CASE FILE COPX

NASA TECHNICAL NOTE

NASA TN D-4960

DESIGN OF SUPERSONIC INLETS BY
A COMPUTER PROGRAM INCORPORATING
THE METHOD OF CHARACTERISTICS
by Bernhard H. Anderson
Lewis Research Center
Cleveland, Obio

DESIGN OF SUPERSONIC INLETS BY A COMPUTER PROGRAM INCORPORATING THE METHOD OF CHARACTERISTICS

By Bernhard H. Anderson
Lewis Research Center Cleveland, Ohio

ABSTRACT

A FORTRAN IV computer program which incorporates the method of characteristics was written to assist in the design of supersonic inlets. The computer program was written with the intention of studying many types of inlet configurations with a minimum of computer time. Particular attention was given to a discussion of a reformulation of the boundary value problem to introduce throat Mach number and flow angle as direct program input quantities. Comparison between the computer results and experimental data indicates good agreement for a number of different configurations.

DESIGN OF SUPERSONIC INLETS BY A COMPUTER PROGRAM INCORPORATING THE METHOD OF CHARACTERISTICS

by Bernhard H. Anderson

Lewis Research Center

SUMMARY

A FORTRAN IV computer program which incorporates the method of characteristics was written to assist in the design of supersonic inlets. The program is versatile so that many inlet types can be studied with a minimum of computer time.

Particular attention was given to reformulating the boundary value problem so that the engineering design parameters, that is, throat Mach number and flow angle, could be introduced as direct input quantities to the computer program. Attention was also given to a discussion of streamline tracing by a numerical integration of the mass flux from a known physical boundary to determine the opposite boundary.

Selected examples are presented and compared with experimental results to illustrate and corroborate the numerical methods used. The report also includes FORTRAN listings for the main programs and subroutines and discussions of their various functions.

INTRODUCTION

The mathematical methods for designing supersonic inlets by characteristic theory have been available for many years (ref. 1). However, the major obstacle in the design of supersonic inlets by the method of characteristics has been the great complexity of the numerical procedures required for configurations other than simple wave solutions. Thus, to facilitate the design of inlets, computational programs have been written for use on high-speed computers (refs. 2 to 4). Because of the often complex nature of the boundaries which constitute a supersonic inlet, these programs have been limited to specific configurations. In addition, computational methods currently being used for the design of high-performance inlets often necessitate extensive trial-and-error procedures to arrive at an optimum design. This results from the fact that some of the primary
input data to the computer program are mathematical in significance and only indirectly related to important engineering design parameters, such as throat Mach number, flow angle, and distortion.

For these reasons, a FORTRAN IV computer program, employing the method of characteristics, was written with two objectives in mind: (1) to study a greater variety of supersonic inlet configurations and (2) to reduce the time required for trial-and-error procedures to arrive at optimum inlet design. The computer program was written with the intention of being able to construct a variety of inlet configurations by interchanging specific subroutines. In this manner, greater flexibility of choice was attained, and the time required to program a specific inlet configuration was greatly reduced. The second objective was accomplished by a reformulation of the boundary value problem for hyperbolic equations. By this reformulation of the boundary data, the engineering design quantities, such as throat Mach number and flow angle, were introduced as direct input quantities to the computer program. As a consequence of introducing the engineering parameters as input, the computer program will calculate the surface contours required to satisfy the specified throat conditions with the minimum inviscid throat distortion.

To facilitate the use of the method of characteristics in the design of supersonic inlets, numerical procedures have been derived from the general theory and adapted to high-speed computers. Particular attention was given in this study to a discussion of boundary data and ways they may be applied for more effective inlet design. In addition, attention was given to a discussion of streamline tracing by a numerical integration of the mass flux from a known physical boundary. This technique was used extensively in the computer program with great effectiveness.

To illustrate and corroborate the numerical methods, selected examples are presented and compared with experimental results. Sample problems are also included to illustrate the use of the program to achieve specific objectives. This report also presents FORTRAN listings for the main programs and subroutines, descriptions and functions of the subroutines, explanations of the input-output quantities, and general program procedures.

SYMBOLS

A dimensionless coefficient defined by eq. (3)
B dimensionless coefficient defined by eq. (4)
C characteristic
$\mathrm{C}_{\mathrm{d}, \mathrm{a}}$ additive drag coefficient
c dimensionless speed of sound (see appendix A) referenced to critical speed

D dimensionless coefficient defined by eq. (5)
E dimensionless coefficient defined by eq. (6)
dimensionless coefficient defined by eq. (7)
dimensionless coefficient defined by eq. (7)
Mach number
mass flow
total pressure
static pressure
dimensionless local velocity relative to critical speed
coefficients for equation of boundary
dimensionless radius, $\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$
dimensionless x -component of velocity (see appendix A) relative to critical speed
dimensionless y-component of velocity (see appendix A) relative to critical speed
dimensionless x -coordinate relative to cowl lip radius
dimensionless y-coordinate relative to cowl lip radius
parameter defining C_{+}characteristic family (see eq. (A10))
parameter defining C _ characteristic family (see eq. (A10))
shock angle
ratio of specific heats
deflection angle
tangent of solid boundary
cotangent of conic ray half angle (see eq. (B1))
Eigen values of eq. (A7)
conic ray half angle
local Mach angle with respect to local flow angle
dimensionless density relative to critical conditions
local flow angle with respect to coordinate system
characteristic directions (see eq. (A15))
$\psi \quad$ stream function
$\sigma^{2} \cdot$ parameter defined as $(\sigma-1) /(\sigma+1)$
$\tau \quad$ parameter defined by eq. (A6)
Subscripts:
c cowl surface
cb centerbody surface
ref reference conditions
w wall conditions
0 free-stream conditions
Superscript:

- average conditions

GOVERNING EQUATIONS

To facilitate the use of the characteristic theory in the design of supersonic inlets, numerical procedures were developed with the following underlying assumptions:
(1) Steady three-dimensional flow with cylindrical symmetry
(2) Homentropic flow within shockless flow regions

Assumption (1) is not overly restrictive since a large class of two- and threedimensional inlets of practical interest are satisfied by this condition; assumption (2) is implemented along physical boundaries by basing the calculations on the totalpressure recovery along that streamline. In general, the accuracy of results with assumption (2) was not appreciably different from isentropic calculations. In general, these errors were of the order of 0.10 to 0.50 percent in local Mach number.

Characteristic Equations

Flow with cylindrical symmetry is characterized by the conditions that all pertinent quantities depend only on the abscissa x along the axis and the distance y from the axis. The characteristic equations and compatibility conditions are found in reference 1 and derived in appendix A. They are given, respectively, by

$$
\left.\begin{array}{ll}
d y=A d x & C_{+} \tag{1}\\
d y=B d x & C_{-}
\end{array}\right\}
$$

$$
\left.\begin{array}{ll}
d u=D d v+F d x & C_{+} \tag{2}\\
d u=E d v+G d x & C_{-}
\end{array}\right\}
$$

where

$$
\begin{align*}
& \mathbf{A}=\tan (\vartheta+\mu) \tag{3}\\
& \mathbf{B}=\tan (\vartheta-\mu) \tag{4}\\
& \mathrm{D}=-\tan (\vartheta-\mu) \tag{5}\\
& \mathrm{E}=-\tan (\vartheta+\mu) \tag{6}\\
& \mathrm{F}=\mathrm{G}=\frac{\mathrm{c}^{2}}{\mathbf{u}^{2}-\mathrm{c}^{2}} \frac{\mathrm{v}}{\mathrm{y}} \tag{7}
\end{align*}
$$

In addition to the above equations, Bernoulli's Law gives the following relation:

$$
\begin{equation*}
\sigma^{2}\left(u^{2}+v^{2}\right)+\left(1-\sigma^{2}\right) c^{2}=1 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma^{2}=\frac{\gamma-1}{\gamma+1} \tag{9}
\end{equation*}
$$

The set of equations (1), (2), and (8) have been made dimensionless by dividing the spatial coordinates by the cowl lip radius and the velocity coordinates by the critical speed. The equations for two-dimensional flow are obtained by setting $F=G=0$.

Conical Flow Field Equations

Further mathematical simplifications are possible for the case of axisymmetric flow if the flow field considered is that produced by a cone with sufficiently small half angle that the shock front is attached. Under these conditions, the velocity components u, v and speed of sound c depend only on the angle between the axis of symmetry and the family of concentric cones between the obstacle cone and shock wave. When the velocity components u and v are introduced as the independent and dependent variables (see
appendix B), respectively, the governing equation becomes

$$
\begin{equation*}
v_{u u}=\left(1+v_{u}^{2}\right)-\frac{\left(1-\sigma^{2}\right)\left(u+v v_{u}\right)^{2}}{1-\sigma^{2}\left(u^{2}+v^{2}\right)} \tag{10}
\end{equation*}
$$

where the subscripts indicate differentiation. Along the cone surface, the boundary condition is specified by the relation

$$
\begin{equation*}
\mathrm{v}_{\mathrm{u}}=\frac{-\mathrm{u}}{\mathrm{v}} \tag{11}
\end{equation*}
$$

The conditions to be satisfied by the velocity immediately behind the conical shock are specified by the oblique shock equations

$$
\begin{gather*}
u=\left(1-\sigma^{2}\right) q_{0} \cos ^{2} \beta_{s}+\frac{1}{q_{0}} \tag{12}\\
v=\left(q_{0}-u\right) \cot \beta_{s} \\
v_{u}=\frac{v}{u-q_{0}}
\end{gather*}
$$

where q_{0} is the dimensionless free-stream velocity and β_{s} is the shock-wave angle. Equations (10) to (14) are derived in reference 1 and listed in appendix B.

Oblique Shock-Wave Relations

The standard oblique shock relation used was obtained from reference 5 and is given by

$$
\begin{equation*}
\sin ^{6} \beta_{S}+b \sin ^{4} \beta_{S}+c \sin ^{2} \beta_{S}+d=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
b=-\frac{M^{2}+2}{M^{2}}-\gamma \sin ^{2} \delta \tag{16}
\end{equation*}
$$

$$
\begin{gather*}
c=\frac{2 M^{2}+1}{M^{4}}+\left[\left(\frac{\gamma+1}{2}\right)^{2}+\frac{\gamma-1}{M^{2}}\right] \sin ^{2} \delta \tag{17}\\
d=-\frac{\cos ^{2} \delta}{M^{4}} \tag{18}
\end{gather*}
$$

M is the Mach number upstream of the shock wave, and δ is the deflection angle.

FORMULATION OF BOUNDARY DATA

The type of data which must be prescribed to have a well-set problem is fundamental to establishing a numerical solution to the characteristic equations. In the design of supersonic inlets, a common situation which arises includes a known physical boundary along with an initial datum line which can be either noncharacteristic (such as a shock wave) or one member of the two-family set of characteristics (fig. 1). The solution of the flow field can then be established in the triangular domain $A B C$ in the x, y plane.

A more general way of formulating boundary requirements is to consider the flow field to be constrained between two boundaries (fig. 2), one of which may not be defined. In order to establish a well-set problem, data must be prescribed along the initial datum line and a pair of boundary data must be provided. The possible combinations of boundary data include
(1) Prescribing the two boundary curves, $y=y_{c b}(x)$ and $y=y_{c}(x)$, and solving for the flow field in the domain ABCD and conditions along each of the bounding surfaces
(2) Prescribing one boundary surface, $y=y_{c b}(x)$, and the corresponding velocity distribution along the same surface, $q=q_{c b}(x)$ (Under these conditions, the boundary value problem is to establish the flow field and the necessary contour of the second surface, $y=y_{c}(x)$, which are consistent w ith the initial data and prescribed boundary information.)
(3) Prescribing the velocity distribution for each of the surfaces, for example, $q=q_{c b}(x)$ and $q=q_{c}(x)$ (Under these conditions, only the magnitude of the velocity is known on each of the two boundaries. The solution must thus include establishing the unknown surfaces and flow field which satisfy the prescribed initial and boundary data.)
For the purposes of this report, the three types of boundary data described are termed
(1) Fixed-boundary problem (Case 1)
(2) Free-boundary problem (Case 2)
(3) Doubly-free-boundary problem (Case 3)

Fixed-Boundary Problem

When both boundaries are fixed, the equations of the bounding surfaces become the controlling influence (i.e., they are program input variables). For this situation, if a particular flow field must be established within the region ABCD (i.e., throat Mach number and flow angle (fig. 2)), a trial-and-error iteration for the surfaces $y=y_{c b}(x)$ and $\mathrm{y}=\mathrm{y}_{\mathrm{c}}(\mathrm{x})$ must be used.

Free-Boundary Problem

The free-boundary problem is a useful way of prescribing boundary data if a particular flow field is to be established, for example, in the throat region of a supersonic inlet. Prescribing the centerbody contour and velocity distribution establishes the manner in which the flow is to be compressed and the coordinates of the upper surface, $\mathrm{y}=\mathrm{y}_{\mathrm{c}}(\mathrm{x})$, which is the streamline which passes through the cowl lip. To establish a uniform flow field downstream of domain ABCD, the velocity and surface angle of boundary (1) are held constant downstream from point C. This establishes the requirement of a particular throat Mach number with minimum inviscid flow distortions.

For the free-boundary problem, the establishment of the unknown surface, $y=y_{c}(x)$, essentially reduces to finding the streamline which passes through point A in figure 2. In any inviscid flow, the streamlines, by definition, form surfaces across which there is no flow and consequently may be replaced by a solid boundary. The streamlines can be determined either by constructing them incrementally from known local conditions or by integration of the mass flux from known boundary conditions. This latter method was used extensively throughout the computer programs. Equations used for the streamline tracing are derived in appendixes C and D, and discussions as to their use appear in detail in later sections.

The boundary for which the pair of data, $y=y_{w}(x)$ and $q=q_{w}(x)$, can be prescribed must satisfy the condition that the downstream leading characteristics from the initial datum line do not intersect that surface. If the wrong boundary is chosen, an overspecified problem will result.

Doubly-Free-Boundary Problem

The doubly-free-boundary problem is an alternate way of prescribing boundary data and may have useful applications. Its disadvantage lies in the loss of direct control of flow direction, which becomes important in inlet design. This immediate disadvantage does not occur for either the fixed or free-boundary problems. In any case, the doubly-free-boundary problem was not explored further in this report.

NUMERICAL PROCEDURES

Each net point in the x, y plane is determined by the characteristic equations and compatibility conditions specified by equations (1) and (2). The properties u, v are obtained from the compatibility conditions, while the characteristic equations locate the point in the x, y plane. The computational work divides itself into four distinct groups; namely,
(1) Conical flow field calculations
(2) Basic characteristic field point
(3) Basic characteristic boundary point
(4) Shock point calculations

Conical Flow Field Calculations

The mathematical construction for the flow past an infinite cone with attached shock fronts is obtained from a numerical solution of equation (10) by means of a Runge-Kutta integration. The conical shock angle β_{S} is established by an iterative process which begins with an initial estimate of the shock angle for the given free-stream conditions. The relations governing the transitions through conical shocks are the same as those for plane oblique shocks; the curvature of the shock cone has no effect. The necessary boundary conditions to be satisfied along the shock front can thus be described by equations (12) to (14). A solution of equation (10) is found which is compatible with the shock values of u, v defined by equations (12) and (13) and has an initial slope specified by equation (14). The solution is then continued so that v_{u} increases until

$$
\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{u}}{\mathrm{v}}=-\mathrm{v}_{\mathrm{u}}
$$

along the cone surface. The cone angle thus obtained is compared to the specified cone angle, and new estimates of the shock angle β_{S} are made until the cone angle and flow
angle are equal. When convergence has been reached, the boundary conditions u, v on the cone have been established. The solution for any point in the conical flow field can thus be calculated from equation (10) by specifying the ray angle associated with the flow field point. The formulae used for additive drag and mass flow spillage calculation in the conical flow field appear in appendix E.

Basic Characteristic Field Point

The program specifies each field point by a (K, I) index combination. Increasing the K-index (with I held constant) occurs along a C_{+}characteristic (fig. 3), while increasing the I-index (with K held constant) indicates a $C_{\text {_ }}$ characteristic. The unknown position coordinates $x(K, I), y(K, I)$ are obtained by a simultaneous solution of characteristic equations (1) in finite difference form, that is,

$$
\begin{align*}
x(K, I)= & \frac{y(K, I-1)-y(K-1, I)+\bar{A} x(K-1, I)-\bar{B} x(K, I-1)}{\bar{A}-\bar{B}} \tag{19}\\
& y(K, I)=y(K-1, I)+\bar{A}[x(K, I)-x(K-1, I)]
\end{align*}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{A}}=0.50[\mathrm{~A}(\mathrm{~K}, \mathrm{I})+\mathrm{A}(\mathrm{~K}-1, \mathrm{I})] \\
& \overline{\mathrm{B}}=0.50[\mathrm{~B}(\mathrm{~K}, \mathrm{I})+\mathrm{B}(\mathrm{~K}, \mathrm{I}-\mathrm{I})]
\end{aligned}
$$

The unknown velocity coordinates are obtained from a simultaneous solution of the compatibility conditions (eq. (2)) in finite difference form. that is.

$$
\begin{gather*}
v(K, I)=\frac{u(K, I-1)-v(K-1, I)+\overline{\mathrm{D}} \mathrm{v}(\mathrm{~K}-\mathrm{I}, \mathrm{I})-\overline{\mathrm{E}}(\mathrm{~K}, \mathrm{I}-1)+\overline{\mathrm{G}}[\mathrm{x}(\mathrm{~K}, \mathrm{I})-\mathrm{x}(\mathrm{~K}, \mathrm{I}-1)]-\overline{\mathrm{F}}[\mathrm{x}(\mathrm{~K}, \mathrm{I})-\mathrm{x}(\mathrm{~K}-1, \mathrm{I})]}{\overline{\mathrm{D}}-\overline{\mathrm{E}}} \tag{20}\\
\mathrm{u}(\mathrm{~K}, \mathrm{I})=\mathrm{u}(\mathrm{~K}, \mathrm{I}-1)+\overline{\mathrm{E}}[\mathrm{v}(\mathrm{~K}, \mathrm{I})-\mathrm{v}(\mathrm{~K}, \mathrm{I}-1)]+\overline{\mathrm{G}}[\mathrm{x}(\mathrm{~K}, \mathrm{I})-\mathrm{x}(\mathrm{~K}, \tilde{\mathrm{I}}-1)]
\end{gather*}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{D}}=0.5[\mathrm{D}(\mathrm{~K}, \mathrm{I})+\mathrm{D}(\mathrm{~K}-1, \mathrm{I})] \\
& \overline{\mathrm{E}}=0.5[\mathrm{E}(\mathrm{~K}, \mathrm{I})+\mathrm{E}(\mathrm{~K}, \mathrm{I}-1)]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}=0.5[F(K, I)+F(K-1, I)] \\
& \bar{G}=0.5[G(K, I)+G(K, I-1)]
\end{aligned}
$$

The iterative process begins with an estimate of the flow properties (i.e., u, v, and c at the field point $x(K, I), y(K, I))$ which determine the coefficients $\bar{A}, \bar{B}, \overline{\mathrm{D}}, \overline{\mathrm{E}}$, and $\overline{\mathrm{F}}$. The field point and the flow properties are then calculated from equations (19) and (20). New values of the quantities $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{D}}, \overline{\mathrm{E}}$, and $\overline{\mathrm{F}}$ from which the field point and its properties can be recalculated are thus obtained. The iteration continues until a specified convergence between successive calculations is reached.

Basic Characteristic Boundary Point

Calculation of the basic boundary point (which occurs in the fixed-boundary problem) is performed in an analogous manner to the basic field point except for the replacement of one of the characteristic equations by boundary conditions. The condition of a solid boundary requires that the normal component of velocity at the point $x(K, I), y(K, I)$ (fig. 4) be identically zero.

The boundary curve is specified as a polynomial of third order, that is,

$$
y_{w}=R_{0}+R_{1} x+R_{2} x^{2}+R_{3} x^{3}
$$

Hence, the boundary point $x(K, I), y(K, I)$ is determined by the simultaneous solution of the $C_{~}$ characteristic equation with the equation of the boundary curve. Thus,

$$
\left.\begin{array}{c}
R_{3} x(K, I)^{3}+R_{2} x(K, I)^{2}+\left(R_{1}-\bar{B}\right) x(K, I)+R_{0}-y(K, I-1)+\bar{B} x(K, I-1)=0 \\
y_{w}(K, I)=R_{0}+R_{1} x(K, I)+R_{2} x(K, I)^{2}+R_{3} x(K, I)^{3} \tag{21}
\end{array}\right\}
$$

The velocity components are obtained from the compatibility condition along the $\mathrm{C}_{\text {_ }}$ characteristic and the condition of no flow normal to the boundary. This gives

$$
\begin{gather*}
u(K, I)=\frac{[u(K, I-1)-\bar{E} v(K, I-1]+\bar{G}[\mathrm{x}(\mathrm{~K}, \mathrm{I})-\mathrm{x}(\mathrm{~K}, \mathrm{I}-1)]}{1.0-\epsilon \overline{\mathrm{E}}} \tag{22}\\
\mathrm{v}(\mathrm{~K}, \mathrm{I})=\epsilon \mathrm{u}(\mathrm{~K}, \mathrm{I})
\end{gather*}
$$

where

$$
\epsilon=\frac{d y_{w}}{d x}=R_{1}+2.0 R_{2} \mathrm{x}(\mathrm{~K}, \mathrm{I})+3.0 \mathrm{R}_{3} \mathrm{x}(\mathrm{~K}, \mathrm{I})^{2}
$$

The iteration for the basic characteristic boundary point proceeds in a like manner as iteration for the basic field point.

Shock Field Point Calculation

Shock field point calculations are inherently different from field point calculations in that the conditions known are just upstream of the shock wave. Thus, the oblique shock relations must be included in the calculations of the flow field behind the shock wave. The shock point $x(K, I), y(K, I)$ is geometrically located on the downstream side of the intersection of the shock wave and the opposite family of characteristics in the upstream region (fig. 5). The upstream properties of the shock point $x(K, I), y(K, I)$ are found by a linear interpolation between the proper net points in the upstream region. The iterative process to determine the downstream conditions begins with the assumption that the deflection angle at the point $\mathrm{x}(\mathrm{K}, \mathrm{I}), \mathrm{y}(\mathrm{K}, \mathrm{I})$ is the same as the deflection angle at the previously calculated shock point $\mathrm{x}(\mathrm{K}-1, \mathrm{I}), \mathrm{y}(\mathrm{K}-1, \mathrm{I})$ (fig. 6). From the oblique shock relations, the first estimate of the flow properties behind the shock are established. A C_{+}characteristic is then constructed from the shock point $x(K, I)$, $y(K, I)$, as shown by the dashed line in figure 6. The intersection $x_{\text {ref }}, y_{\text {ref }}$ of this characteristic with its opposite member is the reference point. Conditions at this reference point are obtained by a linear interpolation between the previously calculated points $\mathrm{x}(\mathrm{K}-1, \mathrm{I}), \mathrm{y}(\mathrm{K}-1, \mathrm{I})$ and $\mathrm{x}(\mathrm{K}-1, \mathrm{I}+1), \mathrm{y}(\mathrm{K}-1, \mathrm{I}+1)$. A basic characteristic field point calculation, previously described, is then performed to obtain the lattice point $x(K, I+1), y(K, I+1)$. This calculation is based on the two net points $x(K, I), y(K, I)$ and $\mathrm{x}(\mathrm{K}-1, \mathrm{I}+1), \mathrm{y}(\mathrm{K}-1, \mathrm{I}+1)$. The shock point $\mathrm{x}(\mathrm{K}, \mathrm{I}), \mathrm{y}(\mathrm{K}, \mathrm{I})$ is then recomputed by a field point calculation based on the lattice points $x_{r e f}, y_{r e f}$ and $x(K, I+1)$, $\mathrm{y}(\mathrm{K}, \mathrm{I}+1)$. A new estimate of the deflection angle at the shock point is then obtained, and the sequence is repeated until the desired convergence has been obtained.

Shock Boundary Point Calculation

To obtain the quantities at a shock point $x(K, I), y(K, I)$ under the conditions where the previous shock point lies on a physical boundary (fig. 7), a C_{+}characteristic is constructed from $x(\mathrm{~K}, \mathrm{I}), \mathrm{y}(\mathrm{K}, \mathrm{I})$ (dashed line) which intersects the boundary. The
intersection point of this characteristic with the boundary becomes the reference point $\mathrm{x}_{\text {ref }}, \mathrm{y}_{\text {ref }}$. The conditions behind the shock at the point $\mathrm{x}(\mathrm{K}, \mathrm{I}), \mathrm{y}(\mathrm{K}, \mathrm{I})$ are obtained in the manner described in the previous section. The iteration proceeds in a similar manner as the shock field point calculation except the properties at the points $\mathrm{x}_{\text {ref }}, \mathrm{y}_{\text {ref }}$ and $\mathrm{x}(\mathrm{K}, \mathrm{I}+1), \mathrm{y}(\mathrm{K}, \mathrm{I}+1)$ are obtained by a basic boundary point calculation previously described.

CONSTRUCTION OF FLOW FIELD

Two basic methods of specifying boundary data were used in the computer program. These are (1) the fixed-boundary problem in which the centerbody and cowl contours are the primary input variables to the program and (2) the free-boundary problem where a single surface curve and Mach number distribution are the primary input data. In the actual construction of the flow field, both methods are used in conjunction with each other.

Cowl Lip Calculation

One example of a fixed-boundary problem is illustrated in figure 8. The two boundary curves, $y=y_{c b}(x)$ and $y=y_{c}(x)$, represent the centerbody and cowl surfaces of the diffuser. The initial data lie along the incident shock; however, these data are incrementally determined as the flow field behind the incident shock is constructed. The construction begins with a shock boundary point calculation, the boundary point being located at point A in figure 8. The calculations always start with a downstream characteristic from the initial datum line, in this case the incident shock. Since the boundary has been reached in the first calculation (point A), the computations proceed with a shock field point calculation to locate the next shock point. Field point calculations are then performed to determine the next downstream characteristic from the shock to the cowl boundary, until the point just before the boundary has been reached. At that time, a boundary point calculation is performed to determine the flow properties on the cowl surface. This sequence of calculations is continued until the entire incident shock has been constructed.

At this point in the calculations, there are several alternatives available in the computer program. These alternatives are discussed in the following sections.

Reflecting Shock Problem

The incident shock in figure 8 can be allowed to reflect off the centerbody surface represented by $y=y_{c b}(x)$. In this case, the construction of the flow field behind the reflected shock proceeds in exactly the same manner as the flow field behind the incident shock, which has previously been discussed.

Canceled-Shock Problem

Another variation of the fixed-boundary problem which is used in the computer program is to specify a lower surface $y=y_{c b}(x)$ such that the shock is canceled at that boundary. The initial datum line now becomes the last downstream characteristic from the incident shock to the upper surface, $y=y_{c}(x)$. Under these conditions, the lattice points along the initial datum line are known. Hence, only field point and boundary point calculations are used sequentially in the construction of the flow field. If two characteristics of the same family intersect, the upstream characteristic is deleted and the calculations continue. Under this condition, the program automatically prints out the locus of the intersecting characteristics of the same family.

Free-Boundary Problem

Another alternative which is provided in the computer program is to specify that the incident shock (fig. 8) be canceled and to furnish the centerbody contour, $y=y_{c b}(x)$, and the velocity distribution along this surface. This is the free-boundary problem and is illustrated in figure 9. In this case, the initial datum line is specified to be the first downstream characteristic from the upper surface that intersects the lower surface of the diffuser (line $A B$ in fig. 9) which was determined from the previous calculations.

The calculations begin with a stream function integration along the initial characteristic $A B$ from the lower to the upper surface (see appendix C). This integration establishes the numerical value of the streamline which is the upper surface $\psi=\psi_{\text {ref }}$ since the point A lies along this contour. The numerical value of the streamline which makes up the lower surface is arbitrary and, hence, set equal to $1(\psi=1)$. The construction of the flow field and the determination of the unknown surface, represented by $\psi=\psi_{\text {ref }}$, proceed in the following manner. Since the contour and velocity distribution along the lower surface are specified, the sequence of calculations begins with a field point calculation for the second lattice point D along the characteristic CE. Simultaneous with the field point calculation, a mass flux integration is performed. This sequence of calculations is continued along the characteristic CE until the calculated
stream function first exceeds the value of the reference stream function (i.e., $\psi=\psi_{\text {ref }}$). At this time, an iteration is performed to locate the point along the characteristic CE for which the value of the stream function matches the reference value (i.e., $\psi=\psi_{\text {ref }}$). This iteration is based on the two lattice points $\psi<\psi_{\text {ref }}$ and $\psi>\psi_{\text {ref }}$ indicated by square symbols in figure 9 . The boundary coordinates (point D) in addition to the properties at this point are thus established by this iteration. The calculations are continued in the manner described until the entire flow field has been established.

Another example where specifying the contour and the velocity distribution proves advantageous is in the construction of the flow field resulting from an isentropic spike (fig. 10). In this example, the upper surface degenerates to the focal point; hence, this point is a singularity. Conditions at the focal point are specified by assuming twodimensional reverse Prandtl-Meyer flow. The initial data are obtained from conical flow field calculations at specified intervals. The reference stream function $\psi_{\text {ref }}$ is specified by integration of the mass flux along the initial characteristic from the focal point to point A on the cone surface. Field point calculations are then performed simultaneously with a stream-function integration to establish the next leading characteristic through the focal point, $O B$ in figure 10 . When the value of the stream function first becomes less than the value of the reference stream function $\psi<\psi \psi_{\text {ref }}$ an iteration is performed to locate the surface coordinates, point B. Successive characteristics are then constructed until the flow field and spike contour have been established.

In principle, the establishment of one physical boundary by means of a mass flux integration does not preclude flows where shock waves are present. Under these conditions, however, the integration must account for the change in entropy experienced across the shock wave.

SELECTED INLET EXAMPLES

To indicate the use of the computer program in the design of supersonic inlets, four examples are presented and discussed. The purpose of this section is to indicate the manner in which the computer program can be used to satisfy different design requirements. There are two types of calculations which can be used to solve for the internal flow field. In one type the inlet geometry is specified (fixed-boundary problem) and in the other the Mach number and surface angle distribution must be specified (freeboundary problem). In addition, additive drag and mass flow spillage calculations are included (see appendixes D and E) for conical flow or simple wedge spillage. For those inlet configurations for which the boundary is to be determined, the computer program will curve-fit the unspecified surfaces, and the coefficients will appear in the output listings.

This section also illustrates the use of the primary subroutines and the functional organization of the main program. FORTRAN listings of the main programs and subroutines are found in appendix F. A complete listing of the program is presented in appendix G.

Bicone Inlet

Presented in figure 11 is a $10^{\circ}-18.5^{\circ}$ bicone mixed-compression inlet designed for a free-stream Mach number of 2.50. The second oblique shock intersected the cowl lip for the design condition (fig. $11(b)$) while about 0.5 percent of the capture mass flow was spilled supersonically by positioning the cone shock forward of the cowl lip. The initial internal cowl angle was set at 5.0°, while a Mach number of 1.30 and nominal flow angle of -1.4^{0} were specified for the throat conditions. In addition, it was specified that a constant throat Mach number section extending a distance downstream of the throat station be included in the inlet design. Under these conditions, about 60 percent of the supersonic area contraction took place externally. The theoretical total-pressure recovery at the throat was 0.968 behind the terminal shock.

The conical shock angle and boundary conditions on the first cone were computed in subroutine CSA by specifying a free-stream Mach number (AMO) of 2.500 and a cone angle (THETAC) of 10.0°. The profile of the second shock as well as the resulting flow field were computed in subroutine CONE. This was accomplished by specifying the deflection angle (ALPHA) between the two cones and the initial spacing parameter (START) which locates the original net-point spacings along the shock. The coordinate system always places the origin at the spike tip. For the example shown in figure 11, the parameter (START) was set to a value of 0.050 , which gave a total of 27 net points along the second shock. The cowl lip is located at unit radius by specifying the angle between the centerline and angular cowl position (THETAL) and setting SPILL =1.0. This positions the intersection of the two cones relative to the cowl lip by requiring the second oblique shock to intersect the cowl lip. Additive drag and mass flow spillage calculations are then performed in subroutine DRAG, assuming only conical flow spillage (see appendix E).

The internal flow is constructed by using subroutines SHOCK and SURF in combination. Subroutine SHOCK constructs the cowl oblique shock and the resulting flow field by using the specified initial cowl angle (COWLA), which in this example is 5.0°. If there are no coefficients specified for the cowl surface, the program automatically assumes a straight line whose slope is \tan (COWLA) and which passes through the cowl lip position. For this particular example, the cowl oblique shock was canceled at the centerbody surface, $x=2.78$ in figure $11(\mathrm{~b})$. This was accomplished in the program by setting NSHK = 1 (i.e., there should be only one oblique shock internal to the inlet with no shock
reflections). Under this condition, subroutine SHOCK locates the first characteristic behind the cowl oblique shock which intersects both the cowl and centerbody surfaces and performs a mass flux integration to determine the reference streamline. This establishes the initial datum line to be used in subroutine $S U R F$ and the reference streamline of the cowl. All other information computed downstream of this initial characteristic is thus ignored. Hence, under the condition where NSHK $=1$, subroutine SHOCK constructs the flow field within the domain in which the cowl surface can influence the oblique shock profile. Downstream of the initial characteristic which intersects the centerbody determined in subroutine SHOCK, the internal flow as well as the contour coordinate points are constructed in subroutine SURF. This is accomplished by specifying in the main program as input data the parameters AMT(J), THR(J), ANG(J), and NIS(J) (see appendix F). With this information, subroutine SURF constructs a parabolic surface of length THR(J), measured from the last known centerbody surface point, and having a final angle of $\operatorname{ANG}(J)$. On this surface, the program assumes a linear Mach number distribution which has a final Mach number of AMT(J) at the end of the section. Subroutine SURF, with this information, constructs the cowl contour which satisfies the boundary conditions specified. The number of net points for this calculation is controlled by the index parameter NIS(J). It can be seen that very complex surfaces which have precise distributions can be constructed from the basic forms described by specifying as many sections (indicated by the J index) as needed. There are several options constructed into this program which serve useful functions. By setting $\operatorname{THR}(J)=0$, the program will focus all leading characteristics from the cowl at the point which starts the J section. Conditions at the focal point are automatically assumed to satisfy the Prandtl-Meyer relation. By setting $\operatorname{ANG}(J)=0$, subroutine SURF will construct a centerbody surface whose Mach number distribution is specified by AMT(J) and whose angular distribution is satisfied by focused Prandtl-Meyer compression at a point below the body surface. The final angle in this case is determined by the program. For the example shown in figure 11, the input data were as follows:

SEGMENT	AMT(J)	THR(J)	ANG(J)	NIS(J)
1	1.300	0.400	0	10
2	1.300	.400	0	8
3	1.300	.400	0	8

Subroutine SURF, in this example, constructs the internal contours of the inlet such that the flow is initially compressed isentropically to a Mach number of 1.300 over a distance equal to 40 percent of the cowl lip radius, measured along the centerline from the shock impingement point. This segment of the centerbody surface was assumed to be a streamline constructed from the Prandtl-Meyer relations. Since the flow on the center-
body has already been compressed to Mach 1.300 , the data input for segment 2 was used to construct a transition section on the cowl to reduce its Mach number to 1.300. This transition section on the cowl can be seen in figure 11 and lies between $\mathrm{x}=3.02$ and $x=3.22$. The data for segment 3 were used to hold the 1.300 throat Mach number a distance of 0.400 downstream of segment 2 . When the inlet flow field calculations are completed, the program curve-fits the centerbody and cowl contours and lists the table of coefficients as output. These coefficients can then be used to evaluate the off-design capability of the inlet.

Two-Dimensional Focused Compression Inlet

Shown in figure 12 is a two-dimensional isentropic ramp inlet, designed for a freestream Mach number of 2.70 , in which the external flow was compressed to a focal point Mach number of 2.05. The initial ramp angle and internal cowl angle were both set at 5.0°, while at the inlet throat a Mach number of 1.300 and flow angle of -5.00° were specified. With these conditions, approximately 70 percent of the supersonic area contraction took place externally. The Mach number distribution and the characteristic solution along the centerbody and cowl contours are presented in figures 12 (a) and (b), respectively. For this inlet, the theoretical total-pressure recovery behind the terminal shock was computed to be 0.956 .

For this inlet example, it was specified that two-dimensional flow calculations should be performed. This was accomplished by setting NDIM $=2$, as opposed to NDIM $=3$ for the previous example. The calculations to construct the isentropic ramp contours and flow field were performed in subroutine SPIKE. Again, the spacing parameter START must be specified to establish the net-point spacings along the initial datum line. In addition, an M-index parameter must be specified to divide the flow field into $M+1 C_{+}$characteristics passing through the focal point. Thus, the M-index parameter divides the Mach number distribution at the focal point into M equal Mach number segments between the initial Mach number and the focal point Mach number (AMF). Downstream of the isentropic section, the flow field is constructed in subroutine SHAPE. The initial datum line in this subroutine is taken to be the last of the family of C_{+}characteristics computed in subroutine SPIKE. Unless otherwise specified, the program automatically assumes a straight line segment aft of the isentropic ramp, as was the case for the example shown in figure 12. This condition is indicated by the constant Mach number distribution along the ramp surface downstream of $x=1.34$ (circular symbols in fig. $12(\mathrm{~b})$).

For this inlet example, the cowl oblique shock was again canceled at the ramp surface. The internal flow field and surface contours were determined in the same manner as for the bicone inlet previously discussed.

Two-Dimensional Ramp Inlet

Another example of a two-dimensional inlet that was designed by the computer program is shown in figure 13. Although similar in appearance to the example previously discussed, basically different design specifications required a somewhat different computational approach. Foremost in the design specifications was the condition that the initial cowl angle be set at 0°. For optimum overall performance, this requirement dictated that, at most, 50 percent of the supersonic area contraction takes place externally. The throat Mach number and flow angle were set at 1.300 and -5.00°, respec tively; the same as the previously discussed two-dimensional inlet. To accomplish these objectives, the external ramp contour was designed such that all the compression waves entered the inlet (fig. 13(b)). This had the desirable effect of reducing the deflection angle at the cowl lip from the 12.2° of the previous example to 5.0°, while keeping the same amount of flow compression on the ramp surface upstream of the oblique shock. Consequently, the theoretical total-pressure recovery behind the terminal shock in the throat was 0.971 for a free-stream Mach number of 2. 700.

The external contour of the ramp surface was constructed in two segments. The first segment was a plane two-dimensional ramp with an angle of 5.0°. The second segment was composed of a parabolic section chosen such that the final Mach number on the ramp surface before the cowl oblique shock was about 2.00. Computational work for the external flow field was performed in subroutine CONE by specifying ALPHA = 0 and introducing the proper coefficients for the ramp surface. The internal contours of this inlet were determined in the manner described in the previously discussed examples.

Self-Starting Inlet

The condition of self-starting with a minimum cowl wave drag imposes unusual computational requirements on the fourth inlet example (fig. 14) so that it warrants discussion. Externally, the flow was compressed isentropically to a final focal point Mach number (AMF) of 1.600. The flow field and contour of the isentropic spike were computed in subroutine SPIKE. The initial half-cone angle (THETAC) was set at 16.0° and the free-stream Mach number was specified to be 2.500 . It was also specified that for an average entering Mach number of 1.60 , the minimum internal Mach number should not be less than 1.35 . In addition, the requirement of minimum cowl wave drag dictated that the initial internal cowl angle be about 17.0°, which set the Mach number just behind the oblique shock on the cowl at 1.35. In order to turn the cowl contour back as quickly as possible to reduce the cowl projected area, external expansion was provided on the spike contour aft of the station $x=1.61$. The contour of this segment of the spike was
chosen to provide a nearly uniform Mach number profile at the cowl lip. Results for this section of the flow field were computed in subroutine SHAPE by specifying the appropriate coefficients. A nominal throat flow angle of -3.0° was set for this inlet configuration. The problem, therefore, in this inlet design reduces itself to finding the proper Mach number distribution and contour along the centerbody surface which would ensure a constant Mach number of 1.35 along the cowl surface while turning the flow along the cowl a total of 20.0°.

The calculation for the solution of this problem was accomplished in subroutine SURF by systematic variations of the program input variables AMT(J), THR(J), and ANG(J). By successive approximations, several inlet designs were established, each of which came nearer to satisfying all the requirements. The characteristic solution for the final configuration is shown in figure $14(\mathrm{~b})$, while the Mach number distribution is shown in figure 14(a). The overall total-pressure recovery behind the terminal shock in the throat region was 0.955 for a design Mach number of 2.500 .

Off-Design Calculation

Off-design calculations can be performed on the various types of inlet configurations discussed. In each case, the coefficients of the equations specifying the various surfaces are input data to the program. If the cowl oblique shock was to be canceled at the centerbody shoulder for on-design operation, as was the case in the inlets discussed, the location of the shoulder must be specified for off-design calculations. This is done by specifying the index parameter (ISHK) which selects the position point BODY(ISHK) as the shoulder point. It must be understood that canceling the shock for design conditions does not necessarily imply cancellation at off-design Mach numbers.

The position of the cowl lip for off-design calculations is specified by the coordinates X COWL, Y COWL. If these two parameters are nonzero quantities, the program will automatically shift the coefficients describing the cowl contours to their proper positions. If the cowl lip is positioned outside the region of influence of the previously computed flow field, the calculations will terminate, and an error message will be indicated in the output listings. This can be changed by choosing another value of $\operatorname{BODY}(2)$ along the centerbody surface which initiates the forward flow field calculations.

COMPARISON WITH EXPERIMENTAL DATA

To illustrate the agreement between the numerical methods described in the previous sections and experimental data, selected examples are presented in figures 15 to 18.

Attention is given in the discussion of these examples to show the influence of boundary layers and to indicate the degree of accuracy of this type of flow calculation.

Isentropic Spike Configurations

Figure 15 presents an isentropic spike forebody configuration designed for a freestream Mach number of 2.49 and a final focal point Mach number of 1.46. The characteristic solution is shown in figure 15(b), while a comparison between the measured and calculated static-pressure distribution is presented in figure 15(a). The previously unpublished data were obtained from the investigation of reference 6. In general, the boundary layer did not greatly influence the static-pressure distribution along the spike surface, as testified by the good agreement between the calculated (solid line) and measured (symbols) values. Some boundary-layer influence was noticed, however, near the end of the isentropic section, but the focusing characteristics were not appreciably impaired, as indicated by the Schlieren photograph (fig. 15(c)).

More pronounced boundary-layer influence was indicated on an isentropic spike forebody configuration designed for a free-stream Mach number of 3.85 (fig. 16). The axisymmetric characteristic solution for this configuration is shown in figure $16(\mathrm{~b})$. The cone had an initial half angle of 8.0°, while the final focal point Mach number was set at 1. 75. Figure 16 (a) shows a comparison between the calculated (solid line) and measured (symbols) static-pressure distribution along the spike contour obtained from reference 7. Generally, good agreement was obtained between the experimental and calculated static pressures; however, all data tended to fall somewhat higher than the predicted distribution. This was typical everywhere except for a short range in the no-roughness condition (circular symbols) immediately following the laminar boundary-layer separation region (dashed line). Turbulent boundary layer was undoubtedly induced along the spike surface by the application of roughness at the spike tip, as indicated by the slightly higher static-pressure level (comparing circular and square symbols). This was realized everywhere except in the separation zone of the no-roughness case.

Bicone Forebody Configuration

Shown in figure 17 is a bicone forebody configuration in which the first cone had a half angle of 10.0° while the second cone half angle was 18.5°. Calculations were performed at a free-stream Mach number of 2.49, which was identical to that for the data. The data were obtained in an unpublished investigation conducted in the Lewis $10-$ by 10 -foot supersonic wind tunnel at maximum Reynolds number. The diameter of the
oblique shock intersection point was 40.6 centimeters. The axisymmetric characteristic solution is presented in figure $17(\mathrm{~b})$. Coordinate points along the contour were normalized such that the intersection of the first and second oblique shocks occurred at a radius (dimensionless y coordinate) of 1 . A comparison between the experimental data (circular symbols) and calculated values (solid line) of static pressure along the surface contour indicated generally fair agreement (fig. 17(a)). Upstream of the junction between the first and second cones, the data were slightly lower than calculated values. Downstream of the juncture point, slightly higher static pressures were measured than were calculated, indicating some boundary-layer influence. Surface disturbances on the second cone, clearly visible in the Schlieren photograph (fig. 17(c)), prevented the possibility of distinguishing any boundary-layer influence aft of $x=1.40$. There appears to be no boundary-layer "bridging" at the junction of the conical surfaces. This type of flow separation may induce a greatly modified shock pattern, particularly in the vicinity of the cowl lip of an inlet.

Single-Cone Inlet Configuration

Figure 18 presents the computer solution obtained for a single-cone mixedcompression inlet designed for a free-stream Mach number of 2.500. External compression was obtained by a 12.5° half-angle conic forebody. The initial cowl angle was set at 0° in this inlet example; the oblique shock originating from the cowl lip was reflected from the internal contour surfaces. The internal contour surfaces were obtained by curve-fitting the contour specifications used in fabricating the inlet.

The characteristic solution for this inlet configuration is presented in figure 18(b). Shown in figure 18(a) is a comparison between the static-pressure distribution obtained from the computer program (solid and dashed lines) and experimental data (symbols) obtained from reference 8. In general, there was good agreement between the theoretically determined static pressures and measured pressures upstream of the throat region $(x=3.48)$. Within the throat section, agreement between calculations and data is more difficult to realize owing to the complex shock boundary-layer interactions. These interactions were partially minimized by porous bleed in the regions indicated in figure 18(b). In general, the shock reflection points (as indicated by data) appear to occur upstream of the calculated points and thus indicate reflections off the boundary layer. This tends to foreshorten the shock regions in the downstream direction. More detailed discussions of the experimental data can be found in reference 8.

Off-design performance calculations of this inlet at Mach numbers of 2.30 and 2.02 reveal increasingly better agreement in the throat region with decreasing free-stream Mach number. This is probably due to the lessening boundary-layer influence.

CONCLUDING REMARKS

The theory, numerical methods, and computer program for the design of supersonic inlets have been presented. The computer program was written with the intention of designing many types of inlets with a minimum of computer time. For example, the execution time for the inlet presented in figure 11 was 0.62 minute with 30 initial net points along the starting shock. The execution time for the inlet presented in figure 18 was 1.23 minutes for five internal shocks with 31 net points along the first cowl oblique shock wave.

Because computer programs of this type are used primarily for design application, it becomes important for the programmer to use methods whereby optimum designs are more readily obtained. By introducing throat Mach number and flow angle as direct program input variables, the difficulty in obtaining the proper surface contour was considerably reduced. This reduced the overall time required to obtain the designed inlet configuration. In addition, minimum inviscid throat Mach number distortions could be achieved.

[^0]
APPENDIX A

DERIVATION OF GENERAL COMPATIBILITY

AND CHARACTERISTIC RELATIONS

The set of equations which describe steady, irrotational isentropic flow in three dimensions with cylindrical symmetry are

$$
\begin{gather*}
\left(c^{2}-u^{2}\right) u_{x}-u v\left(u_{y}+v_{x}\right)+\left(c^{2}-v^{2}\right) v_{y}+\frac{c^{2} v}{y}=0 \tag{A1}\\
v_{x}-u_{y}=0 \tag{A2}\\
\sigma^{2}\left(u^{2}+v^{2}\right)+\left(1-\sigma^{2}\right) c^{2}=1 \tag{A3}
\end{gather*}
$$

where the velocity components u, v and the speed of sound c are dimensionless with respect to the critical speed, and the coordinates of a point x, y are dimensionless with respect to a characteristic length. In equation (A1) the subscripts x, y indicate differentiation. A linear combination of equations (A1) and (A2) is

$$
\begin{equation*}
p u_{x}+q u_{y}+r v_{x}+s v_{y}+t=0 \tag{A4}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
p=\lambda_{1}\left(c^{2}-u^{2}\right) \tag{A5}\\
q=-\lambda_{2} \\
r=\lambda_{2}-2 \lambda_{1} u v \\
s=\lambda_{1}\left(c^{2}-v^{2}\right) \\
t=\frac{\lambda_{1} c^{2} v}{y}
\end{array}\right\}
$$

The characteristic equations are obtained by requiring the derivatives of u, v with respect to x, y to form derivatives in the same direction (i.e., $d x: d y=p: q=r: s$. If
$x(\tau)$ and $y(\tau)$ represent a curve with $x_{z}: y_{z}=p: q=r: s$, equation (A4) represents the derivatives of u, v along this curve, and $\tau(x, y)$ define the characteristics. Thus,

$$
\left.\begin{array}{c}
\frac{\mathrm{p}}{\mathrm{q} .}=\frac{\mathrm{r}}{\mathrm{~s}}=\frac{\mathrm{x}_{\tau}}{\mathrm{y}_{\tau}} \tag{A6}\\
\mathrm{py}_{\tau}-\mathrm{qx}_{\tau}=0 \\
\mathrm{ry}_{\tau}-\mathrm{sx}_{\tau}=0
\end{array}\right\}
$$

Using the set of equations (A6) gives the pair of linear algebraic equations

$$
\left.\begin{array}{c}
\left(c^{2}-u^{2}\right) y_{\tau} \lambda_{1}+x_{\tau} \lambda_{2}=0 \tag{A7}\\
{\left[-2 u v y_{\tau}-\left(c^{2}-v^{2}\right) x_{\tau}\right] \lambda_{1}+y_{\tau} \lambda_{2}=0}
\end{array}\right\}
$$

For the set of equations (A7) to have a nontrivial solution for λ, the determinant of the coefficients of λ must vanish; thus,

$$
\begin{equation*}
\left(c^{2}-u^{2}\right) y_{\tau}^{2}+2 u v x_{\tau} y_{\tau}+\left(c^{2}-v^{2}\right) x_{\tau}^{2}=0 \tag{A8}
\end{equation*}
$$

The characteristic directions are therefore given by

$$
\begin{equation*}
\zeta_{ \pm}=\frac{\mathrm{y}_{\tau}}{\mathrm{x}_{\tau}}=\frac{1}{\mathrm{c}^{2}-\mathrm{u}^{2}}\left[-\mathrm{uv} \pm \sqrt{(\mathrm{uv})^{2}-\left(\mathrm{c}^{2}-\mathrm{u}^{2}\right)\left(\mathrm{c}^{2}-\mathrm{v}^{2}\right)}\right] \tag{A9}
\end{equation*}
$$

and the characteristics equations become

$$
\left.\begin{array}{l}
\mathrm{y}_{\alpha}=\zeta_{+} \mathrm{x}_{\alpha} \tag{A10}\\
\mathrm{y}_{\beta}=\zeta_{-} \mathrm{x}_{\beta}
\end{array}\right\}
$$

Equations (A10) are two separate ordinary differential equations of first order which define two one-parameter families of characteristics C_{+}and C_{-}in the x, y plane. These families are represented in the form $\alpha(x, y)=$ Constant, $\beta(x, y)=$ Constant and form a curvilinear coordinate net such that β is constant along a C_{+}characteristic and α is constant along C_{E}. To obtain the compatibility conditions, equation (A4) was
successively multiplied by x and y . Using equation (A6) gives

$$
\left.\begin{array}{l}
\mathrm{pu}_{\tau}+\mathrm{rv}_{\tau}+\mathrm{tx}_{\tau}=0 \\
\mathrm{qu}_{\tau}+\mathrm{sv}_{\tau}+\mathrm{ty}_{\tau}=0 \tag{A11}
\end{array}\right\}
$$

Using the set of equations (A5) results in the pair of algebraic equations

$$
\left.\begin{array}{c}
{\left[\left(c^{2}-u^{2}\right) u_{\tau}-2 u v v_{\tau}+\frac{c^{2} v}{y} x_{\tau}\right] \lambda_{1}+v_{\tau} \lambda_{2}=0} \\
{\left[\left(c^{2}-v^{2}\right) v_{\tau}+\frac{c^{2} v}{y} y_{\tau}\right] \lambda_{1}-u_{\tau} \lambda_{2}=0} \tag{A12}
\end{array}\right\}
$$

Using the first equation of sets (A7) and (A12), respectively, and requiring that this pair has a nontrivial solution for λ gives the results

$$
u_{\tau}-\zeta_{ \pm} v_{\tau}-\left(\frac{2 u v}{c^{2}-u^{2}}\right) v_{\tau}+\left(\frac{c^{2}}{c^{2}-u^{2}} \frac{v}{y}\right) x_{\tau}=0
$$

The pair of compatibility conditions are thus given by

$$
\left.\begin{array}{l}
u_{\alpha}+\zeta_{-} v_{\alpha}+\left(\frac{c^{2}}{c^{2}-u^{2}} \frac{v}{y}\right) x_{\alpha}=0 \tag{A13}\\
u_{\beta}+\zeta_{+} v_{\beta}+\left(\frac{c^{2}}{c^{2}-u^{2}} \frac{v}{y}\right) x_{\beta}=0
\end{array}\right\}
$$

The characteristic equations and compatibility relations can be more conveniently expressed by introducing the angle ϑ between the flow direction and the positive x -axis; then,

$$
\left.\begin{array}{l}
u=q \cos \vartheta \tag{A14}\\
v=q \sin \vartheta
\end{array}\right\}
$$

The roots ζ_{+}and ζ_{-}, being the slopes of characteristic directions of C_{+}and C_{-}, are thus

$$
\left.\begin{array}{l}
\zeta_{+}=\tan (\vartheta+\mu) \tag{A15}\\
\zeta_{-}=\tan (\vartheta-\mu)
\end{array}\right\}
$$

where μ is the angle between the flow direction and that of the corresponding characteristic.

The characteristic expression, equation (A8), can be written in the form

$$
c^{2}\left(1+\zeta_{ \pm}^{2}\right)-\left(u \zeta_{ \pm}-v\right)^{2}=0
$$

Using equations (A14) and (A15) gives the following result:

$$
\begin{equation*}
c^{2}=q^{2} \sin ^{2} \mu \tag{A16}
\end{equation*}
$$

Thus, the speed of sound is simply the component of flow velocity normal to the direction of a characteristic.

With these rotations, the characteristic equations assume the form

$$
\left.\begin{array}{c}
y_{\alpha}=\tan (\vartheta+\mu) x_{\alpha} \quad C_{+} \\
y_{\beta}=\tan (\vartheta-\mu) x \quad C_{-} \\
u_{\alpha}=-\tan (\vartheta-\mu) v-\frac{c^{2}}{c^{2}-u^{2}} x \tag{A17}\\
c_{+} \\
u_{\beta}=-\tan (\vartheta+\mu) v_{\beta}-\frac{c^{2}}{c^{2}-u^{2}} x \\
C_{-}
\end{array}\right\}
$$

APPENDIX B

DERIVATION OF DIFFERENTIAL EQUATIONS OF CONICAL FLOW

For the mathematical construction of conical flow patterns, assume that the velocity components u, v and hence the speed of sound c depend only on the ratio

$$
\begin{equation*}
\eta=\frac{\mathrm{x}}{\mathrm{y}} \tag{B1}
\end{equation*}
$$

Equation (A2) thus becomes

$$
\begin{equation*}
\mathbf{v}_{\eta}+\eta \mathbf{u}_{\eta}=\mathbf{0} \tag{B2}
\end{equation*}
$$

and equation (A1) becomes

$$
\begin{equation*}
\left(c^{2}-u^{2}\right) \mathrm{u}_{\eta}-2 \mathrm{uvv} \eta-\left(\mathrm{c}^{2}-\mathrm{v}^{2}\right) \eta \mathrm{v}_{\eta}+\mathrm{c}^{2} \mathrm{v}=0 \tag{B3}
\end{equation*}
$$

where subscripts refer to differentiation. Equation (B3) assumes a particularly useful form when v is introduced as a function of u; thus, from (B2)

$$
\begin{equation*}
\eta=-\frac{\mathrm{v}_{\eta}}{\mathrm{u}_{\eta}}=-\mathrm{v}_{\mathrm{u}} \tag{B4}
\end{equation*}
$$

Differentiating (B4) with respect to u leads to the following relation:

$$
\begin{align*}
& \mathrm{u}_{\eta}=-\frac{1}{\mathrm{v}_{\mathrm{uu}}} \\
& \mathrm{v}_{\eta}=-\frac{\mathrm{v}_{\mathrm{u}}}{\mathrm{v}_{\mathrm{uu}}} \tag{B5}
\end{align*}
$$

Introducing equations (B4) and (B5) into equation (B3) leads to the particularly simple form of the Taylor-Maccoll equation

$$
\begin{equation*}
v v_{u u}=1+v_{u}^{2}-c^{-2}\left(u+v v_{u}\right)^{2} \tag{B6}
\end{equation*}
$$

Eliminating c^{2} by mean of Bernoulli's equations yields

$$
\begin{equation*}
v v_{u u}=\left(1+v_{u}^{2}\right)-\frac{\left(1-\sigma^{2}\right)\left(u+v v_{u}\right)^{2}}{1-\sigma^{2}\left(u^{2}+v^{2}\right)} \tag{B7}
\end{equation*}
$$

Along the cone surface, the flow has the direction of the ray $\eta=\mathrm{x} / \mathrm{y}$ traced by the cone in the x, y plane, and thus

$$
\left.\begin{array}{r}
\eta=\frac{\mathbf{u}}{\mathbf{v}} \tag{B8}\\
\mathbf{v}_{\mathbf{u}}=-\frac{\mathbf{u}}{\mathbf{v}}
\end{array}\right\}
$$

The conditions to be satisfied along the conical shock (ref. 1) are given by

$$
\left.\begin{array}{c}
u=\left(1-\sigma^{2}\right) q_{0} \cos ^{2} \beta_{s}+\frac{1.0}{q_{0}} \\
v=\left(q_{0}-u\right) \cot \beta_{s} \tag{B9}
\end{array}\right\}
$$

where q_{0} is the dimensionless free-stream velocity and β_{S} is the conical shock angle. In addition, the initial slope along the shock is given by

$$
\begin{equation*}
v_{u}=\frac{v}{u-q_{0}} \tag{B10}
\end{equation*}
$$

APPENDIX C

DERIVATION OF STREAMLINES IN AXISYMMETRIC FLOWS

The continuity equation for axisymmetric flow may be written as

$$
\begin{equation*}
(\rho \mathrm{uy})_{\mathrm{x}}+(\rho v \mathrm{y})_{\mathrm{y}}=0 \tag{C1}
\end{equation*}
$$

From equation (C1), there exists a stream function x, y such that

$$
\left.\begin{array}{c}
\psi_{\mathrm{x}}=-\rho \mathrm{vy} \tag{C2}\\
\psi_{\mathrm{y}}=\rho \mathrm{uy}
\end{array}\right\}
$$

Along the two one-parameter families of characteristics C_{+}and C_{-}in the x, y plane, which are represented by $\beta(\mathrm{x}, \mathrm{y})=$ Constant and $\alpha(\mathrm{x}, \mathrm{y})=$ Constant,

$$
\left.\begin{array}{l}
\psi_{\alpha}=\psi_{\mathrm{x}} \mathrm{x}_{\alpha}+\psi_{\mathrm{y}} \mathrm{y}_{\alpha} \tag{C3}\\
\psi_{\beta}=\psi_{\mathrm{x}} \mathrm{x}_{\beta}+\psi_{\mathrm{y}} \mathrm{y}_{\beta}
\end{array}\right\}
$$

where the derivatives $\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}$ and $\mathrm{x}_{\beta}, \mathrm{y}_{\beta}$ are given by

$$
\left.\begin{array}{ll}
\mathrm{x}_{\alpha}=\cos (\vartheta+\mu) & \text { along } C_{+} \tag{C4}\\
\mathrm{y}_{\alpha}=\sin (\vartheta+\mu) & \text { along } C_{+} \\
\mathrm{x}_{\beta}=\cos (\vartheta-\mu) & \text { along } C_{-} \\
\mathrm{y}_{\beta}=\sin (\vartheta-\mu) & \text { along } C_{-}
\end{array}\right\}
$$

When cylindrical coordinates are introduced such that

$$
\begin{aligned}
& \mathrm{u}=\mathrm{q} \cos \vartheta \\
& \mathrm{v}=\mathrm{q} \sin \vartheta
\end{aligned}
$$

and the relations, equations (C4) are used, equation (C3) becomes

$$
\left.\begin{array}{l}
\psi_{\alpha}=q y[\sin (\vartheta+\mu) \cos \vartheta-\cos (\vartheta+\mu) \sin \vartheta] \tag{C5}\\
\psi_{\beta}=q y[\sin (\vartheta-\mu) \cos \vartheta-\cos (\vartheta-\mu) \sin \vartheta]
\end{array}\right\}
$$

Simplifying the above equations results in

$$
\left.\begin{array}{l}
\psi_{\alpha}=\mathrm{qy} \sin \mu=\frac{\rho \mathrm{qy}}{\mathrm{M}} \\
\psi_{\beta}=-\mathrm{qy} \sin \mu=\frac{-\rho \mathrm{qy}}{\mathrm{M}} \tag{C6}
\end{array}\right\}
$$

From the set of equations (C4),

$$
\left.\begin{array}{r}
\mathrm{d} \alpha=\frac{\mathrm{dy}}{\sin (\mu+\vartheta)} \tag{C7}\\
\mathrm{d} \beta=-\frac{\mathrm{dy}}{\sin (\mu-\vartheta)}
\end{array}\right\}
$$

Therefore,

$$
\begin{equation*}
\psi_{\mathrm{B}}=\psi_{\mathrm{A}}+\int_{\mathrm{Y}_{\mathrm{A}}}^{\mathrm{Y}_{\mathrm{B}}} \frac{\rho \mathrm{qy} \mathrm{dy}}{\mathrm{M} \sin (\mu \pm \vartheta)} \tag{C8}
\end{equation*}
$$

where the + sign is used for integration along a C_{+}characteristic and the - sign is used for integration along a C _ characteristic. If the interval $A B$ is used as the distance between successive points on the characteristic net (along the appropriate characteristic), it may be assumed that $\rho \mathrm{q} / \mathrm{M} \sin (\mu \pm \vartheta)$ takes the average of the values at points A and B; thus,

$$
\begin{equation*}
\psi_{\mathrm{B}}=\psi_{\mathrm{A}}+\frac{1}{4}\left\{\left[\frac{\rho \mathrm{q}}{\mathrm{M} \sin (\mu \pm \vartheta)}\right]_{\mathrm{A}}+\left[\frac{\rho \mathrm{q}}{\mathrm{M} \sin (\mu \pm \vartheta)}\right]_{\mathrm{B}}\right\}\left(\mathrm{y}_{\mathrm{B}}^{2}-\mathrm{y}_{\mathrm{A}}^{2}\right) \tag{C9}
\end{equation*}
$$

For two-dimensional flows, equation (C9) reduces to the expression

$$
\begin{equation*}
\psi_{\mathrm{B}}=\psi_{\mathrm{A}}+\frac{1}{2}\left\{\left[\frac{\rho \mathrm{q}}{\mathrm{M} \sin (\mu \pm \vartheta)}\right]_{\mathrm{A}}+\left[\frac{\rho \mathrm{q}}{\mathrm{M} \sin (\mu \pm \vartheta)}\right]_{\mathrm{B}}\right\}\left(\mathrm{y}_{\mathrm{B}}-\mathrm{y}_{\mathrm{A}}\right) \tag{C10}
\end{equation*}
$$

The derivation of the stream-function integration procedure along a C_{+}characteristic appeared first in reference 9. For a simple wave region (two-dimensional flow) the integration of equation (C8) takes on a particularly simple form since the integrand becomes constant along either the C_{+}or C_{-}family of characteristics; thus,

$$
\begin{equation*}
\psi_{\mathrm{B}}=\psi_{\mathrm{A}}+\frac{\rho \mathrm{q}}{\mathrm{M} \sin (\mu \pm \vartheta)}\left(\mathrm{y}_{\mathrm{B}}-\mathrm{y}_{\mathrm{A}}\right) \tag{C11}
\end{equation*}
$$

APPENDIX D

derivation Of STreamlines in conical flow field

The construction of streamlines in a conical flow field becomes particularly simple if the integration of mass flow is performed along rays passing through the apex of the cone. Thus, equation (C3) is replaced by

$$
\begin{equation*}
\psi_{\mathrm{r}}=\psi_{\mathrm{x}} \mathrm{x}_{\mathrm{r}}+\psi_{\mathrm{y}} \mathrm{y}_{\mathrm{r}} \tag{D1}
\end{equation*}
$$

where

$$
r=\sqrt{x^{2}+y^{2}}
$$

The derivatives x_{r} and y_{r} are given by

$$
\left.\begin{array}{l}
x_{r}=\cos \theta \tag{D2}\\
y_{r}=\sin \theta
\end{array}\right\}
$$

where Θ is the ray angle. Using equations (C2) and the polar form of the velocity components gives

$$
\left.\begin{array}{c}
\psi_{\mathrm{r}}=\rho \mathrm{qy}(\sin \Theta \cos \vartheta-\cos \Theta \sin \vartheta) \\
\psi_{\mathrm{r}}=\rho \mathrm{qy} \sin (\Theta-\vartheta) \tag{D3}
\end{array}\right\}
$$

Therefore, when equation (D2) is used, the streamline is specified by

$$
\begin{equation*}
\psi=\psi_{\mathrm{A}}+\int_{\mathrm{y}_{\mathrm{A}}}^{\mathrm{y}}\left[\frac{\rho \mathrm{q} \sin (\Theta-\vartheta)}{\sin \Theta}\right] \mathrm{y} d y \tag{D4}
\end{equation*}
$$

Since integration of the mass flux is performed along rays passing through the cone apex, the quantity inside the brackets is constant, and hence

$$
\psi=\psi_{\mathrm{A}}+\left\{\rho(\Theta) \mathrm{q}(\Theta) \frac{\sin [\Theta-\vartheta(\Theta)]}{\sin \Theta}\right\} \frac{1}{2}\left(\mathrm{y}_{\mathrm{B}}^{2}-\mathrm{y}_{\mathrm{A}}^{2}\right)
$$

When $\psi_{A}, y_{A}=0$ with no loss in generality, the stream function becomes a function of y along a specified ray of angle Θ; thus,

$$
\begin{equation*}
\psi=\frac{\rho(\Theta) q(\Theta) \sin [\Theta-\vartheta(\Theta)]}{2 \sin \theta} y^{2} \tag{D5}
\end{equation*}
$$

APPENDIX E

ADDITIVE DRAG AND MASS FLOW SPILLAGE IN CONICAL FLOW FIELD

For a conical flow field, the transition across the shock wave is governed by the oblique shock relations and is followed by a continuous isentropic compression to surface conditions (fig. 19). The capture streamline is established by an integration of the mass flux along successive generatrix rays lying between the cowl lip location (point P in fig. 19) and the shock wave. Derivations of the integral formulas used in this calculation are presented in appendix D. The reference stream-function value (capture streamline) is first established by integration of the mass flux along the generatrix ray $O P$ by using equation (D5); that is,

$$
\begin{equation*}
\psi_{\text {ref }}=\frac{\rho\left(\Theta_{p}\right) q\left(\Theta_{p}\right) \sin \left[\Theta_{p}-\vartheta\left(\Theta_{p}\right)\right]}{2.0 \sin \Theta_{p}} y\left(\Theta_{p}\right)^{2} \tag{E1}
\end{equation*}
$$

Subsequent points along the capture streamline (i.e., points Q, R, and S in fig. 19) are thus obtained from the relation

$$
\begin{equation*}
y(\theta)=\sqrt{\frac{2.0 \psi_{\mathrm{ref}}(\sin \Theta)}{\rho(\Theta) \mathrm{q}(\Theta) \sin [\Theta-\vartheta(\Theta)]}} \tag{E2}
\end{equation*}
$$

When the generatrix ray becomes coincident with the conical shock wave, the capture mass flow is obtained from the equation

$$
\begin{equation*}
\frac{m}{m_{0}}=\frac{\rho_{0} q_{0} y\left(\Theta_{S}\right)^{2}}{\rho_{0} q_{0} y\left(\Theta_{P}\right)^{2}}=\frac{y\left(\Theta_{S}\right)^{2}}{y\left(\Theta_{P}\right)^{2}} \tag{E3}
\end{equation*}
$$

When the notation in figure 19 is used, the additive drag coefficient is defined as

$$
\begin{equation*}
C_{d, a}=-\frac{4}{\gamma p_{0} M_{0}^{2} y\left(\Theta_{P}\right)^{2}} \int_{Y_{P}}^{Y_{S}}\left(p-p_{0}\right) y d y \tag{E4}
\end{equation*}
$$

Equation (E4) may be approximated by the method of numerical integration. Thus, the
additive drag was computed by using the relation

$$
\begin{equation*}
C_{d, a}=-\frac{1}{\gamma M_{0}^{2} y\left(\Theta_{p}\right)^{2}} \sum_{j}\left[\frac{p(j)}{p_{0}}+\frac{p(j+1)}{p_{0}}-2\right]\left[y(j)^{2}-y(j+1)^{2}\right] \tag{E5}
\end{equation*}
$$

where the J-index designates the intersection points of the capture streamline and generatrix rays, starting from the cowl lip position.

APPENDIX F
 COMPUTER PROGRAM FOR DESIGN OF SUPERSONIC INLETS

The required input data are presented for this program so that it may be readily employed. In actuality, there are two main programs, INLET 1 and INLET 3, to assemble the subroutines to arrive at the desired inlet design. The difference between INLET 1 and INLET 3 is the type of forebody configuration desired for the inlet. INLET 1 designs an inlet with a focused isentropic forebody configuration, while INLET 3 assumes a bicone or biramp forebody. The input data required for both of these main programs are the same except for three parameters which are noted. In addition, the computer program contains several options, depending on the type and amount of calculations required. This is made clear in the following outline of the input required for this program.

INPUT VARIABLES AND EXPLANATION

Card	FORTRAN symbol	Card columns	Description and comments
1	AMO	1-12	free-stream Mach number
	GAM	13-24	ratio of specific heats
	THETC	25-36	initial cone or ramp angle, radians
	BETAE	37-48	estimate of cone shock angle, radians
	AMF	49-60	for INLET 1 only: final focal point Mach number for isentropic forebody configuration
	ALPHA	49-60	for INLET 3 only: deflection angle
	DELB	61-72	initial increment used in calculation for cone shock angle; set $\mathrm{DELB}=1.0 \times 10^{-4}$
2	DELU1	1-12	integration increment for conic flow field calculations; set DELU1 $=1.0 \times 10^{-5}$
	ERROR	13-24	convergence parameter; set $E R R O R=1.0 \times 10^{-4}$ for most applications
	COWLA	25-36	initial cowl angle, radians
	THETAP	37-48	for INLET 1 only: location of focal point relative to spike tip (measured in radians)

Card	FORTRAN symbol	Card columns	Description and comments
2	THETAL	$37-48$	for INLET 3 only: location of cowl lip relative to spike tip (measured in radians)
			initial net-point spacing parameter

Both THETAP and THETAL are angular locations relative to the inlet centerline. These parameters are used only when the cowl contour is unspecified. Under this condition, the program always takes the cowl lip radius as 1.

3	FOCUS	1-12	for INLET 1 only: set FOCUS $=0$ to locate the focal point along the initial shock wave; set FOCUS $=1.0$ to locate the focal point at THETAP (In both of these cases, the cowl lip is placed at the focal point.)
	SPILL	1-12	for INLET 3 only: set SPILL $=0$ to locate the cowl along the initial shock wave; set SPILL = 1.0 to locate the cowl at THETAL
	DELP	13-24	parameter which limits the extent of the initial datum line for off-design calculations ($\mathrm{OFF}=1.0$); ratio of angular location of last initial data point to initial shock angle

The program constructs the initial datum line from the point on the surface, BODY (2), to a point in the field whose angular location is DELP times the initial shock angle.

OFF	$25-36$	set OFF $=0$ for on-design calculations; set OFF $=1.0$ to indicate off-design calculations
XCOWL	$37-48$	x-coordinate of cowl lip position
YCOWL	$49-60$	y-coordinate of cowl lip position

The parameters XCOWL and YCOWL are used when a relative shift between the spike tip and cowl lip is desired. Under these conditions, it is recommended that the cowl contours corresponding to the design conditions be used. The program will automatically shift the cowl contour such that the cowl lip is located at XCOWL, YCOWL. If there is no shift, set XCOWL, YCOWL $=0$. If the cowl lip falls outside the region of influence of the previously computed flow field, an error message will be printed out and the calculations terminated. This can be corrected by choosing a different BODY (2) position, which is a dummy point used to start the initial flow field calculations.

Card	FORTRAN symbol	Card columns	Description and comments
3	PRINT	61-72	set PRINT = 0 to bypass the output printout for the forebody flow field calculations; otherwise set PRINT $=1.0$
4	NDIM	1-6	set NDIM $=3$ for axisymmetric flow field calculations; set NDIM = 2 for two-dimensional flow field calculations
	M	7-12	number of initial I-net point spacings for isentropic spike or ramp calculations
	NR	13-18	number of sets of cowl contour coefficients read in as input
	NS	19-24	number of sets of body contour coefficients read in as input
	NTHR	25-30	number of internal isentropic compression sections
	ND	31-36	number of increments in additive drag calculation
	ISHK	37-42	index which specifies at which centerbody contour point BODY (ISHK) a discontinuity occurs for cowl shock cancellation; used with off-design calculations only, i. e. , $\mathrm{OFF}=1.0$; otherwise set ISHK $=1$, indicating no shock cancellation
	NSHK	43-48	number of internal shock waves to be computed; NSHK-1 specifies the number of internal shock reflection points; to cancel cowl lip shock, set NSHK = 1
5	R(I, 1)	1-12	cowl contour is specified by a third-order polynomial of form
	$\mathrm{R}(\mathrm{I}, 2)$	13-24 $\}$	
	$\mathrm{R}(\mathrm{I}, 3)$	25-36	$\mathbf{Y}=R(\mathrm{I}, 1)+\mathrm{R}(\mathrm{I}, 2) \mathrm{X}+\mathrm{R}(\mathrm{I}, 3) \mathrm{X}^{\mathbf{2}}+\mathrm{R}(\mathrm{I}, 4) \mathrm{X}^{\mathbf{3}}$
	$R(I, 4)$ COWL(I) $\mathrm{I}=1, \mathrm{NR}$	$\left.\begin{array}{l} 37-42 \\ 43-54 \end{array}\right\}$	COWL(I) specifies the x -location after which the I-set of coefficients is valid; hence, the I-set of coefficients is valid in the region $\operatorname{COWL}(\mathrm{I}) \leq \mathrm{X}<\operatorname{COWL}(\mathrm{I}+1)$

Card FORTRAN Card Description and comments symbol columns

5

S(I, 1)	1-12	centerbody is specified by equation
S(I, 2)	13-24	$y=S(I, 1)+S(I, 2) X+S(I, 3) X^{2}+S(I, 4) X^{3}$
S(I, 3)	25-36	
S(I, 4)	37-42	valid in the region $\operatorname{BODY}(\mathrm{I}) \leq \mathrm{X}<\operatorname{BODY}(\mathrm{I}+1)$
BODY(I)	43-54	BODY(I) performs the same function as the parameter
$\mathrm{I}=1$, NS		COWL(I)

The coefficients for the $N R^{\text {th }}$ and $N S^{\text {th }}$ set are dummy variables and are set equal to zero, while COWL(NR) and BODY(NR) specify the region in which the (NR-1), (NS-1) set of coefficients are valid. If the cowl and centerbody contours are to be computed, set $\mathrm{NR}=1$ and NS $=1$ and set the coefficients to zero. If a set of coefficients is provided, for example, for the forebody contour, the program will automatically recompute the internal contours for the conditions specified. The following set of cards read in information pertinent to computing the internal cowl and centerbody contours, otherwise they are unnecessary.


```
4 0 4 ~ F O R M A T ~ ( 8 1 6 ) ~
406 FORMAT (SE12.0)
4 0 8 ~ F O R M A T ~ ( 3 E 1 2 . 0 , 1 6 ) ~
5 0 0 ~ F O R M A T ~ ( / / 3 7 X , 4 2 H C H A R A C T E R I S T I C ~ P R O G R A M ~ F O R ~ A ~ B I - R A M P ~ I N L E T / / ) ~
502 FORMAT (//37X,42HCHARACTERISTIC PROGRAM FOR A BI-CONE INLET//)
600 FORMAT (//30X,3HAMO, 10X,5HTHETC, 10X,2HBS, 10X,5HALPHA, 10X,5HCOWLA,
    1//)
602 FORMAT (23x,1P5E14.5)
6 0 4 ~ F O R M A T ~ ( / / 4 2 X , 2 3 H C O W L ~ L O C A T E D ~ A T ~ T H E T A ~ = 1 P E 1 2 . 5 / / ) ~ ( \% )
606 FORMAT (//28X,62HSHIFT IN CENTERBODY COEFFICIENTS DUE TO SHOCK IMF
    IINGMENT POINT//I
608 FORMAT (//40X,6HDELX = 1PF12.5,2X,GHDELY = 1PE12.5//)
610 FORMAT (IH1)
    REG=1.0
    SHIFTX=XCOWL_COWL(1)
    SHIFTY=YCOWL-1.000
        IF (XCOWL .EO. 0.0) SHIFTX=0.0
        IF (YCOWL .EO. O.O) SHIFTY=0.O
        DO 10 I=1,NR
    CALL SHIFT(I,SHIFTX,SHIFTY)
10 CONTINUE
    DO 12 K=1,50
    DO 12 I=1,50
    CALL EOUK(K,I,0.0,0.0,0.0,0.0)
    CALL EOUI(I,0.0,0.0,0.0,0.0)
12 CONTINUE
    CONVP=(1.0+(GAM-1.0)/2.0)**(-GAM/(GAM-1.0))
    CONVD=(1.0+(GAM-1.0)/2.0)**(-1.0/(GAM-1.0))
    SIGSO}=(GAM-1.0)/(GAM+1.0)
    IF (NOIM .GT. 2) GO TO 14
    CALL PSA(AMO,0.0,THETC)
    UC=UK
    VC=VK
    BS=BETAK
    DELC=TAN(THETC)
    DELS=TAN(BS)
    GO TO 16
14 CALL CSA(BETAE)
    Ul=UC
    VI=VC
    DEL1=-1.0/DELC
    16 CALL OSWR(AMO,BS)
    IREV=1
    RECV(1,IREV)=RECOV
    RECV(2.IREV)=RECOV
    FACTR=RFCOV*CONVP
    K=1
    I=1
    SIGN=-1.0
    WRITE (6,610)
    IF (NDIM.GT. 2) GO TO 18
    WRITE (6,500)
    GO TO 20
    18 WRITE (6,502)
    20 WRITE (6,600)
    WRITE (6,602) AMO,THETC,BS,ALPHA,COWLA
    IF (OFF.,EO. O.O) GO TO 26
    XCOWL=COWL(1)
    YCOWL=1.000
    THETAL=ATAN(YCOWL/XCOWL)
```

```
22 WRITE (6,604) THETAL
    DELS=DELP*DELS
24 CALL DUT
    WRITE (6,610)
    IF (ABS(ALPHA) .GT. .0.0) GO TO 30
    IF (ABS(S(1,2)-S(2,2)) .rE. ERROR) GO TO 30
    CALL DRAG(THETAL,1.0,ND)
    DELS=DELP*TAN(BS)
    GO TO 30
26 IF (SPILL.GT. 0.0) GO TO 28
    THETAL=BS
28 CALL DRAG(THETAL,1.0,ND)
30 K=1
    I=1
    S I GN= -1.0
    EXTEND= ISHK
    BODY(ISHK)=EXTEND*BODY(ISHK)
    REG=-1.0
    CALL CONE(K,I,START,ALPHA,SIGN,PRINT)
    IREF=1
    IF (NR .GT. 1) GO TO 32
    XS=X(KREF,IREF)
    YS=Y(KREF,IREF)
    DELSP=TAN(COWLA)
    XP=XS+3.0
    REG=1.0
    CALL R.IJRVE(XS,YS,DELSP,XP,0.0,0.0,1.0,NR)
    NR=NR+1
    GO TO 34
32 IF (ABS(ALPHA) .GT. 0.0) GO TO 34
    IF (OFF .GT. 0.0) GO TO }3
    XCOWL=COWL(1)
    YCOWL=1.000
    DIST = XCOWL-X(KREF,IREF)
    IF (ABS(DIST) .GT. ERROR) GO TO 38
36 CALL EQUK(KREF,IREF,XCOWL,YCOWL,U(KREF,IREF),V(KREF,IREF))
    GO TO 42
34 IF (OFF .EO. 0.0) GO TO 42
38 CALL PUT(XCOWL,YCOWL)
    BOOY(ISHK)=BODY(ISHK)/EXTEND
4 2 ~ D E L T A = C O W L A - A T A N ( V ( K R E F , I R E F ) / U ( K R E F , I R E F ) ) ,
    IF (ABS(DELTA) .LT. 0.010) DELTA=0.0
    IF (DELTA .GT. 0.0) DELTA=0.0
    IF (NSHK .EQ. 0) GO TO }6
    IF (NSHK .GT. 1) GO TO 44
    SETP=OFF
    SETO=OFF
    GO TO 46
4 4 ~ S E T P = 1 . 0 ~
    SETQ=0.0
4 6 ~ C A L L ~ M A T R X ~
    KR=KREF
    IR=IREF
    DO }48\textrm{J}=1\mathrm{ ,NSHK
    SIGN=(-1.0)**(J+1)
    REG=SIGN
    IF (NSHK .EQ. 1) BOOY(ISHK)=BOOY(ISHK)*EXTEND
    CALL SHOCK(KR,IR,DELTA,SIGN,SETP,SETO)
    IF (NSHK .EQ. l) BODY(ISHK)=BODY(ISHK)/EXTEND
    KR=KREF
```

```
    IR=1
    STFR=PSI
    DELTA=-DELA
48 CONTINUE
    IF (NSHK .GT. 1) GO TO 64
    IF (OFF .EQ. 0.0) GO TO 60
    IF (ISHK .EQ. 1) GO TO 56
    XSHK=BCDY(ISHK)
    YSHK=S(ISHK,1)+S(ISHK,2)*XSHK +S(1SHK, 3)*XSHK**2+S(ISHK,4)*xSHK**3
    DELX=X(1,1)-XSHK
    DELY=Y(1,1)-YSHK
    IF (ABS(DELX) .GT. ERROR) GO TO 50
    IF (ABS(DELY) &LT.ERROR) GO TO 56
50 REG=-1.0
    DO 52 I = I SHK,NS
    CALL SHIFT(I,DELX,DELY)
52 CONTINUE
    WRITE (6,610)
    WRITE (6,606)
    WRITE (6,608) DELX,DELY
54 CALL OUT
56 IF (NTHR •EQ. O) GO TO 64
    DO 58 J=1,NTHR
    REG=(-1.0) **(J)
    CALL SHAPE(1,1,REG,1.0,1.0)
58 CONTINUE
    GO TO 66
60 IF (NTHR .EO. O) GO TO }6
    KR=KREF
    IR=IREF
    READ (5,408) (AMT(J),THR(J),ANG(J),NIS(J), J=1,NTHR)
    DO 62 J=1,NTHR
    CALL SURF(KR,IR,NIS(J),AMT(J),THR(J),ANG(J),STFR,1,0)
    KR=KREF
    IR=1
6 2 ~ C O N T ~ I N U E
6 4 ~ W R I T E ~ ( 6 , 6 1 0 ) ~
    CALL OUT
66 GO TU 5
    END
```

\$IBFTC INLETI LIST,REF,DECK,DEBUG

C
CHARACTERISTIC PROGRAM FOR ISENTROPIC RAMP INLET, NDIM=2
CHARACTERISTIC PROGRAM FOR ISENTROPIC SPIKE INLET, NDIM=3
AMO $=$ FREE STREAM MACH NUMBER
GAM=RATIO OF SPECIFIC HEATS
THETC = INITIAL CONE OR RAMP ANGLE (RADIANS)
AMF =EXTERNAL FOCAL POINT MACH NUMBER
COWLA $=$ COWL ANGLE (RADIANS)
THETAP = LCOATION OF FOCAL POINT (RADIANS)
BETAE=ESTIMATE OF CONE SHOCK ANGLE (RADIANS)
R(I,J)=COEFFICIENTS OF COWL CONTOUR SECTIONS
S(I,J)=COEFFICIENTS OF CENTERBODY CONTOUR SECTIONS
COWL (I) =COWL CONTOUR REGIONS
BODY (I) =CENTERBODY CONTOUR REGIONS
DELB = INITIAL INCREMENT FOR CONE SHOCK ANGLE CALCULATION (RADIANS)
DELUl=INTEGRATION INCREMENT IN CONE FIELD CALCULATION
ERROR $=$ CONVERGENCE PARAMETER, SET ERROR $=0.1-3$ FOR MOST APPLICATIONS
SHIFTX $=$ SHIFT IN COWL X-COORDINATE FROM DESIGN POSITION
SHIFTY=SHIFT IN COWL Y-COORDINATE FROM DESIGN POSITION
M=NUMBER OF INITIAL I-NET SPACE
NR=NUMBER OF COWL CONTOUR SECTIONS
NS = NUMBER OF CENTERBODY CONTOUR SECTIONS
NTHR = NUMBER OF ISENTROPIC COMPRESSION SECTIONS
NSHK = NUMBER OF INTERNAL SHOCKS
ND=NUMBER OF INTEGRATIDN INCREMENTS IN ADDITIVE DRAG CALCULATION
ISHK = SHOCK IMPINGMENT POINT ON BODY CONTOUR SECTION
INDEX=K-INDEX TO INCREASE NUMBER OF GRID MESH POINTS
NGRID=NUMBER OF ADDITIONAL GRID SPACINGS
COMMAND PARAMETERS
SET NOIM $=2$ FOR TWU DIMENSIONAL FLOW CALCULATIONS
SET NDIM $=3$ FOR THREE DIMENSIONAL FLOW CALCULATIONS
SET FOCUS $=0.0$ FOR EXTERNAL COMPRESSION TO FOCUS ON SHOCK
SET FUCUS $=1.0$ FOR EXTERNAL COMPRESSION TO FOCUS AT THETAP
SET NSHK = 1 FOR ISENTROPIC INTERNAL COMPRESSION
SET NSHK GREATER THAN 1, ISHK=1, FOR INTERNAL SHOCKS TO REFLECT
SET OFF $=0.0$ FOR ON-DESIGN CALCULATIONS
SET OFF=1.0 FOR OFF-DESIGN CALCULATIONS
COMMON AMO,GAM,THETC,DELB,DELU1,DELU,UC, VC, DELC,BS,DELS, ERROR,
$Q, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$,
$X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O$,
$X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)$,
U1, VI, DELI, DELY,RPRES,RDENS,RECOV, ENTP, NDIM, KREF, IREF,
$X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V$,
REG,R(25,4),S(25,4),COWL(25), BODY(25),NR,NS,ICOWL,IBODY
DIMENSION AMT (10), THR (10), ANG(10), NIS(10)
5 READ $(5,400)$ AMO,GAM, THETC, BETAE, AMF, DELB, DELUL, ERROR,COWLA,
ITHFTAP,START
READ (5,402) FOCUS,DELP,OFF, XCOWL, YCOWL,PRINT
READ $(5,404)$ NDIM, M,NR,NS,NTHR,ND, ISHK,NSHK
$\operatorname{READ}(5,406)((R(I, J), J=1,4), \operatorname{COWL}(I), I=1, N R)$
$\operatorname{READ}(5,406)((S(I, J), J=1,4), \operatorname{BODY}(I), I=1, N S)$
400 FORMAT (6E12.0/5E12.0)
402 FORMAT (6E12.0)

```
404 FORMAT (816)
4 0 6 ~ F O R M A T ~ ( 5 E 1 2 . 0 ) ~
408 FORMAT (3E12.0,I6)
500 FORMAT (//33x,50HCHARACTERISTIC PROGRAM FOR A ISENTROPIC RAMP INLE
    1T//)
5 0 2 ~ F O R M A T ~ ( / / 3 3 X , 5 1 H C H A R A C T E R I S T I C ~ P R O G R A M ~ F O R ~ A ~ I S E N T R O P I C ~ S P I K E ~ I N L ~
    1ET//)
600 FORMAT (//30X,3HAMO,10X,5HTHETC,10X,2HBS,10X,5HCOWLA,10X,3HAMF//)
602 FORMAT (23X,1P5E14.5)
604 FORMAT(//33X,41HISENTROPIC COMPRESSION FOCUSES AT THETA =1PE12.5//
    1)
6 0 6 ~ F O R M A T ~ ( / / 2 8 X , 6 2 H S H I F T ~ I N ~ C E N T E R B O D Y ~ C O E F F I C I E N T S ~ D U E ~ T O ~ S H O C K ~ I M P ~
    IINGMENT POINT//I
608 FORMAT (//40X,6HDELX =1PE12.5,2X,6HDELY = 1PE12.5//)
6l0 FORMAT(lHI)
    SHIFTX=XCOWL-COWL(1)
    SHIFTY=YCOWL-1.000
    IF (XCOWL .EQ. 0.0) SHIFTX=0.0
    IF (YCOWL .EQ. O.O) SHIFTY=0.0
    REG=1.0
    DO 10 I=1,NR
    CALL SHIFT(I,SHIFTX,SHIFTY)
    10 CONTINUE
        DO 12 K=1,50
        DO 12 I=1,50
        CALL EOUK(K,I,0.0,0.0,0.0,0.0)
        CALL EOUI(I,0.0.0.0,0.0,0.0)
    12 CONTINUE
    CONVP=(1.0+(GAM-1.0)/2.0)**(-GAM/(GAM-1.0))
    CONVD=(1.0+(GAM-1.0)/2.0)**(-1.0/(GAM-1.0))
    SIGSO=(GAM-1.0)/(GAM+1.0)
    IF (NDIM.GT. 2) GO TO 14
    CALL PSA(AMO,0.0,THETC)
    UC=UK
    VC=VK
    BS=BETAK
    DELC=TAN(THETC)
    DELS=TAN(BS)
    GO TO 16
    14 CALL CSA(BETAE)
    Ul=UC
    V1=VC
    DEL1=-1.0/DELC
16 CALL OSWR(AMO,BS)
    I REV=1
    RECV(1,IREV)=RECOV
    RECV(2,IREV)=RECOV
    FACTR=RECOV*CONVP
    WRITE (6,610)
    IF (NDIM .GT. 2) GO TO 18
    WRITE (6,500)
    GO TO 20
    18 WRITE (6,502)
    20 WRITE (6,600)
    22 WRITE (6,602) AMO,THETC,BS,COWLA,AMF
    IF (OFF .EO. O.O) GO TO 26
    XCOWL=COWL(1)
    YCOWL=R(1,1)+R(1,2)*XCOWL+R(1,3)*XCOWL**2+R(1,4)*XCOWL**3
    24 CALL OUT
    DELQ=DELP*DELS
```

CALL DATUM(START,DELQ)
GU TO 34
26 IF (FOCUS .GT. 0.0) GO TO 28
THETAP = BS
GO TO 30
28 DELS=TAN(THETAP)
30 WRITE $(6,604)$ THETAP
$K=1$
$\mathrm{I}=1$
$X(K, I)=1.0 / D E L S$
$Y(K, I)=1.0$
CALL DRAG(THETAP, Y(K,I),ND)
CALL SPIKE(K,I,M,START,AMF,1.0,PRINT)
IREF=1
IF (NS .GT. 1) GD TO 32
$X S=X(1,1)$
$Y S=Y(1,1)$
DELSP=V(1,1)/U(1,1)
$X P=X S+3.0$
REG $=-1.0$
CALL CURVE(XS,YS,DELSP, XP, $0.0,0.0,1.0, N S)$
$N S=N S+1$
32 IF (NR .GT. 1) GO TO 34
$X S=X(K R E F, I R E F)$
$Y S=Y(K R E F, I R E F)$
DELSP=TAN(COWLA)
$X P=X S+3.0$
$R E G=1.0$
CALL CURVE(XS,YS,DELSP,XP,0.0,0.0,1.0,NR)
$N R=N R+1$
$34 K R=1$
$I R=1$
REG $=-1.0$
EXTEND = ISHK
BODY (ISHK) $=B O D Y(I S H K) * E X T E N D$
36 CALL SHAPE(KR,IR,-1.0,0.0, PRINT)
IREF=1
IF (OFF .EQ. 0.0) GB TO 42
38 CALL PUT(XCOWL,YCOWL)
$42 \operatorname{BODY}(I S H K)=$ BOUY (ISHK)/EXTEND
DELTA =COWLA-ATAN(V(KREF,IREF)/U(KREF,IREF))
IF (ABS(DELTA) .LT. 0.010) DELTA=0.0
IF (DELTA .GT. 0.0) DELTA=0.0
IF (NSHK •EQ. O) GO TO 64
IF (NSHK .GT. 1) GO TO 44
SETP=OFF
$S E T Q=D F F$
GO TO 46
$44 S E T P=1.0$
$S E T Q=0.0$
46 CALL MATRIX
$K R=K R E F$
$I R=I R E F$
DO $48 \mathrm{~J}=1$, NSHK
SIGN=(-1.0) $* *(\mathrm{~J}+1)$
REG=SIGN
CALL SHOCK (KR,IR,DELTA,SIGN,SETP,SETQ)
$K R=K R E F$
$I R=1$
$S T F R=P S I$

DELTA $=-$ DELA
48 CONTINUE
IF (NSHK .GT. 1) GO TO 64
IF (DFF .EO. 0.0) GO TO 60
IF (ISHK .EQ. 1) GO TO 56
$X S H K=B O D Y(I S H K)$
$Y S H K=S(I S H K, 1)+S(I S H K, 2) * \times S H K+S(I S H K, 3) * \times S H K * * 2+S(I S H K, 4) * \times S H K * * 3$
DELX $=X(1,1)-X S H K$
$D E L Y=Y(1,1)-Y S H K$
IF (ABS (DELX) GT. ERROR) GO TO 50
IF (ABS (DELY) ©LT. ERROR) GO TO 56
50 REG $=-1.0$
DO 52 I=ISHK,NS
CALL SHIFT(I,DELX,DELY)
52 CONTINUE
WRITE $(6,610)$
WRITE $(6,606)$
WRITE $(6,608)$ DELX,DELY
54 CALL OUT
IF (DELX .LT. 0.0) GO TO 56
GO TO 66
56 IF (NTHR •EO. O) GO TO 64
DO $58 \mathrm{~J}=1$, NTHR
REG $=(-1.0) * *(\mathrm{~J})$
CALL SHAPE(1,1,REG,1.0,1.0)
58 CONTINUE
GO TO 66
60 IF (NTHR .EQ. 0) GO TO 64
$K R=K R E F$
$I R=I R E F$
$\operatorname{READ}(5,408)(\operatorname{AMT}(J), \operatorname{THR}(J), \operatorname{ANG}(J), N I S(J), J=1, N T H R)$
DO $62 \mathrm{~J}=1$, NTHR
CALL $\operatorname{SURF}(K R, I R, N I S(J), A M T(J), T H R(J), A N G(J), S T F R, 1.0)$
$K R=K R E F$
$I R=1$
62 CONTINUE
64 WRITE $(6,610)$
CALL OUT
66 GO TO 5
END
\$IBFTC EQUKS LIST,REF,DECK,DEBUG
C
C
EQUIVALENCE SUBROUTINE
C
SUBROUTINE EOUK (KR,IR,XA,YA,UA,VA)
COMMON AMO,GAM,THETC, DELB, DELUL,DELU,UC, VC, DELC, BS,DELS,ERROR, $1 \quad Q, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$, $2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O$, $3 \quad X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)$,
4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF, $5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V$, 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
$X(K R, I R)=X A$
$Y(K R, I R)=Y A$
$U(K R, I R)=U A$
$V(K R, I R)=V A$
IF $(X(K R, I R), E Q .0 .0)$ GO TO 10
CALL CFPR(X(KR,IR),Y(KR,IR),U(KR,IR),V(KR,IR))
10 RETURN
END
\$IBFTC EQUIS LIST,REF,DECK,DEBUG
C
C EOUIVALENCE SUBROUTINE
SUBROUTINE EOUI(IR,XA,YA,UA,VA)
COMMON AMO, GAM, THETC, DELB, DELUI, DELU, UC, VC, DELC, BS, DELS, ERROR,
1
2
3
4
5
6 $0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$, $X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S Q$, $X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), P S I R(50)$, Ul, V1, DELI, DELY,RPRES,RDENS,RLCOV, ENTP, NDIM, KREF, IREF, $X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V$, REG,R(25,4),S(25,4),COWL(25), BODY(25),NR,NS,ICOWL, IBODY
$X B(I R)=X A$
$Y B(I R)=Y A$
$U B(I R)=U A$
$V B(I R)=V A$
IF (XB(IR) .EQ. 0.0) GO TO 10
$C A L L \operatorname{CFPR}(X B(I R), Y B(I R), U B(I R), V B(I R))$
10 RETURN
END

```
$IBFTC CURVES LIST,REF,DECK,DEBUG
C
C ROUTINE FOR CALCULATING COEFFICIENTS OF SURFACE CONTOURS
C
```

```
    SUBROUTINE CURVE (XI,Y1,SLP1,X2,Y2,SLP2,EXP,INDEX)
```

 SUBROUTINE CURVE (XI,Y1,SLP1,X2,Y2,SLP2,EXP,INDEX)
 COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
 COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
 \(1 \quad 0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I\),
 \(1 \quad 0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I\),
 \(2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O\),
 \(2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O\),
 \(X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)\),
 \(X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)\),
 Ul, V1, DELI, DELY,RPRES,RDENS,RECOV, ENTP, NDIM, KREF, IREF,
 Ul, V1, DELI, DELY,RPRES,RDENS,RECOV, ENTP, NDIM, KREF, IREF,
 \(X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V\),
 \(X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V\),
 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
 \(Z=X 2-X 1\)
 \(Z=X 2-X 1\)
 IF (Z .GT. 0.0) GO TO 8
 IF (Z .GT. 0.0) GO TO 8
 \(A O=0.0\)
 \(A O=0.0\)
 \(A 1=0.0\)
 \(A 1=0.0\)
 \(A 2=0.0\)
 \(A 2=0.0\)
 \(A 3=0.0\)
 \(A 3=0.0\)
 GO TO 14
 GO TO 14
 $8 \quad A 0=Y 1$
$8 \quad A 0=Y 1$
$A 1=S L P 1$
$A 1=S L P 1$
$D Y R=S L P 2$
$D Y R=S L P 2$
IF (EXP .EQ. 3.0) GO TO 10
IF (EXP .EQ. 3.0) GO TO 10
IF (EXP .EQ. 2.0) GO TO 12
IF (EXP .EQ. 2.0) GO TO 12
$A 2=0.0$
$A 2=0.0$
$A 3=0.0$
$A 3=0.0$
GO TO 14
GO TO 14
10 FUNl=Y2-Y1-Al*Z
10 FUNl=Y2-Y1-Al*Z
FUN2 $=D Y R-A 1$
FUN2 $=D Y R-A 1$
DELTA $=2 * * 4$
DELTA $=2 * * 4$
A2 $=(3.0 * F U N 1-Z * F U N 2) * Z * * 2 / D E L T A$
A2 $=(3.0 * F U N 1-Z * F U N 2) * Z * * 2 / D E L T A$
A3 $=(2 * F U N 2-2.0 * F U N 1) * Z / D E L T A$
A3 $=(2 * F U N 2-2.0 * F U N 1) * Z / D E L T A$
GO TO 14
GO TO 14
$12 A 2=(D Y R-A 1) /\left(2 \cdot 0^{*} Z\right)$
$12 A 2=(D Y R-A 1) /\left(2 \cdot 0^{*} Z\right)$
$A 3=0.0$
$A 3=0.0$
$14 P O=A O-A 1 * \times 1+A 2 * \times 1 * * 2-A 3 * \times 1 * * 3$
$14 P O=A O-A 1 * \times 1+A 2 * \times 1 * * 2-A 3 * \times 1 * * 3$
$P 1=A 1-2.0 * A 2 * X 1+3.0 * A 3 * X 1 * * 2$
$P 1=A 1-2.0 * A 2 * X 1+3.0 * A 3 * X 1 * * 2$
$P 2=A 2-3.0 * A 3 * X 1$
$P 2=A 2-3.0 * A 3 * X 1$
$P 3=A 3$
$P 3=A 3$
IF (REG.EQ. -1.0) GO TO 18
IF (REG.EQ. -1.0) GO TO 18
$R(I N D E X, 1)=P 0$
$R(I N D E X, 1)=P 0$
R(INDEX, 2) $=P 1$
R(INDEX, 2) $=P 1$
$R(\operatorname{INDEX}, 3)=P 2$
$R(\operatorname{INDEX}, 3)=P 2$
$R(\operatorname{INDEX}, 4)=P 3$
$R(\operatorname{INDEX}, 4)=P 3$
COWL (INDEX) $=\mathrm{X} 1$
COWL (INDEX) $=\mathrm{X} 1$
COWL (INDEX+1 $1=\times 2$
COWL (INDEX+1 $1=\times 2$
DO $16 \mathrm{~J}=1,4$
DO $16 \mathrm{~J}=1,4$
$R(\operatorname{INDEX}+1, \mathrm{~J})=0.0$
$R(\operatorname{INDEX}+1, \mathrm{~J})=0.0$
16 CONTINUE
16 CONTINUE
GO TO 22
GO TO 22
$18 \mathrm{~S}(\mathrm{INDEX}, 1)=\mathrm{P} 0$
$18 \mathrm{~S}(\mathrm{INDEX}, 1)=\mathrm{P} 0$
S(INDEX,2) $=P 1$
S(INDEX,2) $=P 1$
S(INDEX,3) $=$ P2
S(INDEX,3) $=$ P2
S(INDEX,4)=P3
S(INDEX,4)=P3
$\operatorname{BODY}(\operatorname{INDEX})=\mathrm{XI}$
$\operatorname{BODY}(\operatorname{INDEX})=\mathrm{XI}$
BODY (INDEX +1) $=\times 2$
BODY (INDEX +1) $=\times 2$
DO $20 \mathrm{~J}=1,4$
DO $20 \mathrm{~J}=1,4$
$S($ INDEX $+1, j)=0.0$
$S($ INDEX $+1, j)=0.0$
20 CONTINUE
20 CONTINUE
22 RETURN
22 RETURN
END

```
    END
```

```
$IBFTC SHIFS LIST,REF,DECK,DEBUG
C
C
    SUBROUTINE SHIFT(I,DELX,DELY)
    COMMON AMO,GAM,THETC,DELB,DELUl,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
                        XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
                X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
                Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
                XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
                REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
            IF (REG .EQ. -1.0) GO TO 10
            Pl=R(I, l)+DELY-R(I, 2)*DELX+R(I,3)*DELX**2-R(I,4)*DELX**3
                            P2=R(I,2)-2.0*R(I,3)*DELX+3.0*R(I,4)*DELX**2
                            P3=R(I,3)-3.0*R(1,4)*DELX
                            P4=R(I,4)
                            R(I,1)=P1
    R(I,2)=P2
    R(1,3)=P3
    R(I,4)=P4
    COWL(I)=COWL(I)+DELX
    GO TO 12
10 Pl=S(I, 1)+DELY-S(I,2)*DELX+S(I,3)*DELX**2-S(I,4)*DELX**3
    P2=S(I,2)-2.0*S(I,3)*DELX+3.0*S(I,4)*DELX**2
    P3=S(I,3)-3.0*S(1,4)*DELX
    P4=S(I,4)
    S(I,1)=P1
    S(I,2)=P2
    S(I,3)=P3
    S(I,4)=P4
    BODY(I)=BODY(I)+DELX
12 RETURN
    END
$IBFTC OUTR LIST,REF,DECK,DEBUG
C
ROUTINE FOR WRITING DUT TABLE OF CONTOUR COEFFICIENTS
SUBROUTINE DUT
COMMON AMO,GAM,THETC,DELB,DELUI, DELU,UC,VC,DELC,BS,DELS,ERROR, Q, AM, AMU,THETA,A,B,C,D,E,F,G,PRES,DENS, AREA,DYNP,CP,PSI, \(X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S Q\), \(X(50,50), Y(50,50), U(50,50), V(50,50)\), BETA \((50), \operatorname{PSIR}(50)\), Ul, V1, DEL , DELY, RPRES,RDENS, RECOV, ENTP, NDIM, KREF, IREF, \(X B(50), Y B(50), U B(50), V B(50), P(50), \operatorname{RECV}(2,10), F A C T R, I R E V\), REG,R(25,4),S(25,4),COWL(25), BODY(25),NR,NS,ICOWL, IBODY
100 FORMAT (//45X,26HTABLE OF COWL COEFFICIENTS//)
102 FORMAT (//30X,2HR1, \(12 \mathrm{X}, 2 \mathrm{HR} 2,12 \mathrm{X}, 2 \mathrm{HR} 3,12 \mathrm{X}, 2 \mathrm{HR} 4,11 \mathrm{X}, 4 \mathrm{HCOWL} / /\) )
104 FORMAT (23X,1P5E14.5//)
106 FORMAT \((/ / 43 x, 32\) HTABLE OF CENTERBODY COEFFICIENTS//)
108 FORMAT (//30X,2HS1,12X,2HS2,12X,2HS3,12X,2HS4,10X,4HBODY//)
WRITE \((6,100)\)
WRITE \((6,102)\)
DO \(10 \quad 1=1\), NR
WRITE \((6,104)(R(I, K), K=1,4)\), COWL (I)
10 CONTINUE
WRITE \((6,106)\)
WRITE \((6,108)\)
DO \(12 \mathrm{I}=1\), NS
WRITE (6,104) (S(I,K),K=1,4), BODY(I)
12 CONTINUE
RETURN
END
```


\$
 C

C
C

```
        SUBROUTINE FIND(POINT)
        COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,OELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//25X,52HCOWL POINT LIES OUTSIDE RANGE OF INPUT CONTOURS,
    1X =1PE12.5/1)
102 FORMAT (//25X,52HBODY POINT LIES OUTSIDE RANGE OF INPUT CONTOURS,
    1X =1PE12.5//)
    MR=NR-1
    MS=NS-1
    IF (REG .EQ. -1.O) GO TO 18
    REF=COWL(1)-POINT
    IF (REF .GT. 0.0) GO TO 14
    DO 10 I = 1,MR
    REF=COWL(I+1)-POINT
    IF (REF.GT. 0.0) GO TO 12
10 CONTINUE
12 IF (REF .GT. 0.0) GO TO 16
14 WRITE (6,100) POINT
    CALL CFPR(0.0,0.0,0.0,0.0)
    CALL EXIT
16 ICOWL=I
    GO TO 28
18 REF=BOOY(1)-POINT
    IF (REF .GT. O.O) GO TO 24
    DO 20 I= l,MS
    REF=BODY(I+1)-POINT
    IF (REF .GT. 0.0) GO TO 22
20 CONTINUE
22 IF (REF .GI. 0.0) GO TO 26
24 WRITE (6,102) POINT
    CALL CFPR(0.0,0.0,0.0,0.0)
    CALL EXIT
26 I BODY=I
28 RETURN
    END
```

```
$IBFTC CCRAS LIST,REF,DECK,DEBUG
C
C SUBROUTINE FOR STARTING SHOCK SOLUTION
    SUBROUTINE CCRA(KQ,IQ,XP,YP,UP,VP,ANGLE,SIGN)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,Vl,UELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(2.5,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//39X,47HUNABLE TO OBTAIN CONVERGENCE IN SUBROUTINE CCRA//
    1)
102 FORMAT (//32X,4HXREF,10X,4HYREF,10X,3HAMR,11X,4HQREF,9X,6HTHETAR//
    1)
104 FORMAT (28X,1P5E14.5//)
    XREF=XP
    YREF=YP
    DELTA=ANGLE
    CALL CFPR(XP,YP,UP,VP)
    AMP=AM
    THETAP=THETA
    QREF=0
    ITER=0
10 TEST=QREF
    ITER=ITER+1
    CALL PSA(AMP,THETAP,DELTA)
    UREF=UK
    VREF=VK
12 CALL CCRE(XREF,YREF,UREF,VREF,SIGN)
    XJ=XK
    YJ=YK
    UJ=UK
    VJ=VK
    IF (ABS(ANGLE) .LT. 0.001) GO TO 22
14 CALL CCRE(XREF,YREF,UREF,VREF,-SIGN)
    XQ=XK
    YO=YK
    TANQ=VK/UK
    DU=(UJ-U(KQ,IQ))
    DX=(XJ-X(KO,IQ))
    DY=(YJ-Y(KQ,IO))
    DS=SQRT(DX**2+DY**2)
    DUDS = DU/DS
    DELP=XQ-X(KQ,IQ)
    DELQ=YQ-Y(KQ,IQ)
    DELR=SQRT(DELP**2+DELQ**2)
    UQ=U(KO,IO)+DUDS*DELR
    VQ=TANQ*UQ
16 CALL CCRC(XJ,YJ,UJ,VJ,XQ,YQ,UQ,VQ,SIGN)
    XREF=XP
    YREF=YP
    URFF=UK
    VREF=VK
18 CALL CFPR(XREF,YREF,UREF,VREF)
    QREF=0
    DELTA=THETA-THETAP
    IF (ABS(DELTA) -LT. ERROR) DELTA=0.0
    IF (ITER .LT. 25) GO TO 20
```

```
        WRITE (6,100)
        WRITE (6,102)
        CALL CFPR(XREF,YREF,UREF,VREF)
        WRITE (6,104) XREF,YREF,AM,Q,THETA
        CALL EXIT
    IF (ABS(TEST-OREF),.GT. ERROR*QREF) GO TO lo
XK=XREF
YK=YREF
UK=UREF
VK=VREF
RETURN
END
\$IBFTC CCRBS LIST,REF,DECK,DEBUG
C
C SUBROUTINE FOR CALCULATING SHOCK SOLUTION
C
SUBROUTINE CCRB(KQ,IQ,XP,YP,UP,VP,ANGLE,SIGN)
COMMON AMO,GAM,THETC,DELB,DELUl,DELU,UC,VC,DELC,BS,DELS,ERROR, \(0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, \triangle R E A, D Y N P, C P, H S I\),
1
2
3
\(X(50,50), Y(50,50), U(50,50), V(50,50), B E T A(50), \operatorname{PSIR}(50)\),
Ul, Vl, DELI, DFIY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF,
\(5 \quad \mathrm{XB}(50), Y B(50), \mathrm{UB}(50), V B(50), P(50), \operatorname{RECV}(2,10), F A C T R, I R E V\),
6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL, IBODY
100 FORMAT \(1 / / 39 x, 47 H U N A B L E ~ T O ~ O B T A I N ~ C O N V E R G E N C E ~ I N ~ S U B R O U T I N E ~ C C R B / / ~\)
1)
102 FORMAT (//34X,4HXREF,l0X,4HYREF,10X,3HAMR,llX,4HQREF,9X,6HTHETAR// 1)
104 FORMAT (28X.1P5E14.5//)
XREF \(=X P\)
\(Y R E F=Y P\)
\(I P=I Q\)
DELTA=ANGLE
CALL CFPR(XP,YP,UP,VP)
\(A M P=A M\)
THETAP = THETA
QREF=0
ITER=0
10 TEST=QREF
ITER=ITER+1
CALL PSA(AMP,THETAP,DELTA)
UREF=UK
VREF \(=V K\)
CALL CFPR(XREF,SIGN*YREF,UREF,SIGN*VREF)
SLOPE=SIGN*B
12 CALL CCRC(XREF,YREF,UREF,VREF,X(KQ,IQ),Y(KQ,IQ),U(KQ,IQ),
\(1 \quad V(K Q, I Q), S I G N)\)
\(X J=X K\)
\(Y J=Y K\)
UJ=UK
\(V J=V K\)
IF (ABS(ANGLE) •LT. 0.001) GO TO 22
IF ( \((X J-X R E F)\).LT. 0.0) GO TO 22
```

```
    14 CALL BUUNO(KO,l,KQ,IP,XREF,YREF,SLOPE,SIGN)
        XQ=XK
        YQ=YK
        U0=UK
        VQ=VK
        REF=X(KO,IP)-XO
        IF (REF.GE. 0.0) GO TO 16
        IP=IP+I
        GO TO l4
    16 CALL CCRC(XJ,YJ,UJ,VJ,XO,YO,UQ,VO,SIGN)
        XREF=XP
        YREF=YP
        UREF=UK
        VREF=VK
    18 CALL CFPR(XREF,YREF,UREF,VREF)
    QREF=Q
    DELTA=THETA-THETAP
    IF (ABS(DELTA) .LT. ERROR) DELTA=0.0
    IF (ITER .LT. 100) GO TO 20
    WRITE (6,100)
    WRITE (6,102)
    CALL CFPR(XREF,YREF,UREF,VREF)
    WRITE (6,104) XREF,YREF,AM,O,THETA
    CALL OUT
    CALL CFPR(0.0.0.0,0.0,0.0)
    CALL EXIT
    20 IF (ABS(TEST-QREF) •GT. ERROR*QREF) GO TO 10
    22 XK=XREF
        YK=YREF
        UK = UREF
        VK=VREF
        RETURN
        END
        $IBFTC CCRCS LIST,REF,DECK,DEBUG
C
C CONIC CHARACTERISTIC ROUTINE C
    SUBROUTINE CCRC(X2,Y2,U2,V2,X3,Y3,U3,V3,SIGN)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,OYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X (50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    100 FORMAT (//39X,47HUNABLE TO OBTAIN CONVERGENCE IN SUBROUTINE CCRC//
    l)
    ITER=0
    XI=X2
    YI=SIGN*Y2
    UI=U2
    VI=SIGN*V2
    XF=X3
    YF=SIGN*Y3
    UF=U3
    VF=SIGN*V3
```

```
    8 CALL CFPR (XI,YI,UI,VI)
    AI = A
    BI = B
    DI=D
    EI = E
    FI = F
    GI=G
    OI=0
    CALL CFPR(XF,YF,UF,VF)
    AJ = A
    BJ = B
    DJ = D
    EJ = E
    FJ = F
    GJ = G
    OJ=0
    AK = .5*(AI + AJ)
    BK =.5*(BI + BJ)
    DK = .5*(DI + DJ)
    EK =.5*(EI + EJ)
    FK = .5*(FI + FJ)
    GK =.5*(GI + G.I)
    OK=.5*(0I+0J)
10 ITER=1+ITER
    A =.5 * (AI + AK)
    B =.5* (BJ + BK)
    D =.5 * (DI + DK)
    E =.5 * (EJ + EK)
    F=.5*(FI + FK)
    G =.5*(GJ + GK)
    XK=((YF-YI)+A*XI-B*XF)/(A-B)
    YK= YF+B* (XK-XF)
    VK=((UF-UI)+D*VI-E*VF+G*(XK-XF)-F* (XK-XI))/(D-E)
    UK=UF+E*(VK-VF)+G*(XK-XF)
    TEST=QK
    CALL CFPR (XK,YK,UK,VK)
    AK=A
    BK=B
    DK = D
    EK=E
    FK=F
    GK = G
    OK=0
    IF (ITER .LT. 25) GO TO 12
    WRITE (6,100)
    CALL CFPR(0.0,0.0,0.0,0.0)
12 IF (ABS(TEST-OK) .GT. ERROR*OK) GO TO 10
    XK=XK
    YK=SIGN*YK
    UK=UK
    VK=SIGN*VK
14 RETURN
    END
```

```
$IBFTC CCRES LIST,REF,DEBUG
C
C CHARACTERISTIC ROUTINE FUK A CURVED SURFACE
    SUBROUTINE CCRE(X3,Y3,U3,V3,SIGN)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELI,UC,VC,DELC,BS,DELS,ERROR,
                        O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
                        XK,YK,UK,VK, XJ,YJ,UJ,VJ, XA,YA,UA,VA, DELA,BETAK,SIGK,SIGSO,
                        X(50,50),Y(50,50),\(50,50),V(50,50),BETA(50),PSIR(50),
                        Ul,V1,DELI,OELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
                                XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
                                REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBOOY
100 FORMAT (//39X,38HIMPROPER CALCULATION PERFORMED IN CCRE//)
102 FORMAT (//22X,2HP1,12X,2HP2,12X,2HP3,12X,2HP4,12X,2HP5,12X,2HP6//)
104 FORMAT (15X,1P6E14.5//)
106 FORMAT (//48X,7HPOINT =1PE12.5//)
108 FORMAT (//39x,47HUNABLE TO OBTAIN CONVERGENCE IN SUBROUTINE CCRE//
    1)
    ITER=0
    XREF=X3
    XC= X3
    YC=SIGN*Y3
    UC=U3
    VC=SIGN*V3
    CALL CFPR(XC,YC,UC,VC)
    AK=A
    DK=D
    FK=F
    AREF=AK
    UREF=IJC
    VREF=VC
    QREF=0
    POINT=X3
10 ITER=1+ITER
    CALL FIND(XREF)
    IF (REG .GT. 0.0) GO TO 12
    AO=SIGN*S(IBODY,1)
    Al=SIGN*S(IBOOY,2)
    A2=SIGN*S(IBOOY,3)
    A 3=SIGN*S(IBODY,4)
    GO TO 14
    l- AO=SIGN*R(ICOWL, 1)
    Al=SIGN*R(ICOWL,2)
    A2=SIGN*R(ICOWL,3)
    A 3 =SIGN*R(ICOWL,4)
14BO=AO-YC+AREF\divXC
    Bl=A1-AREF
    CALL ROOT3(A3,A2,B1,BO)
    M=0
    DO 16 I= 1,3
    J=2*I-1
    K=2*I
    P(J)=P(J)-POINT
    IF (ABS(P(K)) .GT. ERROR) GO TO 16
    M=M+1
    PSIR(M)=P(J)
16 CONTINUE
    XMIN=10.0
    IF (M .GT. O) GO TO 18
    WRITE (6,100)
```

```
    WRITE (6,106) POINT
    WRITE (6,102)
    WRITE (6,104) (P(I), I=1,6)
    CALL CFPR(0.0,0.0,0.0,0.0)
    CALL EXIT
18 DO 20 I=l,M
    DIST=ABS(PSIR(I))
    XMIN=AMIN1(XMIN,DIST)
20 CONTINUE
    DO 22 I=1,M
    DIST=ABS(PSIR(I))
    IF (DIST .EO. XMIN) GO TO 24
22 CONTINIJE
24 XREF=PSIR(I)+POINT
    YREF=A0+A1*XREF+A2*XREF** 2+A 3*XREF** 3
    CALL CFPR(XREF,YREF,UREF,VREF)
    TEST=0
    DREF=0.5*(DK+U)
    FREF=0.5*(FK+F)
    SLOPE=Al+2.0*A2*XREF+3.0*A3*XREF**2
    UREF=(UC-DREF*VC+FREF*(XREF-XC))/(1.0-DREF*SLOPE)
    VREF=UREF*SLOPE
    CALL CFPR(XREF,YREF,UREF,VREF)
    QREF=0
    AREF=0. 5* (AK+A)
    IF (ITER .LT. 25) GO TO 25
    WRITE (6,108)
    CALL CFPR(0.0,0.0,0.0,0.0)
25 1F (ABS(TEST-QREF) .GT. ERROR*QREF) GO TO 10
    XK=XREF
    YK=SIGN*YREF
    UK=UREF
    VK=SIGN*VREF
26 RETURN
    END
```

 \$IBFTC MATRIX LIST,REF,DECK,DEBUG
 C
C MATRIX INVERSION SUBRDUTINE

SUBRDUTINE MATRX

COMMON AMO,GAM, THETC,DELB,DELUI, DELU,UC, VC, DELC,BS,DELS,ERROR,
1 $X K, Y K, U K, V K, X J, Y J, U J, V \jmath, X A, Y A, U A, V A, D F I A, B E T A K, S I G K, S I G S Q$ $3 \quad X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)$, 4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF, $5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C . T R, I R E V$, 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
DO $12 \mathrm{~K}=1,50$
DO $10 \quad \mathrm{I}=1,50$
IF (I .LE.K) GO TO 10
CALL EOUK (K,I,0.0,0.0,0.0,0.0)
10 CONTINUE

12 CONTINUE
DU $16 \mathrm{~K}=1,50$
U0 $14 \mathrm{I}=1,50$
IF (I .EQ. K) GO TO 16
CALL EOUK (I, $K, X(K, I), Y(K, I), U(K, I), V(K, I))$
14 CONTINUE
16 CONTINUE
DO $20 \mathrm{I}=1,50$
DO $18 \quad K=1,50$
IF (K .LE. I) GO TO 18
CALL EOUK (K, I, 0.0,0.0,0.0,0.0)
18 CONTINUE
20 CONTINUE
RETURN
END
\$IBFTC CORP LIST,REF,DECK,DEBUG
C C CALCULATION OF LOCAL STREAMLINE CONDITIONS

SUBROUTINE CORE(K,I,SIGN)
COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC, VC, DELC,BS,DELS,ERROR,
$1 \quad 0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$,
$2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S Q$
$3 \quad X(50,50), Y(50,50), U(50,50), V(50,50), B E T A(50), P S I R(50)$,
4 Ul,VI, DELI, DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF,
$5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), \operatorname{RECV}(2,10), F A C T R, I R E V$, 6 REG,R(25,4),S(25,4),COWL(25), BODY(25).NR,NS,ICOWL, IBODY
CALL CFPR $(X(K, I), Y(K, I), U(K, I), V(K, I))$

- PRHO=PRES $\mp F A C T R$

THETAR = THETA
10 FACTA $=($ GAM -1.0$) / 2.0$
$F A C T B=(G A M+1.0) / 2.0$
$E X P=-(G A M-1.0) / G A M$
CONVP $=(1.0+F A C T A) \div \%(1 . O / E X P)$
RAVE=FACTR/CONVP
KSIGN=SIGN
$K R E V=(3+K S I G N) / 2$
RATIO=RAVE/RECV(KREV,IREV)
IF (ABS(RATIO-1.000) .LE. ERROR) GO TO 14
PRH $=($ PRHO/RAVE $) * R A T I O$
$A M R S O=((P R H) * * E X P-1.0) / F A C T A$
$Q R S Q=F A C T B * A M R S O /(1.0+F A C T A * A M R S Q)$
$O R=S Q R T(O R S Q)$
$U R=Q R * C O S(T H E T A R)$
$V R=Q R * S I N(T H E T A R)$
CALL EQUK (K,I, X(K,I),Y(K,I),UR,VR)
IF (I .LT. K) GO TO 14
12 CALL EDUI (I, XB(I),YB(I),UR,VR)
14 RETURN
END

```
$IBFTC ROOTE LIST,REF,DECK,DEBUG
C
C
    DETERMINATION OF THE ROOTS OF A CUBIC EQUATION
    SUBROUTINE ROOT3(Z1,Z'2,Z3,Z4)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,OELC,BS,DELS,ERROR,
                O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
                XK,YK,UK,VK,XJ,YJ,UJ,VJ, XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
                X(50,50),Y(50,50),U(50,50),V(50,50), BETA(50),PSIR(50),
                Ul,Vl,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
                XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    DIMENSION AUG(10),ALPHI(10),BETI(10),RG(10)
100 FORMAT (//43x,39HIMPROPER IMPUT DATA TO SUBROUTINE ROOT3//)
102 FORMAT (//42X,2HZ1,12X,2HZ2,12X,2HZ3,12X,2HZ4//)
104 FORMAT (34X,1P4E14.5/f)
    IF (ABS(Z1) &LT. 0.00001) GO TO 26
    R2=22/Z1
    R3=23/21
    R4=24/21
    A=(3.0*R3-R2**2)/3.0
    B=(2.0*R2**3-9.0*R2*R3+27.0*R4)/27.0
    TEST=B**2/4.0+A**3/27.0
    E XAM = - B/2.O
    CHECK=SORT(ABSITEST))
    IF (CHECK .GT. ERROR) GO TO 8
    TEST=0.0
    8 CALL ROOTN(TEST,0.0,2)
    TESTR=P(1)
    TESTI=P(2)
    DO 18 I=1.2
    SIGN=(-1)**(I+1)
    PARTR=EXAM+SIGN*TESTR
    PARTI=SIGN*TESTI
    CALL ROOTN(PARTR,PARTI,3)
    IF (TEST .GT. O.0) GO TO l2
    DO 10 L=1,?
    SIGN=(-1)**(L+1)
    J=2*L-1
    K=2*L
    AUG(J)=P(1)
    AUG(K)=SIGN*P(2)
10 CONTINUE
    gO TO 20
    12 J=2*I-1
    K=2*1
    DO 14 L=1,3
    M=2*L-1
    N=2*L
    IF (ABS(P(N)) .LE.ERROR) GO TO 16
14 CONTINUE
16 AUG(J)=P(M)
    AUG(K)=P(N)
    18 CONTINUE
    20 CALL ROOTN(-3.0,0.0,2)
    DO 22 I=1,3
    J=2*I-1
    K=2%I
    ALPHI(J)=AUG(1)+AlJG(3)
    ALPHI(K)=AUG(2)+AUG(4)
```

```
    BETI(J)=AUG(1)-AUG(3)
    BETI(K)=AUG(2)-AUG(4)
    RG(J)=P(1)
    RG(K)=P(2)
22 CONTINUE
    DO 24 I= 1,3
    J=2*I-1
    K=2* J
    DELI=(I-1)
    DEL2=(I-2)
    DELTA=DEL2/2.0+DEL1-6.0*DEL1*DEL2/4.0
    DELTB=DEL2/2.0
    P(J)=-R2/3.0+DELTA*ALPHI(J)+DELTB*(BETI(J)*RG(J)-BETI (K)*RG(K))
    P(K)=DELTA*ALPHI(K)+DELTB*(BETI (K)*RG(J)+BETI(J)*RG(K))
24 CONTINUE
    GO TO 38
26 IF (ABS(Z2) .LT. 0.00001) GO TO 32
    R 3 = Z3/(2.0*Z2)
    R4=Z4/Z2
    TEST=R3**2-R4
    CALL ROOTN(TEST,0.0,2)
    DO 28 I=l,2
    J=2*I-1
    K=2*I
    RG(J)=P(J)
    RG(K)=P(K)
28 CONTINUE
    DO 30 I= 1,3
    J=2*I-1
    K=2*I
    SIGN=(-1)***(I+1)
    DELI=(I-1)
    DEL2=(I-2)
    DELTA=1.0-DEL1*DEL2/2.0
    P(J)=DELTA*(-R3+SIGN*RG(1))
    P(K)=DELTA*SIGN*RG(2.)
30 CONTINUE
    GO TO 38
32 IF (Z4.EO. 0.0) GO TO 36
    DO 34 I=1,3
    J=2*I-1
    K=2*I
    DELI=(I-1)
    DEL 2=(I-2)
    DELTA=1.0-DEL1+DEL1*DEL2/2.0
    P(J)=-DELTA*(Z4/Z3)
    P(K)=0.0
34 CONTINUE
    GO TO 38
36 WRITE (6,100)
    WRITE (6,102)
    WRITE (6,104) Z1,22,L3,24
    CALL OUT
    CALL EXIT
38 RETURN
    END
```

SUBROUTINE ROOTN(A,B,N)
COMMON AMO, GAM,THETC, DELB, DELUI,DELU,UC, VC, DELC,BS,DELS, ERROR,
$1 \quad 0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$,
$2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O$,
$3 \quad X(50,50), Y(50,50), U(50,50), V(50,50)$, BETA 50$), P S I R(50)$,
$4 \quad U 1, V 1, D E L I, D E L Y, R P R E S, R D E N S, R E C O V, E N T P, N D I M, K R E F, I R E F$,
$5 \quad X B(50), Y B(50), \operatorname{UC}(50), V B(50), P(50), \operatorname{RECV}(2,10), F A C T R, I R E V$,
6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
$P I=3.1415927$
$E N=N$
EXP $=1.0 / \mathrm{EN}$
TEST $=S Q R T(A * * 2+B * * 2)$
IF (TEST .EO. 0.0) GO TÜ 16
$\triangle M A G=T E S T * * E X P$
IF (ABS (A) .GT. 0.0) GO TO 8
$S I G N=B / A B S(B)$
$A M A G=A B S(B) * \neq E X P$
$A U G=S I G N * P I / 2.0$
GO TO 12
8 IF ($\triangle B S(B)$.GT. O.0) GO TO 10
SIGN=A/ABS(A)
$\triangle M A G=\triangle B S(A) * * E X P$
$\Delta U G=(1.0-S I G N) * P I / 2.0$
GO TO 12
10 ANGLE=ATAN(ABS(B/A))
SIGNA $=A / A B S(A)$
SIGNB=B/ABS(B)
IF (A .GT. 0.0) GO TO 11
$A U G=P I-S I G N B * A N G L E$
GO TO 1乏
$11 A U G=(1.0-S I G N B) * P I+S I G N B * A N G L E$
12 DO $14 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{J}=2 * \mathrm{I}-1$
$K=2 * 1$
AUGI = (I-1)
$T A U=E X P *(A U G+2.0 * A U G I * P I)$
$P(J)=A M A G * C O S(T A U)$
$P(K)=A M A G * S I N(T A U)$
14 CONTINUE
GO TO 20
1o DO $18 \quad 1=1, N$
$\mathrm{J}=2 * \mathrm{I}-1$
$K=2 \div I$
$P(J)=0.0$
$P(K)=0.0$
18 CONT INUE
20 RETURN
END

```
$IBFTC CSAR LIST,REF,DECK,DEBUG
C
C SUBROUTINE FOR CALCULATING CONIC SHOCK ANGLE
C
    SUBROUTINE CSA(BETAE)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1
    2
    XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X (50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,Vl,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NOIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    DIMENSION UU(3),VV(3),DEL(3),ABETA(3),TEST(3),DBT(3)
    SIGSQ=(GAM-1.0)/(GAM+1.0)
    00=SORT (AMO**2/(1.0+SIGSQ*(AMO**2-1.0)))
    DELC=TAN(THETC)
10 DO 12 I= 1,3
    SIGN=I-2
    ABETA(I)=BETAE+SIGN*DELB
    Ul=(1.0-SIGSQ)*QO*COS(ABETA(I))**2+1.0/00
    V1=(00-U1)*COS(ABETA(I))/SIN(ABETA(I))
    DELL=V1/(Ul-00)
    CALL CFF(1.0,DELC)
    UU(I)=UA
    VV(I)=VA
    DEL(I)=DELA
    TEST(I)=ABS(VV(I)/UU(I))-ABS(DELC)
    IF (ABS(TEST(I)) .LT. ERROR*ABS(DELC)) GO TO l6
    IF (ABS(DELB) ,EQ. 0.0) GO TO 16
12 CONTINUE
    DO 14 I=1,2
    DBT(I)=(ABETA(I+1)-ABETA(I))/(TEST(I+1)-TEST(I))
14 CONTINUE
    DBDT=(DBT(1)+DBT(2))/2.0
    DELT1=TEST(3)-TEST(1)
    DELT2=TEST(3)-TEST(2)
    D2BDT2=((ABETA(3)-ABETA(2))-DBDT*DELT2)/(DELT1*DELT2)
    DELB=-DBDT*TEST(2)+D2BDT2*TEST(1)*TEST(2)
    BETAE=BETAE+2.0%DELB
    GO TO 10
16OC=SORT(UU(I)**2+VV(I)**2)
    UC=OC*COS(THETC)
    VC=OC*SIN(THETC)
    U1 = UC
    VI = VC
    DELI=-1.0/DELC
    BS=ABETA(I)
    DELS=TAN(BS)
    RETURN
    END
```

```
    $IBFTC CFFR LIST,REF,DECK,DEBUG
    C
    C FIELD CALCULATIUNS IN A CONIC FLOW FIELD
    SUBROUTINE CFF(XP,YP)
    COMMON AMO,GAM,THETC,DELB,DFLUL,DELU,UC,VC,DFLC,BS,DELS,ERROR,
    l O,AM,AMU,THETA,A,B,C,D,F,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,OELA,BETAK,SIGK,SIGSO.
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 UI,V1,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    DELTA=YP/XP
    TEST=ARS(DELTA)-ABS(1.0/DEL1)
    IF (ABS(TEST) .GT. ABS(DELTA)*ERROR) GO TO 10
    UA=Ul
    VA=V1
    DELA=DEL1
    GO TO 16
10 SIGNT=TEST/ABS(TEST)
    UP=U1
    VP=V1
    VUP=DELl
    DELU=SIGNT*DELUI
12 CALL RUNGE(UP,VP,VUP,DELU,SIGSO)
    PEST=TEST
    SIGNP=PEST/ABS(PEST)
    TEST=ABS(DELTA)-ABS(1.0/VUP!
    IF (ABS(TEST) .LT. ABS(DELTA)*ERROR) GO TO 14
    SIGNT=TEST/ABS(TEST)
    IF (SIGNT .EQ. SIGNP) GO TO 12
    VUU=FUNV(UP, VP, VUP,SIGSO)
    DELU=-0.5*((1.0/DELTA)+VUP)/VUU
    IF (DELU .EQ. O.0) GO TO 14
    GO TO 12
14 UA=UP
    VA=VP
    DELA=VUJP
    Ul=UP
    Vl=VP
    DELI=VUP
16 RETURN
    END
    $IBFTC RUNGGK LIST,REF,DECK,DEBUGG
    C
    C RUNGE KUTTA INTEGRATION OF TAYLOR-MACCOLLI EQUATION
    C
    SUBRDUTINE RUNGE(UP,VP,VUP,DU,SIGSQ)
    REAL K1,K2,K3,K4
    Kl=DU*FUNV(UP,VP,VUP,SIGSQ)
    K2=DU*FUNV (UP+DU/2.0,VP+DU/2.0*VUP+K1*DU/8.0,VUP+K1/8.0,S1GSQ)
    K 3=DU*FUNV (UP+DU/2.0,VP+DU/2.0*VUP+K1*DU/8.0,VUP+K2/8.0,SIGSQ)
    K4=DU*FUNV(UP+DU,VP+DU*VUP +K 3*DU/2.0,VUP+K3,SIGSO)
    UP=UP+DU
    VP=VP+DU*(VUP+(K1+K2+K3)/6.0)
    VUP=VUP+(K1+2.0*K2+2.0*K 3+K4)/6.0
    RETURN
    END
```

```
$IBFTC FUNVP LIST,REF,DECK,DFBUG
C
C TAYLOR-MACCOLLI EQUATION
    FUNCTION FUNV(UP,VP,VUP,SIGSQ)
    FUNl=(1.0+VUP**2)
    FUN2 = (1.0-SIGSO)*(UP+VP*VUP)**2
    FUN3=(1.0-SIGSO*(UP**2+VP**2))
    FUNV=(1.0/VP)*(FUN1-FUN2/FUN3)
    RETURN
    END
$IBFTC CFPRS LIST,REF,DECK,DEBUG
C
C COMPRESSIBLE FLOW PARAMETER ROUTINE
C
    SUBROUTINE CFPR (XP,YP,UP,VP)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ, XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 UI,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTD,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//36X,45HCONDITIONS OF SUBSONIC FLOW HAVE BEEN REACHED//I
    102 FORMAT (//39X,38HIMPROPER IMPUT DATA TO SUBROUTINE CFPR//)
    104 FORMAT (//18X,1HX,13X,1HY,13X,1HQ,11X,5HTHETA,11X,1HU,13X,1HV,10X,
    18HMACH NO.//)
106 FORMAT (1HJ)
    108 FORMAT (10X,1P7E14.5//)
    110 FORMAT (//24X,4HXP =1PE12.5,2X,4HYP = 1PE12.5,2X,4HUP = 1PE12.5,2X,
    14HVP =1PE12.5//1
    112 FORMAT (//36X,43HCDMPUTED FLOW FIELD UP TD THE POINT OF EXIT//)
    114 FORMAT (1H1)
        (0)SORT(1+P**2+VP**2)
        AMSO=(1.0-SIGSQ)*0**2/(1.0-SIGSO*0**2)
        IF (AMSO.GT. O.0) GO TO lO
        WRITE (6,102)
        WRITE (6,110) XP,YP,UP,VP
        GO TO 12
```

```
10 AM=SQRT(AMSQ)
    IF (AM .GT. 1.000) GO TO 16
    WRITE (6,100)
    WRITE (6,110) XP,YP,UP,VP
12 CALL OUT
    WRITE (6,114)
    WRITE (6,112)
    WRITE (6,104)
    DO 14 K=1,50
    WRITE (6,106)
    DO 14 I=1,50
    IF (X(K,I) .EQ. O.0) GO TO 14
    IF (I .GT. K) GO TO l4
    0=SQRT(U(K,I)**2+V(K,I)**2)
    AM=SORT((1.0-SIGSQ)*0**2/(1.0-SIGSQ*0**2))
    THETA=ATAN(V(K,I)/U(K,I))
    WRITE (6,108) X(K,I),Y(K,I),0,THETA,U(K,I),V(K,I),AM
14 CONTINUE
    CALL EXIT
16 AMU= ARSIN(1.0/AM)
    THETA= ATAN(VP/IIP)
    C=0/AM
    A= TAN(THETA+AMU)
    B= TAN(THETA-AMU)
    n=-B
    E=-A
    IF (NOIM .GT. 2) GO TO 18
    F=0.0
    G=0.0
    go TO 20
18F=C**2*(VP/YP)/(UP**2-C**2)
    G=F
20 PRES = C**(2.0*GAM/(GAM-1.0))
    DENS = C**(2.0/(GAM-1.0))
    AREA = C**(-2.0/(GAM-1.0))/0
    ENTH=C**2/(GAM-1.0)
    DYNP= DENS*O**2/2.0
    CP = PRES/DYNP
    IF (NDIM .GT. 2) GU TO 22
    PSI=DENS*Q/(AM*SIN(THETA+AMU))
    GO TO 24
22 PSI=DENS*Q/(2.0*AM*SIN(THETA+AMU))
24 RETURN
    END
```

SUBROUTINE BOUND(KA,IA,KB,IB,XC,YC,SIGR,SIGN)
COMMON AMO,GAM,THETC,DELB,DELUI, DELU,UC, VC, DELC,BS,DELS,ERROR, $Q, A M, A M U . T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$, $X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S Q$, $X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50)$, PSIR(50), Ul, VI, DELI, DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF, IREF, $X B(50), Y B(50), U B(50), V B(50), P(50), \operatorname{RECV}(2,10), F A C T R, I R E V$, REG,R(25,4),S(25,4),COWL(25), BODY(25),NR,NS,ICOWL,IBODY
$X P=X(K A, I A)$
$Y P=S I G N * Y(K A, I A)$
$U P=U(K A, I A)$
$V P=S I G N * V(K A, I A)$
$X 0=X(K B, I B)$
$Y Q=S I G N * Y(K B, I B)$
$U Q=U(K B, I B)$
$V Q=S I G N * V(K B, I B)$
$X R=X C$
$Y R=S I G N * Y C$
SLOPE $=$ SIGN*SIGR
CALL CFPR (XP,YP,UP,VP)
$A P=A$
$D P=D$
$F P=F$
CALL CFPR (XQ,YQ,UQ,VQ)
$A R E F=.5 *(A+A P)$
$D R E F=0.5 *(D+D P)$
$F R E F=0.5 *(F+F P)$
SIGMA $=A R E F$
$O X=(X O-X P)$
$D Y=(Y O-Y P)$
IF(ABS(SIGR) •GT. ERROR) GO TO 10
$X K=X R$
$Y K=Y P+S I G M A *(X K-X P)$
GO TO 12
$10 X K=(Y R-Y P+S I G M A * X P-S L O P E * X R) /(S I G M A-S L O P E)$
$Y K=Y R+S L O P E *(X K-X R)$
$12 D S=S O R T(D X * * 2+D Y * * 2)$
$D V=(V O-V P)$
$D V D S=D V / D S$
DELSP $=$ SORT $((X K-X P) * * 2+(Y K-Y P) * * 2)$
$V K P=V P+D V D S * D E L S P$
$U K P=U P+D R E F *(V K P-V P)+F R E F *(X K-X P)$
DELSO $=$ SORT $((X K-X O) * * 2+(Y K-Y Q) * * 2)$
VK $Q=V Q-D V D S * D E L S O$
$U K 0=(J Q+D R E F *(V K Q-V O)+F R E F *(X K-X 0)$
RATIOP $=(D S-D E L S P) / O S$
RATIOO=(DS-DELSO)/DS
$U K=R A T I O P * U K P+R A T I O Q * U K O$
$V K=R A T I O P * V K P+R A T I O Q * V K O$
YK=SIGN*YK
VK=SIGN*VK
RETURN
END

```
$IBFTC CCSRS LIST,REF,OECK,DEBUG
C
C CONIC CHARACTERISTIC SURFACE ROUTINE
    SUBROUTINE CCSR(STFR,STF,XI,YI,UI,VI,XL,YL,UL,VL)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    Ul,Vl,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    CALL CFPR(XI,YI,UI,VI)
    AI=A
    DI=D
    FI=F
    PSII=PSI
    CALL CFPR(XL,YL,UL,VL)
    AL=A
    PSIK=PSI
    A=.5*(AI+AL)
10 PSIAV=.5*(PSII+PSIK)
    IF (NDIM .GT. 2) GO TO 12
    YK=ABS(YI)+(STFR-STF)/PSIAV
    GO TO 14
12 YK=SQRT(YI**2+(STFR-STF)/PSIAV)
14 IF (YI .GT. 0.0) GO TO 16
    YK=-YK
16 XK=XI+(YK-YI)/A
    RATIO=(YK-YI)/(YL-YI)
    UK=UI+RATIO*(UL-UI)
    VK=VI+RATIO*(VL-VI)
    TEST=PSIK
    CALL CFPR(XK,YK,UK,VK)
    PSIK=PSI
    IF (ABS(TEST-PSIK) .GT. ERROR ) GO TO 10
    RETURN
    END
$IBFTC PMERS LIST,REF,DECK,DEBUG
C
C PRANDTL MEYER EXPANSION ROUTINE
    SUBROUTINE PMER(AMP,ANGLE,AMF)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC',DELC,BS,DELS,ERROR,
                        O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
                        XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
                        X(50,50),Y(50,50),U(50,50),V(50,50), BETA(50),PSIR(50),
                        UI,VI,DELI,DELY,RPRES,ROENS,RECOV,ENTP,NDIM,KREF,IREF,
                        XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
                        REG,K(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
        10 AK = SQRT(SIGSQ)
    AMFF= SQRT(AMF**2.0-1.0)
    THETAF= (ATAN(AK*AMFF))/AK-(ATAN(AMFF))
    AMPF= SQRT(AMP**2.0-1.0)
    THETAP= (ATAN(AK*AMPF))/AK-(ATAN(AMPF))
    THETAK = ANGLE + (THETAP-THETAF)
    OK= SQRT(AMF**2/(1.0+SIGSQ*(AMF**2-1.0)))
    UK=QK* COS(THETAK)
    VK= QK*SIN(THETAK)
    RETURN
    END
```

```
SIBFTC INCS LIST,REF,DECK,DEBUG
C
C INITIAL CHARACTERISTIC ROUTINE
C FOR 2 DIMENSIUNS SET DNIM=2
C FOR 3 DIMENSIONS SET DNIM=3
C
    SUBROUTINE INCR(XI,YI)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l
    2
    XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGS
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
        TANT=YI/XI-DELY
    IF (NDIM .GT. 2) GO TO 10
    CALL PSA(AMO,O.0,THETC)
    CALL CFPR(XI,YI,UK,VK)
    XK=(A*XI-YI)/(A-TANT)
    YK=YI+A* (XK-XI)
    GO TO 12
10 DELU=-DELUl
    CALL CFF(XI,YI)
    CALL CFPR(XI,YI,UA,VA)
    XK=(A*XI-YI)/(A-TANT)
    YK=YI+A*(XK-XI)
    CALL CFF(XK,YK)
    UK=UA
    VK=VA
    DELU=-DELUI
12 RETURN
    END
$IBFTC OBSWRS LIST,REF,DECK,DEBUG
C
C oblique shock wave routine
C
    SUBROUTINE OSWR(AMR,BETAR)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
        XK,YK,UK,VK, XJ,YJ,UJ,VJ, XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSO,
        X(50,50),Y(50,50),U(50,50),V(50,50), BETA(50), PSIR(50),
        Ul,VI,DELI,DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF,
        XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
        REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    FAMR = (AMR*SIN(BETAR))**2
    RPRES = (2.0*GAM*FAMR-(GAM-1.0))/(GAM+1.0)
    RDENS = ((GAM+1.0)*FAMR)/((GAM-1.0)*FAMR+2.0)
    RECOV=(RDENS)**(GAM/(GAM-).0) )*(1.0/RPRES)**(1.0/(GAM-1.0))
    IF (RECDV .GT. 0.0) GO TO 10
    ENTP=0.0
    GO TO 5
    10 ENTP=-(GAM-1.0)*ALOG(RECOV)
        5 \text { RETURN}
        END
```

```
$IBFTC PSAS LIST,REF,DECK,DEBUG
C
C Plane shock angle routine
C
    SUBROUTINE PSA(AMP,THETP,ALPHA)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    DIMENSION RG(10),RGI(10)
100 FORMAT (//31X,62HSUBSONIC CONDITIONS BEHIND THE DBLIQUE SHOCK HAVE
    l BEEN REACHED//)
102 FORMAT (//35X,53HTHE SHOCK DETATCHMENT CONDITIONS CAN NOT BE SATIS
    1FIED//)
104 FORMAT (//30X,64HTHE SHOCK REFLECTION CONDITIONS AT THE WALL CAN N
    1OT BE SATISFIED//I
106 FORMAT (//25X,71HTHE POINT OF INCIPIENT SHOCK DETATCHMENT HAS BEEN
    l REACHED, WARNING ONLY//I
108 FORMAT (//45X,37HIMPROPER INPUT DATA TO SUBROUTINE PSA//)
110 FORMAT (//46X,3HAMP,10X,5HTHETP,10X,5HALPHA//)
112 FORMAT (40X,1P3E14.5//)
        SIGSQ = (GAM-1.0)/(GAM+1.0)
        AMPSQ = AMP*AMP
        0= SORT(AMPSQ/(1.0+SIGSO*(AMPSO-1.0)))
        IF (ABS(ALPHA) .GT. 0.00I) GO TO 8
        UK=Q*COS (THETP)
        VK=0*SIN(THETP)
        BETAK=ARSIN(1.0/AMP)+THETP
        SIGK=TAN(THETP)
        GO TO 5
    8 COEFI=-(AMPSQ+2.0)/AMPSO
        COEF2 =-GAM*SIN(ALPHA)**2
        COEF 3=(2.0*AMPSO+1.0)/(AMPSO*AMPSO)
        COEF4=((GAM+1.0)/2.0)**2+(GAM-1.0)/AMPSO
        CDEF5=-COS (ALPHA)**2/(AMPSQ*AMPSO)
        AA=1.0
        BB=COEF1+COEF2
        CC=COEF 3+COEF4*SIN(ALPHA)**2
        DD=COEF5
10 CALL ROOT3(AA,BB,CC,DD)
    DO 12 I=1,3
    J=2*I
    K=J-1
    RG(I)=P(K)
    RGI(I)=P(J
12 CONTINUE
    OO 14 I=1,3
14 IF (ABS(RGI(I)).GT. ERROR) GO TO 16
    GO TO 17
16 WRITE (6,102)
    WRITE (6,104)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    CALL OUT
    CALL EXIT
17 00 18 I= 1,3
18 IF (RG(I).LT.O.) GO TO 20
```

```
    GO TO ?l
20 WRITE (6,108)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    CALL OUT
    CALL EXIT
21 NNR=0
22 DO 24 I=1,3
    IF (RG(I).GT.0.) GO TO 24
    NNR =NNR+1
24 CONTINUE
    IF (NNR .GT. O) GO TO 26
    GO TO 28
26 WRITE (6,108)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    CALL OUT
    CALL EXIT
28 NGR=0
30 DO 32 I=1,3
    IF(ABS(RG(1)-RG(I)).GT.0.) GO TO 32
    NGR=NGR+1
32 CONTINUE
    IF (NGR.EO.1) GO TO 38
    IF (NGR.EO.2) GO TO 34
    IF (NGR.EQ.3) GO TO 36
34 WRITE (6,106)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    GO TO 39
36 WRITE (6,108)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    CALL OUT
    CALL EXIT
38 K=0
    HIGH=0
    DO 40 I=1,3
40 HIGH=AMAXI(HIGH,RG(I))
    DO 42 I= 1,3
    IF (RG(I).EO.HIGH) GO TO 42
    K=K+1
    RG(K)=RG(I)
42 CONTINUE
    SEC=0
    DO 44 K=1,2
44 SEC=AMAXI(SEC,RG(K))
    Z=SQRT(SEC)
    BETAP=ARSIN(Z)
    SINB = SIN(BETAP)
    COSB = COS(BETAP)
    U2 = ((1.0-SIGSO)*Q*COSB**2)+1.0/0
    V2 = ( (0-U2)*COSB)/SINB
    OK = SORT(U2**2 + V2**2)
    ANGLE=THETP+ALPHA
    UK=QK`COS (ANGLE)
    VK=QK %SIN(ANGLE)
    AMK = SORT(((1.0-SIGSQ)*QK**2)/(1.0-SIGSQ*QK**2))
    IF (AMK.LE.1.0) GO TO 46
    GO TO 48
```

```
4 6 ~ W R I T E ~ ( 6 , 1 0 0 )
    WRITE (6,104)
    WRITE (6,110)
    WRITE (6,112) AMP,THETP,ALPHA
    CALL OUI
    CALL EXIT
48 AMUK = ARSIN(1.0/AMK)
    BETAK=BETAP+THETP
    SIGK=TAN(ANGLE)
5 RETURN
    END
```



```
    IF.INDIM .GT. 2) GO TO 14
    CALL PSA(AMO,0.0,THETC)
    UP=UK
    VP=VK
    GD TO 16
14 CALL CFF(XP,YP)
    UP=UA
    VP=VA
16 CALL CFPR(XP,YP,UP,VP)
    PSI = DENS*Q*SIN(TAU-THETA)/SIN(TAU)
    PRHO=FACTR*PRES
    PRPO=PRHO/CONV
    PSIR(I)=PRPO
    WRITE (6,104)
    WRITE (6.106)
    WRITE (6,108) XP,YP,O,THETA,UP,VP,AM,PRHO,PRPO
    IF (NDIM.GT. 2) GO TO 18
    STFR=PSI*YP
    GO 1U 20
18 STFR=PSI*YP**2/2.0
20 SUM=0.0
    DO 36 I=1,ND
    TAU=TAU+DELT
    IF (NDIM .GT. 2) GO TO 22
    UO=UP
    VO=VP
    GO TO 24
22 CALL CFF(YC/TAN(TAU),YC)
    UQ=UA
    VQ=VA
24 CALL CFPR(YC/TAN(TAU),YC,UQ,VQ)
    PSI=DENS*Q*SIN(TAU-THETA)/SIN(TAU)
    IF (NDIM .GT. 2) GO TO 26
    YQ=STFR/PSI
    GO TO 28
26 YO=SORT(2.0*STFR/PSI)
28 XO=YO/TAN(TAU)
    CALL CFPR(XQ,YQ,UQ,VQ)
    PRHO=FACTR*PRES
    PRPO=PRHO/CONV
    PSIR(I+1)=PRPC
    WRITE (6,108) XO,YQ,O,THETA,UQ,VO,AM,PRHO,PRPO
30 PAVE=(PSIR(I+1)+PSIR(I)-2.0)
    IF (NOIM.GT. 2) GO TO 32
    REF=YP-YO
    GO TO }3
32 REF=YP**2-YQ**2
34 PART=CONST*PAVE*REF
    SUM=SUM+PART
    YP=YO
3 6 ~ C O N T I N U E ~
    IF (NDIM .GT. 2) 6O TO 38
    CAPT=YO
    GO TO 40
38 CAPT=YO**2
40 WRITE (6,102) THETAL,CAPT,SUM
    WRITE (6,110)
    DELS=TAN(THETAL)
4 2 ~ R E T U R N
    END
```

 SUBRDUTINE DATUM(START,DELQ)
 COMMON AMO,GAM,THETC, DELB, DELUI, DELU,UC, VC, DELC, BS, DELS, ERROR,
 \(\begin{array}{ll}3 & X(50,50), Y(50,50), U(50,50), V(50,50), B E T A(50), P S I R(50), \\ 4 & U 1, V I, D E L I, D E L Y, R P R E S, R D E N S, R E C O V, E N T P, N D I M, K R E F, I R E F,\end{array}\)
 \(5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V\),
 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL, IBODY
 100 FORMAT (//39X,46HINITIAL NET SPACING PARAMETER (START) TO SMALL//I
$K=1$
$\mathrm{I}=1$
$X R=B O D Y(2)$
$Y R=S(1,1)+S(1,2) * X R+S(1,3) * X R * * 2+S(1,4) * X R * * 3$
CALL EOUK (K, I, XR,YR,UC,VC)
SLOPE =A
$U C R=U C$
$V C R=V C$
$\mathrm{Ul}=\mathrm{UC}$
$\mathrm{Vl}=\mathrm{VC}$
DELI=-1.0/DELC
DELU=DELUI
REF $=S T A R T / 2.0$
KOUT $=0$
DO $18 \mathrm{~K}=1,49$
IF (KOUT .EQ. 1) GO TO 20
IF (K .LT. 49) GO TO 10
WRITE (6,100)
CALL EXIT
10 DIST=START
IF (K .LE. 2) DIST=REF
ANGLE=ATAN(SLOPE)
$X R=X(K, I)+D I S T * C O S(A N G L E)$
$Y R=Y(K, I)+D I S T * S I N(A N G L E)$
TANT $=Y R / X R$
IF (TANT -EQ. DELQ) KDUT=1
IF (TANT .LE. DELO) GO TO 12
$X R=(Y(K, I)-S L O P E * X(K, I)) /(D E L Q-S L O P E)$
$Y R=D E L O * X R$
KOUT=1
12 IF (NDIM .GT. 2) GO TO 14
$U R=U C R$
$V R=V C R$
GO TO 16
14 CALL CFF(XR,YR)
$U R=U A$
$V R=V A$
16 CALL EOUK ($K+1,1, X R, Y R, U R, V R)$
SLOPE=A
18 CONTINUE
20 RETURN
END
\$IBFTC SPIKEI LIST,REF,DECK,DEBUG
CHARACTERISTIC RDUTINE FOR ISENTROPIC RAMP, NDIM=2
CHARACTERISTIC ROUTINE FOR ISENTROPIC SPIKE, NDIM=3
SUBROUTINE SPIKE(KA,IA,M,START, AMF,SIGN,PRINT)
COMMON AMO, GAM, THETC, DELB, DELUI, DELU, UC, VC, DELC, BS, DELS, ERROR,

1
O, AM, AMU, THETA,A,B,C,O,F,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
$X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S O$, $3 \quad X(50,50), Y(50,50), U(50,50), V(50,50), \operatorname{BETA}(50), \operatorname{PSIR}(50)$,
4 U1, VI, DELI, DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF, $5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V$, 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//43X,3OHCONDITIONS ON THE RAMP CONTOUR//)
102 FORMAT (//43x,31HCONDITIONS ON THE SPIKE CONTOUR//)
104 FORMAT (//45x,28HCONDITIONS IN THE FLOW FIELD//)
106 FORMAT $1 / / 8 X, 1 H X, 13 X, 1 H Y, 13 X, 1 H 0,11 X, 5 H T H E T A, 11 X, 1 H U, 13 X, 1 H V, 9 X$,
18 HMACH NO., $8 \mathrm{X}, 4 \mathrm{HP} / \mathrm{HO}, 10 \mathrm{X}, 4 \mathrm{HP} / \mathrm{PO} / /)$
108 FORMAT (1P9E14.5//)
110 FORMAT (1HI)
112 FORMAT (lHJ)
114 FORMAT $1 / / 32 \mathrm{X}, 55 \mathrm{HCALCULATION}$ OF FLOW FIELD PERFORMED IN SUBROUTINE
1 SPIKE//I
116 FORMAT (//35X,46HINITIAL NET SPACING PARAMETER (START) TO SMALL//)
118 FORMAT (//28X,52HPRESSURE RECOVERY (H/HO) ALONG THE CONTOUR SURFAC $1 E=1 P E 12.5 / / 1$
$K=K A$
$I=I A$
CONVR $=(1.0+(G A M-1.0) / 2.0 * A M O * * 2) * *(-G A M /(G A M-1.0))$
IREV=IREV+1
$\operatorname{RECV}(1, I \operatorname{REV})=\operatorname{RECV}(1, I \operatorname{REV}-1)$
$\operatorname{RECV}(2, I R E V)=\operatorname{RECV}(2, \operatorname{IREV}-1)$
IF (NDIM.GT. 2) GO TO 10
CALL PSA(AMO,O.O,THETC)
$U(K, I)=U K$
$V(K, I)=V K$
$U C R=U K$
$V C R=V K$
GO TO 12
10 CALL CFF (X(K, I), Y(K, I))
$U(K, I)=U A$
$V(K, I)=V A$
12 CALL CFPR(X(K,I),Y(K,I),U(K,I),V(K,I))
$A M P=A M$
ANGLE =THETA
PSIR(I) =PSI
SLOPE $=A$
UREF = UC
VREF $=$ VC
DREF=-1.0/DELC
DELU=-DELUI
KOUT $=0$
$S T F R=1.0$
$0022 \mathrm{~K}=1,49$
IF (KOUT •EO. 1) GO TO 24
IF (K .LT. 49) GO TO 14
WRITE $(6,116)$
CALL CFPR (0.0,0.0,0.0,0.0)
14 ALPHA=ATAN(SLOPE)
$X R=X(K, I)-S T A R T * C O S(A L P H A)$

```
    YR=Y(K,I)-START*SIN(ALPHA)
    TANT=YR/XR
    IF (TANT .EO. DELC) KOUT=1
    IF (TANT .GT. DELC) GO TO 16
    XR=(Y(K,I)-SLOPE*X(K,I))/(DELC-SLOPE)
    YR=DFLC*XR
    KOUT=1
16 IF (NDIM .GT. 2) GO TO 18
    UR=UCR
    VR=VCR
    GO TO 20
18Ul=UREF
    VI=VREF
    DELI=DREF
    CALL CFF(XR,YR)
    UR=UA
    VR=VA
    UREF=U1
    VREF=V1
    DREF=DEL l
20 CALL EOUK(K+1,I,XR,YR,UR,VR)
    SLOPE=A
    PSIAV=.5*(PSI+PSIR(I))
    EXP=NDIM-1
    REF=Y(K+l,I)**EXP-Y(K,I)**EXP
    STFR=STFR+PSIAV*REF
    PSIR(I)=PSI
22 CONTINUE
24 KREF=K
    IREF=1
    CALL EQUI(1,X(KREF,1),Y(KREF,1),U(KREF,1),V(KREF,1))
    XM=M
    DELAM=(AMP-AMF)/XM
    AMF= AMP
    MR=M+1
    00 26 I=2,MR
    AMF= AMF-DELAM
    CALL PMER(AMP,ANGLE,AMF)
    CALL EOUK(1,I,X(1,1),Y(1,1),UK,VK)
    CALL CFPR(X(1,I),Y(1,I),(J(1,I),V(1,I))
    PSIR(I)=PSI
26 CONTINUE
    DO 38 I=1,M
    STF=1.0
    DO 36 K=1,KREF
    CALL CCRC(X(K,I+1),Y(K,I+1),U(K,I+1),V(K,I+1),X(K+1,I),Y(K+1,I),
    1U(K+1,I),V(K+1,I),SIGN)
    CALL EOUK (K+1,I+1,XK,YK,UK,VK)
    KREF=K+1
    IREF=I +1
    CALL CFPR(X(K+1,I+1),Y(K+1,I+1),U(K+1,I+1),V(K+1,I+1))
    PSIAV=.5*(PSIR(I+1)+PSI)
    IF (NDIM.GT. 2) GO TO 28
    REF=Y(K+1,I+1)-Y(K,I+1)
    GO TO 30
28 REF=Y(K+1,I+1)**2-Y(K,I+1)**2
30 STF=STF+PSIAV*REF
    PSIR(I+l)=PSI
    IF (STF-STFR) 34,32,36
32 CALL EQUI(I+1,X(K+1,I+1),Y(K+1,I+1),U(K+1,I+1),V(K+1,1+1))
```

GO TO 38
34 CALL CCSR(STFR,STF, $X(K+1, I+1), Y(K+1, I+1), U(K+1, I+1), V(K+1, I+1)$,
$1 X(K, I+1), Y(K, I+1), U(K, I+1), V(K, I+1))$
CALL EQUI (I+1,XK,YK,UK,VK)
GO TO 38
36 CONTINUE
38 CONTINUE
40 CALL EQUK (KREF, IREF, XB(IREF), YB(IREF), UR(IREF), VB(IREF))
WRITE (6,114)
IF (NDIM .GT. 2) GO TO 42
WRITE $(6,100)$
WRITE $(6,118) \operatorname{RECV}(1, \operatorname{IREV})$
WRITE $(6,106)$
GO TO 44
42 WRITE $(6,102)$
WRITE $(6,118)$ RECV(1,IREV)
WRITE $(6,106)$
44 DO $46 \mathrm{I}=1$, IREF
IF (XB(I) .EQ. 0.0) GO TO 46
CALL CFPR(XB(I),YB(I),UB(I),VB(I))
$P R H O=F A C T R * P R E S$
PRPO $=$ PRHO /CONVR
WRITE $(6,108) \times B(I), Y B(I), Q, T H E T A, U B(I), V B(I), A M, P R H O, P R P O$
46 CONTINUE
IF (PRINT .EQ. O.0) GO TO 50
WRITE $(6,110)$
WRITE $(6,104)$
WRITE $(6,106)$
DO $48 \mathrm{~K}=1,50$
WRITE (6,112)
DO $48 \quad \mathrm{I}=1$, IREF
IF $(X(K, I)$.EQ. 0.0$)$ GO TO 48
CALL CFPR $(X(K, I), Y(K, I), U(K, I), V(K, I))$
PRHO=FACTR*PRES
PRPO $=$ PRHO/CONVR
WRITE $(6,108) X(K, I), Y(K, I), Q, T H E T A, U(K, I), V(K, I), A M, P R H O, P R P O$
48 CONTINUE
$50 K R=K R E F+1$
$I R=I R E F-1$
DO $54 \mathrm{~K}=1,50$
DO $54 \quad 1=1,50$
IF (K .GT. KR) GO TO 52
IF (I .GT. IR) GO TO 54
52 CALL EOUK (K, I, 0.0,0.0,0.0,0.0)
CALL EQUI (I, 0.0,0.0,0.0,0.0)
54 CONTINUE
$K R=K R E F+1$
DO $56 K=K R, 50$
CALL EOUK (K,IREF,0.0,0.0,0.0,0.0)
56 CONTINUE
DO $58 \mathrm{~K}=1$, KREF
$K R=(K R E F+1)-K$
CALL EOUK (K, I, X (KR,IREF),Y(KR,IREF),U(KR,IREF),V(KR,IREF))
CALL EOUK (KR,IREF,0.0,0.0,0.0,0.0'
58 CONT INUE
RETURN
END

```
$IBFTC CONER
                LIST,REF,DECK,DEBUG
C
C SUBROUTINE FOR CALCULATING THE C-NET BEHIND A SHOCK
C
    SUBROUTINE CONE(KA,IA,START,ALPHA,SIGN,PRINT)
    COMMON AMO,GAM,THETC,DELB,DELU1,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,.
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//38X,47HCONDITIONS IN THE VICINITY OF THE OBLIQUE SHOCK//
    1)
102 FORMAT (//18X,8HTAN(Y/X),6X,8HMACH NO.,8X,5HTHETA,9X,4HBETA,10X,
    13HDEL,10X,5HP2/P1,10X,5HH2/H1//1
104 FORMAT (14X,1P7E14.5//)
106 FORMAT (//43X,3OHCONDITIONS ON THE RAMP CONTOUR//)
108 FORMAT (//43x,31HCONDITIONS ON THE SPIKE CONTOUR//)
110 FORMAT (//45X,28HCONDITIONS IN THE FLOW FIELD//&
112 FORMAT (//8X,1HX,13X,1HY,13X,1HQ,11X,5HTHETA,11X,1HU,13X,1HV,9X,
    18HMACH NO., 8X,4HP/HO, 10X,4HP/PO//)
114 FORMAT (1P9E14.5//)
116 FORMAT (1HI)
118 FORMAT (1HJ)
120 FORMAT (//35X,54HCALCULATION OF FLOW FIELD PERFORMED IN SUBROUTINE
    l CDNE//)
122 FORMAT (//28X,52HPRESSURE KLCUVERY (H/HO) \triangleLUNG THE CONTOUR SURFAC
    1E =1PE12.5//1
124 FORMAT (//39X,46HINITIAL NET SPACING PARAMETER (START) TO SMALL//)
    K=KA
    I= I A
    KSIGN=SIGN
    CONVR=(1.0+(GAM-1.0)/2.0*AMO**2)**(-GAM/(GAM-1.0))
    SUMR=0.0
    SUMY=0.0
    DELTA=ALPHA
    FACTP=FACTR
    CALL CFPR(1.0,DELC,UC,VC)
    AMR=AM
    THETAR=THETA
    DELP=TAN(THETAR+ALPHA)
    NREF=NS
    IF (NS .GT. 1) GO TO 10
    X(K,I)=1.0
    Y(K,I)=DELC
    CALL CURVE(0.0.0.0,DELC,X(K,I),0.0,0.0,1.0,NS)
    NS =NS+1
    XP=X(K,I)+6.0
    CALL CURVE(X(K,I),Y(K,I),DELP,XP,0.0,0.0,1.0,NS)
    NS =NS+1
    10 XS=BODY(2)
    YS=S(2,1)+S(2,2)*XS+S (2,3)*XS**2+S (2,4)*XS** 3
    CALL PSA(AMR,THETC,DELTA)
    CALL EOUK (K,I,XS,YS,UK,VK)
    CALL EOUI(I,XS,YS,UK,VK)
    BETA(K)=BETAK
    SLOPE=TAN(BETA(K))
    BETAR=BETA(K)-THETAR
    CALL OSWR(AMR,BETAR)
```

```
    KREV=(3+KSIGN)/2
    IREV=I REV+1
    RECV(KRFV,IREV)=RECV(KREV,IREV-I)*RECOV
    RAVE=RECOV
    RECVI=RECOV
    FACTR=FACTP*RAVE
    WRITE (6,120)
    WRITE (6,122) RECV(KREV,IREV-1)
    WRITE (6,100)
    WRITE (6,102)
    WRITE (6,104) DELC,AMR,THETAR,BFTAR,DELTA,RPRES,RECOV
    UREF=UC
    VREF=VC
    DREF=-1.0/DELC
    DELU=DELUl
    UCR=UC
    VCR=VC
    KREV=(3-KSIGN)/2
    REF=START/2.0
    KOUT=0
    EXP=NDIM-1
    DO 32 K=1,49
    IF (KOUT .EO. l) GO TO 33
    IF (K .LT. 49) GO TO l2
    WRITE (6,124)
    CALL EXIT
12 DIST=START
    IF (K -LE. 2) DIST=REF
    ANGLE=ATAN(SLOPE)
    XR=X(K,l)+DIST*COS(ANGLE)
    YR=Y(K,l)+DIST*SIN(ANGLE)
    TANT = YR/XR
    IF (TANT .EQ. DELS) KOUT=1
    IF (TANT .LE. DELS) GU TO 14
    XR=(Y(K,l)-SLOPE*X(K,l))/(DELS-SLOPE)
    YR=DELS*XR
    TANT=YR/XR
    KOUT=1
14 IF (NDIM.GT. 2) GO TO 16
    UR = UCR
    VR=VCR
    GO TO 18
16 Ul=UREF
    Vl=VREF
    DELI=DREF
    DELU=DELUI
    CALL CFF(XR,YR)
    UR=UA
    VR=VA
    UREF=U1
    VREF=V1
    DREF=DELI
18 CALL CFPR(XR,YR,UR,VR)
    AMR=AM
    THETAR=THETA
20 IF (K .GT. l) GO TO 22
    CALL CCRA(K,1,XR,YR,UR,VR,DELTA,SIGN)
    CALL EOUJ(K+1,1,XK,YK,UK,VK)
    CALL EOUK(K+1,2,XJ,YJ,UJ,VJ)
    CALL EOUI(2,XJ,YJ,UJ,VJ)
```

```
    BETA(K+1)= BETAK
    SLOPE=TAN(BETA(K+1))
    BETAR=BETA (K+1)-THETAR
    DELTA=ATAN(V(K+1,1)/U(K+1,1))-THETAR
    IF (ABS(DELTA) .LE. ERROR) DELTA=0.0
    CALL OSWR(AMR,BETAR)
    RECV(KREV,IREV)=RECV(KREV,IREV-1)*RECOV
    RBAR=(RECOV+RECV1)/2.0
    YBAR=Y(K+1,1)**EXP-Y(K,1)**EXP
    SUMR = SUMR + RBAR*YBAR
    SUMY = SUMY + YBAR
    RAVE=SUMR/SUMY
    RECVI=RECOV
    FACTR=FACTP*RAVE
    WRITE (6,104) TANT,AMR,THETAR,BETAR,DELTA,RPRES,RECOV
    CALL CORE(K+1,2,SIGN)
    GO TO 32
22 DO 24 J=2,50
    IF (X(K,J) .EO. 0.0) GO TO 24
    CALL CCRB(K,J,XR,YR,IJR,VR,OELTA,SIGN)
    TEST=(XJ-XK)/ABS(XJ-XK)
    IF (TEST .GT. 0.0) GO TO 26
24 CONTINUE
26 CALL EOUK(K+1,1,XK,YK,UK,VK)
    CALL EOUK (K+1,J,XJ,YJ,UJ,VJ)
    BETA (K+1)=BETAK
    SLOPE=TAN(BETA(K+l))
    BETAR=BETA (K+1)-THETAR
    DELTA=ATAN(V(K+1,1)/U(K+1,1))-THETAR
    IF (ABS(DELTA) .LE. ERROR) DELTA=0.0
    CALL OSWR(AMR,BETAR)
    RECV(KREV,IREV)=RECV(KREV,IREV-1)*RECOV
    RBAR=(RECOV+RECV1)/2.0
    YBAR=Y(K+l,l)**EXP-Y(K,l)**EXP
    SUMR =SUMR+RBAR*YRAR
    SUMY =SUMY +YBAR
    RAVE=SUMR/SUMY
    RECVI=RECDV
    FACTR=FACTP*RAVE
    WRITE (6,104) TANT,AMR,THETAR,BETAR,DELTA,RPRES,RECOV
    DO 28 I=J,50
    IF (X(K,I+1) .EQ. O.0) GO TO 30
    CALL CCRC(X(K,I+1),Y(K,I+1),U(K,I+1),V(K,I+1),X(K+1,I),Y(K+1,I),
    1 U(K+1,I),V(K+1,I),-SIGN)
    CALL EOUK (K+1,I+1,XK,YK,UK,VK)
28 CONTINUE
30 CALL CCRE(X(K+1,I),Y(K+1,I),U(K+1,I),V(K+1,I),SIGN)
    CALL EOUK(K+1,I+1,XK,YK,UK,VK)
    CALL EQUI(I+1,XK,YK,UK,VK)
    CALL CORE(K+1,I+1.SIGN)
32 CONTINUE
33 KREF=K
    IREF=KREF
    IF (NREF .GT. l) GO TO 38
    NS = NREF
    RATIO=1.0/Y(KREF,1)
    DO 34 I=1,50
    CALL EOUI(I,RATIO*XB(I),RATIO*YB(I),UB(I),VB(I))
    DO 34 K=1,50
    IF (X(K,I) .EQ. 0.0) GO TO }3
```

CALL EQUK (K,I,RATIO*X(K,I),RATIO*Y(K,I),U(K,I),V(K,I))
34 CONTINUE
CALL CURVE $0.0,0.0, \operatorname{DELC}, \times(1,1), 0.0,0.0,1.0, N S)$
$N S=N S+1$
$X P=X(K R E F, I R E F)+3.0$
36 CALL CURVE $X(1,1), Y(1,1), V(1,1) / U(1,1), X P, 0.0,0.0,1,0, N S)$
$N S=N S+1$
38 WRITE (6,116)
40 IF (NDIM.GT. 2) GO TO 42
WRITE $(6,106)$
WRITE (6,112)
GO TO 44
42 WRITE $(6,108)$
KREV $=(3+K S I G N) / \angle$
WRITE $(6,122)$ RECV (KREV,IREV)
WRITE $(6,112)$
$440048 \quad \mathrm{I}=1,50$
IF (XB(I) .EQ. 0.0) GU 1048
46 CALL CFPR(XB(I), YB(I),IIR(I), VB(I))
PRHO =FACTR*PRES
PRPO=PRHO/CONVR
WRITE (6,114) XB(I),YB(I), Q,THETA,UB(I),VB(I),AM,PRHO,PRPO
48 CONTINUE
IF (PRINT .EQ. 0.0) GO TO 54
WRITE $(6,116)$
WRITE $(6,110)$
WRITE $(6,112)$
50 DO $52 \mathrm{~K}=1,50$
WRITE $(6,118)$
DO $52 \quad \mathrm{I}=1,50$
IF $(X(K, I)$.EQ. 0.0$)$ GO TO 52
IF (I .GT. K) GO TO 52
CALL CFPR (X(K,I),Y(K,I),U(K,I),V(K,I))
$P R H O=F A C T R * P R E S$
PRPO = PRHO/CONVR
WRITE (6,114) $X(K, I), Y(K, I), Q, T H E T A, U(K, I), V(K, I), A M, P R H O, P R P O$
52 CONTINUE
54 RETURN
ENL

```
$IBFTC PUTS
                LIST,REF,DECK,DEBUG
C
C SUBROUTINE FOR LOCATING THE COWL CONDITIONS
C
    SUBROUTINE PUT(XCOWL,YCOWL)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l
    2
    XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSO
    3 X(50,50),Y(50,50),U(50,50),V(50,50), BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//25X,57HCOWL LIP POINT LIES OUTSIDE REGION OF FLOW FIELD,
    1 XCOWL =1PE12.5,2X,7HYCOWL =1PE12.5//)
    DO 10 K=1,50
    IF (X(K,1) .EQ. 0.0) GO TO 12
10 CONTINUE
12KP=K-1
    DIST=Y(KP,1)-YCOWL
    IF (DIST .GE. O.0) GO TO 14
    WRITE (6,100) XCOWL,YCOWL
    CALL CFPR(0.0,0.0,0.0,0.0)
14 DO 16 I=1,KP
    IF (X(KP,I) .EQ. O.O) GO TO 16
    DIST=X(KP,I)-XCOWL
    IF (DIST .GE. O.O) GO TO 18
16 CONTINUE
    WRITE (6,100) XCOWL,YCOWL
    CALL. CFPR(0.0,0.0,0.0,0.0)
18 RMIN=10.0
    DO 20 K=1,50
    DO 20 I=1,50
    IF (X(K,I) .EQ. 0.0) GO TO 20
    DELX=X(K,I)-XCOWL
    DELY=Y(K,I)-YCOWL
    RADIUS=SQRT(DELX**2+DELY**2)
    RMIN=AMIN1(RADIUS,RMIN)
20 CONTINUE
    00 22 K=1,50
    00 22 I=1,50
    IF (X(K,I) .EQ. 0.0) GO TO 22
    DELX }=X(K,I)-XCOW
    DELY=Y(K,I)-YCOWL
    RADIUS=SQRT(DELX**2+OELY**2)
    IF (RADIUS .EQ. RMIN) GO TO 24
22 CONTINUE
24 IF (ABS(RADIUS) .GT. ERROR) GO TO 26
    KREF=KP
    IREF=IP
    GO TO 38
26 KP=K
    IP=I
    KREF=K+1
    CALL CFPR(X(KP,IP),Y(KP,IP),U(KP,IP),V(KP,IP))
    TANA=A
    TANB=B
    DO 28 J=1,2
    KSIGN=(-1)**(J+1)
    SIGN=(-1)**(J+1)
    KREP=KP+KSIGN
```

```
        IF (X(KREP,IP) .EQ. O.0) GO TO 28
    CALL BOUND(KP,IP,KREP,IP,XCOWL,YCOWL,TANB,1.0)
    TEST=(XK-X(KP,IP))/ABS(XK-X(KP,IP))
    IF (TEST .EQ. SIGN) GO TO 30
28 CONTINUE
30 XI=XK
    YI=YK
    UI=UK
    VI=VK
    DO 34 J=1,2
    IREP=I P
    IS I GN=(-1) 率(J+1)
    IF (IP .EO. l) ISIGN=1
    SIGN=ISIGN
31 IREP=IREP+ISIGN
    IF (X(KP,IREP) .GT. 0.0) GO TO 32
    GO TO 31
32 CALL BOUND(KP,IP,KP,IREP,XCOWL,YCOWL,TANA,-1.0)
    TEST=(XK-X(KP,IP))/ABS(XK-X(KP,IP))
    IF (TEST .EQ. SIGN) GO TO 36
34 CONTINUE
36 CALL CCRC(XK,YK,UK,VK,XI,YI,UI,VI,1.0)
    KREF=KP
    IREF=IP
    CALL EOUK(KREF,IREF,XCOWL,YCOWL,UK,VK)
38 RETURN
    END
$IBFTC SHAPS LIST,REF,DECK,DEBUG
C
C CHARACTERISTIC FIELD FOR THE BOUNDARY Y=AO+Al*Z +A 2*Z**2+A 3*Z** 3
C
    Subroutine Shape(KA,IA,SIGN,SET,PRINT)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50).
    4 Ul,V1,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50), RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//30X,3OHCOALESCENCE HAS OCCURED AT X =1PEI2.5,2X,3HY = IPE
    112.5//)
102 FORMAT (//43x,33HCONDITIONS ON THE CONTOUR SURFACE//)
104 FORMAT (//45x,28HCONDITIONS IN THE FLOW FIELD//)
106 FORMAT (//8X,1HX,13X,1HY,13X,1H0,11X,5HTHETA,11X,1HU,13X,1HV,9X,
    18HMACH NO.,8X,4HP/HO,10X,4HP/PO//I
108 FORMAT (lP9El4.5//)
110 FORMAT (1HI)
112 FORMAT (1HJ)
114 FORMAT (//33X,55HCALCULATION OF FLOW FIELD PERFORMED IN SUBROUTINE
    1 SHAPE///
```

```
116 FORMAT (//28X,52HPRESSURE RECOVERY (H/HO) ALONG IHE CONTOUR SURFAC
    lE =1PE12.5//1
        WRITE (6,110)
        WRITE (6,114)
        CONVR=(1.0+(GAM-1.0)/2.0*AMO**2)**(-GAM/(GAM-1.0))
        KSIGN=SIGN
        IREV=IREV+1
        RECV(1,IREV)=RECV(1,IREV-1)
        RECV(2,IREV)=RECV(2,IREV-1)
12 K=KA
        I=IA
        CALL EQUI(I,X(K,I),Y(K,I),U(K,I),V(K,I))
        KREF=KA
        IR=IA+1
        DO 30 I=IR,40
        KREF=KREF+1
    K=KREF
    LP=I-1
    DO 14 L=1,LP
    J=I-L
    IF (X(K,J) .GT. 0.0) GO TO 16
14 CONTINUE
    GO TO 32
16 CALL CCRE(X(K,J),Y(K,J),U(K,J),V(K,J),SIGN)
    CALL EQUK(K,K,XK,YK,UK,VK)
    CALL EOUI(K,XK,YK,UK,VK)
    IREF=1
    DO 28 K=KREF,50
    JR=I-IA
    DO 18 J=1,JR
    IPT=I-J
    IF (X(K+1,IPT) .GT. 0.0) GO TO 20
18 CONTINUE
    GO TO 30
20 TEST=x(K+1,IPT)-x(K,IPT)
    IF (ABS(TEST) .GT. 0.0) GO TO 22
    CALL EOUK(K+1,I,X(K,I),Y(K,I),U(K,I),V(K,I))
    GU 1U<4
22 CALL CCRC(X(K+1,IPT),Y(K+1,IPT),U(K+1,IPT),V(K+1,IPT),
    1 X(K,I),Y(K,I),U(K,I),V(K,I),SIGN)
    CALL EOUK(K+1,I,XK,YK,UK,VK)
    RAOII = X (K+1,I)-X(K,I)
    IF (RADII .GT. 0.0) GO TO 24
    WRITE (6,100) X(K+1,I),Y(K+1,1)
    IF (K .EQ. I) GO TO 30
    CALL EOUK (K,I,X(K+1,I),Y(K+1,I),U(K+1,I),V(K+1,I))
24 RADIUS = X (K+1,I) -X(K+1,IPT)
    IF (RADIUS .GT. 0.0) GO TO 28
    WRITE (6,100) X(K+1,I),Y(K+1,I)
    IF (IPT.EO. IA) GO TO 30
    KF=K+1
    DO 26 JPT=KF,50
    CALL EOUK(JPT,IPT,0.0,0.0,0.0,0.0)
26 CONTINUE
28 CONTINUE
```

```
30 CONT INUE
32 WRITE (6,102)
    KREV=(3+KSIGN)/2
    WRITE (6,116) RECV(KREV,IREV)
    WRITE (6,106)
    DO 34 I=1,50
    IF (XB(I) .EO. 0.0) GO TO 34
    CALL CFPRR(XB(I),YB(I),UB(I),VB(I))
    PRHO=FACTR*PRES
    PRPO=PRHO/CONVR
    WRITE (6,108) XB(I),YB{I},Q,THETA,UB(I),VB(I),AM,PRHO,PRPO
34 CONTINUE
    IF (PRINT .EO. 0.0) GO TO 37
    WRITE (6,110)
    WRITE (6,104)
    WRITE (6,106)
    DO 36 K=1,KREF
    WRITE (6,112)
    DO 36 I =1,50
    IF (X(K,I) .EQ. O.0) GO TO 36
    IF (I .GT. K) GO TO 36
    CALL CFPR(X(K,I),Y(K,I),U(K,I),V(K,I))
    PRHO=FACTR*PRES
    PRPO=PRHO/CONVR
    WRITE (6,108) X(K,I),Y(K,I),0,THETA,U(K,I),V(K,I),AM,PRHO;PRPO
36 CONTINUE
37 DO 38 K=KA,50
    IF (X(K,IA) .EQ. O.0) GO TO 40
38 CONTINUE
40 KREF=K-1
    IF (SET .EQ. 0.0) GO TO 56
    KP=KREF
    IP=1
    CALL MATRX
    CALL ENDS(KP,1,-SIGN)
    KREF=KP
    IREF=IP
    CALL EOUK(KREF,KREF,XB(KREF),YB(KREF),UB(KREF),VB(KREF))
    K=0
    DO 46 J=1,50
    IF (X(J,KREF) .EQ. 0.0) GO TO 46
    K=K+1
    CALL EQUK(K,1,X(J,KREF),Y(J,KREF),U(J,KREF),V(J,KREF))
4 6 ~ C O N T I N U E ~
48 KREF=K
    DO 50 K=1,50
    DO 50 I=2,50
    CALL EOUK(K,I,0.0,0.0,0.U,0.0)
50 CONTINUE
    CALL EQUI(1,X(1,1),Y(1,1),U(1, 1),V(1, 1))
    DO 52 I=2,50
    CALL EOUI(I,0.0,0.0,0.0,0.0)
5 2 ~ C O N T I N U E ~
5 6 ~ R E T U R N
    END
```

```
$IBFTC SKOCKS LIST,REF,DECK.DEBUG
C
C SUBROUTINE FOR CALCULATING THE C-NET BEHIND A SHOCK
FOR INTERNAL ISEN. COMP. ON DESIGN SETP=0.0,SETO=0.0
    FOR INTERNAL ISEN. COMP. OFF DESIGN SETP=1.0,SETO=1.0
    FOR INTERNAL REFLCT. SHOCK ON DFSIGN SETP=1.0,SETQ=0.0
    FOR INTERNAL REFLCT. SHOCK OFF DESIGN SETP=1.0,SETQ=0.0
    SUBROUTINE SHOCK(KA,IA,DELTA,SIGN,SETP,SETQ)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//38X,47HCONDITIONS IN THE VICINITY OF THE OBLIOUE SHOCK//
    1)
102 FORMAT (//15X,1HX,12X,1HY, 10X,8HMACH NO.,8X,5HTHETA,9X,4HBETA,10X,
    13HDEL,10X,5HP2/P1,10X,5HH2/H1//)
104 FORMAT (7X,1P8E14.5//)
106 FORMAT (//8X,1HX,13X,1HY,13X,1H0,11X,5HTHETA,11X,1HU,13X,1HV,9X,
    18HMACH NO., 8X,4HP/HO, 10X,4HP/PO//1
108 FORMAT (lP9E14.5//)
110 FORMAT (//43x,33HCONDITIONS ON THE CONTOUR SURFACE//)
112 FORMAT (//45x,28HCONDITIONS IN THE FLOW FIELD//)
114 FORMAT (1H1)
116 FORMAT (lHJ)
118 FORMAT (//34X,55HCALCILATION OF FLOW FIELD PERFORMED IN SUBROUTINE
    1 SHOCK//)
120 FORMAT (//28X,52HPRESSURE RECOVERY (H/HO) ALONG THE CONTOUR SURFAC
    1E =1PE12.5//)
        WRITE (6,114)
        WRITE (6,118)
        WRITE (6,100)
        WRITE (6,102)
        CONVR=(1.0+(GAM-1.0)/2.0*AMO**2)**(-GAM/(GAM-1.0))
        KSIGN=SIGN
        SUMR=0.0
        SUMY=0.0
        DEL=DELTA
        FACTP=FACTR
        CALL CFPR(X(IA,KA),Y(IA,KA),U(IA,KA),V(IA,KA))
        CALL PSA(AM,THETA,DEL)
        CALL EQUK(1,I,X(IA,KA),Y(IA,KA),IJK,VK)
        CALL EOUI(I,X(IA,KA),Y(IA,KA),UK,VK)
        CALL CFPR(X(IA,KA),Y(IA,KA),U(IA,KA),V(IA,KA))
        AMR=AM
        BETA(1)=-SIGN*BETAK+(1.0+SIGN)*THETA
        SLOPE=TAN(BETA(1))
        BETAR=BETA(1)-THETA
        KREF=KA
        IREF=IA
        CALL OSWR(AMR,BETAR)
        KREV=(3+KSIGN)/2
        IREV=IREV+1
        RECV(KREV,IREV)=RECV(KREV,IREV-1)*RECOV
        RAVE=RECOV
        RECVI=RECOV
```

```
    FACTR=FACTP*RAVE
    WRITE (6,104) X(IREF,KREF),Y(IREF,KREF),AMR,THETA,BETAR,DEL,RPRES,
    IRECOV
    KREV=(3-KSIGN)/2
    EXP=NDIM-1
    DO 30 K=2,50
    IF (KREF .EO. 50), GO TO 32
    IF (ABS(DELTA) .GT. 0.001) GO TO 10
    IREF=IREF+1
    IF (X(IREF,KREF) .EQ. 0.0) GO TO 32
    GO TO 14
10 DO 12 L=1,2
    REG=-REG
    CALL SEEK(KREF,IREF,X(IREF,KREF),Y(IREF,KREF),SLOPE,SIGN)
    CALL EOUK(IREF,KREF,XK,YK,UK,VK)
    REG=-REG
    IF (K .EO. 2) GO TO 12
    IF (KREF .EO. 50) GO TO 14
    DELX=X(K-1,1)-X(IREF,KREF)
    DELY=Y(K-1,1)-Y(IREF,KREF)
    DIST=SORT(DELX**2+DELY**2)
    IF (ABS(DIST) .GT. 0.000) GO TO 14
1 2 \text { CONTINUE}
14 IF (K .GT. 2) GO TO 20
16 CALL CCRA(K-1,I,X(IREF,KREF),Y(IREF,KREF),U(IREF,KREF),
    1 V(IREF,KREF),DEL,SIGN)
    CALL EOUK (K,I,XK,YK,UK,VK)
    CALL EOUK(K,2,XJ,YJ,UJ,VJ)
    CALL EOUI(2,XJ,YJ,UJ,VJ)
    CALL CFPR(X(IREF,KREF),Y(IREF,KREF),U(IREF,KREF),V(IREF,KREF))
    AMR=AM
    BETA(K)=-SIGN*BETAK+(1.0+SIGN)*THETA
    SLOPE=TAN(BETA(K))
    BETAR=BETA(K)-THETA
    DEL=ATAN(V(K,l)/U(K,l))-THETA
    IF (ABS(DEL).LE. ERROR) DEL=0.0
    CALL OSWR (AMR,BETAR)
    RECV(KREV,IREV)=RECV(KREV,IREV-1)*RECOV
    RBAR=(RECOV+RECV1)/2.0
    YBAR=ARS(Y(K,1)**EXP-Y(K-1,1)**FXPP)
    SUMR=SUMR+RBAR*YBAR
    SUMY = SUMY + YBAR
    RAVE=SUMR/SUMY
    RECVI=RECOV
    FACTR=FACTP*RAVE
    WRITE (6,104) X(IREF,KREF),Y(IREF,KREF),AMR,THETA,BETAR,DEL,RPRES,
    IRECOV
    CALL CORE(K,2,SIGN)
    GO TO 30
20 00 22 J=2,50
    IF (X(K-1,J) .EQ. 0.0) GO TO 22
    CALL CCRB(K-1,J,X(IREF,KREF),Y(IREF,KREF),U(IREF,KREF),
    l V(IREF,KREF),DEL,SIGN)
    TEST=(XJ-XK)/ABS (XJ-XK)
    IF (TEST .GT. O.0) GO TO 24
22 CONTINUE
24 CALL EOUK(K,l,XK,YK,UK,VK)
    CALL EOUK(K,J,XJ,YJ,UJ,VJ)
    KP=K
    CALL CFPR(X(IREF,KREF),Y(IREF,KREF),U(IREF,KREF),V(IREF,KREF))
```

```
    AMR=AM
    BETA(K)=-SIGN*BETAK+(1.0+SIGN)*THETA
    SLOPE=TAN(BETA(K))
    BETAR=BETA(K)-THETA
    DEL = ATAN(V(K,1)/U(K,1))-THETA
    IF (ABS(DEL) .LE. ERROR) DEL=0.0
    CALL ISWR(AMR,BETAR)
    RECV(KREV,IREV)=RECV(KREV,IREV-1)*RECOV
    RBAR=(RECOV+RECV1)/2.0
    YBAR=ABS(Y(K,1)*%EXP-Y(K-1,1)**EXP)
    SUMR = SUMR + RBAR*YBAR
    SUMY = SUMY +YBAR
    RAVE=SUMR/SUMY
    RECVI=RECOV
    FACTR=FACTP*RAVE
    WRITE (6,104) X(IREF,KREF),Y(IREF,KREF),AMR,THETA,BETAR,DEL,RPRES,
    IRECOV
    DO 26 I=J,50
    IF ((K-1) .EO. I) GO TO 28
    CALL CCRC(X(K,I),Y(K,I),U(K,I),V(K,I),X(K-1,I+I),Y(K-1,I+1),
    l U(K-1,I+1),V(K-1,I+1),SIGN)
    CALL EOUK(K,I+1,XK,YK,UK,VK)
26 CONTINUE
28 CALL CCRE(X(K,I),Y(K,I),U(K,I),V(K,I),SIGN)
    CALL EQUK(K,I+1,XK,YK,UK,VK)
    CALL. EQUI(I +1,XK,YK,UK,VK)
    CALL CORE (K,I+1,SIGN)
    IP=I+1
30 CONT INUE
32 KREF=KP
    IREF=IP
    IF (SETP .GT. 0.0) GO TO 34
    CALL LOCUS(1,SIGN)
    STFR=PSI
34 WRITE (6,114)
    WRITE (6,110)
    KREV=(3+KSIGN)/2
    WRITE (6.120) RECV(KREV,IREV)
    WRITE (6,106)
    DO 36 I=1,IREF
    IF (XB(I) .EQ. 0.0) GO TO 36
    CALL CFPR(XB(I),YB(I),UB(I),VB(I))
    PRHO=FACTR*PRES
    PRPO=PRHO/CONVR
    WRITE (6,108) XB(I),YB(I),Q,THETA,UB(I),VB(I),AM,PRHO,PR
36 CONTINUE
    WRITE (6,114)
    WRITE (6,112)
    WRITE (6,106)
    DO 38 K=1,KREF
    WRITE (6,116)
    DO 38 I =1,50
    IF (X(K,I) .EQ. 0.0) GO TO 38
    IF (I .GT. K) GO TO 38
    CALL CFPR(X(K,I),Y(K,I),U(K,I),V(K,I))
    PRHO=FACTR*PRES
    PRPO=PRHO/CONVR
    WRITE (6,108) X(K,I),Y(K,I),Q,THETA,U(K,I),V(K,I),AM,PRHO,PRPO
38 CONTINUE
    KF=KREF+1
```

```
    DO 46 K=KF,50
    00 46 I=1,50
    CALL EOUK(K,I,0.0,0.0,0.0,0.0)
46 CONTINUE
    DO 50 I=1,50
    IF (I .GT. KREF) GO TO 48
    CALL EQUI(I,X(I,I),Y(I,I),U(I,I),V(I,I))
    GO TO }5
48 CALL EQUI(I,C.0,0.0,0.0,0.0)
50 CONTINUE
    IF (SETP .EQ. O.0) GO TO 62
    KP=KREF
    IP=IREF
    CALL MATRX
    CALL ENDS(KP,1,-SIGN)
    KREF=KP
    IREF=IP
    CALL EQUK(KREF,KREF,XB(KREF),YB(KREF),UB(KREF),VB(KREF))
    IF (SETO .ED. O.O) GO TO 62
    K=0
    DO 54 J=1,50
    IF (X(J,KREF) .EQ. O.0) GO TO 54
    IF (J.EQ. 1) GO TO 52
    DELX=X(J,KREF) -X (K,l)
    DELY=Y(J,KREF)-Y(K,1)
    DIST=SORT(DELX**2+DELY**2)
    IF (ABS(DIST).LT. O.000) GO TO 54
52 K=K+1
    CALL EQUK(K,l,X(J,KREF),Y(J,KREF),U(J,KREF),V(J,KREF))
54 CONTINUE
    KF=K
    DO 58 K=1,50
    00 58 I=2,50
56 CALL EOUK(K,I,0.0,0.0,0.0,0.0)
5 8 ~ C O N T I N U E ~
    CALL EOUI(1,X(1,1),Y(1,1),U(1,1),V(1,1))
    DO 60 I=2,50
    CALL EQUI(1,0.0,0.0,0.0,0.0)
6 0 ~ C O N T ~ I N U E ~
6 2 ~ P S I = S T F R
    DELA=DEL
    RETURN
    END
```

```
$IBFTC SEEKS LIST,REF,DECK,DEBUG
C
    SUBROUTINE FOR LOCATING SPECIFIC POINTS IN A C-NET
    SUBROUTINE SEEK(KA,IA,XR,YR,SLOPE,SIGN)
    COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
    1 O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
        X(50,50),Y(50,50),U(50,50),V(50,50), BETA(50),PSIR(50).
        UI,VI,DELI,DELY,RPRES,RDENS,RECOV, ENTP,NDIM,KREF,IREF,
        XB(50),YB(50),UB(50),VB(50),P(50), RECV(2,10),FACTR,IREV,
        REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
    DIMENSION NPT(2)
    K=KA
    I=IA
    IF (K .EO. I) GO TO 30
    JF=KA-IA
    DO 10 J=1,JF
    I=IA+J
    IF (X(I,K) .GT. 0.0) GO TO 12
10 CONTINUE
12 IREF=I
    XF=XR
    YF=YR
    OO 24 J=1,2
    RMIN=10.0
    DO 14 K=IREF,KA
    IF (X(IREF,K) .EQ. O.0) GO TO 14
    RADIUS=SQRT((X)IREF,K)-XF)**2+(Y(IREF,K)-YF)**2)
    RMIN=AMINI(RADIUS,RMIN)
14 CONTINUE
    DO 16 K=IREF,KA
    RADIUS=SQRT((X(IREF,K)-XF)**2+(Y(IREF,K)-YF)**2)
    IF (RADIUS .EQ. RMIN) GO TO 18
    16 CONTINUE
    18 KREF=K
    IF (IREF .LT. KREF) GO TO 20
    K=KREF+l
    IF (X(IREF,K) .EQ. O.O) GO TO }3
    GO TO 22
20 CALL BOUND(IREF,KREF,IREF,KREF-1,XR,YR,SLOPE,SIGN)
    XREF=XK
    TEST=XREF-X(IREF,KREF)
    KSIGN=TEST/ABS(TEST)
    K=KREF+KSIGN
    IF (IREF .GT. K) GO TO 30
    IF (XIIREF,K) .EO. O.0) GO TO 30
22 CALL BOUND(IREF,KREF,IREF,K,XR,YR,SLOPE,SIGN)
    XF=XK
    YF=YK
    TEST=XF-X(KREF,IREF)
    KSIGN=TEST/ABS(TEST)
    K=KREF+KSIGN
    IF (IREF .GT. K) GO TO 30
24 CONTINIJE
    CALL FIND(XK)
    IF (REG .EO. -1.0) GO TO 26
    CO=R(ICOWL,I)
    Cl=R(ICOWL,2)
    C2=R(ICOWL,3)
```

```
    C3=R(ICOWL,4)
    GO TO 28
26 CO=S(IBODY,1)
    Cl=S(IBODY,2)
    C2=S(IBODY,3)
    C3=S(IBODY,4)
28 YSURF=CO+C 1*XK+C2*XK**2+C 3*XK**3
    TEST=(YK-YSURF)/ABS(YK-YSURF)
    IF (TEST .EO. SIGN) GO TO 56
30 NPT(2)=0
    XREF=XR
    DO 54 L=1,2
    CALL FIND(XREF)
    IF (REG .EQ. -1.0) GO TO 32
    CO=R(ICOWL,1)
    C1=R(ICOWL,2)
    C2=R(ICOWL,3)
    C3=R(ICOWL,4)
    POINT=COWL(ICOWL)
    NPT(L)=ICOWL
    GO TO 34
32 CO=S(IBODY,1)
    Cl=S(1BODY,2)
    C2=S(IBODY,3)
    C3=S(IBODY,4)
    POINT=BODY(IBOOY)
    NPT(L)=IBOOY
34 IF (NPT(1) .EQ. NPT(2)) GO TO 56
    IF (ABS(SLOPE) .GT. ERROR) GO TO 36
    XK=XR
    GO TO 46
36 ALPHA=C 3
    ETA=C2
    SIGA=Cl
    DELTA=SIGA-SLOPE
    GAMMA = (CO-YR) +SLOPE*XR
    CALL ROOT3(ALPHA,ETA,DELTA,GAMMA)
    M=0
    DO 38 I=1,3
    J=2*I-1
    K=2*I
    P(J)=P(J)-POINT
    IF (P(J).LE. 0.0) GO TO 38
    IF (ABS(P(K)) .GT. ERROR) GO TO 38
    M=M+1
    PSIR(M)=P(J)
```

```
38 CONTINUE
    XMIN=10.0
    DO 40 I=1,M
    XMIN=AMINH(XMIN,P.SIR(I))
40 CONTINUE
4 4 ~ X K = X M I N + P O I N T ,
46 YK=CO+C1*XK+C2*XK**2+C 3*XK**3
    SIGMA=C1+2.0*C2*XK+3.0*C 3*XK**2
    RMIN=10.0
    DO 48 I=1,50
    IF (XB(I) .EQ. 0.0) GO TO 48
    TEST=SQRT((XB(I)-XK)**2+(YB(I)-YK)**2)
    RMIN=AMIN1(TEST,RMIN)
48 CONTINUF
    DO 50 I=1,50
    IF (XB(I) .EQ. O.0) GO TO 50
    TEST=SORT((XB(I)-XK)**2+(YB(I)-YK)**2)
    IF (RMIN •EQ. TEST) GO TO 52
5 0 ~ C O N T I N U E ~
52 TEST=XK-XB(I)
    ISIGN=TEST/ABS(TEST)
    J=I+ISIGN
    ANGLE=ATAN(SIGMA)
    OI=SQRT{UB(I)**2+VB(I)**2}
    OJ=SORT(UB(J)**2+VB(J)**2)
    DS=SQRT((XB(J)-XB(I))**2+(YB(J)-YB(I))**2)
    DELS=SORT((XK-XB(I))**2+(YK-YB(I))**2)
    DO=OJ-QI
    DODS=DG/DS
    OK=OI+DODS*DELS
    UK=OK*COS(ANGLE)
    VK=OK*SIN(ANGLE)
    KREF=50
    I REF=I +1
    XREF=XK
54 CONTINUE
5 6 ~ R E T U R N
    END
```

SUBROUTINE LOCUS(KA,SIGN)
COMMON AMO,GAM, THETC, DELB, DELUI, DELU,UC, VC, DELC, BS, DELS, ERROR,
$1 \quad 0, A M, A M U, T H E T A, A, B, C, D, E, F, G, P R E S, D E N S, A R E A, D Y N P, C P, P S I$,
$2 \quad X K, Y K, U K, V K, X J, Y J, U J, V J, X A, Y A, U A, V A, D E L A, B E T A K, S I G K, S I G S Q$,
$3 \quad X(50,50), Y(50,50), 0(50,50), V(50,50), B E T A(50), P S I R(50)$,
4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV, ENTP, NDIM,KREF,IREF,
$5 \quad X B(50), Y B(50), U B(50), V B(50), P(50), R E C V(2,10), F A C T R, I R E V$,
6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
$008 K=K A, 50$
IF $(X(K, 1)$.EQ. 0.0$)$ GO TO 10
8 CONTINUE
10 KREF=K
DO $12 \mathrm{I}=2,50$
IF (X(KREF-1,I) .GT. 0.0) GO TO 14
12 CONTINUE
14 IREF=I
$K P=K R E F-1$
REG $=-$ REG
$X P=X(K P, 1)+3.0$
TANS $=V(K P, 1) / U(K P, 1)$
CALL CURVE (X $(K P, 1), Y(K P, 1), T A N S, X P, 0.0,0.0,1.0, N S)$
$N S=N S+1$
CALL CCRE (X (KP,IREF), Y(KP,IREF),U(KP,IREF),V(KP,IREF),-SIGN)
CALL EOUK (KREF, IREF, XK,YK, UK,VK)
CALL CORE(KREF,IREF,-1.0)
REG=-REG
$\operatorname{BODY}(N S)=X(K R E F, I R E F)$
CALL CFPR(X(KREF,IREF), -Y(KREF,IREF),U(KREF,IREF),-V(KREF,IREF))
PSIR (IREF) $=P S I$
STFR=1.0
$K P=K R E F-1$
DO $22 K K=1, K P$
$K=K R E F-K K$
IF (IREF .GT. K) GO TO 24
CALL CFPR(X(K,IREF), -Y(K,IREF), U(K,IREF), -V(K,IREF))
PSIAV $=.5 *(P S I R(I R E F)+P S I)$
PSIR(IREF)=PSI
IF (NOIM .GT. 2) GO TO 18
$R E F=Y(K, I R E F)-Y(K+1, I R E F)$
GO TO 20
$18 \operatorname{REF}=Y(K, I R E F) * * 2-Y(K+1, I R E F) * * 2$
20 STFR=STFR+PSIAV*REF
22 CONTINUE
24 DO $28 \mathrm{~K}=1,50$
DO $28 \quad 1=1,50$
IF (I .GT. K) GO TO 26
IF (K .GT. KREF) GO TO 26
IF (I •LE. IREF) GO TO 28
26 CALL EOUK (K, I, 0.0,0.0,0.0,0.0)
28 CONTINUE
DO $30 \quad I=1,50$
IF (I .LE. IREF) GO TO 30
CALL EQUI (I, 0.0,0.0,0.0,0.0)
30 CONTINUE
PSI = STFR
RETURN
END

```
$IBFTC SURFS LIST,REF,DECK,OEBUG
C
C CONDITIONS IN THE ISENTROPIC COMPRESSION REGION
C
    SUBROUTINE SURF(KS,IS,NN,AMT,THROAT,ANGLE,STFR,SIGN)
    COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
    l O,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
    2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
    3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
    4 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
    5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
    6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
100 FORMAT (//8X,1HX,13X,1HY,13X,1HO,11X,5HTHETA, 11X,1HU,13X,1HV,9X,
    18HMACH NO., 8X,4HP/H0,10X,4HP/PO//)
102 FORMAT (1P9E14.5//)
104 FORMAT (//43X,33HCONDITIONS ON THE CONTOUR SURFACE//)
106 FORMAT (//45x,28HCONDITIONS IN THE FLOW FIELD//)
108 FORMAT (//44X,3HAMT,11X,3HTHR,11X,3HANG//)
110 FORMAT (37X,1P3E14.5//)
112 FORMAT (//28X,46HISENTROPIC COMPRESSION REGION INITIATES AT }x=1P
    112.5,2X,3HY = 1PE12.5////1
114 FORMAT (1H1)
116 FORMAT (1HJ)
118 FORMAT (//33x,54HCALCULATION OF FLOW FIELD PERFORMED IN SUBROUTINE
    l SURF//I
120 FORMAT (//29x,50HPRESSURE RECOVERY (H/HO) ALONG THE UPPER CONTOUR
    l=1PE12.5//)
122 FORMAT (//29X,5OHPRESSURE, RECOVERY (H/HO) ALONG THE LOWER CONTOUR
    l=1PE12.5//)
        K=KS
        I=IS
        MP=K
        MPF=MP+NN
        XNN=NN
        POINT=1.0
        CONVR=(1.0+(GAM-1.0)/2.0*AMO**2)**(-GAM/(GAM-1.0))
        IREV=IREV+1
        RECV(1,IREV)=RECV(1,IREV-1)
        RECV(2,IREV)=RECV(2,IREV-1)
        CALL CFPR(X(K.I),Y(K,I),U(K,I),V(K,I))
        AMR=AM
        THETAR=THETA
        SIGI=TAN(THETAR)
        IP=I+1
        P(I)=1.0
        DELAM=(AMR-AMT)/XNN
        DELX=THROAT/XNN
        TAU=TAN(ANGLE)-TAN(THETAR)
        XO=X(KS,IS)
        AO=Y(KS,IS )
        Al=V(KS,IS)/U(KS,IS)
        IF (THROAT .EQ. 0.O) GO TO 10
        A2=TAU/(2.0*THROAT)
10 AMF=AMR
    NNN=NN+IP-1
    DO 20 I=IP,NNN
        IF (THROAT .GT. 0.0) GO TO 12
        P(I)=1.0
        GO TO 14
12 P(I)=1.0+P(I-1)
```

```
14 AMF=AMF-DELAM
    KP=P(I)
    KT=P(I)-P(I-1)
    K=MP-1+KP
    KK=K-KT
    KL=K
    XK=X(KK,I-1)+DELX
    IF (ABS(ANGLE) .GT. 0.0) GO TO 16
    CALL PMER(AMR,-THETAR,AMF)
    SIGK=-VK/UK
    SIGC=0.5*(SIGI+SIGK)
    SIGI=SIGK
    YK=Y(KK,I-1)+SIGC*DELX
    EXP=3.0
    GO TO 18
16YK=AO+A1* (XK-XO)+A2*(XK-XO) ***2
    SIGK=A1+2.0*A2*(XK-X0)
    PHI=ATAN(SIGK)
    OK=SQRT(AMF**2/(1.0+SIGSO*(AMF**2-1.0)))
    UK=QK*COS(PHI)
    VK=-QK*SIN(PHI)
    EXP=2.0
18 CALL EOUK(K,I,XK,YK,UK,-VK)
    KREF=K
    IREF=I
    CALL CFPR(X(K,I),-Y(K,I),U(K,I),-V(K,I))
    PSIR(I)=PSI
20 CONTINUE
    DO 36 I=IP,NNN
    STF=1.0
    DO 34 KK=1,MPF
    KP=P(I)-1.0
    K=MP+1+KP-KK
22 CALL CCRC(X(K-1,I-1),Y(K-1,I-1),U(K-1,I-1),V(K-1,I-1),X(K,I),
    l Y(K,I),U(K,I),V(K,I),SIGN)
    GALL EOUK (K-1,I,XK,YK,UK,VK)
24 CALL CFPR(X(K-1,I), -Y(K-1,I),U(K-1,I),-V(K-1,I))
    PSIAV=.5*(PSIR(I)+PSI)
    IF (NDIM .GT. 2) GO TO 26
    REF=Y(K-1,I)-Y(K,I)
    GO TO 28
26 REF=Y(K-1,1)**2-Y(K,1)**2
28 STF=STF+PSIAV*REF
    PSIR(I)=PSI
    IF (STFR-STF) 30,32,34
30 CALL CCSR(STFR,STF,X(K-1,I), -Y(K-l,I),U(K-1,I), -V(K-1,I),X(K,I),
    l -Y(K,I),U(K,I),-V(K,I))
    CALL EOUI(I,XK,-YK,OKK,-VK)
    GO TO 36
32 CALL EOUI(I,X(K-1,I),Y(K-1,I),U(K-1,I),V(K-1,I))
    GO TO 36
34 CONTINUE
36 CONTINUE
    DO 38 J=1,KS
    K=(KS+1)-J
    IF (X(K,IS) .EQ. O.0) GO TO 40
38 CONTINUE
40 KR=K+1
    IR=IS
    REG=-1.0
```

CALL CURVE(X(KS,IS),Y(KS,IS),V(KS,IS)/U(KS,IS),X(KREF,IREF), 1 Y(KREF,IREF),V(KREF,IREF)/U(KREF,IREF),EXP,NS)
NS $=$ NS +1
$R E G=1.0$
CALL CURVE(XB(IS),YB(IS),VB(IS)/UB(IS),XB(IREF),YB(IREF),
1 VB(IREF)/UB(IREF),3.0,NR)
$N R=N R+1$
WRITE (6,114)
WRITE (6,118)
WRITE $(6,108)$
WRITE $(6,110)$ AMT, THROAT, ANGLE
WRITE $(6,120)$ RECV(2,IREV)
WRITE (6,122) RECV(1,IREV)
WRITE $(6,104)$
WRITE (6,100)
DO 42 I=IR,IREF
IF (XB(I) .EQ. O.0) GO TO 42
CALL CFPR(XB(I),YB(I),UB(I),VB(I))
PRHO $=$ FACTR*PRES
PRPO $=$ PRHO/CONVR
WRITE (6,102) XB(I),YB(I),Q,THETA,UB(I),VB(I),AM,PRHO.PRPO
42 CONTINUE
WRITE (6,114)
WRITE $(6,106)$
WRITE $(6,100)$
DO $46 \mathrm{~K}=\mathrm{KR}, \mathrm{KR} E F$
WRITE (6,116)
DO $46 \mathrm{I}=\mathrm{IR}$, IREF
IF $(X(K, I) \quad . E Q \cdot 0.0)$ GO TO 46
TEST $=A B S(X(K, I)-X(K S, I S))$
IF (TEST .GT. 0.0) GO TO 44
IF (POINT .EO. O.0) GO TO 44
WRITE $(6,112) \times(K, I), Y(K, I)$
POINT $=0.0$
44 CALL CFPR(X(K,I),Y(K,I),U(K,I),V(K,I))
PRHO $=$ FACTR*PRES
PRPO=PRHO/CONVR
WRITE $(6,102) X(K, I), Y(K, I), Q, T H E T A, U(K, I), V(K, I), A M, P R H O, P R P O$
46 CONTINUE
IF (XB(IREF) .LT.X(KS,IS)) GO TO 47
CALL ENDI(KS,IS,SIGN)
$47 \mathrm{DO} 48 \mathrm{~J}=1, \mathrm{KREF}$
$K=(K R E F+1)-J$
IF (X(K,IREF) .EQ. 0.0) GO TO 50
48 CONTINUE
$50 K P=K+1$
$0052 \mathrm{~J}=1,50$
$K=(K P-1)+J$
IF (X K, IREF) , EQ. 0.0) GO TO 54
CALL EOUK (J,l,X(K,IREF),Y(K,IREF),U(K,IREF),V(K,IREF))
52 CONT INUE
54 KREF=J-3
CALL EOUI(1,XB(IREF),YB(IREF), UB(IREF), VB(IREF))
I REF=1
DO $58 \mathrm{~K}=1,50$
DO $58 \mathrm{I}=1,50$
IF (K . GT. KREF) GO TO 56
IF (I .EO. 1) GO TO 58
56 CALL EOUK $(K, I, 0.0,0.0,0.0,0.0)$
58 CONTINUE
DU $60 \quad 1=2, b 0$
CALL EQUI (I, 0.0,0.0,0.0,0.0)
60 CONTINUE
RETURN
END

```
$IBFTC ENDIR LIST,REF,DECK,DEBUG
C
C
```

```
        SUBROUTINE ENDI(KA,I.A,SIGN)
```

 SUBROUTINE ENDI(KA,I.A,SIGN)
 COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
 COMMON AMO,GAM,THETC,DELB,DELUI,DELU,UC,VC,DELC,BS,DELS,ERROR,
 Q,AM,AMU,THETA,A,R,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
 Q,AM,AMU,THETA,A,R,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
 XK,YK,UJ,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
 XK,YK,UJ,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
 Ul,VI,DELI,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
 REG,R(25,4),S(25,4),COWL(25),RODY(25),NR,NS,ICOWL,IBODY
 REG,R(25,4),S(25,4),COWL(25),RODY(25),NR,NS,ICOWL,IBODY
 l00 FORMAT (//38X,46HCONDITIONS IN THE VICINITY QF THE NORMAL SHOCK//)
l00 FORMAT (//38X,46HCONDITIONS IN THE VICINITY QF THE NORMAL SHOCK//)
102 FORMAT (//29X,1HX,12X,1HY,10X,8HMACH NO.,8X,5HTHETA,9X,5HP2/P1,9X,
102 FORMAT (//29X,1HX,12X,1HY,10X,8HMACH NO.,8X,5HTHETA,9X,5HP2/P1,9X,
14HH/HO//)
14HH/HO//)
104 FORMAT (21X,1P6E14.5//)
104 FORMAT (21X,1P6E14.5//)
200 FORMAT (1HI)
200 FORMAT (1HI)
PI=3.1415927
PI=3.1415927
CONVP=(1.0+(GAM-1.0)/2.0)**(-GAM/(GAM-1.0))
CONVP=(1.0+(GAM-1.0)/2.0)**(-GAM/(GAM-1.0))
RAVE=FACTR/CONVP
RAVE=FACTR/CONVP
KR=KA-1
KR=KA-1
CALL CFPR(X(KA,IA),Y(KA,IA),U(KA,IA),V(KA,IA))
CALL CFPR(X(KA,IA),Y(KA,IA),U(KA,IA),V(KA,IA))
SLOPE=TAN(PI/2.0+THETA)
SLOPE=TAN(PI/2.0+THETA)
CALL OSWR(AM,PI/2.0)
CALL OSWR(AM,PI/2.0)
RECOV=RAVE*RECOV
RECOV=RAVE*RECOV
WRITE (6,200)
WRITE (6,200)
WRITE (6,100)
WRITE (6,100)
WRITE (6,102)
WRITE (6,102)
WRITE (6,104) X(KA,IA),Y(KA,IA),AM,THETA,RPRES,RECOV
WRITE (6,104) X(KA,IA),Y(KA,IA),AM,THETA,RPRES,RECOV
XREF=X(KA,IA)
XREF=X(KA,IA)
YREF=Y(KA,IA)
YREF=Y(KA,IA)
DO 18 KK=1,KR
DO 18 KK=1,KR
K=KA-KK
K=KA-KK
XR=XREF
XR=XREF
YR=YREF
YR=YREF
DO 16 J=1,2
DO 16 J=1,2
RMIN=10.0
RMIN=10.0
DO 10 I=1,IREF
DO 10 I=1,IREF
IF (X(K,I) .EQ. 0.0) GO TO 10
IF (X(K,I) .EQ. 0.0) GO TO 10
RADIUS =SNRT((X(K,I)-XR)**2+(Y(K,I)-YR)**2)
RADIUS =SNRT((X(K,I)-XR)**2+(Y(K,I)-YR)**2)
RMIN=AMINI(RMIN,RADIUS)
RMIN=AMINI(RMIN,RADIUS)
10 CONTINUE
10 CONTINUE
DO 12 I=1,IREF
DO 12 I=1,IREF
IF (X(K,I) .EQ. O.O) GO TO 12
IF (X(K,I) .EQ. O.O) GO TO 12
RADIUS=SORT((X(K,I)-XR)*ヶ2+(Y(K,l)-YR) %*2)
RADIUS=SORT((X(K,I)-XR)*ヶ2+(Y(K,l)-YR) %*2)
IF (RMIN .EO. RADIUS) GO TO 14
IF (RMIN .EO. RADIUS) GO TO 14
12 CONTINUE
12 CONTINUE
14 IF (X(K,I+1) .EO. 0.0) GO TO 20
14 IF (X(K,I+1) .EO. 0.0) GO TO 20
CALL BOUND(K,I,K,I+1,XREF,YREF,SLOPE,SIGN)
CALL BOUND(K,I,K,I+1,XREF,YREF,SLOPE,SIGN)
TEST=XK-X(K,I)
TEST=XK-X(K,I)
ISIGN=TEST/ABS(TEST)
ISIGN=TEST/ABS(TEST)
IP=I+ISIGN
IP=I+ISIGN
IF (X(K,IP) .EQ. 0.0) GO TO 20
IF (X(K,IP) .EQ. 0.0) GO TO 20
CALL BOUND(K,I,K,IP,XREF,YREF,SLOPE,SIGN)
CALL BOUND(K,I,K,IP,XREF,YREF,SLOPE,SIGN)
XR=XK
XR=XK
YR=YK
YR=YK
16 CONTINUE
16 CONTINUE
XREF=XR
XREF=XR
YREF=YR
YREF=YR
CALL CFPR(XK,YK,UK,VK)
CALL CFPR(XK,YK,UK,VK)
SLOPE=TAN(PI/2.O+THETA)

```
    SLOPE=TAN(PI/2.O+THETA)
```

```
    CALL OSWR(AM,PI/2.0)
    RECOV=RAVE*RECOV
    WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
18 CONTINUE
20 RMIN=10.0
    DO 22 I=1,IREF
    RADIUS=SORT((XB(I)-XREF)**2+(YB(I)-YREF)**2)
    RMIN=AMIN1(RMIN,RADIUS)
22 CONTINUE
    DO 24 I=1,IREF
    RADIUS=SQRT((XB(I)-XREF)**2+(YB(I)-YREF)**2)
    IF (RMIN .EO. RADIUS) GO TO 26
24 CONTINUE
26 TEST=XREF-XB(I)
    ISIGN=TEST/ABS(TEST)
    J=I+ISIGN
    DU=UB(J)-UB(I)
    DV=VB(J)-VB(I)
    DX=XB(J)-XB(I)
    DY=YB(J)-YB(I)
    DS=SQRT(DX**2+D)Y**2)
    DUOS=OU/DS
    DYDX=DY/DX
    XK=(YB(I)-YREF+SLOPE*XREF-DYOX*XB(I))/(SLOPE-DYDX)
    YK=YB(I)+OYDX*(XK-XB(I))
    DELS=SORT((XK-XB(I))**2+(YK-YB(I))**2)
    UK=UB(I)+DUDS*DELS
    VK=UK*DYDX
    CALL CFPR(XK,YK,UK,VK)
    SLOPE=TAN(PI/2.0+THETA)
    CALL OSWR(AM,PI/2.0)
    RECOV=RAVE*RECOV
    WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
    RETURN
    END
```

```
$IBFTC ENDSR
                LIST,REF,DECK,DEBUG
C
C
```

```
        SUBROUTINE ENDS(KA,IA,SIGN)
```

 SUBROUTINE ENDS(KA,IA,SIGN)
 COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
 COMMON AMO,GAM,THETC,DELB,DELUL,DELU,UC,VC,DELC,BS,DELS,ERROR,
 1 Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
 1 Q,AM,AMU,THETA,A,B,C,D,E,F,G,PRES,DENS,AREA,DYNP,CP,PSI,
 2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
 2 XK,YK,UK,VK,XJ,YJ,UJ,VJ,XA,YA,UA,VA,DELA,BETAK,SIGK,SIGSQ,
 3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
 3 X(50,50),Y(50,50),U(50,50),V(50,50),BETA(50),PSIR(50),
 4 Ul,Vl,DELl,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
 4 Ul,Vl,DELl,DELY,RPRES,RDENS,RECOV,ENTP,NDIM,KREF,IREF,
 5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
 5 XB(50),YB(50),UB(50),VB(50),P(50),RECV(2,10),FACTR,IREV,
 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
 6 REG,R(25,4),S(25,4),COWL(25),BODY(25),NR,NS,ICOWL,IBODY
 100 FORMAT (//38X,46HCONDITIONS IN THE VICINITY OF THE NORMAL SHOCK//)
100 FORMAT (//38X,46HCONDITIONS IN THE VICINITY OF THE NORMAL SHOCK//)
102 FORMAT (//29X,1HX,12X,1HY,10X,8HMACH NO.,8X,5HTHETA,9X,5HP2/P1,9X,
102 FORMAT (//29X,1HX,12X,1HY,10X,8HMACH NO.,8X,5HTHETA,9X,5HP2/P1,9X,
14HH/HO//)
14HH/HO//)
104 FORMAT (21X,1P6E14.5//)
104 FORMAT (21X,1P6E14.5//)
200 FORMAT (1Hl)
200 FORMAT (1Hl)
TEST=0.01745329
TEST=0.01745329
PI=3.1415927
PI=3.1415927
CONVP=(1.0+(GAM-1.01/2.0)**(-GAM/(GAM-1.0))
CONVP=(1.0+(GAM-1.01/2.0)**(-GAM/(GAM-1.0))
RAVE=FACTR/CONVP
RAVE=FACTR/CONVP
KREF=KA
KREF=KA
IREF=IA
IREF=IA
XK=X(IREF,KREF)
XK=X(IREF,KREF)
YK=Y(IREF,KREF)
YK=Y(IREF,KREF)
UK=U(IREF,KREF)
UK=U(IREF,KREF)
VK=V(IREF,KREF)
VK=V(IREF,KREF)
XP=XK
XP=XK
YP=YK
YP=YK
CALL CFPR(XK,YK,UK,VK)
CALL CFPR(XK,YK,UK,VK)
IF (ABS(THETA) .GT. TEST) GO TO 6
IF (ABS(THETA) .GT. TEST) GO TO 6
SLOPE=0.0
SLOPE=0.0
GO TO 8
GO TO 8
6 SLOPE=TAN(PI/2.0+THETA)
6 SLOPE=TAN(PI/2.0+THETA)
8 ~ C A L L ~ O S W R (A M , P I / 2 . 0) ~ (\%)
8 ~ C A L L ~ O S W R (A M , P I / 2 . 0) ~ (\%)
RECOV=RAVE*RECOV
RECOV=RAVE*RECOV
WRITE (6,200)
WRITE (6,200)
WRITE (6,100)
WRITE (6,100)
WRITE (6,102)
WRITE (6,102)
WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
IF=KA-1
IF=KA-1
DO 14 I= l,IF
DO 14 I= l,IF
IF (KREF .EQ. 50) GO TO 16
IF (KREF .EQ. 50) GO TO 16
CALL SEEK(KREF,IREF,XP,YP,SLOPE,SIGN)
CALL SEEK(KREF,IREF,XP,YP,SLOPE,SIGN)
CALL CFPR(XK,YK,UK,VK)
CALL CFPR(XK,YK,UK,VK)
IF (ABS(THETA) .GT. TEST) GO TO 10
IF (ABS(THETA) .GT. TEST) GO TO 10
SLOPE=0.0
SLOPE=0.0
GO TO 12
GO TO 12
10 SLOPE=TAN(PI/2.0+THETA)
10 SLOPE=TAN(PI/2.0+THETA)
12 CALL OSWR(AM,PI/2.0)
12 CALL OSWR(AM,PI/2.0)
RECOV=RAVE*RECOV
RECOV=RAVE*RECOV
WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
WRITE (6,104) XK,YK,AM,THETA,RPRES,RECOV
XP=XK
XP=XK
YP=YK
YP=YK
14 CONTINUE
14 CONTINUE
16 RETURN
16 RETURN
END

```
        END
```


REFERENCES

1. Courant, Richard; and Friedrichs, K. O.: Supersonic Flow and Shock Waves. Interscience Publ., 1948.
2. Sorensen, Virginia L. : Computer Program for Calculating Flow Fields in Supersonic Inlets. NASA TN D-2897, 1965.
3. Kennedy, E.C.: Calculation of the Flow Fields Around a Series of Bi-Cone Bodies of Revolution Using the Method of Characteristics as Applied to Supersonic Rotational Flow. Rep. OAL/CM 873, Consolidated Vultee Aircraft Co., June 1956.
4. Kennedy, Ernest C. : Calculation of Axisymmetric Isentropic Spike Surfaces. J. Aero/ Space Sci., vol. 25, no. 7, July 1958, pp. 463-464.
5. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rept. 1135, 1953.
6. Calogeras, James E.; and Meleason, Edward T.: Wind Tunnel Investigation of Techniques for Reducing Cowl Drag of an Axisymmetric External-Compression Inlet at Mach 2.49. NASA TM X-1516, 1968.
7. Connors, James F.; and Woollett, Richard R.: Characteristics of Flow About Axially Symmetric Isentropic Spikes for Nose Inlets at Mach Number 3.85. NACA RM RM E54F08, 1954.
8. Cubbison, Robert W.; Meleason, Edward T.; and Johnson, David F.: Effect of Porous Bleed in a High-Performance Axisymmetric, Mixed-Compression Inlet at Mach 2.50. NASA TM X-1692, 1968.
9. Evvard, John C. ; and Maslen, Stephen H.: Three-Dimensional Supersonic Nozzles and Inlets of Arbitrary Exit Cross Section. NASA TN 2688, 1952.

Figure 1. - Domain in the x, y plane in which solution can be established.

Figure 2. - Domain in x, y plane in which solution can be established for free-boundary problem.

Figure 3. - Location of basic field point.

Figure 4. - Location of solid boundary point.

Figure 5. - Location of shock points in upstream region.

Figure 6. - Location of shock-field points.

Figure 7. - Location of shock-boundary points.

Figure 8. - Fixed-boundary problem.

Figure 9. - Free-boundary problem.

Figure 10. - Isentropic spike problem.

(a) Mach number distribution.
 (b) Characteristic solution

Figure 11. - Bicone mixed-compression inlet ($10.0^{\circ}-18.5^{\circ}$) designed for free-stream Mach number of 2.500 . Cowl angle, 5.0°; throat Mach number, l. 300.

(a) Mach number distribution.

(b) Characteristic solution.

Figure 12. - Isentropic ramp mixed-compression inlet designed for free-stream Mach number of 2.700. Initial ramp angle, 5.0 0°; cowl angle, 5.0°; throat Mach number, 1. 300.

点

(a) Mach number distribution.

(b) Characteristic solution.

Figure 13. - Two-dimensional isentropic ramp inlet designed for free-stream Mach number of 2.700. Initial ramp angle, 5. 0°; cowl angle, 0°; throat Mach number, 1.300 .

(b) Characteristic solution.

Figure 13. - Two-dimensional isentropic ramp inlet designed for free-stream Mach number of 2.700. Initial ramp angle, 5. 0°; cowl angle, 0°; throat Mach number, 1.300

(a) Mach number distribution.

(b) Characteristic solution.

Figure 14. - Isentropic spike self-starting inlet designed for free-stream Mach number of 2.500 . Initial half cone angle, 16.0°; cowl angle, 17.0°; throat Mach number, 1. 35.

(c) Schlieren photograph showing isentropic spike cone.

Figure 15. - Isentropic spike configuration designed for free-stream Mach number of 2.49 and focal point Mach number of 1.46 . Initial cone angle, 16.0°.

(a) Static-pressure distribution.

(b) Characteristic solution.

Figure 16. - Isentropic spike configuration designed for free-stream Mach number of 3.85 and focal point Mach number of 1.75 . Initial cone angle, 8.0°.

(c) Schlieren photograph of bicone configuration.

Figure 17. - Bicone forebody $\left(10^{\circ}-18.5^{\circ}\right)$ configuration for free-stream Mach number of 2.49.

(a) Static-pressure distribution.

(b) Characteristic solution.

Figure 18. - Single-cone (12.5°) mixed-compression inlet designed for free-stream Mach number of 2.500.

Figure 19. - Capture stream line used for additive drag calculations.

[^0]: Lewis Research Center,
 National Aeronautics and Space Administration, Cleveland, Ohio, September 3, 1968, 126-15-02-11-22.

