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ABSTRACT

The problem of flow over a sphere is investigated within the

framewoi k of kinetic theory of gases. Solutions are sought whioh

describe the flow field for a large range of fluid densities. The gov-

erning equation for all density levels is the Boltzmann equation, which

is a nonlinear integro differential equation. Instead of attempting to

solve the Boltzmann equation exactly, one may be concerned primarily

with certain mean quantities such as velocity, density, pressure, etc. ,

but not the distribution function itself. One is then led to consider the

moment equations of the Boltzmann equation or the Maxwell equation

of transfer.

The essence of the moment method consists in finding the un-

known parametric functions introduced in the velocity distribution

function f . In practice, the moment method can best be initiated

with full knowledge of ^ in the free molecule flow limit. For the

problem of flow over a closed body this information is often not avail-

able. It is found that in the free molecule flow limit the distribution

function for the flow over a sphere can be represented by '

^_ ^1_ 4,
(z—f )+ G(I,t)

for all molecules which have velocity vectors lying in a cone subtended
by the sphere, and

7 ` ^2 = *z W (X ,) t G (1c, S

for all molecules whose velocity vector is directed into the region ex-
ternal to this conical region. The functions ;;u; ^i") are Maxwellian
distribution functions evaluated by the conditions at the sphere and the

free stream respectively. The function Clo ji) is determined by

satisfying; the moment equations from the homogeneous Maxwell equa-

tion of transfer and the boundary conditions on the solid surface.
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The formulation for studies in the transition regime is accrim-
0►1 p+^lplished by introducing parametric functions into ^^ ,^}s and

Closure of the moment method is accomplished by taking the number

of moments equal to the number of parametric functions.

The present investigation for flow over a sphere is restricted

to the two limiting cases; low speed flow, where the Mach number is

very small, and the high speed approximation for very large Mach num-

bers. In the low speed approximation the solution is found by solving

the six moment equations corresponding to; continuity, radial momen-

tum, tangential momentum, energy, shear stress, and radial heat flux.

Analytical solutions are obtained for the six equations and the computed

drag and heat transfer compare favorably with existing measurements.

For the high speed case four moments are taken but the gov-

erning partial differential equations are nonlinear and a simple separ-

ation of variables cannot be found for the general case. However, if

an expansion for small angles (6 « l) is assumed, the resulting

ordinary differential equations can be integrated numerically. Fur-

thermore, if one also makes the assumption of large mean free path,

an analytical solution can be obtained. The results from the high
speed analysis are found to show acceptable agreement with the drag

and density measurements.
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CHAPTER I — INTRODUCTION

The motion of a finite body in a fluid of infinite extent for all

density levels is in general characterized by two parameters; the

Mach number, M , and the mean free path, 	 (henceforth abbre-

viated MFP). The two extremes of the MFP, 	 o and X= co , cor-

respond respectively to the continuum limit and the free molecule flow
limit (henceforth abbreviated FMF limit). In the continuum limit the

particle density is high enough so that collisions between particles

dominate whereas in the FMF limit the collisions between particles

are of secondary importance in comparison to collisions between par-

ticles and solid boundaries.

The governing equations in the continuum limit are the Navier

Stokes equations whose solutions in general differ greatly between sub-

sonic and supersonic flow. In the FMF limit the mean quantities such

as density, pressure, and temperature at the solid surface are found

directly by making mass, momentum, and energy balances. The solu-

tion in this limit was investigated for simple convex geometries by

Ashley  and Heinemann  for all values of the Mach number. For any

value of the MFP between the two extremes there exists the transition

region. When the MFP is not small the transport relations which are

normally adopted in the continuum regime will no longer be valid.

The Boltzmann equation for the distribution function, f(r)j,-t) ,

is generally accepted as the fundamental equation for the entire range

of MFP. The Boltzmann equation may be written

4- 	 a-^4, ` Wcollisions	 (1. 1)

1

x	 -



where

C^^wt^ dx 
^^ number of particles in the com-

bined volumes dx and A? the
same time

axi. =particle velocity
Tt = t —

t = ern ' C-^x^^

-^ =	 instantaneous local angular velocity
associated with coordinate curvature

^^ X ^^	 0	 for Cartesian coordinates

The collision integral is given by

4	 11.-A Ids	 C^*?Lw)A^"	
(1.2)

Z)collisions  

Equation (1. 1) in orthogonal curvilinear coordinates is given in

Appendix (A).

If the Boltzmann equation is properly nondimensionalized and

all the normalized quantities are designated by a tilde, (~ ), we find

4(1.3),,CC	 •-c	 TaX + ^u ^-X ^^ a~'	 Kin (^t1 collisions\ 1

where
Kr = L = Knudsen Number

2



In the continuum limit (1;;-0) the collision integral vanishes. This

leads to the well-known Maxwellian distribution function which de-

scribes a situation in which the collisions between particles are so

numerous that local equilibrf.um is always maintained. For the FMF

limit (kNe ao) Equation (1. 3) becomes the homogeneous Boltzmann equa-

tion

v
4 + ^ â . + L^^ -(OX ^^ a	 o
5Z	 rk	 `^^cC	

(1.4)

which may be solved by the method of characteristics.

The difficulties in solving the Boltzmann equation for a finite

value of 1^ are obvious. The Boltzmann equation is in general a non-

linear integro differential equation to which an exact solution for a

realistic boundary value problem has not been found. In view of these

difficulties, various methods of approximations have been applied to

the Boltzmann equation as summarized by Lees. 3

The most well-known approximation is the Chapman Enskog4

method which assumes an expansion in the Knudsen number

where	 ^ 
Co) ` local Maxwellian distribution function

The convergence of this expansion has never been shown and one would

conjecture that the expansion is valid only for V-.,« 1.

An analogous expansion for the other extreme of the MFP is the

Knudsen iteration

k^

3



where	 FMF = FMF distribution function

Applications of this method to flow problems between parallel plates 

have shown that the Knudsen iteration is invalid for this choice of ge-

ometry. Although no general statement of validity can be made about

this scheme, it appears to be more questionable than the Chapman-

Enskog expansion.

Another familiar approximation is to replace the collision in-

tegral by a simple relaxation equation

Ĉ 1	 = v (^(O^  —; )	 (1.5)
)collisions

y _ characteristic frequency

This simple kinetic model is most often referred to as the BGK 5 model

and the resulting simplified Boltzmann equation is usually called the

Krook equation. Although this " linearization" (Equation 1. 5 is linear

if f(o) is a constant Maxwellian) greatly simplifies the Boltzmann equa-

tion, the relationship between this linear model and the full collision

integral has never been fully established.

Most of the previous attempts to solve the problem of a sphere

moving in an infinite fluid have employed one or a combination of the

preceeding three assumptions. For example, in attempting to extend

the continuum solution into the transition regime, one can utilize the

Chapman-Enskog expansion to make a correction to the continuum re-

sult. This is usually accomplished by modifying the "no slip" boundary

condition at the solid surface. From a simple kinetic theory model the

slip velocity is found to be proportional to the MFP.

For large MFP, many investigators have made use of the

Knudsen iteration to obtain the near FMF solutions. These results are

characterized by complicated computational procedures and the validity

4



of extending these solutions into the transition regime remains ques-

tionable. The great effort expended to obtain approximate solutions to

the Boltzmann equation is further indication of the difficulty in finding

solutions for all values of the MFP.

Instead of attempting to solve the Boltzmann equation exactly,

one may be concerned primarily with certain mean quantities such as

velocity, density, pressure, etc. , but not the distribution function

itself. One is then led to consider the moment equations of the

Boltzmann equation or the Maxwell equation of transfer.

5
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CHAPTER II — MOMENT METHOD SOLUTION OF
THE BOLTZMANN EQUATION

II. A Maxwell's Equation of Transfer

If i^(f_) is any function of particle velocity, the mean value of ;I

is defined by

'Y1	 (2.1)

where for J= I the number density is given by

Multiplying the Boltzmann equation by I (^'-) and integrating over

velocity space, d, , one obtains the Maxwell equation of transfer

where

(2.3)

4 — 	 change inTj due to collision

If an infinite number of moments are taken (an infinite number

of it) and the resulting equations are satisfied, the solution is equiva-

lent to solving the Boltzmann equation exactly. But to solve an infinite

set of equations would be at least as difficult to solve as the original

Boltzmann equation.

The problem of evaluating the collision integral remains, but

in this case the integration is extended to the six dimensional velocity

space Jed? which simplifies the computation. Furthermore, if

t) is taken to be any of the five scalar invariants for perfectly

7



	

elastic collisions; mass ( ;I = m)	 j	 momentum	 =vh t

l I X2,3	 and energy	 _ -M/Z	 the integral

vanishes since for these moments. For moments which cor-

respond to nonzero Al a great simplification is achieved by adopting

Maxwell's inverse fifth power law for the force field between colliding

particles. This force field corresponds to an intermolecular potential

given by

	

a- 	 (2. 4)

where
Q = constant

For this potential, the collision integral is independent of the relative

velocity of colliding particles R" "^r l and can be readily integrated.35

It was shown by Maxwell that the collision integral ?Aj ) for the non-

vanishing moments corresponding to the stress (?,= m£ S 10.)

and to the treat flux ^^ 1f`^ 1 Z /Zare given by35

	

Ai (Y►?S1k) ° 37 Az(4) m 	 (2. 5)

A2(4)= pure number
and

_ 	 3 _ _
0^ ^ 3 2/Z.^ = 31T Az(4^ Flf-8Qnr-^n S Q j + ^` ^^c'^	 (2.6)

The viscosity coefficient for the Maxwcllian molecuie is found to be 35

	

RICL
^ 1	 (2.7)

3lT Az	 3 (4

Assuming Maxwell's relationship between the viscosity and the MFP

at the free stream conditions one obtains

8



aD — 2	 •bo . G	
(2. 8)

where	 r _ $ -^ Lm

and substituting Equations (2. 7) and (2. 8) into Equations (2. 5) and

(2. 6), one obtains

and

71y _	 _ 3
Al (YY%T;f/z)=	 ^.'n1 (^ \ r (^ t	 ^^ ^^ b̂	 (2.10)

ao

Although this choice for the intermolecular potential is highly idealized

it affords the greatest simplification while preserving the nonlinear

character of the collision integral. If a more accurate description of

a real gas is found to be necessary more realistic intermolecular po-

tentials can be used. However from previous investigations (3,16,17,23)

in which the Maxwell inverse fifth power law was utilized gross aero-

dynamics quantities compared favorably with the experimental results.

9



II. B	 the Moment Method

Two major criticisms of the moment method are

(1) Truncation of the Equations

(2) Closure

(1) Truncation of the Equations

A finite number (N) of moments is normally taken in all

schemes involving the moment method. This necessary trunca-

tion is one of the main criticisms, nevertheless it allows the

introduction of some physical insight at a very early stage.

For example, by taking the moments corresponding to the five

scalar collision invariants, the integral 4^5 vanishes and a

set of equations is obtained which reduces to the familiar con-

servation in continuum fluid mechanics. For a given problem

some moments are more important than. others. As a rule of

thumb, knowledge of the lower moments which have obvious

physical meaning are preferred. The error made in truncating

the equations cannot be determined since no convergence of the

moment method for the Boltzmann equation has been studied

systematically.

(2) Closure problem

A second difficulty in the moment technique is that the

Nth moment equation contains the (N+%)5T moment. A clo-

sure problem exists since a complete formulation requires that

the number of dependent variables be equal to the number of

equations. The general procedure to effect the closure is to

assume that the distribution function may be expressed in

terms of "N" parametric functions of the spatial variables,

^ - ^ to ) "% (V), "t cT) ' ... , N %(it) )

11



where

H ^ (x) a parametric functions

The "N" moment equations now result in "N" equations in the

"N" unknown parametric functions (N, Nz) a 0 , .) "% )	 . The

shortcoming of this procedure is that there is no unique method to

choose the parametric functions. This is a common failing of most

integral techniques; e. g. , the Raleigh-Ritz Method or the Karman-

Pohlhausen Method in boundary layer theory, but the validity should be

judged by the results produced.

In spite of these valid criticisms, the moment method appears

to offer the most promise to obtain results for the complete range of

fluid densities while retaining the essential nonlinear features of the

Boltzmann equation.

12



II. C Moment Method Solutions

(1) Grad's Thirteen Moment Method

Grad assumed a distribution function which was a

perturbation over the local Maxwellian by the local

stresses and heat fluxes

oQ Q (,_ C.^tCj _	
RZ ` SRT^ (2.11)

^= L-, Z 'KT	 i=1 ^

Whenthe moment equations corresponding to the five

scalar invariants are computed, thirteen dependent var-

iables appear in the five conservation equations. These

thirteen functions of the spacial coordinates are

n ) ^ ^)	 ^L3 ) 4 i

The stress ^tI is a symmetric tensor and represents

only six unknowns.

As pointed out by Lees, 3 Grad's method gives qualitatively good re-

sults for relatively sir.ple problems such as the loin speed Couette
flow, but introduces undesirable couplings between stresses and heat

fluxes for more difficult problems. The chief criticism, however, is

that in using polynomials in the particle velocity the distribution func-

tion is continuous in velocity space and thus cani.-lot exhibit the dis-

continuity in velocity which is essential in the FMF limit for flows

with solid boundari -s

(2) Mott-Smith Bimodel Method?

Mott-Smith employed a bimodel distribution function

to study the structure of a strong normal shock wave.

13
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He assumed that the distribution function was given by the

sum of two full range Maxwellian type distributions

7 — ^ (M) _.^ S (M)

d	 P.

where ;4. represents the supersonic upstream particles

and ^ represents the subsonic downstream particles.

The Maxwellian distribution for ^.%) was assumed to be

_	 C^—iza)-j	 (2.12)
R-C.itx ))'/z	 ^	 2. WT-1 it)

and for	 (	 , a( is replaced by P. In general each of the

distribution functions contains five parametric functions

ul .\)	 which must be determined from the

moment equations. If this model is applied to problems

with solid boundaries the bimodel distribution would be

incorrect in the FMF limit.

(3) Lees Two Stream Maxwellian3

Lees generalized Mott-Smith's formulation so that

the following requirements were satisfied by the distri-

bution function. First, the distribution function must

have a discontinuity in the velocity space which is essen-

tial in the FMF limit; second, the distribution function

must be capable of providing a smooth transition from

the FMF limit to the continuum regime, and; third,

that it lead to the simplest set of differential equations and

boundary conditions consistent with the first two require-

ments.

The first condition of discontinuity in velocity or two-sidedness

of the distribution function is fulfilled if one could generalize the FMF

14



solution. The time independent Boltzmann equation with no external

forces in Cartesian coordinates for the FMF limit is given by

^1 b +	 - ^z -cz	
aajc,y = O	 (2.13)

The characteristics of Equation (2. 13) are given by

dX+ c o^Xz	 dX3	 01^+	 ^z	 ^4^a (2.14)
^+	 ^Z	 ^3	 0	 0	 0

which shows that the distribution function is constant along the particle

trajectories

XJ x; ^ , = b

where	 4j = constant

These characteristics are straight lines in the physical space

( Xl,1(2 , -Ka. ) moving with unchanged velocity (^ =b„ `^'s bz , ^^^	 )

in both directions from solid surfaces. As stated by Lees  the distri-

bution function at a given point in physical space is governed by the

"line of sight" principle of geometrical optics. Lees separates the

space into the two regions shown in Figure 1.

According to the "line of sight" principle the effect of the body

at a point	 1! (-A' 	(Figure 1) is confined to the conical surface

generated by tangent lines from 	 P (x,,Xt) lts) to the surface. For

the simple boundary conditions of diffuse reemission (see Section

III. B) at the solid surfaces the distribution function for all the par-

ticles with velocity vectors in the cone, region (1), directed away

from the surface is the Maxwellian characterized by the velocity and

15



temperature of the solid surface. The remaining velocity vectors,

region (2), are characterized by the free stream Maxwellian.

Based on these observations Lees generalized the FMF solu-

tion by the following representation:

For	 lying in region (1) the distribution function is given by

	

3/z 	

(

(jr)

^l,C^cT	
(2.15)

(,a q +RT LX ^)	 a  

and a similar expression for region (2)

The quantities, VC (T) -T^Qk) > ^.k ^  ) j ` ^ 3 Z	 'represent
ten parametric functions of 	 X	 which can be determined from

ten partial differential equations resulting from taking ten moment

equations. Since the distribution function is completely determined

once the parametric functions are found all microscopic quantities

such as velocity, density, and pressure can be computed.

The particular choice of the ten moment equations is not

unique. But in all problems the goal is to satisfy the conservation

equations and at least one moment resulting in a nonvanishing col-

lision integral.

Although the method proposed by Lees has obvious shortcom-

ings, it has been sucessfully applied to problems concerned with a

fluid of finite extent and/or nonlinear problems with plane boundaries.

16



H. D Free Molecule Flow Solution

Any method which proposes to be true in the FMF limit, such

as Lees' Method, must begin with the correct FMF distribution function.

The correct FMF distribution function results from solving the

Boltzmann equation in the limit kr^ ► co	 , where the collision in-

tegral vanishes. The time independent Boltzmann equation with no ex-

ternal forces is given for spherical coordinates (Appendix (A))

r^lr } 0	 r C le -	
a

Y^ Cie ^^` rc' 	e

where symmetry with respect to the angle ^ has bf:en assumed.

The characteristics of Equation (2. 16) are

dr _	 _	 = Or	 b	 (2.17)(1 'z4y)	 z

In cartesian coordinates the characteristics for the homogeneous

Boltzmann equation were found from a simple integration (Section

II. C. 3). But in the spherical case the equations given by Equation

(2. 17) are much more difficult to integrate.

The following exposition illustrates this difficulty. Lees 

assumed that the distribution function could be generalized from a

cartesian type Maxwellian (Equation 2. 15)

(2.15)

(Z-T 'RTtm
	

Z RTC (x n
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where

U^= ^tlrZ ^U^et ) U00;)

When Equation (2. 15) is substj

requires that
FHF

[urlCr,e^7

[ue) 
tr/b>̂  FHA

FNF
1n L (re)^]

[ Tc ('0 6) 
]IMF

.tuted into Equation (2. 16) the solution

L Cos A

= K 0(Z) SI1J6 
(2.18)

= Xis

where
` = constant

ute = O from s-,,mmetry

The uniform flow conditions in the free stream (r= co) requires

that the following boundary conditions be satisfied for all values of the

MFP

; =- 7-

urz(n A) _ - %QG CM e
UeZC^,a) _ — %,,	

(2. 19)
N)z	 Inco

TZ (c,e) = Too

These conditions are consistent with the requirements of Equation

(2.18)

The boundary conditions for diffuse reemission at the surface

of a stationary sphere (y,= ,r.) requires (see Section (III. B)) that for

all values of the MFP

18
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Ur% (C0 ^8^ _ 0

U e ^ro,e1= o
(2.20)

T (rot e) = -Tb

In order to satisfy the condition of zero mass flux at the surface in the

FMF limit the number density of the reflected particles is given in

Appendix E to be

ff'* Mdse  ' 
je4 / mcosq@ 	 (2.21)

Since the reflected particles are identified as group (1) , I% at the

surface is identified with 'fi b and must be a function of the angle 9
to insure the condition of zero mass transfer at the surface. There-

fore, only three of the four conditions given by Equation (2. 18) are

satisfied at the sphere surface.

Equation (2. 21) shows that a generalization of the Cartesian

type Maxwellian distribution function cannot satisfy the boundary con-

ditions on a body with finite curvatures and the Boltzmann equation in

the FMF limit. If the homogeneous Boltzmann equation is not satisfied

the resulting moment equations cannot be correct in the FMF limit.

19
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CHAPTER III — PRESENT FORMULATION

III. A Definition of the Distribution Function

It was shown in the preceding section that the solution for the

FMF distribution function in spherical coordinates requires a solution

of five complicated first order differential equations. Even if a solu-

tion could be found it would most likely be too complicated to general-

ize for use in the moment method. An approximate method to satisfy

the homogeneous Poltzmann equation is to modify Lees' formulation

by defining the following distribution function (Figure 1)

7 - ;1 — 7 1 M (X) ^ ) * (- ^ R)	 in region (1)	 (3.1)

and

1T) ^ `i ^ )^i^ in region (2)	 (3.2)

where 0x 	is the generalized Cartesian Maxwellian given by

Lees.

The function q(7)-T) is determined from the following con-
ditions

(1) The boundary conditions are satisfied.

(2) The moment equations are satisfied in the FMF limit.

(3) q (Q)	 takes the simplest form consistent with (1)

and (2).

The average value of any function of particle velocity becomes

cej%ov%(Z)	 Y^ ►o^n 6 and Gz)

The advantage of defining	 and ^L so that they both contain the
same function qN—)t)	 is indicated in the last term where the

21



integration extends over the complete velocity space. This will lead

to a great simplification in computing the moments.

The explicit form of the function	 G )T) is determined by

the following considerations.

The cartesian type Maxwellian ^ `H) satisfies the Boltzmann

equation in the FMF limit but not the boundary conditions on the curved

surface. If G (3^10 is taken to be zero except at a finite number of

points in the velocity space, 3% and Sz. would satisfy the Boltzmann

equation except at these finite points in velocity space. Since the mo-

ments of the distribution function are integrals defined in velocity

space, gczm) must be integrable over that space. A quantity having

these two properties is the Dirac delta function. The function G (X M)

will be assumed to take the following general form in terms of the

delta function and its derivatives

c7o 3

n L=I	 ^r

where the cyclic order of permutation of the indices 
( L) ^^ 1R) must

be followed and

C

C^ 
0

CkT o

This choice of representation for qc,T) is certainly arbitrary,

just as the functional form of the distribution function ^ . However,

the consideration of the unique representation of ^ has never been a

major issue in any integral method. The simplification of integrating
the function q(Z)'T)	 over the complete velocity space is apparent
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since the integral of the delta function over a finite interval depends

on whether the argument of the delta function lies within the interval.

A physical interpretation of CgCT)f ) is given in Appendix M.

From the definition of ^(%4) the contribution of Ct to the

average value of 1 is found to be

region ( 1) and (2)

cc

`	 s+o

In arriving at Equation (3. 5) the following integral property of the delta
function has been used

m
M

ad	
cQxr 	^X1" X= Xo

To conserve the total number of particles the requirement that

CO

--►
	

(3.6)

is imposed. This condition is satisfied if

^ 011(x) - C) ^ ^,3	
(3.7)

It is found that the simplest form for 	 for the flow

over a sphere is an expansion in terms of derivatives with respect to

the radial particle velocity, Tr	 The particle velocity vector is

To ► 'tt 1
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and the spatial coordinates are

I = (r) e 14)

Therefore, for spherical symmetry

G(^)T)= C;Cr^e^)
and the integral is found to be

 ^ 
CA^ C^r b O^G cr^b; 	 = Z ^ I^^ ^ (re,	 ^^
	

(3.8)

The function G^^^g ^^ is determined in terms of the param-
etric functions appearing in	 ^-L( M)(r,g ^ ) and thus introduces no

additional variables into the distribution function. For exam ple, in

the problem of the flow over a sphere with spherical symmetry the

number of parametric functions becomes eight:

T trA

U,c^;, = O	 from symmetry

These eight functions are determined by satisfying eight ...o-

ment equations. Once these functions are determined, all mean quan-

tities such as velocity, density, and pressure can be computed.

In spherical coordinates Maxwell's equation of transfer is
given by (see Appendix A).
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I	 ^' ^ S
Z ^' ^ "2 ^	 +"TY 	 rsw E'^	 J

Ca	 -A;

— ^Cae' re^4+ lire] a- ^ 4 = A^

(3.9)

The eight moment equations necessary to determine the eight

parametric functions will be chosen to correspond to the equations of

continuity ( ij ti=*%, §,=O) , radial momentum (§z `^nly ozkz=0)
tangential momentum (^3 M41e, d^3 O} energy	 lfnm '

LL 14= 0) , shear stress ^^ _ ^(h^Ce^ C► .^ ^^^ (re >	 >
radial stress ( it._ yn^'T 6L= (40 err	 tangential

stress ( _	 eQe	 'I 
c
= GU isle)	 and the radial heat

flux (a= ^^^,^Z, 
^^g=^^`i4r^^r(4rri

The eight moment equations are given in Appendix B.

As stated by Lees  no integral method can be expected to pre-

dict phenomena such as flow separation or the details of wake forma-

tion behind bluff bodies in the continuum limit. In addition, the inves-

tigation of flow over a sphere will be restricted to the two limiting

cases, M« t	 (low speed) and M» k	 (hypersonic). In the

low speed case the solution can be investigated from the FMF limit to

the Stokes flow regime which spans a large range of Knudsen numbers.

For the continuum hypersonic limit the flow in front of the body is

relatively unaffected by the wake on the rear portion of the body and

again a wide range of Knudsen numbers may be investigated. These two

limiting cases are discussed in Chapter IV and Chapter V.
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III. B Boundary Conditions

The determination of the boundary conditions at a solid surface

is in itself one of the most fundamental and difficult problems in rare-

fied gas dynamics. For simplicity, diffuse reemission from solid

boundaries will be assumed. Referring to Figure 1, the incident par-

ticles at a convex solid surface belong to group (2) and the reemitted

particles belong to group (1). From the definition of the two stream

distribution function all particles with velocity vectors directed away

from the surface belong to group (1) and all others to group (2). For

diffuse reemission the emitted particles have a Maxwellian velocity

distribution corresponding to the wall temperature and the local sur-

face velocity.

Therefore, at the body surface

x=xb

uCx'b1= ub
T, (X 6) _ ^b

The condition of zero mass transfer at the wall is satisfied by

`t	
c	

_	 -
q	 )	 X("Y%	

at
b ^ N oRM AL — 	 O

The free stream is assumed to be in equilibrium and the d;s-

t2 ibution function is given by the local Maxwellian 3 = ^?) with

TZ l^^ - 1 CO
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Also since

_^) + `1 (r)e) 7	 in region (2)

must vanish as	 `f--f CO .

For the flow over a sphere with symmetry with respect to 	 the

boundary conditions at r= aO becomes

(L) Ur: (ale) = —U Coss

Ue2(00) 6) = 9040 SIW

(iti)

	

72 (OD)9) = -TcC	
(3. 10. a)

W "M05 e) = Y^00

If the sphere is stationary, U.6 =p	 the boundary conditions at the
surface r=ro becomes

(Z) Uri (ro ) e^) = O

	

(Ui) Lie 1 (ro)	 C,

b)

	

(wc) 71,(ro)e	 Ti.
(T1, is constant if the sphere is

assumed to have infinite
conductivity)

Cviti) ^^^r^ r_ro= o
To satisfy boundary condition (viii), the radial velocity is com-

	

puted from Equation (3. 3) by taking	 it=VIC .

Dr=	 ^^ 	 CM)^rd +(- 'I-	 (3.11)

^() â d (z)
The last term is found from Equation (3. 8) to be

< U (r,e,	 (3.12)
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It will be found later that 	 q(Cr^) has the following form

^(i) ry	 1
r^

This satisfies the condition that C^(r,® ) vanish at Y-.= to

Furthermore, this behavior of CS is analogous to the effect of a

doublet (or dipole) at the center of the sphere.

For invicid, irrotational, and incompressible flow over a

sphere, the velocity potential is given by

(r,^^ = ^^r^se + ^m z L̂ cos e

The first term is the effect of the free stream and the second term

represents a doublet at the center of the !7-)here. The doublet guaran-

tees the vanishing of the normal velocity at the surface of the sphere

q	 -	 = o

Analogous to the situation in potential flow theory, the appear-

ance of 	 effectively reduces the velocity of the impinging free

stream particles by placing a particle source at the center of the

sphere in such a way that the boundary condition of zero mass trans-

fer at the body is satisfied.

29
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III. C Grad's Asymptotic Solution

H. Grad 8 presented a survey of the flow regimes for the prob-

lem of flow over an object. In discussing some of the more interesting

limiting cases he observed that even for large MFP the elementary

FMF theory is not uniformly valid at large distances from the body.

The FMF theory is valid for a distance r from the body which is

small in comparison to the MFP, X. At a distance r comparable to

\ the incident and reflected streams interact and both will be

altered. In the limit as r becomes very large the Knudsen number

based on r ; KY^ = Y- , becomes zero for any finite value of the

MFP and an equilibrium situation or continuum flow conditions exist

far from the body. This nonuniformity in the flow field is not con-

fined to the case of very large MFP but exists for all values of X

and depends only on the length scale of interest. For example, if the

MFP is small the region of FMF conditions lies in a very thin layer

of order X from the body. Thus in every case FMF conditions exist

near the body, continuum flow conditions far from the body, and a

complex transition zone in between.

Grad's interest was with the correct limiting solution of the

Krook equation far from a small object. In cartesian coordinates for

steady flow and no external forces the Krook equation becomes

24V v	 — ^
°^	 , (3.13)

— 

Far from the small body located at the origin the disturbance produced

by the body appears as a point singularity. This observation led Grad

to modify the Krook equation by the addition of a point source at the

origin.

(3.14)
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The source 7TJ'') is a function of the particle velocity and

5(5C) is the delta function.

Sirovich9 showed that the source term is given by

	

T ) _ — S 11^^^^ ^- AA +O C A=.	 (3. 15)
A	 r

__3k__3k
where	 CXi ► V) 	 is the perturbation distribution function when- is

linearized about the free stream Maxwellian and

A = surface of the body
L = characteristic body length

The integral (3. 15) represents the perturbation mass flux from

the body and T(T) may be interpreted as a particle source which

adsorbs and emits particles such that the total number of particles is

conserved. To order (W the source is completely determined by

the boundary conditions on the surface and the body geometry.

M. H. Rose 10 applied Grad's formulation to the computation of

the drag on a sphere for the near FMF limit in the high speed limit.

She found that as the Knudsen number becomes infinite the source,

Q' ^T), becomes the net mass flow from the source of the FMF pertur-

bation solution. This solution represents the difference at any point

in space between the stream of particles reflected by the body and

those unable to reach the point due to the presence of the body.

The source term introduced into the Krook equation can be

compared to the assumed form of the distribution function in the pres-

ent study

32
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The function ^(r^bj) was introduced to satisfy the boundary con-

ditions at the surface of the body and the FMF limit. This is analo-

gous to the function of Grad's source term, q- (^ .

A further comparison can be made after taking moments of the

modified Krook equation corresponding to	 = -M ) 'Y^^^ `M
which results in the five scaler conservation equations

Continuity_	
(`

Momentum ( _ -Yn3z)

^- axe	 axe

(3. 16. b)

Energy

Z	 Txz `^ d

041A7

(3. 16. c)

Recall that these equations are asymptotic forms far from the body and

the terms involving T(T) represent the disturbance due to the body

at the origin. This disturbance can manifest itself in many ways but

it' must behave as a momentum sink if there is to be drag and an energy

sink if transfer of energy between the free stream and the body occurs.

From Equation (3. 16. a) conservation of mass requires that
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(3. 18)

S q- (f ) Ar =o	 (3. 17)

which guarantees that the total number of particles is conserved. If

there is no exchange of energy between body and stream Equation

(3. 16.c) requires that

These restrictions on the integrals involving the source "T
will be shown to be analogous to the integral properties associated

with the function G(r,w)T) in the present formulation.

Although the similarities between Grad's formulation and the

present one are numerous, Grad considers the asymptotic solution for

the Krook equation far from the body whereas in the present study no

approximation is made for the collision integral and the entire flow

field iF7 considered for all values of the MFP.
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(4.2)

CHAPTER IV — LOW SPEED FLOW

IV. A Introduction

The drag and heat transfer for a sphere at low mean speeds

will be investigated within the framework of the general formulation.

Near the continuum regime for small MFP Basset 11 made a slip flow

correction to the Stokes' drag formula. Goldberg 12 presented results

according to Grad's thirteen moment equations for small Knudsen

numbers. For large MFP the technique of Knudsen iteration has been

employed by Liu, Pang, and Jew 13 for the Boltzmann equation and by

Willis 14 using the Krook equation. Recently Lees and Brinker (pri-

vate communication) have obtained numerical solutions for the drag

based on the moment method, but the assumed form of the distribution

function and the number of moments are all quite different from the

present investigation. In their studies detailed analysis of the singu-

larity in the governing equations is made and an elaborate numerical

scheme is devised for the integration.

In the present study the distribution function was defined to be

in region (1)

and
	

(4. 1)

in region (2)

where ^L is the generalized cartesian Maxwellian distribution func-

tion given in spherical coordinates with angular symmetry with respect

to ^ (Figure 2)

1rl ^t^,e)	
exP — L lr-u^^rb)^^\^e V i trie)^ { ^4

t27 R-', fir► ^)^	 Z R^'^ r,e^
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where
l^^ (r, b) = U,(L (r, e)

Mr, e) I vXb c (r, e)

To compute the moments it is convenient to transform the rectangular

velocity space C r^^e )T@> into spherical coordinates	 C c.S ) 1Z^

From Figures 3 and 4

iz- le, +

CZ =
 Qb, ,	 r

(4.3)

The angle W is the conical angle which separates the velocity space

into two zones

= ^	 for	 0 -.. W < 2- d

= ^, for	 Z-d < U3 < -T

where0 ^ — 
Co's	

ro\

The integration limits for I and k are

6 , < ao

0 < ^q C 4W

The differential volume in spherical velocity space is

C(^ = I2 S IN (Z C^ CLa a-y -

(4.4)
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and the averagL value of
	

becomes
It o0

^' I2 S IN CO -A^ -A V(- da

o O O

ll' ?.^ as

-t--	 r6A)
!^
Z SIN c -3 Jk^	 (4. 5)

—O( O p

0 h
y^= I	 ^^rr = o

All mean quantities can be evaluated in terms of the eight parametric

functions but the integrals are complicated by the form of i
However, a great simplification is achieved at this stage by introducing

the low speed approximation into - 	 . Making the approximation of

low mean speed; i. e.,

the squares of the mean velocities can be neglected and ^ j becomes

^`M> ^' '^(1^	
eX^^—

_^Lu^Cp^w-4-V^SINcuCos lZ

	

211' R^'i.)^/^	 Z RTt	 I^T^

^^	 1+	 COS (Z	 s^N w cr^sn ewl? l

	

C
am- R-^ >̀ /z	 Tc	 RTt

(4.6)

The moments that appear in the eight moment equations are given in
Appendix B. They are computed from Equations (4. 5) and (4. 6) and
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are listed in Appendix C. The functicn 	 contributes to

only three of the moments; "'n1 ,r	 7rr	 and Z rr	 which
contain; (1), (2) , and cl , respectively.

The function qq̂ ^(r 	 is determined by satisfying the bound-

ary condition of vanishing radial velocity at the sphere surface; ^^^(r6)

is found by requiring that the normal pressure be correct in the FMF

limit, andI^^(r,9) insures the correct heat flux in the FMF limit.

All three functions must satisfy the moment equations in the FMF

limit. In short, the functional forms of	 Q (Z)	 in the FMF

limit can be determined uniquely. Details of the determination of the

1
6) ) S	 are presented in the next section.
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IV. B Determination of	 )

The function 1̂ (%) appears in only the moment corresponding

to the radial velocity. From Appendix C

{E-X2 1̂j1^^^^ — Y1zV Ẑ ^ --^ '^1 ► u^tUz (4.7)

z	 /^^m
At the surface of the sphere, 	 (X= o)	 the condition of

zero mass flux requires that

^^q \ _ ^Vt^ ST —`(1zJ \z X_ o .^- (1(k uz ^X^	 ^^^°^e^ — 0 (4.8)

	

D .lx o ^2i^ N1	 :Z	 Y,^ ^oc

The boundary condition	 ^h6)= 0	 has been used in obtaining

Equation. (4. 8)

The soluticn of tht Boltzmann equation in the FMF limit in

Section II. D required that the following conditions be satisfied for the

generalized Cartesian Maxwellian distribution function,

Z

z _ — Cos O

	

^i	 /^ — ^^° Tae	
(4. 9)

3F

	

	 constant
l'V^)
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Therefore, Equation (4. 8) in the FMF limit becomes

W 77L7 Cos B _^^^6^7 RrF ' O	 (4.10)
F M	 ^'	 yloo ^ao

Although the angle dependence must be incorporated in

	

	 , Equa-I

tion (4. 10) contains two unknowns 	 and	 ^a0	 In ora er to
determine each uniquely, a second condition must be imposed. One

can, without loss of generality, specify that ^^^^ vanishes at the stag-

nation point	 A = o)	 i. e.,

Therefore is found to be

(4.11)

= F-,Lk ( \ -^ ^V

	

iTp	
, M )	

(4.12)

The value of 'Y%	 giver_	 Equation (4. 12) corresponds to the values

of the body number density, _V\6 , in the FMF solution Appendix

E ev;?i uated at the stagnation point. The function 	 F is
found from Equation (4. 10)

r q	
FMF ^_q

2-

Following the procedure of Lees' moment formulation, the result

from Equation (4. 12) can be generalized for finite MFP to give

(m,	 = (Vlz 1 \Z>25 Nk-  M	 UICc^^ -^4-^^P^^ ►̂  (4.14)
^h o

where	 ^Q^^) is an arbitrary function of 9 and ^ which must vanish
in the FMF limit, i. e. , ( '6 i co) = O
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The boundary condition given by Equation (4. 8) becomes

(Il(o,e^
	 1 C'^jZ(o^e) UI,Z(° B,— YL(°,O) uz °^^^^ -t ^(Bj^,	 (4. 15)

Y6 
C	 %CO

It is shown in Appendix D that in order to satisfy the continuity equa-

tion in the FMF limit the x-dependence of 	 tc^^^^ (X^ 	 is

	

^TlF	 _^^ ^^xO	 ry ^^ xZl _ rz
Prescribing the same dependence on X for all values of the MFP

completes the determination of 	 T, D)

	

(E-)	 (01 ID) u^c^,e^ — zcguZc0,oq

	( E_V F(9N	 (4.16)
Z-	TIO. %cc

The determination of 	 "^Cx^g^ and 	 ^^g)	 is

accomplished in similar fashion. Since Cr appears only in the

radial stress,	 'Fr Y' 	 it is determined uniquely by requiring that

-Pyr	 be equal to the normal pressure in the FMF limit. As given

in Appendix E.
FKF 

F = ,^ 4 +	 M Co5O ^\ T—) 	 (4. 17)

Again generalizing the FMF result for finite MFP one finds that at
'X=O

^. CZ, ôB̂  = —^^ L ^2C^,ê u2 (0, — k(O'0; UZ^0)] (4.18)

In order to satisfy the radial momentum equation in the FMF limit d)

is found in Appendix D t. be proportional to	 —L 	XZj so that

they final form becomes

41



I RI(-'e) = —(^ x
Z)	 M ,,,e) uzC^,e) — ^n^,ol u

k_yY d'_Ta-	 (4. 19)

The third function 	 (3)
(r,9) which appears only in the triple

moment, Yrrr	 is determined in a completely analogous way as

` 7)(A)e)	 . Instead of matching the normal pressure and satisfy-
ing the radial momentum equation, the radial heat flux in the FMF

limit is matched and the energy equation is satisfied. Finally

(4.20)

4" (W) ^ir MC^4 nz(°ie) (%J 71- (0,16) -t ui (°)e) >^

The determination of the c>S result in the modified boundary con-
ditions	

d

X= l (C eo):	 CL) UUI (,9) = — Co^A

(iii) -TzC\^e) = ^

(iv) 'hZ (\)e-) = 1	 (4.21)

X=0 Cyr°)
	

(v) lJ^^ (^ e^-o

(v^) Y. (cam)= o
(4.22)

X40
+ Re) 3 ^)
	

(4. 23)

where Re aO) = p
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IV. C Linearized Moment Equations

The eight moment equations corresponding to continuity, radial

momentum, tangential momentum, energy, shear stress, radial

stress, tangential stress, and radial heat flux are generated from the

Maxwell Equation of Transfer Appendix B. These moment equations

are given in terms of the parametric functions in Appendix C. Intro-

ducing the following linearization

Tc	 l 1	 L

and the following dependent variables

N ±̂̂  = N^ ± Nz

at- a u, ± uz

vot

one obtains the following set of governing equations accurate to O(Mz)

Continuity

(t ^z ^k (N^^+z 
^H^ -^ 576t 

M 
^QY'Z)

+C10-4 _ (COA_QAV tv) + )V,+)1	 (4. 23. a)

J
Radial Momentum

(	
^- aX

at	
- O	

(4. 23. b)

2- ^ Ear J
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I N 2TM	 -x (4. 23. c)

Energy (with conintuity)

-a (
(4. 23. d)

Tangential Momentum

Shear Stress

C1XZ^Z \^H+z ^^ +J M lC1ika7A-
-^. 4Z Cr-XZ) X̂Z- 3^ ^X^ ^^ C.5-^Z) (VH — ^p^

t^	
_ — ^ M t^ xz^^/Z v ^^

(4. 23. e)

Radial Stress

^(^Ẑ  C^ Xa ) X(NH+^^) ^ zt^-^s 1^ ^ 3 
six K^x

1X Z
Z CN ` A l̂̂ ) 1—	 a XZ (\ Ẑ) uH

(4. 23. f)
3.̂ H 1R^1^oTa^
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Tangential Stress (with continuity, Energy, and Radial
Stress Equations)

(c^b —--)- 	 4 (^^!  — 	 ^'\ \j 4--) ` 0	
(4.23 . g)

Radial Heat Flux (with Radial Momentum)

XL

(4. 23. h)

The boundary conditions in the linearized case become

x=i Cr=m> :
(^) Ukz G,e) _ — cos e

(cc) v ZCt,e)= siNe
ti

(a) ^z (^,(3) = o

CAN) Nz C^,a1= o

(4. 24. a)

X=o Cr-rod

ouo v► Co,e^=o

(vii) ^t (01

Z = \vc-
Tob

(:act.)
(4. 24. b)

where T—(0 ) ap> = 0
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P ; v SLA`^ K h0r MMEE)•
IV. D CP4W 1 ^$araWion of Variables

If the flow is symmetric with respect to the 'Al axis ( o= o)
see Figure 5, then the radial velocity is an even function of 9 ;
U,(T,6)= LA.(r,-A) , and the tangential velocity is an odd function of

A	 V (c* = —V (f; d). The assumption of symmetry with respect

to	 _O is true in the FMF limit and in the continuum limit if
flow separation does not occur.

The Scala. -n:- .iy and temperature are also even functions of
8	 The free 	 boundary conditions naturally reflect the same

dependence on	 F, .

v Z (c^,e^= SING

Tz (40)e)

Using the well known result from Fourier analysis that an even
function of a in the interval (—Ti4) can be represented by a co-
sine series and an odd function in the same interval can be expressed
in a sine series, the following separation of variables is assumed

00	 ^

64) - :X Ar )(X^ COS ( ^
^Qo

V (^,e) = G	 )(,X) S 114 ("V, A)

NNsb
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00

N^^^(X^^^ =	 , C^ )C^ Cos r6)
^o

^^ ^x,e) = ^, ^^ ^x) Cos 
'^= o	 (4.25)

Substituting into the eight moment equations in Section IV. C

yields the ordinary differential equations given in Appendix F. If the

series defined by (4. 25) are trunca + ,-d after 'V1= ti terms; e. g.

tt^^ ^(X^e) =	 A,n ^(-) COS (-n e))
^= o

the number of equations becomes (7N-F5) in the ((oN+$) dependent
cal ^l	 ^-; ^i 

C t-^	 C^	 ^> , ^}` O t „
variables; (^ y, am 

(i)
B^ ^^ CH	 , Dr	 D^, )	 ► , ,N

Equating the number of equations to the number of unknowns yields

W =,3	 . In other words, truncation of the series by setting N=.3

provides the closure to the problem. This corresponds to a system of

26 equations in 26 dependent variables. Although the set of 26 ordi-

nary differential equations can be solved numerically, an alternate

procedure is persued which eventually leads to analytic solutions.
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IV. E	 Six Moment Formulation

The problem of interest is the computation of the drag and

heat transfer for all values of the MFP when the mean speed of the

free stream is low. Before one solves the complete problem, sepa-

rate studies on two simple cases are illustrative. First, consider the

heat conduction problem with no convection where all the "dynamic"

variables (U,,U,,V , V:) maybe assumed constant. Second, investi-

gate the drag problem with no heat transfer where the "thermody-

namic" variables ^'y^,^^T^ ,Ti) may be taken as constants. From the

results of the two separate problems the coupled heat transfer and

drag computation can be formulated in terms of six moment equations.

IV. E. 1 Conductive Heat Transfer (Four Moment Solution)

The pure conductive heat transfer from a sphere was investi-

gated by Lees. 15 He used the four moment equations corresponding to

continuity, radial momentum, energy, and radial heat flux to deter-

mine the four "thermodynamic" variables;	 The remain-

ing four "dynamic" variables; U,,U2 ,V,,vZ were assumed constant,
but in the absence of an external stream the boundary conditions re-

quire that

u\=uZ= v%-Vz = 0
The four linearized equations from Section IV. C become,

Continuity

Radial Momentum

(4. 26. a)

a^N^)+tC+>l x3 a tNEI) tH^ =0
ax	 !	 yc	 (4. 26. b)
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Energy (and continuity)

a ^yE^_ ^^^^ =o2

Radial Heat Flux

xt <<- ^ s -x (W-A tH) — ^, I

(4. 26. c)

ks x	 (4. 26. d)

Boundary Conditions:

(vim►-^ ^l^'C°l-^ z -^^"'(^^ = o

Since the equations are independent of 8 the Equations (4. 26. a)

through (4. 26. d) are ordinary differential equations. The solution of

this set of equations is obtained readily

k%loo ^C, ( I , 8	 a )IS—x

-^Fl (X) = so

N', (A -^° 
^^+ -a-T1 

xt ^	 (4.27)
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r
where	 _

k+ is IR
The radial heat flux at the sphere surface is given by

Appendix C

(4.28)

1(1n1

ks%

The average heat transfer becomes Appendix H.

Qpv^ _ N\,. W (V^>M ^_
^+ kŝ 

Normalizing the heat transfer by the FMF limit gives the result ob-

tained by Lees 15

-- 
AVE (4.30)

^,vE)P.t;:
	 ' + 4

1s ^;

IV. E. 2 Drag ( Four Moment Solution)

The drag problem for the low speed flow without heat transfer

can be formulated in terms of four moments. A four moment solution

for the low speed flow over a cylinder was presented by :Liu and
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Passamaneck. 16 In the four moment formulation the "thermodynamic"

variables are assumed constant and the "dynamic" variables are

governed by the four moment equations; continuity, radial momentum,

tangential momentum, and shear stress.

The "thermodynamic" variables are determined by the bound-

ary conditions to be

N. _ _?_ MU (o)o}

Nz=o
t^ w E	 (4.31)

N

tz = o

The four equations from Section IV. C become:

Continuity

(4. 32. a)

Radial Momentum

^ t^Xt1 )u(-) + (aH t CO VE-)^ S._ v t-^ =p 	(4. 32. b)

x 7X	 z	 ze
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Tangential Momentum

(t-*)	 _ V-1-}.	
(4.32. c)X —A	 ax

Shear Stress

4-L l a ^` y hi) =_ ^^ kl̂ ^(z v H

	

Z	 (4.32. d)

Introduction of the following separation of variables

vl^) o^e)= ^-(f^ x̂} StNA	 (4.33)

(to-and	 )replace N, 	 Q,,N respectively
in the general separation of variables) leads to the following set of
differential equations:

Continuity

IX	 m	 (4. 34. a)

Z
Radial Momentum

	

C^^XZ) t-1 ^ (Z^ 1 ^ -'1 = O	 (4. 34. b)
X X

Tangential Momentum

14Y 0 ` 
(, )̂+.V.H, _ 0	 (4. 3 4. c)
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Shear Stress

C,-^ 4L (1 R^}(nom ^^ ^ + Z (';-W) (W- 4V c ̂ ^

	

C cia + vtiy \	 _ (^_xz ^3^2

	

J	
ti

	

2 h	 (4. 3 4. d)

The associated boundary conditions are

V(t)(1) - ^^ Gl =

X= O (`C- Co) : (v^ V" M + Tx 	
O	

(4.35)

-Y

	

( )	 6)(CA t VI) (6) = 0

The two momentum equations, which involve only -W-1 and
can be solved to yield

t

	

u^(^l = do -tom + XZ	 (4.36. a)

-'do +

	

	 (4. 36. b)i-XZ

Since the boundary condition at 'A=l requires that IA-1(I) be finite,
the constant G must be zero. Therefore,

	

UC^^(X) - — V^̂ (x) _ °^o	 (4.37)
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The remaining equations can now be integrated to give

um(x)_ 
	 X2^ t-Xz — Z d j -^-	 t_xZ	 (4. 38. a)

VNA= 
^h 

-2) X2 — dZ XZ -^Iot,	 (4.38. b)

where

(4.39)
C IT

^L

The drag coefficient Cy is computed in Appendix G

3 11'tl` 2+^^ 	` z^ 4^ 3^	 (4.40)
CID=

M ^ 3 ^` M 1^-3 ^
It is found that if the .hear stress equation is replaced by

either the tangential stress or radial stress equations the constant;

3 appearing in otb is increased slightly to	 12,	 This can

be interpreted as an indication of convergence for the moment method.

IV. E. 3 Coupled Heat Transfer and Drag (Six Moment Solution)

The simplest formulation which accounts for both heat transfer

and drag can be obtained by recognizing that for the two separate prob-

lems, a total of six different moment equations was used; continuity

(both), radial momentum (both), tangential momentum (drag), energy

(heat transfer), shear stress (drag), and radial heat flux (heat trans-

fer). It is obvious that the two separate solutions do not satisfy all of
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the six moment equations and the boundary conditions. Moreover, the

six moment equations contain eight dependent variables; the "thermo-

dynamic" set ^'Yl^,'1^1Z^^i^Ti^ and the "dynamic",: set ^U,,Uz^V VZ^ 	 In

order to complete the formulation two additional moment equations

must be added or -,wo of the dependent variables must be discarded.

The former choice, as was seen in Section IV. D, leads to 26 ordinary

differential equations which can only be solved numerically. The lat-

ter choice leads to a set of equations which can be integrated directly.

Let us assume that the separation of variables for the dynamic

variables is the same as for the four moment equations

j^,Ci') cue) = -U 3) (K) Cos ^

NP-1 (x) Smee
(4.41)

Following the results for the drag problem, we shall require at the

onset that

= z = constant	 (4.42)

Thus, the remaining six dependent variables are.

v,^'CX,a) ^ ^ c^-^ 
(X► 8^ 

^ Nc+> Cx̂ ^^^ NH^^^^ ..^c+^ Ĉ ^^ ^ {H ^x^a^

The separation of variables for the "thermodynamic" quantities is

taken to be the first two terms of the general separation of variables
from Appendix F

N^^^ (xe1 = C ^ ^(^^ + C; >Cx^ cos e
(4.43)
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Substituting the assumed separation of variables into the six

equations gives ten ordinary differential equations for the ten dependent

variables,	 Co	 C	 o	 >(	 r ^^>	 >	 >	 > C >	 > b ^ D (>°^^ ^D

Continuity

(co y ' + z ^6 >̂> ^a (4. 44, a)

(-x212	 (^ ^^^1 ►  -^	 C^-x^, 	 -c)M+ TI* Z o
Z	 (4. 45. a)

Radial Momentum	
p

-Jux	 (4. 44. b)

a 	 To E) _ X3 ^ ^C, ^^ 1^^^^ =o
TR	 (4. 45. b)

Tangential Momentum

C^C+)-E^IC+I -t' ^X	 CC^E-l^ ^^l-)> =6	 (4. 45. 0

Energy

Z^o J =0 (4. 44. 0

(c^H_ Z =0	 (4.45. d)
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where
o(o —

(4. 45, e)

Shear Stress

Radial Heat Flux

X2 ^ 1—kZ) ^.^X (CoE-l.^^o^^) — ^^ ^ — 
F-X̂  ^ 5 ^ lCo^-F ^ ot)J

— C ^^^ _ ^ 1-x^ C Z(co^^ zoô ) -^ ^ M u^' C^^

Y5

(4. 44. d)

4(.45,x)

It is easily seen that within these ten equations only four equa-
tions ( 4. 44. a, b, c, d) contain the four variables ( Co(!,), Co j lbbo) ) iDc ))

and the remaining six equations (4. 45. a, b, c, d, e, f) contain the other

six variables (vF^; ^j ^+^ C 1+) CSC DIN '; -)	 The first set of
variables will be labeled the "thermodynamic" set and the second sei

the "dynamic" variables for the six moment solution. The equations

for each set can be solved independently of the other, the only coupling

is through the boundary conditions.



The boundary conditions become

(^) V^^ (^> ^ 2- do

Cup)	 Dot' (^l - Do % C>> ^ o

(^^ Co+^C^^ - Cod ^ (^ ^= o

(4. 46. a)

X=o (f rod

(v) Ilk c+l(a) = — z
(Uz) -v *1 (o) = do

(0) +

d }^ (ol	 D ^(^ (^) o

(vi.(t) Co )0+12 Da )(o)	 iA do

C^ ^(o)-Z D,) (a)

Fi(ts) =o

(4. 46. b)
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Integration of Equations (4. 44. a) through (4. 44. d) yields

^0 (TO = jab

C _ ^M ^o — ^^^ Z+ KT ^s^
Cr (4.47)

Aece

This reduces to Lees' heat conduction solution if 4 is zero.
The cr^r,:,tant ae is determined from the solution of the "dynamic"

variaL s. The solution for the "dynamic" variables is found to be

LZ (-^(6) _	 h ^l = de

^c+^^^ ` _ 2^G + ^ CjcZ N^c2 — ^2 x2t x4/^ ^ ,^ dz^z.
3fi	 c

C`t)^xl_ 4,1%)= M tcZ dQ CZ^1-X-2 -1	 (4.48)

\5 A

^ T
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where

ao =	 ^

41 + tzo	 (4.49)

obi =	 2 8
3 (^+1 ^ lZo1•

It should be noted that in this solution the quantities Ct}) and

associated with Nt) and 't^	 are of order M but the

velocity components are of order unity. Secondly, this solution is

very similar to the four moment solution for the "dynamic" variables.

In the four moment formulation the solution was found to be

u"(k) V H Cxl _ 4= .-- I

i7

whereas in the six moment the corresponding constant was found to be

ql

which exhibits a difference of ^^ in the coefficient of	 1

Similar results can be shown for dj and	 This finding

shows heuristically the possibility of convergence. However, no sys-

tematical study for proof of convergence in the moment method has

been attempted.

Computation of the Drag

The radial stress and the shear stress at the sphere surface

are given by
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lrtrro ^} 	
-fi	 N1 db ^1 -^) Cos O	 (4. 50. a)

and

^^rb =^	 Zlr ^1dw Sm 0	 (4.50. b)

From Appendix G the drag coefficient is found to be

CD 
`^r} `^^^re	

^o (Z 
4J	

(4.51)
l

where

40. 12oT
The first term is the contribution of radial stress given by

and the second term the contribution due to the shear stress

M
Again it is seen that Q> for the six moment solution differs

from that for the four moment by only the difference between dd and

O(o

Computation of the Heat Transfer

The radial heat flux at the surface is given by

is ^)
	 \s^ 

(4.52)

+ T., ca5 ar;1' M - Z M (^+ duo c2e)
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From Appendix H the average heat transfer is found to be

ti	 Z  	 --2-(,_ 2T► \^	 (4.53)

4 Z

The adiatatic temperature ratio, E A	 is computed by reqv firing

that	 QAvE =	 thus

4 is ) L	 z	 \5 A

The average heat transfer in terms of EA is given by

(4.55)

The Stanton number normalized by the FMF limit as given in Appendix

G is

S-c	 _	 1

which is equal to	 Ave	 in the pure conduction

problem. However, the ratio of the average heat transfer is not equal

to the ratio of the Stanton number since the quantity CE E A^ is not

equal to (E-C" ^ F .
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IV. E. 4 Comparison with Experimental Data and Other Theories

Drag

The drag coefficient was found tobe

Co 	 3'rQ'^	 ` 	 T^	 (4.56)

where

\+ 41	 for the 6-moment solution
o(,b 	t2o^

for the 4-moment solution
+ 31,

In the FMF limit F_ ` and the correct FMF solution is

obtained

CDF-- $	 `2---t 4 (4.57)3 IM M
For the continuum limit the drag coefficient becomes

QD r..
F

2- C2} 4	 (4.58)
M

This result can be compared to the Stoke's drag formula by recalling

that the viscosity was assumed to be related to the MFP through
— )	 ^^ G

which gives

^— ^-a " V z 
M

(4.59)
C^e^a

where the Reynolds number is defined by

(Re o 
_ ^)T6 C , .,fa

i

Equation (4. 58) may then be rewritten as

N _
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Cl) '=	 \Z
(Vle)ro

(4.61)

Cp '-"	 22

(k)re	 (4. 60)

Equation (4. 60) is seen to be qualitatively similar to Stokes solution

given by

but .iiffers significiently in the constant. Thus, the present estimation

of sphere drag incurs a quantitative difference in the Stokes flow re-

gime. This is caused, not by the formulation of the problem, but by the

method of se paration of variables. One can readily see the difference

by comparing Equation (4. 41) with the well known Stokes solution.

The present solution when compared with Millikan's oil drop

experiments 17 
in Figure 6 shows acceptable correlation for the com-

plete experimental range of MFP ^^ X Goo) 	 This solution is also

compared with the near FMF solutions by Willis 14 and Liu, Pang, and

Jew 13 for large values of the MFP.

For small values of the MFP Basset's 11 slip flow correction

to Stoke's formula is given by

ti

^.)ra ^ 1+-z 1^C
(4.62)

Goldberg ' s 12 solution using Grad ' s Thirteen Moment Method

predicts

(^e^ra (1^- siA^ (1^3T) -}- ls^(4^^1T) aZ

(4.63)
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Both of these solutions are compared with the present theory in Figure

6. It is easily seen that both Basset ' s and Goldberg 's solution are not

correct in the FMF limit . since they predict an infinite drag coefficientti
as X-vcO .

Heat Transfer

The average heat transfer was found to be correct in the FMF

limit. Comparison of the Stanton number with the experimental data

of Kavanau and Drake 18 is given in Figure 7. The comparison is

again seen to be acceptable.

Flow Field

The only analytic solution available which can be compared

with the present solution is Basset 's 11 slip flow correction to Stoke's

solution. The velocity components for the six moment solution are

found to be Appendix C and Section IV. E. 3)

= d o copse, ^ ^t —	 #-	 ^x2 — Z4!1>
Z z ^^ z --

-X 3b ^ -) -1 1 	 (4. 64)

e	 4	 (0^ 4sh

4-1- F	 -&Xz- ^xz] ^	 (4.65)
(C L 40 (,b `	 J

where
-^b =

.A1+ IZO
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and the shear stress and normal stress are given by

(4.66)

= \-^	 M (ate) c^5 (\^ +xẐ  do

-^-^ ^x2 Cox) ^ -}- C^-2x^^.

The corresponding quantities from Basset's solution which are validr
for small values of	 are denoted by the superscript (B )

\---Z \`xZ ^-La \ -} C^ X2̂  2 ^^— ^`	 (4.68)
N-ZT I	 Z- (\+Z X) ^

q ^^^w SINB ^- 3^ E-1^2 ^^^'^ ^- l-X1 ^^Z 1-^^	 (4.69)
CP	 \k2?^	 4 0+25')

,b^ = —	 (1 x Z)Z s^Ne 3 /^C^ ^)	 (4.70)

P Y$)= ^^- ^ M(^-xz)C^e 3^ x-45 ^ +.3^~ l- ^^	 (4. 71)

Each of the corresponding pairs are compared separately in Figures

8 through 11.
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and

N ^^^	 N^d (o,el„' 3 S m a (4.75)

Radial Velocity (Figure 8)

Both solutions%( and %Iand 	 satisfy the boundary cond ^-
tions90Y (1^^) - — Cp60 and ^,^ (o,A^ p	 . It is seen in

Figure 8 that both solutions are almost identical in the continuum

regime, but differ considerably in the FMF limit. Since the slip flow

assumption is obviously incorrect in the FMF limit, one expects that

the present solution for the radial velocity gives a better description
for a large range of MFP.

Tangential Velocity (Figure 9)

The boundary condition at X^1	 ^g(1^^1 = SN 4^=) , is sat-
isfied by both solutions, but their values at the body, X=C, are not

identical

%.(0,4b) =	 (CIO	 (4.72)

 ^ 1+IZo j^

aA dt

Equation (4. 72) is correct in the FMF limit but also compares favor-

ably with Basset's solution for small MFP. For small

(O e) ti ('" ^ SIN 0 = 3 ^^ ^, ^ S11J8e i	 91	 Z^ 40	 (4.74)

Thus in the continuum limit the present solution is in error by 2. 510

whereas in the FMF limit Basset's result is in error by 25 %. The re-
sults presented in Figure 9 show that the present analysis correctly

predicts the tangential velocity over a wide range of Knudsen numbers.
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Shear Stress (Figure 10)

The ratio of shear stresses for the two solutions is given by
ti

	PY6	 ^zoA	 kz^ (4.76)

	

^ b	 ^1+lZo^ 3^ 3^Z

	For small	 Equation (4. 76) becomes

	

^re	
^ Lqo ^
	 ^ -^ 3 ^ -^ ^ CZ2^

41

I-v O (P)	 (4.77)

where the following expansion has been used

This ratio is seen to be unity to order ( A -4)	 for small X . For

equal to unity, Basset's solution is zero and changes sign for

greater than one. Basset's result is therefore incorrect for

greater than unity. Again the comparison between the two so-

lutions illustrates that the present model is applicable over a wide

wide range of Knudsen numbers.

Radial Stress (Figure 11)

Since the shear stress from the present study compares favor-

ably with Basset's solution, the discrepancy in the drag for small

MFP (Figure 6) is mainly due to the difference in the radial stress for

the two solutions. This difference is easily observed if the radial

stress is compared at the body.
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Taking E= 0 one finds

MY	 ZX

-k'SA	 a Leo x	 t4.7s)
Y r JX o	 l`	 `^ 41

Since this ratio is not close to unity for ^	 very small, the radial
stress from the present study errs in the continuum limit. This con-
clusion regarding the radial stress Dr,( is not surprising since

the six moment formulation herein excludes the moment equation cor-

responding to the radial stress. The discrepancies in the radial

stress are shown in Figure 11.
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CHAPTER V — HIGH SPEED FLOW

V. A Introduction

Most analytical efforts on high speed flow over a sphere have

been confined to near FMF theories, valid approximately for 11^,,> 10

(e. g. , Baker and Charwat, 
19 

Rose, 10 Willis, 
20

or to small departures

from the continuum limit (e. 21g. , Van Dyke). 	 In the transition regime,

theoretical works on nonlinear flows were initiated by Mott-Smith ? on
the shock structure problem. Subsequently, boundary value problems

such as Couette flow (Liu and Lees, 22 Lubonski) 23 and Raleigh's
problem (Chu) 24 were treated. Mathematical models were also sug-

gested by Rott and Whittenburg 25 and by Hamel. 26

The general formulation presented in Chapter III separates the

distribution function ; into two parts: ^=; j for all molecules

whose velocity vector lies in a cone subtended by the body, and ^ = SL

for molecules whose velocity vector lies outside of the conical region.

At high supersonic or hypersonic speeds the following simplifications

are introduced

(1) The oncoming stream can be compared to a high speedyr

molecular beam, thus the moment contribution due to 7L

may be evaluated over the entire velocity space including

the vacant conical region.

(2) For the distribution function ^ j , which may be intutively

related to the reemitted particles, the approximation of

small mean speed can be made and the distribution func-

tion ;% can be linearized as in the low speed case.

This is analogous to the "cold wall" approximation in high-

speed gasdynamics.

These simplifications are very similar to the two fluid model

of Rott and Whittenburg. 25 In fact, all the multi-fluid models such as
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that of Baker and Charwat 19 (sphere), Lubonski23 (Couette flow), and

Hamel 26 (piston problem), bear resemblences. Such methods might

be judged by how well they provide the capability to solve actual bound-

ary value problems without a prohibitive amount of labor.

In spherical coordinates ^% and ^Z are represented by

^1 ^lµ ) ^ c
A(11 6) eXe	 r^u^	 -t 	 (5. 1)
(ZM 911 112.	 A 9:%

where the "velocity components" of the body distribution

function are assumed to be
41 =_ W% 60 ^bsb
V I	 kx) S1N9

and

where
(5.3)

^Z )^X )- YIt(tie)	 (If- u2(06)̀ + e VZ(''O)`^--+^e

The function ^^^C^ does not appear in 31 because the

contribution to the moment from . Z. will be found by integrating

over the complete velocity space. (See previous section. ) The tem-

perture parameters T--T'b and ^i=T^	 are assumed con-

stant and equal respectively to the wall temperature and the free

stream temperature. Three parametric functions;	 appear
in ^,	 and two; `N, W, in.

To compute the moments 'f, is linearized at this stage and its

contribution to the moment is the same as in the low speed case.

The average value of _§ (k)	 becomes
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T 1 2 S IN LO

o c p

+
	 c> d
	 (5. 4)

'r (" ) ^ C1, %,0) 0)

Y

All average quantities can be evaluated in terms of the five parametric

functions h,^^ N i 
ju t^Vt) 

•
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,pp.	 N'G'PAGE 6(.AL^I11 t4LY1'=PWME[3.

V. B Four Moment Formulation

The computation of sphere drag without heat transfer for the
low speed case was formulated in terms of four moments. In the

same way the high speed flow problem can be formulated in terms of

the following four moment equations; continuity, radial momentum,

tangential momentum, and radial stress. The radial stress is taken

instead of the shear stress or tangential stress because the normal

stress is considered to be more significant in the hypersonic approxi-

mation. The four moment equations are given in Appendix I in terms

of the five parametric functions; 'q, , \)j,. 1f12 , UZ , v2,

The associated boundary conditions axe:

at X.1 (r=^^:

'W1 m =1

(Xt (k)e)= - Cash	 (5.5)
V,.C^ ► ^) = StaA

at X=o	 vZ%(6)=o

o	 (5.6)

where the density has been normalized by Y6 and the velocities by %. .

Again if four moments are utilized, one Lf the five parametric func-

tions must be prescribed at the outset. The selection of this one

parametric function depends upon the desired information. The two

alternatives will be discussed from an intuitive viewpoint.

75



The free stream velocity functions a,, and VZ cannot be fixed since

they must always satisfy the boundary conditions at X=, but must

tend to zero at the body as the MFP decreases. The number density

of the emitted particles, 'W, , cannot be constant if the effect of

collisions are properly taken into account. Therefore, the considera-

tion is focused on ;Z and W,

If 1112(x) is assumed constant (equal to unity from the bound-

ary condition) the number density of the free stream particles is not

affected by the collisions. However, since W"4 % (,K) is not fixed, momen-

tum exchange between the high speed free stream and the low speed

body stream can still occur. This assumption is expected to lead to a

correct estimation of the momentum flux (drag) but it may yield incor-

rect predictions of the density field. The description of the flow field

by this model is analogous to the first collision models suggested by

Baker and Charwat,19 Kinslow and Potter, 27 and Wainwr= ,'.A.28

On the other hand, if one assumes that W% (') be constant
(equal to zero from the boundary conditions) and allows 'AzW to vary,

the density near the body would increase as the MFP decreases so

that it forms a shockwave in the continuum limit. But if W% (Y) is
taken to be zero, the momentum exchange between the high speed

stream and the low speed stream is incompletely described, hence,

drag estimates may be in error.
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V. C Determination of GCS S)

The moments which appear in the four moment equations given

in Appendix B are computed from Equations (5. 1) and (5. 2) and listed

in Appendix I. The function	 gkCib- )	 contributes to only two of
the moments, 'Y►̂ r and rrY	 which contain C%1° and

respectively. Just as in the low speed case IVY is determined by

satisfying the boundary condition of vanishing radial velocity at the

sphere surface and	 is found by requiring that the normal

pressure be correct in the FMF limit.

The radial velocity is given by Appendix I

^f 14,r = V^i^lz,\)Hc^ 'VIi W _ oau 1
(5.7)

SOIL
^n—r M Z`

At the sphere surface r^r, (j=o) 	 the condition of zero mass flux

requires that

K=b via—\ M

The boundary condition

+ cVizli,^) x_o °a`\)C^ 6_) = o	 (5. 8)
Y^O%'O

VV%(a) = o	 has been used in Equation (5-8)

Following the same procedure as for the low speed case, we

find that	 C5(1) OtIQ	 is given by

cu— ^^ xz)^^Z^O'b) LizC°,e) — ^z (oi°l^`z^c^°)^ 	
(5. 9)

tId-%P

The variation with respect to X is necessary to satisfy the contin-

uity equation in the FMF limit just as in the low speed case. Appen-

dix D. The determination of (^ is again completely analogous to

the low speed problem (see Appendix E). For large Mach numbers
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(^^`^ ^` NlZ cAS2 e { ^Z M ^ cos e -i \	 (5.10 )

and	 I` Okoa) is found to be

^mo(9) 	 — (")	 M i ^i ^^z^^e> uz^'i^^ 'ti1tiCo^) u,.^°^o^^ 	 (5. 11)

A comparison between ^«l and CO for the high speed case and
low speed case shows that I and LV) for the present case differ by
a factor of two from the low speed case.
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V. D Separation of Variables — Near Stagnation Point

The boundary conditions require that

at x=\ Cr•eo):

V.) ^Il'i Ct^bl= - Case

^d.) V: CI,AI = StNA	
(5. 12. a)

Qli) 1riz Ctl ^. ^

at X=o (`c=ro);	
(5. 12. b)

(oo) CAIN Co) - O

Since the FMF solution indicates that all of the parametric functions

are independent of X and equal to their boundary values,

the following separation of variables can be assumed

u,,Cx,bl = UtZ(X)CbSA

VzCx^) = V^(x) sae

Ylz Cxl = NZCx)

'Y1~ Ŵ t^) =
(5.13)

t^'^Cx)

'hi Cx) = M N^G^)

The definition of 'Y\► eliminates the Mach number from the bound-

ary condition at the borly. The boundary conditions become
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X=^ (r- a):

C^) Txzck) _ -^

('w Yz(%)

^.C'L) N -Lo =1
(5. 14. a)

X=o (r=ro):

(vro) V, w) = V
(5. 14. b)

tv) N,co) = — ^Z—ITC t4-jol ut(a)

The moment equations corresponding to the assumed separation of

variables are given in Appendix K. It is clear that the equations are

not separable because of their nonlinearity. However, if the trigo-

nometric functions are expanded in power series, the equations can be

separated in terms of the powers of e . For small values of the

angle e only the lowest powers need be considered. This expan-

sion for small e is truly a stagnation point expansion. The equa-

tions for small a	 become

Continuity

^	 1^zu2+ (rte) x3 Aura 4 aUZ(gZtVz)
7^c	 ai)c

^ -^- O (&2N= d	 (5. 15. a)
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E(S=where

Radial Momentum

^^ X2 AN 	 -^- 2NZtZ^(a2i^^- C^ Ẑ  JNz
x dx 

(5. 15. b)

Tangential Momentum

e (` X^ NA\4-Li-3N,\ (txz vZ) - r Eo a2 u
21L ZN^ (5.15. 0

-^- o (e3) = o
Radial Stress

l ^X JN2.14 + ZJZtxi ((XINL) +3 ( r^ A NzltZ
x VM

Z
dX

+ 2^6Cuz +vZ) + 3 C^->C^ x^ -moo Au,

^ MZ z X —

4--C^ xẐ  G 4) 1 Eo dux o (ez)
x (5. 15. d)

3 ^ ; l+x

81



The continuity, radial momentum, and radial stress equations

have leading terms which are of order unity but the leading term in

the tangential momentum equation is proportional to 	 A	 . The

tangential momentum equation is therefore of lower order than the

other three equations. This is further indication that the tangential

component of the velocity is of less importance than the normal com-

ponent in the stagnation point region.

The next term in e appearing in the four moment equations

is AZ . Therefore, the omission of the other terms contributes an

error of the order 8 2 for the system.

In the stagnation point expansion the role of the function

is greatly reduced. Since the dependence of ^Q) and o,(I-) on the angle

E) was found to be
0-V) CCdSO -l^	 i =\^z

q Oc,b •) i ) vanishes at the stagnation point 19=0 . The stagnation

point expansion gives

^l ^ (^') Cet ^' 0(94) 
• . ,

which means that	 is always negligible if the solution is de-

termined to an error of order 	 el-
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V. E Solutions

Since there are five parametric functions t N ,, N,, V^: , V s^

and only four moment equations one of the five must be prescribed in

advance. From Section V. B the alternatives are

or

(z) O^,cx)=o

One may also elect to adopt both simplifications, Nz()4 _ k , and

U J O)-0 , and neglect the relatively unimportant tangential mo-

mentum equation (Equation (5. 15, c)). Then the system consists of

three moment equations and three undetermined parametric functions.

Introducing the hypersonic approximation, 	 P'`» %	 , one finds

that this simple "three moment" formulation gives some fairly inter-

esting analytical results.

All equations to be considered will neglect terms of order
'.^_	 which leaves only two parameters

	

Et "M ^	 and	 1 1^ M ' 
NNIR6

	

V M	
Ys

in the system of equations. The three cases; 	 N 0C) -1	 , Ult4= O ,

and the "three moment" solution will be discussed separately in the

following sections.

V. E. 1	 Four Moment Solution, NZ(x).l

This assumption implies that the flux of high speed free stream

particles to the body is not influenced by collisions with emitted mole-

cules. The molecular density is reduced only by reducing the number

of emitted molecules that can reach a given point in space. In the
T

usual first collision methods the molecular density is further reduced
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by reducing the number of free stream particles incident on the surface

which in turn also reduces the number of emitted particles. This re-

duction occurs if it is assumed that all particles which experience a

collision (scattered particles) are not incident on the body. Both the

present model and the first collision theories indicate that the effect

of collisions near the body is a partial shielding of the body from di-

rect momentum transfer from the free stream. This shielding results

in a reduction of the drag from the FMF limit.

Although this assumption will be shown to give a good estimate

of the momentum flux (drag) the density variation with the MFP may

be in error. The first collision model will always predict a decrease

in density as the number of collisions increases. The increase in the

number of collisions or collision frequency corresponds to ? decrease

in the MFP. However, in the continuum limit, ^ -+ O	 the den-

sity must increase in such a way that a gasdynamic shock is formed in

front of a blunt body. A more direct way to illustrate this result is

to examine the equation for the density in terms of these assumptions.

From Appendix I the density at the body X-C is given by

<^) x=o = N Z(o>+ ^ z	 (5.16)

The boundary condition of vanishing radial velocity requires that

NI(d = -	 Nz.(A 7z(0)	 (5.17)

Since UCz(a) is always negative substitution of Equation (5. 17) into

(5. 16) gives

(Ylz^ xpo NZw) l 1^ µ—. 1'^JCtt^)^I,	 (5.18)
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where	 h vr:wl q =—	 absolute value of V%W

and	
O 

'<'I a'(-) ^ ( I

If	 N7.W is assumed to be unity Equation (5. 18) predicts that the

density at the body decreases as the MFP decreases. In the limit as

X--+O	 Equation (5. 18) gives

C .p	 ^^,Xae 1

which is clearly incorrect for the high speed limit.

It is found however that the density distribution will be very

close to the FMF distribution for values of the parameter,

X 	 as small as order (1). This result is con-

sistant with Probstein's 29 conjecture which will be discussed later.

The equations for	 Nz(x) =1 	 become

Continuity

—R-	 IN	 x zcrar

(5. 19. a)

Radial Momentum

auttc?	 u1^vz^ + ^^ E. [c! c t d^^ o

(5. 19. b)

Tangential Momentum

C	 cxsvL + 3 ^^ C +vim) — ,- ED 0	 =-O



Radial Stress

9 7

(5. 19. d)

Boundary Conditions

GCi,61 = —1

Vz ( 0 = 1
(5.20)

UC,( 0) = O
N(o) = -^ _Z171

This system of equations and boundary conditions is integrated nu-

merically. The results for the drag computed from Appendix L are

presented in Figure 13. The density distribution is compares with the

experimental data and the solution for U i (x1-O in Figures 15 and

16.

V. F. 2	 Four Moment Solution, 	 = 0

Independent of tLe assumptions, TI (X)	 is always zero on

the sphere surface for diffuse reemission. Therefore the assumption

of Ui(JX) being identically zero is quite correct in a small region

close to the body. It also allows 1JZ(x)	 to increase near the body

which is essential to predict the density distribution for any finite

MFP. The density of the high speed free stream particles is increased

by collisions with the emitted stream. This effect can be described

qualitatively by imagining that the emitted particle is converted through

a collision into a member of the high speed stream.
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This model results in a very good estimate of the mass flux

(density) but overestimates the drag. The drag or momentum flux is

overestimated because the assumption of -U ,(x) equal to zero re-

verses the shielding effect of the previous assumption, 	 Nzb )̀= 1 ,

and the first collision methods. That is, instead of shielding the body

from direct momentum transfer from the free stream, the emitted

particles through collisions increase the population of the high speed

particles thereby increasing the momentum transfer to the body.

The equations for rtX,W = O	 become

Continuity

CR N711L --k- 2 Mt (U^zt\,iL ^ } (^-acZlZ oIIJ \ —_ O

^`	 X ZQ^` 	(5. 21. a)

Radial Momentum

	

(HCL̂ 	 ^: + ^I NzUZ^GtztQz^ oft) (v.-I'3̂  Eo W1 = Q (5. 21. b)
^c

Tangential Momentum

	

X	 (5. 21. c)

Radial Stress

^ 1̂Ct ^I^ILt1 3̂ + 2tJtOCi ^uL^ QZ^

II

	

	 (5.21. d)

N, NZ^z?
3 A T%
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with the boundary conditions

NG) _ I

UCzGI = -^

(5.22)

N 1 (o) = — 5 r N(-)

It can be seen from the momentum equations that the assumption of

Q' I (A	 equal to zero reduces the momentum exchange between

the two streams. In fact when the parameter C= O =—	 in the

radial momentum equation is taken to be zero (hypersonic limit) there

is no momentum exchange betwEe , _ the two streams. In this case the

two momentum equations can be integrated to yield

and

vZ = — U

_xL

Since uZ6c) is not zero the constant C-L in Equation (5. 23. b) is

zero if ` 7-(x)	 is finite at X=	 Equations (5. 23. a) and (5. 23. b)

thus combine to give

^zYxi — — NzUCZVz = C^	 (5.24)

For CZ= 0 the continuity and radial stress equations can be solved

for	 NZ(x) and N % (-A ) to give
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x
N,Gc)= C3	 Nz^K)dX	 ( 5.25. a)

and

Nz('^	 31+ ^	 ti k2)^^2
(5. 25. b)

with the boundary conditions

Nzc^) _ \ and	 N1(0) = aTr e, Nz(6)	 (5.25. c)

Equations (5. 25. a) and (5-25. b) are coupled nonlinear integral equa-

tions can be solved numerically or by an iteration procedure. The

iteration can be effected by assuming that N?_ and N, appearing in

the integrands of Equations (5. 25. a) and (5. 25. b) respectively are con-

stant for the first iteration.

The two quantities N Zui and NZvC zV-z which appear

respectively in the normal stress and shear stress are the leading

terms in the drag formula Appendix L. Therefore if the constant
C1	is evaluated at 14=1 the drag can only be the FMF value

to order 64) . The numerical results presented in Figure 13

verify the last statement. The drag for the case of Eo= .lo\ de-

viates only slightly from the FMF value. The density distribution is

compared with the experimental data from Reference 28 in Figure 16.
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V. E. 3 Three Moment Solution

If the equations in Section V. D are taken to order	 B the

tangential momentum equation can be neglected since the leading term

in this equation is order © Z . The adoption of both assumptions;

Nz (.x) =1	 and tri(j,) = o	 , then completes the formulation by

three moments. Since analytical solutions are possible in this case

this investigation will hopefully shed some light into the entire study of

the sphere drag problem for high speed flow.

The three equations are

continuity

tycz) 4Grz	 C`'4t)2 C m— O	 (5. 26. a)
O.X	 X wv a —

Radial Momentum

c^ X^	 + z2^Z-^v-Z^ c,Z ^^ E,	 = o

Radial Stress

^) i + Zvi(	 F-fem NIZ7Ci
TX ti

3A T.

(5. 26. b)

(5. 26. c)

with the boundary conditions

v5z(1) = —1
	

(5.27)

V?-W

N % (o) vrz(o)
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For En equal to zero the equations can be integrated to yield

tv __T	(5.28. a)

7t(x) = -	 C, 3 ( -̂ w, ) X) + cZ	 (5.28. b)

3 a 77

Vt(x) = - U`t6q - \	 ` Z } \7th) ^n 	
(5.28. c)

where

x

IiTk
(5.29)

In the near FMF limit the constants C\ and Cz become

CZ — - 

e 	 (5.30

For NzN)-1	 the drag coefficient given in Appendix L is deter-

mined by UZ and Vz at the body. From Equations (5. 28. a)

through (5. 28. b) Vz at the body is given by
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2A$ E^

Gt 2 t^ 1

Expanding the second term for small values of Ea, one obtains

Vz (o) = —ut(c,) ^ 1+ 3 r i > - 
— 55-r E. -^- O (e. )
4x7

(5.30)

The drag coefficient is given by

TS (CI) 
^z	 T-T^	 '% —

(5. 31)

But for the near FMF limit Ut-L(o) may be written as

Q'

7-JO ~ — eyt ( °1 1 	(5.32)

and the drag coefficient becomes

(5.33)

In the FMF limit Equation (5. 33) is correct to O ( -,)

Cpl = Z-1	 21T ^` Eo	 (5.34)

The drag computation for the near FMF solution is presented

in Figure 14 in comparison with the near FMF solution of Willis 20 and

Rose 10 and the experimental data. The density distribution given by

this solution (Figure (15)) is acceptable for Xf, = O(4) , but as in

the first case ,1J Z (x) = 1 , the variation with the MFP is incorrect.
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X. = -I-
VC,	 3 (5.37)

V. F Nonuniformity of the High Speed Flow Field

Probstein 29 suggested that for the high speed flow past a blunt

body the significant MFP is that defined for collisions between the free

stream and emitted particles. This MFP will be called the body MFP

and denoted by Xb	 as. A simple kinetic theory calculation gives the

following relation between Xb and the free stream MFP X.

X 771	 (5.35)

Probstein 29 conjectures that for

fro > 1	 (5.36)

the first collision solutions can be used to define the flow field and

aerodynamic properties. Since the first collision methods cannot pre-

dict a sharp density gradient no shock-like structure can exist.

But when

a shock-like structure will begin to form and the first collision meth-

ods are no longer valid. This highly nonlinear "cascading" effect in

the flow field is caused by the increase in the collision frequency be-

tween the incident and emitted particles.

Probstein's hypothesis is qualitatively verified from the results

of the present theory. It is seen in Figure 15 that the density distri-

bution for	 is essentially the same as the FMF value and

is almost identical for either of the two assumptions 	 or

_ (x) ' O . The drag however is predicted accurately by the

assumption	 Nz(A =1
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For	 ,, < I	 a large departure from the FMF
density distribution is observed experimentally which is predicted

only by assuming LC,(—)-O .'the drag in this regime is not predicted

accurately by either model.

The relation between Xb	 and	 boo	 given in Equation

(5. 35) shows that even if )Ia. is very large	 may be small for

the high speed limit	 . This implies that even if the free

stream MFP indicates a near FMF situation, the region near the body

may be in the continuum regime. The flow field description is there-

fore not uniform and suggests the following flow model within the

Framework of the present theory. The characteristic lengths are Xb

near the body and the sphere radius fo for the region distant from the

sphere. The existence of two length scales suggest an "inner" and

"outer" expansion, similar to the boundary layer concept in ordinary

fluid mechanics. In the present case the inner solution can be found

from the assumption V%W = O in a region of order (M*) . This solu-

tion must be matched at the interface of the two zones with the outer

solution obtained for Nz(x)=j . The assumption of	 leads

to a constant value of the drag which can be evaluated at the outer

boundary of the inner region. Since the assumption of Nz60 = \

results in a correct estimation of the drag, then this combination of

an outer region (N-L= \)	 and an inner region (U% ­ 0) could give
a good estimate for both the drag and the density. The details

of the correct expansion and the matching conditions are not obvious

and they are beyond the scope of the present study.
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V. G Comparison with Experimental Data and Other Theories

(1) Drag

Many investigators have stated that for the low density

high speed flow over a blunt body the free stream MFP, X„ ,

is not the most meaningful parameter for correlation of exper-

imental results. This point is verified by the scatter of exper-

imental data shown on Figure 12. In the present study, the

parameter

ro Ta•

always appears in the analysis as a group while the free stream

MFP,	 X= , never appears by itself. This group of

parameters is related to the body MFP (Equation (5. 35))

It is seen from Figure 13 that if the abscissa is changed from

	

1E	 to	 the same	 experimental data from Figure 12

exhibit considerably better correlation. It should be noted that

	

although the parameter Er, = ^	 is the same for both sets of data
VM

32the Mach numbers for the Masson, Morris, and Bloxsom data is at

least three times as great as those for Kinslow and Potter's 27 results.

Also shown on Figure 13 are the numerical solutions from

Sections V. E. 1, V. E. 2, and V. E. 3. Figure 14 compares the same

experimental data with the analytic near FMF solution from Section

V. E. 3 and the near FMF theories of Willis 20 and Rose. 10
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The four moment solution, assuming ^? W = ^ from

Section V. E. 1 appears to correlate better with the data from Refer-

ence 32. The numerical solution for Vi (),1= O from Section V. E. 2
shows that the drag changes only slightly from the FMF limit. The

numerical results of the "three moment" solution is seen to he very

similar to the solution resulting from	 for i 6 T%

but diverges significantly for^RT^ < 1	 This may be qualitatively

explained by the fact that the entire tangential momentum equation in

this case has been neglected. However, the near FMF computation

for the "three moment" solution is shown to compare very favorably

with the experimental data of Reference 27 and the other near FMF

Lheories.

(2) Density

The results of t;.e density computation verify

Probstein's 29 conjecture as stated in Section V. F. The density

d4stribuution (Figure 15) is very close to the FMF value for

1 < ^ Ft -< 00	 and is accurately predicted by both the re-

sults of Section V. E. 1 and Section V. E. 2. However, the re-

sults from Section V. E. 1 predict incorrectly that the density

decreases as the MFP decreases (this was discussed in detail

in Sections V. E. 1 and V. E. 2. For small values of the MFP

the solution from Section V. E. 1 appears to be incorrect, while

the assumption that VI (A)= C) results in a very steep density

gradient which appears in Figure 16 to give a good description

near the body.
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CHAPTER VI — CONCLUSION AND FUTURE WORK

The investigation of the flow over a sphere was accomplished

by employing a modification of Lees' two stream Maxwellian distribu-

tion function in Maxwell's moment equations. Although the Mach num-

ber was restricted to the two limiting cases; low speed flow (Mc,, %)

and high speed flow (M*>7 l) , the Knudsen number orMFP was unre-

stricted.

In the low speed case an analytic solution was obtained for the

coupled drag and heat transfer problem in terms of six moment equa-

tions. This solution for the drag compared favorably with

Millikan's 17 oil drop experiments for the complete range of experi-

mental Knudsen numbers. The predicted heat transfer also showed

good agreement with the experimental results of Kavanau and Drake. 18

Although no systematic study of convergence for the moment method

used in the present study was made, a heuristic proof was attempted

by choosing different moments of the Boltzmann equation which gave

essentially the same result.

Unlike the situation for the low speed flow, the high speed flow

problem depends critically on which moments are taken. 'The most

probable cause is the fact that the high spee' moment equations are

nonlinear in comparison to the linear low speed equations. Because

of this uncertainty, physical intuition must be applied to choose the

most important moments for a particular problem. The predicted

sphere drag and density field using the following four moments; con-

tinuity, radial momentum, tangential momentum, and radial stress,

were found to be adequate for a wide range of Knudsen number. In

particular the results indicate that for a wide range of the parameter

'A R i 14 ' RT% 6 0 ,	 the density distribution varies only

slightly from the FMF result. For small values of this parameter
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the first indication of the formation of a gas dynamic shock was ob-

served. It was also found that an analytic solution could be found by

making the assumption of large MFP. This near FMF solution was

found to be in complete agreement with the near FMF theories of

Willis 20 and Rose. 10

All the results indicate that the moment method formulated in

the present study gives considerable insight into the nature of the

transition from highly rarefied flows to the continuum regime for the

problem of flow over a sphere. No other method of studying the com-

plete range of Knudsen number has been successful. Because this

.nethod is applicably over a wide range of Knudsen numbers, the de-

tails of the flow field may be in error. For example the choice of the

distribution function is obviously oversimplified and one cannot expect

it to be correct; especially for the nonlinear high speed flow. However,

the results from the present study confirm the conjecture that the

gross flow quantities such as drag and heat transfer are adequately

predicted.

Future efforts to extend the results of the present study can be

directed in the following areas:

(1) Carry out the numerical solution of the eight moment

equations for the low speed approximation to verify that

the six moment solution was adequate.

(2) Complete the rigorous "inner" and "outer" matching

scheme for the high speed approximation.

(3) Carry out the numerical solution of the high speed flow

equations without making the near stagnation point approx-

imation.

(4) Apply the general formulation to other geometrical shapes.
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APPENDIX A

BOLTZMANN EQUATION AND MAXWELL 'S EQUATION
OF TRANSFER IN CURVALINEAR COORDINATES

The Boltzmann equation is given by

^jc xc} Ci=c - (all) ^j ^ . _ < ^, collisions	 (A. 1)

In orthogonal curvilinear coordinates the spatial gradient iG given by

where
cartesian

Cp„^aZ ^q,^^ `	 (C e, ^) cylindrical

(r, e,cp) spherical

k , \) cartesian
Y, >> cylindrical
Y ) TS%We) spherical

and

- ^= unit vector in i coordinate

Lees  chows that the curvature term i.. given by

a	 _ a _L_. Z ah;	 3^
^^ x^^ ^ ^ `^ C= ^ huh; ^^^ aac ^ `^^ aa; J

where the cyclical order of permutation of the indices i, j, k is

required.
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Therefore, the Boltzmann equation in curvilinear coordinates becomes

+ 8
	

^^	 g Fc
7^ KC

3

tcollisions

(A. 2)

Maxwell's equation of transfer is obtained by multiplying Equa+,:,n
(A. 2) -by any function of particle velocity and integrating over the ve-

locity space, ck` . The resulting equation is obtained by an alter-
nate method by Lees. 3

3
df 

+	 ' aa^h'^'^` S^ ^^ at
3

3

^hk

NEE

(A. 3)
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APPENDIX B

EIGHT MOMENT EQUATIONS

Maxwell's equation of transfer in spherical coordinates for

symmetry with respect to	 (see Figure 2). is given by

Y{ 'z	 V's 1ub ab^'Sk"I C ep

1. Continuity Equation ( ;1,= -M.) L^^^= O)

` ir `f 	 ^ — ^ ^ `SINS 1 - '- O
(B. 1)

2. Radial Momentum Equation ( ^tZ= xv r dl-4= O)

^(Y`^^^rY
^ + `Cas p A ab`S^aegcy^

1t5 = m 
S 	 C) 	 (B. 2)
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3. Tangential Momentum Equation= 1n^ /^ 3=p)

-1- ^ CrZ ^^e> ^' .^_ ^ (Shad ^a0 - Cc^e ^1	 ^<a^ = O^ 2 ar	 `CS,NB a8 `	 (B. 3)

4. Energy Equation 4 = Y`^f^^ Q^4= O)

^2 ^ '', , 
C^l^cYr^ ^^e^ !v")l 4 ^-\	

^6^sw e (fir re

J — c) 	 4)

5. Shear Stress Equations= 
m^c^ib ^^1 _ \ ^^e\

- ̂  ^^y^^ p^^+ Cate pYq^-1^re^ = ^^^ ^r^

(B. 5)

6. Radial Stress E quation ( 16= m^.^ &T', 
(lic) -q,,\

^z dr	 r 5 tN0	 0

(B. 6)
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7. Tangential Stress Equation 	 = tih z	 ^c^, ^o , o =	 gat)

( rz ,I.,,ee) - - Vl&
,va 4b petfa)

YZ ^Y	 vs1ma 

CCa^epb r^^^ _ ^, ^ee
(B. 7)

8. Radial Heat Flux Equation

c	

^ ^

^^? ^ ^^^ L^ a ^'^ + ^r err `^ ^e ^^e ^ J

zrZ aY

z^sINe de

i
^^^cret^{ ^rrgq^} ^eeee^ ^ ^^^^ ^ Z^ ^^^^

(B. 8)

C) 3 r + jr^rr } Dt
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r1's1' .'^j1„

APPENDIX C

COMPUTATION OF THE MOMENTS — LOW SPEED FLOW

The moments appearing in the eight moment equations in

Appendix B are computed with the linearized distribution function
given in Section ( 7M- q ). The parametric functions appearing in the
distribution are normalized by the free stream quantities

and results in the following non-dimensional variables.

p

(r,a)
T,.

Q(	 U M^, ^^ =	 L ,

Vi (r,Hl	 V C(,',b)
^904-

The coordinate r defined in the semi-infinite interval

Co < Y < w

is transformed to the independent variable x defined in the finite
interval

C) <

through the transformation
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The moments become

-2-	 Z	 vF

^n	 ŷ
^ 1 ^Q„^ ^ ,'^Z	 C^1 Ti ` ^ I l \ \L / ^	 '1 l ^ U^ 't' \ 1 1\11

%
A-I obl-
	

M	 ^,

u^
— N$ ^ 1 —\ - -K-t Ulz) — 

,	 Nis%p

0^ 	 Z	 4

rn^T, +^nzZz C^n;T1- -v\zTz)
I^ T..	 Z	 z

i- Z^ M ^^ X4) \fif1 1 \A1 \ 11 — Y1 sV^2V \z 
	 ^Z'M F3)

kr.T»

^e^ — ^n i C^ ^y1-^Tt ^- ic3-3x m tT^ — ^1zTZ

1

La

— 3	 3 \5^^-lok^ 3x5) '^^VZ'^—'Y1ZVzZz^

ti

z.	 ZQar M
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z	 ^

ti

lam' ^^ = 3 eed

^YYrr	 - ^YYYr ^ --^ C\ti1^Ti ^^t^i ^ — xS \ `,1 ,,Z—'/̂^z^Z J^

z^^ M

-	 P^(YA6 — ^— ^^Y1,7Z^ 'V1Z^L ^ ^- i C1CS' ^^^ `^^ Z'^ ^z

M
T^

^YYC^ = lY r BA

2	 `
^^^cre ^

	

	 C2106-315 +1^ ('Y^iV \T^2 —	 iz )
M

^r ee^ —	 ztT^`^ZM ('h ^V ^^' 3^z —V1ZV ZZz ^

ti
PY A c _	 PY 089

ti
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From the definition of	 the pressure and the stress components

become

pressure;

^Y1a.Ts ^

stress;

Y(:, _ Yt^	 fr1	 ^^^'^
" d-

and the stress terror;

In the low speed approximation M «1)	 these quantities are

ti

-Rk M C ' >L (1i ,R - ivt RL)
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The radial heat flux defined by

is found to be

Ay-	 s^Y = ^R"Y1^,'fa^ — Z L 
^r,^^t ^reo+ p`^44^

+ `^^ ^3 ^^ r + aoe^' 1̂44+^ — 00 L^o

+ r t Ẑ ^n ^^ C^^ + 1; + ^)

Neglecting squares of vel-)cities or :assuming that ( M «\)

Qr = Z ^ .^crr+ ^r99t ^rQ'^^

a
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{ter ' r..	 "• r ";t.J B^: 1' + K NOT Fiit'h,^
i ee\. -F 1^`i ^1 ^s	 u	 t

APPENDIX D

MOMENT EQUATIONS — LOW SPEED FLOW

The tilde over the non-dimensional variables have been suppressed.

1. Continuity Equation

	

^ A Jx ` ^^' M J	 2x a:+

-' ^ (l^iCt) ^ (71 tlAr ^1zuZ^ ^' 
^k3 zX) ('Vl^u,^ .Y`zU.z^

	

+ (x^^x (c^^^61C^1tv,— `flzvz^ 	 ('h^u,-^ ^'I^z^lz^	 (D. 1)

4- (C4rat

In the FMF limit the parainctric functions were found to be

(A,-\j, =Q

VZ = siN e

'h, ^ j', ^^Z = Cot.^STAt^1T

Therefore conservation of mass requires that

^t1J ^^^^ ^F = ^` X^l 
Yz

If this result is generalized for a finite MFP by

ofq

J\I Cy ta) does not appear in the continuity equation.
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2. Radial Momentum Equation

xta.^2 ^'Xm =o
ax 

VAS <VAI) (D. 2)

%gain in the FMF limit

C ^%	 = (k-KL _
YZ

therefore, generalizing for the case of finite MFP

1) ch a) —^^ ẑ̂  (@((.-,)

and	 ^(^y^) does not appear in the radial momentum equation.

3. Tangential Momentum Equation

:, a A ^	 -T(A '\ -'nZgI ITQ
x J zR ax

-4-1 t'1j I i } YI, ^- (k^2 C^^i-^z^^>7Z 6b-	 Z	 (D. 3)

,F— M (V-:-6	 vt,u% T%- ^nzuzSTZ) — (VI 1v%Fir -nZvzrz J 1= O
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4. Energy Equation

0)
- (HcZ 	-^ '^ 6K

^^^	 _} 2	 l-xz x a

^' Z (\^ e C^^uTi^YlztlzTz^ - SkZ C^-^cẑ  ^ ^^^^.tZ^-1^\zuZ^z-J

- 5 'C" ,u,-r, 	 uzTz -1- i( cOk-r6 t	 ^ (D. 4)

^- ^ (xZ-3) C("YI,^t1"^ Yhu -̂CZ) ^ ^ ĉo^^ be^ ^^,V^T^ -^ivzT>^ = O

Again as for ^ 	 and	 Qp)	 °^(X^y)	 is taken to be

^'^(x)9) = C^-^cẑ  = YL

which satisfies the MFM limit and does not appear in the energy

equation.

5. Shear Stress Equation

(t- D a \
')Oh-Vj ^ZyzZZ\ 3 (^- z) C - )^ ^'h,V^C^- 'VtZvZ^ZJ

x 6K

+ ^ xzZ ^ '^n7^ _ ^n TL	 c? '^n^u^T^^'ytZuz^z

(D. 5)
+ ^ Cxs- b^) C^n,u; r,—ylZu`zTz)7

° C^l 11C9	 lYll` `^ @Yk3

wherei
1
 - 	

(^
	 and

 —4
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6. Radial Stress Equation

z
X M

{D. 6 )
-^ i (KI-5f ) 01 lv t-T^ NI'v'az)^ ^' ^'v1tU^^ C^ --kV1zV^z7 ^^

4 Z (x5	 ) (r^nju (, 'Y1zUiTz)

o ( ) t1 C C	 2	 '^1 ^( Y

7. Tangential Stress Equation

(\- XI) a 	 "Az^kjz^ - -- C^ ^Z^^ a ^^,^ Z y,zTZ Z^
-zx 4y%

X^ M Z9s

Ot

`^ Z ^'Y1 1 ^.t^ l i -^'Y1zuz-Cz> ^ 4 ^-15X ^-1bX^-3xS) (^(I,U7^ Vlzu^z^

= ro () ^tllb

(D. 7)
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8. Radial Heat Flux Equation

C3	 z	 — s ) Z(w-)
4K` MZ 	bx	 4 ^, Mz

-F 6 (1 x^^	 l	 ^rV1il(tT► ^L' VIzUZ^z^z\ ^(V1tuZ^^Z-1'1:l.Az t )
`^^ NI 

^xl)
x ax	 J

^ 3 (t'^cz^^ ^(Cc^^t ^^ ^`tlltV^^i ^Z— Y1^Vz-Ti^Z)^

^ b'^UtY ^ ^^g 11x9-^ (D. 8)
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APPENDIX E

FREE MOLECULE FLOW LIMIT

1. Number density 

= ej (—j*c0?6)  -+ T^e. M ct6e ^\+ev  
%	

I

where

erg()=
at the stagnation point G=0

^=d

low speed approximation ( m--► p)

rwb1 tb

,1f6T-1 	 =o	 V

high speed approximation ^^^ °p)

1^u- F^; ^- o
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Normal pressurel

The incident pressure ^^ is given by

An— ==(AWNA cos fb el 	
C.O.?Q^

It).1 i-T,bI

and the pressures : 	 : . lv the molecules reflected at the surface is

z ^w ^Q'luo C ZM^ Coszs)

4 z M^ M case ^ ^1+ e^^ (^ t^csys^\^

for diffuse reemission from the surface

l zMZ Cas^b^ ^ ^ M CoSE^ ^ Z ^-^^

+ ^^ +e c^ ^ Mts^B^,C z^ zZ cos^^ -# i^^„ V Z U1c^se^

where

zx (,— x2 -t ',?^ ot 	 ..... .
T	 i k3 a\5

) j xZ` 00

eY^ t^^ = 1
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low speed approximation (t.^-^ O^OvFtan
for	 E _	 —1 where E= O (µ)

a,M core (^-} ) --^ a cw-)
high speed approximation (t l` dit),

CflSZ O	 ^1lCos ,
 :k

3. Shear stress 1

For diffuse reemission the shear stress becomes

2 FMP - —^T	
-Z cog(y"", -	 ^A z-kwa k-e:m

+ F M (Me ^\ -^ e c^ (S- N^ cos^)^ 
J

low speed approximation

R,c, 12^5 — V^zR M s ^a A -^ O ^-^

high speed approximation (µk--mod°)

ti POAFW ,

lvbr = - ZA S11Jb C1XA
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4. Radial Heat Flux 32

For diffuse reemission

N rg;*	
IPWF

V 1

Cora ^\4 ev; ( (1WMt!)

for the low speed approximation

and (--=— —\	 where C-- = O (M)

A =	 (^- ^ caste +RAI  MCcE- .ic e- Z^

— .^ 1 2̂ case -^ o C^n'̂
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APPENDIX F

SEPARATION OF VARIABLES — LOW SPEED FLOW

Using the well known result from Fourier analysis that an

even function of A in the interval ( --W ) 7)	 can be expanded in a

cosine series and an odd function in the same interval can be expanded

in a sine series, the following separation of variables is assumed

Yk

'V1= v

N ) x̂^ ^^ = 2
C^ (x,) Cos "(a,)	

(F. 1)

'ftu

Substituting into the eight mo-., . : nt equations yields the following ordi-

nary differential equations.

Continuity

(F. 2. a)

—7- 
CA 

	3Cx
	

( F. 2. b)
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Radial Momentum

In-0i-,

Ck

(F. 3. b)

Tangential Momentum

M ^t`^Z ^C^ d1,	,^— ^;^^ = n	 (F. 4. a)

Yl

(F. 4. b)

Ener

o2
(F. 5)

or

C' 1̂ - Z ^ r -= O Y^
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Shear Stress

(F. 6. a)

(S-W) 4 k--) - -L N,:) ) ^ = qz^
In	 z

(F. 6. b)

Radial Stress

^XHc^) ^(c,H+^^fl'^ +ice M^ Z ^^Z^ ^

- ^3^^ M^Ao^co)- A^^Cu)--2UuZto,o)^^

Z (Z)	 t ^1^^-^^^E1) + Z^jCS^^A+BH^	 (F. 7. b)

_	 x zZ (r-,-)+rO; ->> + F?f	 A H
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-3zg (^-^,^^^^' .^ Are' .^ z CXS-^) a^>

— 13 (1I^ ^1	 ^o) --	 (u)^

Tangential Stress

NA $1 :	 ^l ) (x) = O	 (F. 8)

( -$jk)(n) satisfies the equation identically)

Radial Heat Flux

'Y1^ a : X^(H^)^S ^ ^^`^-^ Dom) — °^

(F. 9. a)

T	
i- Nit

(F. 9. b)

^' AZ ^ ^ + ^ ^ C^^CoI- A1;n C^^^

128



If the series are truncated after IA= N terms, e.g.

N

the number of equations becomes (Jh1t5) in the
dependent variables;

The boundary conditions become;

X=\ (r M)
-

(i) , (ha) _ — CoSA

(ii) Vi,(1,^)= S^NA

(iii) ^z ^^)9) = O

(iv) NZ(^ )e) = O

or

or

or 	 (k) - \^, (^) = O

or	 C,r ) (0 - C^ ^(1^ = O

1(= O ('(6y-o)

(v) ( 1(o^ fa) =O
	 or	 Ah ^(o) -^ ^h^ (u^ = G

(vi) V, (o)e^) = 0
	 or

12 9



(vii) -^^ ^c, e1= 6	 or	 Vol,, co + De ,(s) = 26

'D ^ CC.)+ OW(CI) = O

(viii) ^^jH+ i 
^^Jx_ 

_ -
	 M	 o)

or

where

7!^ ^^, t^,) cis (one)
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APPENDIX G

COMPUTATION OF THE DRAG-LOW SPEED FLOW

The drag on the sphere is computed from the normal stress

and the shear stress on the body. Since the boundary conditions re-

quire that the radial velocity vanish on the body the normal stress and

	

the shear stress are given by 	 and pYe	 The drag be-

comes

	

S
(p	 1p,_ (	 sae dA	 (G. 1)

where	 CkA= reslvse c&b8(^	 for a sphere

	

Taking into account the symmetry with respect to	 Equation (G. 1)
can be integrated

c 
Ir	 "T

^Co { j C^ ^Ccae a rNd d10 — ^) S R^ b ^A
(G. 2)

lll, o 
rr =rs	 ^b Y^^•

O

The drag coefficient is defined by

CD	
L	 z	 (G. 3)i^rrm^^,7rre

	

µz	 ^,^ r)t' YtS0 5 b cQe - J ^^ca^ r.S na
zb d^9

S	 'o	 ^

where
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APPENDIX H

COMPUTATION OF THE AVERAGE HEAT TRANSFER

The average heat transfer for a sphere is given by

^tiv^ =	 S 
A 
\4r,r kA, 	 1)

where

A_ re S OJ A ae a o	 for a sphere

radial heat flux at the sphere
surface

For spherical symmetry and in terms of the non-dimensional quanti-

ties

N	 f+c^	 S^NaaaQAVE — 
^,^rtT„^, = Z Qr r r,

6

where where
C^ Y =	 Y

N\4AL w

The Stanton number is defined by

(H. 2)

Sz =	 AVE	 =	 Q Amr.
	 (H. 3)

where
	 _'p = adiabatic wall temperature
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But for a perfect gas the specific heat coefficient at constant

pressure is given by

_ ( \ -^	 or	 _	
1l ^`-^ 1 ;Fn	 ^

This means that the definition of the Stanton number depends on the

molecular model, e. g. ,

	

I_Arz	 - number of degrees of

	

.&	 freedom

In the derivation of the collision integral for the Boltzmann equation

only the translational energy was taken into account. Therefore, all

the results are rigorously valid only for a monatomic gas ( 	 = 3 ) .

If the results are to be compared with experiments for polyatomic

gases the Stanton number must be defined in a way which is indepen-

dent of ?S .
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APPENDIX I 

MOMENTS FOR HIGH SPEED FLOW 

The definitions of the moments and the non-dimensional var­

iables are the same as for the low speed approximation. 

if= ~::. 11,. -'r (\-It() \ -\- ~ V\ (\_').1.) "n,.(\ <:.o~e 
rn1y-:s ~'( = i\~O:1. + (\~)'Y\\ Pfi -\- (~) ~\~\ (~~~ - ~\l)6<,~) 

l'l1P\- ~ ~"2. ""-\-

1. = ~M"L -¥\,'J~ -+'Y\,"~-z.. -+ \.l\ -+, ~~~) 'V\~ 

4- ~ ~(\4'-t)" i\i\}J\~ case 

~~'- 'Y\2,G;.Q\ - (~1)"-i~M. i\\~J~ "S\~~ 

- ..... - ~ ( - --"It. 
.:2'C'(Y -=. Y'~"l.. '\\1.U~ ~ ~'Y\"Z.U-0~ -+ ~ ~)"\\\ 
\\:\:~~ ~ 

4-i. (~~~\~ ~~ 

~ = ~ ~ 1\;.\j~ 4-1>~1.~"t.. -~ ~4-\t\"S'X;-t~~~'X"))j~\~~,~. 
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cas = M2 'Y1z UVi -^r 'Vh Urr.Zi,	
(^

zz '^ T IE

+? ^ 4 +^ ^^'fiw,Tt cASe

	

^^ c , _ 'V121^z^z -^- Z ` 1 ^- 
s -	 "F Tk Cas9 A' (^ 17 1

wu M

71-q = 0

^e^= 'Y1zVzZ-:,. -' i `,1+ ^ `^Sk+\oX^-3XS^,'`f1tWi C^ SiNA

3=t	-79 \^^
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APPENDIX J

MOMENT EQUATIONS-HIGH SPEED FLOW

Continuity

X ^^ X

where o ,f )̂ is assumeC' proportional to (k Yt) to satisfy the

free molecule flow lirait as in the low speed case (Appendix D).

Radial Momentum

vw ^	 ;^	 -k-

- NVV i ^- l-3cz d ^'hz-Tẑ  -fir {\- 12X

where C ^ (5y4^,) is assumed proportional to (l-)O) to satisfy the

free molecule flow limit as in the low speed case (Appendix D ).
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Tangential Momentum

DMZ k(^^Vz) 4.3 u2VZ -^ C< { > VzZ
x ^c

tA ^-	 DL	 os a, ( kAx) cost, -a

Q. 3)

Radial Stress

Zt'M2 x C'Y1Zui) -, 2 i`t U., 4 ^C^^-t ^^ lr.L i

x

X

-^ (1 X^^Hc'4)

	

FA		 4 ZUIz^Z
X	 ^A (J.4)

^ z ^^^^ x^ c^^ ^ ('^n,W T,)

-z J Z `ag.

^o--
--	 'Y\ r^
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APPENDIX K

SEPARATION OF VARIABLES — HIGH SPEED FLOW

Substituting the separation of variables assumed in Section V.D,

the four moment equations from Appendix J become;

Continuity

(K. 1)

+	 dNl _ o

Radial Momentum

cw(a	 A tq	 -2 N,-U,	 vol

	

— S^N^^ NzVZ ^UIz+VZ^^	 ^^	 (K. 2)

	

+ (^)^^ M d ► ^- lase	 M ^, Cam` X^-ar^ dw =p
Tangential Momentum

— 511.1 ^^MVTi \1cz	 lA^ =C)	 (K. 3)
X
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Radial Stress

^t'I^12 CoS 
C(^ 

Z) %-Uz + 21^12Ui (,t^z{v^^^

— a s ►Vfe c NZv^VZ Cuz+vz^

CMS 3 ( Z) ANzt , + C SC) Z, d, + z^►Ztuz^)^

F	 -T
	 (K. 4)
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APPENDIX L
COMPUTATION OF THE DRAG — HIGH SPEED FLOW

In the hypersonic limit the drag of a sphere in FMF is deter-

mined by integrating over the "front" half of the sphere from Q)= 0

to 4 =^ For example if the drag coefficient is written as the

sum

D	 D
	

(L. 1)

where
0

Cp = contribution to the drag by
integrating over	 O <- G,<_

'Ct)
Cfl = contribution to the drag by

integrating over	 a, B <-W

It can easily be shown that in the FMF limit

limit CDC = p

This result is analogous to the Newtonian impact model in hypersonic

continuum flow where the drag is determined by the surfaces on which

the free stream impinges.

The normal stress on the body is given by>ka and
and the shear stress is given by C^,^ e> x_o	The drag is then

given by

2
D = ZT ro 

Y 

c s ^^Ue ^e

o ^ 
-o	

(L. 2)

SmzA ^8
0



(L. 5)

Although the present theory is, strictly speaking, valid only
near the stagnation point the parametric functions appearing in the
normal stress and shear stress will be evaluated at the stagnation
point then integrated over the surface to obtain the drag. This pro-
cedure is similar to Lees correction of the Newtonian flow pressure
coefficient (Reference 34). The normal stress on the body is

(L. 3)
_ v1u^NZto)Cxz(^) cbsZ^ NZY)

4- z 	
%
1n^^eZ,o

and the shear stress is given by

C1^ = YJ.^g^0 = Y` 1^112 ^Z(c,)TJCz^°)VLG^^SIb^ Cr^sA	 (L. 4)=o-
1t1.P^2^w

where

and

2'`M ^^
p
^(oi 8)^ —,^ M T i 

L^z^^) Ci^50 — CXẐ ^^^ ^Z(a^
W YLTdp	

, Z.

Substituting these equations into Equation (L. 2) gives for the drag

coefficient

CD = Z'`n'cv^^^t ^,z

Nz(^^ zto) ^fiX^Ss> — Vzt^)–] 3 , —F M %((' (^^
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In the FMF limit

CD̂ F = 2 + 2	 ^'^ -^ Z	
(I•.6)

which is the correct value given in Reference 1. In the continuum

limit the drag coefficient obtained from the Newtonian impact theory

gives
Cp=^

which is reduced to

Cp -- 4
if a correction is made for the surface curvature.
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APPENDIX M

PHYSICAL INTERPRETATION OF ( ^I )

Chimieleski and Ferzinger 36 show that the local Maxwellian

distribution function

can be represented in the sense of generalized functions by an expan-

sion in terms of the delta function and its derivatives and a power
V:series in -TZ .

L̂k) T^L t ^- % r S'o cc-.)	 (T+o	
(M. 2)

-.ft ^'where Ci= - ut

In the present study the distribution function is assumed to be com-

posed of two parts; the first a generalized Maxwellian distribution

function and the second an expansion in terms of derivatives of the

delta function. The representation of the distribution function in the

preser^c study is given by Equations (3. 1) and (3, 2) and Figure M. 1

3 — ;t' 	 a ^{ G(rI(a M)	 in region ( 1)	 (M. 3)

and

^- ^z ft	^Y^e,^^+ G^^,^^)	 in region (2)	 (M. 4)

Both of the functions 9%"' and 9i"' are given by

145



DISTRIBUTION FUNCTION 
AND ZEROTH MOMENT 

(DENSITY) 

0-

f",,,, S&LI~r=O 
"""IP 

00 

.f\.~--' S tl:l.~-=O -

FIRST MOMENT 
(VELOCITY) 

00 

1r f\~ S ~r~4 ~.rF0 --
E' 

.... 
f;.~,'Z- S1f"~~~f=O 

-".. 

FIGURE M. 1 

SECOND MOMENT 
(ENERGY) 

00 

fl~4--' ~1:~\.\~Y= 0 



StNll r̂^ -	 n 	 e	 — ^,(^r tk(r^el)^+ C^e`V c )^^^ ^ (M. 5)

C2'MTC(r,e)P a-	 ^, tzT^ f^cc^^

The function C;(rl0)^ ) appearing in both 3 i and ; ,L are assumed to

take the form
+ ^° S Cn)	

M

(M. 6)

subject to the following restriction

S^

^
CJ GCY^b^;) Jz^ = O

co
_

This last condition guarentees that

(M. 7)

does not contribute to

the total number of particles in physical space; i. e. , no matter how
C-^CY,^;) affects the flow field, it does not act as a mass source.

(e)
Equation (M. 7) is always satisfied if the first term	 °^^ C`c,A) in

Equation (M. 6) is taken to be zero. The summation for 	 in

Equation (M. 6) then extends from n = 1 to infinity.

Since it is difficult to sketch the distribution function in all

three velocity coordinates, the following one dimensional velocity dis-

tribution will be utilized to illustrate the physical meaning of the as-

sumed form of the distribution function. 'faking the radical particle

velocity, nr , to be the single independent variable in velocity

space, one may write the one dimensional distribution function in the

form

el j— lrtr-(,lC	 Z^ + ^(^,g^^r^	 (M. 8)
ZRTCCr,^I
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where

SC (cre) =_ function of -T( (VO) and 'Ac (Yie)

4 IN (X tb). %(Tr) +	 (M. 9)Ti

	From Equation (M. 7) the first term of	 is equal to zero

and ^; becomes

RTC Cx'%) ^

r	
0	

11 `t r

(M. 10)
Before any interpretation of the distribution function is attempted, a

graphical representation of the delta function and its derivatives is

instructive. Although the delta function (or for that matter, any

symbolic function) is defined only by its integral property
w
S F(X1	 (M. 11)
- 00

it can be interpreted as the limit of the following schematic represen-

tation as E' tends to zero.

limit E'er o

E.	
Tr
	

°	 Rr
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The first derivative is the dipole given by

f
limit E'er► O

Higher derivatives can be obtained by a simple extension of this pro-
W

cedure. The first three terms of the distribution function ;t ) tc, and

^cz are given schematically in the first column in the Table 1 at the

end of this appendix.

One can interpret the contribution from C:jCr,b^^`^^ to the distri-

bution function ^i, from a physical viewpoint in the following way.

The representation of the dipole is given by

7L^ ~ I v o

^tI

lit"

^LI

The incremental velocity element *, r" is chosen in the following way

	

n	 ,

	

d^r	 = r 	 (M. 12)

	

S n	 ^
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The number of particles described by 3,,i

space is given by
00

N- S ^  Otm 'r) Ar
-A

Therefore, in the incremental element

at a position in physical

(M. 13)

ART

a1N , 	 prt^ Cx'^^r) o Ŝ1Y	 (M. 14)

and in the element der

Ckw"=	 M*r7C3LSZr	 (M. 15)

However the conditions specified by Equation (M. 13) require that the

same	 du 14 dN"	 is zero, i. e. ,

du'+ dti" = ^ ^i d^`,; + ^ ^i car

der = O

Therefore, one can interpret the dipole as contributing an equal num-

ber of particles A' and dN" with small velocities whose sum is

always zero. In this way the dipole does not contribute to the density

in physical space. Although the contribution from the dipole to the

total number of particles is zero it does make a net contribution to the

mean velocity since the integral

S^^;C ' JRC

is not zero. A similar interpretation can be given to the second de-

rivative of the delta function except that its contribution to the energy

is nonzero; i. e. ,

S ^^ ^;.2 JRr # O
^p
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In terms of the moments of the distribution function, the phys-
ical interpretation is clear. From the first column in Table 1 the
function GO,b;l'r) does not contribute to the total number of par-
ticles, in the second column only the Maxwellian, ;`kt) , and the
second term, 3LI , will contribute to the mean velocity. Therefore,
the dipole term acts as a momentum source. In the last column the
dipole does not contribute to the moment corresponding to the trans-
lational energy but the third term, 	 does contribute and can
be interpreted as an energy source.
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