfying the bound-
ary condition of vanishing radial velocity at the sphere surface, Cf"(\',e)
is found by requiring that the normal pressure be correct in the FMF
limit, and (”(r,e) insures the correct heat flux in the FMF limit.
All three functions must satisfy the moment equations in the FMF
limit. In short, the functional forms of C}(:') in the FMF

limit can be determined uniquely. Details of the determination of the
(i) ) S

p)

are presented in the next section.
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IV.B Determination of G(v,04%)

The function %(‘) appears in only the moment corresponding

to the radial velocity. From Appendix C

——

‘.

‘Y\,,o

() ('\ﬂ‘ WV} - \\\u\+%uz (4.7)
2T M

- ¢ (RG-T&) — 3 e /wg.,

At the surface of the sphere, Y=¢o (X= o) . the condition of

NS

Wy =

A

N

zero mass flux requires that

(Ve e AR, +(Yhﬁ1\ - Peg=0 «8
WM P ‘\’6’%0

The boundary condition \J,(q®)=0 has been used in obtaining
Equation (4. 8)

The soluticn of the Boltzmann equation in tne FMF limit in
Section II. D required that the following conditions be satisfied for the

g ‘_.(\0 .

generalized cartesian Maxwellian distribution function,
T =)
—‘-WP \

O = = Cos®

=

&&LH‘F: K?: constant
Yo

(4. 9)
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Therefore, Equation (4. 8) in the FMF limit becomes

«@
ROVR-1 - wse - 11" =0 (4. 10)
T M [ “w%eo

Although the angle dependence must be incorporated in ‘}m , Equa-
tion (4. 10) contains two unknowns Kfﬂ and %(\X . In order to
determine each uniquely, a second condition must be imposed. One

can, without loss of generality, specify that °}m vanishes at the stag-

nation point (6: o) , i.e.,

C}m (0,0) =0 (4.11)

1,3
Therefore K\) is found to be

NP
o2 (W) = {2 (14 [Ew) .12

The value of “7\?“: given ¢ Equation (4. 12) corresponds to the value
of the body number density, Wy , in the FMF solution Appendix

E e;ve.luated at the stagnation point. The function (%x‘\(())eﬂmF is
found from Equation (4, 10)

ﬂ\
E%m(o)eﬂ T2 Tods (\-cse) (4. 13)
2

Following the procedure of Lees! moment formulation, the result

from Equation (4. 12) can be generalized for finite MFP to give
(ﬁ&_%)ﬁtot (.Y\\"LF%)R_: ‘IE%. M'V\'L(o)o\ GZ.(.O)Q ‘\"F(B;)} (4. 14)

where F (@R\) is an arbitrary function of © and )\ which must vanish
in the FMF limit, i.e., F(o;0) =0
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The boundary condition given by Equation (4. 8) becomes

209 = L[ Feohen- el oy |+ By @19
e Yo M G0
It is shown in Appendix D that in order to satisfy the continuity equa-
tion in the FMF limit the x-dependence of | q" (x)ef_\““: is

PMF A
)} =
[3} o) | ~ (W)= v
Prescribing the same dependence on A for all values of the MFP

completes the determination of sz()()e)

%(“(X)é) = (_\"%_7——) ['\’KL (.OI ®) GL(O)e\ - 61(0,0\]

—— e

Mo o
+ () oM (4. 16)
. Mee
The determination of cf“(;g,g) and C)B) &) is

accomplished in similar fashion. Since cz(l) appears only in the
radial stress, EY‘ , it is determined uniquely by requiring that
.—_grr be equal to the normal pressure in the FMF limit. As given
in Appendix E.

E :
= ! 2% ( N
6? = \-\—Tﬁ-_‘ A T W cos® \\ v > (4. 17)
Again generalizing the FMF result for finite MFP one finds that at

X=0

tr68) = -2 M| Fba ;00 - Tl Teo ] e
Ve Yo

In order to satisfy the radial momentum equation in the FMF limit

@
)

is found in Appendix D t. be proportional to —%12 (\—X’-} so that

the final form becomes
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) .
2 K)o FEMTRERGO0-ROATE0 ],
Yo 1o |

3
The third function C}“(v,e) which appears only in the triple
moment, ?‘;rr » is determined in a completely analogous way as

%@) xe)

ing the radial momentum equation, the radial heat flux in the FMF
Finally

Instead of matching the normal pressure and satisfy-

limit is matched and the energy equation is satisfied.

2 ©) (%8) _ (I T, (0,8) 3of08) ~ T(00) X, (e,
%\3&‘{)@ - (H)(})&“ 6 o 3ed (4. 20)
N M1, 08) (Viep+uE e V]

The determination of the C‘}LQ)S result in the modified boundary con-

ditions -
X=\ (=o): O WLLH= -—cose

Gy L(,8)= swo
@ RGe) = \

() W2 (&) = | (4.21)
=c(ew): @) &Cexo
oGy V (q%):@
(4. 22)

o T eA =T
(uie) (W\"‘F“ﬁ—ﬂdf)xfo -If%: M, ©0,0) Kolod)
+ Hey)) (4. 23)

where F(e«)‘b\) =0
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IV.C Linearized Moment Equations

The eight moment equations corresponding to continuity, radial
momentum, tangential momentum, energy, shear stress, radial
stress, tangential stress, and radial heat flux are generated from the
Maxwell Equation of Transfer Appendix B. These moment equations

are given in terms of the parametric functions in Appendix C. Intro-

ducing the following linearization

M= % Ne
Te= v %
and the following dependent variables
R VESYY
™= Lr i,
W= Xl
VO = 927,

one obtains the following set of governing equations accurate to O(\.\z)

Continuity

(\‘X‘)z (NH.\,_LJCE-\) + 9 M %.(\“)@) a%k;')
— XD %%‘:’ £ (csho Ve 4 AUy (4.23.2)
1 (2230 (U s e VoL VO Y
Radial Momer;tum
25 S (N Ay 2E 2 (NOWe)
M D AO | () (4o wte YO
- (4. 23.b)
e,\ 13 =©
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Tagential Momentum

-\2". Qa‘e (N4 )+ (x’k_:;:x) % (NELAS)

+\I_'ZEWM(HZ\1[_ (L:\é_:) %}'Xﬁ- N 5%: =0 (4.23.¢)

Energy (with conintuity)

%x( NO-Z49) =0

(4. 23.d)
Shear Stress
— 2 )
() S (NO+2A2) + v M i(%? Ba_\;‘
£ P 6-T) 2L 122 (s50) (VO - AL
LA v —— M (o VO
+=%e 325 \rz— X 25

Radial Stress

AD (@) D (NEL> 2 YU
(H)}E\ x4) _a_x(N 1349 + im\MSL &ﬁ)}g}%
TG ® o LY &
— 2% (1) WO+ Uy LGV gy
)
205 22 (WO e VO 4 L 200N T

— =\ X & = o) N2 Z )
= ?V\Y\E (N3 \+@—%W(\@x>u

4 W ke) (4.23.1)
2y Wz R\ T
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Tangential Stress (with continuity, Energy, and Radial
Stress Equations)

(oo~ 3P (3o ve = o

(4. 23.g)

Radial Heat Flux (with Radial Momentum)
L3 (ye T = () T-L 2 AW, 1w )
¥ (M) ch 2 (NE440) hll (\:;&c) ‘3& (NP9 - 5%(]

= A5 (L (204 (0]

S A

(4. 23.h)

The boundary conditions in the linearized case become

=l (=) : N
) kL= — ke
@ V.(,8= sme
(@ 1, L& =0 (4. 24. a)

@) N, (,8) =0

¥=0 (V=%e):
('\)\ (1'\ (O,e\:o
(D) 7 (ve)=0
(wy te&) =&
L =une
To»

iy NTea+L 6 (4. 24.b)

= - T ME oor FON

where FQQ') oo\ =0
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pAGE BLANK NOT PLMER.
IV.D Cf’m%e%ax‘a fon of Variables

If the flow is symmetric with respect to the %, axis (@=0);
see Figure 5, then the radial velocity is an even functionof © ;
w(v,e)= W(€-8) , and the tangential velocity is an odd function of
© , N(60)=~V(r-6). The assumption of symmetry with respect
to Q= i8true in the FMF limit and in the continuum limit if

flow separation does not occur.

The scala. <o~z iy and temperature are also even functions of

© . The free sir-a ~ bcundary conditions naturally reflect the same

dependence on ¢
&‘l (,”)9) = — CS®
Va(o,0)= 3Swe

Wz (0,01 = |

%7_ (‘”)95 =

Using the well known result from Fourier analysis that an even

function of © in the interval (—'I\',T) can be represented by a co-
sine series and an odd function in the same interval can be expressed

in a sine series, the following separation of variables is assumed
4
un U (xe) = 2 A (x) Cos (ve)

Ve = g BS:)(X) sSw (ve)

A 143
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N@)(X)GB'—“ % Cm&)b() cos(né)
< o

@) SR
7 (e)= 2DV cos (ne)
=06 - (4. 25)
Substituting into the eight moment equations in Section IV.C
yields the ordinary differential equations given in Appendix F. If the

series defined by (4. 25) are trunca*2d after ’V\:N terms; e. g.,
B ,Q
3 1)
Wexe =.“2 Ay, ‘&) Cos (me)
=06

the number of equations becomes ('7?\)—\’53 in the (GN+8) dependent
1€ G4l () = .
variables; ( %,\) AS\\) %\.B) %\ﬁ) C.y.%) C-\P, D«n( ) D ) )Y\-— O,\,~N

Equating the number of equations to the number of unknowns yields
N=3 . In other words, truncation of the series by setting N=3
provides the closure to the problem. This corresponds to a system of
26 equations in 26 dependent variables. Although the set of 26 ordi-
nary differential equations can be solved numerically, an alternate

procedure is persued which eventually leads to analytic solutions.
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IV.E Six Moment Formulation

The problem of interest is the computation of the drag and
heat transfer for all values of the MFP when the mean speed of the
free stream is low. Before one solves the complete problem, sepa-
rate studies on two simple cases are illustrative. First, consider the
heat conduction problem with no convection where all the "dynamic"
variables (U\\,Uz,\/\,\lz) may be assumed constant. Second, investi-
gate the drag problem with no heat transfer where the '"thermody -
namic" variables (W, W, T\, o) may be taken as constants. From the
results of the two separate problems the coupled heat transfer and

drag computation can be formulated in terms of six moment equations.

IV.E.1 Conductive Heat Transfer (Four Momen. Solution)

The pure conductive heat transfer from a sphere was investi-
gated by Lees.15 He used the four moment equations corresponding to
continuity, radial momentum, energy, and radial heat flux to deter-
mine the four ''thermodynamic" variables; N\:;%, 72 . The remain-
ing four "dynamic" variables; t,U;,V\,V, were assumed constant,
but in the absence of an external stream the boundary conditions re-

quire that

u\ =U~7_= V\:V?,: &)
The four linearized equations from Section IV.C become,

Continuity
2 (NU ) =0 (4. 26.2)

Radial Momentum

9 (N1 —x3 9 (NEH4A8) =0
2 (N94®) x_a;(( +49)

(4. 26.b)
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Energy (and continuity)
§ (N9- Ty =0 4.26.0)
Radial Heat Flux
X (R P‘S 2 (NU49) - %? ]
- (% H{ne -3
= AR (NO-140)
s A

Boundary Conditions:

(4. 26.4d)

x=\ (et @iy PO-490)=0
) N® ()~ NO)=0

o (=0): Gy PO+O6 =26

W) NO@+L 0 = o

Since the equations are independent of © the Equations (4.26.a)
through (4. 26.d) are ordinary differential equations. The solution of

this set of equations is obtained readily

Be= B, (14 % 1)

1P = g
NQ;()Q - _@o (‘LL-‘- -\S‘i ! \’Xl> (4. 27)
Nk—3 W= ’%65
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&
=

where -
= A

The radial heat flux at the sphere surface is given by

Appendix C

Qe =", y‘l:%ﬁ (WO

_ Z Y & (4. 28)
S (\QTA%E_A.____
\S A

The average heat transfer becomes Appendix H.

- 3
Te= I e o 2

\SX
Normalizing the heat transfer by the FMF limit gives the result ob-

tained by Lees15

Qe = \ (4. 30)
(Ge) =

I+ s

IV.E. 2 Drag (Four Moment Solution)

The drag problem for the low speed flow without heat transfer
can be formulated in terms of four moments. A four morient solution

for the low speed flow over a cylinder was presented by Liu and



Passamaneck. 16 In the four moment formulation the "thermodynamic"
variables are assumed constant and the ""dynamic'" variables are

governed by the four moment equations; continuity, radial momentum,
tangential momentum, and shear stress.
The ""thermodynamic" variables are determined by the bound-

ary conditions to be

N = "e-z— \ig M u&)(o,O)
ﬂzzo
’{:" =c (4.31)
.=o0
The four equations from Section IV.C become:
Continuity
(1) QU (1) U9y L®,y ey 4 1 Y®
X 3R 2. X + A VE 30
+0820] U9y Cate o WO | =
—TZ-[ L %le ] ©
(4.32.a)
Radial Momentum
(4.32.b)

(LX) Jue 3 3] O
=X _&+U + Cﬂ_z%\l —\-_\i%\ie =0
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Taggential Momentum

(i'__\@__)%lp’_ LARES M =0
X X X

(4.32.¢c)
Shear Stress

(e Wy (b0 (-3 R +2(s-28) (v A

]
(309 = — (% vo
2.\ (4.32.4d)
Introduction of the following separation of variables
Y
ey = B cose
V® (xe)= VH &) s\me (4.33)

(U®and T® replace A® and p®

respectively
in the general separation of variables) leads to the following set of
differential equations:

Continuity
) UM (0 1O 4 T
(0) LI 2e(td ™ 4 U

(4. 34. a)
+ (Xz";x) (UH* Vo) =o

Radial Momentum

(WD LS, BOWE =0
sr)d@%* VT

(4. 34.b)
Tangential Momentum

(b YO (o) =0 (4.34.¢)
)N T
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Shear Stress

(00 A 4 22 (0) e + 8 (530 (Byvo)

~L (U we) = - (Y’ VO
2 A (4. 34. d)

The associated boundary conditions are

=1 (E=d: ) UWP0O- U9y = -2
) VOO~ vOu =2

Fo(Ew: O U+ IO =o (4.35)
(W) V) + VO = o

The two momentum equations, which involve only we and VO

can be solved to yield

TR = Ao +C4y \\:‘:7_ (4.36.a)
VO = —de + ¢ \E —\LP% (4. 36.b)

Since the boundary condition at K=| requires that '\F‘)(\) be finite,

the constant C,| must be zero. Therefore,

U7R=-VO0 = oo (4.57)
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The remaining equations can now be integrated to give

U(\"’()- Xzs Yz — 24, + dzm (4. 38.a)

‘\)‘(ﬁ()(): ;o_é_%(xz_zj =X2 — % S\\xz .\.2,,{\ (4. 38.b)
where \

Ko =

~\_
| 4 =

A= L (L3R (4.39)
ST
2z

°(7_ - \+ 3’)‘\
The drag coefficient CP is computed in Appendix G

G=3[Z () 4 =2 2z (@ 3N (4.40)
M M A
It is found that if the shear stress equation is replaced by
either the tangential stress or radial stress equations the constant;
-Jg , appearing in o, is increased slightly to % . This can

be interpreted as an indication of convergence for the moment method.
IV.E.3 Coupled Heat Transfer and Drag (Six Moment Solution)

The simplest formulation which accounts for both heat transfer
and drag can be obtained by recognizing that for the two separate prob-
lems, a total of six different moment equations was used; continuity
(both), radial momentum (both), tangential momentum (drag), energy
(heat transfer), shear stress (drag), and radial heat flux (heat trans-

fer). It is obvious that the two separate solutions do not satisfy all of
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the six moment equations and the boundary conditions. Moreover, the
six moment equations contain eight dependent variables; the "thermo-
dynamic" set (W, ) and the "dynamic" set (W\,0,,V,V,) . In
order to complete the formulation two additional moment equations
must be added or iwo of the dependent variables must be discarded,
The former choice, as was seen in Section IV.D, leads to 26 ordinary
differential equations which can only be solved numerically. The lat-

ter choice leads to a set of equations which can be integrated directly.

Let us assume that the separation of variables for the dynamic

variables is the same as for the four moment equations
US (ke = TN ©so
\® (x)e) = '\Iﬁ) x) swe

(4. 41)
Following the results for the drag problem, we shall require at the
onset that
= & -
™ (x):f\f“(;q = oo = constant (4. 42)

Thus, the remaining six dependent variables are:

U e) , VO (ke ) N(+)(x)e) , NOGe), Wke 19 ®®)

The separation of variables for the "thermodynamic' quantities is

taken to be the first two terms of the general separation of variables

from Appendix F

A
N& (xe) = Do+ W cese

A (4. 43)
Bloa= 080+ dBg ceso
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Substituting the assumed separation of variables into the six

equations gives ten ordinary differential equations for the ten dependent
variables, _tﬁ\) v(h) Cocﬂ) CQL-)) C\(ﬁ) C\t'—)) DOEH) Dba) D \(.B) D '\(_\

Continuitx
%X ( G4 _i Dng =0 (4. 44. a)

2 d (O30 izm i (b0 du™ jpive) =
G;sz)%(\ "\) M{Zx U 73 © (4. 45. a)

Radial Momentum

% (40 - ﬁ%(““’* Ds7) =0 (4. 44.b)

%( (_C\m-¥ D\®) — 7\3%\.( (C\H-\- DY) =0

(4. 45. b)
Tangential Momentum
C®4D® o (15;&&) (GRS (4. 45. ¢)
Energy
L Ry )\ —
%&Q 5o Y=o (4. 44. c)
g‘é (¢®- 20 =0 (4. 45. d)
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Shear Stress
- 012050 A § () )
(eR(Q©1209) + {7 ™ §_ L) Aa\():

- IO YA Ko (1ox?
L T g If{._' M._.x._.__ (x>

(4. 45. ¢)
where Ro = U‘r) )= - a\} ‘:-)(x)

Radial Heat Flux
®(0) § L4 (40 ~AOY - (011 (D)

— 47} < 40 L2109 A MU ]
\5 N

(4. 44.4d)

€00 FE4 (00 -A00% — (6 (A ot
~dpere Al [ 40 -200) ~ B MU 6]
! =

LSBN (4. 45,f)

It is easily seen that within these ten equations only four equa-
tions (4. 44. a, b, ¢, d) contain the four variables (c_bﬁﬂ’ Cog, Déﬁ ,Do('))
and the remaining six equations (4. 45.a,b, c, d, e, f) contain the other
six variables (\i‘\’,\fﬁt A D,("')) D ) . The first set of
variables will be labeled the "thermodynamic'" set and the second sei
the '"dynamic" variables for the six moment solution. The equations
for each set can be solved independently of the other, the only coupling ,

is through the boundary conditions,
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The boundary conditions become
=1 (= o);

O 0= %-2

@ V0= 2%

@ My - DO M=o

DM - DP =0 (4.46.2)
Ey <SP0 - =0
Ay - (P0)=0
*=0 (&Yo)
© U= -4
Wy VHe= &
G0 DPO+PE) = 26 (4. 46.b)

DM@y DOE =0

iy OB+ DO = [T W,
CIE+5 DD = F ()

Fils)=0
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Integration of Equations (4. 44.a) through (4. 44. d) yields

Decy= pelit 2= i |

s A
bg—k]‘)’ e’e
cPoy= TEMT = Po{ L+ T

C& )= XT-S-MB_G - &?g:

where

€

T S
-+ CHY

i

e

This reduces to Lees' heat conduction solution if

(4. 47)

is zero.

The c/ritant 'L, is determined from the solution of the "dynamic"

variak s. The solution for the ""dynamic' variables is found to be

U0 = V9% = &

TP = ~20 + F (v — (2924 x84 LN -
A be {n _Eo_)’_\-\ B\

W= 7w+ &1 E- - e]-Ei

= D= MEE T (20 -1)

\SA

e = = Wwl= \—_s_\%@g &= 21,00
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where

Ao = \

Al
‘e a5

;\.-_- 49*602
A rio N (4. 49)
A= 248
YT @ RNy

It should be noted that in this solution the quantities C‘ﬂ and
D)

associated with N(ﬂ and t(t) are of order ™M , but the
velocity components are of order unity.

Secondly, this solution is
very similar to the four moment solution for the "dynamic" variables.

In the four moment formulaticn the solution was found to be

U = VO = b= T

\+ 2

whereas in the six moment the corresponding constant was found to be

——

which exhibits a difference of _\—\'Z'B in the coefficient of 'X.‘
Similar results can be shown for &, and <

This finding
shows heuristically the possibility of convergence.

However, no sys-
tematical study for proof of convergence in the moment method has
been attempted.

Computation of the Drag

The radial stress and the shear stress at the sphere surface
are given by

il B
i

61




B = =

oy —e—ﬁi—_ Rl @V\a (H%) Cos© (4. 50.a)
4(“ \s?\

and

(P"")m::o -X'zif Md, swe (4.50.b)

From Appendix G the drag coefficient is found to be

G @ @, = IFER D) e

where Jc - \20‘3‘\
4\ 20N

The first term is the contribution of radial stress given by

((o)?“: %gi—x‘ % (H%)

and the second term the contribution due to the shear stress

((x’)?re: 3‘3 %« '%\3

Again it is seen that CD for the six moment solution differs

from that for the four moment by only the difference between dl, and
do

Computation of the Heat Transfer

The radial heat flux at the surface is given by

SXCORS \E%J_E«__ A ;e@se{ € .%ﬁ_\_‘k

M (1 4 Wk \SX
(\+ 575 > (4.52)

+ & Cosze@ M- _\il__g_r\/\ (\+ X ces?e)

e e——
™~

SA
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From Appendix H the average heat transfer is found to be

apg E\E —M r \\_\_ da (\_ \g}\}’l (4. 53)
(A= \'5)\

The adiakatic temperature ratio, € A
that QAVE =O , thus

a- Orole Z0-FHY) e

The average heat transfer in terms of €p is given by

e = W (e
M (- 25)

, is computed by requiring

(4. 55)

The Stanton number normalized by the FMF limit as given in Appendix
G is

2 = 1
St TME ﬁ
(50 I+ o
which is equal to ~( SEA\’E in the pure conduction
(@NE FHE

problem. However, the ratio of the average heat transfer is not equal

to the ratio of the Stanton number since the quantity Qf;—e,,) is not
equal to (e—e.)“'““ .

tiadiei;!

iy

it i

u;h;:ii%
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IV.E.4 Comparison with Experimental Data and Other Theories

Drag

The drag coefficient was found to be

G= 33-(‘% %\D () (4. 56)
S —

\+é.\:' for the 6-moment solution
ON

where

ey =

1 for the 4-moment solution
(4 %

In the FMF limit FME_ and the correct FMF solution is
s \

obtained
T 2 S 2 (2\ 4)
C$ - & . Y (4. 57)

For the continuum limit the drag coefficient becomes
2 24 8) ¥
CD_Q_, 3%(‘\’\4 )\ (4. 58)

This result can be compared to the Stoke's drag formula by recalling
that the viscosity was assumed to be related to the MFP through

which gives

A= ‘%’i = @ @%)Y (4. 59)

where the Reynolds number is defined by

(Qe)to = ’W\'n» qo"d"6
AN

Equation (4. 58) may then be rewritten as
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Crs 22

R, (4.60)

Equation (4. 60) is seen to be qualitatively similar to Stokes solution

given by

G= 22
P (A (4. 61)
[
but differs significiently in the constant. Thus, the present estimation .
of spheredrag incurs a quantitative difference in the Stokes flow re-
gime. This is caused, not by the formulation of the problem, but by the
method of separation of variables. One can readily see the difference

by comparing Squation (4. 41) with the well known Stokes solution.

The present solution when compared with Millikan's oil drop
experiments17 in Figure 6 shows acceptable correlation for the com-~
plete experimental range of MFP (\ < X Qm) . This solution is also
compared with the near FMF solutions by Willis™ ~ and Liu, Pang, and

Jew13 for large values of the MFP.

For small values of the MFP Basset's11 slip flow correction

to Stoke's formula is given by

(4.62)

(R‘ o ( 2 X

Goldberg's12 solution using Grad's Thirteen Moment Method

predicts

Go= 12 [ SE) (pRy + & ]
R (W1ZR) (W2X) + ZFHlaval) 3

(4.63)

65




Both of these solutions are compared with the present theory in Figure
6. It is easily seen that both Basset's and Goldberg's solution are not

correct in the FMF limit.since they predict an infinite drag coefficient
N
as )\—’CO .

Heat Transfer

The average heat transfer was found to be correct in the FMF
limit. Comparison of the Stanton number with the 2xperimental data
18
of Kavanau and Drake is given in Figure 7. The comparison is

again seen to be acceptable.
Flow Field

The only analytic solution available which can be compared
1
with the present solution is Basset's1 slip flow correction to Stoke's
solution. The velocity components for the six moment solution are

found to be Appendix C and Section IV, E. 3)

q qe= Ccnsefl(_‘*@) l; -\f;— SF;&_Z ~2+é>>\
A A

2 - z~x2.+)d’/ (4 64)
5 e ¢ e l)]}

T — X KGR 4 28 2L { e
i= okbsme& o +Z—f = \_%:_

42})?[ (\:\X;)-Jsf ~(-22) H‘ll} (4. 65)

where _ \-2_0'}'\

A+ 120N
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and the shear stress and normal stress are given by

?vo’ - j_%‘.\’\ (=2 o NS (4.66)

Bv= l_%? M)y ase (Whae) &

FEWR () Tt (-ae)

4 (\4_\_%1?3 (4.67)

The corresponding quantities from Basset's solution which are valid
r~

for small values of A are denoted by the superscript (®)

N(B) NG B VZ _-«
=-sef\-318e [\ 4+ (=})
GLY gl\ zr (\-\-‘LT\ == 02 (4. 68)
= o {\=2lme (WA \- (0”2 (VA) (4. 69)
= SL\ 3l WR) 4 (62D °
Nr(:): -@v M (Lx3g2 sine 3&(\3) (4. 70)
2N

vx(ﬁz \;@ Mo %%}@ 12RX (X)) } (4.71)

2(02%) (k2X)

Each of the corresponding pairs are compared separately in Figures

8 through 11.
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Radial Velocity (Figure 8)

Both solutions C’E; and %‘,(5) satisfy the boundary cond =
tions C%} (,®)=-Cs© and %{ (0,8) =0 . It is seen in
Figure 8 that both solutions are almost identical in the continuum
regime, but differ considerably in the FMF limit. Since the slip flow
assumption is obviously incorrect in the FMF limit, one expects that
the present solution for the radial velocity gives a better description

for a large range of MFP.

Tangential Velocity (Figure 9)

~
The boundary condition at W=\ , %(\,e\: SO | is sat-
isfied by both solutions, but their values at the body, =0, are not

identical

T Lo = o2 <we (4. 72)
4\H20X

~

244X

Equation (4. 72) is correct in the FMF limit but also compares favor-

ably with Basset's solution for small MFP, For small ';\J

7, 9= é‘:\%\" NS Z(-J)Ase g

and
~ (8) ~~ A
QEQ (0,9\: %—)\ SWe (4. 75)

. Thus in the continuum limit the present solution is in error by 2. 5%
whereas in the FMF limit Basset's result is in error by 25%. The re-
sults presented in Figure 9 show that the present analysis correctly

predicts the tangential velocity over a wide range of Knudsen numbers.

68



Shear Stress (Figure 10)

The ratio of shear stresses for the two solutions is given by

P re ~
_P \zo?\ Avtz')\,) (4. 76)
A\+loN A DAN

Lo

For small )\ Equation (4. 76) becomes

Do - X [ 142Xs0 (8

g“rg) \_\__ Q.Q 5}‘
= 1o (XY (4.77)

where the following expansion has been used

2> 1=X+o (3)
\+ A
~> ~o
This ratio is seen to be unity to order ()\z) for small \ . For

}T equal to unity, Basset's solution is zero and changes sign for

by greater than one. Basset's result is therefore incorrect for

’}T greater than unity. Again the comparison between the two so-
lutions illustrates that the present model is applicable over a wide

wide range of Knudsen numbers.

Radial Stress (Figure 11)

Since tine shear stress from the present study compares favor-
ably with Basset's solution, the discrepancy in the drag for small
MFP (Figure 6) is mainly due to the difference in the radial stress for
the two solutions. This difference is easily observed if the radial

stress is compared at the body.
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Taking €=O  one finds

(§«3¥P°-‘ = BQ(HI) \J.—ZX
BP¥yezt VTV (wsX) (B X) .79)

[ ]

Since this ratio is not close to unity for >\ very small, the radial
stress from the present study errs inihe continuum limit. This con-
clusion regarding the radial stress P‘(‘( is not surprising since
the six moment formulation herein excludes the moment equation cor-
responding to the radial stress. The discrepancies in the radial

stress are shown in Figure 11.
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CHAPTER V - HIGH SPEED FL.OW
V.A Introduction

Most analytical efforts on high speed flow over a sphere have
been confined to near FMF theories, valid approximately for &> \0
(e.g., Baker and Charwat.lg Rose,10 Willis,20 or to small departures
from the continuum limit (e. g., Van Dyke).21 In thetransition regime,
theoretical works on nonlinear flows were initiated by Mott-Smith'7 on
the shock structure problem. Subsequently, boundary value problems
such as Couette flow (Liu and Lees,22 Lubonski)23 and Raleigh's
problem (Chu)24 were treated. Mathematical models were also sug-

gested by Rott and Whi'ctenburg25 and by Hamel.26

The general formulation presented in Chapter III separates the
distribution function § into two parts: ¥=$. for all molecules
whose velocity vector lies in a cone subtended by the body, and =,
for molecules whose velocity vector lies outside of the conical region.
At high supersonic or hypersonic speeds the following simplifications

are introduced

(1) The oncoming stream can be compared to a high speed
molecular beam, thus the moment contribution due to ‘F:_.
may be evaluated over the entire velocity space including
the vacant conical region.

(2) For the distribution function ;, , which may be intutively
related to the reemitted particles, the approximation of
small mean speed can be made and the distribution func-
tion S\ can be linearized as in the low speed case.

This is analogous to the ""cold wall" approximation in high-

speed gasdynamics.

These simplifications are very similar to the two fluid model

of Rott and Whittenburg.25 In fact, all the multi-fluid models such as
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that of Baker and Charwat (sphere) Lubonsk1 (Couette flow), and
Hamel26 (piston problem), bear resemblences, Such methods might
be judged by how well they provide the capability to solve actual bound-

ary value problems without a prohibitive amount of labor.

In spherical coordinates -S\ and Sz are represented by

(N) VD) 2
§ =h )= G S xg\ (Svwy sy %\f)\s\@}-\ 9,311 (5.1)

where the ''velocity components' of the body distribution

function are assumed to be

L= W QNoese
V=~ Wi &) sine

and
St D@D+ GER) .2
where
(5. 3)
(B e Gy UaloPr G Ve R %&}
(oaye SL 28T

The function G\(X ﬁ) does not appear in g\ because the
contribution to the moment from -S:?_ will be found by integrating
over the complete velocity space. (See previous section.) The tem-
perture parameters =T, and T\o=\w are assumed con-
stant and equal respectively to the wall temperature and the free
stream temperature. Three parametric functions; W;,0.,V.. appear
in §,  and two; W, W, in. 4.

To compute the moments ‘f. is linearized at this stage and its

contribution to the moment is the same as in the low speed case.

The average value of ® (&) becomes
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f o
g = S g g §$.wi}2 s de dy dur

° 0
[ =)

+ gﬁ B (7Y a8y (5. 4)

-

M 0 &“§ & ,010):\
+ 2(\) (%, )X_ SR PN

All average quantities can be evaluated in terms of the five parametric

functions( LIAA N ,m,v:.) .
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V.B Four Moment Formulation

The computation of sphere drag without heat transfer for the
low speed case was forrulated in terms of four moments. In the
same way the high speed flow problem can be formulated in terms of
the following four moment equations; continuity, radial momentum,
tangential momentum, and radial stress. The radial stress is taken
instead of the shear stress or tangential stress because the normal
stress is considered to be more significant in the hypersonic approxi-
mation. The four moment equations are given in Appendix I in terms

of the five parametric functions; ™., W, W, U0, , Vo

The associated boundary conditions are:

at x=\({=e2

‘VT'L =\

(I'L (\)9)‘—" ~(se (5. 5)
Vo (uLBe)y= swo

at X=o (f=¥)1 Wile=0

N4, =0 (5. 6)

where the density has been normalized by Y\ and the velocities by Qe -
Again if four moments are utilized, one cf the five parametric func-
tions must be prescribed at the outset. The selection of this one
parametric function depends upon the desired information. The two

alternatives will be discussed from an intuitive viewpoint.




The free stream velocity functions & and V2 cannot be fixed since
they must always satisfy the boundary conditions at %=\ but must
tend to zero at the body as the MFP decreases. The number density
of the emitted particles, '?S’\ , cannot be constant if the effect of
collisions are properly taken into account. Therefore, the considera-

tion is focused on A, and W,

~

If WM,% is assumed constant (equal to unity from the bound-
ary condition) the number density of the free stream particles is not
affected by the collisions. However, since W\® is not fixed, momen-
tum exchange between the high speed free stream and the low speed
body stream can still occur. This assumption is expected to lead to a
correct estimation of the momentum flux (drag) but it may yield incor-
rect predictions of the density field. The description of the flow field
by this model is analogous to the first collision models suggested by

Baker and Charwat,19 Kinslow and Po’tter,27 and Wainwrig,‘-.xt.28

On the other hand, if one assumes that W\(x\ be constant
(equal to zero from the boundary conditions) and allows W& to vary,
the density near the body would increase as the MFP decreases so
that it forms a shockwave in the continuum limit. But if W& is
taken to be zero, the momentum exchange between the high speed
stream and the low speed stream is incompletely described, hence,

drag estimates may be in error.
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V.C Determination of C—.(?ﬁ D)

The moments which appear in the four moment equations given
in Appendix B are computed from Equations (5. 1) and (5. 2) and listed
in Appendix I. The function Q(\',bﬁ ) contributes to only two of
the moments, 'Y\Rf and f« , which contain Cﬁ“ and %u.)
respectively. Just as in the low speed case %“) is determined by
satisfying the boundary condition of vanishing radial velocity at the

@)

sphere surface and q is found by requiring that the normal

pressure be correct in the FMF limit.

The radial velocity is given by Appendix I

-l ’~ -~ ~ (5- 7)
Yo, = Tl v (O MNT + @OWW -~ A%
yze ™M 2 Vealw
Atthe sphere surface Yey, (X=o) the condition of zero mass flux
requires that
) 5. 8)
L’“%{) = Qvl.__‘- )*eo + (“1“‘\3 %__@]9). =0 (5.
x=b s M Mﬁ%a

The boundary condition W\(®=0  has been used in Equation (5. 8)

Following the same procedure as for the low speed case, we

find that Ve is given by

zm&ﬁ) = (\*X‘) K_’V\-‘Lb}@ A (0)8) ~ 'VN\z (0,0 \I‘z, (.O)L\)_X (5.9)
Ve e
The variation with respect to X is necessary to satisfy the contin-
uity equation in the FMF limit just as in the low speed case, Appen-
dix D. The determination of %(ZJ is again completely analogous to

the low speed problem (see Appendix E). For large Mach numbers

77



@nﬂ:ﬁ’ PM* este @ M P:\-‘- Co3® )\ (5.10)

oD
@) _
and CA O&ve) is found to be

g6 - - ([ M | R0olo0 -Toaduen ) (511
e ¥ T

A comparison between oa“\ and %&2) for the high speed case and
low speed case shows that "},m and 03(7') for the present case differ by

a factor of two from the low speed case.
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V.D Separation of Variables — Near Stagnation Point
The boundary conditions require that

at \‘9\ (“- Q):

O Ko -cwsse

Y .12,
¢ty V.(Lerys swme (5 a)

@Q) ﬁx(\\: \

at X=o (r=\): (5.12.b)

vy Wil=0

@ (& {T),= - TMAOE o0

Since the FMF solution indicates that all of the parametric functions
are independent of X and equal to their boundary values’

the following separation of variables can be assumed
Tu®) = &3
Vo= Vol swee

W‘L )= No)
(5.13)

¢

o

Wi = 100

3

M) = M N
=

The definition of "?\’\ eliminates the Mach number from the bound-

ary condition at the borly. The boundary conditions become
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X=\ (=)
@) W= -\

ey V20) =y

L0 NaGy= )
(5. 14, a)

¥=0 (¥=\0):

v X,e=0
(5. 14.b)

) N =~ {Zrp N 15,09

The moment equations corresponding to the assumed separation of
variables are given in Appendix K. It is clear that the equations are
not separable because of their nonlinearity. However, if the trigo-
nometric functions are expanded in power series, the equations can be
separated in terms of the powers of © . For small values of the
angle © only the lowest powers need be considered. This expan-
sion for small © is truly a stagnation point expansion. The equa-

tions for small (S) become

Continuity

(‘:’Q %Nﬁer (\—xt)zxgx— ) A% 4 ANz (V)

L (\x‘;;l;_‘ AWN': + o(®=0 (5.15.a)
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Radial Momentum

(\iz) gLNzuz 2 (Tae)+ (2D ANz
Ry IK

4+ (00®) € N | T2 e (1% i, =
i N j_“r o\% + Oler)=q

(5. 15.b)
Tanggntial Momentum
() & X
S Nzuz\!z-\-gN Vo (V)= (3 e, (P AU
i 2V W2 J:“ LX}O%“& (5. 15. ¢)
+ o(ed =0
Radial Stress
(_x_‘) d Nzuz FINGT (G 4200 3 Nalx,
“X¥ML
+ We(Uatvz) +3 (DS W A_C%{
Ty X
4 ()28 € AN, 4 0 (D)
) 610

= ‘I:ﬁ W '\'C
IM> X xS\—X""

=% |2 LN+ [ (0 L0
e

o~
where €= _\_T\
¥ ™M
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The continuity, radial momentum, and radial stress equations
have leading terms which are of order unity but the leading term in
the tangential momentum equation is proportional to o . The
tangential momentum equation is therefore of lower order than the
other three equations. This is further indication that the tangential
component of the velocity is of less importance than the normal com-

ponent in the stagnation point region.

The next term in © appearing in the four moment equations
is ®% . Therefore, the omission of the other terms contributes an

error of the order ©% for the system,

In the stagnétion point expansion the role of the function Q(V,sﬁ )

is greatly reduced. Since the dependence of °am and %m on the angle

© was found to be @
QP x (s -ty (=\z

& (x,6,3) vanishes at the stagnation point ©=0 . The stagnation
point expansion gives

‘éL‘Q‘-_-. (\""") ‘_e‘l #-0(,6*) . ‘}

which means that G(8;%) is always negligible if the solution is de-

termined to an error of order o%
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V.E Solutions

Since there are five parametric functions (Nt,,N,, &, , V)
and only four moment equations one of the five must be prescribed in

advance. From Section V. B the alternatives are

M) Nabd=)
or

@ Xw=0
One may also elect to adopt both simplifications, N, =, , and

& &)=0 , and neglect the relatively unimportant tangential mo-

mentum equation (Equation (5. 15, c)). Then the system consists of
three moment equations and three undetermined parametric functions.
Introducing the hypersonic approximation, M>>\ , one finds
that this simple '"three moment'' formulation gives some fairly inter-

esting analytical results.

All equations to be considered will neglect terms of order

‘exi which leaves only two parameters
oY
Co= E and WT= A YE
*M Yo lle

U\b‘):O R

and the "three moment' solution will be discussed separately in the

in the system of equations. The three cases; Na®=\

s

following sections.
V.E. 1 Four Moment Solution, Nz(10=\

This assumption iinplies that the flux of high speed free stream
particles to the body is not influenced by collisions with emitted mole-
cules. The molecular density is reduced only by reducing the number
of emitted molecules that can reach a given point in space. In the

usual first collision methods the molecular density is further reduced
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by reducing the number of free stream particles incident on the surface
which in turn also reduces the number of emitted particles. This re-
duction occurs if it is assumed that all particles which experience a
collision (scattered particles) are not incident on the body. Both the
present model and the first collision theories indicate that the effect

of collisions near the body is a partial shielding of the body from di-
rect momentum transfer from the free stream. This shielding results

in a reduction of the drag from the FMF limit.

Although this assumption will be shown to give a good estimate
of the momentum flux (drag) the density variation with the MFP may
be in error. The first collision model will always predict a decrease
in density as the number of collisions increases. The increase in the
number of collisions or collision frequency corresponds to » decrease
in the MFP. However, in the continuum limit, >\ -* 0 , the den-
sity must increase in such a way that a gasdynamic shock is formed in
front of a blunt body. A more direct way to illustrate this result is

to examine the equation for the density in terms of these assumptions.

From Appendix I the density at the body *=o is given by

@\I)*'°= Nz(°\+ {M% N.\_(ﬂ (5. 16)

<
|

The boundary condition of vanishing radial velocity requires that

Nild= = {Zre Nl 209 (5.17)

Since K3(9 is always negative substitution of Equation (5. 17) into
(5. 16) gives

M)y Nal (\\L = f‘ﬁ =) (5.18)
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where “ il =  absolute value of U(o)

and o<l mw) <1

If N.& is assumed to be unity Equation (5. 18) predicts that the
density at the body decreases as the MFP decreases. In the limit as
A0 Equation (5, 18) gives

@(\x-e K Ne leo

which is clearly incorrect for the high speed limit.

It is found however that the density distribution will be very
close to the FMF distribution for values of the parameter,
¥ = % \I;\: , as small as order (1). This result is con-

sistant with Probstein's29 conjecture which will be discussed later.

The equations for  Nx&=\ become

Continuity
(=) dU—!- 4 (ex ‘) 42 (UWR) & (= =0
X % ) Xz oS&n

(5.19.a)

Radial Momentum

m,_v_ag A + TV | + (D e.{_c\_-%_:)qw & (ma%xs o

(5.19.b)
Tangential Momentum
(00 & TV + 3 Vo (04T - T e (P =0
(5.19.¢)
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Radial Stress

= ‘ \~X 2z
(\:;S‘)d%t +%(U«sv7.) = ;%__q‘%_ = &Nw@ (\mv.]
\
(5.19.d)
Boundary Conditions

Ky =~y
V0=

(5.20)
Uilo) =0

N (& = = {Z0F )

This system of equations and boundary conditions is integrated nu-
merically, The results for the drag computed from Appendix L are
presented in Figure 13. The density distribution is compared with the
experimental data and the solution for WX, =0 in Figures 15 and
16.

V.E.2 Four Moment Solution, \X\0 =0

Independent of the assumptions, K0 is always zero on
the sphere surface for diffuse reemission. Therefore the assumption
of X\ Dbeing identically zero is quite correct in a small region
close to the body. It also allows N0 to increase near the body
which is essential to predict the density distribution for any finite
MFP. The density of the high speed free stream particles is increased
by collisions with the emitted stream. This effect can be described
qualitatively by imagining that the emitted particle is converted through

a collision into a member of the high speed stream.
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This model results in a very good estimate of the mass flux
(density) but overestimates the drag. The drag or momentum flux is
overestimated because the assumption of X&) equal to zero re-
verses the shielding effect of the previous assumption, N2®=\ ,
and the first collision methods, That is, instead of shielding the body
from direct momentum transfer from the free stream, the emitted
particles through collisions increase the population of the high speed

particles thereby increasing the momentum transfer to the body.

The equations for U*=0 become

Continuitx

(_\—i’l@c& ol 2N (Ut & (" dNv_ o
ox x {2u g (5.

o
[

.a)

Radial Momentum

("_;‘:) %\Nzut + 1Nzuz((Kzi-V;_) + (\izlz(:xi") €o %:O (5.21.b)

Tangential Momantum

(=) a(wzulvz + 3N (Uar V) =0
X

(5.21.c)
Radial Stress
(20 A Npte2 + AN (> v
-7)%( AN 20y (U VL) (5. 21.d)

S:n:
= TN2e ‘Ii NN UE
3 3\F

-
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with the boundary conditions

Nz(t\ =

Uz,(\\ ==\

5.22)
Yzt =\ (

N, = = {Zxr N (0T (9)

It can be seen from the momentum equations that the assumption of

&) equal to zero reduces the momentum exchange between
the two streams. In fact when the parameter €&o= E‘T\ in the
: Ly

radial momentum equation is taken to be zero (hypersonic limit) there
is no momentum exchange betwee.. the two streams. In this case the

two momentum equations can be integrated to yield

NeTS A = ¢ (5.23. 2)

and

Ve = _____——--‘txl
s Cu

N 1-xt

(5.23.b)

Since TL:&) 1is not zero the constant ¢, in Equation (5. 23.b) is
zero if Vaux) is finite at X=\ . Equations (5.23,a) and (5. 23.b)

thus combine to give
Nattr = — New,V = C, (5.24)

For (=0 the continuity and radial stress equations can be solved

for N2& and WN\&) to give
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X
Ny b= =T\ xew) N® dx
\ %ex@{axw,&ﬁy‘% 29 % (5.25.a)

and

X
j?;: _EL S X(50 Nyoodx + g
N

ATV (e
(5. 25.b)
with the boundary conditions
NZ(\\:\ .and N\(°§ = \(EWK\ Q\ NL(-Q (5' 25. C)

Equations (5. 25.a) and (£. 25.b) are coupled nonlinear integral equa-
tions can be solved numericaily or by an iteration procedure. The
iteration can be effected by assuming that Nz and N, appearing in
the integrands of Equations (5. 25.a) and (5. 25.b) respectively are con-

stant for the first iteration.

The two quantities N> and WNyWNz  which appear
respectively in the normal stress and shear stress are the leading
terms in the drag formula Appendix L.. Therefore if the constant

G is evaluated at X=\ the drag can only be the FMF value
to order (‘F‘ﬂ . The numerical results presented in Figure 13
verify the last statement. The drag for the case of €o= .10} de-~
viates only slightly from the FMF value. The density distribution is

compared with the experimental data from Reference 28 in Figure 16,
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V.E.3 Three Moment Solution

If the equations in Section V. D are taken to order © the
tangential momentun: equation can be neglected since the leading term
in this equation is order ©% . The adoption of both assumptions;

Nz Gy =\ and W& =0 , then completes the formulation by
three moments. Since analytical solutions are possible in this case
this investigation will hopefully shed some light into the entire study of

the sphere drag problem for high speed flow.

The three equations are

_‘Z‘ontinuitx
(o) AUz | 2 (v + OXO d_ o (5.26.a)
ox e
Radial Momentum
(\;_X‘) AU:} + ZVIWz"\'vz.) + (\—“__L___z GY) €o AN\ - (@) (5.26.b)
X K X o™
Radial Stress
3 2z - I 2
(O U7 + 2uT () = ~ V28 N (5. 26. c)
X0 3= |
DAVY
with the boundary conditions
My = =\ (5.27)

V=200 =\
Ni© = ~j2ug 9
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For €. equal to zero the equations can be integrated to yield

() (5.28.2)
= C . 28.
\ EY@ qhﬁ (\qi)’)/zk
T= ~13p_¢, T(XR,X) + e (5. 28.b)
3% T
= - (LA( Az 4 ) SNy 5. 28.
Vebo= = Tyt~ (0] e+ (12 <01 (5. 28. c)

where

. X
TGEN = S X(rw) Qef=T_ (=)
() AT (P

(5.29)
Q= —_Y_ (7‘\‘_-\:\) \)}
/ {%’ &q S
C—l = = e\(q (_ v )
Voo s DY
In the near FMF limit the constants Cy and C4 become
C\ £ \SZ‘“’K‘
e (———T
C, = - <
2 B lan (5.30)

For N2&)=)\ the drag coefficient given in Appendix L is deter-

mined by 2 and V2 at the body. From Equations (5. 28. a)
through (5. 28.b) V2. at the body is given by
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_ (eamres
-\}.Z(O)= -TXz(Q \—\— jrﬁ ( \ 412l
3
\ - m& €0
( \ D\'z(‘)\

Expanding the second term for small values of &o one obtains

alo) = —Yxl@(\-v %\YT‘%\\ — X _ {200 €et o)

EP R
(5. 30)
The drag coefficient is given by
&= sz("’&’“' s)\r} 7w & l‘“ﬁ 37 4, ﬁ.-&
(5.31)
But for the near FMF limit U may be written as
VS (OF= e\(@ ( A% = (5.32)
and the drag coefficient becomes
O= a3 @ e -y s Eme (3+3)]
(5. 33)
In the FMF limit Equation (5. 33) is correct to O (7g)
NE
Gy = 2§ {aW & (5.34)

The drag computation for the near FMF solution is presented
in Figure 14 in comparison with the near FMF solution of Williszo and
Rose10 and the experimental data. The density distribution given by
this solution (Figure (15)) is acceptable for 'Xﬁ' = o(y), butasin

the first case ,Ny:() =\, the variation with the MFP is incorrect.
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V.F  Nonuniformity of the High Speed Flow Field

Probstein29 suggested that for the high speed flow past a blunt
body the significant MFP is that defined for collisions between the free
stream and emitted particles. This MFP will be called the body MFP
and denoted by M . A simple kinetic theory calculation29 gives the

following relation between A and the free stream MFP Ao

IRCNET N VO S i
‘\%-\'ﬁ% "\?° = T ™ (5.35)

Probstein29 conjectures that for

Mo
e 7! (5. 36)

the first collision solutions can be used to define the flow field and
aerodynamic properties. Since the first collision methods cannot pre-

dict a sharp density gradient no shock-like structure can exist.

But when
Mo~
“0 - 5 ‘5. 37)

a shock-like structure will begin to form and the first collision meth-
ods are no longer valid. This highly nonlinear "cascading'' effect in
the flow field is caused by the increase in the collision frequency be-

tween the incident and emitted particles.

Probstein's hypothesis is qualitatively verified from the results
of the present theory. It is seen in Figure 15 that the density distri-
bution for XF\‘\ 2\ is essentially the same as the FMF value and
is almost identical for either of the two assumptions N200=\ or

K&)=O | The drag however is predicted accurately by the

assumption N &) =)

a3
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For Xﬁ <\ a large departure from the FMF
density distribution is observed experimentally which is predicted
only by assuming W&)=0 |, The drag in this regime is not predicted

accurately by either model.

The relation between )\,  and Aw given in Equation
(5. 35) shows that even if MA» is very large A\, may be small for
the high speed limit (M«) | This implies that even if the free
stream MFP indicates a near FMF situation, the region near the body
may be in the continuum regime. The flow field description is there-
fore not uniform and suggests the following flow model within the
*ramework of the present theory. The characteristic lengths are Ao
near the body and the sphere radius Y% for the region distant from the
sphere. The existence of two length scales suggest an "inner' and
"outer' expansion similar to the boundary layer concept in ordinary
fluid mechanics. In the present case the inner solution can be found
from the assumption U®) =0 in a region of order (Ae). This solu-
tion must be matched at the interface of the two zones with the outer
solution obtained for Nz6)=) . The assumption of W\ =0 leads
to a constant value of the drag which can be evaluated at the outer
boundary of the inner region. Since the assumption of N2&) =\
results in a correct estimation of the drag, then this combination of
an outer region (N.=V) and an inner region (U=6) could give
a good estimate for both the drag and the density. The details
of the correct expansion and the matching conditions are not obvious

and they are beyond the scope of the present study.
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V.G Comparison with Experimental Data and Other Theories

(1) Drag
Many investigators have stated that for the low density
high speed flow over a blunt body the free stream MFP, Ao ,
is not the most meaningful parameter for correlation of exper-
imental results. This point is verified by the scatter of exper-
imental data shown on Figure 12. In the present study, the

parameter

% = i [E

N

always appears in the analysis as a group while the free stream
MFP, A~ , never appears by itself. This group of
parameters is related to the body MFP (Equation (5. 35))

(5. 35)

M=)

It is seen from Figure 13 that if the abscissa is changed from
‘\-\(2; to WR the same experimental data from Figure 12
exhibit considerably better correlation. It should be noted that

although the parameter €s= ‘r%. is the same for both sets of data
™

the Mach numbers for the Masson, Morris, and Bloxsom32 data is at

least three times as great as those for Kinslow and Po’cter'sz7 results,

Also shown on Figure 13 are the numerical solutions from
Sections V.E. 1, V.E.2, and V.E.3. Figure 14 compares the same
experimental data with the analytic near FMF solution from Section

V.E. 3 and the near FMF theories of Willis20 and Rose. 10
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The four moment solution, assuming NG =\ , from
Section V, E, 1 appears to correlate better with the data from Refer-
ence 32, The numerical solution for W®=0 from Section V. E. 2
shows that the drag changes only slightly from the FMF limit. The
numerical results of the ''three moment' solution is seen to he very
similar to the solution resulting from WN.=\ for agWTg =
but diverges significantly for XF"\ <\ . This may be qualitatively
explained by the fact that the entire tangential momentum equation in
this case has been neglected. However, the near FMF computation
for the "three moment'' solution is shown to compare very favorably
with the experimental data of Reference 27 and the other near FMF

theories.

(2) Density

The results of ti.e density computation verify
Probstein's29 conjecture as stated in SectionV.F. The density
distribution (Figure 15) is very close to the FMF value for
VS AT L o and is accurately predicted by both the re-
sults of Section V., E. 1 and Section V, E, 2. However, the re-~
sults from Section V. E, 1 predict incorrectly that the density
decreases as the MFP decreases (this was discussed in detail
in Sections V.E. 1 and V. E, 2. For small values of the MFP
the solution from Section V, E. 1 appears to be incorrect, while
the assumption that W &)=0 results in a very steep density
gradient which appears in Figure 16 to give a good description

near the body.
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CHAPTER VI - CONCLUSION AND FUTURE WORK

The investigation of the flow over a sphere was accomplished
by employing a modification of Lees' two stream Maxwellian distribu-
tion function in Maxwell's moment equations. Although the Mach num-
ber was restricted to the two limiting cases; low speed flow (M<«\)
and high speed flow (M>>1) , the Knudsen number or MFP was unre-

stricted.

In the low speed case an analytic solution was obtained for the
coupled drag and heat transfer protlem in terms of six moment equa-
tions. This solution for the drag compared favorably with
Millikan’s17 oil drop experiments for the complete range of experi-
mental Knudsen numbers. The predicted heat transfer also showed
good agreement with the experimental results of Kavanau and Drake.18
Although no systematic study of convergence for the moment method
used in the present study was made, a heuristic proof was attempted
by choosing different moments of the Boltzmann equation which gave

essentially the same result.

Unlike the situation for the low speed flow, the high speed flow
problem depends critically on which moments are taken. The most
probable cause is the fact that the high spee” nmoment equations are
nonlinear in comparison to the lirear low speed equations. Because
of this uncertainty, physical intuition must be applied to choose the
most important moments for a particular problem. The predicted
sphere drag and density field using the following four moments; con-
tinuity, radial momentum, tangential momentum, and radial stress,
were found to be adequate for a wide range of Knudsen number. In
particular the results indicate that for a wide range of the parameter
pXad e 1< A€ ®© , the density distribution varies only

sligntly from the FMF result. For small values of this parameter
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the first indication of the formation of a gas dynamic shock was ob-
served. It was also found that an analytic solution could be found by
making the assumption of large MFP. This near FMF solution was
found to be in complete agreement with the near FMF theories of

willis2° and Rose, 1°

All the results indicate that the moment method formulated in
the present study gives considerable insight into the nature of tl"xe
transition from highly rarefied flows to the continuum regime for the
problem of flow over a sphere. No other method of studying the com-
plete range of Knudsen number has been successful. Because this
.nethod is applicable over a wide range of Knudsen numbers, the de-
tails of the flow field may be in error. For example the choice of the
distribution function is obviously oversimplified and one cannot expect
it to be correct; especially for the nonlinear high speed flow., However,
the results from the present study confirm the conjecture that the
gross flow quantities such as drag and heat transfer are adequately

predicted.

Future efforts to extend the results of the present study can be

directed in the following areas:

(1) Carry out the numerical solution of the eight moment
equations for the low speed approximation to verify that
the six moment solution was adequate.

(2) Complete the rigorous "inner" and "outer' matching
scheme for the high speed approximation.

(3) Carry out the numerical solution of the high speed flow
equations without making the near stagnation point approx-
imation.

(4) Apply the general formulation to other geometrical shapes.
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APPENDIX A

BOLTZMANN EQUATION AND MAXWELL'S EQUATION
OF TRANSFER IN CURVALINEAR COORDINATES

The Boltzmann equation is given by
%t*%aj&x ‘.H" (&‘{;’) ~\ '&.5: &%) collisions (A. 1)

In orthogonal curvilinear coordinates the spatial gradient is given by

2 3,080 4
S % =S85

L=\ (€21
where
(%1, % 0) cartesian
(O\,02,0) = (x,&,%) cylindrical
(v,e,d) spherical
(LY cartesian
(s )= € (1,0 cylindrical
(\ » %) YsIne) spherical
and

= . . .
e = unit vector in i coordinate

Lees3 shows that the curvature term i: given by

3 - 7. \n__
§( X?)L 3?\. i .) 2 ?QJ Ba

N m@% W ETOE

where the cyclical order of permutation of the indices i, j,k is

required.
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Therefore, the Boltzmann equation in curvilinear coordinates becomes

3 3
2+ R%2TH,

(=

-

M(p

Fi e E ) S

%&Qcomsions

,
u

\

(A.2)

Maxwell's equation of transfer is obtained by multiplying Equatizn
(A. 2) by any function of particle velocity and integrating over the ve-
locity space, o\‘%’ . The resulting equation is obtained by an alter-

nate method by Lees. 3

ey« 2 23, (e

(3% 2 1 - (12 ok (6 Twa)

e

v L (% e -sa
W e

= A%

(A.3)
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APPENDIX B
EIGHT MOMENT EQUATIONS

Maxwell's equation of transfer in spherical coordinates for

symmetry with respect to 3 (see Figure 2). is given by

Yt ar{"‘S%‘éf&?S Teme 36 Smegs’%éd??j

(S @R + (re 3100 3F,
— (Afa te T24) %%?73 &K = A

1. Continuity Equation ( $= ™, OB = 0‘)

2 2 (swe W{)Q =0

rz% ((Unaﬂ + \

YsSwe
(B. 1)

= gxr"h‘&’

2. Radial Momentum Equation ( .= ™8 AS,= )

+ () + 3 (smemb L (DestBag)=0

§CBE ™ S 198,48 (B. 2)
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Tangential Momentum Equation ( &= w$,, A§5=0> |

L %r( (2 Po) J_B ae(smepae\) (Co\-ahm Ew) O (B.3)

Energy Equation ( 4=/ , A= O)

A AP A0 D 4\ K i)
Y"%\r{\. (Pm Pree D«N)‘l ol %e I (Dwa

+ ?eee“’Eeoequ =0 B4

§\‘5k3 AN Ss-ia?ﬁk&?

Shear Stress Equation (@:f TY\%}?E, ) a§s=(§x) EB)

L 2 +
= %Y (\( E“Q X Smé

2 (w6 Poo)

10|

_\(

2 e Ea@qﬁ Cote E«w*i«es = &%) ?\-g

(B. 5)

Radial Stress Equation <§,°= ‘m?@ ) Q@c.: (—E)@Q

T\ 2 ( R r) a vgme %B (S\né P«e}

-Z (?Y&b * B(st & ) @\-r

(B. 6)

106



7. Tangential Stress Equation (%= ™2 , A%.= (E'O @eeb

R
EEREE

Yz DY(

“—7% (Q‘*eﬁo«: ~Dree) = @) @be

(B.7)
8. Radial Heat Flux Equation (§8= 'm&‘,‘.g?- )
Ag‘ckﬁ‘\) K‘ Qe+ FeBer e Pye 1 >
'é\?z- %\X‘f ( EYYYY + ﬁxr&e + ﬁ«mﬂ]
L —— &sme ( Bre + Prose +-.‘?mq@l
258
"_S_ K_EYM* E‘(\'Qqﬁ' D EQQQq;* Z-ESBQQTX
(B. 8)

= (gﬂ K_%E\\“ + ?b\'@w '\'?obae‘_\
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EX’&BEEUEE-:;-J- -
APPENDIX C
COMPUTATION OF THE MOMENTS ~ LOW SPEED FLOW

The moments appearing in the eight moment equations in
Appendix B are computed with the linearized distribution function
given in Section ( TY. A ). The parametric functions appearing in the
distribution are normalized by the free stream quantities ("(\,,,T,. ,%“)
and results in the following non-dimensional variables,

T o= Teloe)

T
W e o= Weloe)
e
Vo (68 = Nilne)
D
The coordinate y defined in the semi-infinite interval
g ¥ <{w

is transformed to the independent variable x defined in the finite

interval

O < Xg)

through the transformation
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The moments become

Ne
,\(\KD_ T o (R (W x-W T-\EL) 4 WG Ve
Yode VATM A
% (WO -Wl) - e
< VaQe
’\\Ia'bbz WOV &+ (830 (W - W)
2 Ta
Tz P o TOA®GR - 2 ({F -FR)
st < z

&)
+ FEE M x) (T - Tl T) + 02120

i‘w: %ﬁ)‘\'{‘}'\ﬁ L + (}_"’_’429 (_&\\\?\;\‘7\51)
2

+ % M (=K (WRAT Woded T, )

a4 = Peo
va = l-w\’ r (\—’x«) ('V\\T Y -“ J‘L IL)
hV\pT,. ‘L,,
43 (WETAWOAT) —2F (FOX-RAT) - em 4 too)
QMQTQ%”

Psbv 3 (’Y\\vT\»f’ﬁlv{(,_) Y2 (\S\Mox —3¢5) (Wi, - «nz\;{(l)

Paee=0
Dise = MUTANNE + (ork (WT% - 1)
2 N2re M

¥ 2(¢- ) (RAT, - Tl

110



Bo= Wl it a\aly 4 % (S-52) (T Wi )

Brem o Beoc 2 | RTRTR) - (RFe-R30)
2 () (W - W00
o M

B = g LT D) +3 (- SDET-R)

+ % (zx"—'{h(" '\-\> ('V\\U\:\-\yz - ﬁzﬁjf I")
%)

E‘n‘dm = Ewse

~ 2 v YU\
Povve = & (2xe-2 40 (WU - Vel )
o |

A — o 'S Ay e N Do i etend
Ef e = 32(“;\*“ ('\I\\\) \—(\3 h -Y\z\l{(-:’ h‘}

Y

Prode = -\g Proee

a4

Ponve = 2 | (WAL +RXD) +5 (0 B8 ) GiTeS]

+ 3 (wg\ (G-l T

yne
Pooss= L Reoss
Dacat = Doseo
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From the definition of Ecj the pressure and the stress components

become

pressure;

§= ltkr ‘*Eee*&é«ﬂ % \_Vﬁ\. *%%J

‘m;r.

stress;

Ty= X = By — YW R33.
AN ¥

and the stressﬁ tensor;
~=:‘_~ __'\'=~§‘+~ . ,2'~~~
b= §.5¢— Xy Rl -2 TR AL CACW
In the low speed approxiniation (M « \) these quantities are
= L B Peet Bar ) = MWIWG -5 (WT-iT)

+ 2 S_: £ M () (VT TH-0LT,) + z ™ (x,0)

N
Toe € P -DRoe= % 03 BR-FED
M (=) (W) (TR Wl 1% t"'(m)
-3 ) (RO Vot [R) - 4 ol e

Ql
Ul

-Po= %M(b\&"(ﬂﬁ\ﬁ“ﬂ%ﬁi)
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The radial heat flux defined by

Qe=mis e @
is found to be
§Y=- E_ = %‘_i\vw* §no* iﬂ«\;}
+ 4 (?;Er* Do Dag) - i,isvo = Pyq
<

vy, (G + %o+ §9)

Neglecting squares of velicities or assuming that (M <K\)

c = Y_P‘(rf‘*‘ Dree-\- YM\X

- i“ (3 i«*‘l_v\ee_"‘ §m> - ieie_ c[ﬂi‘?
2
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APPENDIX D
MOMENT EQUATIONS — LOW SPEED FLOW

The tilde over the non-dimensional variables have been suppressed.

1. Continuity Equation

2 ME 210\ 4 (\—‘&") 2 ('“\\A\*"T\‘a\kb
(\j,\-) 3 ( Zre M ) B3

~ X (@) 2 (M) ¥ (20 (M- Nalid)

+ (‘(\}2'_) ((G‘CB"\' be}('\’\\\h‘ MN2\N2) -+ (i M) (D. 1)
\)
+ A (erert 2) (v~ H@\ PN (8)
) (e £) v tans) + () \"‘\»‘5,(\~7\‘) =0

In the FMF limit the parametric functions were found to be

W=V, =

U= — Co5®©

N2= 3INS

M T, = CONSTANT

Therefore conservation of mass requires that

| 9%l ™ 2 (o =L

If this result is generalized for a finite MFP by

e = (=) (e

05“()933 does not appear in the continuity equation.
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2. Radial Momentum Equation

Sy (MTA M) ~ L5y (>0 2 (wT-WT)

+ (\—_&_))(%i*) \S—%?__M %XQM\U\E“ 'V\ztl‘zﬁ)

+ E}_‘ M () \‘% (oo & %}(‘V\\V\ﬁ = VN2 Fﬁ) +~( M\ﬁ' ‘“'&U«z(:V—Z)—X

RO 2“\2"‘(&6\: o

XL e (e 0. 2)

\gain in the FMF limit
@ WN =\
( % @6;& = (\‘ﬁ@)* Yo
therefore, generalizing for the case of finite MFP

P He)= (OGS

\G

and %

3. Tangential Momentum Equation

)(7\;9) does not appear in the radial momentum equation.

t;\? \]% M %X th\l\ﬁ““g\lz ﬁ)

* Yy XWX - >,
T %g_mm VR (238 (i, R | 0.5

+ F—E"‘w M (H«\’“Y_%e b= Maal) - 0 - Mol J)= 0
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4, Energy Equation

~(u) 2 [ _emd’6e |+ 2 (& (oep 3 (WTe-0T2%)
X | ST Qe (26 W X oK

+3 (3, e - 000 (T mai)

35| MUT Vo + 5 (ko r T (MW AMaTT) | (D. 4)

+ 2603 | M- 1) +3 (ot 3o) (T VarT)) = O

\
Again as for %() and of) ) "Ae)(x,(a) is taken to be

%m(x,e) = (= \h\ﬁ
which satisfies the MFM limit and does not appear in the energy

equation.

5. Shear Stress Equation

(2D %\ &'V\\V\T, '\-'V_;_z\l{(z> 30 &g 33&(@.\;:“— Ma¥alz )
r®

{2
2% 2 W 2N, 2 | il ba

(D. 5)
+ 266-SP) CMUWT-WuaT2) |

-1 Tl 3 (S-SR (wy T |

= (°Q§/T‘>@‘(B = J% 'Vi@_ve
Yo |\ M =

where <—§;}= ﬁ_%g %\ and 7\'—: .A‘_v_:;
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6. Radial Stress Equation

(%9 J% 2 (AT nRe) 4+ 2 (0D (MuTTivausty)
X WM X = XX

NIV N2 T
.'}g‘ (\*-X’-\%;‘('Y\\kh_\-\‘ 'Y\z\kx‘z.) * (\(&&*%B\K_ = ’LL =

(D. 6)
_\_% (xﬁ-i%"’) ({Y\Nﬂ'\' “1\I1jz>—\ * (M\U\-\'\‘\’ "/\z\A{YQ ’

+3 (¢-52) (MUTT- M2UuTTR)

. o N - i ~ S
= & )0r = Vzn W«
9 Lo XM N\

. Tangential Stress Equation

('\—X?) 2 (‘V\NT\+ Wauilz) + (P 2 Q\n\T = W 7e)
WameM &

+2 (-3 3 (MUT M)

4 (ko] WM 4 (s -*;(Zc"—sx?) (v T |

+ 2 (MU + MoUs ) +%r (RSK HOC=2x5) (VT Moo
= Yo (‘«%‘) ,53%

W e (D. 7)
Pro
§ X%

f
z‘J‘H
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Radial Heat Flux Equation

(=) 2 (W) - 5. w2 @m W)
‘wM’— ~ m«l

+ 6 (R {Lm)& (MU= 00T + (e “Y\:u‘\’{*}%
\E Y

+ 30 e N
ﬁ——_;ﬁ i\((&é* %ﬁ) QY\\\)\T\ NN, )‘(S

= @KLV\QY* M%Y@!r—\' “%e@wl (D. 8)
MM
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APPENDIX E
FREE MOLECULE FLOW LIMIT

1. Number densi’cx1

:\_‘f.g_i = e (-JQMzcofe) + @Mme X.\-\- ex§ (@Mmeﬂ

where

erii=

ai the stagnation point ©=0

M\ - ex@@%w) +{EZU\/\K\+ erﬁ&@\ﬂ}

"ﬂ,ﬁ} 8=0

low speed approximation ( M-> g>

Wi | a i z
Wﬁ\em |+ gM+ O (WD)

high speed approximation QV\‘* Q)

W To ~ \Jr?v—ls‘\\/\-\- o (v)
. ®=o
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Normal pressure1

A

The incident pressure @w is given by

@, = Y\QZ = @wmme exp (—-_E:\X‘Obs?é)
=¥ o

1 4 (wonecess) i evs (@Nmﬂ
and the pressure <. .¢ the molecules reflected at the surface is

= oa\D - D \R Cos?
b—&tﬁhul 2\ og (-2 o)

4 _xzyfzn M s FEXH ek (@M%@X&

for diffuse reemission from the surface
@l land = @.ua =+ ’@'b
= <xp (*%N\’ m@é) R_S% M cose -\2-_ @;‘]
+ e Q@w\m@}@?ﬁ M oge+ 4 | Te [T Mase |

where

e f) = (\«A?—__—\-_yﬂ_ 3 .JX"<°<>

W3 a\s

=7l

«§(®)=)
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low speed approximation (M-se)

’Q\SWF = -%‘-“ Mmse A kirﬁ;:(%«- ‘Lg‘_ MSE_z_B @>(\-\.
2 & Wase )
F

for €= %—\ where &= O(M)

P 2 v & [ Mo (WE) + o)

high speed approximation (\~» =)

'@F“"Fg P NE RS 4@\&&55@;+\

3. Shear stress 1

For diffuse reemission the shear stress becomes

POF < -% M s i\ex@ Q—%w e
4 @\\J\Cmex_ﬁ e§ (\S‘-“L,_Mcosebq&%

low speed approximation (M-% 6)

Nw
Pe =~ S—'éﬁ“‘ Mswe + 0 (\&)
high speed approximation (\k‘*"@

e = - 0V ansuse
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4. Radial Heat F‘lux32

For diffuse reemission

A0 = QT _
= Hoe T = Klz exg 4 Wesse)

+2 - M-I ey L wewve)
+ @ Mwe (1 evd ( @M@bﬂ‘xg

for the low speed approximation (M'--v o)

and &= %—\ where &= G(M)

& = \%_%\ y (&%) cese *@WMK@‘%)&E@—{X
— P rese + o (W)
q,

\
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APPENDIX F
SEPARATION OF VARIABLES - LOW SPEED FLOW

Using the well known result from Fourier analysis that an
even function of & in the interval (7, W) can be expanded in a
cosine series and an odd function in the same interval can be expanded

in a sine series, the following separation of variables is agsumed

W= 2 M0 catre

V6= 3 B0 69 s
- N®ge= ;'2 ST ) con () (F.1)
gy =3 We esne

=
g

Substituting into the eight mo: .at e uations yields the following ordi-

nary differential equations,

Continuity

=1~ e, A ne (o Ga)
W=\ (W?)%&(.C‘ +3 D )-\- WMSL__ZR} 9%\*

(F.2.a)
~ R AT 4 AR RD 4 (e (MNABSYL =
TW+A +R +(\_;\)(\+B )S_Q
Mr () A (4L DY) &+ fzve M (ﬂ&t\&*
* i;c)‘d«(\ D) s\ 2 0% (F.2.b)

—-¥%2 (4d) oA ) . 7
4?_)% YAv s L__)X-:\ An ]3._0
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Radial Momentum

N=\1 _'\5 %(C\“’)-\-B‘“’)) - 127: %’s‘( AR A V)

+ @M(\%}SL(\_*X@ o%&é_"’ 3 APARD ?X=°

(F.3.a)
n#i;
- & (c*‘w:“) —% 4 A (&F+ D)
M (WD) (W dh“‘ + By
@: S\ -S © (F.3.b)
Tangential Momentum
We v - _% (¥4 D&Y ~ (*l;@ (QQ+DW)
135 M (bay? {(a@ ABY _AP-BP L =0 (F. 4. a)
w1 0 (G (‘:”_j(i‘) (G D)
4 %M (=AY 13 =0 (F. 4.b)
Energy
& (Q &y _ b§)3= (o)
(F. 5)

or
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Shear Stress

Wi -0 (4 2DO) + TFm M § (‘*’3 iy

USSR
+3RMOET) BY 4 2530 (A0 3.0)
~ 1 (A3 ) 73 = ~ER -‘.ﬁT (e 3 (F.6.a)

N#: N i‘ (e (694 2D

M (Jg;’(q-?m) AV~ ﬁhw?‘)k:b
. (F. 6.b)

Radial Stress

Moo Ul & (F+3sD + 5w MX} (30 olhe AD
-3 (\~xt) dAY L AW 2 (C-2y A9 S
l { QH.-\—.DH) 3 Q Mr (“%xz)AQ-) (F.7.a)
- ﬂ\—;@ E ML AP0-AD —2\11@»0)\&}

. &
e A0 & (c+3r) 4 %M{%@«%& |
;%4 (=D %_zﬁ A BMIR® 43 @s.sgg)(g,meﬁ)g (F.7.b)
= =% 4D 3 NE.
= 7%“—%{“ 14D ) +L31@ e (W2 A
- B @M (e - AP
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W ; 2(\*?((\%) %\%Qc\.w;_\)w) 4+ {zve M&é (0 gggﬁ

—~3%4 AJAD M 2 (SO )
%(\-—xvo%% + A4 2 () A 3

= _ﬂ ) > © (F. 7. C)
5 {x ‘? (GE4L) @; &Bﬂ?(\m‘% Av

— IR W (W0 - ::‘(u))}

Tangential Stress

N B =0 (F. 8)
( E?t)()\) satisfies the equation identically)
Radial Heat Flux
Teo: WO S R (GUDE) — ADS 1
— EO1L & (GODg) ~ AD (F.9.2)

= ~ -So Y ) _ —~
Tl S& 3 +{E M (A-AD6) @;M“’(U'O)B

s (0 [ (E0) - B8
~ (D44 (@0 - 4t

(F.9.b)

= -4} 2 SL_E% 3 (\I:&Z (Do~ h‘?(oﬂ%

s A
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If the series are truncated after w=N terms, e.g.,

N
o= ‘“2 A @) Gos(ne)
=0

the number of equations becomes (IN+S) inthe (GNY®)

dependent variables;
& A R & =) )
QA“ )A’V\ ) &\ )} %ﬁ) C’\'\ > CM ) DYE\\-)) D’“ ) > 'Y\EQ)\,..)N

The boundary conditions become;

¥=\ (=2

A:*(\\— A= o) W=\

® G, ,(ye1 =~ coso or { .
G = AP 0= -2

(i) N(LB)= SIS or  IYw~-3P0= 12
(iii) t+ W= o or Dfr\{) - b-:) W\)=0
(iv) NL(\)B‘) =0 or Qv.“*)(\) - C-y\(-)(\\)t o

%<0 (V=Yo):
W G oe)=0 or  BE + A D=0

wi) G (oe)=0 or B +IP@ =0
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(vil) L, (o) or | We+oIy =20
W+ Wo= O o

(viii) (NH-Q-%_ {'_"‘)x-_: -@ M {Iz(o, o) -+ 'P(,O,\)

COW+4 V06 = - & u, (0,0)

Q@+ DRO= R ; w0

where

Flon= %‘ Fa () eos (ne)
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APPENDIX G
COMPUTATION OF THE DRAG-LOW SPEED FLOW

S

The drag on the sphere is computed from the normal stress

it

and the shear stress on the body. Since the boundary conditions re-

quire that the radial velocity vanish on the body the normal stress and

the shear stress are given by -E:( and EQ . The drag be-
comes
= D -\ (R swe
D= SA (E\'T>V.e‘g(%dk &A(PYQBYWL db‘ (G. 1)

where dA= Yeswe &a&@ for a sphere

Taking into account the symmetry with respect to # , Equation (G. 1)

can be integrated

T w
(& (G.2)
D= I\T\‘}%‘ Jo@" Sfe ane de -S@ﬂb‘glﬁ"b e E
(=]
The drag coefficient is defined by
C—b = »
Lrenqs, T (G.3)

v ~
= ?ﬂ’j{ S@" LSRN do - S b@@ﬁsv :»ale e }).
(<}

where
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APPENDIX H
COMPUTATION OF THE AVERAGE HEAT TRANSFER

The average heat transfer for a sphere is given by

Qe = *“QSA\GrX.,,M (H.1)
where
dh= Y2 sho dedd for a sphere
(@(‘)Y=_° = radial heat flux at the sphere
surface

For spherical symtﬁetry and in terms of the non-dimensional quanti~

ties
o - A
Que = Qae = B\ swedo (H.2)
A Ralp + }Q‘)&ro
h Ay -
where where Qv = Qe
Nl
The Stanton number is defined by
Sv= _Gu = Qave (H. 3)
W% (B-B) ()
where “TA = adiabatic wall temperature
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But for a perfect gas the specific heat coefficient at constant

pressure is given by

@ TRy

This means that the definition of the Stanton number depends on the

molecular model, e.g.,

VY= 2% R = number of degrees of
= freedom

In the derivation of the collision integral for the Boltzmann equation
only the translational energy was taken into account. Therefore, all
the results are rigorously valid only for a monatomic gas ( 2=3 ),
If the results are to be compared with experiments for polyatomic

gases the Stanton number must be defined in a way which is indepen-

dent of ¥
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APPENDIX I
MOMENTS FOR HIGH SPEED FLOW

The definitions of the moments and the non-dimensional var-

iables are the same as for the low speed approximation.

W= *= T + (\-xvﬂ_z_,_ 3 @rv\ () *’L‘%_ Cos®

\

= MW = Mol ¥ (GOWTT 4 (2% Wk, e ~ 2 6¢9)
Vo4 7 M 2 Y Qe

e = Wl - Wl (\ L= A

§T\'E ?vr =y '\"ﬁz?'z_ + (\"‘@)@

NET
» o

+ REMEHTR T cse + T %0
{1 Spes

Bo= PMERIZ 4T +% (1+ 22)RT
+ W MO §0 3R come
Phe= Wl x (s l”%}’“% A M (e TR T cose
Bo= ¥R - (o {EM AET, swe
Treem D = WERT C3TAR, + I (ORI
L
+2 (BOROT, e

Fee= p I VT2 +3WNT -2 [y Coxniof ) aome

Q«FO
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ol d ~ o~ ~ ~ o A ~‘5
Proo = TW FTaNT + ValTy (‘__\e__g)} R

L () RWT wse

Dae= Walite + L (B -2) MG e -\_@M‘Wﬁ’h
¥

g'np:O

Doge= Mala e — & L+ Jasx Aox*-3) LGRS, swe

A

B
il
W
M«»
=
kd}
‘
|
°$
%
Mw
3
%
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APPENDIX J
MOMENT EQUATIONS-HIGH SPEED FLOW

Continuity
(R 3 (Flly) + 2Wfl, + (e B )T

+ (\-aa)z(xg) %‘@‘W\) Gkse + %&‘ %x (“"L\@)

-3 ( \+ ’9-'%’5-) SNe %B("?\‘WQ =0 .1

where %u&,t,) is assumec proportional to (\-\}) to satisfy the

free molecule flow lirait as in the low speed case (Appendix D).

Radial Momentum

IR X () 2 (W) + 2Wlr + (tetot ) WiV
—\7\';\7}‘3-\- Co %x () (\-xs%a_a:) %XW\:T{)
+ @ M i(\ﬁ&a_‘) %X(vﬁ.) + (\i':\j%\fé‘) %‘(ﬁ\ﬁ,ﬁ)me

(J. 2)

- (=P swe %b(‘ﬁm.ﬁ:,)?) =0

)
where %v' (&) is assumed proportional to (\%®) to satisfy the

free molecule flow limit as in the low speed case (Appendix D ).
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Tangential Momentum

m{(\% > (WE%) +2MGT. + (o %) “?@2'13

+ E—L_\ﬁ M %‘ (t??? %(QW\\T\E)S\\DE X (Hl) Cose %et-ﬁ‘\;‘ﬁ)
L2 L (1 28y 2 (R = 0

(J.3)

Radial Stress

W) (0 3 (G + 2Tl + (o 5o) TSl
-2V Y+ 3 (e 3, (W)

v 0 g5 3 (WPR) + 2 Wi,
W
(J.4)

3 (\.)‘?. \—\5) ~ Al D
-\-_2_. )g( CSe0 %x (‘Y\\W(\',)

4 (et 2 (WD)~ (v 5"5-'5’\3)3\“9 2 (“'\G‘f\)

S;

A &ec
S
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APPENDIX K
SEPARATION OF VARIABLES — HIGH SPEED FLOW

Substituting the separation of variables assumed in Section V.D,

the four moment equations from Appendix J become;

Continuity

Cose SL(;—;@ %( NS, c\%?g\f@ o_\% + 202(Ba)

(K. 1)
+ (=2F gy -
A\S o O
Radial Momentum
e itcns?e DD Naat + zmzu,_(uﬁ\rg]
—Sws N2V, (\A—;\-V;)g * (o C’“‘)l (K. 2)

4 (\-‘K‘)(\%& V5SS o\\l\ } CesS P WF, (o )(\ 3&u\~o

Tangential Momentum

Shb ase PN 31(1;3 & Nallav, + 2N2V, m-zwag

—see r &:\S‘i’ %\—— (K. 3)
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Radial Stress

e {co@e [(_\3;(13 A MlE + 2003 Quzwzﬂ
— asnfe ase NaleVa (Ugd\2) :(S

4 (056 Sl%&%@ % Nallp + 3 (*ﬁ@@ A o_\%: + znz(uf«\a)k

(K. 4)

+ (u xz)(\%\rT\ AN —
N

Wi
s
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APPENDIX L
COMPUTATION OF THE DRAG — HIGH SPEED FLOW -

In the hypersonic limit the drag of a sphere in FMF is deter-
mined by integrating over the "front" half of the sphere from ©=0
to 6=-{- . For example if the drag coefficient is written as the

sSum

— ) @

where

W
Cb = contribution to the drag by
integrating over O £064 3{

I

@) . ,
Cp = contribution to the drag by
integrating over L gog™

It can easily be shown that in the FMF limit

@
limit Cy =0
o
This result is analogous to the Newtonian impact model in hypersonic

continuum flow where the drag is determined by the surfaces on which

the free stream impinges.

The normal stress on the body is given by K"E«-\Xam and
and the shear stress is given by (E\ve\x___o . The drag is then
given by

T

N
= 2 )
D W2 { S (_B‘Y)xfgse e Ao
o {L.2)

- S:%@w)ks:se As g
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Although the present theory is, strictly speaking, valid only
near the stagriation point the parametric functions appearing in the
normal stress and shear stress will be evaluated at the stagnation
point then integrated over the surface to obtain the drag. This pro-
cedure is similar to Lees correction of the Newtonian flow pressure

coefficient (Reference 34). The normal stress on the body is

@Y\'\xg ® = @YX\(:u

WoleTn
= WA\ i@ ot + N2l

@)

(L. 3)

and the shear stress is given by

@QX‘E @“_":g = YN BTROVE) swe ese (L. 4)
I

where
Ny = — {28 Ne© Tk, )

and

2‘::\1 .ﬁ :) - -[EMF o sse - Kx,_(ﬂ N, (6)

Substituting these equations into Equation (L. 2) gives for the drag

coefficient

D
A bR

CDE

P

= Moo fmh- Re- 3 L wowe

4 2N

TV (L. 5)
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In the FMF limit
NE =
_ I X 2
& = 2*%(‘%%’* T (L. 6)

which is the correct value given in Reference 1. In the conticuum

limit the drag coefficient obtained from the Newtonian impact theory

gives
G =)
which is reduced to
Ch= 2
=3

if a correction is made for the surface curvature.
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APPENDIX M

PHYSICAL INTERPRETATION OF G®&3)

Chimieleski and Ferzinger36 show that the local Maxwellian

distribution function

(\A\

_B-RR (M. 1)
(‘mv:{ )3 EXad ._(S

can be represented in the sense of generalized functions by an expan-
sion in terms of the delta function and its derivatives and a power

. . Ve
series in ¢ .

n S e
Nes 2™ (%)

(M. 2)

where -Q-g_z -q-— ..L

In the present study the distribution function is assumed to be com-
posed of two parts; the first a generalized Maxwellian distribution
function and the second an expansion in terms of derivatives of the
delta function. The representation of the distribution function in the

preseni study is given by Equations (3. 1) and (3. 2) and Figure M. 1

§=G= g\m(\'pﬁ){- Qle?) in region (1) (M. 3)
and
L\ . S:_“B(w,a{ﬁ-&- Qlked) in region (2) (M. 4)

(Y (
Both of the functions §, > and S;;w are given by
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9¥1

DISTRIBUTION FUNCTION FIRST MOMENT SECOND MOMENT

AND ZEROTH MOMENT (VELOCITY) (ENERGY)
(DENSITY)
T %2 P
() M () 20k
S;_}"’ Sg(?&‘- #0 ?rgL)‘* Ssrgt.ﬂohr FO Trzgi.-’_~§.gfg"«. RFo
~w e ]
! /\ ' /\
]
]
' > — ae ] -
U 8¢ L S
o oo 00
fu—= SSL‘Agrzo t 3 T S?,Sq RA#O elu g?,,’gqo\a‘so
~> et ~w

G”
Gl

- k.

« RS VU 3 Ve o

ltwk @280 limek ¢’»0 Lot €250
- o . 00
‘F ™ Sg 2dR=0 &fa i I SL?A? =0 % g(‘!* S?: g C‘z&v +0
&' e <’ e
v ¥ \VAAYA 2 %
vk &0 ey €/>0 vt >0

FIGURE M. 1



$eeR)= M ewp i. (@ et BVt 4921 (M. 5)
(TR () 72 Z R\ (e)

L2
The function C;(v,bﬁ') appearing in both §\ and §, are assumed to

take the form
w 3

Qeed=2. 2, cg (ne) 3©) S("TQ A" t LAY (M. 6)

N=o s\

subject to the following restriction

S’Q Qe =0 (M. 7)

-
This last condition guarentees that Q) does not contribute to
the total number of particles in physical space; i, e., no matter how
Gfﬂﬁﬁ) affects the flow field, it does not act as a mass source.
Equation (M, 7) is always satistied if the first term %(:) (8  in
Equation (M. 6) is taken to be zero. The summation for G(Tb‘,'{‘) in

Equation (M. 6) then extends from n=1 to infinity.

Since it is difficult to sketch the distribution function in ail
three velocity coordinates, the following one dimensional velocity dis-
tribution will be utilized to illustrate the physical meaning of the as-
sumed form of the distribution function, Taking the radical particle
velocity, §¢ , to be the single independent variable in velocity
space, one may write the one dimensional distribution function in the

form

fhesm)= Sile) o~ - Wtrely® K+ GUetd s

2 R‘\'\(v, &)
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where
Qcke)= function of " (v8) and W (V)

Gloes)= 9V0e) 3Gy + 9" @e) d SE
0,

4 0 (,8) %}%m X (M. 9)

From Equation (M. 7) the first term of Q(V,e-,s*,) is equal to zero

and ?(, becomes

T ?
Scioma= Sclow) exg § - RLme) 5

+ o4VG,e) %!G:S(TD + (8 %:&S}) \ -
. 3

¥

= gfn)+ -‘c‘ * Stz *o
(M. 10)
Before any interpretation of the distribution function is attempted, a
graphical representation of the delta function and its derivatives is
instructive. Although the delta function (or for that matter, any

symbolic function) is defined only by its integral property
o
S TR Gev) dx = Flo) (M. 11)
-

it can be interpreted as the limit of the following schematic represen-

tation as €’ tends to zero.
S(Qr) Sﬁ\v)

limit €~ 0
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The first derivative is the dipole given by

d §
Y &) i{g@,}
limit &0 ‘
wr K> ™

Higher derivatives can be obtained by a simple extension of this pro-
(w)

cedure. The first three terms of the distribution function %i » $¢, and

gtz are given schematically in the first column in the Table 1 at the

end of this appendix.

One can interpret the contribution from G(*;eﬁ,\ to the distri-
bution function §{ froma physical viewpoint in the following way.

The representation of the dipole is given by

N S~ %}QO

"
- "L\
/
°

L '
; . %
Ly

The incremental velocity element oﬁ‘," is chosen in the following way

I = dg/ (M. 12)

s\,‘: == ;:\
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The number of particles described by S\;\ at a position in physical

space is given by

x
N= _SbS-u (Ri%r) I8, (M. 13)
Therefore, in the incremental element J§/
dN' 2 £ (K8 oS (M. 14)
and in the element ‘
dv'z Fo @3nase (M. 15)

However the conditions specified by Equation (M. 13) require that the

same dV'+ AN is zero, i.e.,
'y AL ‘ {
dus vy So o)+ S oy

~ [} " "
= <} g+ $al aﬁr =0

Therefore, one can interpret the dipole as contributing an equal num-
ber of particles dN' and dN" with small velocities whose sum is
always zero. In this way the dipole does not contribute to the density
in physical space. Although the contribution from the dipole to the
total number of particles is zero it does make a net contribution to the

mean velocity since the integral
”
SQ\'QQ %
~®

is not zero. A similar interpretation can be given to the second de-
rivative of the delta function except that its contribution to the energy

is nonzero, i. e.,

:Se ?{L gi.zd“\" %0
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In terms of the moments of the distribution function, the phys-
ical interpretation is clear. From the first column in Table 1 the
function Q(0e;%y) does not contribute to the total number of par-
ticles, in the second column only the Maxwellian, S?ﬂ , and the
second term, gi,\ » will contribute to the mean velocity. Therefore,
the dipole term acts as a momentum source. In the last column the
dipole does not contribute to the moment corresponding to the trans-
lational energy but the third term, g(g , does contribute and can

be interpreted as an energy source.
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FIGURE 3
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