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ABSTRACT 

This  document  is  the  final  report  on an analytical  and  exper- 

imental  program  directed to the  development of a  Laser  Doppler 

Velocity  instrument  for  the  measurement of gas velocity.  The 

instrument  measures  the  doppler  shift of light  scattered  from 

particles  moving  with  the gas, using  Mie(Ray1eigh-Gans)  scatter- 

ing. The  velocity  thus  measured  is  independent  of  particle  tem- 

perature. 

The  basic  design  parameters  were  clearly  determined,  and 

forms of the  important  analytical  relationships  verified  experi- 

mentally. An experimental  comparison of the  hot  wire  anemometer 

with  the  Laser  Doppler  Velocity  instrument  demonstrated  excellent 

correspondence  between  the two. 

Measurements of velocity up to  approximately  Mach 2 were made 

in  the  Seven  Inch  Wind  Tunnel  at  the NASA George C. Marshall 

Space  Flight  Center,  which  compared  well  with  simultaneous  velo- 

city  measurements  using  the  existing  conventional  tunnel  instru- 

mentation. 

Measurements  were  made  with a one  watt  argon  laser,  and  with 

a 50 milliwatt  helium-neon  laser. 

Several  methods of signal  processing  were  investigated  and 

an optimum  design  concept  established.  This  consisted  of  a  wide 

range  narrow  band  frequency  tracker,  whose  output can be directly 

recorded  on  tape  to  give  all  necessary  information  on  turbulence 

and  velocity. 

A three  dimensional  form  of  the  instrument  was  designed, 

built, and  is now being  lined up and  calibrated  ready  for  use at 

NASA facilities. 
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Section I 

INTRODUCTION 

During  the  past year, intensive  work  by  the  Raytheon  Company 

in partnership  with  the  Aero-Thermal-Physics  section of George C. 

Marshall  NASA  Space  Flight  Center was directed  to the development 

of a  Laser  Doppler  Velocity  Instrument. The results of this  work 
have been  the  development  and  demonstration of a  device  capable 

of measuring  both  turbulence  and  mean  velocity  in  subsonic  and 

supersonic  gas  flows.  The  work  followed  naturally  from  explora- 

tory  investigations of optical  doppler  frequency  shifts  as  a 

means of measuring  velocity,  started  independently  by  the  Raytheon 

Company  and  by  the  NASA  team  some  three  years  ago. 

Using  an  experimental  laboratory  system,  gas  velocities up 

to Mach 2 were  measured  in  the  NASA  Seven  Inch Wind Tunnel 

facilities. The turbulence  power  spectrum of flow  from a nozzle 

was obtained by computer  processing  the  output  signal  from  the 

instrument.  The  resulting pc.der spectral  density  curve  matched 

very  closely  that  obtained  with  the  use of a ho t  wire  anemometer. 

With  smoke  injected  into  gas flow  to provide  scattering 

particles,  signal  to  noise  ratios of 20 to 30 db  were  obtained 

using a one  watt  Argon  laser.  An  optimization  study of the  most 

important  instrument  parameters  produced  a  clear  understanding of 

basic  principles  with  good  agreement  between  analysis  and  experi- 

ment, and  permitted  the  definition of explicit  operating  modes 

for  optimum  signal to noise  ratio.  Design  principles  thus 

established were  applied to the  development  of  an  instrument  for 

measurement  of  the  three  components  of  the  instantaneous  fluid 

velocity  vector. This instrument is now  being  aligned  and  checked 

before  being  used  for  wind  tunnel  flow  and  turbulence  measurement 

1. 



a t  MSFC and AEDC. 

Fu r the r  work  remains t o  be done  on  several   problems: 1) The 

c o n s t r u c t i o n  of a s p e c i a l   s i g n a l   f r e q u e n c y   t r a c k e r ,   w h i c h   s h o u l d  

r e s u l t   i n   a n  i m p r o v e d   s i g n a l   t o   n o i s e   r a t i o   a n d  wider o p e r a t i n g  

range,  2) the es tab l i shment   o f  a more   accep tab le   i n j ec t an t  

m a t e r i a l  for t h e   l i g h t   s c a t t e r i n g  process, 3 )  t h e   a c q u i s i t i o n  of 

t u r b u l e n c e   d a t a   i n  a number of d i f f e r e n t   s y s t e m s ,   u s i n g  the 3-D 

v e c t o r   v e l o c i t y   i n s t r u m e n t ,  4) t h e   i n v e s t i g a t i o n  of methods  of 

r educ ing   o r   e l imina t ing   i n s t rumen ta l   f r equency   b roaden ing ,  5)  t h e  

f u r t h e r   d e v e l o p m e n t   o f ’ t h e   d e v i c e   f o r  cross c o r r e l a t i o n  

measurements. 

With  these  improvements ,   the   instrument   range of  a p p l i c a t i o n  

w i l l  be   even  fur ther   extended.   Experiments   have shown t h a t   w i t h  

an i n c r e a s e d   i n s t r u m e n t   s e n s i t i v i t y ,   s c a t t e r i n g   f r o m   n a t u r a l  

a i r   c o n t a m i n a n t s ,   s u c h   a s  dust and  water   drops may p r o v e   f e a s i b l e ,  

e l i m i n a t i n g   t h e   u s e   o f   a r t i f i c i a l   i n j e c t a n t s .  
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2 .  TECHNICAL DISCUSSION 

I n  t h e   f o l l o w i n g   m a t e r i a l   t h e   i m p o r t a n t   b a s i c   c h a r a c t e r i s -  
t ics and   parameters   o f   the  Laser Doppler  Velocity Ins t rument  are  
analyzed i n  d e t a i l ,   w i t h   s u p p o r t i n g   e x p e r i m e n t a l   d a t a .  

2 . 1  Scat-t-grins of Electromaqn.etic Waves b y   P a r t i c l e s  

T h i s   s e c t i o n   p r e s e n t s   t h e   t e c h n i c a l   b a c k g r o u n d ,   a n a l y t i c a l  
t rea tment   and   impor tan t   fundamenta l   fea tures   o f   the   sca t te r ing  
o f   e l ec t romagne t i c   waves   by   pa r t i c l e s ,   u sed  i n  a sys t em  fo r  Mie 

sca t te r ing   measurements   o f  moving gas   s t r eam  ve loc i ty   and   t u r -  
bulence.  

2 . 1 . 1  M i e  and   Rayle iqh   Sca t te r inq  

A review of the   fundamenta l   aspec ts  of Mie and Ray- 
l e i g h   s c a t t e r i n g , a n d   r e c e n t   l a b o r a t o r y   s t u d i e s  i n  t h e   v i s i b l e  
spectrum is  presented  below.  The d i scuss ion   o f   t he   conven t iona l  
t h e o r y   o f   l i g h t   s c a t t e r i n g  i s  based   on   the   comprehens ive   t rea t -  
ment  of  van  de H u l s t  (1) . 

2 . 1 . 2  Fundamental  Aspects 

The r i g o r o u s   t h e o r y   o f   l i g h t   s c a t t e r i n g  from a r b i -  
t r a r y   s p h e r e s  was de r ived  from  Maxwell 's   equations by M i e  ( 2 )  . 
I n   l i m i t i n g   c a s e s   s i m p l e r   t r e a t m e n t s   c a n  be used.  For  example, 
i f   t h e   w a v e l e n g t h   o f   t h e   r a d i a t i o n  is  l a r g e  compared w i t h   t h e  
s i z e   o f   t h e   s c a t t e r e r ,   t h e  e lec t r ic  f i e l d   a t   t h e   s c a t t e r i n g  
c e n t e r   c a n  be t a k e n   t o  be cons t an t   and   t he   Ray le igh   s ca t t e r ing  
formula is ob ta ined .   Ano the r   ca se   o f   i n t e re s t   occu r s  when t h e  

i n d e x   o f   r e f r a c t i o n  ( n )  is n e a r l y   e q u a l   t o   u n i t y   a n d   t h e   s i z e   o f  
t h e   s c a t t e r e r  i s  a rb i t r a ry .   Fo r   t hese   cond i t ions ,   t he   Ray le igh  
s c a t t e r i n g  by  each  element  of  volume  of  the  target  can be summed 
(wi th   t he   appropr i a t e   phase ) ,   and   t he   Ray le igh -Gans   s ca t t e r ing  
formula is o b t a i n e d .   T h i s   l a t t e r   s i t u a t i o n  is sometimes c a l l e d  
Mie S c a t t e r i n g ,   a l t h o u g h   t h e  term Rayleigh-Gans  scat ter ing,   used 
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by  van  de  Hulst ,  i s  probably  less l i k e l y  t o  l e a d  t o  confusion.  

The t e rmino logy   and   l imi t ing   ca ses   can  be conven ien t ly   d i sp l ayed  

i n  a map o f   t h e  n-x p l ane  shown i n   F i g u r e  2.1-1,  where n i s  t h e  

i n d e x   o f   r e f r a c t i o n   r e l a t i v e   t o   t h e   s u r r o u n d i n g  medium, x is  

JL where a i s  t h e   s i z e   o f   t h e   s c a t t e r e r   a n d  X is the  wavelength 2 a  
x 

o f   t h e   r a d i a t i o n .  

2.1.3 Rayle iqh   Sca t t e r inq  

The  convent ional   theory  of   Rayleigh  scat ter ing  assumes 

t h a t   t h e   s i z e   o f   t h e   s c a t t e r e r  i s  much less than  X/2rr, i . e . ,   t h a t  

t h e   s c a t t e r e r  is small  compared  with a wavelength  of  the  radia. .-  
t i o n .  I t  i s  f u r t h e r  assumed t h a t   t h e   a p p l i e d   f i e l d   p e n e t r a t e s  

t h e   s c a t t e r e r  so f a s t   t h a t   t h e   s t a t i c   p o l a r i z a t i o n  i s  e s t a b l i s h -  

ed i n  a time small   compared  with  the wave p e r i o d , i . e . ,   t h a t  

I n /  x s i z e  << X/2n. The second  assumption i s  e q u i v a l e n t   t o  

s a y i n g   t h a t   t h e   p a r t i c l e  m u s t  be   sma l l  compared w i t h   t h e  wave- 

l e n g t h   i n s i d e   t h e   s c a t t e r e r .  

The c ross - sec t ion   fo r   Ray le igh   s ca t t e r ing  i s  given by 

where a is  t h e   p o l a r i z a b i l i t y   t e n s o r  and 

+ m l a2  l 2  + n la31 where 1, m, n ,   a r e   t h e .  2 2 2 

d i r e c t i o n   c o s i n e s   o f   t h e   i n c i d e n t   r a d i a t i o n  3 v e c t o r   w i t h  res- 
pect t o   t h e   p r i n c i p a l   a x e s   o f   t h e   p o l a r i z a b i l i t y   t e n s o r .  The 

q u a n t i t y  k is  a s   u s u a l ,  2 7 / X .  F o r   i s o t r o p i c   s c a t t e r s ,  

a = a = a = a and la\ is  a s c a l a r .  When U i s  s c a l a r ,   i f   t h e  1 2 3 

i n c i d e n t  ?! v e c t o r  i s  i n  t h e   p l a n e   o f   s c a t t e r i n g ,   t h e   a n g u l a r  

dependence i s  cos  ’0 where 0 i s  t h e   s c a t t e r i n g   a n g l e ,   a n d   t h e  
d i f f e r e n t i a l   s c a t t e r i n g   c r o s s - s e c t i o n ,   d o ,  for  power s c a t t e r e d  
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i n t o  the  solid  angle  dQ is 

do 4 2  2 - = k  a c o s 9  dR 

When the 3 vector  is  perpendicular  to the  plane  of  scattering, 
the angular  distribution  is  isotropic.  For  spheres  radius of a, CY 

is given by the  Lorentz-Lorentz  equation  (1) 

n - 1  3 

n2 + 2 

2 
a =  a 

2.1.4  Rayleigh-Gans  (Mie)  Scatterinq 

Rayleigh-Gans,  commonly  called Mie, scattering  is 

derived  under  two  assumptions: 

a). The  refractive  index  of  the  scatterer  is  on 

the  order of unity:  In - 11<<1 

b) . The  difference  in  phase  between  a  light  beam 

passing  through  the  same  distance  in  the 

surrounding  medium  is  small, so that 

2 k aln - 1 I <<1, where  a  is  the  radius 
of t h e  spherical  scatterer. 

The  scattered  amplitude is  the  Rayleigh-scattered  amplitude 

multiplied by a factor R ( e ,  9). For 6, = 0, R ( 0 ,  9) = 1 so 

that  forward  scattering  is  given  by  the  Rayleigh  formula. For 

particles  with  simple  geometrical  form, R ( 0 ,  $ )  can be found  by 

simple  integration. 

The  scattering  cross-section is  given  by 
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where x = - 2rra and 9 (x) is a f u n c t i o n   t a b u l a t e d  on page 90 of  

Reference (1) . For  small  spheres, 9 (x) is s u c h   t h a t  Osca is 
t h e   R a y l e i g h   c r o s s - s e c t i o n ;   w h i l e   f o r   l a r g e   s p h e r e s  

x 

CJ = 2 (n-1) x . 2 2  
s c a  

2.1.5 Mie S c a t t e r i n q   i n  a Weakly Ionized  G a s  

Con ta in inq   Ca rbon   Pa r t i c l e s  

T h i s   s e c t i o n   b r i e f l y   i l l u s t r a t e s   t h e   r e l a t i v e  magni- 
t u d e s   o f   t h e   v a r i o u s   s c a t t e r i n g   p r o c e s s e s   w h i c h  w i l l  occur  i n  a 
gas  which is weakly  ionized ( i . e . ,  say 1% or less) and  which 
contains ,   for   example,   carbon  par t ic les   or   macromolecules .   Such 

c o n d i t i o n s  w i l l  be found  in  a h igh   ve loc i ty   w ind   t unne l ,   i n  a 
s h o c k   t u b e ,   o r   i n   t h e   e x h a u s t  p lume of  a rocke t   eng ine .  

Then t h e   t o t a l   l i g h t   p o w e r ,   ( w a t t s / s e c ) ,   s c a t t e r e d  from  any 
s c a t t e r e r   i l l u m i n a t e d  b y  monochromatic l i g h t  is 

where N = c o n c e n t r a t i o n   o f   s c a t t e r e r s  

a t o t  = t o t a l   s c a t t e r i n g   c r o s s - s e c t i o n .  

D i r e c t i o n a l i t y   o f   s c a t t e r i n g  is  n e g l e c t e d   h e r e   f o r   s i m p l i f i -  
c a t i o n .  The f o l l o w i n g   t a b l e  (2.1-1) g i v e s   r e l a t i v e   s c a t t e r e d  
p o w e r s   c a l c u l a t e d   f o r   t y p i c a l   s c a t t e r e r s  i n  a r e p r e s e n t a t i v e   g a s  
w i t h   e n t r a i n e d  carbon p a r t i c l e s .  



TABLE 2.1-1 

TYPICAL RELATIVE POWERS O F  RAYLEIGH, MIE AND 
THOMSON  SCATTERING* 

1 - 

P a r t i c l e  Concent ra t ion  
Cross-Sect ion ( number/cm3 

T o t a l   S c a t t e r i n g  

N 
0 ( c m  1 2 

t o t  

Gas  Molecule 
(Approx. 1 atmos. ) (Rayleigh)  

-6  x 10 10 l9 - 2 7  

Carbon 

Dia. 500 w 
(Mie) 

P a r t i c l e  3.5 x 10 10 - 14 

Elec t ron   6 .7  x 10 10 l4 
-25 

(Thomson) 
*at  Wavelength 6493A 

' R e l a t i v e  
S c a t t e r e d  

Power 
(a N O t o t )  

1.7 x 10 - 10 

1 

1 . 9  x 10 -13 

These  numbers i l l u s t r a t e   t h a t   t h e   s c a t t e r e d   l i g h t  from d u s t  

p a r t i c l e s  i s  r e l a t i v e l y  i n t e n s e .  Th i s  i s  p a r t l y   b e c a u s e   t h e   e f -  

f e c t i v e   c r o s s - s e c t i o n  i s  p r o p o r t i o n a l   t o   t h e   s q u a r e   o f   t h e  volume 

o f   t h e   p a r t i c l e .  Below is  p resen ted  a b r i e f   d i s c u s s i o n   o f   t h e  

ampl i tude   o f   s ca t t e r ing   f rom  ca rbon   pa r t i c l e s ,   s e l ec t ed   a s  a 

p r o b a b l e   c o n s t i t u e n t   o f   r o c k e t   e x h a u s t   g a s e s .  

2 .1 .5 .1   Cross-Sect ions 

Carbon  absorbs  l ight   and  hence  has  a complex 
i n d e x   o f   r e f r a c t i o n .   I n   t h e   v i c i n i t y   o f   v i s i b l e   l a s e r  wave- 

l eng ths ,   t he   complex   r e f r ac t ive   i ndex   has  been measured ( 3 ) .  

I t  i s  n = 1.59 - 0.66 i. Hence fo r   500 i   d i ame te r   ca rbon   pa r -  

t i c les ,  n - 1 = .83,  x - - 2 2 7 ,  x ( n  - 1) = -188. This  se t  of  
va lues  of t h e   s c a t t e r i n g   p a r a m e t e r s   d o e s   n o t   p r o v i d e  a c l e a r   i n -  
d i c a t i o n   i f  any   o f   t he   l imi t ing   ca ses  i s  an   adequa te   desc r ip t ion .  

However t h e  u s e  o f  Mie's g e n e r a l  r e s u l t  i n  t h e  form of a s e r i e s  

expansion shows t h a t  a s i n g l e  term, cor responding   to   the   Rayle igh  
S c a t t e r i n g  L i m i t ,  is s u f f i c i e n t  . 
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Reference (1) g i v e s  a s c a t t e r i n g   e f f i c i e n c y   ( d e f i n e d  a s  t h e  
r a t i o   o f   t h e   s c a t t e r i n g  cross-section t o   t h e   g e o m e t r i c  cross- 
s e c t i o n )   a s  

2 

- 8 x4 
x2+"" ] (6) 

- n 2 - 1  n2 - 1 
*sea 3 n2 + 2 n 2 + 2  
" E +  

For 5001 d iame te r   ca rbon   pa r t i c l e s   and  6943i wavelength ,   the  
second term i n   t h e  series is  about  0.02  and  can be neg lec t ed .  
Numer ica l   eva lua t ion   y ie lds  

= 1.8 x 10 -3 
Qsca 

and  hence u 
macromolecules. The c ross - sec t ion  i s  a q u i t e   s e n s i t i v e   f u n c t i o n  
o f   t h e   p a r t i c l e   d i a m e t e r   a s  i s  shown i n  F igure  2 . 1 - 2 .  The angu- 

- 
sea - QsAca = 3.5 x 10 -14 c m 2  f o r  500 A diameter   carbon 

l a r   d i s t r i b u t i o n  i s  cosL 0 f o r   i n c i d e n t   l i g h t   p o l a r i z e d   i n   t h e  
p l a n e   o f   s c a t t e r i n g ,   a n d  i s  un i fo rm  fo r   l i gh t   po la r i zed   pe rpen-  
d i c u l a r   t o   t h e   s c a t t e r i n g   p l a n e .  Thus t h e   d i f f e r e n t i a l   s c a t t e r -  
i n g   c r o s s - s e c t i o n s   a r e :  

Unpolar ized  Liqht :  

-15 2 c m  L 
" d' - 9.25 x 10 dfl (1 + cos e )  ster 

P o l a r i z e d   p a r a l l e l  t o  s c a t t e r i n q   p l a n e :  

-15 
" - 9.25 x 10 
dn 

2 

s t e r  
cos2 a 

P o l a r i z e d   p e r p e n d i c u l a r   t o   s c a t t e r i n q   p l a n e :  

( 8  

do -15 
do - 9.25 x 10 

2 
" 

ster 
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These cross-sections  are  very  much  larger  than  the  Rayleigh 
cross-section  for  scattering  from  gas  molecules  (on  the  order of 
6 x  10 -*’ cm ) or  the  Thomson  cross-section  for  scattering  from 
free  electrons (6.65 x 10 -25 cm2).  Clearly  even  a  very  small 
concentration  of macromolecules will dominate  the  scattering  in 
total  intensity.  Certainly,  in  a rocket  exhaust we would  expect 
this  situation  to  hold.  Our  experiments  with  smoke-injected 
wind  tunnels  have  shown  scattering  of  laser  light  to  continue 
even  when  the  smoke  injectant  is  no  longer  visible  to  the eye! 

2 
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2 .2  Doppler   Frequency  Shif t   of  Waves S c a t t e r e d  b y  Movinq Particles 

T h i s   s e c t i o n   d i s c u s s e s   t h e   D o p p l e r   s h i f t   o f   t h e   f r e q u e n c y   o f  
l i g h t   s c a t t e r e d  from  moving p a r t i c l e s .  The basic equa t ion  relat-  
i n g   t h e   D o p p l e r   s h i f t   t o   t h e   f l o w   v e l o c i t y  and s c a t t e r i n g   a n g l e s  
i s  de r ived .  

Consider a laser beam i n c i d e n t  upon a flowing stream of gas,  
-b v e l o c i t y   v s ,  a t  ang le  a and sca t t e r ing   t h rough   an   ang le  8 as 

shown i n   F i g u r e  2.2-1. The inc ident   f requency   seen  b y  an   observer  
moving w i t h   t h e  stream i s  (1) 

\ v c o s  a, 
f = f  ( 1 -  S : fo  = l a s e r   l i g h t   f r e q u e n c y ,  sec 

c = v e l o c i t y  of l i g h t ,  cm- sec 

-1 
-1 0 C 

I n  t he   r e f e rence   f r ame  moving w i t h   t h e   s t r e a m ,   t h e  

sca t t e red   pho tons   have   t h i s   f r equency .  The pho tons   s ca t t e r ed   by  
a p a r t i c l e  i n  t h e   g a s  and  received  by a s t a t i o n a r y   d e t e c t o r  are 
f u r t h e r   D o p p l e r   s h i f t e d   t o   f r e q u e n c y   f ,   g i v e n   b y  (1) 

v c o s  ( 0  + a)  

f S  
= f '  (1 + S 

C ) 

Thus t h e   s c a t t e r e d   f r e q u e n c y  i s  given i n  terms of t h e   i n c i d e n t  
frequency b y  

v c o s  a 
fs = f o ( l  - 

C 1 
s 1 ( I +  s 

v  COS(^ + a) 
C 

The f r e q u e n c y   s h i f t  Afs i s  given by 

A f s  = ( f s  - fo) , 

which, t o   o r d e r  - V S  
c '  i s  
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F i g u r e  2.2-1 - S c a t t e r i n g  of Ligh t  f r o m  a Stream of Moving 
P a r t i c l e s  
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w f s [ c o s ( B  + a )  - cos a3 V 

O T  

nf, = f s [(cos 6 - 1) cos u - sin e sin a V 
0- 

C 

Hence  the  stream  velocity  can  be  determined  from the relation 

". h - 
[ ( C O S  e-1) c o s  a - sin e sin a] Afs ( 3 )  

The  Doppler  shift has been  calculated f o r  a  laser of wave- 
length 6 3 2 8  A (He-Ne), and  is  plotted as a  function  of  scattering 
angle  for  various  angles  of  incidence  in  Figure 2.2-2, assuming  a 
gas  particle  velocity of 3 .48  x lo4 cm/sec.  (i.e., Mach 1) . 

To obtain  the  Doppler  frequency  shift  at  another  wavelength, 
x', multiply  equation ( 2 1 ,  and the  ordinate  of  Figure 2.2-2 by -. x x' 

It  should be noted  that  equation ( 3 )  gives  only  the  maqnitude 
of Ivsl, so that  measurement of only  Afs  leaves  an  ambiguity of 

direction  of vs. 
N 

N 

2.2-3 



DOPPLER SHIFT v s  S C A T T E R I N G   A N G L E  

FOR  VARIOUS  ANGLES OF I N C I D E N C E  

a k o  
240 I I I I I I I 1 

x -6328 - - 
v = 3.48 x 104 CMISEC ( M A C H  I )  

200 I 

- 

- 
N 160 
I I 

- 
I 

a 
a 
J 

g 80 

40 

0 
0 2 4 6 

+ 
8 I O  12 14 16 18 2 0  



REFERENCES FOR SECTION 2 .2  

1. Landau  and L i f s h i t z ,  The Classical Theory of F i e l d s ,  11, 

Addison-Wesley Pub l i sh ing  Company (1959) . 

2.2-5 



2.3 Coherence of E-lectromaqnetic Waves 

If  two electromagnetic waves of the  same amplitude E,  

frequency, and phase,  impinge  together on an absorbing  surface, t he  
timeaverage power absorbed i s  proportional  to  the  average of the - 
( t o t a l   f i e l d ) ' .  I n  th i s   ins tance   the  two f i e l d  
be d i rec t ly   addi t ive ,  so that   the   average power 
be proportional  to (2E) , i.e., 4E . These two 

sa id   t o  be coherent. 

2 2 

amplitudes would 
absorbed would 
waves are  then 

I f ,  on the  other  hand, w e  have two electromagnetic waves  of 
the same amplitude,  but  having  phases which vary randomly with 
respect   to  one another,  the  powers,  but  not  the  amplitudes,  add; 

so t h a t   t h e   t o t a l  power absorbed by the  surface is  now 2 E  , i . e . ,  

one half  the power absorbed i n  t h e   f i r s t  example. I n  the second 
case,  the waves a re   s a id   t o  be incoherent. I t  i s  shown ( i n  
Equation ( 5 1 ,  Section 2 . 5 . 3 . 1 )  t h a t   t h i s  power difference i s  j u s t  
the  heterodyne  signal power which w e  wish to  analyze i n  the   l aser  
doppler  velocity  meter. 

2 

I n  the  case of rea l   l igh t   sources ,  i t  i s  impossible t o  obtain 
l i g h t  of a single  frequency,  since even the  sharpest   spectral  l i n e  

has a f i n i t e  width, and a f i n i t e   p h y s i c a l   s i z e .  If we consider 
two d i f fe ren t   po in ts  i n  the wave f i e l d  produced by a quasi- 
monochromatic* extended  light  source, the  two points  being  close 
together,   the  f luctuations of the wave amplitudes a t   t hese   po in t s ,  
and a l so   the   f luc tua t ions  of the  phases, w i l l  not be  independent. 

"Close  together" i n  this   case means t h a t  A s  << x, where A s  i s  the 
difference i n  path  length between the  source and the  two points  
and x i s  the mean wavelength. I n  t h i s   ca se ,   f l uc tua t ions   a t   t he  

* -" - - 

defined  as a source i n  which = << 1,  where x i s  the mean  wave- A X  
A 

length of the  source, and A I  the  range of wavelengths of i t s  
components around x. 
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two p o i n t s . w i l 1  be e f f ec t ive ly   t he  same. If A s  i s  increased, 

some correlat ion between the   f luc tua t ions  w i l l  still be  found, 

provided  that ,  for a l l   p o i n t s  on the  source, As does  not  exceed 

the  coherence  lenqth  cat. Here A t  = - Au where A v  i s  the   e f fec t ive  

spectral   width of the  l ight  source,  and i s  called  the  coherence 

t i m e .  Thus c a t  = - " The region  over which As i s  less than 

the  conerence  length i s  called  the.  reqion of coherence  around  any 

point  i n  a wave f i e l d .  

-2 

I t  is  c l ea r   t ha t  i n  a r e a l  wave f i e ld ,   v ib ra t ions  can be 

found  between  which there  i s  nether  complete  coherence  nor com- 

plete  incoherence. This condition i s  ca l l ed   Pa r t i a l  Coherence. 

An excel lent  and detailed  discussion of pa r t i a l ly   cohe ren t - l i gh t  
appears i n  Reference ( l ) ,  and a very  readable and p rac t i ca l  

description i n  a paper by Zernike ( 2 )  who f i r s t  defined  the con- 
cept of "degree of coherence" i n  a way par t icu lar ly   wel l   su i ted  

to  experiment. 

A t  this  t ime, a detailed  discussion on P a r t i a l  Coherence is 

unnecessary,  and w i l l  be  developed i n  l a t e r   r epor t s  as needed. 

We w i l l  c lose by presenting ( b u t  n o t  deriving - see 1, 2 )  

the   def in i t ion  of Complex Degree of  Coherence, y12 (T), of 

l igh t   v ibra t ions  of amplitude V and V2 a t  t w o  points  P and P 2 :  1 1 

where r 1 2 ( T )  = <V1 ( t  + 7 ) V 2  ( t )>  
* 

= the  Mutual  Coherence  Function of the wave f i e l d .  

T = the  time  difference between  measurements of the 

l ight   ampli tudes  a t  P1 and P2. 

t = time 
* 

= <v2 ( t  + 7)v2 ( t ) >  
* 
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= Self Co'herence of the   l igh t   v ibra t ions  

rll (o) = ;;\ P2 respectively.  
and 

= ordinary   l igh t   in tens i ty  when 7 
r22 (0) = 

a t  P1 

= o  

While th is   p resenta t ion  i s  somewhat elaborate  for  such a 
brief summary, nevertheless w e  wish to  introduce it t o  show the 
strong  mathematical  resemblance between the  nature of p a r t i a l l y  

coherent  l ight and of turbulent   f luctuat ions i n  a f luid  f low 
f i e l d .  

This  becomes evident when we note   that ,  i n  the  general 
theory of s ta t ionary random processes, r12(7) i s  called  the  Cross- 
correlation  function of V1 ( t )  and V2 ( t )  , and rll(,r) the Auto- 
correlation  function of V l ( t ) .  This  suggests  that  the  degree of 

f l u i d  turbulence, which i s  measured by j u s t  such functions,  i s  
intimately  connected  with  the change .in the Degree of Coherence 
which occurs when quasi-coherent  light i s  scat tered from p a r t i -  

c l e s  i n  the  turbulent  flow. The connection i s  l e f t   f o r   l a t e r  

study,  but begins  t o  emerge i n  the   resu l t s  of the  analysis  
presented i n  Section 2 . 2 . 8  where w e  consider  scattering from 
random sca t t e re r s .  
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2.4 The  Las-er  Doppler  Velocity  Instrument 

Figure  2.4-l(a) shows  a  simple  form of Laser DopplerVelocity 
Instrument. The beam  from a CW laser  is  focused by lens  L1 on to 
a  small  volume  in  the  moving gas stream. Part of the  light is 
scattered,  collected by lens L2 and  focused  on to the  cathode of 
a  photomultiplier. The unscattered  light  is  collected  by  a  third 
lens L3, suitably  attenuated  by  a  neutral  density  filter,  brought 
back  by  a  mirror  and  beam  splitter  on to the  same  axis  as  the 
scattered beam, and also  focused  on to the  photomultipliercathode. 
The  two  beams  beat  together  (heterodyne),  with  the  photomultiplier 
acting  as  a  mixer  and  intermediate  frequency  amplifier.  Subse- 
quent  electronic  apparatus  extracts  and  processes  the  required 
turbulence  and  velocity  information  from  the  heterodyne  signal 
in terms of conventional  fluid  flow  parameters. 

The  system  is  straightforward  in  concept.  However,  a  number 
of  physical  mechanisms  are  involved,  each  of  which  must  be 
correctly  set up, which  implies  .that  it be understood  and 
analyzed. To achieve an understanding  of  these  mechanisms  in  the 
considerable  detail  needed  for  system  design  and  optimization, 
was  clearly  one of the  prime  tasks in  the  investigation.  The 
important  mechanisms  are  listed below, with  details in  later 
sections 

1. 
2. 
3. 
4 .  

5. 

6. 

7 .  

8. 

of  the  report: 

Source  power  requirements 
Source  wavelength 
Source  coherence  length 
Scattering  volume  and  instrument  resolution 
Reference  beam  intensity  for  maximum  signal to 
noise  ratio 
Atmospheric  coherence  losses 
Target  coherence  losses 
Geometry of beam  alignment  and  spot  size  for 
acceptable  mechanical  tolerances 
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9. Geometry of beam alignment  and spot s i ze  f o r  maximum 
s i g n a l  t o  n o i s e  r a t i o  

10.  System  bandwidth i n   r e l a t i o n  t o  v e l o c i t y  range 
11. System  bandwidth i n  r e l a t i o n  t o  sys tem  s igna l  t o  n o i s e  

r a t i o  

12 .   E lec t ronic   sys tem  needed  t o  process i n   r e a l  t i m e ,  and t o  
r eco rd  on t a p e ,  the  t i m e  varying  Doppler  s h i f t ,  so a s  t o  
p roduce   ve loc i ty   and   t u rbu lence  parameters as o u t p u t s  

13 .   Spec t ra l   and   ins t rumenta l   b roadening  of the Doppler 

s i g n a l  

A good ins t rument   des ign  mus t  t a k e   i n t o   a . c c o u n t   a l l  of 

these numerous f a c t o r s .  They are i n c o r p o r a t e d   i n   t h e  3-D 

i n s t rumen t   des ign   desc r ibed  l a t e r .  

A w i d e   v a r i e t y  of d i f f e r e n t   a r r a n g e m e n t s   c a n  be used i n   t h e  
Lase r  Doppler Veloc i ty   Ins t rument ,   depending  somewhat on the 

geometry of t h e   s y s t e m   i n  which measurements are  t o  be made. 

F i g u r e s   2 . 4 - l ( a ) ,   2 . 4 - l ( b ) ,   2 . 4 - 2 ( a )  and  2.4-2(b) show 

s e v e r a l  possible arrangements ,   each w i t h  i t s  own p a r t i c u l a r  
advantages,   such as:  

F ig .   2 .4 - l ( a )  : 

Fig .   2 .4 - l (b )  : 

Fig .   2 .4-2(a) :  

F ig .  2.4-2 (b)  : 

S c a t t e r i n g  volume set  b y   l e n s   a p e r t u r e s   c a n  be 

ex t remely   smal l .  

A l l o w s  s e l e c t i o n  of l a r g e r   s c a t t e r i n g  volume. 

El imina tes   ins t rumenta l   b roadening  - output  i s  

twice Dopp le r   f r equency   sh i f t .  

E l imina te s  loss of s c a t t e r e d   l i g h t  a t  t h e  beam 
sp l i t t e r  n e c e s s a r y   i n  the other three arrange-  

ments - o u t p u t  i s  t r u e  Doppler f r l q u e n c y   s h i f t .  

Numerous other possible arrangements come t o  mind.  Arrange- 
m e n t s   s u i t a b l e   f o r  remote wind s e n s i n g   a r e   d e s c r i b e d   i n  a separate 
report. 
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F igu re  2 . 4 - 2  Further   Laser   Doppler   Veloci ty   Instrument   Systems 
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To make u s e  of r e a d i l y   a v a i l a b l e   p h o t o m u l t i p l i e r   t u b e s  and 
c i r c u i t s ,  it i s  necessa ry  t o  hold  the Doppler s h i f t   f r e q u e n c y  

(assuming a s e p a r a t e   r e f e r e n c e   s o u r c e  or op t i ca l  s ing le   s ideband  
modulator i s  n o t   u s e d )  down t o  about  250 MHz or less. For 
supersonic  stream  measurements t h i s  means t h a t   r e l a t i v e l y   s m a l l  

s c a t t e r i n g   a . n g l e s ,  8 < lo", must be used.  A s  d i s c u s s e d   i n  
l a t e r   s e c t i o n s ,   o n e   p a y s  a price f o r  small s c a t t e r i n g   a n g l e s  i n  
terms o f   g rea t e r   i n s t rumen ta l   b roaden ing .  H o w e v e r ,  w i t h   c a r e  

i n   d e s i g n  and s i g n a l   p r o c e s s i n g ,   v e l o c i t i e s  up t o ,  s a y ,  Mach 3.5 

can  be measured s a t i s f a c t o r i l y   w i t h o u t  major changes i n  components. 

A t  h i g h e r  Mach numbers, a r e l a t i v e l y   s t r a i g h t f o r w a r d   c h a n g e  

N 

t o  a d i f f e r e n t   t y p e   o f   l i g h t   m i x e r ,   s u c h   a s  a t r a v e l l i n g  wave 

phototube,  or s o l i d   s t a t e   d e t e c t o r   h a s  t o  be made. A t  much 
h i g h e r   v e l o c i t i e s ,   o n e  may c o n s i d e r   t h e   u s e  of a d i f f e r e n t   k i n d  
o f   o p t i c a l   i n t e r f e r o m e t r i c   t e c h n i q u e ,   s u c h  as a Fabry-Perot 
c o n f i g u r a t i o n ,   f o r   t h e   o p t i c a l   s i g n a l   m i x i n g   s t a g e .  The lower 

l i m i t  on  such a technique  i s  de te rmined   by   t he   na r rowes t   l i ne  
width  which i s  a t t a i n a b l e  w i t h  p r a c t i c a b l e   o p t i c a l   f l a t n e s s  
r equ i r emen t s .   In   o the r   words ,   ex t end ing   t he   i n s t rumen t   r ange  
upward r e q u i r e s   n o   m o d i f i c a t i o n   i n   p r i n c i p l e s ,   b u t  m e r e l y  
f u r t h e r   s t r a i g h t f o r w a r d  work  on spec i f ic  components.  For t h i s  
reason  no  work  on  these  problems  of  extended  range  design  has 
b e e n   c o n s i d e r e d   j u s t i f i a b l e  a t  t h e   p r e s e n t   s t a g e   o f   i n s t r u m e n t  
development.   In  view of t he  e x c e l l e n t   r e s u l t s   o f  the  p r e s e n t  

work,  however, the s tudy   of  a high Mach number system  should be 

started a t  a n   e a r l y  da te .  
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2.5 Heterodyne  Siqnal to Noise  Ratio: 
The  Photomultiplier as a  Mixer 

The  photomultiplier  may  be  used  in two different  ways:  it 
may be used as a detector of (usually  low-level)  electromagnetic 
waves, as in  astronomical  or  spectographic  applications;  it  may 
also be used as a  mixer  of  electromagnetic waves, as in  the 
present  application.  It is important to note  that,  while  the 
physics  of  light  interaction,  electron  multiplication,  and so 

forth  for  the two cases  are  the  same,  nevertheless  the  operating 
principles  from  the  most  important  aspects  of  signal  reception, 
detection  and  processing,  are  quite  different. 

In  any  electronic system,  the  two  most  significant  parameters 
which  determine  limitations in the  performance  of  its  designated 
functions  are  frequency  bandwidth  and  signal-to-noise  ratio. 
These two are  generally  intimately  related as we  shall  see  in 
this  section.  The  discussion  will  be  generally  based CR the 
examination  of  signal  and of signal-to-noise  ratio.  The  absolute 
level (i .e.,  Gf  either power, voltage or current)  of  the  signal 
per  se  is  of  minor  importance.  By  the  addition  of  amplifiers  at 
later,  high  signal  level  stages of the  electronic  system  one  can 
always  achieve  any  desired  signal  level  needed  to  perform  a 
specific  function. 

In comparing  the two applications of the  photomultiplier  on 
the  basis  of  signal-to-noise  ratio and bandwidth,  the  strong 
differences  become  rapidly  apparent.  The  important  noise  contri- 
butions  are  different,  the  bandwidth  requirements  are  different, 
and  the  relationships  expressing  signal-to-noise  ratio  are 
different.  This  is  firstly  because as a  low-level  detector,  the 
photomultiplier  is  operated  as  near  as  possible to its  lower 
limit of detection  capability,  whereas  when used  as  a  mixer,  it 
should  be  operated  at  the  highest  possible  level, as we  shall 
see:  and secondly  because  the  calculation of signal-to-noise 
ratio follows  along  quite  different  lines in the  twoapplications. 
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In  basic  signal  concept  and  function,  the  photomultiplier 
mixer  is  the  close  counterpart of the  microwave  mixer. 
Functional  elements  are  the  same,  although  of  course  the  physical 
principles  of  operation  are  different. The similarity is so 
close that  a  microwave  element of the  same  parametric  relation- 
ship  can  be  found  for  each  functional  stage  of  the  photomultiplier 
For  reasons  connected  with  their  physical  differences,  however, 
the  elements  are  combined  in  a  somewhat  different  way in the two 
cases. 

In  studying  the  use of photomultipliers  for  any  application, 
one  is  struck  by  the  relative  lack  of  recent  literature  on  this 
device.  Further,  most  material has been  published  specifically 
bearing  on  applications to low-level  detection (1, 2, 3 ,  4 ,  1 2 ) .  

To date, our  findings  of  published  literature  relating  to  the  use 
Of photomultipliers  as  mixers has been  very  meager.  Much  of  the 
useful  material  is  available  in  manufacturers'  literature.  since 
this  portion  of  the  Laser  Doppler  Velocity  Instrumentation has, 
perhaps, the  strongest  effect  on  overall  performance  of  the  whole 
system,  the  important  features  have  been  studied  and  presented 
here  in  some  detail.  We  are  somewhat  encouraged to find  that  the 
experimental  results  of  Section 2.18 substantiate  the  analytical 
findings. 

Literature on  microwave  mixers  is  in a  much  more  satis- 

factory  state.  One  of  the  better  and  more  clearly  written 
accounts  appears  in  Reference ( 5 ) )  of  which  the  relevant  portions 
of  Chapters 1 and 2 provide an excellent  introduction  in  a  very 
readable  form.  Considerable  material has since  been  published  on 
the  subject,  but  will  not  be  reviewed  here.  The  results  of our 

study  of  the  mixing  properties,  signal-to-noise  ratio,  and  band- 
width  limitations of the  photomultiplier  operated 2 s  a mixer  are 
now presented. 
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2.5.1 m e  Photomultiplier as a Mixer 

The  Laser  Doppler  Velocity  Instrument  receives  its 
information  on gas velocity  in  the  form  of  a  light  signal  gener- 
ated by the  scattering of laser  light  from  particles  in  the  gas 
stream. As has been  shown,  all  the  velocity  information  is 
contained  in  the  frequency  spectrum  of  this  light  signal  beam. 
Since  we  have no simple  means  of  measuring  these  frequencies 
directly,  we  must  use  a  form of Signal  Receiver  known in radio 
frequency  circles as the  Superheterodyne  Receiver (5). This 
makes  use  of  a  frequency  converter,  which  changes  the  signal  into 
one  centered  at  a  different  frequency,  generally  (and  certainly 
in  our  case)  much  lower. The  signal  is  then  amplified  at  this 
new  frequency  before  further  processing  to  extract  the  information 
desired, in  our  case  velocity  parameters, as discussed  in  Section 
2.12. This  lower  frequency  is  generally  termed  the  Intermediate 
Frequency  and  the  amplifier  the i.f. amplifier. The latter  is 
followed  by  some  form  of  signal  amplitude  detector,  frequency 
discriminator  or  phase  discriminator,  depending  on  the  form 
(amplitude  modulation,  frequency  modulation or phase  modulation) 
in which  the  needed  information  is  being  transmitted.  The  signal 
detector or discriminator  is  generally  operated  at  a  relatively 
high  signal  level.  Subsequent  amplifiers  raise  the  final  signal 
to that  needed to drive  the  reproducing  device. A general  block 
diagram  is  shown  in  Figure 2.5-l(a). 

A key element  in  the  receiver,  the  Frequency  Converter, 
consists  of  tke  combination  of a Local  Oscillator  and  a  Mixer. 
In RF systems, the local  oscillator  is  just  a  continuous  wave 
(CW)  oscillator  operating  at  a  frequency  somewhat  different  from 
that  of  the  received RF signal.  In  the  Laser  Doppler  Velocity 
Instrument,  the  local  oscillator  can  simply  be  a  pertion of the 
light  split  off  from  the  laser  output.  In  the  mixer,  a  super- 
position  of  the  local  oscillator  wave  and  the  output  signal 
takes  place. A beat, or heterodyne,  frequency  equal to the 
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difference  frequency  between the two waves  exists as an ampli- 
tude  modulation  component on the  superposition of waves  in  the 
mixer. This heterodyne  frequency  is  detected  in  the  mixer  by  a 
suitable  detector,  which  consists of a  non-linear  circuit  element 
sensitive  either to signal  power or to signal  amplitude.  At  the 
terminals  of the mixer is thus  produced  a  voltage  or  current 
corresponding to this heterodyne  frequency. 

If  the  input  signal  is  modulated  in  some  way,  either  in 
frequency  or amplitude, it  may be analyzed as a  combination  of 
Fourier  components, each of  which  produces  its own  heterodyne 
frequency. The output  signal  from  the  mixer  contains  a 
component  for  each  component  in  the  incoming  signal,  the  ampli- 
tude,  frequency  and  phase  relations  between  these  components 
being  preserved as the  signal  passes  through  the  mixer.  Hence 
the  signal  passing  into  the IF  amplifier  contains  the  same 
modulation  as  the RF signal,  but is centered  at  the  intermediate 
frequency.  Only  those  frequency  components  falling  within  the 
passband of the IF  amplifier will  continue  through  the  receiver, 
so that  the  bandwidth  of  the  whole  receiver  system  is  just  the 
bandwidth  of  the  IF  amplifier. 

With  a  local  oscillator  frequency f and  signal 
LO' 

frequency f, both sum  and difference  frequencies  (fLo + f)  and 
( fLo  - f) in principle  appear  at  the  output  of  the  mixer. In 
the  photomultiplier,  the  photocathode  plays  the  part of  the 
superposition  circuit  and  detector,and  the  electron  multiplier 
chain  (and  subsequent  external  amplifiers)  function  as  the  IF 
amplifier.  Since  both fL. and  f  are  of  the  order  of 1014 Hz, 
and  the  IF  amplifier  bandwidth  is  of  the  order  of l o 5  to lo6 Hz, 
clearly  only  (fLo - f)  passes  through  the  system.  This  differ- 
ence  frequency  is  just  the  Doppler  shift fD caused 3y the  laser 
light  being  scattered  from  moving  particles. A difference 
between  this  system  and  more  commonly  encountered  superheterodyne 
receivers  lies  in  the  fact  that fD  is  fluctuating  with time, in 
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response to the  turbulent  motion of the gas, so that  the IF 
frequency  is  actually  variable,  and the IF amplifier  and  output 
signal  detection  system  bandwidth  must  either be large  enough 
to cover  the  whole  range  of  fD, or the  center  frequency of the 
system  bandwidth  must  in  some  way be continuously  moved  up  and 
down to follow fD. This is quite  different  from  the  more  usual 
IF  system  which  operates  at  a  fixed  frequency,  and has a  rather 
narrow  bandwidth. This difference  poses  a  major  problem  in  the 
design  of  the  Laser  Doppler  Velocity  Instrument  "receiver" 
system, so that  we have analyzed  it  in  detail. The results  of 
our  studies of this  problem  appear  in  Section 2.12. 

An  understanding  of  the  Heterodyne  Detector  operation  is 
important. Two types  of  detector  are  commonly  encountered  in 
microwave  mixers.  One  functions as a  rectifier,  that  is,  current 
flows  in  one  direction  only  through  it.  Typical of this  type  are 
the  vacuum  tube  diode  and  triode,  and  the  crystal.  In  each  of 
these  a  relatively  large  local  oscillator  voltage  is  applied. 
Current  flows  only  during  the  positive  half-cycles of the  input 
voltage,  which  consists  of  the  superposition of the  small  signal 
on a  relatively  large  local-oscillator  voltage.  The  average 
current  depends  on  the  magnitude  of  the  input  voltage,  i.e.,  the 
IF  frequency  in  the  superheterodyne  receiver. A s  long  as  the 
signal  voltage  is  small  compared  with  the  local-oscillator 
voltage,  the  heterodyne-frequency  current  flowing  must  be  directly 
proportional to the  signal  amplitude. A mixer usl.ng this  type  of 
detector  is  therefore a linear  device.  It  will be noted  that  the 
output  current  contains  a  relatively  large DC component.  This 
is blocked  out of the  signal  channel  by  capacitor  coupling.  It 
is, however, also used to monitor  the  magnitude of the  local- 
oscillator  voltage  applied to the  mixer. 

The  linear  detector  contrasts  with  the  second  type of 
detector, used  generally  for  the  simple  detection  of  low  level 
signals:  that is, not  as  part  of  a  mixer. Here, the  circuit  is 
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entirely  passive,  in  that  there is no source of energy  other  than 
the  input  signal.  Both  crystals  and  diodes can also be used  in 
this  mode, and function as detectors  because of the  non-linear 
relationship  between  the  current  induced  in  them  and  the  magni- 
tude  of  the  impressed  voltage.  This  non-linearity  occurs  at  low 
currents,  hence  the  application as a  low-level  detector. In the 
non-linear  region,  less  current  flows  during  negative  half-cycles 
of  the  signal  voltage  than  during  the  positive  ones, so that 
there  is  a  net  positive  current  having  magnitude  related to the 
magnitude of the  impressed  voltage.  The  current  may  be  expressed, 
analytically, as a  function of the  voltage  in  the  form of a 
Taylor  series. The  non-linearity  is  expressed  by  terms  in  powers 
of the  voltage  higher  than  the  first.  For  very  small  voltages, 
the  term  in  the  second  power  of  the  voltage  is  large  compared 
with  the  higher-power  terms.  Hence  the  rectified  current 
produced  from  a  very  small  signal  must  be  proportional to the 
square of the  impressed  magnitude  of  the AC voltage. For this 
reason,  low-level  detectors  are  generally  referred to as 
llsquare-lawtl detectors.  The  square-Jaw  detector  clearly  delivers 
an  output  proportional to the  input  signal  power  instead of the 
input  signal  amplitude as in case of  the  linear  detector. Again, 
a DC component  exists in the  output  current  which  is  used to 
monitor  the  operating  point  on  the  detector  curve. 

In a  photomultiplier,  because  of  the  nature  of  the 
fundamental  photoelectric  process,  not  because of any  non-linear 
voltage  current  relationships,  the  photocathode  delivers  a 
current  proportional to the  power, not the  amplitude of the 
light  waves  falling  on it.  In RF  terminology,  it  combines  the 
function of the  superposition  circuit  with  a  square-law 
detector.  In  addition to the  signal  output,  tke  photomultiplier 
also has a DC output. Again,  this is  used to monitor  the 
photomultiplier  operating  point. 
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2.5.2 Noise 

In the  photomultiplier  mixer,  the  minimum  detectable 
signal is determined by the  masking  effect  of  random  noise. In 
the  photomultiplier-mixer  system,  noise  derives  from  two kinds of 
source. The first is that  associated  with  the  generation  of 
noise  in  electronic  circuits of any kind, and  the  second  stems 
from  the  peculiarities of  the  photomultiplier  tube  itself. The 
two modes of operation of a  PM  tube  described  earlier, i.e. as a 
low-level  light  detector  or as a mixer, determine  the  relative 
importance of the  two  sources  of  noise. 

Noise of the first kind  is  developed  because  electric  cur- 
rents  are  not  steady,  but  consist of the flow of  large  numbers 
of  electrons.  Thermally  excited fluctuations of  the  electrons 
in  resistive  circuit  elements  give  rise  to  small  potentials in 
the  circuit at random  frequencies. This thermal  agitation  noise 
is  called  "Johnson  noise"  after J. B. Johnson (6, 7 ,  8, 9). The 
mean  square of the  noise  voltages  in  the  frequency  band Of H z  is 
given  by: 

- 
= (k) T R  A f  

where: k is Boltzmann's  constant = 1.38 x Joules/deg K 

T is  the  absolute  temperature of the  circuit  element  in 
deg. K, 

R is  the  resistive  component of  the  circuit  element  im- 
pedance  in ohms. 

This  type of noise  is  often  called  "White noise", since  it 
is approximately  uniform in  level over wide frequer.cy ranges  (as 
compared  with  black  body  radiation  which  follows  Planck's Law). 
In  a  chain of circuit  elements  containing  stages  of  amplification, 
it  generally  turns  out  that  the  noise  developed  in  the  "front  end" 
components  plays  the  dominant  role  in  determining  output  noise, 
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since  this  noise is amplified  the most. The degradation  of  signal- 
to-noise  ratio  through  any  circuit  network  is  measured by the 
"noise figure" F(5), which is unity for a  perfect  device,  meaning 
that  a  signal  arriving at the output  terminals is masked by noise 
no  more nor less  than it was at the input terminals. The more  the 
degradation  of  signal-to-noise  ratio,  the  higher  the  noise  figure. 
For reasons  which have to do with  their  respective  modes of oper- 
ation,  signal-to-noise  relationships are different for the  various 
kinds of detectors  and  mixers (5 ,  10, 11). They  will  not  be  pur- 
sued  further  here,  except in the  case  of  the  photomultiplier. 

In  a  photomultipli-er, as in  resistive  circuit  elements,  the 
noise  generated  in  the  device  arises  because of random  electron 
motions.  However,  because of the  different  physical  processks 
involved  the  generation  processes are quite different.  Because 
they are still  random  in  nature,  the  noise  developed is also 
"white  noise".  Three  basic  noise  sources are identified  in  a 
photomultiplier  tube: 

(1) Dark current - when the  photomultiplier 
tube  is  operated  in  the  absence  of  inci- 
dent  light,  an  anode  current  flows  which 
sets  a  limit  to  the  lowest  intensity of 
light  which  can be measured.  It  is  mostly 
caused by  thermionic  current  emitted from 
the  sensitized  coating,  with  smaller  contri- 
butions  from  other  sources,  such as glass 
flourescence  caused  by  electrons  emitted 
from  the  dynode  system  (eliminated  with  the 
cathode  operated at ground  potential),  ra- 
dioactive  contamination  of  the  win.dow,  field 
emission, etc., (2, 12). 

( 2 )  When  a  light flux input is applied  to  a 
multiplier  phototube,  the  observed  output 
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noise  also  increases,  usually quite 
markedly, as a  result of the  sta- 
tistical  fluctuations of the  photo- 
emission  current  modified  by the 
gain  variation of the  multiplier. 
This added  noise is called 'Ishot 
noisell or "noise-in-signalll,  since 
it is a  function of the  l1signalt1 
flux input (3, 4 )  . 

( 3 )  Shot  Noise  contributed  by  extraneous 
background  light (i.e. light  which 
is not  part of the  light  signal  to 
be measured). 

Of these,  because  the  photomultiplier  must  be  operated  near 
peak  output for best  signal-to-noise ratio, as shown  by  the 
analysis  below,  the  dark  current  and  dark  current  noise  may  be 
neglected.  Only  the  "Noise-in-Signal"  shot  noise  (from all light 
flux sources)  is of importance  in  the  mixer  mode of  operation. 
Hence  cooling  of  the  photomultiplier  tube,  which  is of great 
benefit for the  reduction of  dark  current  in  the  detection  of 
low-level  signals,  is  quite  pointless when the device is used as 
a mixer as in  the  laser  Doppler  flowmeter. 

Background  noise,  noise-in-signal and photocathode  thermionic 
emissionnoise, but  not  other  types  of  dark  noise,  can be predicted 
from  the  following  basic  shot  noise  relationship  (derived  in ( 3 ) ,  
and  also  discussed  in ( 4 )  : 

i = 2 eUkIAf n ( 2 )  

where:  in = rms noise  current  component  in  the  anode  circuit 
corresponding  to  the  particular  input flux under 
consideration. 
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e = electronic  charge, 1.6 x 10- l9 coulombs. 
U = multiplier  gain.  
k = mult ip l ie r   no ise   fac tor  (see Section 2 . 5 . 4 ) .  

I = Dc anode c u r r e n t  component corresponding  to  the 
same input   f lux.  

Af = effect ive  noise  bandwidth, i n  th i s   case   the  band- 
width of the  I F  amplifier  chain  (photomultiplier 
and following  external  amplifiers).  

W e  now proceed  to  analyze i n  d e t a i l   t h e   e x p l i c i t  form of the 

photomultiplier  output when used a s  a mixer, and then  to  derive 
the  equation  for  signal-to-noise  ratio.   Calculations  based on 
these  analyses  give  curves from which the  best   operating modes 

may be deduced. 

2.5.3 Photomultiplier  Heterodyne Outpu t  Siqnal 

A s  described i n  d e t a i l  i n  the  preceding  portions of 
this  section,  the  photomultiplier  operated  as a mixer i s ,  i n  
i t s e l f ,  almost a complete  superheterodyne  receiver  (Figure 2.5-11, 
containing a superposition  element, a detector,  and an I F  ampli- 
f ier .  I t  l ackson lya loca l   o sc i l l a to r  and a modulation  detector 
or  discriminator  to make i t  a complete receiver.  Continuing  the 
analogy,  the  output from the  photomult.iplier anode  load r e s i s t o r  
i s  the I F  output. Because of the  special  nature of the  laser  
Doppler flowmeter  system, t h i s  I F  frequency  varies  over a range 
of the  order of 1 t o  200  MHz or more. I ts  mean value f i s  pro- 
port ional   to   the mean gas  velocity,  the  frequency  deviation on 
e i the r   s ide  of the mean, fD,  i s  proportional  to  the i n t e n s i t y  of 
turbulence (see References 13 and 1 4  fo r   de f in i t i ons  of turbulence 
parameters), and the  frequency  with which the  deviation from the 
mean occurs i s  proportional  to  the  scale ( L ,  A ,  or  4 - see (13) 

and ( 1 4 ) )  of turbulence and i s  called  the  signal  frequency i n  
F M  receiver  terminology. 
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The separation of these  frequency  components is studied  in 
Section 2.12. At this  point in the  system we are merely  con- 
cerned  with the calculation of the amplitude of this  variable 
intermediate  frequency  output, on the  assumption  that the fre- 
quency  range  capability  of  the  photomultiplier is sufficient  to 
handle  the whole frequency  spectrum,  and  that we know  how to 
process  this  variable  frequency  signal  after we have obtained 
it. 

The  calculation  is  performed  in  the  following  section,  and 
is  valid for any  type  of  mixer  (Figure 2.5-1) having  a square- 
law  type  detector; i.e., a  detector which is  sensitive to  power 
(see  earlier  discussion on mixers  and  detectors), as in the  case 
of a  photocathode  (experimental  observation,  original  observa- 
tions  referenced  in  (1511,  or  a  crystal  as  a  square-law  detector 
(because  of  its  non-linear  voltage-current  characteristic).  This 
calculation has a more general  application,  therefore,  than  just 
to  photomultipliers,  and  may  be  useful in later  investigations 
of higher  Mach  number  systems, whose frequency range exceeds  the 
limitations  of  photomuitiplier  tubes.  Numerical  calculations 
have been  performed,  and  curves  drawn for a  number  of  operating 
conditions  appropriate  to  the RCA 8645  tube  to  be  used  in  the 
3-D system  (Section 2 . 2 0 ) .  

For reasons  which  became  apparent  in  the  discussion  of  mixers, 
however,  it  turns out that  the key parameter  which  determines  the 
performance  of  the  electronic  data processing  system  following 
the  photomultiplier  system  is  actually  signal-to-noise  ratio, 
rather  than  signal  alone.  The  calculation  of  signal-to-noise 
ratio for photomultiplier  tubes  is presented  following  the  signal 
calculation.  Again,  curves  are  given for the  RCA  8645  tube.  The 
characteristics  of  these  curves  are peculiar to  photomultiplier 
tubes  used as mixers.  It  must  be  emphasized  that,  because  of 
the  special way  in  which  photomultipliers  generate  noise  (Equa- 
tion (l), the  signal-to-noise  characteristics are different  from 
those  typical  of  other kinds of mixers,  such as microwave  mixers. 
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2.5.3.1 Heterodyninq  Siqnal 

We now  present  the  derivation of the  output 
signal  from  a  photomultiplier  used as an optical  signal  mixer 
generating  a  heterodyne  output  signal. An expression for  the 
photomultiplier  heterodyne  frequency  output  current  in  the 
absence  of  noise  is  derived. It is  shown  that  under  certain 
conditions  this  current has a  maximum.  There  are  two  regimes of 
heterodyne  operation  corresponding  to  high  and  low  scattered  light 
power.  Recipes for maximizing  the  heterodyne  signal  in  each 
regime  are  presented. 

To  make  the  problem  as  simple as possible,  the  two  light  beams 
incident  upon  the  photocathode  are  represented  by  E  sin w t  and 
E sin u) t,  where  E  denotes  electric  field  amplitude; w the 
radian  frequency  of  the  light;  subscripts s and LO denote  the 
scattered  light  and  local  oscillator  (or  reference)  beams,  re- 
spectively.  The  two  beams are  superimposed on the  cathode to 
form  a total  wave  whose  electric  field  is 

S S 

LO LO 

ET - - Es Sin  Wst + ELO sin w L O t  

under  the  assumption  that  the  beams have the  same  linear  polari- 
zation  direction.  The  output  current  is  proportional  to  the 
power  (intensity)  of  the  light  beam (15) , hence  assuming  that 
current  amplification  by  the  electron  multiplier  dynodes  (i.e., 
the IF amplifier  first  stage)  is  constant,  then  the  photomultiplier 
anode  current  (instantaneous)  is  given  by: 

’ sin t + 2EsE1  sin w t sinWLOt w L o  S 
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where S = a  constant  of  proportionality. 

Because  of  bandwidth  limitations in the  photomultiplier  mixer 
(see  earlier  discussion on system  bandwidth),it  does  not  respond 
to  the  currents  oscillating at frequencies 2ws, 2wL0 and (w, + w L o ) .  
Hence  the  observed  current  output from the  photomultiplier  anode 
(i .e., IF output  in  terminology  defined  earlier)  is  given by 

2 2 

I TA + Es ELO cos  awt 

or 

The  current ITA has a DC component  IDCA,and an AC component  I 
oscillating at the  heterodyne  difference  frequency A w .  Figure 2.5-2 

shows  the  total  anode  current  and  its  components. 

SA 
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I n  real i ty   the  ampli tude of the  AC c u r r e n t  i s  2p PipL; , 
where p ( 0 5 ~  (1) can  be  called  the  heterodyning  efficiency. I n  
Equation (5)  p has been set equal  to  one, which i s  an ideal izat ion.  

The heterodyning  efficiency i s  less than  one  due t o   e f f e c t s  such 

as  imperfect  alignment of the wave f r o n t s  of the  two  beams and 
lo s s  of coherence between the two beams. These l imi ta t ions   a re  

considered i n  more d e t a i l  i n  Section 2 . 6 .  

From Equation ( 5 )  i t  can  be  seen that  the  heterodyne  signal 
* 

can be increased by increas ing   e i ther  P o r  PLo. However;the 

input   l igh t  power cannot  be  increased  without l i m i t .  For  example, 

the msximum ra ted  anode current  allowed by the  manufacturer of 

the  type 8645 photomultiplier used i n  our 3-D system,  denoted by 

S 

ImA' i s  0.5 milliamps (16). Hence the maximum input   l igh t  power, 

Pm, i s  given by 

ImA 
'm SA 

= -  

I n  p rac t ice  i t  may be necessary  to impose a lower maximum current 

l i m i t  to   avoid   fa t igue   e f fec ts  and t o  i n s u r e  s t a b i l i t y  (1) .  An 

acceptable  working  level  to  avoid  fatigue  effects i s  about $ 
When  maximum s t a b i l i t y  i s  required,  the  manufacturer recommends 

holding  the  average anode current   to  0.5 microamps. Such extreme 

s t a b i l i t y  i s  not  considered  necessary i n  the  present  application, 

however, since w e  are  not  concerned  with  the  continuous measure- 
men t  of very  low-level  l ight  signals.  The choice of a d i f fe ren t  

and hence Pm would change the  numerical results presented 

ImA. 

ImA 
below but would not alter  the  general   shape of the computed 

curves.  Determination of the shapes of the  curvl?s, which point 

up the optimum operating  procedures, i s  the  important r e s u l t  of 

this  analysis  because  the  assumption of 100% heterodyning  effi-  

ciency means that  the  absolute  numerical   results  represent an 
ideal  condition,  as  noted  earlier.  
""""~"""""""""""~ 

* b u t  not Signal t o  Noise r a t i o  - see  Section 2.5.4.  
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The  maximum power condition i s  applied by se t t i ng   t he  peak 
power incident on the  photocathode  equal  to  the maximum allowable 

power. The peak power i s  thus  given by Equation (6), with ITA 

from  Equation ( 5 )  set equal t o  the maximum allowable  current ImA, 
and cos A w t  = 1, so t h a t  : 

When opera t ing   a t   the  l i m i t  I posed by this  condition, mA 
Ps and P are  then  interdependent. For any given  scattered 

l i g h t  power, the   loca l   osc i l la tor  power i s  clearly  given by the 
s o l u t i o n  of Equation ( 7 )  f o r  PLo, i . e . ,  

LO 

'LO - ' s  + 'm 
- - 2 VET-" 

s m  

We w i s h  t o  set  the  operating  conditions f o r  the  photomultiplier 
i n  such a way a s  t o  maximize theheterodynesignal  current  subject 
to  the  condition of Equation ( 7 ) .  The  maximum i s  obtained  straight- 
forwardly by subs t i tu t ing  ( 8 )  into  the  expression f o r  the  hetero- 
dyne signal  amplitude,  i .e. 2PsPL0 and se t t ing   the   der iva t ive  of 
the  resulting  expression  equal  to  zero.  After some algebra, we 
f i n d  that   the  maximum occurs when Ps = PLo = (1/4) Pm. A t  the 
maximum, the  amplitude of the  difference  frequency anode current 
( i . e . ,  I peak  anode i n  Figure 2 .5 -2 )  i s  Im/2 .  This maximum is  

shown i n  Figure 2.5-3 where the  current   a t   the   heterodyne  f re-  
quency i s  p lo t ted  as a function of s ca t t e r ed   l i gh t  power fo r  
various  photomultiplier  applied  voltages. 

I n  operation a t   f i x e d   v o l t a g e   a t  low sca t te red   l igh t  power, 
the  heterodyne  signal  increases  with  increasing  scattered  light 
power u n t i l  a maximum i s  reached. When the   s ca t t e r ed   l i gh t  
power increases  further  with  the  photomultiplier  voltage still 
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f ixed ,   t he   l oca l   o sc i l l a to r   l i gh t  power must be  reduced t o  avoid 

exceeding  the maximum cur ren t .  The resul t  i s  a decreasing  hetero- 

dyne signal.  A s  the  applied  voltage i s  decreased  from  the maximum 
voltage,   the  curve  shifts  toward  higher  scattered  light power. 

The sca t t e red   l i gh t  power a t  which the  peak  occurs i n  the 
curve  for maximum applied  voltage  divides  the  graph  into two 

regimes.  For  the 8645 tube  the maximum applied  voltage i s  1800 

v o l t s  and the peak  occurs when Ps = 7.3 x lo-' watts. The tube 
may be  operated a t  lower  voltages, and therefore on d i f f e ren t  
curves. For a given  scat tered  l ight  power, the  photomultiplier 

appliedvoltage mus t  be adjusted  to  give maximum heterodyne  signal 
current.  Each regime  has i t s  own recipe  for  maximizing the  hetero- 
dyne signal  current  as  follows: 

High Signal Power  Regime (Ps  > Pm/4) .  Adjust  the  local 
~~ 

o s c i l l a t o r   l i g h t  power so tha t  it i s  equal   to   the  scat tered  l ight  
power and t u r n  up the  tube  voltage u n t i l  the peak allowable anode 
current i s  reached. From Figure 2 . 5 - 2 ,  t h i s  i s  seen  to be the 
sum of the Dc component plus   the peak  value of the AC heterodyne 
current component. 

Low Signal Power  Regime (Ps < Pm/4) .  Turn  up the  tube  vol- 

tage  to  the maximum allowable and increase  the  local   osci l la tor  
l i g h t  power u n t i l  peak  allowable  anode  current i s  reached. 

I n  the  high  scattered  l ight power regime, the   loca l   osc i l la -  
t o r   l i g h t  power and the  applied  voltage can always be adjusted  to 
give  the same peak  heterodyne  signal  current. For example, f o r  
the  conditions assumed i n  t h i s   s ec t ion ,  a current of 0.25 m i l l i -  
amps can always  be  obtained. I n  other words there i s  a maximum 
heterodyne  signal c u r r e n t  which cannot be exceeded no matter how 
much sca t te red   l igh t  power is  avai lable .  The heterodyne  signal 
current  cannot  always be increased by supplying more scat tered 
l i g h t  power, because of power handling  limitations of the  photo- 
multiplier  tube. 
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I n  p rac t i ce   t he  peak  photomultiplier  anode c u r r e n t  w i l l  be 

less than 0.25 milliamps*because of imperfect  heterodyning and 

because  the  tube  probably w i l l  not  be  driven a t  maximum rated 

anode current  to  avoid  fatigue.  I t  i s  important t o  r ea l i ze ,  
however, that   the   operat ing  level  of the  photomultiplier tube  i s  
not  very  cri t ical .   This i s  because  the  level of the  s ignal   out-  

put from the  tube  anode ( I F  output) i s  no t   c r i t i ca l ,   s ince  w e  can 
always add furthe1  stages i n  amplification  following  the PM tube, 

I n  s e t t i ng   t he  PM tube  operating  voltage  as  described  above,  one 

should  keep i n  mind tha t   sca t te red   l igh t  power and loca l   osc i l la -  

tor   ( reference)  beam power may vary  during a measurement. Hence, 

a check  should be made of PM anode current  over  the  extremes of 

range (so ca l led  "dynamic range") of inc ident   l igh t  powers, and 

suitable  adjustments made a s  above t o  i n s u r e  sa t i s fac tory  working 

over  the  total  dynamic range. 

We now  come to  the  calculat ion of a signal  parameter which 

i s  f a r  more important  than mere heterodyne  signal power, namely 
the   r a t io  of heterodyne  signal power to   noise  power "Signal-to- 

Noise  Ratio".  Unlike  the  signal power a lone   t h i s   r a t io  cannot 

be controlled by apparatus we are   ab le   to  add or   adjust  i n  follow- 

i n g  c i r cu i t   s t ages .  I t  i s  a fundamental  property of the system 

and, i n  conjunction  with system bandwidth,  determines  the  upper 

limit on system capabi l i ty  and performance. 

2 . 5 . 4  Heterodyninq  Siqnal-to-Noise  Ratio 

This  section  presents  the  derivation of the  signal- 

t o - r . s e   r a t i o   f o r   t h e  heterodyne  output of a photomixer. It i s  
shown tha t   the  maximum signal-to-noise  ratio i s  insens i t ive   to  

the  voltage  applied  to  the  tube. A t  h igher   scat tered  l ight  power, 
the  signal-to-noise  ratio i s  maximized by t u r n i n g  up the  local  

o s c i l l a t o r  power while  turning down the  applied  voltage  to  avoid 

exceeding  the anode current   ra t ing.  So long  as PLo >> Ps the 
sigria.l-to-noise  ratio i s  independent of P 

""" 
LO - 

*for  the R C A - 8 6 4 5  photomultiplier  tube 
2.5-20 



As d e s c r i b e d   i n   S e c t i o n  2.5.2, there  are three c o n t r i b u t i o n s  

t o  the t o t a l   n o i s e   c u r r e n t  emitted by the photocathode: 

(a) Dark n o i s e ,   d u e   t o   f l u c t u a t i o n s   i n  the 
da rk   cu r ren t .  

(b) Background n o i s e ,   d u e   t o  random f l u c t u a t i o n s  
i n  t h e   c u r r e n t   e m i t t e d  i n  r e s p o n s e   t o  ex- 
t r a n e o u s   l i g h t  ( i .e .  l i g h t   t h a t  i s  u n r e l a t e d  
t o  the s i g n a l   l i g h t ) .  

(c) N o i s e   i n   s i g n a l ,   d u e   t o  similar random 

f l u c t u a t i o n s  i n  t h e   s i g n a l  c u r r e n t .  

These f l u c t u a t i o n s   a r e  a consequence  of  the s ta t i s t ica l  n a t u r e  
of t h e   l i g h t  wave and  photo-emission  process.  I n  t he   l a se r   Dopp le r  
f lowmeter   sys tem  only   the   no ise  i n  s ignal   need  be  considered.  If 

t h e   t u b e  i s  r u n  near  maximum anode   cur ren t   as   sugges ted  i n  Sec- 
t i o n  2 .5 .3 .1 ,  t o   g i v e   t h e   h i g h e s t   s i g n a l   o u t p u t   l e v e l   i n t o   t h e  
e lec t ronic   sys tem  connec ted   to   the   photomul t ip l ie r   anode ,   the  
d a r k   c u r r e n t  i s  n e g l i g i b l e  compared w i t h  t h e   c u r r e n t   e m i t t e d  i n  
r e s p o n s e   t o   t h e   l a s e r   l i g h t ,  and  hence  the  dark  noise i s  n e g l i g i -  
b l e .  The background  noise  can  be  reduced  to a n e g l i g i b l e   l e v e l  
by p l a c i n g   a p e r t u r e s   a n d   l i g h t .   b a n d p a s s   o p t i c a l   f i l t e r s  i n  f r o n t  
of t he   pho toca thode   a s   has  been  done i n  t h e   p r e s e n t   l a b o r a t o r y  
set  up (Sec t ion  2 . 1 8 ) .  

The t o t a l   c u r r e n t   e m i t t e d  by the   ca thode  i n  Lesponse t o  
t h e   l a s e r   l i g h t  i s ,  f o l l o w i n g   t h e  r e s u l t s  of Sec t ion  2 . 5 . 3 . 1  

where Sk i s  t h e   c a t h o d e   r a d i a n t   s e n s i t i v i t y ,  Aw i s  t h e   d i f f e r e n c e  
be tween   t he   l oca l   o sc i l l a to r   and   s igna l   f r equenc ie s   and   t he   o the r  

symbols  have  been  defined  previously.  The square  of t h e   n o i s e  
c u r r e n t  i s  given by the   sho t   no i se   equa t ion  ( 3 ,  1 2 ,  4 )  
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2 
k K i = 2 e ~  fI 

Now t h i s   n o i s e   c u r r e n t   c o n s i s t s  of randorn v o l t a g e s  

a t  random f requencies   spread   over   the   whole   spec t rum of  f r e q u e n c i e s  

cover ing  t h e  bandwidth hf .  T h i s  t y p e  of n o i s e  i s  g e n e r a l l y  

te rmed  "whi te   no ise" .  T h e  on ly  way w e  c a n   m e a s u r e   t h i s   n o i s e  i s  

to   measu re  i t s  t o t a l  power, o r   " h e a t i n g  e f f e c t "  over   the  band-  

width A f .  T h i s  t o t a l  power, i n   t u r n ,  i s  measured  by <i  > R ,  where 2 

of t h e   c i r c u i t  impedance.  Averaging i t o   g e t   t h e  mean square  

n o i s e   c u r r e n t   y i e l d s ,   s i m p l y ,  

2 
k 

s i n c e   t h e   a v e r a g e   v a l u e  of c o s  AWE i s  ze ro .  

T h e  he t e rodyne   a . c .   s igna l  component of t h e  

c a t h o d e   c u r r e n t  a t  t h e   d i f f e r e n c e   f r e q u e n c y   i s ,   f r o m   e q u a t i o n  ( 5 )  

of S e c t i o n   2 . 5 . 3 . 1 ,   w i t h   t h e   c a t h o d e   r a d i a n t   s e n s i t i v i t y  

s u b s t i t u t e d   f o r  S 

'k 

A, 

I = 2Sk"S cos  A u r t  sk 

2 
so t h e  mean s q u a r e   s i g n a l   c u r r e n t  i s ,  s i n c e  <Cos A w t >  = 1/2, 
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2 2 
sk (5)  <I > = 2Sk PLOPs 

S i n c e   t h e   c i r c u i t  resisti-Je component R i s  t h e  same for bo th  

c u r r e n t s ,   t h e   c a t h o d e   s i g n a l   t o  noise  power r a t i o  i s  g iven   by  

I n   t h e   m u l t i p l i e r   c h a i n   t h e   s i g n a l   t o   n o i s e   r a t i o  i s  degraded  by 

f l u c t u a t i o n s   i n   t h e   s e c o n d a r y   e m i s s i o n   p r o c e s s ,  a process  which 

i s  ana lyzed   in  c l ea r  d e t a i l   i n   R e f e r e n c e  ( 1 2 ) .  From t h e   r e s u l t s  

of t h i s   a n a l y s i s ,  w e  f i n d   t h a t   t h e   s i g n a l  t o  n o i s e  power r a t i o  

a t  the  anode i s  given  by:  

- " 'kPLOPs - 
ekbf ( P  "P,) 

L O  

where k = u /a-1 and cis t h e  ave rage   ga in   pe r  s t a t e  of t h e   m u l t i -  

p l i e r  c h a i n  ( 1 2 ) .  T h i s  is n o t   t h e  same r e s u l t   t h a t  would be ob- 

t a i n e d   b y   t a k i n g   t h e   s i g n a l   t o   n o i s e  r a t i o  t o  be 

where I i s  the   anode   cu r ren t  a t  t h e   d i f f e r e n c e   f r e q u e n c y   a n d  

i i s  t h e  n o i s e   c u r r e n t  computed  by the   sho t   no i se   equa t ion   u s ing  
SA 
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t h e  t o t a l  anode c u r r e n t .  The t w o  ra t ios  are related by 

where U i s  the  m u l t i p l i c a t i o n  fac tor  f o r  the dynode  chain.  Thus 

t a k i n 9   < I 2  >/<i > a s  t h e  s i g n a l  t o  n o i s e  r a t i o   o v e r - e s t i m a t e s  the 

s i g n a l  t o  n o i s e  r a t i o  by  a l a r g e  f a c t o r .  

2 
SA A 

The  reason for  t h i s   d i f f e r e n c e  i s  t h a t  t he  photomult i -  

p l i e r  i s  a c t u a l l y   n o t   j u s t  a simple mixer ,  b u t  a mixe r   p lus   an  

i . f .   a m p l i f i e r ,   t h e  dynode m u l t i p l i e r   c h a i n .  The   ca thode   no ise  

c u r r e n t  i s  a m p l i f i e d   b y   t h e   m u l t i p l i e r   c h a i n .  A s  p o i n t e d   o u t   i n  
Sec t ion   2 .5 .2 ,   fo r   any   ampl i fy ing   cha in ,  the  noise   input   f rom the  

' ' front  end"  components i s  ampl i f i ed  the  most ,  and therefore  makes 

t h e  g rea t e s t  c o n t r i b u t i o n  t o  t he  t o t a l  n o i s e   a t  t he  output   end .  

T h u s ,   i n   t h e   p h o t o m u l t i p l i e r ,  whi le  some shot  n o i s e  i s  added i n  
t he  m u l t i p l i c a t i o n  process i t s e l f ,   t h e   b i g g e s t   o v e r a l l   c o n t r i -  

b u t i o n  i s  t h a t  from the  c a t h o d e   a n d   f i r s t   d y n o d e .   I n   f a c t ,  it i s  

c lear  from  equat ion ( 7 )  t h a t  t h e  t o t a l   r e d u c t i o n   i n  S/N i n t r o -  

d u c e d   b y   t h e   m u l t i p l i e r  i s  independent  of t h e  number of dynodes,  

s i n c e  k i s  independen t   o f   t he  number of  dynodes.  T o  quote  from 

Refe rence   (12 ) ,   "Here in  l i e s  the v i r t u e   o f   p h o t o m u l t i p l i e r   t u b e s . ' '  
I t  i s  w e l l  t o  n o t e   t h a t ,   w h i l e  t h i s  s t a t emen t  i s  cor rec t ,  t he  

same independence  of S / N  from the  a d d i t i o n   o f   f u r t h e r   s t a g e s  of 

g a i n  would be found i n   a n y   c h a i n   o f   a m p l i f i e r s   ( 5 ) ,  a s  a l r e a d y  

po in ted   ou t .  The impor t an t   f ea tu re  i s  t h a t   t h e   s i g n i f i c a n t   n o i s e  

coming  from the   " f ron t - end"   ( ca thode   and   f i r s t   dynode)   o f   t he  
p h o t o m u l t i p l i e r  i s  orders   o f   magni tude  lower thar,  the  Johnson 

noise   f rom the  f ront   end   of  a c h a i n   o f   o r d i n a r y   a m p l i f i e r s .  The 

e f f e c t  of the m u l t i p l i e r   c h a i n  i s  t o  b r i n g  the  s i q n a l ,   a t   t h e  

ca thode   and   s igna l  t o  n o i s e   r a t i o ,  t o  a l eve l  where  the  Johnson 

no i se   f rom  subsequen t   r . f .   ampl i f i e r s  i s  n e g l i g i b l e   ( S e c t i o n   2 . 1 2 ) .  
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References ( 1 2 )  and ( 3 )  br ing  o u t  some of t h e s e   p o i n t s ,  b u t  not  

q u i t e   i n   t h e  way presented  here,  since they   a r e   conce rned   w i th  
l o w  l eve l  d e t e c t i o n   r a t h e r   t h a n   s i g n a l   m i x i n g .  

The nex t   ques t ion  t o  cons ide r  i s  maximizing (S/N) A' 
For a g i v e n   d e t e c t o r  t h i s  r a t i o  i s  maximized b y  maximizing the  
q u a n t i t y  

K = p  P / (PL0 -I PSI I 

LO s 

from  equation ( 7 ) .  For  f ixed  PSI  K approaches P a s  PLo i s  made 
l a r g e  compared w i t h  P . T h i s  i s  r e a d i l y   s e e n   i f  w e  rewrite X. i n  
t h e  form: 

S 

S 

1 

1-t - 
K = Ps 

pS 
I 

pLo 

When PLo i s  n o t   l a r g e  compared wi th  P K i s  e q u a l   t o  
S I  

ps m u l t i p l i e d  by PLo/(PLo + P ) a f a c t o r  which i s  less  than  1 
S 

but   hh ich  comes c laser  and c l o s e r   t o  1 a s  P is i n c r e a s e d .   T h i s  
means t h a t   t o  m a x i m i z e   t h e   s i g n a l   t o   n o i s e   r a t i o ,  P should be a s  
l a r g e   a s   p o s s i b l e .  However, f o r  a given P I P cannot  be made 
so l a r g e   t h a t   t h e  maximum anode   cur ren t  i s  exceeded. The  maxi- 
mum l o c a l   o s c i l l a t o r  power i s  g iven  b y  equa t ion  ( 7 )  o r  (8)  of 

Sec t ion   2 .5 .3 .1 .   Subs t i t u t ing  P from e i t h e r   o f   t h e s e   i n t o  ( 7 )  

above   y i e lds   ano the r   exp res s ion   fo r  the  s i g n a l  t o  n o i s e  power 
r a t i o :  

LO 

LO 

s LO 

S 

- -A e k  Af ( Pm i 2PL0 -2 -,/PmPLo) 
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For f i x e d   v o l t a g e  ( i - e . ,  f i x e d  Pm and k) t h i s  f u n c t i o n   o f  PLo i s  

maximized  when P = 1/4 P . The maximum v a l u e  i s  LO m 

A t  t h i s  maximum P - LO - P s .  

2 . 5 . 4 . 1   R e s u l t s  and Conclusions  from Anode - S i q n a l   t o  

- Noise C a l c u l a t i o n  

F igure  2.5-4 shows the s i g n a l   t o   n o i s e   r a t i o   a s  a 

f u n c t i o n   o f   s i g n a l  power, under   the  condi t ion  expressed  by  equa-  

t i o n s  ( 7 )  o r  (8)  of   Sect ion  2 .5 .3 .1 .  A s  b e f o r e ,  100% heterodyning 

e f f i c i e n c y  i s  assumed. The bandwidth i s  t a k e n   t o  be 1 MHz f o r  

convenience.   Figure 2.5-5  shows t h e   s i g n a l  t o  n o i s e   r a t i o   a s  a 

f u n c t i o n   o f   l o c a l   o s c i l l a t o r  power f o r  four f ixed  values of s i g n a l  
power and o f   a p p l i e d   v o l t a g e .  

Figure  2.5.4 shows t h a t   f o r   s m a l l  Ps(Psq:2x10 
-9 

w a t t s ) ,   t h e   s i g n a l   t o   n o i s e   r a t i o  i s  p r o p o r t i o n a l   t o  Ps. T h i s  i s  

b e c a u s e   i n   t h i s   r e g i m e  maximum anode   cu r ren t  i s  achieved  with 

pLo s 
-,>P so t h a t   t h e   r a t i o  K ,  def ined  ea r l i e r ,  i s  n e a r l y   e q u a l   t o  

1. A c t u a l l y ,  it i s  an  approximation t o  draw a s i n g l e   l i n e  showing 

t h a t  (S/N)A i s  independent of t h e   a p p l i e d   p h o t o m u l t i p l i e r   v o l t a g e  
i n   t h i s   r e g i o n .  However, t n e   v a r i a t i o n   o f  (S/N)A w i t h  v o l t a g e  i s  

too  s m a l l   t o  be shown c l e a r l y   o n   t h e   g r a p h .  The v a r i a t i o n   c a n  be 

s e e n   i n   F i g u r e  2.5-5  by  comparing the   cu rves   fo r   1200   and  1800 

volts * 

For   h igher   sca t te red   l igh t   power ,   each   f ixed   vo l -  
t a g e   c u r v e   i n   F i g u r e  2.5-4  goes  through a maximum just a s  t h e  

cu rves   o f   F igu re  2.5-3 d i d .  The maxima o c c u r   a t   t h e  same p o i n t ,  

namely P =: P 'LO = m/4, a t  which the   he te rodyne   a . lode   cur ren t  S 

maxima occur .   Aga in   a s   i n   t he   He te rodyne  Anode Curren t   curves ,  
t h e  maxima occur  a t   h i g h e r   s c a t t e r e d   l i g h t  power for   lower   appl ied  

pho tomul t ip l i e r   vo l t age .  
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Figure 2.5-4 Anode Signal  t o  Noise  Ratio for RCA 8645 Photo- 
mul t ip l i e r   ve r sus   S igna l  Power (Calculated) 



However, an impor tan t   po in t  shown b y   t h e   c u r v e s  of 

F igure  2.5-4 i s  t h a t   a t   h i g h   s c a t t e r e d   l i g h t  power, a h i g h e r  

s i g n a l   t o   n o i s e   r a t i o   c a n  be ob ta ined   by   runn ing   t he   t ube  a t  less 
t h a n   t h e  maximum a p p l i e d   p h o t o m u l t i p l i e r   v o l t a g e .   T h i s  i s  be- 

c a u s e   a t   l o w e r   v o l t a g e  more l o c a l   o s c i l l a t o r  power can be app l i ed  

t o   t h e   t u b e ,  and t h e   s i g n a l   t o   n o i s e   r a t i o   i n c r e a s e s   w i t h   l o c a l  

o s c i l l a t o r  power, a s  shown in  Figure  2 .5-5.  The s i g n a l   t o   n o i s e  

r a t i o   i n c r e a s e s   u n t i l  P becomes l a r g e  compared wi th  P when 

t h e   r a t i o  becomes e s sen t i a l ly   i ndependen t   o f  PLo. Thus t h e  

r e c i p e   f o r  making t h e   s i g n a l   t o   n o i s e   r a t i o   a s   l a r g e   a s   p o s s i b l e  

i s  t h e  same f o r   a l l   v a l u e s   o f   s c a t t e r e d   l i g h t  power: a l w a y s  make 
;>P . When Ps i s  low (Ps<2  x 10"' watts f o r   8 6 4 5 ) ,   t h i s   c a n  

be done  no  matter  what  voltage i s  a p p l i e d   t o   t h e  t u b e .  When Ps 
i s  h igh  ( P s j 2  x lo-' w a t t s   f o r   t h e  RCA photo  tube  type  8645)  , t h e  

tube  must be o p e r a t e d   a t  less  t h a n  maximum v o l t a g e   t o   a v o i d   e x -  

ceed ing   t he  maximum a n o d e   c u r r e n t   r a t i n g .  

LO S I  

pLo s 

These are most s i g n i f i c a n t   c o n c l u s i o n s  and provide 
t h e   g u i d e l i n e s   f o r   d e s i g n   f o r  a n  optimum l a s e r   d o p p l e r   v e l o c i t y  

in s t rumen ta t ion  s y s t e m .  They  were  experimentally  confirmed 

( S e c t i o n  2 . 1 8 )  and u s e d   i n   t h e   d e s i g n   o f   t h e  3-D ins t rument  
( 2 . 2 0 ) .  I t  i s  f a i r   t o  s a y ,  h o w e v e r ,   t h a t   t h e i r   i m p l i c a t i o n s  were 

n o t   f u l l y   u n d e r s t o o d   u n t i l  much exper imenta l  work  had been con- 

duc ted .  
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2.6 Heterodyninq   Ef f ic iency  (Coherence Loss F a c t o r )  

I n   S e c t i o n  2 . 5  it h a s   b e e n  shown t h a t   t h e  mean Square  System 
Signal-to-Noise Power Rat io ,   measured a t  the  anode of the  photo- 
mul t ip l ie r -mixer  i s  g iven   by  

S 'k 'Lo ' s  (-1 = 
NMS e k A f (PLo + PSI 

where   pa rame te r s   a r e   de f ined   i n  2 . 5 .  

I t  was a l s o  shown t h a t   t h e r e   a r e  t w o  modes o f   ope ra t ion  
p o s s i b l e ,   i n  terms of t h e  optimum v a l u e  of  PLo, namely a l a r g e  
s c a t t e r e d   s i g n a l  power , and a s m a l l   s c a t t e r e d   s i g n a l  power. 

S i n c e   o p e r a t i n g   p r o b l e m s   g e n e r a l l y   a r i s e   o n l y   i n   t h e  case of  
smal l  Ps ,  t h e   f o l l o w i n g   d i s c u s s i o n  w i l l  be s l a n t e d   t o w a r d s   t h i s  
c a s e .  I t  w i l l  a l s o  hold i n  g e n e r a l   f a r  the h i g h  Ps c a s e ,  w i t h  

the   except ion   of   any  comments made w i t h   r e g a r d   t o   t h e  proper 

o p e r a t i n g   l e v e l  of P 

pS 

LO - 
For low P ( f o r   h i g h  Ps c a s e ,  see Sec t ion  2 . 5 ) ,  rewrite (1) 

S 
a s  

S (- ) = k ' s  1 

'MS 

S 

e k Af- ( I + %  1 
pLo 

N 'k ' s  pLo >' P 
" e k  .Af S 

I n   t h e   f o r m u l a t i o n   o f   t h i s   e q u a t i o n ,   n o   a c c c u n t  w a s  t a k e n  of 

losses and i n e f f i c i e n c i e s   o f  the  s c a t t e r i n g  and  heterodyning 
p rocess .  These a c t   t o   r e d u c e  (-1 r a t i o   e i t h e r   b y   r e d u c i n g   s i g n a l  S 

N 
power,   by  increasing  noise   power,   or   both.   For   convenience,   and 
wi th  some p h y s i c a l   j u s t i f i c a t i o n ,   e x p r e s s   t h i s   i n e f f i c i e n c y   b y  
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s u i t a b l e   m o d i f i c a t i o n  of equa t ion  ( 2 )  a s   f o l l o w s :  

‘LO 

where UT = a cons tan t   ca l led   Coherence  Loss F a c t o r ,  a 

number less  t h a n   u n i t y .  

’D - - d e t e c t o r   a l i g n m e n t   f a c t o r  

- s c a t t e r i n g   t a r g e t   c o h e r e n c e  l o s s  f a c t o r  Us - 

UTr= t ransmiss ion   pa th   coherence  loss  f a c t o r  

Uc source   cohe rence   l eng th   f ac to r .  

An impor tan t   exper imenta l   ob jec t ive ,   which   de te rmines   the  

l i m i t a t i o n s ,   d e s i g n   p a r a m e t e r s  and  even t h e   f e a s i b i l i t y   o f  a 
p rac t i ca l   Lase r   Dopp le r   Ve loc i ty   In s t rumen t ,  i s  t h e  measurement 

of t h e s e   c o n s t a n t s   w h i c h   t o g e t h e r  make u p  +. A v a l u e  of pT has 

been o b t a i n e d   e x p e r i m e n t a l l y   f o r   t h e  case of  a r o t a t i n g  p las t ic  

d i s c ,  and for a nozz le  f l o w  measurement  (Sections 2 .18  and 2 .19)  . 
T h e  de t e rmina t ion   o f   p rope r  laser powor level, of s c a t t e r i n g  

i n j e c t a n t   t y p e   a n d   c o n c e n t r a t i o n  a l l  depend on measurements of 
these c m s t a n t s .  

The c o n s t a n t s  are a n a l y z e d   i n   r e l a t i o n   t o   t h e   p h y s i c a l  

parameters o f  t he   i n s t rumen t   sys t em  in   Sec t ions  2 .7  through  2.10. 

I n   b r i e f ,   t h e i r   e f f e c t   i n   r e d u c t i o n   o f  (E) stems from three S 
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basic  causes: 

1) Attenuation of l o s s  i n  s ignal  power P S I  i.e. reduction 
below idea l  of the numerator i n  equation (1); 

2 )  Increase i n  noise  over  the m i n i m u m  theore t ica l ly  pos- 
s ib l e ,   i . e .  an increase i n  the  denominator of equation 

(1) : 
3 )  Loss of coherence,  caused by "scrambling" of l i g h t  

wa.ve phase. 

(1) and ( 2 )  a c t  on the  amplitudes of the mixed l i g h t  beams, 
while ( 3 )  operates on the  phases and frequency  spectrum. 
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2 .7  source Coherence  Lenqth 

A br ie f  resume i s  given  below of parameters which define the  
coherence  properties of the  source. These  coherence  properties 
have a vi ta l   bear ing cn the limits of resolut ion of the i n t e r -  
ference  pattern between two l i g h t  'beams, and, i n  our  case, on the 
magnitude  of the  heterodyne  signal we w i l l  obtain from the Laser 
Doppler Velocity  Instrument by mixing the  scat tered  andreference 
( o r  " loca l   o sc i l l a to r " )   l i gh t  beams. 

The expl ic i t   der iva t ion  of these parameters by calculat ion 
of the   qua l i ty  of "interferencell images or 81heterodyne"  signals 

i n  terms of  wave opt ics  of wavetrains of f in i te   l engths  i s  

presented  fully i n  References 1, 2 ,  3 .  Of these  the f i r s t  gives 
rigorous  treatment which i s  very  clearly w r i t t e n  and r e l a t ive ly  
easy t o  follow,  the second gives a good account  with  specific 
emphasis on experimental  implications,  while  the  third  gives a 

rigorous  treatment,   clearly  writ ten,   but i n  much  more d e t a i l  
than might be needed a t  f i rs t  exposure.  Reference 4 provides 
excellent  supplementary  material on  some specif ic   aspects  of 
partial   coherence.  

Since the   de t a i l s   a r e  somewhat lengthy,  the r i g o r o u s  deri- 

va t ions   a re   l e f t  t o  the  references. The fo l lowing  simplified 

approach,  however,  provides a useful  physical  picture ( 2 ) :  

Conslder t w o  waves  one at   the  frequency v and the  other   a t  
the  frequency ( V  - l v )  *. Let c be the  free-space  velocity of 

l i g h t  and X the wavelength at   the  frequency v .  Then 

c = v x ,  

* D e f i n i n g  the waves each i n  terms of a single  frequency 

automatically  also  defines them as  being  wavetrains  infinite 
i n  extent - an impossible  assumption i n  a real   case ( 5 ) .  
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and   t he   phase  d i n   t h e  wave equa t ion  i s  g iven  by 

d = 2TV ( 2 )  

L e t  t h e  two  waves b e  i n  phase a t  some t i m e  t . A f t e r  a 
0 

propaga t ion  t i m e  ( t  - to ) ,  over  a d i s t a n c e  

L = c ( t  - t ) = C A t ,  
0 

t h e  two  waves w i l l  be   out   of   phase  by  an  amount  

q d  =c2T VAt - ( v  - Av) At]  

= 2i-r (A,) ( A t )  

By d i f f e r e n t i a t i n g  ( 2 )  , 

4 = 2TAV, 

a n d   b y   d i f f e r e n t i a t i n g  (l), 

Av = -- V 
h M, 

where i s  the   wave leng th   d i f f e rence   co r re spond ing   t o   t he  

f r equency   d i f f e rence  Av.  

S u b s t i t u t i n g  ( 4 )  and ( 5 )  i n  ( 3 ) ,  w e  o b t a i n  

M 
& = - 2 i - r c - &  

x2 

W e  may  now d e f i n e ,   a r b i t r a r i l y ,  a coherence   l ength  L d l  
0 
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which i s  t h e   l e n g t h  L for   which   the   phase   d i f fe rence   be tween  the  

t w o  waves i s  e q u a l   t o  46 . By combining (6 )  and (7 )  , w e  o b t a i n  
0 

L = - -  
do 2i-r A 2  ' 

Ld 
and Atd = 

0 -- T = - from ( 7 )  . 
C 

0 

Some d i f f e r e n c e s   a r i s e   a t   t h i s   p o i n t   b e t w e e n   t h e   c h o i c e   o f  

4 by d i f f e r e n t   a u t h o r s .   S t r o k e  ( 2 )  chooses L = - , so t h a t  i-r 

0 d 2 
0 

Ld , and the  corresponding  Coherence T i m e  k = T a r e  d -  
0 0 

n 

1 h L  L~ (S t roke )  = - 
4 M  

0 

1 A 2  (S t roke )  = - - - 4c ' 

whereas  Born  and Wolf ( 3 )  and  Francon (1) choose 

d = 2 7 ,  so t h a t  
0 

A 2  
Ld ( B  & W, F) = = - C 

0 
A V  

1 A' 
( B & W ,  F) = - - - -  1 

c 4 
- 

The  former i s  more s u i t e d   t o   a n   e x p e r i m e n t a l   d i s c u s s i o n ,  

w h e r e a s   t h e   l a t t e r   f a l l s  m o r e   r e a d i l y   o u t   o f   t h e   a n a l y t i c a l  

expres s ions  when d e a l i n g   w i t h   p a r t i a l l y   c o h e r e n t  wave t r a i n s .  
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Whatever   the   choice   o f  6 , t h e   r e m a i n i n g   r e l a t i o n s h i p s   r e m a i n  

unchanged. W e  now jump, w i t h  no  apology,  from  an  idealized 

p i c t u r e  of two  monochromatic ( i n f i n i t e )  wave t r a i n s   t o  wave 

p a c k e t s   o f   f i n i t e   l e n g t h ,   w h i c h   t h e r e f o r e   n e c e s s a r i l y   m u s t   b e  

de f ined   by  a f requency  spread A v ,  and  wavelength  spread a ( 5 ) .  

The  wave packe t s  a r e  assumed t o  emanate from t h e  same source ,  

b u t   t o   r e a c h   t h e   p o i n t   o f   s t u d y   ( t h e   i n t e r f e r o m e t e r   s c r e e n ,   o r  

t he   Lase r   Dopp le r   Ve loc i ty   In s t rumen t   pho toca thode )  by pa ths   o f  

d i f f e r e n t   l e n g t h s .  The same e x p r e s s i o n s   a n d   d e f i n i t i o n s   h o l d  

t r u e ,  e x c e p t   t h a t  now 

0 

Av = e f fec t ive   f r equency   r ange   o f   t he   Four i e r   spec t rum 

o f   t h e   s o u r c e   l i g h t  

4~ = e f fec t ive   wave leng th   r ange   o f   t he   Four i e r   spec t rum 

o f   t h e   s o u r c e   l i g h t ,  

and w e  summarize: 

COHERENCE LENGTH L (Born & Wolfe, 

L (S t roke )  

Francon) 

l k L  
COHERENCE TIME (Born & Wolf , Francon) = - - - 1 

c a  4) 
- 

(S t roke )  

The i m p o r t a n t   p r a c t i c a l   p o i n t  i s  ( 3 )  t h a t  i n  t he   Lase r  

Dopp le r   Ve loc i ty   i n s t rumen t ,   t he   pa th   l eng th   d i f f e rence   be tween  
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the  source   and  the photocathode, v ia  the s c a t t e r i n g  volume and 

v i a  the r e f e r e n c e  beam, must be small compared w i t h  the coherence 
l e n g t h  of the l ight .  For the best monochromatic thermal sources, 
the coherence t i m e  i s  of the order of lo-* sec., whereas for  
lasers, it can be of the o r d e r  of lo'* sec. The cor responding  
Coherence  Lengths are, respectively, of the o r d e r  of 300 cms and 
3 m i l l i o n  metres. There in  l ies the d e s i r a b i l i t y  of u s i n g  a laser 
l igh t  s o u r c e   i n s t e a d  of a thermal source  for  the Laser Doppler 
Ve loc i ty   i n s t rumen t  - 

There i s ,  of   course,   one more impor tan t   reason  for the choice. 
The Coherence T i m e s  and  Lengths   say  nothing  about  the i n t e n s i t i e s  

o f   t h e   l i g h t   b e a m s .   I n  a t h e r m a l   s o u r c e ,   t h e   i n t e n s i t y  of l i g h t  

c o n t a i n e d   w i t h i n  Av i s  orders of  magni tude  below  that  for  a l a s e r .  

The S ignal - to-Noise   Rat io  of the Laser   Doppler   Veloc i ty   ins t rument  

i s  d i r e c t l y   p r o p o r t i o n a l  t o  i n t e n s i t y  of s c a t t e r e d   l i g h t  (see 

s e c t i o n s  2 . 5  and 2 . 1 8 )  . I t  i s  u n l i k e l y   t h a t   a n y   r e a l i z a b l e  

thermal   source  would  be  capable  of  g i v i n g   t h e   r e q u i r e d   o u t p u t   i n  

t he   necessa ry   na r row A v .  Even i f  such a sou rce  were a v a i l a b l e ,  

t h e  amount o f   l i gh t   ene rgy   u sed   by   t he   i n s t rumen t   sys t em would 

b e   i n f i n i t e s i m a l  compared   wi th   the   energy   ou ts ide   the   f requency  

range  A v ,  which  would be thrown  away. 
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2.8 Scatterinq from Random Scat te rers  

This  section  presents a discussion of the   ana ly t ica l  work 
performed on the problem of sca t te r ing  from a random col lect ion 
of p a r t i c l e s .  

The physics of this   process  i s  one of the key elements  which 
determine  the  heterodyne  signal  amplitude of the  laser  doppler 
flowmeter system. I t  encompasses the  fundamental  optical  scat- 
tering  parameters of ve loc i ty   d i s t r ibu t ion  i n s i d e  the  scat ter ing 
volume (and  therefore s i z e  of the   sca t te r ing  volume, s ince  veloci ty  
d i s t r ibu t ion  depends on  how  much  of the  f low  field w e  probe a t  any 
instant) ,   the   scat ter ing  angle ,   the   ampli tudes of the  reference 

and scat tered beams, and the  source  linewidth  or  cohefence  le.ngth 
(Section 2 . 7 ) .  This l a s t  parameter  has  not  yet been incorporated 
i n t o  the  analysis,   but work  on th i s   addi t iona l   fea ture  i s  i n  pro- 
gress.  

A general  expression  for  the  heterodyne  current  for a cylin- 
dr ica l   d i s t r ibu t ion  of par t ic les   with random ve loc i t i e s  and loca- 
t i o n s  i s  obtained. The expression  involves an in tegra l   tha t   has  

not  yet been evaluated  except  for some simplified  cases. To 

obtain i n s i g h t  into  the  physical  behavior of the problem the 

simplified  case of nearly  forward  scattering from a l i ne   d i s t r ibu -  
t ion of s ca t t e r  i s  considered. The result shows that  the  heterodyne 
signal  decreases w i t h  increasing  scattering  angle and increasing 

breadth of the spectrum of sca t te red   l igh t .  The s i tua t ion   t o  be 
considered i s  shown i n  Figure 2.8-1. A region of space  contains 
a col lect ion of N par t ic les   wlth random ve loc i t i e s  and posit ions.  
A plane wave i s  incident on the   sca t te re rs  and spherical  waves 
emanate  from  each sca t t e re r .  A detector  receive:;  the  scattered 
waves and a portion of the  incident wave tha t   se rves   as  a local  
osc i l la tor   input  (see Section 2 . 5  for   detai led  discussion of the 
loca l   o sc i l l a to r  and s ignal  mixing process) .  A phase  reference 
plane i s  chosenwith i t s  sur face   para l le l   to   the   inc ident  wave 
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f r o n t   a n d   l o c a t e d   a t   t h e   l e f t - h a n d   b o u n d a r y  of the   reg ion   con-  

t a i n i n g   t h e   s c a t t e r i n g   p a r t i c l e s .  The phase of t h e  incident 
wave a t   t h e   p h a s e   r e f e r e n c e   p l a n e   a t   i n s t a n t  t i s  w o t  + cp,, 
where wo i s  the   f r equency   o f   t he   i nc iden t  wave and cpo i s  a r b i -  
t r a r y .  A t  t h e  same i n s t a n t ,   t h e   p h a s e  of t h e   i n c i d e n t  wave a t  

t h e   l o c a t i o n  of t h e  ith s c a t t e r e r  i s  w o t  + cpo - li ko,  where 
li is  the   d i s t ance   f rom  the   phase  reference p l a n e   t o   t h e  i 

t h  

s c a t t e r e r   a n d  ko i s  the   magni tude   o f   the   inc ident  wave vec to r* .  
Under t h e   a s s u m p t i o n   t h a t   t h e r e  i s  no phase  change  introduced  by 

t h e   s c a t t e r i n g   p r o c e s s ,   t h e   p h a s e  of t h e   s p h e r i c a l  wave emanating 
from the ith s c a t t e r e r   a t   i n s t a n t  t a t   t h e   l o c a t i o n  of the s c a t -  
t e r e r  i s  e q u a l   t o  the phase   o f   the   inc ident  wave. The phase of 
the s p h e r i c a l  wave a t  a d i s tance   measured   rad ia l ly   ou t   f rom the 

s c a t t e r e r  i s  w t - ks r  + cps, where w S  and ks a r e   t h e   s c a t t e r e d  

wave frequency  and  the wave number,  and cps i s  f i x e d  by   the   re -  
qu i r emen t   t ha t  the phase of the s c a t t e r e d  and  incident  waves 
match a t   t h e   l o c a t i o n  of the s c a t t e r e r :  

S 

Thus, a t  a d e t e c t o r   a t  a d i s t a n c e  r,, f r o m   t h e   s c a t t e r e r ,  the 

phase i s  g iven  by 

@ ( D l  = w o t  - ks rD - li ko + cpo. (2  1 

A t  f .irst g lance  i t  appea r s   t ha t   t he   f r equency  of t h e   s c a t t e r e d  
wave i s  t h e  same a s   t h e   f r e q u e n c y  of the incident   wave,  wo. 

However the motion of the p a r t i c l e   g i v e s   k s ,  rD, and li a t i m e  
dependence. Hence t h e  t r u e  frequency,  w i ,  t h e  t i m e  d e r i v a t u r e  
the phase,  i s  

of 

drDi  dks - - d l i  
wi - - w0 - ks 

d t  D d t  0- 
k 

* i . e . ,   t h e  wave number. 
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The terms sub t rac t ed   f rom wo r e p r e s e n t   t h e   D o p p l e r   S h i f t .  The 

and - terms are   independent  of t i m e  f o r   u n i f o r m   p a r t i c l e  

motion. The - term i s  independent  of t i m e  if the  dependence 

of D o p p l e r   s h i f t  on ang le  i s  neg lec t ed .  When these   assumpt ions  

a r e  made, t h e   s c a t t e r e d   s i g n a l   h a s  a  unique  frequency,  which i s  
independent  of t i m e .  Then 

- drD d l i  
d t  d t  

dkS 
d t  

@ D  = q t  = 0)  + t [%I t = o  

- - w i t  - k .  rDi 
1 

- li ko + ~p,- 

With t h i s   p h a s e ,   t h e   e l e c t r i c   f i e l d   a m p l i t u d e  of t h e  wave s c a t -  

t e r e d  by the ith p a r t i c l e  i s ,  a t   t h e   d e t e c t o r ,  

S Es Ei ( D )  = - s i n  [ w i  r D i  

r 
( t  - +)- wo 

where  c = v e l o c i t y   o f   l i g h t .  

The t o t a l   e l e c t r i c   f i e l d   a t   t h e   d e t e c t o r  i s  given by 

n 

E t o t  ( D )  = ELO s i n  w0 [t - >) + Z E :  ( D ) ,  (6) 

i= 

where lo i s  t h e   l e n g t h  of t h e   p a t h   t r a v e l l e d  by t h e   l o c a l   o s c i l -  

l a t o r  beam f rom  the   phase   re fe rence   p lane   to  the d e t e c t o r ,  and 

ELO i s  the  peak  ampli tude of t h e   l o c a l   o s c i l l a t o r   e l e c t r i c   f i e l d .  

The ou tpu t  of t h e   d e t e c t o r  i s  p r o p o r t i o n a l   t o  (Dl  , -2  

which i s  e q u a l   t o  
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1 n 
+ 2 E .  LO s i n  [ w o  ( t  + +] + E:(D) 

i=l 
n 

When t h e   e x p r e s s i o n   f o r  E y ( D )  i s  s u b s t i t u t e d   i n t o   t h i s   e q u a t i o n ,  
t r i gonomet r i c   i den t i t i e s   can   be   u sed   t o  rewrite i t  i n  terms t h a t  
a re   independent  of t i m e ;   t e r m s   o s c i l l a t i n g   a t  2 w i ,  i = O , l ,  . . . . n ;  
terms o s c i l l a t i n g   a t  2wi ,  i = 0 .... n ;  and terms o s c i l l a t i n g   a t  

w i  2 w j' 
i ,  j = 1 , .  . . . , n .  The 2wi, wo + w i ,  and wi  + w terms 

are   neglec ted   because   the   de tec tor   cannot   respond  to   such   h igh  
f r e q u e n c i e s .  The w i  - w t e rms   a re   neglec ted   because   they   a re  

j 

j 
a t  low frequencies   compared t o  t h e  t r u e  heterodyne 

o s c i l l a t e s   a t  wo - w .  The he te rodyne   cu r ren t   ou t  

t o r ,   I h ,  i s  given by 
1' 

n 

s ignal ,   which 

of t he   de t ec -  

Ih = k ELO Es cos [wo(t  - C 

i= 1 

= k ELO Es N <f>, 

where k i s  t h e   s e n s i t i v i t y  of t h e   d e t e c t o r ,  <fr den3tes  an  aver- 
age  over   the n p a r t i c l e s ,   a n d  f i s  

f = -  1 cos [wo(t - c l0 + li - W i ( t  - ? ) I  D i  . (9) 
D i  
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To perform  the  average  over  the  scattering  particles,  the  function 
f is rewritten  in  terms  of  the  position of the n particles,  and 
distribution  functions for the  position  and  frequency  variables 
are  assumed. A cylindrical  coordinate  system  is  chosen  with  its 
origin  in  the  phase  reference  plane  and  the z axis  orthogonal to 
that  plane.  For  convenience,  the  azimuthal  coordinate is measured 
from  the  plane  containing  the z axis  and  the  detector as shown  in 
Figure 2.8-1. Then 

li = z i 

and 
IO zi ) 'i cos W0t" + - - wit + - - C C c Di 

r 1 
f (wi, pi, 8 .  I Z .  = 1 1  rDi 

The  distribution  functions  assumed for the  random  variables wi, 
pi, Bi, and zi are  as  follows: 

where <w> is  the  mean  value  of  the  scattered  frequency  and t is 
the  standard  deviation. This distribution  corresponds  to  the 
Gaussian  spectrum  of a Doppler  broadened  line2 
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P(Pi) = - 
PM 

P(Oi) = - 

Phi) = - 0I.Zi(Z M P(zi) = 0 elsewhere 

1 
5 pi 5 PM p ( pi> = 0 elsewhere 

1 
211 0 5  e 5 2 1 ~  I (13 1 

1 
zM 

These  distributions  correspond  to  a  cylindrical  region  containing 
the  scatterers  with all points  equally  likely  locations  for  a 
scatterer. 

With  these  distribution  functions, <f> is  given  by 

1  1 <f> = - 11 2 cos x 
r Di 2a 

0 0 0 0 

where X [ w o  ( t  - t l0 
C 1 

and  rDi  is  given  by  Equation (10) . The  evaluation  of  this 
integral  for  the  cylindrical  distribution of  scatterers  cannot  be 
done  exactly  in  analytical  form.  Work is underway  to  obtain 
approximate  analytical  evaluation and/or  numerical  evaluation. 

L 

To illustrate  the  physical  behavior  of  the  problem,  the 
limiting  case of almost  forward  scattering  from  a  collection  of 
scatterers  distributed  randomly  along  a  line  is  considered.  For 
a  line  distribution  of  scatterers, p(pi) = 6 (pi), p (ei) = 6 (e,), 
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where 6 i s  t h e   D i r a c   d e l t a   f u n c t i o n ,   T h e   i n t e g r a l   f o r  <f> be- 
comes 

1 1 <f> = - dw (15) 
2 M 0 

where X 
[ w o  ( t  - c 

2 
1 C C PD 

When the   d i s t ance   f rom  the   s ca t t e r ing   vo lume   t o  the d e t e c t o r  i s  
large  compared  with  the  dimensions of t h e   s c a t t e r i n g  volume  and 

t h e   s c a t t e r i n g  i s  n e a r l y  i n  the f o r w a r d   d i r e c t i o n ,  z << zo and 

pD << zD, t h e n   t h e   s q u a r e   r o o t s  i n  the integral   can  be  expanded.  

The r e s u l t i n g   i n t e g r a l   c a n  be eva lua ted   w i th   t he   fu r the r   app rox i -  

mation of extending  the  lower l i m i t  of t h e  8 i n t e g r a t i o n   t o  -a. 

This i s  l e g i t i m a t e   b e c a u s e   t h e   e x p o n e n t i a l   f a c t o r  i n  wi makes 

t h e   i n t e g r a l   a p p r e c i a b l e  only i n  the  neighborhood of wi % <w>, a 

l a r g e   p o s i t i v e  number. The result of c a r r y i n g   o u t   t h e   i n t e g r a t i o n  

i 

i s  t h a t  

wo lo + 

~ J J >  rD 
where 3 = [ (wo - <w>) t - - 

C C 1 
While t h i s  express ion   has   been   ob ta ined  under var ious   approxi -  

mat ions,  the result shows i n t e r e s t i n g   f e a t u r e s  of the p h y s i c a l  
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behavior  of t h e   h e t e r o d y n e   s i g n a l   o b t a i n e d  i n  s c a t t e r i n g   f r o m  
random p a r t i c l e s .  The f a c t o r s   c o n t a i n e d  i n  t h e   v a r i o u s   c u r l y  

b r a c k e t s   a r e  now considered  one by  one. The f a c t o r  { ELO Es} shows 

the  dependence of t h e   h e t e r o d y n e   s i g n a l   a s   d i s c u s s e d  i n  Sec- 
t i o n  2.5. The cos JI f a c t o r  shows t h a t   t h e   h e t e r o d y n e   s i g n a l  

i.s maximum f o r   f o r w a r d   s c a t t e r i n g .  Away f rom  the   forward   d i rec-  
t i o n ,   t h e   o p t i c a l   p a t h   f r o m   s o u r c e   t o   s c a t t e r e r   t o   d e t e c t o r  i s  
s l i g h t l y   d i f f e r e n t   f o r   e a c h   p a r t i c l e .  I n  t h e   f o r w a r d   d i r e c t i o n ,  
p a r t i c l e s   f a r t h e r   f r o m   t h e   s o u r c e   a r e   c l o s e r   t o   t h e   d e t e c t o r ,  and 

t h e   v a r i a t i o n s  i n  s o u r c e   t o   p a r t i c l e   p a t h   l e n g t h   a r e   c a n c e l l e d  

0 

by the   co r re spond ing   va r i a t ions  i n  

The t i m e  dependent terms i n  t h e  
C 

f a c t o r  show o s c i l l a t i o n   a t  a   f requency   tha t  i s  t h e   d i f f e r e h c e  be- 

tween t h e   l o c a l   o s c i l l a t o r  beam and  the beam frequency of t h e  
s c a t t e r e d   l i g h t .  

The o ther   t e rms  i n  the  argument of t h e   c o s i n e  show an i n t e r -  
f e romete r   e f f ec t .  If there   were  no f r e q u e n c y   s h i f t  due t o   t h e  
s c a t t e r e r   m o t i o n ,   t h e r e  would be a s t eady  l i g h t  o r   d a r k   f r i n g e   a t  
t h e   d e t e c t o r .  The time  independent terms i n  the  argument of t h e  
cos ine   a re   approximate ly   the   pa th   d i f fe rence   be tween  the   loca l  
o s c i l l a t o r  and s c a t t e r e d  beams,  and  determine  whether  the  fringe 
would  be l i g h t   o r   d a r k .  

The exponent ia l   term shows t h a t   t h e   h e t e r o d y n e   s i g n a l  i s  not  

a s ing le   f r equency .  I f  the   Four ie r   t ransform of t h e   s i g n a l  w e r e  
t aken   t o  ge t  t he   spec t rum,   t he   exponen t i a l  t e r m  would  give  the 
frequency  spread.  The e x t e n t  of the  frequency  spread  depends on 
o,which i s  the   parameter   descr ib ing   the   wid th  of the  spectrum of 
t h e   s c a t t e r e d   l i g h t  and  hence  the  spread of v e l o c i t i e s  i n  t h e  
s c a t t e r i n g  volume. 

r 
The t e r m  [t - 21 i n  t h e   e x p o n e n t i a l   f a c t o r   r e q u i r e s  some 

c o n s i d e r a t i o n . '  I t  i s  the   d i f fe rence   be tween some unspec i f i ed  
t i m e ,  and  the t i m e  t a k e n   f o r  a s c a t t e r e d  wave t o   t r a v e l   f r o m   t h e  
s c a t t e r i n g  volume t o   t h e   d e t e c t o r .  The "unspec i f i ed  t i m e "  i s  

. .  
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NO TURBULENCE 
(at nozzle) 

TURBULENCE 
(approx. 1 inch downstream) 

Figure 2.19-7 Filter Bank Measurements: Same Conditions as in 
Figure 2.19-6, but 10 db Neutral Density Filter 
at Photomultiplier 

2.19-19 



Filter ~ 
7.5 to 8.5 MHz 

20 mV/cUv 

1 m •• c!cUv 

Filter i9 
8.5 to 9.5 MHz 

20 mV!div 

1 m.ec/div 

Filter ~no 
9.5 to 10.5 MHz 

20 mV/div 

1 msec/div 

Filter *11 
10.5 to 11.5 MHz 

20 mV/div 

1 msec/div 

Neutral Density Filter in Reference Bea:n OnlJ 
Mean Velocity Approximately 50/ft/sec 
PM Supply Voltage: 1500 Volts 
Anode Current: 0.53 rnA 

Figure 2.19-8 Filter Bank Measurements: Turbulence Measured 
Approximately 1-1/2 inches Downstream 
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1/2 inch Downstream 

20 mV/div 

1 msec/div 

2 inches Downstream 

20 mV/div 

1 msec/div 

3 inches Downstream 

20 mv/div 

1 msec/div 

Figure 2.19-9 Filter Bank Measurements: Output of Filter 
#1~(10.5 to 11.5 MHz)for Different Degrees 
of Turbulence 
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of   Figure  2 .19-9.   This   f igure  a lso shows t h a t   t h e   m o s t   t u r b u l e n t  

s i g n a l   i n   t h i s   c a s e  was i n   t h e   r e g i o n  of about  10 MHz. 

Figure  2.19-9 shows how turbulence  develops  as   the  f low 

progresses  downstfeam. 
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2 - 2 0  Desiqn and - Const ruc t ion   of   the  3-D Instrument  

The fo l lowing   sec t ion   summar izes   the   bas ic   des ign   concept  

and b r i e f l y   r e v i e w s   t h e   h a r d w a r e   d e s i g n   d e t a i l  of an  ins t rument  
for  measurement  of  vector  velocity.   Since  the  vector  measurement 
i s  performed  by  recording  simultaneously  three  components  of  the 

v e l o c i t y ,  it has  been  termed  the 3-D ins t rument .  

The g e n e r a l   p r i n c i p l e s   r e l e v a n t   t o   D o p p l e r   s h i f t  and i t s  

i n t e r p r e t a t i o n  i n  terms of i n s t a n t a n e o u s   v e l o c i t y  and turbulence  
a r e   a s   d e s c r i b e d   e a r l i e r  i n  t h i s   r e p o r t ,  and de te rmina t ion   o f   t he  
ve loc i ty   vec to r   f rom 3-D component  measurements i s  reviewed i n  
2 .20 .3  below. 

2 . 2 0 . 1  System  Description 

Figure 2 . 2 0 - 1  i s  a   schemat ic   d iagram  out l in ing   the  

e s s e n t i a l   f e a t u r e s  of the  system. 

The l i g h t  from the   l a se r   pas ses   t h rough  a l e n s  L-1 and 

a window i n  t h e  w i n d  t u n n e l   o r   t e s t   f a c i l i t y   t o   f o c u s  a t  a s e l e c -  
ted   po in t  i n  the  f low  stream. The unsca t t e red  beam i s  c o l l e c t e d ,  
a f t e r  pas s ing  through  a   bores ight   a l ignment   aper ture ,  and rendered 

p a r a l l e l  by t h e   l e n s  L-2. The p a r a l l e l  beam passes  througH a n  

o p t i c a l   a t t e n u a t o r  f o r  adjustment of bea.m i n t e n s i t y ,  i n  accord- 
ance   w i th   t he   ope ra t ing   c r i t e r i a   e s t ab l i shed  i n  Sec t ion  2 . 5  of 
t h i s   r e p o r t .  The o p t i c a l   l o c a l   o s c i l l a t o r   ( S e c t i o n  2 . 5 )  beam i s  

ob ta ined   fo r   t he   t h ree   pho tomul t ip l i e r   mixe r s  by d i v i d i n g   t h e  
beam wi th  a t e t r a h e d r a l  beam s p l i t t i n g   p r i s m ,  f i n a l l y  r e f l e c t i n g  
from  a beam s p l i t t e r   m i r r o r  (marked 'IBS" i n  t he   d i ag ram)   i n se r t ed  
i n  each   s ca t t e r ed  beam. Lenses L-3, L-4, and L-5 focus   t he   l oca l  
o s c i l l a t o r   s i g n a l s  on t o   t h e   p h o t o m u l t i p l i e r   c a t h o d e s .  Ey g r i n d -  

i ng   o f f   t he   t op   co rne r   o f   t he   t e t r ahedra l   p r i sm,  a   small   por t ion 

of   the  beam passes   s t r a igh t   t h rough   t he   p r i sm,   ou t   o f   t he   base ,  

and  through  a  second  boresight  aperture  marked IIBA" . B y  us ing  

t h e  two b o r e s i g h t   a p e r t u r e s ,  a r e f e r e n c e   b a s e   l i n e  i s  e s t a b l i s h e d  

for   a l ignment   o f   the   whole   ins t rument .  
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- KEY =BS = BEAM  SPLITTER 
L  =LENS 
C F =  IMPEDANCE MATCHING 

PMX  PHOTO MULTI PLI ER 
NDtNEUTRAL  DENSITY FILTER 
M -FRONT SURFACE MIRROR 

BA = BORESIGHT APERTURE 

AMPLI FI ER 

AEDC OR MSFC 
WIND TUNNEL FACILITY 

Figure 2.20-1 Three-Dimensional  Laser-Doppler  Flowmeter 
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Each s c a t t e r e d  beam i s  picked  up a t  an  angle 8 t o   t h e  
l a s e r  beam, the  angles   being  symmetr ica . l ly   s i tuated  around  the 
a x i s   o f   t h e   r e f e r e n c e  beam. Lenses L-6, L-7, and L-$3, behind  ad- 

j u s t a b l e   a p e r t u r e s ,   c o l l e c t   t h e   s c a t t e r e d   l i g h t  a t  the   chosen 
angle .   Af te r   pass ing   th rough  su i tab le   co l l imat ing  and focuss ing  
o p t i c s ,   t h e   s c a t t e r e d  beams pass   th rough  the   beam-spl i t te r  
m i r r o r s  B S ,  and onto  the  photomult ipl ier   cathode  where  the  scat-  
t e r e d   s i g n a l  i s  mixed w i t h   t h e   l o c a l   o s c i l l a t o r  beam. The s c a t -  
t e r e d  beam lens  system i s  somewhat  more complicated  than shown 

schemat i ca l ly ,  i n  o rde r   t o   p rov ide   i ndependen t   con t ro l  of t h e  
s c a t t e r i n g  volume and instrument   broadening a t  one  end ( S e c t i o n s  
2 .13  and 2 . 1 1 ) ,  and of   the   mix ing   process   a t   the   oppos i te  end  of 
t he   op t i ca l   sys t ems   (Sec t ion  2 . 1 0 ) .  

R e f r a c t o r   p l a t e s   a r e   s i t u a t e d  a t  s e v e r a l   p l a c e s  i n  t h e  
o p t i c a l   p a t h s   t o  p e r m i t  of  independent   paral le l   a l ignment  w i t h  

r e s p e c t  t o  t r a n s v e r s e   l o c a t i o n s  of t h e  beam a t  the  photomult i -  

p l i e r   c a t h o d e s .  A n g u l a r  beam adjustment a t  the   photocathodes i s  

provided by the   beam-sp l i t t e r s .   Comple t e   de t a i l s  of t h e   o p t i c s  
a r e  left  t o  a l a t e r   r e p o r t .  

A t  e ach   pho tomul t ip l i e r   ac t ive   su r f ace ,   t he   s ca t t e r ed  
l i g h t  heterodynes w i t h  t h e   u n s c a t t e r e d   r e f e r e n c e  beam ( l o c a l  
o sc i l l a to r   beam) .  The heterodyne  outputs  of t h e   p h o t o m u l t i p l i e r s  
pas s   t h rough   t he   p reampl i f i e r s  shown a s  "CF" i n  Figure 2.20-1.  

The s i g n a l s  a re   then   ampl i f ied  and processed i n  accordance  with 

Sec t ion  2 . 1 2 .  Spec t rum  ana lyzers   a re   used   as   moni tors ,   whi le   the  
tu rbu lence  and v e l o c i t y   i n f o r m a t i o n   i s   o b t a i n e d  by process ing  
t h r o u g h   s p e c i a l   d i s c r i m i n a t o r   c i r c u i t s .  The spec ia l   r equ i r emen t s  

o f   t he   d i sc r imina to r s   a r e   d i scussed  and descr ibed  i n  Sec t ion  
2 . 1 2 .  I n  b r i e f ,  t o  opt imize   the   s igna l - to-noise   ra t io ,   f requency  
t r ack ing   d i sc r imina to r s   a r e   u sed   wh ich   con t inuous ly   t r ack   t he  
frequency of t he   f l uc tua t ing   t u rbu lence   Dopp le r   s igna l s .  For 
s i m p l i c i t y ,   F i g u r e  2.20-1 shows  a s imple   f requency   d i scr imina tor  
system. The more complex  form i s  descr ibed  i n  t h e   s e c t i o n  men- 
t ioned  above. A br ie f   rev iew  of   the   de te rmina t ion  of vec to r  
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v e l o c i t y  from the component  measurement appears i n  S e c t i o n  2.20.3 

below. 
2.20.2  Hardware Desiqn and  Construct ion 0.2 the  3% 

Ins t rument  

De ta i l ed   des ign  of the hardware of the 3-D ins t rument  

w i l l  be given i n   l a t e r   r e p o r t s .  A b r i e f  summary o f   t h e   i m p o r t a n t  

f e a t u r e s   f o l l o w s .  

The ins t rument  i s  b a s i c a l l y   d i v i d e d   i n t o  two  main  as- 

semblies: the op t i ca l   a s sembly   and   t he  mount  assembly.  The 

mount i s  des igned   fo r   u se  a t  the AEDC Base  Flow T e s t  F a c i l i t y  

and i s  a l so  designed for  u s e   i n  the  MFSC Cold   F low  Tes t   Fac i l i ty  

or other wind t u n n e l s ,   b y   v i r t u e   o f  i t s  versa t i le  c o n s t r u c t i o n .  

F u r t h e r   d e t a i l s   o f   e a c h   a r e   g i v e n  below. 

Front   and  rear   view photographs o f  the  op t i ca l   a s sembly  

d u r i n g   c o n s t r u c t i o n   a l i g n m e n t   a p p e a r   i n   F i g u r e s  2.20-2  and  2.20-3. 

2.20.2.1  Optical  Assembly  (Raytheon  Drawinq E04934- 

367493) 

The op t i ca l   a s sembly   d rawing   i nc ludes  the l a s e r  

and focuss ing   lenses   for   convenience .   Fol lowing   the   genera l  

sys tem  out l ine   descr ibed   above ,  the  op t i ca l  a s sembly   cons i s t s   o f  

a s i n g l e   c e n t r a l l y   l o c a t e d   r e f e r e n c e  beam t u b e ,  w i t h  t h r e e   s c a t -  

t e r e d  beam t u b e s  mounted  symmetrically  around it. T h e i r   a x e s  

are set  a t  the  s c a t t e r i n g   a n g l e  r e l a t i v e  t o   t h e  ax is  of  the re- 

f e rence  beam tube .  By changing sets o f   a n g l e  spacers, the s c a t -  

t e r i n g   a n g l e s   c a n  be var ied  f rom  approximately 8 t o  30°, each 

channel   independent ly .  

0 

Each tube   conta ins   an   independent  set  o f   o p t i c s .  

T o  a i d   i n   a l i g n m e n t ,  each t u b e   h a s  a machined r i n g   a t   e a c h  end  of 

i t s  e x t e r i o r   s u r f a c e ,  and i s  te rmina ted  a t  the pho tomul t ip l i e r  
end  with a f l a n g e   f a c e   p e r p e n d i c u l a r   t o  the a x i s .   T h i s   f a c e  and 

t h e  t w o  machined r i n g s   p r o v i d e   t h e   r e f e r e n c e   l o c a t i o n  and a x i s  
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Figure 2.20-2 Front View Photograph of the Three Dimensional Laser Doppler 
Velocity Instrument optical Assembly, showing the Three 
Scattered Beam and the Reference Beam Assembly 
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Figure 2.20-3 Side View Photograph of t Le Three-D i menS l.Oh::"l. Las _r Doppler 
Velocity Instrument Optical Assemb l y, sho'v.rin g Photomultiplier 
Housings, Preamplifiers, and Instrument Opera~ing Adjustments 
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r e s p e c t i v e l y   t o   w h i c h   t h e   i n s t r u m e n t   p a r t s ,  and the   i n s t rumen t  

a s  a  whole are t o   b e   a l i g n e d .  

Ad jus tmen t s   fo r   l oca t ion   o f   t he   s ca t t e r ed  volume 
f o c a l  po in t  are p r o v i d e d ,   a s   a r e   a l l   t h e   o t h e r   a d j u s t m e n t s   n e e d e d  
for p e a k i n g   u p   t h e   h e t e r o d y n e   s i g n a l   o u t p t .  A s  po in ted   ou t  i n .  
Sect ion  2 .10  above,   the   adjustments   for   angular  and t r a n s v e r s e  
a l ignmen t   o f   t he   r e f e rence   w i th   t he   s ca t t e r ed  beam t u b e   a t   e a c h  
p h o t o m u l t i p l i e r   m i x e r   c a t h o d e   a r e   c r i t i c a l ,  so t h a t  f i n e  a d j u s t -  
men t s   a r e   p rov ided   a t   t hese   po in t s .  

Each photomult ipl ier   mixer  i s  b u i l t  a s  a s e p a r a t e  
assembly, i n  a f u l l y  e l e c t r i c a l l y  and magnet ica l ly   sh ie lded  
hous ing ,   a s  a s i n g l e  u n i t  w i t h  i t s  p reampl i f i e r .  T h i s  has   s t rong  
advantages ,  among which  are 1) the   comple te   mixer -e lec t ronics  
key  components   can  be  separately  tes ted a.nd ad jus ted   independent ly  
of t h e  instrument:  2 )  changes i n  types  of de tec tors   which   might  
be  required i n  later  development  programs  can be r e a d i l y  made: 
3) t h e   e l e c t r i c a l   r e q u i r e m e n t   t h a t   a l l  anode  connections  ha.ve min i -  
mum capaci tance  can  be  achieved b y  keeping  leads  short   between  the 
photomult ipl ier   anode and p reampl i f i e r .  As pointed  out  i n  Sec t ion  
2 . 1 2 ,  t h i s  requirement i s  a b s o l u t e l y   e s s e n t i a l  i f  t he   necessa ry  
bandwidth   to   handle   the   re la t ive ly   wide   range  of f l o w   v e l o c i t i e s  

r equ i r ed  i s  t o  be  achieved.  Alignment of t he   op t i ca l   a s sembly  
a s  a who le ,   a f t e r   p re l imina ry   cons t ruc t ion  and product ion   a l ign-  
ment of components, i s  made b y  s igh t ing   t h rough   t he  two b o r e s i g h t  
a p e r t u r e s   a t   t h e   f r o n t  and r e a r  of t h e   s c a t t e r e d  beam assembly. 

2 .20 .2 .2  Mount Assembly  (Raytheon Drawinq 49956-367495) 

This  assembly i s  b u i l t ,  a s  i s  the   op t i ca l   a s sembly  

above ,   o f   ra ther   mass ive   cons t ruc t ion   to   min imize   suscept ib i l i ty  
o f   t h e  ins t rument  t o   e x t e r n a l   v i b r a t i o n  and n o i s e   i n  a  rocket 

engine  environment.  The Mount provides   for   mount ing   of   the   l aser  
on one   s ide   o f   the  wind t u n n e l  or  engine  base  flow  model, and f o r  
t he   op t i ca l   a s sembly  on t h e   o t h e r   s i d e .  
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The laser  mounting  mechanism and op t i ca l   a s sembly  

mounting  mechanism  are  each  movable i n  t h r e e   d i m e n s i o n s   p a r a l l e l  

t o   t h e   f l o w ,   t r a n s v e r s e   t o   t h e   f l o w  and v e r t i c a l l y .  T o  mini-  
mize c o s t  on t h i s  f i r s t  expe r imen ta l   des ign ,   on ly   t r ansve r se  ad-  

justment  i s  synchronized  between  the  two sides of   the  ins t rument .  
S ince  it is necessa ry   a lways   t o   co inc ide   t he   foca l   po in t s  of t h e  

l a s e r   l e n s  and s c a t t e r e d  beam c o l l e c t i n g   o p t i c s ,   l e a d   s c r e w s  of 

machine   too l   accuracy   a re   p rovided   for   the   th ree   ad jus tments .  

The whole  base i s  mounted on two t y p e s  of c a s t e r s :  one  for  moving 

be tween  loca t ions ,  and the  second  equipped w i t h  grooves  for  mount- 

i ng  on t h e   r a i l s  of t h e  NASA Marshall   Space  Flight  Center  Cold 

Flow T e s t   F a c i l i t y .  I n  ac tua l   u se ,   j ack ing   s c rews   a r e   p rov ided  

fo r   l eve l ing   o f   t he   i n s t rumen t  and t o   e n s u r e  a s t a b l e   p l a t f o r m  

during  operat ion.   Addit ional   demountable   jacking  screw  supports  

a re   p rovided   to   enable   the   whole  Mount t o  be  operated  over a wider 
range   of   he ights   than   ava i lab le   f rom  one   se t   o f   s tandard   j ack ing  

screws. A s t e e l  box   cons t ruc t ion  on e i t h e r   s i d e  of t h e  main 

c r o s s  member provides   s torage   for   such   loose   par t s   assoc ia ted   wi th  

t he  mount. 

2.20.3 Determinat ion of Vector  Velocity  Components  from 

Measurement   of   Doppler   Shif t   a t   Three  Scat ter inq 

Anqle s 

T h i s   s e c t i o n  shows how the  components of t h e   v e c t o r  

ve loc i ty   a long   th ree   o r thogonal   axes   can   be   de te rmined  from meas- 
urements  of  the  Doppler S h i f t  a t   t h r e e   s c a t t e r i n g   a n g l e s .  It i s  

i n t e n d e d   f o r   i l l u s t r a t i o n  of t h e  method o n l y .   E x p l i c i t   a n a l y s i s  

f o r   t h e  3-D system w i l l  appear i n  a l a t e r   r e p o r t .  The Doppler 

S h i f t   f o r   s c a t t e r e d   l i g h t  i s  given b y  

where  v i s  t h e   v e c t o r   v e l o c i t y ,  k i s  a u n i t  vec to r  i n  t h e  A 

rv 0 
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d i r e c t i o n  of the i n c i d e n t  laser beam, k i s  a u n i t   v e c t o r   i n   t h e  
d i r e c t i o n  of the scattered beam, c i s  t h e  speed of l i g h t ,  and f 

i s  the frequency of the laser beam l i g h t .  

A 

S 

For  the  geometry shown i n   F i g u r e  2 . 2 0 - 4 ,  v ,  Q 
A ry 0’ 

and ksl ,  2 , 3  are g iven  b y  

v = v  x + v  y + v z 2  A r - X Y 

A /? 
ko = -X ( 2b)  

< A A 
ksl= -cos@ x - s i n  e z ( 2 C )  

A A 
k = “cos e x + s i n  e y P. 

s 2  (2d) 

A r 
ks3= -cos  8 x + s i n  8 z P. (2e) 

S u b s t i t u t i o n   i n t o   t h e   e q u a t i o n  (1) for A f ,  y i e lds  

A f D 1  - V 
V 

“_ I  

X ( c o s  e -1) + - z 
C C 

s i n  8 
fO 

- AfD2 = vx ( c o s  e-1) - s i n e  
f O  

- 
C 

z 

(3a) 

(3b) 
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*fD3  = V V - X - ( C O S  e-1) - - Z 
C C 

s i n  6, 
f O  

( 3c)  

where AfD1 , A f D 2 ,  A f D 3  a r e   t h e  Doppler S h i f t s  of l i g h t   s c a t t e r e d  
i n  the d i r e c t i o n s   o f  kSl, l?s2 and ts3 r e s p e c t i v e l y .  

S o l v i n g   t h e s e   e q u a t i o n s  (1) , ( 2 ) ,  and ( 3 )  for t h e  

ve loc i ty   componen t s   y i e lds  

3 - AfDl -2AfD2 + dfD3 - 
C 2 s i n  t) f 

0 

V - z = AfDl - AfD3 
C 2 s i n  8 f 

0 

(4b) 

(4c) 

Thus a l l  components  of  the mean v e l o c i t y ,  v a r e  meas- 

u r e d ,  so t h a t  v i s  known in   bo th   magn i tude   and   d i r ec t ion .  
- 

N 
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F i g u r e  2.20-4 - S c a t t e r i n g  Geometry  and  Coordinates 
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3.0 SUMMARY OF RESULTS, AND CONCLUSIONS 

Since  a  considerable  amount  of  detail  appears in this 
report,  some conclusionsare summarized  below,  grouped  to  aid 
in  their  interpretation. 

3.1 Measurement  Capabilities  of  the  Instrument 

1. Wind  Tunnel  Velocity  measurements up  to Mach 2 have 
been  demonstrated at the  NASA  George C. Marshall  Space  Flight 
Center. 

2. Analysis  shows  that  measurement  of  the  highest  cur- 
rently  attainable  interplanetary  reentry  velocities  with  the 
instrument  should  be  feasible.  This  follows  from  the  fundamental 
reasons  that  the  period  of  the  light  waves  used  to  make  the 
measurement  is  very  much  smaller  than  the  smallest  conceivable 
time  needed  to  make  any  meaningful  fluid  dynamic  measurements. 

3 .  Continuous  measurement  of  all  the  parameters  used  to 
define  turbulence  can  be  made,  and  turbulence  data  thus  obtained 
are  just  the  same as those  obtained  using  a  hot  wire  anemometer, 
within  the  accepted  operating  frequency  range of the  latter. 

4 .  Analysis  shows  that  no  fundamental  obstacles  stand  in 
the  way  of  accurate  turbulence  measurements  up  to  mean  velocities 
of  the  highest  attainable  Mach  numbers. 

5 .  Output of the  instrument  is  independent of gas  temper- 
ature at all  velocities  and  under  all  conditions. 

6. The  instrument  does  not  perturb  or  modify  the flow 
field  in  any  way. 

7. Very high  resolution  can  be  achieved, of the  order  of 
mm3  with  suitable  optical  design. 
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3.2 C u r r e n t   L i m i t a t i o n s  of the Instrument 

1. A t  the p r e s e n t  time, a rather i n c o n v e n i e n t   i n j e c t i o n  

of s c a t t e r i n g  particles i s  n e c e s s a r y   i n   o r d e r  t o  produce l i g h t  
s c a t t e r i n g  of s u f f i c i e n t   i n t e n s i t y .  The smoke particles cur- 
r e n t l y   u s e d ,  although they do   no t  appear t o  modify the f l o w ,  are 
corrosive i n   n a t u r e .  However, e x p e r i m e n t a l   i n d i c a t i o n s  are that ,  
w i t h  recommended  improvements i n  the i n s t r u m e n t ,   s u f f i c i e n t  

scattered i n t e n s i t y  may e v e n t u a l l y  be o b t a i n e d  from n a t u r a l  a i r  
contaminants   such a s  d u s t   a n d  water droplets. 

2 .  Two sources  of spurious  cont inuum  frequency  broadening 

of the Doppler f r e q u e n c y   s i g n a l  have b e e n   i d e n t i f i e d :   o n e  re- 
s u l t s  from the use  of focussed  scattered l i g h t   c o l l e c t i n g  optics 
( ape r tu re   b roaden ing)  ; and the other from the v e l o c i t y   g r a d i e n t  

which may exist  across the r e s o l u t i o n  volume  ( resolut ion  broad-  

e n i n g ) .  

3 .  By su i t ab le   des ign ,   b roaden ing   can  be s u b s t a n t i a l l y  

reduced (a )  by  using a f tbalanced ' t  scattered l i g h t  focussed  
c o l l e c t i o n  system (F igure  2.4-2) Or a paral le l  beam (non-focussed) 

s c a t t e r e d  l i g h t  c o l l e c t i o n  system, either of which e l i m i n a t e s  

ape r tu re   b roaden ing ,  (b)  i f  simple f o c u s s e d   c o l l e c t i n g  optics 
are necessa ry ,   by   u s ing   an   e l ec t ron ic   s igna l   f r equency   t r acke r  

which, i n   a d d i t i o n  t o  o the r   advan tages ,  has an   ou tput   independent  

of continuum  frequency  broadening  (assuming it  c a n   t r a c k   s u c h . a  

s i g n a l ) ,  (c)  by   u s ing  a large a p e r t u r e  system f o r  measurements 

i n   r e g i o n s  of high veloci ty  g r a d i e n t s ,  which r e s u l t s   i n  a ve ry  

small r e s o l u t i o n  volume,  (dl   by  using a large s c a t t e r i n g   a n g l e  

( l i m i t e d  by frequency  bandwidth of the detector) so t h a t  i n s t r u -  

mental   broadening i s  small compared w i t h  t o t a l  Doppler frequency 

sh i f t .  

I t  w i l l  be noted  t h a t  some of these approaches t o  reduce 

o r  e l imina te   i n s t rumen ta l   b roaden ing  are i n   c o n f l i c t ,  f o r  example, 
a larger a p e r t u r e  ( l o w  r e s o l u t i o n   b r o a d e n i n g )   r e s u l t s   i n  greater 
ape r tu re   b roaden ing .  However, i t  a l so  should  be noted  t ha t  i n  
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practice,  simultaneous  conflict  seems not to occur for natural 
reasons, e.g., high velocity  gradients  generally  appear  only in 
lower  velocity  regions, so that  a  convenient  optimum  combination 
of  larger  scattering angle with  larger  aperture  can  be found for 
minimum  total  continuum  broadening. 

4 .  An ambiguity  in  velocity  direction  exists, which is 
generally  unimportant,  but  might  become so in  regions  of  intense 
recirculation, as  for example,  in  rocket  engine  base  flow. 

3 . 3  Instrument  Operation for Optimum  Performance 
” ~ 

1. Use of  the  photomultiplier  tube  as  a  mixer  requires 
operating  modes  and  criteria  quite  different from those  applying 
when  the  tube  is  used as a  low  level  light  detector. 

2. The  photomultiplier  tube  mixer  is  the key component 
in  the  whole  system: it determines  both  system  signal-to-noise 
ratio  and  signal  frequency  bandwidth. 

3 .  When  the  scattered  light  power  is  relatively  low, 
optimum  system  signal-to-noise  ratio  is  achieved  simply  by  set- 
ting  PLo  to  a  level such  that Pref/Psc >> 1, then  setting  the 
photomultiplier  applied  voltage  to  give  maximum  output  anode 
current  within  the  limitations of the  tube. A convenient  working 
guide  is to set  P 
filters  in  the  reference  beam.  Operation  with  high  scattered 
beam  power  requires  a  different  operating  condition  (Section 2 . 5 ) .  

ref”sc = (5 to 4 0 ) ,  by  using  neutral  density 

4 .  Under  these  conditions,system  signal-to-noise  power 
ratio, measured at the anode load  resistor  of  the  photomultiplier, 
is  given  by 
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where : Psc = average  scattered  light  power 
Af = system  frequency  bandwidth 
A = constant  of  the  instrument 

= coherence  loss  factor UT 

5. cIT includes  multiplicative  constants  which  are  a  func- 
tion  of  laser  coherence  length,  characteristics  of  the  scattering 
injectant  material,  and  the  geometry  of  alignment  of  the  two  beams 
at the  photomultiplier  cathode. Loss of  coherence  in  the  atmos-. 
pheric  beam  paths  is  normally  negligible  because  of  the  short 
distances  involved. It might  become  appreciable if one or both 
beams had to pass through  a  highly  turbulent flow field  on  either 
side of the  scattering  volume. 

6. With  conditions as in ( 3 ) ,  the  system  signal-to-noise 
power  ratio  is  independent  of  changes  in  reference  beam  power. 
This  permits  the  mechanically  convenient  arrangement of  passing 
the  reference  beam  through  the  scattering  region:  beam  extinction 
by the  scattering  particles  will  not  affect  the  system  output, 
assuming  the  electronic  system  meets  the  requirements  of (12)below. 

7 .  With  conditions as in ( 3 1 ,  (a)  Johnson  noise  in  the 
electronic  circuit  components  is  negligible,  (b)  photomultiplier 
dark  noise  and  dark  current  are  negligible,  (c)  the  only  noise 
source  of  significance is the  photomultiplier  "noise  in  signal", 
which  is  proportional  to  photomultiplier  anode  current. 

8. The  reasons for this  noise  source  independence  are  that 
(a)  the  use of a  relatively  high  level  of  Pref  makes  other  noise 
sources  negligible,  (b)  the  noise  output of the  photomultiplier 
tube is  independent  of  total  dynode  gain, so that  with  the  nor- 
mal  high  operating  gain,  noise  in  subsequent  electronic  circuits 
becomes  much  smaller  than  PM  anode  signal. 

9. Maximum  system  signal  frequency  bandwidth  is  limited 
(and  generally  determined)  by  the  bandwidth  of  the  photomultiplier 
t u b e  anode  circuit,  which is given  by ( 3  db points): 
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(anode  load  resis,  ohms)-(anode  circuit  stray  capacitance,  farads) 

Considerable  care  must  therefore  be  exercised  in  mechanical  de- 
sign of the  anode  circuit  components  and  leads,  to  eliminate 
stray  capacitances. 

10. To reduce PM tube  fatigue  effects,  maximum PM tube 
operating  anode  current  should  be  set  to  about  a  half  the  maxi- 
mum  current  allowed  by  the  tube  manufacturer. 

11. The output  signal  from  the  Laser  Doppler  Velocity 
Instrument is a  frequency  modulated  carrier  frequency. The 
carrier  frequency  itself  also  varies  over  a wide range. Thus 
special  signal  processing  circuits  are  needed. 

12. All the  needed  velocity  information  is  contained  in 
the  heterodyne  signal  frequency,  not  its  amplitude.  Since all 
frequency  detectors (e.g.,  spectrum analyzer,  frequency  discrim- 
inator)  are  also  sensitive,  in  some  way  or  another,  to  changing 
signal  amplitudes,  all  such  amplitude  fluctuations  should  be 
removed  by  a  suitable  circuit  (such as a  limiter)  before  pro- 
cessing  the  signal  to  obtain  velocity. 

13. The  zero-crossing  type of frequency  discriminator is 
generally  unsuitable for use in  processing  the  instrument  output 
signal.  Besides  being  adversely  affected  by  the  random  nature 
of  the signal,  since  its  output  is  artificially  generated  inside 
the  instrument,information  retrieval  from  the  signal is likely 
to be less pure than  in  the  case  of  a  linear  frequency  discrim- 
inator. 

14. PM average  anade  current  should  be  frequently or con- 
tinuously  monitored  to  insure  compliance  with ( 3 )  and (10). Care 
should  be  taken  not  to  introduce  stray  capacitance  of  the  moni- 
toring  apparatus  into  the PM tube  anode  circuit. 
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15. The geometrical  alignment of the  reference  and  scat- 
tered  beams at the  photomultiplier  cathode  is of key importance. 
Each  element,  the two  beams  and  photomultiplier  tube, has six 
independent  degrees of freedom.  By  suitable  design,  the  total of 
18 degrees  of  freedom  can  be  reduced,  and,  in  some  directions, 
made  relatively  less  sensitive  to  misalignment. 

16. To allow for flexibility  in  designing  the  scattered 
and  reference  light  collecting  optics,  and  the  photomultiplier 
beam  mixing  optics,  the  two  subsystems  should  be  made  independent 
within  the  total  optical  system, e.g.,  by using  collimated  beams 
at some  point  in  each  beam  system. 

17. The  most  significant  coherence loss occurs  in the 
scattering  medium. 

18. With  a  one-watt  argon  laser, S/N power  ratios of 20 
to 30 db are to  be  expected  with  smoke  particles as scattering 
injectant, or using  a  Doppler  calibration  wheel. 

19. There  is  a  close  relationship  between  the  formalisms 
of  turbulence  theory  and of communications  theory. 
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4.0 RECOMMENDATIONS 

The following are considered  to  be  of  prime  importance: 

A special  frequency  tracking  discriminator  should be built 
as soon as possible for processing  the  instrument  signal. 
Its use is expected (a) to  reduce  substantially  the  noise 
bandwidth  and hence improve  the  signal-to-noise  ratio, 
(b)  to  eliminate  the  effects  of  instrument  broadening, 
(c)  to  produce,  in  a  single,  recordable,  output  signal, 
all  information  required on turbulence  and  mean  velocity 
parameters. 

2) Analysis  of  coherence  loss  in  the  scattering  medium  should 
be  continued,  and  numerical  calculations  performed for 
checking  with  experiment. 

3 )  A more  desirable  scattering  injectant  should  be  sought, 
less  harmful  to  mechanical  equipment  and  less  toxic.  In- 
jectant  coherence loss parameters  should  be  measured  using 
the  signal-to-noise  measurement  technique  developed  in  this 
investigation. 

4 )  A means  should  be  developed for removing  the  Doppler- 
measured  velocity  ambiguity. 

5 )  Analytical  and  experimental  work  should  continue  to  refine 
the  signal  processing  system,  improve  signal-to-noise  ra- 
tio,  and  extract  maximum  information  from  the  output  sig- 
nal. 

6 )  Cross-correlation  and  auto-correlation  techniques  should 
be  developed,  preferably  using  the 3-D instrument. 

7) Performance  of  the 3-D instrument  should  be  evaluated, 
and  velocity  vector  measurements  made on subsonic  and 
supersonic flow sys  tems . 
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APPENDIX A 

Note on Optical Heterodyning  With 
Non-Crit ical   Angular  Alighment 

R. G. McManus 

A se r ious   ques t ion   conce rn ing  the f e a s i b i l i t y  of a pract i -  
c a l ,   c o h e r e n t   h e t e r o d y n e   d e t e c t i o n   s y s t e m  a t  o p t i c a l   f r e q u e n c i e s  
h a s   l o n g   p r e v a i l e d ;   i . e . ,   t h e  problem o f   p o s s i b l e   t o t a l   s i g n a l  
c a n c e l l a t i o n  a t  t h e   d e t e c t o r .  The s t a t e d  argument5 i s  t h a t   t h e  
l o c a l   o s c i l l a t o r   a n d   s i g n a l   e n e r g y   m u s t  be i n  s p a t i a l   p h a s e  
a l o n g   t h e   f u l l   l e n g t h   o f   t h e   d e t e c t o r .   B u t   t h e   r a t i o   o f   t h e  op- 
t i ca l   wave leng th   ( approx .  c m )  t o  t h e   d e t e c t o r   l e n g t h  
(approx. 1 c m )  i s  o f   t h e   o r d e r   o f  The obvious   conclus ion  

is t h a t   t h e   b e a t   f r e q u e n c y   e n e r g y  w i l l  be i n s i g n i f i c a n t   u n l e s s  
the   misa l ignment  o f  LO and   s igna l  i s  less than   rad .  

Th i s   no te  w i l l  show t h a t   t h i s  i s  indeed so i f ,   f o r  example, 
two l a s e r s   a r e   b e i n g   a l i g n e d   w i t h o u t   t h e   u s e   o f   l e n s e s .   I n   t h i s  
s i t u a t i o n ,   t h e   e n t i r e   d e t e c t o r  i s  i l l u m i n a t e d .   I f ,   o n   t h e   o t h e r  
h a n d ,   t h e   d e t e c t o r  is p l a c e d   a t   t h e   f o c u s   o f  a d i f f r a c t i o n  
l imi t ed   l ens ,   t he   p rob lem is s i g n i f i c a n t l y   a l l e v i a t e d .  The g i s t  
o f   t h e   s o l u t i o n  is t h a t   a t   t h e   f o c u s   o f  a d i f f r a c t i o n   l i m i t e d  
l e n s   o r   m i r r o r ,   t h e   w a v e f r o n t s   i n   t h e   A i r y   d i s k  a re  p lane   and  
p e r p e n d i c u l a r   t o   t h e   d i r e c t i o n  of t h e   i n c i d e n t   l i g h t .   I n   t h i s  
s i t u a t i o n ,   t h e   r a y s   o f   l i g h t  a re  still p a r a l l e l ,   b u t   h a v e  now 
been   focused   t o  a  much smaller spot ,   which now c o n s t i t u t e s   t h e  

e s s e n t i a l  s i z e  o f   t h e   d e t e c t o r .  
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Consider the s i t u a t i o n  shown in   F igu re  A-1, below,  where Lo 
ene rgy   ( so l id   l i nes )  is  mixed with  signal  energy  (dashed  l ines).  
Both i n p u t s   a r e  assumed t o  s t a r t  from a r b i t r a r y   p l a n e s   a t   t h e  
l e f t ,  and  proceed t o  the   de t ec to r   on  the r i g h t .  H e r e  t h e  LO 

energy is assumed coaxial ,   whi le   the  s ignal   energy is  misaligned. 
The s i ze   o f   t he   de t ec to r   i l l umina ted  is  des igna ted   as  X, while 
t h e   p h y s i c a l   s i z e  of t he   de t ec to r  is  A D’ 
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Figure A - 1  Heterodyne Geometry 
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S t a r t i n g  from t h e   a r b i t r a r y   p l a n e s   a t  t i m e  t, both  LO and s i g n a l  

r e t u r n s  w i l l  be   de l ayed   i n  time such   t ha t :  

e = E s i n  [mo (t - Ti) + 
S S 

In   Equat ion (l), t h e  time d e l a y  (T ) is  a c o n s t a n t ,   s i n c e   t h e  LO 

r a y s ,   b y   d e f i n i t i o n ,   a r e   c o a x i a l .   T h i s  i s  n o t   t r u e   f o r   t h e   s i g n a l .  

Assuming  the  misalignment is s m a l l ,   t h e   s i g n a l   m u s t   t r a v e l  a d i s -  

t ance  x 8 f u r t h e r   t h a n   t h e  LO t o   r e a c h   t h e   d e t e c t o r .   T h e r e f o r e :  

0 

R 
0 

r = -  
0 C 

"i C C 

S u b s t i t u t i n g   E q u a t i o n s  ( 3 )  and (4) i n to   Equa t ions  (1) and (2), 

r e s p e c t i v e l y :  

uo Ro 2 ?rRo 
e = s i n  - - 
LO C + @LO ] = ELO s i n  [uot - 

uoRo uoxQ 2 7rRo 
e = E s i n  - - - - 

S S C C A 

- 2 ~ ~ 3  
A + m,] 
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where : 

Equations (5) and ( 6 )  are, of course,  simplified  versions of 

a  somewhat  more  complicated model:  i.e.,  the situation  is  simpli- 

fied  to  a  two-dimensional  representation in t  and x, with no 
Doppler shift considered.  These simplifications,  however, will 

not affect the  end  result. 

Heterodyning  the  signals of Equations (5) and (6) will yield 

the beat  signal  (neglecting  the  components at 2 wo' : 

E 
eg(t,x) = Lo ES cos [ = h + (GL0 - GS)l (-) 

Assuming,  for  simplicity,  that QLo = Q (this  is  true when the 

same  laser  is  used  as  transmitter  and LO): 
S 

Equation (8) represents  the  beat  voltage  expected at any point 

(x) on the  detector.  The  total  voltage  anticipated of all  points 
on the  surface  of  the  detector  is  obtained  by  integration  of 

Equation (8) with respect to x over the  limits of x = 0 to x = ,l 

This  yields: 
D- 
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- ELO ES " sin 2 ~ x 8  
- 2  2ne h 

0 

Equation (11) is  of   the  form s i n  K €/€,  and  goes  to  zero  whenever 

2nLD 8/h =T. Therefore:  

2neeD 
" 

h -7r 

and : 

e =  -h, 

If the  wavelength (A )  i s ,  for  example,  1.065 1-1 a n d   t h e   d e t e c t o r  

l e n g t h  i s  1 cm., t h e n   t h e   c r i t i c a l   a n g u l a r   v a l u e   f o r  8 ,  when t h e  

d e t e c t o r   o u t p u t  i s  ze ro ,  i s  (by s u b s t i t u t i o n   i n t o   E q u a t i o n  ( 1 3 ) ) :  

1.065 x l ow4  cm 
2 x l c m  e =  = 0.5325 X 10 (RAD.) = 10.984 syc. -4 

(14) 

Th i s   va lue   r ep resen t s  a r a t h e r   s t r i n g e n t   r e q u i r e m e n t .  However, 

one mus t  b e a r   i n  mind t h a t   t h e   a n a l y s i s   p r e s e n t e d   a b o v e  i s  an 

a t t e m p t   t o   a l i g n  two l a s e r  beams i n  a   space   e i the r   w i thou t   l enses ,  

o r  when t h e   s i g n a l   c o m p l e t e l y   i l l u m i n a t e s   t h e   p h y s i c a l   d e t e c t o r .  

However, i n  t h e   c a s e   o f  a  focused beam system,  for  example  a 

22- inch   rece iv ing  lens  sys tem  wi th   the   de tec tor   p laced   78-23  cm 

away ( f / 1 . 4 ) ,   t h e   s i z e   o f   t h e   A i r y   d i s k   a t   t h e   d e t e c t o r   w o u l d   b e  

extremely  small ,   178.4  x  c m  i n  diameter .   Recognizing  that  
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a t   t h e  focus of a diffract ion  l imited  lens ,   the   wavefronts   in   the 

Airy  disk  are  plane and perpendicular   to   the  direct ion of the  in- 

c iden t   l i gh t ,  the s i t u a t i o n  i s  ident ica l   ana ly t ica l ly   to   tha t  of 

Figure A-1, except   that   the   effect ive  detector   length is  now 

178.4 x c m ,  instead  of 1 cm. Again, subs t i t u t ing   i n to  Equa- 

t i on  (13) w i l l  y ie ld:  

1.065 x loo4 cm e =  x 57.3 = 17.1  (degrees) 
2 x 178.4 x l om6  cm 

Equation (15) s t a t e s   t ha t   t he   s igna l  w i l l  not go to   ze ro   un t i l  

the  misalignment  reaches 1 7 . 1  degrees.  Alignment, in   th i s   case  

i s  no longer a problem. 

I f ,  for   pract ical   reasons,  one wished t o   r e s t r i c t  the angular 

misalignment  to  one-quarter of a wavelength (7r/2), subs t i tu t ion  

into  Equation (12)  w i l l  y ie ld:  

2neaD 7r "- 
h 2 

- 

and : 

e =  -h, 
'D 

But  the   s ize   of   the  Airy disk ( a  ) is given by the properties of D 
the  lens:  

a =  1.22A 
D D 

where: 

F = focal  length  of  lens 

D = diameter  of  lens 
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Substituting  Equation (18) into  Equation (17) yields: 

D 
4.88 F (19) 

where  the  angular  misalignment (e) is  restricted  to  one-quarter 
wavelength.  For  the  numbers  assumed, 8 equals  approximately 8.5 

degrees. 
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