
General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

MIDWEST APPLIED SCIENCE CORP.

Purdue Industrial Research Park 1205 Kent Avenue • P.O. Box 2157 West Lafayette, Indiana 47906 Phone (317) 743-2161

MASC RD-29F

IDENTIFICATION OF LINEAR SYSTEMS, FINAL REPORT ON SIMULATION STUDIES

Contract No. NAS 5-10106

Submitted to

National Aeronautics and Space Administration
Goddard Space Flight Center
Glenn Dale Road
Greenbelt, Maryland

ATTENTION: 1r. Joe Young

Ву

F. Kozin
C. H. Kozin

Midwest Applied Science Corp.

Purdue Industrial Research Park
1205 Kent Avenue

West Lafayette, Indiana 47906

April 1968

	N 69-14	945
602	(ACCESSION NUMBER)	(THRU)
₹	204)
8	(PAGES)	(CODE)
E	11t78728	32
ACIL	(NASA CR'OR TMX OR AD NUMBER)	(CATEGORY)

TABLE OF CONTENTS

Chapter		Page
	Objective	1
	Introduction	2
I	PARAMETER IDENTIFICATION	7
II	THEORETICAL DEVELOPMENT	11
	2.1 Introduction	11
	2.2 Random Excitations	14
	2.3 Deterministic Excitations	33
III	IDENTIFICATION OF SIMULATED LINEAR DYNAMICAL SYSTEMS	50
	3.1 Introduction	50
	3.2 Identification of Simulated One-Dimensional	51
	Systems by Random Excitations	_
	3.3 Identification of Simulated One-Dimensional Systems by Sinusoidal Excitations	69
	3.4 Identification of Multi-dimensional Systems	80
	3.5 Identification Using Only Acceleration Data	86
IV	COMPUTER SIMULATION AND IDENTIFICATION	90
	4.1 Computer Techniques	90
	4.2 Computer Program Abstract I	96
	4.3 Computer Program Abstract II	141
	4.4 Computer Program Abstract III	159
v	SUMMARY AND CONCLUSIONS	184
	APPENDIX	
	The Concept of the Gaussian White Noise Process	188

LIST OF FIGURES

Figure		Page
I	(a) Chain-Like One Dimensional System(b) Two-Dimensional System	12 12
II	Coupled Oscillator System	20
III	NASA-Goddard Taped Excitation Spectrum	62
IV	Computer Flow Operation	92
v	Storage Mode, LOC2	107
VI	Storage Mode, LOC3	108

LIST OF TABLES

Table		Page
I	Estimated Parameters, Experiment I (Random)	53
II	Estimated Parameters, Experiment II (Random)	57
III	(a), (b), Estimated Paramenters, Experiment III (Random)	60
IV	Estimated Parameters, Experiment IV (Random)	62
V	(a), (b), Estimated Parameters,Experiment V (Random)	65
	(c) Estimated Parameters, ExperimentV (Random)	68
VI	(a) Estimated Parameters, Experiment I (Sinusoidal)	71
	(b) Estimated Parameters, Experiment I(Sinusoidal)	72
	<pre>(c) Estimated Parameters, Experiment I (Sinusoidal)</pre>	73
VII	(a), (b), Estimated Parameters, Experiment II (Sinusoidal)	75
	(c), (d) Estimated Parameters, Experiment II (Sinusoidal)	76
/III	Estimated Parameters, Experiment III (Sinusoidal)	7 9
IX	Estimated Parameters, Experiment IV (Sinusoidal)	81
X	(a) Estimated Parameters, Multi-Dimensional System (Random)	84
	(b) Estimated Parameters, Multi-Dimensional System (Sinusoidal)	85
XI	Estimated Parameters Using Only Acceleration Data	89

OBJECTIVE

The development of a practical computational technique for the identification of constant parameter linear systems based upon the system response to random or sinusoidal excitation.

INTRODUCTION

This study of duration February 1967 - April 1968 has been devoted to the analytical development and digital simulation experiences of a parameter estimation technique that appears to be of superior practical significance for the identification of real systems.

The technique is applicable to linear systems and is simply based upon the properties of statistical expectations and time averages. It also has a potential application to non-linear system identification. The physical situation that one often encounters is that a dynamical model of the system, via differential equations is given, but the various physical parameters, in particular, the mass, spring, and damping factors are unknown. In order to obtain a complete useful model of the system, it is necessary that these parameters are known. The technique presented in this report requires knowledge of the dynamics of the system; that is, the displacements, velocities, and accelerations, as well as the input data. From these data all unknown parameters can be determined by forming various moments, or time averages, of the input and the dynamical output variables of the system. The resulting linear equations in the unknown parameters are then solved to yield the desired estimates. A theoretical study of the technique was accomplished for linear systems in both the random and deterministic input case.

1

These results appear in Chapter II. This theoretical study greatly clarifies the role of such parameters as the length of time over which the system is to be observed, the nature of the spectrum of the excitation, as well as the role of the steady-state dynamics of the system in effecting a usable identification scheme.

When the mass is known, only the displacements and velocities are required in order to determine the estimates of the spring and damping constants.

The technique is applied to study digitally simulated models of one-dimensional linear systems with five degrees of freedom. The parameters for simulation are taken as those of a NASA-Goddard 5-mass experimental model. The simulated model is subjected to various random as well as sinusoidal excitations. The estimated parameters are found to agree with the actual parameters up to four and five place accuracy! Even more of a significant feature is that the actual system simulated parameters have a spread of five or six orders of magnitude between the mass and the spring constant. A major problem in parameter search techniques is to determine the range of parameter values. For the present technique this presents no problem as can be seen by the extremely accurate estimated parameter values.

A completely detailed program for simulation, as well as estimation of parameters has been developed for linear chain-like mass-spring-dashpot systems with arbitrary degrees of freedom and an arbitrary number of force inputs to the system. This appears in Chapter II.

The technique was also applied to a simulated two-dimensional system of masses, springs, and dashpots supplied to us by NASA-Goddard. Again, parameter estimation was truly outstanding as can be seen in Chapter III of this report.

It can safely be stated at this point that when displacement, velocity and acceleration data is available, system identification can be accomplished quite satisfactorily by this method.

It was hoped that actual data taken from vibration tests on the NASA-Goddard five mass system could have been analyzed to obtain an estimate of the real system parameters. However, the tests only yielded acceleration data. Digital integration of this data was attempted in order to yield an estimate of the velocities and displacements of the five masses. A least squares trend was removed to account for the fact that the initial conditions of the velocities and displacements are unknown at the point at which the acceleration record commences. Due to the numerical inaccuracies present when integrating and removing trends twice, satisfactory estimates were not obtainable from the real system

data during the duration of the contract period. (This is, in part, due to the time required to put the vibration data on tape and then digitize it in a form suitable for computation. This was all accomplished by NASA-Goddard.) However, we do not hesitate to add that this is merely a numerical problem of simulation, which can certainly be resolved with future investigations. We present a first step in this direction in the present report, by integrating the acceleration once and identifying two parameters of a damped oscillator.

Thus, we can say in summary that:

- A. A method has been proposed for identification of linear and non-linear constant coefficient systems, by random or sinuscidal excitations as discussed in Chapter I, Parameter Estimation.
- B. The method is studied here for linear systems, subjected to random or sinusoidal excitations.
- C. The theoretical studies have generated a rather broad understanding of the method, as presented in Chapter II, Theoretical Development.
- D. The method yeilds extremely accurate parameter identification for rather complex systems, as presented in Chapter III, Identification of Simulated Linear Dynamical Systems.

- E. A complete discussion of the simulation techniques as well as the program details are presented in Chapter IV, Computer Simulation and Identification.
- F. Suggestions for future investigations are presented in Chapter V, Summary and Conclusions.

It is to be noted that the identification scheme proposed here in general places no restriction on what combination of variables are to be multiplied together and subsequently time averaged in order to create the necessary algebraic equations. On the other hand, it is to be recognized that if the well known method of least squares curve fitting technique is applied to the identification problem, there will result an identification of the type proposed here with a particular form of variable products. For the hypothetical situation where one has available both the exact form of the system equations and error-free response and forcing function data, a trivial case exists that can be solved without resorting to time averages of variable products. By trivial it is meant that all one has to do is select data at a sufficient number of distinct times to form the algebraic equations. In such a situation, the least squares curve fitting criterion has no real meaning or significance since there is no error to minimize. But when one considers "real life" situations, where a system with an infinite number of degrees of freedom is approximated by one with a finite number, non-linearities are either ignored or guessed at in form, measured data contains errors, or the coupling is incorrectly assumed; the question remains to be answered as to what "product form" to use to produce the "best" estimate of the parameters. In fact, the "best product form" to use will probably be a function of the particular assumed form of system equations.

CHAPTER I

PARAMETER IDENTIFICATION

The problem of identification of a system or of a process is now recognized as a basic part of modern engineering technique. It is clear that we must identify in order to design and in order to control in any optimal fashion. Thus, the subject of identification has been actively studied in the past decade, and will continue to develop both theoretically and practically as engineers continue to expand our technology.

Identification problems in engineering have been most actively pursued by electrical engineers in the past 10-15 years primarily motivated by the desire for adaptive and optimal control of systems and processes. Thus, the ideas of cross-correlations and cross-spectral densities for estimating the impulse response function or the frequency response function have been generated by them. Furthermore, electrical engineers and optimal control engineers have been forward in their efforts to apply parameter estimation schemes for identification purposes.

Vibrations engineers have, to a large extent, remained with the classical technique of driving a structural system by sinusoidal excitations at various

frquencies to determine the frequency response characteristics of structural systems. Parameter estimation ideas have not as yet permeated the bag of tricks that structural vibrations engineers can use freely in determining models of structural systems. Although new techniques based upon second order statistics, mean square approximations, or energy techniques are beginning to change that picture somewhat.

The purpose of this report is to present a parameter identification technique. As we indicated above, there is certainly no lack of parameter identification techniques in the literature. However, the technique that is presented in the present report possesses noteworthy features.

In the first place, the technique is simple to comprehend and to apply. Second, the same theoretical concept applies to both random and sinusoidal excitations; indeed, even sweep sinusoidal excitations. Third, it appears that the technique can be extended to non-linear systems with unknown parameters since the basic theory would remain unchanged. Fourth, the technique does not appear to be affected by wide ranges of the parameter values that often plague optimum parameter search techniques. Finally, in simulation studies the technique has produced highly accurate parameter estimates for reasonably complex systems.

Thus, it appears that the identification technique proposed in this report holds promise of being of practical significance for identification of arbitrary systems with unknown constant parameters.

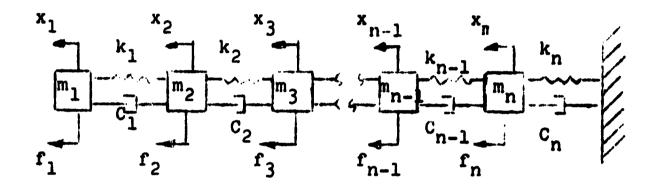
This report is limited to the study of linear sy-It presents a theoretical development of the ideas, stems. and estimates of parameters of simulated 5-mass chain-like systems as well as a two-mass two-dimensional system, among others. These systems, as well as the actual parameters, were supplied by NASA-Goddard. In each case, the mass, spring, and damping constants are estimated from the digitally simulated system subjected to random as well as sinusoidal inputs. It is noteworthy to point out that the mass and spring constants are six orders of magnitude apart in their values and yet each is estimated with very high accuracy. It is also noteworthy to add that a single sinusoidal excitation at what appears to be any arbitrary frequency will yield the identification of the system parameters. Thus, one does not have to excite the system at a multitude of frequencies, or in some frequency bandwidth as has been implied by many previous investigations. Finally, the description of the digital simulation techniques as well as the program for simulation and identification are presented.

One point must be made concerning the identification of systems via parameter estimation techniques. That is, the methods that have been developed as well as the method we describe in this report will identify the analytical or simulated model of the actual physical system. Hence, if the analytical model is not a satisfactory equivalent or approximation to the system, then clearly, one is not identifying the real system. Thus, any analytical model identification scheme (such as parameter estimation) is only as good as the model that will be used to describe the physical system. (We note that identification schemes can sometimes be used to help provide a better system model. However, we will not dwell on that point here.)

With this understanding of the proper role of identification by parameter estimation, we can now proceed to describe our approach.

CHAPTER II

THEORETICAL DEVELOPMENT


2.1 Introduction

The basic assumptions that we make in this chapter are that a linear time invariant system is being driven by some excitation, either random or deterministic. It will serve our purposes to think of our system as being composed of a number of masses connected to one another by linear springs and linear dashpots. We further assume that each mass may be driven by a separate excitation and further that the accelerations, velocities and displacements of each mass as well as the various excitations may be noiselessly observed, or at least, obtainable by suitable means. We point out that this rules out pure white noise as an input for reasons that shall be discussed below.

We assume that the various displacements, velocities and accelerations of the masses are related to the excitations via a system of linear differential equations of known form and order, but with unknown mass, spring, and damping parameters.

In general, our systems have the character of those given in Figure I. Figure I (a) shows a one-dimensional

(a) Chain-Like, One-Dimensional System

(b) Two-Dimensional System

I

I

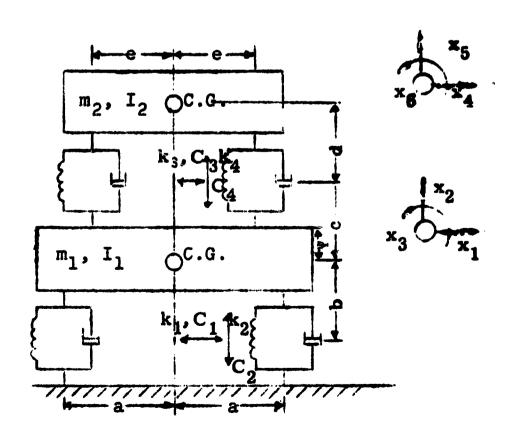


Figure I

chain-like system; Figure I(b) shows a two-dimensional system.

In either case the form of the linear differential equation that governs the dynamics of these systems is

$$\frac{\dot{y}}{\dot{y}}(t) = A \, \overline{\dot{y}}(t) + \overline{\dot{f}}(t) \qquad (2.1.1)$$

where the \bar{y} vector is the vector of all the states of system. That is, its components are the displacements and velocities of the masses, the A matrix is a constant matrix made up of the various spring and damping constants, the \bar{f} vector is the excitation vector,

We have assumed all mass and inertia constants to be unity in the general equation (2.1.1). These constants will enter explicitly in the specific classes of systems we study below.

Thus, we write

$$\bar{y}_{(t)} = \begin{pmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{pmatrix} \qquad \bar{f} = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix} \qquad A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & & a_{nn} \end{pmatrix} (2.1.2)$$

for the vectors and matrix defining the system.

In our development below we shall be concerned with both steady state oscillations as well as transient oscillations. Naturally, we assume the system to be stable in order that the steady state oscillation exists. Having stated these few introductory remarks, we can now present our detailed analytical development.

2.2 Random Excitations

Let us assume that the components $f_1(t)$, i=1, ..., n of the $\overline{f}(t)$ excitation vector are stationary random processes possessing as many moments as may be required by our analysis (in general, for linear systems only second moment properties will be required). We will further assume that the excitation processes are smooth enough to guarantee that all the derivatives $\dot{y}_1(t)$ exist. (The reader may recall that this is <u>not</u> the case if the excitation is a Gaussian White noise with Dirac "Delta" function for its covariance. See appendix)

We can immediately write a general solution to the A matrix for the linear system 2.1.1 as follows. We multiply equation 2.1.1 by the transpose vector $\overline{\mathbf{y}}'(t)$ and take expectations of the resulting equation to yield

$$E\{\overline{y}(t) \ \overline{y}'(t)\} = A E\{\overline{y}(t) \ \overline{y}'(t)\} + E\{\overline{f}(t) \ \overline{y}'(t)\} (2.2.1)$$

The equation 2.2.1 can be solved for the matrix A as,

$$[E\{\bar{y}(t) \ \bar{y}'(t)\} - E\{\bar{f}(t) \ \bar{y}'(t)\}][E\{\bar{y}(t) \ \bar{y}'(t)\}]^{-1} = A \quad (2.2.2)$$

assuming that the inverse matrix

$$\left[E\{\overline{y}(t)\ \overline{y}'(t)\}\right]^{-1} \tag{2.2.3}$$

exists.

The relation 2.2.2 presents a general solution of the identification of A for linear systems of the form 2.1.1, if 2.2.3 exists. The existence of this inverse is guaranteed if there is no linear relationship among the components of the $\overline{y}(t)$ vector, since the covariance matrix $E\{\overline{y}(t)|\overline{y}'(t)\}$ is symmetric and non-negative definite. The non-negative definiteness follows from the fact that

$$E\{(\sum_{i=1}^{n} \alpha_{i} y_{i}(t))^{2}\} \geq 0 \qquad (2.2.4)$$

for any constants $(\alpha_1, \ldots, \alpha_n)$. Furthermore, the equality sign in 2.2.4 can only hold if there exists a linear relationship among the components of $\overline{y}(t)$. Thus, 2.2.3 exists and the constant matrix A is solvable as given by equation 2.2.2 on the basis of observations of the \overline{y} and \overline{r} vectors.

This is somewhat more general than we wish to consider. Since the estimation of the various moments in 2.2.2 as well as the inverse matrix, especially in the transient situation where the moments are functions of t, are difficult to estimate. Therefore, to proceed with our development let us assume that the transients have, for all practical purposes, died out and the system is operating in the steady state. It is known that the \overline{y} -process is a statistically stationary process in that case and all the moments present in equation 2.2.2 are constant.

Furthermore, they can be estimated simply by taking time averages over discrete or continuous values of the time parameter.

Therefore, it follows, in the stationary case, that

$$E\{y_1^r(t)\}$$
, $E\{y_1^r(t)|y_j^s(t)\}$, $i,j=1,...,n$ (2.2.4)
 $r,s=0,1,2,...$

exist and are constant in time. Hence,

$$\frac{d}{dt} E\{y_1^r(t)\} = 0$$

$$\frac{d}{dt} E\{y_1^r(t) y_j^s(t)\} = 0$$
(2.2.5)

for i,j and r,s as above.

We now specify that the \overline{y} -process is a stationary, mean square differentiable process. Such processes are generated, for example, by passing a stationary mean square continuous process (i.e., a process with continuous covariance function) through a time invariant linear filter. Thus, if the excitation process \overline{f} is mean square continuous, we are assured that the stationary \overline{y} -process is mean square continuous. It is because of the desired differentiability properties of the \overline{y} -process that we are ruling out the white noise type excitations in the random case. We explain this in full detail in the Appendix.

Now as a result of the mean square differentiability of the \bar{y} -process the derivative operator in 2.2.5 can be taken into the expectation operator to give

$$E\{y_1^{r-1}(t) \ \dot{y}_1(t)\} = 0$$
 (a)

(2.2.6)

$$rE\{y_{i}^{r-1}(t) \dot{y}_{i}(t) y_{j}^{s}(t)\} + sE\{y_{i}^{r}(t) y_{j}^{s-1}(t) \dot{y}_{j}(t)\} = 0$$
 (b)

In particular, it follows that for r = 2 in 2.2.6 a and r = s = 1 in 2.2.6 b we obtain

$$E\{y_1(t) \dot{y}_1(t)\} = 0$$
 (a)

(2.2.7)

$$E\{y_{1}(t) \dot{y}_{j}(t)\} + E\{\dot{y}_{1}(t) y_{j}(t)\} = 0$$
 (b)

The first equality in equation 2.2.7 states the well-known fact that a stationary process and its derivative are uncorrelated at any given time. We repeat that the equations 2.2.7 do not hold if the excitation process is a white noise as will be seen in the Appendix.

Thus, on the basis of equations 2.2.6 and 2.2.7, the identification of the parameter matrix A as given by formula 2.2.2 reduces greatly in the stationary case. We illustrate these ideas by a few very simple analytical examples.

Example I.

Consider the system

$$\dot{y}(t) + ay(t) = f(t)$$
 (2.2.8)

Upon multiplying 2.2.8 by y(t) and taking expectations, we find

$$E\{y(t) \dot{y}(t)\} + aE\{y^{2}(t)\} = E\{f(t) y(t)\}$$
 (2.2.9)

However, from 2.2.7 a it follows that

$$a = \frac{E\{f(t) y(t)\}}{E\{y^{2}(t)\}}$$
 (2.2.10)

For our estimate of a, therefore, one merely estimates the moments that appear in 2.2.10.

Example II.

We consider here the somewhat more complex system of coupled oscillators as shown in Figure II.

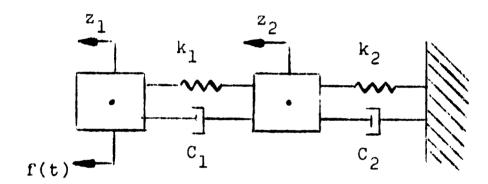


Figure II

Assuming the masses to be unity, we may write the equations of the system as,

$$\ddot{z}_{1}(t) + C_{1}[\dot{z}_{1}(t) - \dot{z}_{2}(t)] + k_{1}[z_{1}(t) - z_{2}(t)] = f(t)$$

$$\ddot{z}_{2}(t) + C_{2}\dot{z}_{2}(t) + k_{2}z_{2}(t) - C_{1}[\dot{z}_{1}(t) - \dot{z}_{2}(t)]$$

$$- k_{1}[z_{1}(t) - z_{2}(t)] = 0$$
(2.2.11)

1

(Figure 1

1

I

Upon setting

$$\begin{pmatrix} z_1 \\ \dot{z}_1 \\ z_2 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$

$$(2.2.12)$$

we may rewrite 2.2.11 as the system

$$\dot{y}_{1}(t) = y_{2}(t)$$

$$\dot{y}_{2}(t) = -C_{1}[y_{2}(t) - y_{4}(t)] - k_{1}[y_{1}(t) - y_{3}(t)] + f(t)$$

$$\dot{y}_{3}(t) = y_{4}(t)$$

$$\dot{y}_{4}(t) = -C_{2}y_{4}(t) - k_{2}y_{3}(t) + C_{1}[y_{2}(t) - y_{4}(t)]$$

$$+ k_{1}[y_{1}(t) - y_{3}(t)]$$
(2.2.13)

The second equation in 2.2.13 is multiplied by y_1 , y_2 and then averaged. The fourth equation in 2.2.13 is multiplied by y_3 , y_4 and averaged. On the basis of equations 2.2.7 it will follow that,

$$\begin{split} & E\{y_2^2\} + E\{fy_1\} = -C_1 \ E\{y_1y_4\} + k_1(E\{y_1^2\} - E\{y_1y_3\}) \\ & E\{fy_2\} = C_1 \ (E\{y_2^2\} - E\{y_2y_4\}) - k_1 \ E\{y_2y_3\} \\ & - E\{y_4^2\} = -k_2 \ E\{y_3^2\} + C_1 \ E\{y_2y_3\} + k_1(E\{y_1y_3\} - E\{y_3^2\}) \\ & 0 = -C_2 \ E\{y_4^2\} + C_1 \ (E\{y_2y_4\} - E\{y_4^2\}) + k_1 \ E\{y_1y_4\} \end{split}$$

The set of four linear algebraic equations, 2.2.14, in the four unknowns are easily solved to determine the parameters C_1 , k_1 , C_2 , and k_2 .

Thus, for example,

$$C_{1} = \frac{\begin{bmatrix} E\{y_{2}^{2}\} + E\{fy_{1}\} & E\{y_{1}^{2}\} - E\{y_{1}y_{3}\} \\ E\{fy_{2}\} & - E\{y_{2}y_{3}\} \end{bmatrix}}{B}$$

$$\begin{vmatrix} - E\{y_{1}y_{4}\} & E\{y_{2}^{2}\} + E\{fy_{1}\} \\ E\{y_{2}^{2}\} - E\{y_{2}y_{4}\} & E\{fy_{2}\} \end{bmatrix}$$

$$E\{y_{2}^{2}\} - E\{y_{2}y_{4}\} & E\{fy_{2}\} \\ B$$

where

$$B = \begin{bmatrix} -E\{y_1y_4\} & E\{y_1^2\} - E\{y_1y_3\} \\ \\ E\{y_2^2\} - E\{y_2y_4\} - E\{y_2y_3\} \end{bmatrix}$$

Similar equations yield C_2 , k_2 as well. We shall leave the discussion of numerical results of this system for the next chapter.

For the case of unknown mass, spring and damping constants one must obtain one more set of moment equations in order to obtain a solvable set of linear simultaneous equations. We illustrate the problems that may occur in the proper choice of the third moment equation by the following simple oscillator.

Let us consider the case of the system given by

$$m\ddot{y}(t) + C\dot{y}(t) + ky(t) = f(t)(2.2.16)$$

where m, C, k are all unknown.

Upon multiplying 2.2.16 by y, \dot{y} and taking expectations, we obtain equations analogous to those in our previous examples, as,

$$m E(y\ddot{y}) + C E(y\dot{y}) + k E(y^{2}) = E(fy)$$

$$m E(\dot{y}\ddot{y}) + C E(\dot{y}^{2}) + k E(\dot{y}y) = E(f\dot{y})$$

$$(2.2.17)$$

By equation 2.2.7 a we can reduce these equations to yield

$$- m E\{\dot{y}^2\} + k E\{y^2\} = E\{fy\}$$

$$C E\{\dot{y}^2\} = E\{f\dot{y}\}$$

$$= E\{f\dot{y}\}$$
(a)
(2.2.18)

However, we require one more equation. One might consider multiplying 2.2.16 by y^2 , for example, and then take expectations to yield

$$m E\{y^2\ddot{y}\} + C E\{y^2\dot{y}\} + k E\{y^3\} = E\{fy^2\}$$
 (2.2.19)

where, by 2.2.6 a it follows that $E\{y^2y\}$ is identically zero.

But, in general, in practice the excitation function will be a zero mean Gaussian random process. Hence, y, y, y are all Gaussian processes; each is a linear operator of the input process f.

Thus, specifically one has,

$$y(t) = \int_{-\infty}^{t} H(t-\tau) f(\tau) d\tau$$

$$\dot{y}(t) = \int_{-\infty}^{t} \dot{H}(t-\tau) f(\tau) d\tau$$

$$\ddot{y}(t) = -\frac{1}{m} \int_{-\infty}^{t} [C\dot{H}(t-\tau) + kH(t-\tau)] f(\tau) d\tau + \frac{1}{m} f(t)$$

Thus, any third order moment in y, \dot{y} , \ddot{y} will involve moments of the form

$$E\{f(t_1) \ f(t_2) \ f(t_3)\}\$$
 (2.2.21)

However, it is a well-known fact that all third order moments of a Gaussian process are identically zero. Indeed, all odd order moments of a Gaussian process are zero so that equation 2.2.19 cannot yield any new information as all its terms are zero.

Hence, if we cannot apply odd order moments to yield our third equation, the next question is: "What about even moments?". Here, we get into trouble of a different nature, as we now demonstrate. Let us, for example choose

$$m E\{y^{3}\ddot{y}\} + C E\{y^{3}\dot{y}\} + kE\{y^{4}\} = E\{fy^{3}\}$$
 (2.2.22)

as our third equation, again the term $E\{y^3\dot{y}\}$ is zero. It is well known that the even product moments of zero mean jointly distributed Gaussian random variables can be evaluated in terms of the second moments. In particular for X_1 , X_2 , X_3 , X_4 jointly Gaussian, one has

$$E\{X_{1}X_{2}X_{3}X_{4}\} = E\{X_{1}X_{2}\} E\{X_{3}X_{4}\}$$

$$+ E\{X_{1}X_{3}\} E\{X_{2}X_{4}\}$$

$$+ E\{X_{1}X_{4}\} E\{X_{2}X_{3}\}$$
(2.2.23)

If we apply the identity 2.2.23 to the terms of equation 2.2.22 we obtain

$$E(y^3\ddot{y}) = 3 E(y^2) E(y\ddot{y})$$

 $E(y^4) = 3 (E(y^2))^2$ (2.2.24)
 $E(fy^3) = 3 E(y^2) E(yf)$

Thus, equation 2.2.22 may be written as,

$$3 \text{ m } E\{y^2\} E\{\dot{y}^2\} + 3 \text{ k } (E\{y^2\})^2 = 3 E\{y^2\} E\{yf\} (2.2.25)$$

We immediately recognize that equation 2.2.25 is equation 2.2.18 a multiplied by the factor $3 E\{y^2\}$.

Hence, equation 2.2.22 yields no new information.

Again, if one chooses any even moment equation, it will always reduce to a linear combination of the equations 2.2.18 for the zero mean Gaussian case.

Since, in practice, noise generators yield Gaussian or near Gaussian processes, it will not be possible to identify the three unknowns on the basis of moments

obtained from equation 2.2.16 by multiplying by powers of y, y and averaging. However, if the noise process used for excitation is definitely non-Gaussian, then one can establish moments of the nature of those we have described. We shall present data that displays this phenomenon in the next chapter. How then are we to obtain a third condition for evaluating the unknown parameters? The most obvious choice is to use the acceleration variable. This is quite practical since, in general, it is the acceleration data that is actually obtained from experimental tests.

Therefore, we can multiply equation 2.2.16 by \ddot{y} and take expectations giving us our third, and independent, equation

$$m E{\ddot{y}^2} + C E{\dot{y}\ddot{y}} + k E{y\ddot{y}} = E{f\ddot{y}}$$
 (2.2.26)

Finally, the system of linear equations available for parameter identification are given as,

$$- m E\{\dot{y}^{2}\} + k E\{y^{2}\} = E\{fy\}$$

$$C E\{\dot{y}^{2}\} = E\{f\dot{y}\}$$

$$m E\{\ddot{y}^{2}\} - k E\{\dot{y}^{2}\} = E\{f\ddot{y}\}$$
(2.2.27)

Thus, in order to identify linear systems by random excitations, we shall construct moment equations by multiplying the coupled equations by the displacement, the velocity and then the acceleration. We illustrate this for the general one-dimensional chain-like system as shown in Figure I (a).

Denoting the displacement, velocity, and acceleration of the i^{th} mass by x_i , \dot{x}_i , \ddot{x}_i , the equations of motion for N masses in the chain are,

Upon multiplying the ith equation in 2.2.28 by x_i , \dot{x}_i , \ddot{x}_i respectively, we obtain the following system of parameter identification equations.

$$\begin{aligned} & \mathbf{m}_{1} \mathbf{E}(\mathbf{x}_{1}\ddot{\mathbf{x}}_{1}) = \mathbf{E}(\mathbf{x}_{1}\mathbf{f}_{1}) - \mathbf{C}_{1} \mathbf{E}(\mathbf{x}_{1}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) - \mathbf{k}_{1} \mathbf{E}(\mathbf{x}_{1}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & \mathbf{m}_{1} \mathbf{E}(\dot{\mathbf{x}}_{1}\ddot{\mathbf{x}}_{1}) = \mathbf{E}(\dot{\mathbf{x}}_{1}\mathbf{f}_{1}) - \mathbf{C}_{1} \mathbf{E}(\dot{\mathbf{x}}_{1}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) - \mathbf{k}_{1} \mathbf{E}(\dot{\mathbf{x}}_{1}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & \mathbf{m}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{1}^{2}) = \mathbf{E}(\ddot{\mathbf{x}}_{1}\mathbf{f}_{1}) - \mathbf{C}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{1}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) - \mathbf{k}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{1}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & \mathbf{m}_{2} \mathbf{E}(\ddot{\mathbf{x}}_{2}\ddot{\mathbf{x}}_{2}) = \mathbf{E}(\ddot{\mathbf{x}}_{2}\mathbf{f}_{2}) - \mathbf{C}_{2} \mathbf{E}(\ddot{\mathbf{x}}_{2}(\dot{\mathbf{x}}_{2} - \dot{\mathbf{x}}_{3})) - \mathbf{k}_{2} \mathbf{E}(\dot{\mathbf{x}}_{2}(\mathbf{x}_{2} - \mathbf{x}_{3})) \\ & + \mathbf{C}_{1} \mathbf{E}(\dot{\mathbf{x}}_{2}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) + \mathbf{k}_{1} \mathbf{E}(\dot{\mathbf{x}}_{2}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & \mathbf{m}_{2} \mathbf{E}(\ddot{\mathbf{x}}_{2}^{2}) = \mathbf{E}(\ddot{\mathbf{x}}_{2}\mathbf{f}_{2}) - \mathbf{C}_{2} \mathbf{E}(\dot{\mathbf{x}}_{2}(\dot{\mathbf{x}}_{2} - \dot{\mathbf{x}}_{3})) - \mathbf{k}_{2} \mathbf{E}(\dot{\mathbf{x}}_{2}(\mathbf{x}_{2} - \mathbf{x}_{3})) \\ & + \mathbf{C}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{2}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) + \mathbf{k}_{1} \mathbf{E}(\dot{\mathbf{x}}_{2}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & + \mathbf{C}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{2}(\dot{\mathbf{x}}_{1} - \dot{\mathbf{x}}_{2})) + \mathbf{k}_{1} \mathbf{E}(\ddot{\mathbf{x}}_{2}(\mathbf{x}_{1} - \mathbf{x}_{2})) \\ & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \end{aligned}$$

Naturally, in the steady state case we can apply the identities 2.2.7 in order to simplify further the system of equations 2.2.29. One point, in passing, is

etc.

that the chain-like nature of the system 2.2.28 yields a set of parameter estimation equations that can be solved sequentially. Thus, in 2.2.29 we can solve for m_1 , C_1 , and k_1 from the first three equations, then substitute these estimates in the next set of three equations to yield estimates of m_2 , C_2 , and k_2 . This procedure may be continued along the chain. We shall amplify this in Chapter IV on the details of computer simulation of the various systems.

One obvious question that one must consider concerns the errors that are made when the system is not yet in the stationary state. This is likely to occur when the damping factor, C, is small relative to the spring constant k. We can easily illustrate the effects of an error that is made in the estimated value $E\{y\dot{y}\}$, say, for the simple oscillator.

Let us assume the mass, m, is unity in the equation 2.2.16 for the simple one degree of freedom oscillator. We assume C, k are unknown.

Then equations 2.2.17 yield for estimates

$$\hat{C} = \frac{E\{fy\} - k E\{yy\} - E\{yy\}}{E\{y^2\}}$$

$$\hat{k} = \frac{E\{fy\} - C E\{yy\} - E\{yy\}}{E\{y^2\}}$$

$$(2.2.30)$$

where " ^ " denotes estimate.

If k is very large relative to C, then a small error in the estimate of $E\{y\dot{y}\}$ shall create a large error in \hat{C} . Thus, upon placing $E\{y\dot{y}\}$ equal to zero when it is not quite zero can yield large errors in \hat{C} . Indeed, the k $E\{y\dot{y}\}$ greatly dominates the $E\{\dot{y}\ddot{y}\}$ term. Hence a small error in $E\{\dot{y}\ddot{y}\}$ will not affect the \hat{C} as much.

The story is quite different for the estimate of k, that is, \hat{k} . The error in $E\{y\dot{y}\}$ by setting it equal to zero has very little effect on \hat{k} if $\hat{C} << k$. Thus, one would conclude that \hat{k} could still be estimated reasonably well by setting various of the second moments equal to zero, even when this is in error due to the fact that the system has not reached steady state yet. One would also conclude that the damping coefficient estimate would suffer greatly. This is exactly what was observed in our simulation experiments as discussed in Chapter III.

When the system is in the steady state, the estimates obtained from simulations were quite acceptable.

2.3 Deterministic Excitations

We shall now concentrate upon the problem of identification of linear systems by means of deterministic excitations of the type that are readily available in laboratory test situations. The most common types of excitations that can be generated in the laboratory are the pure sinusoidal and the sweep sinusoidal oscillations.

In order to illustrate the approach one takes for such a deterministic input, let us consider the simple oscillator with a sinusoidal excitation.

Thus, consider

$$m\ddot{y} + C\dot{y} + ky = \sin \omega t \qquad (2.3.1)$$

We assume the system to be asymptotically stable in order that the transients will die out. In this case, it is equivalent so specify that bounded inputs yield bounded outputs.

For zero initial conditions the solution may be written as,

$$y_{(t)} = \int_{0}^{t} d\tau \ H(t-\tau) \sin \omega \tau \qquad (2.3.2)$$

where

$$H(t) = \frac{1}{m\sqrt{\frac{k}{m} - \frac{c^2}{4m^2}}} e^{-\frac{C}{2m}t} \sin \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}} t \qquad (2.3.3)$$

We define an average operator of the form

$$\langle u(t) \rangle \equiv \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} u(t) dt,$$
 (2.3.4)

for functions u(t) for which this operator exists.

Now on the basis of this operator, let us attempt to identify the constants m, C, and k. We shall multiply equation 2.3.1 by y, \dot{y} , \ddot{y} , respectively, and take averages as defined by equation 2.3.4 to yield

$$m \langle y\ddot{y} \rangle + C \langle y\dot{y} \rangle + k \langle y^2 \rangle = \langle fy \rangle$$

$$m \langle \dot{y}\ddot{y} \rangle + C \langle \dot{y}^2 \rangle + k \langle y\dot{y} \rangle = \langle f\dot{y} \rangle$$

$$m \langle \ddot{y}^2 \rangle + C \langle \ddot{y}\dot{y} \rangle + k \langle y\ddot{y} \rangle = \langle f\ddot{y} \rangle$$

$$(2.3.5)$$

We now wish to investigate these terms in somewhat more detail.

One simply obtains

$$\langle y\dot{y} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} y(t) \dot{y}(t) dt = \lim_{T \to \infty} \frac{1}{2T} [y^{2}(t)] = 0 \quad (2.3.6)$$

where we have used the fact that the initial conditions are zero and y(t) is bounded on the interval $(0,\infty)$ since the excitation is bounded.

Therefore, we can in the same fashion determine that

$$\langle \dot{y}\ddot{y} \rangle = 0$$

$$\langle y\ddot{y} \rangle = -\langle \dot{y}^2 \rangle$$
(2.3.7)

It will follow that 2.3.5 can be written as,

$$- m \langle \dot{y}^{2} \rangle + k \langle y^{2} \rangle = \langle fy \rangle$$

$$C \langle \dot{y}^{2} \rangle = \langle f\dot{y} \rangle$$

$$m \langle \ddot{y}^{2} \rangle - k \langle \dot{y}^{2} \rangle = \langle f\ddot{y} \rangle$$

$$(2.3.9)$$

The reader will recognize the equations 2.3.9 to be identical to the parameter identification equations 2.2.27 except that the expectation operator in 2.2.27 is replaced by the time average operator as defined in 2.3.4.

However, there is a very significant distinction to be made in the derivation of 2.3.9 as opposed to the derivation of 2.2.27. In the derivation of 2.2.27 it was assumed that the processes over which the expectations are applied are stationary processes (at least up to the second moments). This is guaranteed by our assumptions of a stationary process input, into the system 2.1.1, where the constant matrix A is a stability matrix. In that case, the steady state solution is a stationary random process and equation 2.2.27 applies. On the other hand, the equation 2.3.9 did not make use of the assumption of stationarity, or steady state, for its derivation. This is a very significant point. fact, for the sinusoidal input case, if $y_s(t)$ is the steady state solution, we cannot identify all three constants m, C, k. This can be illustrated very simply in the following fashion. The steady state solution is given.

(2.3.10)

where Q, ϕ are easily determined in terms of the integrals

$$\int_{0}^{\infty} H(\tau) \sin \omega \tau d\tau. \int_{0}^{\infty} H(\tau) \cos \omega \tau d\tau.$$

Therefore, we find,

$$\dot{y}_{s}(t) = \omega Q \cos (\omega t - \phi)$$

$$\ddot{y}_{s}(t) = -\omega^{2} Q \sin (\omega t - \phi)$$

$$(2.3.11)$$

Upon applying 2.3.11 into the equations 2.3.9 we find the equations

$$- m \langle \dot{y}_{s}^{2} \rangle + k \langle y_{s}^{2} \rangle = \langle fy_{s} \rangle$$

$$C \langle \dot{y}_{s}^{2} \rangle = \langle f\dot{y}_{s} \rangle \qquad (2.3.12)$$

$$m \langle \ddot{y}_{s}^{2} \rangle = \langle f\ddot{y}_{s} \rangle$$

We easily evaluate

$$\langle y_s^2 \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T Q^2 \sin^2(\omega t - \phi) dt = \frac{Q^2}{2}$$

$$\langle \dot{y}_{s}^{2} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \omega^{2}_{Q}^{2} \cos^{2}(\omega t - \phi) dt = \frac{\omega^{2}_{Q}^{2}}{2}$$
 (2.3.13)

$$\langle \ddot{y}_s^2 \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \omega^{4}Q^2 \sin^2(\omega t - \phi) dt = \frac{\omega^{4}Q^2}{2}$$

The determinant of the linear system of equations 2.3.12 in the unknowns m, C, k is

$$-\frac{\omega^{2}Q^{2}}{2} \qquad 0 \qquad \frac{Q^{2}}{2}$$

$$0 \qquad \frac{\omega^{2}Q^{2}}{2} \qquad 0 \qquad = 0 \qquad (2.3.14)$$

$$\frac{\omega^{4}Q^{2}}{2} \qquad 0 \qquad -\frac{\omega^{2}Q^{2}}{2}$$

since the third row is $-\omega^2$ times the first row.

Hence, we <u>cannot</u> identify all three unknowns by these equations in the steady-state case with sinusoidal

excitations. The reason is quite clear: y_s and its two derivatives are not linearly independent of one another. However, any two unknown parameters can be identified. This will be illustrated in simulated examples in the next chapter. Of course, this problem does not enter into the random excitation case simply because the sample functions and their derivatives are not linearly dependent. Therefore, one would not expect to obtain linearly dependent moments from the stationary random solution processes.

The equation 2.3.9 was obtained for a simple oscillator. We can easily establish that similar equations are possible in higher degree of freedom systems as well. Thus, let us consider the general solution to the system

$$\frac{d\overline{y}(t)}{dt} = A\overline{y}(t) + \overline{f}(t) \qquad (2.3.15)$$

where A, \overline{y} , \overline{f} are defined in Section 2.1.

For zero initial conditions, the solution process can be written as,

$$\overline{y}(t) = \int_{0}^{t} e^{A(t-\tau)} \overline{f}(\tau) d\tau \qquad (2.3.16)$$

Any component $y_i(t)$ of the state vector \overline{y} can be given by the integral

$$y_{i}(t) = \sum_{j=1}^{n} \int_{0}^{t} H_{ij}(t-\tau) f_{j}(\tau) d\tau$$
 (2.3.17)

where $f_j(\tau)$ is the excitation at the jth driving point and $H_{ij}(t-\tau)$ is the influence function or impulse response between the jth driving point and the ith state. From our assumed stability we have,

$$\int_{0}^{\infty} |H_{i,j}(\tau)| d\tau < \infty \qquad \text{for i, j = 1, ..., n (2.3.18)}$$

We are assuming the $f_j(t)$ to be of the form

$$f_{j}(t) = F_{j} \sin \omega_{j} t \qquad (2.3.19)$$

Thus, it follows that y_i and its derivatives are bounded.

In order to achieve equations of the form analogous to 2.3.9 we must establish

$$y_{1}^{n}(t) \qquad \frac{dy_{1}(t)}{dt} = 0 \qquad (a)$$

$$\frac{dy_{1}(t)}{dt} \qquad y_{1}(t) = - \qquad y_{1}(t) \qquad \frac{dy_{1}(t)}{dt} \qquad (b)$$

But this is immediate for by definition

$$\lim_{T \to \infty} \frac{1}{T} \quad y_{1}^{n}(t) \quad \frac{dy_{1}(t)}{dt} dt = \lim_{T \to \infty} \frac{1}{T} \quad \frac{1}{n+1} \quad y_{1}^{n+1}(T) = 0 \quad (a)$$

$$\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} \frac{dy_{1}(t)}{dt} y_{j}(t) dt$$
(2.3.21)

$$= \lim_{T \to \infty} \frac{1}{T} y_{i}(t) y_{j}(T) - \lim_{T \to \infty} \frac{1}{T} y_{i}(t) \frac{dy_{j}(t)}{dt} dt$$

$$= -\lim_{T \to \infty} \frac{1}{T} \qquad y_1(t) \frac{dy_1(t)}{dt} dt \qquad (b)$$

In the derivation of 2.3.21 we have used only the fact that the components $y_i(t)$ are bounded on $(0,\infty)$ and that the initial conditions are zero. (This last condition is clearly not a requirement for establishing 2.3.21.)

It was pointed out above that the steady state solution is not required for identification. We should now notice another remarkable fact. That is, the requirement of sinusoidal excitations is not basic in the derivations above. All that is basic is that the system is stable in the sense of bounded inputs yielding bounded outputs. Therefore, all that we require is that a bounded function, any function for that matter, is used for excitation purposes. Thus, for example, a sweep sinusoidal or even a dammed sinusoidal function can lead, theoretically, to the identification of the parameters of the system. Even more interesting, a sample excitation from a random process such as those discussed in Section 2.2 will yield identification on this basis. We must stop a moment and reflect upon this last point.

Our whole approach to the identification of the unknown parameters was originally motivated by the statistical reasoning as put forth in Section 2.2. Now we see that there is perhaps a more fundamental point that underlies the procedure that we are proposing. We are led to think this way, simply because we can establish the same technique for identification with <u>any</u> test excitation. Furthermore, it appears that steady state properties are not required.

1

There is, in fact, a more basic mechanism going on here that subsumes all of the previous analyses of Section 2.2 and this section as special cases.

We illustrate this mechanism, again, with the simple linear damped oscillator.

We consider the oscillator driven by a bounded excitation f(t),

$$m\ddot{y}(t) + C\dot{y}(t) + ky(t) = f(t)$$
 (2.3.22)

Suppose we are able to observe the excitation, the displacement, velocity and acceleration exactly at three different instants t_1 , t_2 , t_3 . It would then follow that we would have three equations,

at the observation times.

Hence, with only three observations, these equations, if not singular, would lead to identification of the parameters. However, even if we can obtain simultaneous records of the excitation, displacement, etc., we cannot expect to achieve exact observations of the four quantities at any given time.

Ineed, the observations would yield some error that is of an independent random error type with zero mean.

That is, the observations would be of the form,

$$m(\ddot{y}_{1} + n_{11}) + C(\dot{y}_{1} + n_{12}) + k(y_{1} + n_{13}) = f_{1} + n_{14}$$

$$m(\ddot{y}_{2} + n_{21}) + C(\dot{y}_{2} + n_{22}) + k(y_{2} + n_{23}) = f_{2} + n_{24}$$

$$m(\ddot{y}_{3} + n_{31}) + C(\dot{y}_{3} + n_{32}) + k(y_{3} + n_{33}) = f_{3} + n_{34}$$

$$(2.3.24)$$

where the n's are independent, identically distributed and $E\{n_{i,j}\} = 0$.

But because the noise in the observations has mean zero, it follows that

$$\frac{1}{T} \int_{0}^{T} n(t)dt \to 0 \quad \text{as} \quad T \to \infty$$

If we write the observed excitation and dynamical variables as,

$$\hat{f}(t)$$
, $\hat{y}(t)$, $\hat{y}(t)$, $\hat{y}(t)$

then it will follow that

$$\langle \hat{f}(t) \rangle = \langle f(t) \rangle$$

$$\langle \hat{y}(t) \rangle = \langle y(t) \rangle$$

$$\langle \hat{y}(t) \rangle = \langle \hat{y}(t) \rangle$$

$$\langle \hat{y}(t) \rangle = \langle \hat{y}(t) \rangle$$

$$\langle \hat{y}(t) \rangle = \langle \hat{y}(t) \rangle$$

$$(2.3.25)$$

that is, the errors in observation will, so to speak, average out to zero.

If $\langle f(t) \rangle$ is identically zero, then all terms in 2.3.25 will be zero. Hence, directly taking a time average of 2.3.22 would not yield a usable equation for identification purposes. For this reason we will use, as before, time averages of second powers for identification of linear systems.

Hence, the actual identification equations that we apply in the case of the linear system 2.3.22 are given as,

$$+ k \frac{1}{T} \int_{0}^{T} y^{2}(t) dt = \frac{1}{T} \int_{0}^{T} f(t) y(t) dt$$

$$m \frac{1}{T} \int_{0}^{T} \dot{y}(t) \ddot{y}(t) dt + C \frac{1}{T} \int_{0}^{T} \dot{y}^{2}(t) dt$$

+ k
$$\frac{1}{T}$$
 $\int_{0}^{T} y(t) \dot{y}(t) dt = \frac{1}{T} \int_{0}^{T} f(t) \dot{y}(t) dt$

$$m \frac{1}{T} \int_{0}^{T} \ddot{y}^{2}(t)dt + C \frac{1}{T} \int_{0}^{T} \dot{y}(t) \ddot{y}(t)dt$$

$$+ k \frac{1}{T} \int_{0}^{T} y(t)\ddot{y}(t)dt = \frac{1}{T} \int_{0}^{T} f(t)\ddot{y}(t)dt$$

(2.3.26)

where the variables are all considered to be the observed variables.

We wish to make it quite clear that equation 2.3.26 holds in all cases, random or deterministic. If f(t) is a sample of a random process and T is large enough, then the averages can be replaced by expectation operators, allowing a number of the terms to go to zero as we have discussed before and follow the analysis of Section 2.2. But, whether T is large or not, equations 2.3.26 will always hold. As we shall see, they yield extremely accurate parameter estimates.

The equations analogous to 2.2.29 for an N mass chain are,

$$m_1 = \frac{1}{T} \int_{0}^{T} y_1(t) \ddot{y}_1(t) dt = \frac{1}{T} \int_{0}^{T} y_1(t) f_1(t) dt$$

$$- C_{1} \frac{1}{T} \int_{0}^{T} y_{1}(t)(\dot{y}_{1}(t)-\dot{y}_{2}(t))dt-k_{1} \frac{1}{T} \int_{0}^{T} y_{1}(t)(y_{1}(t)-y_{2}(t))dt$$

48

$$m_1 = \frac{1}{T} \int_{0}^{T} \dot{y}_1(t) \ddot{y}_1(t) dt = \frac{1}{T} \int_{0}^{T} \dot{y}_1(t) f_1(t) dt$$

$$- C_{1} \frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t) (\dot{y}_{1}(t) - \dot{y}_{2}(t)) dt - k_{1} \frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t) (y_{1}(t) - y_{2}(t)) dt$$

$$m_{1} \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}^{2}(t)dt = \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}(t)f_{1}(t)dt$$

$$- c_{1} \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}(t) (\dot{y}_{1}(t) - \dot{y}_{2}(t)) dt - k_{1} \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}(t) (y_{1}(t) - y_{2}(t)) dt$$

$$m_2 \frac{1}{T} \int_0^T y_2(t) \ddot{y}_2(t) dt = \frac{1}{T} \int_0^T y_2(t) f_2(t) dt$$

$$- C_{2} \prod_{T}^{T} \int_{0}^{T} y_{2}(t)(\dot{y}_{2}(t) - \dot{y}_{3}(t))dt - k_{2} \prod_{T}^{T} \int_{0}^{T} y_{2}(t)(y_{2}(t) - y_{3}(t))dt$$

+
$$c_1 \frac{1}{T} \int_0^T y_2(t)(\dot{y}_1(t)-\dot{y}_2(t))dt + k_1 \frac{1}{T} \int_0^T y_2(t)(y_1(t)-y_2(t))dt$$

We repeat that these equations hold for any T. In somes cases many of the terms will be close to zero relative to the other terms. This is especially so when the excitation is a sample from a stationary process and the system is operating in steady state. In that case, the analysis of Section 2.2 will apply.

We also wish to repeat that equations 2.3.27 hold for any excitation function as long as there is an appreciable magnitude of the output vector. This is quite distinct from the analysis of Section 2.2 where the stationary properties were significant.

In the next chapter we present the results of our experiments on simulated systems using both the statistical as well as the deterministic approaches to the identification of the unknown parameters for a variety of systems.

CHAPTER III IDENTIFICATION OF SIMULATED LINEAR DYNAMICAL SYSTEMS

3.1 Introduction

Simulation studies were carried out for a number of linear dynamical systems. Coupled oscillators of the one-dimensional type as shown in Figure I (a) as well as a two-dimensional system shown in Figure I (b) were simulated and studied on the digital computer. For the coupled oscillator case studies were made on two and five mass systems. The most significant five mass system was defined by mass, damping and spring constants provided by NASA-Goddard. Inputs to the simulated systems were random as well as sinusoidal. The random excitations used were of two types. One was generated on the computer by passing white noise samples through a filter with selected band pass properties. The other excitation process was that taken from di ital tape records of noise generator sources as provided by NASA-Goddard. In the case of sinusoidal excitations, both fixed frequency as well as sweep frequency excitations were applied. In all cases, identification was accomplished. In many cases, as will be seen below, the estimated parameters are remarkably close to the actual parameters. In the following sections we present these results as well as various significantly chosen cases to shed as much light as possible on the present approach to the problem of identification. In Section 3.2 we shall present and discuss results based upon random excitations. In Section 3.3 we present and discuss results based upon sinusoidal excitation. In Section 3.4 we present preliminary results related to the estimation of parameters when only the excitation and acceleration data are known. In such a case one must integrate the acceleration data to yield the velocity up to an unknown initial constant. The initial condition is then determined by a least squares linear fit of the integrated acceleration data.

3.2 Identification of Simulated Systems One-Dimensional by Random Excitations

Among the random excitation simulation experiments, we have considered cases in which we achieve, for all practical purposes, a steady state condition so that equations 2.2.7 hold and can be applied to simplify the parameter identification equations 2.2.29.

We have also considered the situation in which the damping factors are small so that the stationary solution

process has not developed. In that situation we merely revert to the time average and apply all terms in the equation 2.2.29. In all cases identification of the parameters is quite successful. We shall describe our results in the experiments that follow.

Experiment I. The object of this experiment is to study the effect of the transient period before observations are taken.

For this case we consider a two mass chainlike system whose dynamical equations are given by 2.2.28 with N = 2. The parameters for the simulated system are

$$m_1 = m_2 = 1$$
, $k_1 = 16$, $k_2 = 9$, $c_1 = 4$, $c_2 = 3$ (3.2.1)

Only one mass, m_1 , is driven. The simulation as well as the sampling intervals are 0.05 sec. The number of samples used for estimation is 2000, which is equivalent to an identification period of 100 secs. The random excitation function is of the form

$$f_1(t_j) = \sum_{i=1}^{10} a_i \vec{W}_{j-i}$$
 (3.2.2)

where the $\{\overline{W}_j\}$ is a sequence of independent zero mean Gaussian random variables (white noise) and

$$a_1 = .1$$
, $a_2 = .2$, $a_3 = .3$, $a_4 = .4$
 $a_5 = ... = a_{10} = .5$

The standard deviation of the white noise was chosen to be 30.

The simulation was initiated and observations were taken for a period of 100 seconds commencing at 50 secs, 150 secs, etc. for five successive observation periods. The parameters were estimated on the basis of the observations in the periods 50-150, 150-250, ..., 450-550. The estimates are given in the following table.

Transient Interval Observation Starting At

Estimate 50 sec 150 sec 250 sec 350 sec 450 sec True \hat{m}_1 1.0034 1.0176 .9865 1.002 1.003 1.0 \hat{k}_1 16.037 16.3286 15.80 16.08 15.945 16.0

ĥ ₁	16.037	16.3286	15.80	16.08	15.945	16.0	
ĉ	4.015	4.1219	3.89	4.039	3.954	4.0	
\hat{m}_2	1.0038	1.069	.9338	2.009	0.985	1.0	
ĥ ₂	9.022	9.3616	8.75	9.067	8.906	9.0	
ĉ ₂	3.0079	3.1093	2.924	3.034	2.945	3.0	

Table I

Clearly, the estimated parameters are excellent. The variations are merely random variations and are not a function of the transient interval. This, of course, is due to the fact that after a period of 50 seconds, the system is already in the steady state because of relatively high ratio of critical damping.

It would appear that after the transients have died out, observation can be started at an arbitrary time to yield satisfactory estimates.

It is interesting to note that the average of these five runs gives

$$m_1 = 1.0025$$
 $k_1 = 16.0381$ $C_1 = 4.0039$

$$m_2 = 1.0001$$
 $k_2 = 9.0213$ $C_2 = 3.041$

which are very close to the true parameters.

Experiment II. The object of this experiment is to demonstrate the variation in the parameter estimates when passing from transient state into steady state conditions. For this experiment a two mass chainlike oscillato was used. Hence, the system equations are identical to show of experiment I. The system parameters we hosen as,

$$m = m_1 = m_2 = .707$$
, $C = C_1 = C_2 = 50$, $k = k_1 = k_2 = 1.5 \times 10^5$

For this system we have calculated all of its characteristic numbers which are given by the roots of the polynomial,

$$(m s^2 + \frac{3}{2} C s + \frac{3}{2} k)^2 - \frac{5}{4} (C s + k)^2 = 0$$
 (3.2.3)

One finds the solutions to this characteristic equation to be

$$\frac{-(\frac{3-\sqrt{5}}{2})c + \sqrt{(\frac{3-\sqrt{5}}{2})^2c^2 - 2(3-\sqrt{5})k}}{2m}$$

(3.2.4)

$$\frac{-(\frac{3+\sqrt{5}}{2})c + \sqrt{(\frac{3+\sqrt{5}}{2})^2c^2 - 2(3+\sqrt{5})k}}{2m}$$

The mode frequencies are approximately 53 c.p.s. and 140 c.p.s. with corresponding damping factors approximately 26.8 and 185.

The system was excited by a random force generated by passing white noise samples through a band pass filter

with center frequency 60 c.p.s. and effective band-width (defined by location of 1/2 power frequency) 40 c.p.s. Thus, the band has a range of 40 c.p.s. to 80 c.p.s.

This is generated by a system of the form

$$\ddot{f} + B\dot{f} + \omega^2 f = B\dot{x}$$
 (3.2.5)

A description of the generation of these excitations is given in Chapter IV. The sampling rate is 1600 samples/sec. corresponding to approximately 11 samples per cycle of highest mode frequency. The estimates of parameters were taken from observations on the intervals 0 - 0.4, 0.4 - 0.8, 0.8 - 1.2, and 0 - 0.8, 0.8 - 1.6, 1.6 - 2.4. The 0 - 0.4 and 0 - 0.8 contain the transient intervals which are relatively short with the present damping constants. The estimates are given in the following table. Run number one and run number two are excited by two different samples from the excitation process.

The major features of these estimates are that they vary in accordance with the variations of the estimates of the moments that are used in the identification formulas. Thus, the errors that are present are due, in part, to setting those moments to zero, such as, $E\{y_1\dot{y}_1\}$, $E\{y_2\dot{y}_2\}$ etc., when they may not actually be small. The greatest errors

Observation Interval

E C2	stima ~~	ated 3>	Para	mete	rs B>	
76.349	1.5532 x 10 ⁵	.7533	72.701	1.5173 x 10 ⁵	.7095	0 - 9.4
41.902	1.5127 x 10 ⁵	.7146	44.271	1.5124 x 10 ⁵	.7142	0.4 - 0.8
45.941	1.4598 x 10 ⁵	.6742	46.633	1.4825 x 10 ⁵	.6999	0.8 - 1.2
52.607	1.5072 x 10 ⁵	.7125	52.293	1.5032 x 10 ⁵	.7079	0 - 0.8
56.599	1.5220 x 10 ⁵	.7255	55.963	1.5096 x 10 ⁵	.7103	0.8 - 1.6
43.704	1.4860 x 10 ⁵	.6945	44.603	1.4962 x 10 ⁵	.7062	1.6 - 2.4
50 Tr	1.5 x 10 ⁵	.707	50	1.5 x 10 ⁵ Value	.707 s	

Run No. 1

Run No.

Table II

occur in the interval o - 0.4 since in this interval the transient period is roughly 1/3 of the interval length. the errors are greatest for estimating "stationary" moments. As we have stated in Section 2.2, these errors will be reflected greatly in the damping constant estimates, and to a much lesser extent in the spring constant estimates. is exactly what is shown in the first column of the table above. Indeed, the spring constant estimates are uniformly good as well as the mass estimates. The greatest variation occurs in C. In run number one, we see an obvious change in the accuracy of the estimates after the interval o - 0.4 since then we are effectively in the steady state case. to the increased length of intervals of observation, there is a more definite change in the error of estimation from 0 - 0.4 to 0.4 - 0.8 than from 0 - 0.8 to 0.8 - 1.6 because the transient period is a much smaller part of the observation period in 0 - 0.8. Thus, the variations in the estimates of run number two can be considered as truly random variations.

Experiment III. In this experiment, which was performed at an early stage of the study, a five mass chainlike system was simulated with only the first mass being excited. The input excitation is identical to the excitation used in experiment I. The interval of simulation was .05 secs with

5000 samples used for identification purposes. The transient interval was chosen as 50 secs, 300 secs, 550 secs. Thus, after the first 50 second transient interval successive runs of 250 secs were used for identification. The results of the three runs are shown in Table III (a). We denote the estimates for the three successive runs as $\hat{m}_{1}(1)$, $\hat{m}_{1}(2)$, $\hat{m}_{1}(3)$, $\hat{k}_{1}(1)$, etc.

The first and third runs are quite acceptable as estimates of the true parameters. However, the second set does possess large estimate errors, especially for \hat{C}_1 . Of course, as we have already seen in Chapter II, we expect errors to be greater in the damping constant estimates. Part of the source of error here was traced to the way in which the excitation was being simulated. A modification in the simulation of the excitation, which was used in all future simulations, brought the new estimations given here, in Table III (b), only for the first run.

All estimates in Table III (b) are quite acceptable.

Of course, one should expect good estimates since the damping is relatively high so that after a transient interval of 50 seconds the system is in steady state. Furthermore, the observation period is quite long. Hence, stationary moment estimates should be close to time estimates.

3.420	2.947 3.420	3.0 2.940	ω . 0	8.702	8.390	9.136	9.0	.885	1.000	1.020	5 1.0	\sqrt{\sqrt{1}}
4.870	4.036 4.870	3.884	4.0	15.831	14.804	16.198	16.0	.904	.955	1.027	1.0	4=
6.498	5.344 6.498	4.891	5.0	25.528	23.084	25.201	25.0	.928	.924	.946	1.0	ω
7.647	7.033	5.318	6.0	37.971	33.623	36.886 33.623	36.0	1.048	1.054	1.163	1.0	<i>N</i>
9.035	12. ⁴ 33 9.035	7.0 9.126	7.0	51.594	46.555 51.594	49.604	49.0	.940	.655	0.879	1.0	——————————————————————————————————————
$\hat{c}_{\mathbf{i}}(3)$		$c_{\underline{1}}$ $\hat{c}_{\underline{1}}(1)$ $\hat{c}_{\underline{1}}(2)$	C	k̂ ₁ (3)	k ₁ (2)	k ₁ (1)	k ₁	m ₁ (3)	$\hat{m}_{1}(1) \hat{m}_{1}(2) \hat{m}_{1}(3)$	m ₁ (1)	T III	۳.

Table III (a)

ড		w	∾	1	
1.0	1.0	1.0	1.0	1.0	i ii
0.939	0.917	1.210	0.710	1.096	a,
9.0	16.0	25.0	36.0	49.0	k ₁
€.76	15.65	24.78	33.80	50.32	۲, ۲
ω •	4.0	সে.০	6.0	7.0	C.
2.82	3.72	4.36	7.40	5.78	[™] C>

Table III (b)

Of course, this system with high damping factors does not truly reflect actual structural systems in which the damping ratio is very low. We, thus, considered a system with parameters that are comparable to those found in an actual structural system.

Experiment IV. In this experiment, we simulated a five mass chainlike system as shown in Figure I(a) of Chapter II. The system equations, again, are given by 2.2.28 with N = 5. We based our estimations upon the assumption of steady state with a statistically stationary solution process so that the various moments were set to zero as given by equation 2.2.7 The spring and damping constants were supplied by NASA-Goddard as reflecting the true parameter values of a NASA-Goddard five mass experimental model. The simulated system was excited by the same function as in experiment III, as well as by randomly generated excitations as provided on a tape recording supplied by NASA-Goddard. The spectrum of the taped excitation is given by the following figure.

The sampling frequency was 1400 c.p.s., a total of 42,000 samples were used, representing 30 secs of observation time. A typical set of estimates is given in the table below to three places beyond the decimal point.

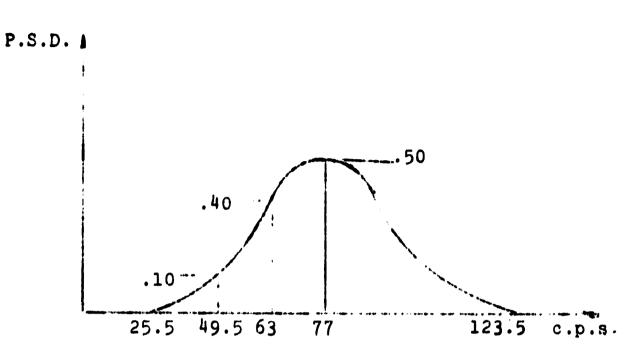


Figure III

1	m ₁	m̂ ₁	k ₁	ĥ _i	c _i	ĉ
1	.667	.666	.930 x 10 ⁶	.929 x 10 ⁶	.900	18.519
2	.667	.667	.830 x 10 ⁵	.829 x 10 ⁵	1.900	3.513
3	.667	.666	.930 x 10 ⁶	.929 x 10 ⁶	.900	44.960
4	.667	.667	.830 x 10 ⁵	.829 x 10 ⁵	1.900	-4.916
5	.667	.666	.530 x 10 ³	.529 x 10 ³	.100	6.023

Table IV

The very striking feature of this set of estimates is that the spring constants and mass constants are extremely accurate, whereas the damping constant estimates are not even close to the true values. Of course, we recognize this to be a case where the damping constant is extremely small and for all practical purposes the damping ratio is zero in view of the high spring rate. As we have indicated in the analysis of Chapter II, we will expect large errors in \hat{C}_1 and small errors in \hat{k}_1 in this situation. As we see, the fact that $C_1 << k_1$ gives us almost no effect on \hat{k}_1 of an error in \hat{C}_1 . It can only effect \hat{k}_1 in the fifth and sixth digits which are outside any practical significance.

The question is, why do we have such a great error in \hat{C}_1 in the first place? The reason is clear; \hat{C}_1 is so small that it simply takes too long for the steady state to develop. Hence, we did not observe the steady state over the interval used for identification purposes. Furthermore, applying longer transient intervals before observations were performed on the simulated system did not appreciably help matters. Although \hat{m}_1 , \hat{k}_1 were always quite good, the \hat{C}_1 were very poor.

It was at this point that we applied the time average ideas as described by equations 2.3.27 of Chapter II in order to attempt the identification of the parameters.

Experiment V. We present in this experiment, the results of identification of simulated five-mass chainlike system as given by equations 2.3.27 where the system is not in the steady state due to the extremely small damping ratio. Simulated, as well as tape force, inputs were used. Various sampling rates and periods of observations were applied; these are presented in the following tables: V(a) and V(b). No transient interval was used. That is, observations for identification purposes were started at t = 0.

For this table, the force input was the taped excitation provided by NASA-Goddard with spectrum as shown in Experiment IV. The sampling frequency was 1400 c.p.s. with 10 secs, 20 secs, and 30 secs used for observation intervals all starting at t=0. $\hat{m}_1(1)$, $\hat{k}_1(1)$, $\hat{C}_1(1)$ corresponds to 10 second observation interval, similarly for 20 secs and 30 secs. The most obvious feature of Table V (a) is the remarkable accuracy of the estimates. This appears to be independent of the length of the observation interval in this case. But, we do notice, that even at 10 secs, we are taking 14,000 points for identification purposes which is a large number of observations.

Table V (b) shows the results of identification for exactly the same system and same excitation as in Table V (a) except that the taped excitation was sampled as

		CTING C	TO OTHER CO. TITLE	TOA		ESTIMA	ESCIMATION INTERVAL	Val	h	istimat	ii on Tr	Estimation Interval
	True	1 0	20	30	True				Frue	l	20	30
İ	Value	e secs	s secs	secs	Value	10 secs	20 secs	30 secs Value	Value	S	S	Secs
1.	m ₁	m ₁ (1	$\hat{m}_{1}(1)\hat{m}_{1}(2)\hat{m}_{1}(3)$	m ₁ (3)	k:	$\hat{\mathbf{k}}_{1}(1)$	$\hat{\mathbf{k}}_{1}(2)$	$\hat{k}_{\pm}(3)$	Сi	Ĉ ₁ (1)	$\hat{C}_{\underline{1}}(1) \hat{C}_{\underline{1}}(2) \hat{C}_{\underline{1}}(3)$	Ĉ ₁ (3)
H	.667	. 667	.667 .667 .667		.93 x 10 ⁶	$.93 \times 10^6 .93 \times$	106	.93 x 10 ⁶	.900	.900	.895	. 894
N	.667	.667	.667	.667	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵		1.900	1.900 1.900 1.900 1.900	1.900
w	.667	.667	.667 .667	.667	.93 x 10 ⁶	.93 x 10 ⁶	$.93 \times 10^{6}$.93 x 10 ⁶	.900	.904	. 885	.878
#	.667	.667	.667	.667	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵		1.900	1.900 1.900 1.905 1.904	1.904
U1	.667	.667	.667 .667 .667		$.53 \times 10^3$	$.53 \times 10^3 .53 \times$		$10^3 .53 \times 10^3$.100	.100	.096	006

able V (a)

5	455	ω	~	۳)
.667	.667	.667	.667	.667	, m
.666	.656	.666	.666	.666	m ₁
$.53 \times 10^{3}$.83 x 10 ⁵	.93 x 10 ⁶	.83 x 10 ⁵	$.93 \times 10^{6}$	k _i
$.53 \times 10^3$.83 x 10 ⁵	.93 x 10 ⁶	.83 x 10 ⁵	.93 x 10 ⁶	k
.100	1.900	.900	1.900	.900	Ç.
.106	1.897	.973	1.901	.914	C ₁
· · · · · · · · · · · · · · · · · · ·	******				

Table V (b)

700 c.p.s. rather than the previous 1400 c.p.s. to determine the significance of the sampling rates. Thus, the system was simulated at an interval of .00143 secs. Table V (b) shows these results for 10 second observation time. Again, the identification observations commence at t=0.

We notice a slight change in the accuracy of the \hat{C}_1 : however, \hat{m}_1 and \hat{k}_1 do not appear to be affected by this change in sampling rate.

The following table, V (c), shows the parameter identification of the linear system, all of whose parameters are taken from the five-mass NASA-Goddard system. spring and damping constants are the same as in Tables V (a) and V (b). The only change is the mass parameter, which is .052 instead of .667. Thus, the natural frequencies of this system are somewhat higher than in the previous cases. Upon simulation at 1400 samples per second, quite a bit of error in the estimates were present. It was felt that the simulation rate was not large enough to account for the frequency range of this new system which had gone up about 3.5 times. Thus, it was decided to raise the simulation rate to 5000 c.p.s. and make a time scale change on the taped input excitation to account for this new sampling rate. Therefore, effectively, the excitation was at a higher frequency range than in real time.

The two sets of estimates are accomplished by the taped input force with the time scale change for 1 second and 2 seconds observation intervals starting at t = 0.

We see in Table V (c) that the 2 second estimates of C_i are better than the 1 second estimates. Longer observation times will undoubtedly yield extremely accurate \hat{C}_i . Again, \hat{m}_i and \hat{k}_i are uniformly excellent.

We can summarize all of the results in this section by stating that if it is reasonably established that the system is in steady state operation, then Equation 2.2.7 may be applied to reduce the number of constants in the identification equations. However, if there is any doubt or merely in order to be somewhat more confident of the estimates, it appears that the time average equations 2.3.27 will always give good estimates without waiting for the transients to die out. Of course, if transients have effectively disappeared, the moments that should reduce to zero will be effectively zero upon estimation. quency range of the excitation does not appear to be a factor. However, the time of observation is certainly a factor as well as the sampling rate. A rough figure that can probably be adhered to is 5 - 10 samples per cycle of the highest observed frequency of the output of the system.

117	stimat	ion in	Estimation Interval	ļt.	Estimation Interval	nterval	Esti	mation	Estimation Interval
انسا ا	True Value ^m i	1 sec m ₁ (1)	1 sec 2 sec $\hat{m}_{1}(1) \hat{m}_{1}(2)$	True Value ^k i	1 sec k k ₁ (1)	2 sec k ₁ (2)	True Value ^C i	$\begin{array}{c} 1 \text{ sec} \\ \widehat{C}_{1}(1) \end{array}$	2 sec Ĉ ₁ (2)
<u>ب</u>	.052	.052	.052	.93 x 10 ⁶	.93 x 10 ⁶	.93 x 10 ⁶	0.900	1.041	1.082
~	.052	.052	.052	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵	1.900	1.900	1.903
w	.052	.052	.052	.93 x 10 ⁶	.93 x 10 ⁶	.93 × 10 ⁶	0.900	1.179	1.037
=	.052	.052	.052	.83 x 10 ⁵	.83 x 10 ⁵	.83 x 10 ⁵	1.900	1.865	1.907
5	.052	. 952	.052	.43 x 10 ²	.43 x 10 ²	$.43 \times 10^{2}$	0.100	0.135	0.088

Table V (c)

The lowest frequency should be observed for 5 - 10 cycles as well. These could be approximated by observation on the oscilloscope during the period that identification tests are being conducted. This was made quite clear during Experiment V where the sampling interval had to be changed due to the higher frequency range of the system with smaller mass.

In the next section, we shall see how these points are reflected in identification by sinusoidal excitations.

3.3 <u>Identification of Simulated One Dimensional Systems</u> by Sinusoidal Excitations

Experiment I. In this first experiment, we present the results of identification studies of the same system described in Experiment II of Section 3.2. In this case, the simulated system was excited at these distinct frequencies: 20 c.p.s., 60 c.p.s., and 160 c.p.s. with amplitude 20. The sampling rate was 1600 c.p.s. which is approximately 11 samples per cycle of the highest mode frequency of the system which is 140 c.p.s. The low mode is approximately 53 c.p.s. Hence, we see that the three excitations lie below, in between and above the system's natural frequencies. For each excitation the observation intervals were .05 secs,

.1 sec, .2 sec, .4 sec, .6 sec, .8 sec, 1.0 sec, all starting at t = 0. For the lowest mode, this represents 2.5 cycles, 5.3 cycles, 10.6 cycles, etc., up to 53 cycles, or 80 samples, 160 samples, etc.

The results of these estimates are given in tables VI (a), (b) and (c). The estimates are given by equation 2.3.27 for N = 2.

Needless to say, the estimations presented in Tables VI (a), (b), and (c) are extremely monotonous. They are, in fact, monotonous to four and five place accuracy! Only in the sixth and seventh places does one detect significant differences.

It is obvious that the transient period is still in effect during the entire period over which we are performing the parameter identifications since the estimates are excellent for every estimation interval up to 1.0 sec. This is reflected in the estimates for the random case of Experiment II, Section 3.2, where it was clear that the extimates were better in the periods .8 sec on to 2.4 secs (except for random fluctuations which one must expect when setting various of the moments to zero).

In the next section, we illustrate an example of how the transient periods and steady state periods affect estimation with sinusoidal excitations.

PS LTIIIGLTOIS	けい ナルランナルング
TILEI.AgT	45+05:07

		þ.i.	2	71 	 	2	-	j-do	"
2 50.0	50.0	C ₁	2 .15 x 10 ⁶	1 .15 x 10 ⁶	k k	2 .707	1 .707	i m;	True Value
50.0	50.0	Ĉ ₁ (1)	.15 x 10 ⁶	.15 x 10 ⁶	k ₁ (1)	.707	.707	m ₁ (1)	.05 sec
50.0	50.0	Ĉ ₁ (2)	.15 x 10 ⁶	.15 x 10 ⁶	k ₁ (2)	.707	.707	m ₁ (2)	.1 sec
50.0	50.0	Ĉ ₁ (3)	.15 x 10 ⁶	.15 x 10 ⁶	k ₁ (3)	.707	.707	m ₁ (3)	.2 sec
50.0	50.0	Ĉ ₁ (4)	.15 x 10 ⁶	.15 x 10 ⁶	k ₁ (4)	.707	.707	m ₁ (4)	.4 sec
50.0	50.0	Ĉ ₁ (5)	.15 x 10 ⁶	.15 x 10 ⁶	k̂ _i (5)	.707	.707	m ₁ (5)	.6 sec
50.0	50.0	Ĉ ₁ (6)	.15 x 10 ⁶	.15 x 10 ⁶	k ₁ (6)	.707	.707	m̂ ₁ (6)	.8 sec
50.0	50.0	Ĉ ₁ (7)	.15 x 10 ⁶	.15 x 10 ⁶	$\hat{k}_{i}(7)$.707	.707	m ₁ (7)	1.0 sec

Table VI (a)
Excitation Frequency 20 c.p.s.

	True		13C1	Estimation int	Interval			
	Value	.05 sec	.1 sec	.2 sec	.4 sec	i	.6 sec	
ەسم	m.	m ₁ (1)	m ₁ (2)	[^] (3)	m ₁ (4)	1	m ₁ (5)	$\hat{m}_{\underline{1}}(5)$ $\hat{m}_{\underline{1}}(6)$
۳	.707	.707	.707	.707	.707		.707	.707 .707
2	.707	.707	.707	.707	.707	1	.707	.707 .707
μ.	k i	k ₁ (1)	k ₁ (2)	k ₁ (3)	k ₁ (4)		^ k ₁ (5)	$\hat{k}_{\underline{1}}^{\hat{\Lambda}}(5) \qquad \hat{k}_{\underline{1}}^{\hat{\Lambda}}(6)$
2 1	.15 x 10 ⁶	.15 x 10 ⁶	.15 x 10^6 .15 x 10^6	.15 x 10 ⁶	.15 x 10 ⁶	90	06 .15 x 106	.15 x
۳.	C ₁	Ĉ ₁ (1)	Ĉ ₁ (2)	Ĉ ₁ (3)	Ĉ ₁ (4)		Ĉ ₁ (5)	$\hat{c}_{i}(5)$
	50.0	50.0	50.0	50.0	50.0		50.0	50.0 50.0
2	50.0	50.0	50.0	50.0	ם ס			1

Table VI (b)

Excitation Frequency 60 c.p.s.

Estimation Interval

		73	3			
2 1	ъ.	2	μ.	N H	1	
50.0	C;	.15 x 10 ⁶	k,	.707	ţ.	True Value
50.0	$\hat{c}_{i}(1)$.15 x 10 ⁶	k ₁ (1)	.707	m ₁ (1)	.05 sec
50.0	Ĉ ₁ (2)	.15 x 10 ⁶	k ₁ (2)	.707	m̂ ₁ (2)	·1 sec
50.0	Ĉ ₁ (3)	.15 x 10 ⁶	k ₁ (3)	.707	ள் ₁ (3)	.2 sec
50.0	C ₁ (4)	.15 x 10 ⁶	k ₁ (4)	.707	m ₁ (4)	.4 sec
50.0	Ĉ ₁ (5)	.15 x 10 ⁶	k ₁ (5)	.707	m. (5)	.6 sec
50.0	Ĉ ₁ (6)	.15 x 10 ⁶	k ₁ (6)	.707	m ₁ (6)	.8 sec
50.0	Ĉ ₁ (7)	.15 x 10 ⁶	k ₁ (7)	.707	m̂ ₁ (7)	1.0 sec

Table VI (c)

Excitation Frequency 160 c.p.s.

Experiment II. In Section 2.3 of Chapter II we presented an analysis of the identification technique for sinusoidal excitations when the system is in steady state. It was shown there that one cannot expect to identify all three unknown parameters m, k, and C in the steady state since the steady state solution under sinusoidal excitation will not yield sufficient linearly independent equations for identification purposes. We illustrate this with the present experiment. We take a system of five masses in the usual one-dimensional chain. The damping was chosen high in order to put the system into the steady state condition relatively rapidly. Both 10 c.p.s. and 100 c.p.s. sinusoidal excitations were applied. Estimations were taken over an interval of 1 sec. The first observation period was 0.0 - 1.0 sec, the next 1.0 - 2.0 secs, then 2.0 - 3.0 secs, etc. Thus, the transient period before observation was taken was 0.0 sec, 1.0 sec., 2.0 secs, etc. The sampling interval for simulation and estimation purposes was .001 second for the 10 c.p.s. excitation and .0005 second for 100 c.p.s. excitation. We shall show the variations in estimates of all three unknowns over 0.0 - 1.0 sec and 1.0 -2.0 secs for 10 c.p.s. and 100 c.p.s. excitations as well as the estimates of only spring and damping constants for given mass.

		Tan	sient	Transient Period		Transient Period	Period		Transient Period	Period
7	Tr	True 0.0 sec 1.0 sec	sec 1	.0 sec	True	0.0 sec	1.0 sec	True	0.0 sec	1.0 sec
T	1 m ₁	1 m ₁ (1)	1	$\hat{m}_1(2)$	k ₁	$\hat{k}_{\underline{1}}(1)$	k ₁ (2)	C	$\hat{c}_{1}(1)$	Ĉ ₁ (2)
	1 .667	67 .666	66	4.428	.93 x 106	.93 x 106	.80 x 105	200	200 200.687	12 x 10 ⁵
	2 .667	67 .667		-1.590	.83 x 10 ⁵	$.83 \times 10^5$.55 x 10 ⁵	100	100.072	51×10^3
	3 .667	67 .668	8	3.129	.93 x 10 ⁶	$.93 \times 10^{6}$.45 x 10 ⁵	200	191.842	24×10^{5}
	4 .60	.670		-118.337	$.83 \times 10^{5}$	$.83 \times 10^5$.10 x 10 ⁷	100	96.653	$.88 \times 10^{5}$
	5 .667	67 .662		105.593	1.53×10^3	$.53 \times 10^3$	$.53 \times 10^331 \times 10^5$ 100	100	100.020	45×10^3

Table VII (a)
Excitation Frequency 10 cps

 $.93 \times 10^{6}$.93 x 10⁶ $.83 \times 10^{5}$ Value True الم $.93 \times 10^{6}$ $.93 \times 10^{6}$ $.83 \times 10^{5}$ $.83 \times 10^{5}$ Mass, Spring, Damping Constants Unknown 0.0 sec k₁(1) Transient Period $.93 \times 10^{6}$ $.53 \times 10^3$ $.83 \times 10^{5}$ $.83 \times 10^{5}$ $.93 \times 10^{6}$ 1.0 sec $k_{\frac{1}{2}}(2)$ True Value 100 100 100 L.C 200 200 100.000 100.001 199.917 199.905 99.978 0.0 sec $c_{1}(1)$ Transient Period 1.0 sec 100.001 199.998 100.000 199.969 $\widehat{C}_{\mathbf{i}}(2)$ 99.999

Table VII (b)

Excitation Frequency 10 cps Mass Known, Spring, Damping Unk nown

	ţ			مسيد التا						
		n.	~	w	2	 -		۳.		
	.007	.007	667	.667	.667	100.		, m	value	True
	. 567	.00/	- 23	667	.667	.667	-	n, (1)	0.0	Trans
	.567 20.508			25 1170	. 494	1.679	1	n, (1) n, (2)	0.0 sec 1.0 sec	Transient Period
ַר ענייּ בר אניי	.53 x 10 ³	.83 x 10	. 73 × 10	03 - 306	.83 x 10 ⁵	.93 x 10°	T.	~	: Value	ITrue
Table VII (a)	$.53 \times 10^3$	ر 83 x 10	.93 x 10°	y +0	.83 x 705	$.93 \times 10^{6}$	1 (1)	5 (1)	0.0 sec	Transient
	$.78 \times 10^{5}$	$.48 \times 10^{7}$	18×10^{0}	0 x 20.	32 - 36	23×10^{6}	K ₁ (2)	* (2)	1.0 sec	Period
	100	1-30	200	100		200	J.		Value	3
	99.991	100.030	199.896	99.998		199 981	$C_{\frac{1}{2}}(1)$	>	Value 0.0 sec	Transien
	.15 x 10 ⁶	.87 x 10 ²	40 x 10 ⁵	.93 × 10 ²	OT % +T•	11 14	$\widehat{C}_{\underline{1}}(2)$	> 6	1.0 sec	Transient Period

Table VII (c)

Excitation Frequency 100 c.p.s.

Mass, Spring, Damping Constants Unknown

	Transient Period	Period		Transien	Transient Period
Value	0.0 sec	1.0 sec	True		
i k	$\hat{k}_1(1)$	k̂ ₁ (2)	C ₁	$\hat{C}_{1}(1)$	Ĉ ₁ (2)
1 .93 x 10 ⁶	.93 x 10 ⁶	$.93 \times 10^{6}$	200	199.999	200 000
2.83×10^{5}	$.83 \times 10^{5}$	$.63 \times 10^{5}$	100		100 000
3.93×10^6	$.93 \times 10^6$	$.93 \times 10^{6}$	200	199.589	200 001
4 .83 x 10 ⁵	$.83 \times 10^{5}$.83 x 10 ⁵	100	100.002	99.999
5.53×10^{3}	$.53 \times 10^3$.53 x 10 ³	100	100.000	100.002

Table VII (d)

Excitation Frequency 100 c.p.s.

Mass Known, Spring, Damping Constants Unknown

4

Tables VII (a), (b), (c) and (d) show a very dramatic difference in going from transient to steady state intervals in attempting to identify the unknown parameters. In Tables VII (a) and (c), the first transient interval produces excellent estimates, whereas in the very next interval the estimates completely fall apart. They are in no way related to the actual parameter values. Yet, with the mass known in Tables VII (b) & (d) the \hat{C}_1 and \hat{k}_1 are excellent during both estimation periods. The reason, as we have developed in Chapter II, is that the equations for estimation become singular in the steady state case for three unknowns. But, they are not singular for two unknowns. Thus, the estimates will break down as shown, for three unknowns, in passing from primarily transient to primarily steady state conditions.

This experiment shows quite clearly that in order to identify all unknowns by sinusoidal excitations, it is important that the system be in the transient state.

Experiment III. In this experiment we simulate the NASA-Goddard five-mass system as in Experiment III of Section 3.2. The excitation is sinusoidal with frequency 70 c.p.s.

The system is sampled at 5000 c.p.s. Each run starts the observations at t = 0. The observation period is 0.0 - 2.0 secs, 0.0 - 4.0 secs. The results are shown in Table VIII. These estimates are very accurate, which clearly establishes the importance of the sinusoidal excitation for identification purposes.

Experiment IV. Since it was stated in Section 2.3 of Chapter II that it appears possible to identify with almost any "suitable" excitation function, it was decided that we should generate such an excitation for purposes of identification. It seemed reasonable that an excitation that could easily be achieved in the laboratory was the logical choice for identification. Thus, we generated a sweep sinusoidal excitation of the form

$$f_1(t) = A \sin \alpha t^2$$

where A = 25, $\alpha = 100$.

1	-				1	1	
5	4	w	~	 	μ.		
.052	.052	.052	.052	.052	Į.	True Value	
.052	.052	.052	.952	.052	m ₁ (1)	2.0	Esti
.052	.052	.052	.052	.052	$\hat{m}_{1}(1) \hat{m}_{1}(2)$	4.0	Estimation Interval
.43 x 10 ²	.83 x 10 ⁵	.93 x 10 ⁶	.83 x 10 ⁵	.93 x 10 ⁶	k,	True Value	
.43 x 10 ²	.83 x 10 ⁵	.93 x 10 ⁶	.83 x 10 ⁵	.93 x 10 ⁶	k ₁ (1)	0.0-2.0	Estimation Interval
.43 x 10 ²	.83 x 10 ⁵	.93 x 10 ⁶	.83 x 10 ⁵	.93 x 10 ⁶	k ₁ (2)	0.0-4.0	Interval
.900	.900	1.900	.900	1.900	Ci	True Value	
. 900	.898	1.850	.896	1.895	$\hat{c}_{i}(1)$	0.0- 2.0	Estim Inte
.900	. 898	1.843	. 895	1.883) $\hat{c}_{i}(2)$	4.0	Estimation Interval

Table VIII

The sampling interval for simulation and estimation was 0.0014 secs. All observations commenced at t = 0.70 secs in order for the frequency to become reasonably large. We shall show the results of four runs of duration 3.92 secs, 9.80 secs, 13.72 secs, and 19.60 secs corresponding to 2800 samples, 7000 samples, 9800 samples, and 14,000 samples, respectively. The results are shown in Table IX.

The results of this experiment show that identification can be suitably accomplished by functions other than pure sinusoids or random excitations.

3.4 Identification of Multi-Dimensional Systems

It was found desirable to demonstrate that the proposed identification technique is not dependent upon the fact that the system to be identified was a one-dimensional system.

The system shown in Figure I (b) of Chapter II was considered. The equations of motion are given in NASA Technical Note

TN D-3865 "Mechanical Impedance Analysis for Lumped Parameter Multi-Degree of Freedom/Multi-Dimensional Systems" by F. J.

On, May 1967.

Estimation Interval

Estimation Interval

5 .667 .668 .666 .66
.667 .668 .666 .666 .666 .53 x 10 ³ .53 x 10 ³
x 10 ³ .53 x 10 ³
$53 \times 10^3 .53 \times 10^3 .53 \times 10^3 .100$
00 .108 .097 .099
7 .099 .095

Table IX

These equations are as follows.

$$\begin{split} &m_1\ddot{x}_1 + 2(c_1 + c_3)\dot{x}_1 - 2c_3\dot{x}_4 + 2(k_1 + k_3)x_1 - 2k_3x_4 = f_1 \\ &m_1\ddot{x}_2 + 2(c_2 + c_4)\dot{x}_2 - 2c_4\dot{x}_5 + 2(k_2 + k_4)x_2 - 2k_4x_5 = f_2 \\ &I_1\ddot{x}_3 + 2(c_1b^2 + c_2a^2 + c_3c^2 + c_4e^2)\dot{x}_3 - 2(c_3cd + c_4e^2)\dot{x}_6 \\ &+ 2(k_1b^2 + k_2a^2 + k_3c^2 + k_4e^2)x_3 - 2(k_3cd + k_4e^2)x_6 = f_3 \\ &m_2\ddot{x}_4 - 2c_3\dot{x}_1 + 2c_3\dot{x}_4 - 2k_3x_1 + 2k_3x_4 = f_4 \\ &m_2\ddot{x}_5 - 2c_4\dot{x}_2 + 2c_4\dot{x}_5 - 2k_4x_2 + 2k_4x_5 = f_5 \\ &I_2\ddot{x}_6 - 2(c_3cd + c_4e^2)\dot{x}_3 + 2(c_3d^2 + c_4e^2)\dot{x}_6 \\ &- 2(k_3cd + k_4e^2)x_3 + 2(k_3d^2 + k_4e^2)x_6 = f_6 \end{split}$$

The constants a, b, c, and d represent the various vertical and horizontal distances between the two-mass centers and the spring-damper components.

The system parameters supplied by Mr. F. On of NASA-Goddard are as follows.

$$m_1 = m_2 = .26$$
, $I_1 = I_2 = 70$, $k_1 = k_3 = 10^5$, $k_2 = k_4 = 4 \times 10^5$, $c_1 = c_3 = 10.0$, $c_2 = c_4 = 20.0$,

a = 10 ins, b = 20 ins, c = 15 ins, d = 6 ins, e = 12 ins

This system was simulated and driven by random excitations as well as sinusoidal excitations. The system was simulated and sampled at intervals of .0005 secs. Observations commenced at t=0 and were made at intervals of 0.0-1.0 secs and 0.0-2.0 secs. In the random case f_4 , f_5 , and f_6 were independent random excitations generated as previously by passing white noise through a filter to yield a process with spectrum having center frequency 70 c.p.s. and bandwidth 20 c.p.s. Furthermore, f_1 , f_2 , and f_3 were identically zero. For the sinusoidal case f_1 , f_2 , and f_3 again were zero, f_4 , f_5 , and f_6 were given as,

$$f_4 = 25 \sin 100 \pi t$$
, $f_5 = 25 \sin (100 \pi t + \frac{\pi}{2})$
 $f_6 = 25 \sin (100 \pi t + \frac{3}{4} \pi)$.

The results are presented in tables X (a) and (b) first for random then for sinusoidal excitations.

Estimation Intervals

	4 .40	3 .99	2 .40	1.99		j -4•	Tr Va
	x 10 ⁶ .	× 105.	х 10 ⁶ .	x 10 ⁵ .	H	٢	True Value
	4 .40 x 10^6 .40 x 10^6 .40 x 10^6 20.0 20.0 20.	$3.99 \times 10^5.10 \times 10^6.10 \times 10^6$	$.40 \times 10^6 .40 \times 10^6 .40 \times 10^6$	1.99 x 10 ⁵ .99 x 10 ⁵ .10 x 10 ⁶	j.,	×.(1)	0.0-1.0 sec
	40 x 10 ⁶	10 x 10 ⁶	.40 x 10 ⁶	.10 x 10 ⁶	# \	<u> </u>	1.0-2.0 True secs Valu
	20.0 2) L	;)	ח
	0.0 20.0	10.0 10.0 10.0	20.0 20.0 20.0	10.0 10.0 10.0	, 1 (+) O 1 (e	(1)	1.0 2.0 sec secs
i.e.			.26 .26 .26 70.0 70.0 70.0	.26 .26 .26 70.0 70.0 70.0	$u_{1} u_{1} u_{1} u_{1} u_{1} u_{1} u_{1} u_{1} u_{1} u_{2} u_{2$		1.0- 0.0- 1.0- 0.0- 1.0- 2.0 True 1.0 2.0 True 1.0 2.0 secs Value sec sec Value sec secs
			70.0	70.0	1 (2)	>	1.0- 2.0 secs

Table X (a)
Random Excitation

- American

Estimation Intervals

х Ођ. ф	3 .99 x	2 .40 x	1 .99 x	۲.	True Valu
10 ⁶ .40 x	10 ⁵ .99 x	10 ⁶ . ⁴ 0 х	10 ⁵ .10 x	i k _i (1)	(D)
10 ⁶ .40 x 1	$3.99 \times 10^5.99 \times 10^5.99 \times 10^5$	10 ⁶ .40 x 1	10 ⁶ .10 x 1	1)	0.0-1.0 1.0- sec se
4 .40 \times 10 ⁶ .40 \times 10 ⁶ .40 \times 10 ⁶ 20.0 20.0 20.0	05 10.0 10.0 10.0	.40 x 10^6 .40 x 10^6 .40 x 10^6 20.0 20.0 20.0	1.99 x 10 ⁵ .10 x 10 ⁶ .10 x 10 ⁶ 10.0 10.0 10.0) $c_i \hat{c}_i(1)\hat{c}_i(2)$	0.0-1.0- 1.0-2.0 True 1.0 2.0 T secs Value sec secs V
		.26 .26 .26 70.0 70.0 70.0	.26 .26 .26 7	$m_{i} \hat{m}_{i}(1)\hat{m}_{i}(2) I_{i} \hat{I}_{i}(1)\hat{I}_{i}(2)$	0.0-1.0- True 1.0 2.0 True 1.0 2.0 Value sec secs Value sec secs
		0.0 70.0 70.0	70.0 70.0 70.0	$I_{\hat{1}} \hat{I}_{\hat{1}}(1) \hat{I}_{\hat{1}}(2)$	0.0-1.0- rue 1.0 2.0 alue sec secs

Table X (b)

Sinusoidal Excitation

Again, to the first few places, the estimated parameters are identical with the actual system parameters. It is only at the fifth and sixth places where deviation occurs.

Clearly, multidimensional systems give no problems for identification as long as it is merely a problem of parameter identification with known structure.

3.5 Identification Using Only Acceleration Data

It was hoped that we could present a comprehensive study of the problem of parameter identification by the proposed method when only acceleration data is available.

This, in a sense, is very important to establish since, in general, acceleration data is the most commonly recorded.

Velocity and displacement data are not usually present in vibrations recordings. For the proposed scheme acceleration data alone is not sufficient for identification purposes.

Thus, it was thought desirable to determine how well we can identify by integrating the acceleration data in order to obtain velocity as well as displacement data and accomplish identification on the basis of these calculated data. This numerical problem was not resolved during the course of the

present research project. Part of the problem that exists here is that the initial values of the velocities and displacements are unknown so that one has to remove some type of trend in order to satisfy, for example, that the mean values should be zero. Upon attempting two integrations and two trend removals, the estimated parameters obtained possessed large errors. As there was insufficient time remaining in order to resolve these problems as well as the many other problems that came up during the course of this research, we decided to present a simple example in which only one integration of the acceleration is required and the initial value of the velocity is known so that no trend removal is required. This example does give credance to the approach and opens doors for future investigations.

The system chosen for simulation is

$$\ddot{x}(t) + 30 \dot{x}(t) + 900 x(t) = f(t)$$
 (3.5.1)

For this system the damp ng ratio is 1/2, so that we can expect the transient to last but a few cycles. We are especially interested in the steady state here for it will allow us to identify k and C on the basis of acceleration and velocity data alone. The excitation was a random function with spectrum as shown in Experiment IV of Section 3.2.

Based upon the assumption of stationarity we can apply the following equations for identification

$$E(\ddot{x}^2) + 30 E(\dot{x}\ddot{x}) + 900 E(x\ddot{x}) = E(f\ddot{x})$$

$$(3.5.2)$$

$$E(\dot{x}\ddot{x}) + 30 E(\dot{x}^2) + 900 E(x\dot{x}) = E(f\dot{x})$$

Now, assuming stationarity, we can reduce these equations to

$$E\{\ddot{x}^2\}$$
 - 900 $E\{\dot{x}^2\}$ = $E\{f\ddot{x}\}$ (3.5.3)
30 $E\{\dot{x}^2\}$ = $E\{f\dot{x}\}$

Therefore, identification is accomplished on the basis of velocity and acceleration data alone.

The sampling frequency was 140 c.p.s. The periods of observation were taken on successive intervals of 5.96 secs duration. This corresponds to 835 samples used for parameter estimation purposes.

The results of this parameter estimate are shown in the following table, XI.

Naturally, we feel quite encouraged by the success of this simple simulation experiment. It is clear, however, that

much remains to be accomplished before we can apply our approach to parameter estimation with acceleration data alone.

Estimation Interval

	True Value		5.96 - 11.92	11.92- 17.88	17.88- 23.84	23.84 - 29.80
k	900.0	^ k	860.0	860.0	886.0	900.0
С	30. 0	ĉ	29.1	29.1	29.8	30.2

Table XI

CHAPTER IV

COMPUTER SIMULATION AND IDENTIFICATION

4.1 Computer Techniques

In order to verify numerically the proposed identification technique, the chain-like system shown in Figure I-a and described by equation 2.2.28 is simulated, necessary moments are computed and the system parameters are estimated on an IBM 7094 computer system. The operations performed by the computer can clearly be divided into three distinct functions:

- a. Simulation of the system
- b. Estimation of the moments
- c. Estimation of the system parameters

A description of the computing method used in each case follows.

Simulation of the System

When a computer is used to simulate a system, it is actually programmed to integrate, with respect to time, the set of differential equations describing that system. In this case, equation 2.2.28 is rewritten into a set of first-order differential equations by change of variables. That is, let

91

$$x_1 = y_1$$
; $\dot{x}_1 = y_2$
 $x_2 = y_3$; $\dot{x}_2 = y_4$
 \vdots
 \vdots
 $x_n = y_{2n-1}$; $\dot{x}_n = y_{2n}$ (4.1.1)

$$\frac{dy_1}{dt} = \dot{y}_1 = y_2$$

$$\frac{dy_2}{dt} = \dot{y}_2 = -\frac{c_1}{m_1} (y_2 - y_4) - \frac{k_1}{m_1} (y_1 - y_3) + \frac{f_1}{m_1}$$

•

$$\frac{dy_{2i-1}}{dt} = \dot{y}_{2i-1} = y_{2i}$$

$$\frac{dy_{2i}}{dt} = \dot{y}_{2i} = -\frac{c_i}{m_i} (y_{2i} - y_{2i+2}) - \frac{k_i}{m_i} (y_{2i-1} - y_{2i+1})$$

$$+ \frac{c_{i-1}}{m_i} (y_{2i-2} - y_{2i}) + \frac{k_{i-1}}{m_i} (y_{2i-3} - y_{2i-1}) + \frac{f_i}{m_i}$$

(4.1.2)

$$\frac{dy_{2n-1}}{dy} = \dot{y}_{2n-1} = y_{2n}$$

$$\frac{dy_{2n}}{dt} = \dot{y}_{2n} = -\frac{c_n}{m_n} y_{2n} - \frac{k_n}{m_n} y_{2n-1} + \frac{c_{n-1}}{m_n} (y_{2n-2} - y_{2n})$$

$$+ \frac{k_{n-1}}{m_n} (y_{2n-3} - y_{2n-1}) + \frac{f_n}{m_n}$$

or in a more compact notation

$$\frac{d\bar{y}}{dt} = g(\bar{y}, \bar{F}) \tag{4.1.3}$$

where g in this case is a linear function of \overline{y} and F.

The operation performed by the computer in the integration of the set of differential equations consists of two parts, the generation of the derivative functions, namely $g(\bar{y}, F)$ and the integration with respect to time. The flow of information is shown in Figure IV.

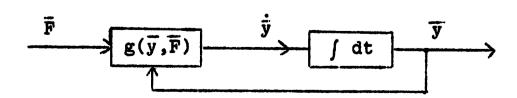


Figure IV

A fourth-order Runge-Kutta technique of integration is used to produce tabulated values of the computer integral at equal time interval H. This is a single-step method in which the value of \bar{y}_n and F_n at t_n = nH is used to compute \bar{y}_{n+1} at t_{n+1} = (n+1)H. The relevant formulas are:

$$\overline{y}_{n+1} = \overline{y}_n + \frac{1}{6} (s_0 + 2s_1 + 2s_2 + s_3)$$
 (4.1.4)

where

$$s_0 = H g (\overline{y}_n, \overline{F}_n, t_n)$$
 $s_1 = H g (\overline{y}_n + \frac{s_0}{2}, \frac{\overline{F}_n + \overline{F}_{n+1}}{2}, t_n + \frac{H}{2})$
 $s_2 = H g (\overline{y}_n + \frac{s_1}{2}, \frac{\overline{F}_n + \overline{F}_{n+1}}{2}, t_n + \frac{H}{2})$
 $s_3 = H g (\overline{y}_n + s_2, \overline{F}_{n+1}, t_{n+1})$

Estimation of the Moments

The moments as coefficients of the simultaneous equations in equation 2.2.29 for solving the system parameters m_1 , C_1 , k_1 , i=1 to 5 are estimated from equally-spaced samples of the system response functions generated in the process of simulating the system.

The least square estimate of a moment such as $\mu_{XZ} = E[XZ]$ from N duplets $\{x_1, z_1\}, i=1,2,...N$ is simply

$$\hat{\mu}_{xz} = \frac{1}{N} \sum_{i=1}^{N} x_i z_i$$
 (4.1.5)

Estimation of the System Parameters

The set of simultaneous equations for estimating the system parameters is given by equation 2.2.29. They can be expressed in matrix notation sequentially for each ith mass, spring, and dashpot section from i=1 to 5 as follows

$$A_{1} P_{1} = B_{1}$$
 (4.1.6)

where $P_{\mathbf{i}}$ is the unknown system parameter vector of the ith mass, spring, and dashpot section

$$P_{i} = \begin{bmatrix} m_{i} \\ C_{i} \\ k_{i} \end{bmatrix}$$
 (4.1.7)

The coefficient matrix A_i for i=1 to 4 is

$$A_{1} = \begin{bmatrix} y_{21-1}\dot{y}_{21} & y_{21-1}y_{21-2}y_{21-1}y_{21-2}y_{21-2}y_{21-1}y_{21-$$

and for 1=5

$$A_{5} = \begin{bmatrix} \overline{y_{9}\dot{y}_{10}}, \overline{y_{9}y_{10}}, \overline{y_{9}^{2}} \\ \overline{y_{10}\dot{y}_{10}}, \overline{y_{10}^{2}}, \overline{y_{9}y_{10}} \\ \overline{\dot{y}_{10}^{2}}, \overline{y_{10}\dot{y}_{10}}, \overline{\dot{y}_{10}y_{9}} \end{bmatrix}$$
(4.1.9)

The constant vector B_i for i=1 is

$$B_{1} = \frac{\overline{y_{1}f_{1}}}{\overline{y_{2}f_{1}}}$$

$$(4.1.10)$$

and for i=2 to 5 is

(4.1.11)

$$B_{1} = \frac{(y_{21-2}y_{21-1}-y_{21-1}y_{21}) c_{1-1} + (y_{21-3}y_{21-1}-y_{21-1}) k_{1-1}+y_{21-1}f_{1}}{(y_{21-2}y_{21}-y_{21}) c_{1-1} + (y_{21-3}y_{21}-y_{21-1}y_{21}) k_{1-1}+y_{21}f_{1}}$$

$$\frac{(y_{21-2}y_{21}-y_{21}y_{21}) c_{1-1} + (y_{21-3}y_{21}-y_{21-1}y_{21}) k_{1-1}+y_{21}f_{1}}{(y_{21-2}y_{21}-y_{21}y_{21}) c_{1-1} + (y_{21-3}y_{21}-y_{21-1}y_{21}) k_{1-1}+y_{21}f_{1}}$$

Notice that the vectors B_i for i=2 to 5 are functions only of the previous (i-1)th system parameters. Instead of solving 15 equations simultaneously, each A_i $P_i = B_i$ is used to solve for the unknown vector P_i sequentially from i=1 to i=5.

4.2 Computer Program Abstract I

a) This program simulates the one-dimensional chainlike lumped parameter spring-mass-dashpot system whose equations of motion are given by equation 4.1.2. From the simulated equally-spaced samples of the system dynamical outputs y_1 ,

 \dot{y}_j , j=1 to 2N and the system inputs F_i , i=1 to NF, the second moments or time averages of $y_j y_k$, $\dot{y}_j y_k$, \dot{y}_j^2 , $F_1 y_{21-1}$, $F_1 y_{21}$, and $F_1 \dot{y}_{21}$ are computed and the system parameter triplets (m_1, k_1, C_1) , i=1 to N are estimated.

- b) Outputs from this program include:
 - Sample moments or time averages of $\overline{y_j y_k}$; j=1 to 2N, k=j, ... (j+3) or 2N; $\dot{y_j y_k}$; j=1 to 2N, k=(j-3) or 1, ... (j+3) or 2N; $\dot{y_j}^2$; j=1 to 2N; $\overline{F_1 y_{21-1}}$, $\overline{F_1 y_{21}}$ and $\overline{F_1 y_{21}}$; 1=1, ... NF.
 - 2) Sets of simultaneous equations for solving each system parameter triplet $(\hat{m}_1, \hat{k}_1, \hat{C}_1)$ and simultaneous equations for solving each duplet (k_1^*, C_1^*) with m_1 given for i=1 to N.
 - 3) Tabulation of the true parameters (m_1, k_1, C_1) against the corresponding estimated parameters $(\hat{m}_1, \hat{k}_1, \hat{C}_1)$ and (k_1^*, C_1^*) for i=1 to N.
- c) Limitation of this program*
 - 1) N, the number of mass, is limited to 10 (N \leq 10).
 - 2) NF, the number of input forcing functions, is limited to N (NF \leq N).

^{*}Maximum number of masses is arbitrary and is specified by dimension statement.

- d) Required supporting subprograms
 - 1) RKD
 - 2) DERSUB
 - 3) FØRSUB
 - 4) PAMSQT
 - 5) XSQ
 - 6) XMØNT3
 - 7) LØC2
 - 8) LØC3
 - 9) CØEF
 - 10) RLMTX
 - 11) GAURN (if random input is desired)

The descriptions for these subroutines are given in section 3.

Input Cards

- a) Degree of Freedom Card Col. 1-2 N Number of mass for the chainlike system (N \leq 10)
- b) System Parameter Card(s)

A card is used to specify each system parameter triplet (m_i, k_i, C_i) . N cards are then needed, and they should be arranged consecutively from i=1 to N.

- Col. 1-10 CM(I) Floating point constant for the 1th mass coefficient
- Col. 11-20 CK(I) Floating point constant for the 1th spring coefficient
- Col. 21-30 CC(I) Floating point constant for the ith damper coefficient
- c) Number of Input Card
 - Col. 1 2 NF Number of input forcing functions
- d) Input Forcing Characteristics Card(s)

A card is used to specify each input forcing function characteristics. NF cards are needed and they should be arranged consecutively from I=1 to NF.

- Col. 1 5 FOST(I) Amplitude of the sinusoid input to ith mass, or standard deviation of the white noise input to a band-pass filter whose output is the input to ith mass of the system.
- Col. 6 10 FW(I) Frequency (cps) of the sinusoid
 input to ith mass, or center frequency (cps) of the
 band-pass filter for the ith input
- Col. 11-15 FB(I) Phase shift (in degrees) with
 respect to t = 0 of the sinusoid input to ith mass,
 or bandwidth of the band-pass filter.

- e) Simulation Specification Card
 - Col. 1 5 FREQ Sampling frequency for simulation of the system. The simulation interval is then 1/FREQ.
 - Col. 6 1) NI Number of samples to be simulated before samples are taken for estimation of the moments and the system parameters.
 - Col. 11-15 NO Number of samples (after initial NI samples) to be used for estimation of the moments and the system parameters.
 - Col. 16-20 K Only every kth sample (after initial NI samples) of the equally-spaced samples are to be used for estimation of the moments and the system parameters.
 - Col. 21-25 NORUN Number of successive times the moments and the system parameters are to be estimated.
 - Col. 26-30 INIT Control index for how the samples are taken for each successive estimation of the moments and parameters.
 - If INIT < 0, successive NO samples (after the initial NI samples) taken at every kth sample are to be used for estimation of the moments and the parameters.

 If INIT = 0, system is reinitialized each time, NO samples (after initial NI samples) taken at every kth sample are used for estimation of the moments and parameters.

If INIT > 0, (after initial NI samples) NO samples are used commulatively each time; that is, NO, then 2 x NO, ..., then NORVN x NO samples are successively used for estimation of the moments and parameters

f) Repeat a to e for a different choice of system parameters as many times as desired. A blank card after e will cause a stop.

Description of Supporting Subprograms

a) RKD (DERSUB, FORSUB, M, NF, H, TI, YI, FOS, K, N, F, VAL, D'AL, Y)

This Fortran subroutine generates the solution to a set of M simultaneous first-order, ordinary differential equations by the classical fourth-order Runge-Kutta method of integration. Where

DERSUB - Name of the external subroutine used to compute the derivatives.

FORSUB - Name of the external subroutine used to generate the input forcing functions.

M - Number of equations for expressing the system.

NF - Number of input forcing functions

H - Step size for integration

TI - Initial value of T

- YI Initial values of Y, an array of M
- FOS Initial values of F, an array of NF. Destroyed in the process and replaced by the final value of F.
- The desired number of stops of size H between values of the integrals to be stored in VAL, values of the derivatives to be stored in DVAL and the values of the input forcings to be stored in F.
- N The number of values to be stored in VAL, DVAL and F. The final value of T will be TI + (N*K*H).
- A matrix of NF by N containing the values of input forcing functions generated by the external subroutine FORSUB.
- VAL A matrix of M by N containing the integrated values of the M derivatives generated by DERSUB.
- DVAL A matrix of M by N containing the derivatives generated by the external subroutine DERSUB.
- Y The final integrated values of the M derivatives, an array of M.

b) DERSUB (T, VAR, FS, M, NF, DER)

This Fortran subroutine computes the derivatives given by equation 4.1.2 for the integration subroutine RKD, where DER(I); I=1,M are derivatives of VAR(I), I=1,M with respect to T, and are functions of T, VAR and FS (input forcing

vector of length NF). This subroutine describes the dynamics of the system; therefore, a different system can be simulated by simply using a corresponding subroutine DERSUB that describes the system dynamics by a set of first-order ordinary differential equations.

c) FORSUB (T, FOS, NF)

This Fortran subroutine generates the input forcing functions to the system for the integration subroutine RKD, where FOS(I), I=1,NF are the values of the input forcing functions at time T. A subprogram for sinusoidal input and another subprogram for random input are included. The user can use either one as desired, and only one is to be used at a time.

The random forcing function f_i is generated by passing a white noise sequence (simulated by subprogram RANDPK) through a bandpass digital filter with center frequency w_i and bandwidth B_i . The corresponding continuous filter can be described by the differential equation

$$\ddot{f}_{1} + B_{1}\dot{f}_{1} + w_{1}^{2}f_{1} = B_{1}\dot{x}$$
 (4.2.1)

which will yield the following recurrence formula for the digital simulation

$$F_{i}(N+2) = A_{i}F_{i}(N+1) + A_{2}F_{i}(N) + B_{i}H(x(N+1)-x(N))$$
 (4.2.2)

where

$$A_1 = 2 e^{-\frac{B_1 H}{2}} \cos w_d H$$

$$A_2 = - e^{-B_1 H}$$

$$w_d = \sqrt{w_i^2 - B_i^2/4}$$

and H is the simulation interval

d) PAMSQT (A, NV, NO, M, SQ, SUM, ID)

This Fortran subroutine computes either sums and sums of products of two variables or averages and averages of products of two variables from a set of sample vectors. Where

A - Sample matrix NV by NO of a set of vectors.

NV - Number of variables or length of vector

NO - Number of samples

- M Number of adjacent variables (M \leq NV 1) for computing products of two variables. Y(J) * Y(L) where $|L J| \leq M$.
- SQ Sums or averages of products of two variables Y(J) * Y(L), J=1, NV; L=J, (J+M) or NV, a matrix of (M+1) * NV (M * (M+1))/2.
- SUM Sums or averages, a vector of length NV
- ID Control index
 ID = 0 computing sums and sums of products
 ID ≠ 0 computing averages and averages of products
 - e) Subroutine XSQ (A, B, NV, NO, M, ASQ, AB, IFLAG)

This Fortran subroutine computes either sums or averages of products of variables between two sets of vectors and squares of one set of vector. Where

- A Sample matrix of NV by NO of one set of vectors
- B Sample matrix of NV by NO of another set of vectors
- NV Number of variables or length of vector
- NO Number of samples
- M Number of adjacent variables (M ≤ NV 1) for computing products of variables from the two sets of vectors
 Y(J) * Z(L), l or (J M) ≤ L ≤ (J + M) or NV.
- ASQ Sums or averages of squares of variable of the vectors stored in sample matrix A, a vector of length NV.

- Sums or averages of products of one variable of vectors stored in A and another variable of vectors stored in B. Y(J) * Z(L), J=1,NV. A matrix of (2 * M + 1) * NV M * (M + 1).
- IFLAG Control index IFLAG = 0, compute sums
 IFLAG ≠ 0, compute averages
 - f) Subroutine XMONT3 (A, NA, B, C, NBC, NO, XM, ID)

This Fortran subroutine computes sums or averages of products between variable of one vector and variable of two other vectors. Where

A - Sample matrix of NA by NO of one set of vectors

NA - Number of variable or length of vector stored in A

B - Sample matrix of NBC by NO of another set of vectors

C - Sample matrix of NBC by NO of the third set of vectors

NBC - Number of variables or length of vector stored in B and C

NO - Number of samples

XM - Sums or averages of products of variables A(J) * B(2J-1); A(J) * B(2J) and A(J) * C(2J), J=1, NA

ID - Control index

ID = 0 computing sums

ID ≠ 0 computing averages

g) Subroutine LOC2 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript for an element in a symmetric matrix where only M elements from the diagonal elements of the upper (or lower) triangular matrix are stored in a vector. To illustrate the storage mode, Figure V shows the vectors subscripts for elements in a 6 x 6 matrix where only 2 elements from the diagonal elements are stored.

Figure V

Storage Mode

- L Row number of element or $(J-M) \le L \le (J+M)$ or NV
- J Column number of element
- LJ Resultant vector subscript
- NV Number of columns in matrix
- M Number of adjacent elements from the diagonal elements $M \leq (NV-1)$

h) Subroutine LOC3 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript for an element in a matrix where only M adjacent elements from the diagonal elements are stored in a vector. To illustrate the storage mode, Figure VI shows the vector subscripts for elements in a 6×6 matrix where only two adjacent elements from the diagonal elements are stored.

					-
1	4	8	0	0	0
2	5	9	13	0	0
3	6	10	14	18	0
0	7	11	15	19	22
0	0	12	16	20	23
0	0	0	17	21	24
L					

Figure VI

- L Row number of element 1 or $(J-M) \le L \le (J+M)$ or NV
- J Column number of element
- LJ Resultant vector subscript
- NV Number of column
- M Number of adjacent elements from the diagonal elements that are stored

1) COEF (J, N, NF, SQ, DYSQ, YDY, XM, EC, EK, A, B)

This Fortran subroutine computes the coefficients for the three simultaneous equations in solving the jth system parameter triplet (m_j, k_j, C_j) . Where

- J Number of the system parameter triplet to be solved
- N Number of mass (or degree of freedom) of the onedimensional chainlike system
- NF Number of input forcing functions
- SQ Averages of products of the system dynamical outputs
- DYSQ Averages of squares of the derivatives
- YDY Averages of products of the system dynamical cutputs and the derivatives
- XM Averages of products of the system input and the dynamic outputs
- EC Previously estimated damping coefficient of the (J-1)th system parameter triplet
- EK Previously estimated spring coefficient of the (J-1)th system parameter triplet
- A A 3 x 3 matrix containing the left-hand side coefficients of the equations.
- B A vector of length 3 containing right-hand sides constants

j) RLMTX (A, NR, NSYS, MARK, DET, INOPT)

This Fortran subprogram evalutes the determinant of a matrix A with real elements and at the user's option finds the inverse or solves one or more simultaneous systems. Where

NR - Order of matrix A

NSYS - Number of simultaneous systems to be solved if the system solving option is chosen. Otherwise, NSYS is irrelevant.

MARK - Singularity indicator. If Mark = 1 on return to calling program, the matrix A is singular.

DET - Determinant of A

INOPT Option flag

- = 0 for determinant evaluation only
- = -1 for system solving option
- = +1 for inverse option
- Array name of the augmented matrix C/B. The subroutine is compiled with the dimension A(3,4). This
 dimension must be changed if it is inconsistent with
 the dimension of A in the calling program. A must
 be at least dimension
 - 1) (N by (N+NSYS)) for the system solving option
 - 2) (N by 2N) for the inverse option

If the system option is chosen, the known vectors b of (Cx = b) must be stored in the (N+1)st through

(N+NSYS) column of A (1.e., must constitute the (N by NSYS) matrix B). The solution vectors will be returned in these same columns.

If the inverse option is chosen C^{-1} will be returned in B. The original matrix C is destroyed (on return C will contain the triangularized matrix).

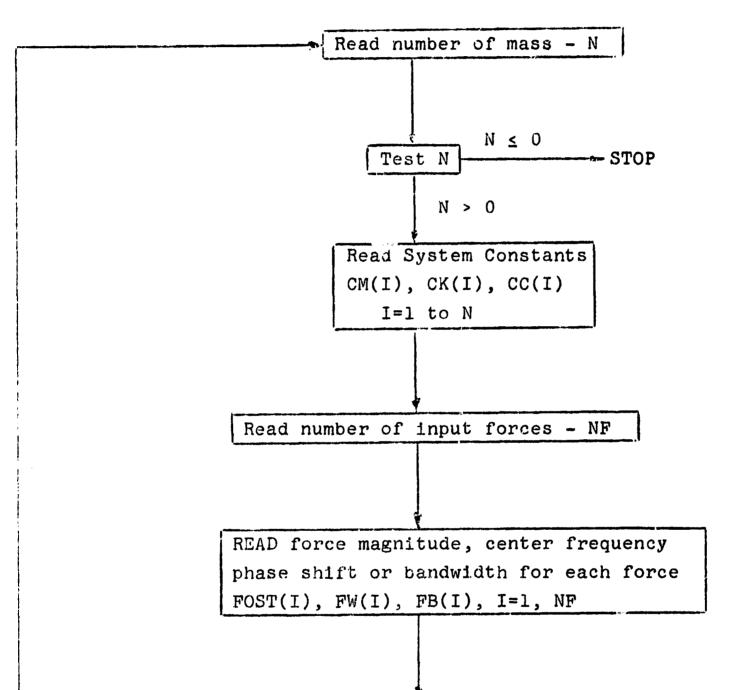
k) RANDPK (Entry names GAURN, EXPRN, and FLRAN)

This MAP function subprogram generates pseudo-random numbers and includes three entry points for three different distributors, Gaussian (normal), Exponential or Rectangular (uniform). The function names are GAURN, EXPRN, and FLRAN corresponding to Gaussian, exponential, and rectangular, respectively. An example of the generation of a Gaussian-distribution pseudo-random number which is to be assigned to the variable Y is as follows:

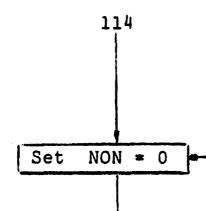
Y = GAURN(X)

where X is a dummy variable and has no effect on the random number generation.

This package of routines has the characteristics that each separate run of the program produces the same sequence


of numbers. If a different set of numbers is desired, it is possible to preset the routine at a different value by presetting the initializing regulatory variable inside the routine. One possible way to generate a different sequence each run is to get the value of this special variable after all the random numbers for that particular run have been obtained. Then this value could be stored in the routine in the next program to continue the old sequence. To implement this capability, included in the package are two subroutines. The one to get the number from the routine may be executed by

CALL GETNM (NUM)


where NUM is the integer variable into which the special number is stored. The other . to store an integer (NUM) into this special location may be executed as

CALL STORNM (NUM).

Block Diagram

Read Sampling frequency for simulation - FREQ Number of initial samples - NI Number of samples used for calculating moments - NO Every kth sample simulated is used - K Number of times NO samples are to be simulated and coefficients estimated - NORUN Flag index for how previously generated samples should be used - INIT If INIT < 0, system is simulated continuously and and each successive NO samples are used for estimation If INIT = 0, system is reinitialized for each successive estimation If INIT > 0, system is simulated continuously and NO, then 2*NC,..., then NORUN*NO samples are used for estimation.

Determine number of samples can be simulated at one time (limited by the allocated storage space) - NIS

Set NOS = NO

Generate NIS samples of each state variables

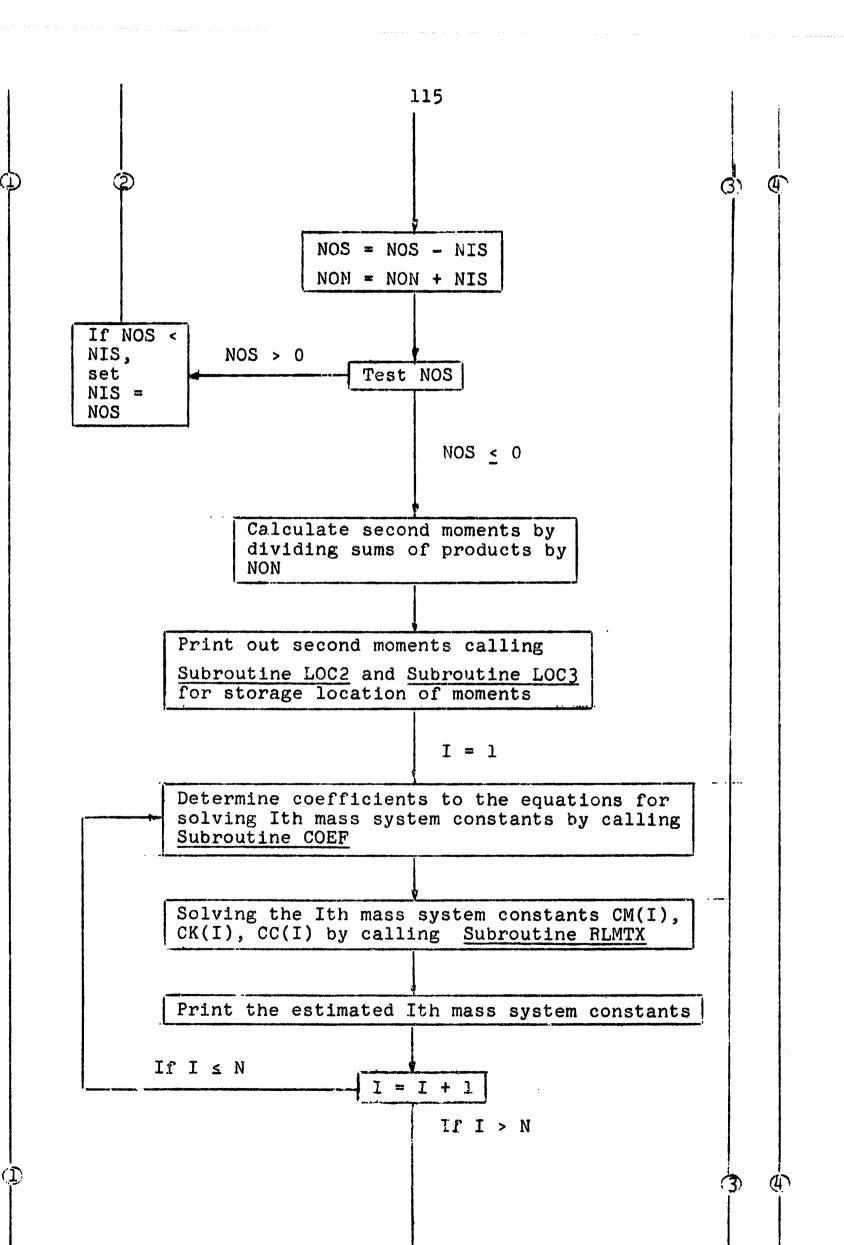
 Y_i , i=1,2N and DY_i , i=1,2N

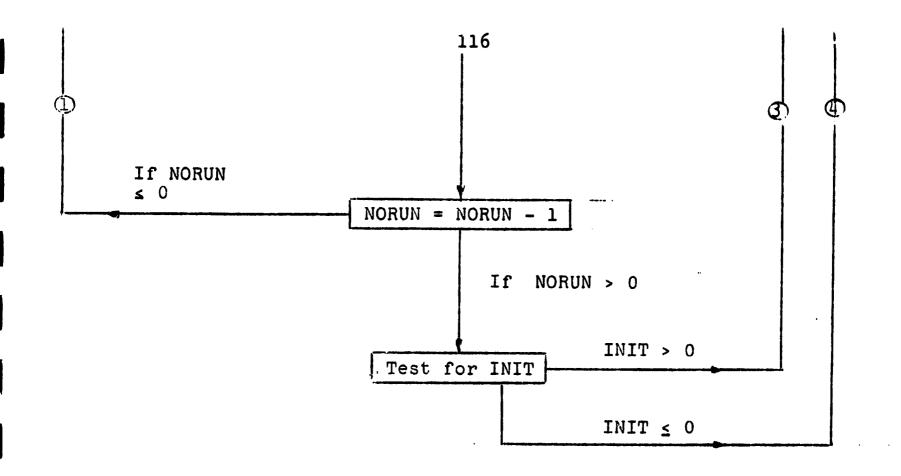
where $DY_i = \dot{Y}_i$ and $Y_{2i} = \dot{Y}_{2i-1}$

by calling

Subroutine RKD - fourth-order Runge-Kutta integration process which calls for two auxiliary subroutines

Subroutine DERSUB - generates derivatives DY as functions of Y and T and


<u>Subroutine FORSUB</u> - generates forcing functions


Calculate sum of squares by

 $\frac{\text{Subroutine PAMSQT}}{\text{squares of Y and products of Y}_{i} \quad Y_{i}$

Subroutine XSQ - calculate sum of products DY with Y

Subroutine AMONT3 - calculate sum of products of Force F with DY or Y

Listing of the Main Program and Associated Subprograms

```
C
      PROGRAM TO SIMULATE N DEGREE FREEDOM, ONE DIMENSIONAL, SPRING MASS
C
        AND DAMPER SYSTEM AND ESTIMATE THE COEFFICIENTS
      DIMENSION CC(10), CK(10), CM(10), FI(10), Y(5000), DY(5000), YE(20),
     1F(2500), EC(10), EK(10), EM(10), FW(10), FB(10), DIS(3,10), YI(20)
     2FOST(10),
                        SO(80), SUM(20), XM(30), A(3,3), B(3), R(3,4)
     3, DYSQ(20), YDY(140), SQT(80), SUMT(20), XMT(30), DYSQT(20), YDYT(140)
     4, EFK(10), FEC(10), SUMS(20), XMS(30), SQS(80), DYSQS(20), YDYS(140)
      DOUBLE PRECISION SQS, SUMS, XMS, DYSQS, YDYS
      EQUIVALENCE (R(1.1).A(1.1)).(R(1.4).B(1))
      COMMON CC, CK, CM, FOST, FW, FB, DIS
      EXTERNAL DERSUB, FORSUB
    5 READ(5,500) N
      IF(N) 400,400.8
    8 READ(5,501) (CM(I),CK(I),CC(I),I=1,N)
      READ(5,502) NF, (FOST(I), FW(I), FB(I), I=1, NF)
      READ(5,506) FREQ, NI, NO, K, NORUN, INIT
C
      INIT .GT. O ALL SAMPLES USED FOR SUCCESIVE ESTIMATION OF MOMENTS
      INIT .EQ. O EACH SUCCESIVE RUN IS REINITIALIZED
      INIT .LT. O NO SAMPLES USED FOR SUCCESIVE ESTIMATION OF MOMENTS
      INITIALIZATION
      H=1.0/FREQ
      N2=2*N
      MX=3
      IF(N2.LE.3) MX=N2-1
      NSQ=(MX+1)*N2-(MX*(MX+1))/2
      NXM=3+NF
      NXC=(2*MX+1)*N2-(MX+1)*MX
      DO 10 I=1.NF
      BH=6.283185*FB(I)*H
      WD=FW(1)*FW(1)-0.25*FB(1)*FB(1)*
      IF(WD.LT.0.0) WD=-WD
WD=6.283185*H*SQRT(WD)
      DIS(1,1)=2.0*COS(WD)*EXP(-0.5*BH)
    DIS(2,1)=-1.0*EXP(-1.0*BH)
      DIS(3,1)=BH
  10 CONTINUE
  15 00 30 I=1,N2
  30 Y1(1)=0.0
      TI=0.0
```

"REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR."

C

0

(1)

0

程

6

(19)

```
CALL FORSUMITI, FI, NF)
   IF(NI.LE.A) CO TO 41
   CALL PKD (DERSUB, FORSUB, N2, NF, H, O.C, YI, FI, NI, 1, F, Y, DY, YE)
   DO 40 I=1.N2
40 YI(I)=YE(I)
         FLOAT(NI)*H
   TI=
41 DO 42 J=1.NXM
42 XMS(J)=7.0
   DO 43 J=1,NSQ
43 SQS(J)=7.0
   DO 44 J=1,N2
   nysqs(J)=0.0
44 SUMS(J)=0.0
   DO 45 J=1.NXQ
45 YDYS(J)=0.0
   NON=C
   TIS=TI
455 IF((NO*NF).LE.2500) GO TO 49
   MNF=2500/NF
   IF((NO*N2).LE.5000) GO TO 46
   MN2= 5000/N2
   IF(MNF-MN2) 46,46,48
46 NIS=MNF
   GO TO 50
48 NIS=MN2
   GC TO 50
49 IF((NO*N2).LE. 5000) GO TO 140
   NIS= 5000/N2
   GD TO 50
140 NIS=NO
50 NCS=NO
51 CALL RKD (DERSUB, FORSUB, N2, NF, H, TI, YI, FI, K, NIS, F, Y, DY, YE)
   CALL PAMSQT(Y, N2, NIS, MX, SQT, SUMT, O)
   CALL XSQ(DY,Y,N2,NIS,MX,DYSQT,YDYT,O)
   CALL XMONT3(F,NF,Y,DY,N2,NIS,XMT,O)
   NCS=NOS-NIS
   DO 52 J=1.NSQ
52 SQS(J)=SQS(J)+SQT(J)
   DC 54 J=1,N2
   DYSQS(J)=DYSQS(J)+DYSQT(J)
54 SUMS(J)=SUMS(J)+SUMT(J)
   DO 55 J=1.NXQ
55 YOYS(J)=YOYS(J)+YOYT(J)
   DO 56 J=1.NXM
 56 XMS(J)=XMS(J)+XMT(J)
   DO 58 J=1,N2
   VICUI=YECUI
 58 YI(J)=YE(J)
   TN=NIS+K
 60 TI=TI+TN*H
 65 IF(NOS-NIS) 70,51,51
   IF(NOS) 100,100,65
 70 NIS=NOS
   GO TO 51
100 DO 110 J=1,NSQ
```

"REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR.

```
O
                DC 112 J=1,N2
                DYSQ(J)=DYSQS(J)/FLOAT(NON)
            112 SUM(J)=SUMS(J)/FLOAT(NON)
                DC 114 J=1.NXM
            114 XM(J)=XMS(J)/FLOAT(NON)
                DO 116 J=1,NXQ
            116 YCY(J)=YDYS(J)/FLOAT(NON)
               WRITF(6,606) N
                WRITE(6,622) (SUM(J), J=1,N2)
                WPITE(6,620)
               DC 155 J=1,N2
               CALL LOC2(J,J,K1,N2,MX)
                J3=J+MX
              . IF(J3.GT.N2) J3=N2
               CALL LOC2(J3,J,K2,N2,MX )
            155 WRITE(6,621) J,(SQ(JJ),JJ=K1,K2)
               WRITE(6,623) (DYSQ(J), J=1,N2)
               WRITE(6,628)
               DO 160 J=1.N2
               XM+L=EL
               IF(J3.GT.N2) J3=N2
               CALL LOC3(J3,J,K2,N2,MX)
               J3=J-3
               IF(J3.LT.1) J3=1
               CALL LOC3(J3,J,K1,N2,MX)
            160 WRITE(6,629) J,J3,(YDY(JJ),JJ=K1,K2)
               WRITE(6,626)
               DO 165 J=1,NF
            165 WRITE(6,627) J, XM(3*J-2), XM(3*J-1), XM(3*J)
               WRITE(6,607)
               PC=0.0
               PK=0.0
               DO 200 I=1,N
               CALL COEF(I,N,NF,SQ,DYSQ,YDY,XM,PC,PK,A,B)
               WRITE(6,624) I
               DO 170 J=1,3
           170 WRITE(6,625) (A(J,L),L=1,3),B(J)
               CALL RLMTX(R,3,1,MARK,DET,-1)
               EM(I)=R(1,4)
               EK(1)=R(2,4)
               EC(I)=R(3.4)
               WRITE(6,031) DET
               IF(I.EQ.1) GO TO 175
               PK=EEK(I-1)
               PC=EEC(I-1)
          "175 CALL COEF(I,N,NF,SQ,DYSQ,YDY,XM,PC,PK,A,B)
               B(1)=B(1)-CM(1)*A(1,1)
R(1-1)=A(1-2)
               R(1,1)=A(1,2)
               R(1,2) = A(1,3)
       R(1,3)=B(1)
B(2)=B(2)-CM(I)*A(2,1)
               R(2,1)=A(2,2)
```

"REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR"

```
R(2,2)=A(2,3)
    R(2,3)=B(2)
    WRITE(6,632)
    00 180 J=1.2
180 WRITE(6,633) (R(J,L),L=1,3)
    CALL RLMTX(R, 2, 1, MARK, DET, -1)
    WRITE(6,631) DET
    FEK(I)=R(1,3)
    EEC(1)=R(2,3)
    PK=EK(I)
    PC= EC(I)
200 CONTINUE
    WRITE(6,600) N
    WRITE(6,601) NF,(I,FOST(I),FW(I),FB(I),I=1,NF)
    HK=FLOAT(K)*H
    TIE=H*FLOAT(NON)
    WRITE(6,603) FREQ.H.TIS.HK.NON.TIE
    WRITE(6,604)
    DO 330 I=1.N
                  CM(I), EM(I), CK(I), EK(I), CC(I), EC(I)
330 WRITE(6,605)
    WRITE(6.634)
    DO 335 I=1.N
335 WRITE(6,635) CK(1), EEK(1), CC(1), EEC(1)
    NORUN=NORUN-1
    IF(NORUN) 5,5,340
340 IF(INIT) 41,15,455
500 FORMAT(12)
501 FORMAT (3F10.1)
502 FORMAT(12/( 3F5.1) )
504 FCRMAT(8F10.4)
506 FORMAT(F5.3,515)
600 FORMAT (41H1 ESTIMATED COEFFICIENTS OF THE SIMULATED, 12,
6001 11HMASS SYSTEM )
601 FORMAT(1HO, 18HNO OF EXCITATION =, 13/( 1HO, 10X, 14HFOR EXCITATION,
6011 13,5X,11HAMPLITUDE =,F10.2,5X,18HCENTER FREQUENCY =,F10.1,5X,
601226MPHASE SHIFT OR BANDWIDTH =, F10.2) )
603 FORMAT(21HOSAMPLING FREQUENCY =,F10.1, 3HCPS/
           1HO, 30HSAMPLING INT. FOR SIMULATION =,F8.5/
60311HO, 16HTRANSIENT INT. =
                               .F19.2/
60321HO, 39HSAMPLING INT. FOR CALCULATING MOMENTS =, F8.5/
60331HO,42HTOTAL NO. OF SAMPLES USED FOR FSTIMATION =,16/
603431HOTIME INTERVAL FOR ESTIMATION =, F10.2, 3HSEC)
604 FORMAT(1H0,16X,4HM(I),34X,4HK(I),34X,4HC(I)/3(14X,4HTRUE,8X,
60419HESTIMATED, 3X))
605 FORMAT(1H0, 3(4X, 2E17.8))
606 FORMAT (48H1ESTIMATION OF MOMENTS FOR THE IDENTIFICATION OF
6061 12,11HMASS SYSTEM)
607 FORMAT(524) SETS OF EQUATIONS FOR SOLVING THE SYSTEM PARAMETERS)
620 FORMAT(1HO.40H2ND MOMENTS Y(J)Y(L). L=J TO J+3 (OR 2N))
621 FORMAT(1HO, 8X, 2HY(, 12, 1H), 5E14.4)
622 FORMAT (29HOFIRST MOMENTS OF Y(J), J=1,2N//(5E20.8))
623 FORMAT(43HOSECOND MOMENTS OF DERIVATIVES DY(J), J=1,2N//(5E29.8))
624 FORMATILHO, 20HEQUATION FOR SOLVING, 13, 27HTH MASS SYSTEM COEFFICIE
```

"REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR."

6241TS1 625 FCRMAT(1H1, 3X, F15.8, 6H8M + (,F15.8, 7H) #K + (,F15.8,5H) #C =,F15.8) 626 FORMAT(1HO, 53HCROSS MOMENTS OF INPUT FORCE AND Y(2J-1), Y(2J), DY(2 62611) 6.7 FORMAT(1H), 3X, 12, BUTH FORCE, 3X, 3E14.4) 628 FCRMAT(1H0,51H2ND MOMENTS OF DY(J)*Y(L),L=J-3,OR(1) TO J+3(OR 24)) 629 FORMAT(4HCDY(,12,4H)*Y(,12,1H),7F14.4) 630 FCRMAT(1H1, 120) 631 FORMAT (14HODETERMINNANT=+E2C.8) 632 FORMAT(31H) EQUATIONS WHEN CM IS KNOWN) 673 FORMAT (1H0, 24X, F15.8, 6H*K + (, F15.8, 5H) *C =, E20.8) 634 FCRMAT(25H)FSTIMATES WITH MASS GIVEN) 635 FCRMAT(1H0,38X,2(4X,2E17.8)) 400 STOP ENC

"REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR

```
SUBROUTINE RKD (CERSUB, FORSUB, M, NF, H, TI, YI, FOS, K, N, F, VAL, DVAL, Y)
      DIMENSION Y(20), S1(20), S2(20), S3(20), S4(20), DY(20), FOS(1), YI(1),
     1VAL(1), F(1) , A(20), DVAL(1) , FOSP(20), FOSA(20)
      H2=H/2.
      T=TI
      L =0
      LF=1
      DO 10 T=1,M
   10 Y(I)=YI(I)
      CALL DERSUR(T,Y,FOS,M,NF,DY)
      DO 80 LL=1,N
      DO 65 JJ=1,K
      TP=T+H
      CALL FORSUB(TP, FOSP, NF)
      DO 12 I=1.NF
   12 FOSA(I)=(FOS(I)+FOSP(I))/2.0
C
C
      COMPUTE K SUB 3
   25 DC 30 I=1.M
      S1(I)=H*DY(I)
   30 A(I)=Y(I)+S1(I)/2.
      TA=T+H2
C
C
      COMPUTE K SUB 1
C
      CALL DERSUB(TA, A, FOSA, M, NF, DY)
      DG 40 I=1,M
      S2(I)=H+DY(I)
   40 A(I)=Y(I)+S2(I)/2.
Ç
C
      COMPUTE K SUB 2
C
      CALL DERSUB(TA, A, FOSA, M, NF, DY)
      DO 50 I=1.M
      S3(!)=H*DY(!)
   50 A(I)=Y(I)+S3(I)
      TA=T+H
C
C
      COMPUTE K SUB 3
      CALL DERSUB(TA, A, FOSP, M, NF, DY)
      00 60 I=1.M
   60 S4(I)=H*DY(I)
      H+T=T
      DO 62 I=1.NF
   62 FOS(I) = FOSP(I)
C
      COMPUTE NEW VALUES OF INTEGRALS
      DO 63 I=1,M
   63 Y(I)=Y(I)+(S1(I)+2.*S2(I)+2.*S3(I)+S4(I))/6.0
   65 CALL DERSUB(T,Y,FOS,M,NF,QY)
      DO 70 I=1,M
      L=L+1
      DVAL(L)=DY(I)
```

REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR


```
70 VAL(I) =Y(I)

30 75 I=1.NF

LF=LF+1

75 F(LF)=FCS(I)

80 CONTINUE

RETURN

END
```

```
C
       SUBPOUTING DERSUB(T, VAR, FS, M, NF, DER)
1;
      PURPOSE
        AUXILIARY SUBROUTINE WHICH COMPUTES THE DERIVATIVES FOR THE
C
C
          INTEGRATION SUBPOUTINE RKD
C
      SUBROUTINE CERSUB(T. VAR. FS. M. NF. DER)
      DIMENSION VAR(20), DER(20), CC(10), CK(10), CM(10), FS(10)
      COMMON CC.CK.CM
      N=M/2
      DC 10 T=1.N
   10 DER (2*I-1)=VAR (2*I)
      IF(N-2) 57,15,15
   15 DER(2)=(CK(1)/CM(1))*(VAR(3)-VAR(1))*(CC(1)/CM(1))*(VAR(4)-VAR(2))
             +FS(1)/CM(1)
      IF(N.EQ.2) GC TO 30
      N1=N-1
      CC 25 I=2,N1
      DER(2*I) = (CK(I)/CM(I))*(VAR(2*I+1)-VAR(2*I-1))
     1
                +(CC(T)/CM(I))*(VAR(2*I+2)-VAR(2*I))
                -(CK(I-1)/CM(I))+(VAR(2+I-1)-VAR(2+I-3))
     1
                -(CC(I-1)/CM(I))*(VAR(2*I) -VAR(2*I-2))
     1
      IF(NF.LT.I) GO TO 25
      DER (2*1)
                =DER(2*1)
                           +FS([)/CM([)
   25 CONTINUE
   30 DER(2*N) =-(CK(N)/CM(N))*VAR(2*N-1)-(CC(N)/CM(N))*VAR(2*N)
                 -(CK(N-1)/CM(N))*(VAR(2*N-1)-VAR(2*N-3))
     1
                 -(CC(N-1)/CM(N))*(VAR(2*N) -VAR(2*N-2))
     1
      IF(NF.LT.N) GO TO 100
      DER(2*N) = DER(2*N) + FS(N)/CM(N)
      GO TO 100
   50 DER(2)=-(CK(1)/CM(1))*VAR(1)-(CC(1)/CM(1))*VAR(2)+FS(1)/CM(1)
  100 RETURN
      END
```

REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR

```
SUBSCUTINE FORSUS(T.F.NF)
   DIMENSION CC(10), CK(10), CM(10), FOST(10), FW(10), FE(10), F(10)
   COMMEN CO, CK, CM, FOST, FW, FR
   00 50 I=1.NF
   THE TA=6.283185*(FW(I)*T+FB(I)/360.)
   F(I)=FOST(I)*SIN(THETA)
50 CONTINUE
   RETURN
   END
   SUBROUTINE FORSUBIT, FOS, NF)
   DIMENSION FOS (10), FOST (10), FW(10), FB(10), DIS(3,10), XF(2,10),
  100(10), CK(10), GM(10) , XR(10)
   COMMON CC, CK, CM, FOST, FW, FB, DIS
   00 50 I=1.NF
   TEMP=FCST(I)*GAURN(F)
   FOS(I) = DIS(1,I) * XF(1,I) + DIS(2,I) * XF(2,I) + DIS(3,I) * (TEMP-XR(I);
   XF(2,I)=XF(1,I)
   XF(1,I)=FCS(I)
   XR(I)=TEMP
50 CONTINUE
   RETURN
   ENC
```

```
SUPROUTINE PAMSOT (A, NV, NC, M, SQ, SLM, ID)
C
C
      PURPOSE
        TO CALCULATE FITHER PARTIAL FIRST AND SECOND MOMENTS
C
        OR SUM OF SQUARES AND SUM
C
          A - DATA MATRIX, NV SY NO
C
          NV - NO OF VARIABLES
C
\mathbf{C}
          NO - NO OF DESERVATIONS
              - NO OF ADJACENT VARIABLES FOR CROSS MOEMNTS, M LESS THAN N
C
C
           SQ - SUM OF SQUARES WEEN 10=0
C
                SECOND MOMENTS WHEN ID OTHER THAN O
Ċ
                MATRIX OF (M+1)*NV-(M*(M+1))/2
C
           SUM - ARRAY OF NV
C
      SUBROUTINE PAMSQT(A,NV,NO,M,SQ,SUM,ID)
      DIMENSION A(1), SQ(1), SUM(1)
      LJ=^
      KJ=↑
      DC 20 J=1.NV
      IF(NV-J-M) 4,4,6
    4 JM=NV
      GC TO 8
    M+L=ML 8
    8 DC 10 L=J,JM
      LJ=LJ+1
   10 SO(LJ)=0.0
   20 SUM(J)=0.0
C
C
      CALCULATE SUM OF SQUARES AND SUM
      DC 40 I=1.NO
      LJ=O
      DC 40 J=1,NV
      IF(NV-J-M) 24,24,26
   24 JM=NV
      GC TO 28
   26 JM=J+M
   28 IJ=(I-1)*NV J
      DG 30 L±J,JM
      IL=(I-1)*NV+L
      LJ=LJ+1
   3C SQ(LJ)=SQ(LJ)+A(IJ)*A(IL)
   40 SUP(J) = SUM(J) + A(IJ)
C
      CALCULATE MOMENTS IF ID NOT O
C
      IF(ID) 60,100,60
   60 \text{ JN}=(M+1)*NV-(M*(M+1))/2
      CNO=NO
      DO 70 J=1,JN
   70 SQ(J)=SQ(J)/CND
      DO 80 K=1,NV
   80 SUM(K)=SUM(K)/CNO
  10C RETURN
       END
```

```
SUBROUTINE XSQ(A,S,NV,NO,F,ASQ,AB,IFLAG)
C
      A - DATA MATRIX OF NV BY NO
C
      8 - DATA MATRIX OF NV BY NC
      NV - NO OF VARIABLES
C
C
      NO - NO OF COSERVATIONS
C
      M - NO OF VARIABLES FOR THE CROSS MOMENTS
       ASQ - IFLAG EQ C SUM OF SQUARES OF A
C
C
              IFLAG NE O SECOND MCMENTS OF A
C
      AB - IFLAG EQ O SUM OF SQUARES OF A(I)*B(J),J=J1,JM
            IFLAG NE O SECONO MOMENTS OF A(I) *B(J) .J=J1.JM
C
      DIMENSION A(1), B(1), ASQ(1), AB(1)
      00 10 I=1,NV
   10 ASC(I)=0.0
      NM=(2\pi M+1)\pi NV-M\pi(M+1)
      DC 2C I=1.NM
   20 AB(I)=0.0
      INEO
      DO 80 N=1.NO
      IJ=n
      DC 8C I=1,NV
      IN=IN+1
      ASQ(I)=ASQ(I)+A(IN)*A(IN)
      IF(I-M) 25,25,30
   25 Il=1
      GO TO 35
   30 I1 = I - M
   35 IF(NV-I-M) 40,40,50
   40 IM=NV
      GO TO 55
   50 IM=I+M
   55 DC 60 J=11, IM
      L+VN*(I-N)=NU
      IJ=IJ+1
   60 AB(IJ)=AB(IJ)+A(IN)*B(JN)
   80 CONTINUE
      IF(IFLAG) 90,100,90
   90 CNO=NO
      DC 94 I=1.NV
   94 ASQ(I)=ASQ(I)/CNO
      DC 96 I=1,NM
   96 AB(I)=AB(I)/CNG
  100 RETURN
```

END

```
SUBROUTINE XMONT3 (A, NA, B, C, NBC, NO, XM, ID)
       PURPOSE
         TO COMPUTE CROSS MOMENT OF A(J)*B(2*J-1),A(J)*B(2*J)
         (L*S))*(L)A G/A
          -BASE CATA MATRIX, NA BY NO
C
      NA -NO.CE VARIABLES OF A
          -CROSS VARIABLE DATA MATRIX
C
      B
C
            CROSS VARIABLE DATA MATRIX
C
      NBC-NO.CF VARIABLES OF B AND C. NB .GE. (2*NA)
C
      NO -NO.CF OBSERVATIONS
C
       XM -CROSS MOMENTS, MATRIX OF 3*NA
C
       ID -ID NOT ZERO, COMPUTE THE MOMENTS
C
           ID ZERO, COMPUTE THE SUMS
C
      SUBROUTINE XMONT3 (A, NA, B, C, NBC, NO, XM, ID)
      DIMENSION A(1), B(1), XM(3) , C(1)
      N3=3*NA
      DC 10 J=1,N3
   0.0 = (L)MX 01
      JA=C
      DO 30 I=1,NO
      00 30 J=1.NA
      I +ALI = ALI
      IJ2B = (I-1)*NBC+2*J
      IJ18=IJ28-1
      XM(3 + J - 2) = XM(3 + J - 2) + A(IJA) + B(IJ1B)
      XM(3\times J-1)=XM(3\times J-1)+A(IJA)+B(IJ2B)
      XM(3*J)=XM(3*J)+A(IJA)*C(IJ2B)
   30 CONTINUE
C
      COMPUTE MOMENTS IF ID NOT ZERO
      IF(ID) 40,50,40
   40 CNC=NO
      DO 45 J=1,N3
   45 XM(J)=XM(J)/CNO
   50 RETURN
      END
```

```
SUPROUTINE LOC2(L, J, LJ, NV, M)
      M 1-THE NO.CE ROWS EXOM THE DIAGONAL
C
      PURPOSE
        TO CALCULATE THE STORAGE LOCATION OF A PARTIAL LOWER HALF MATRI
C
Ç.
         -ROW NO.
CCCC
         -CCLUMN NO.
      LJ -STORAGE LOCATION
      NV -RANCE OF THE MATRIX
      SUBROUTINE LOC2(L, J, LJ, NV, M)
      IF(L.LT.(J-M)) GO TO 50
                       GO TO 50
      IF(L.GT.(J+M))
      IF(L.GE.J) GO TO 10
      1. T=J
      JT=L
      GC TC 15
   10 LT=L
      L=TL
   15 IF((JT+M-1).LE.NV) GO 70 20
      V=(1+M-1)-NV
      N = (N + (N + 1))/2
      LJ=(M+1)*(JT-1)+LT-JT-N+1
      GO TO 60 -
   20 LJ=(M+1)*(JT-1)+LT-JT+1
      GC TO 60
   50 WRITE(6,601)
  601 FORMAT(1H0,49HL AND J ARE NOT IN THE RANGE OF THE STORED MATRIX)
      LJ=り
   60 RETURN
      END
```

```
C
C
      SUBROUTINE LOC3(L.J.LJ.NV.M)
C
      PURPOSE
C
        TO CALCULATE THE STORAGE LOCATION OF A PARTIAL MATRIX
C
         - NO. OF ROW OF THE MATRIX
C
         - NO OF COLUMN OF THE MATRIX
C
      LJ - STORAGE LOCATION
C
      NV - RANGE OF THE SCUARE MATRIX
C
         - ONLY M ROW FROM THE CIAGONAL ARE STORED, LESS THAN NV
      SUBROUTINE LOC3(L, J, LJ, NV, M)
      IF(L.LT.(J-M)) GO TO 100
      IF(L.GT.(J+M)) GO TO 100
      IF(3-1-N) 10,10,50
   10 IF((J-1+M).LE.NV) GO TO 20
      NT=M+2-J
      VL=J-1+M-NV
      LJ=(2*M+1)*(J-1)-((M+NT)*(M-NT+1))/2-(NL*(NL+1))/2+L
      GQ TQ 110
   20 NT=M+2-J
      LJ=(2*M+1)*(J-1)~((M+NT)*(M-NT+1))/2+L
      GO TO 110
   50 IF( $J-1+M).LE.NV) GO TO 7C
      NL=ブー1+ドーNV
      LM=L-J+M+1
      LJ=(2*M+1)*(J-1)-(M*(M+1))/2-(NL*(NL+1))/2+LM
      GC TO 110
   70 LM=L-J+M+1
      LJ=(2*M+1)*(J-1)-(M*(M+1))/2+LM
      GC TO 110
  100 WRITE(6,601)
  601 FORMAT(1H0,49HL AND J ARE OUT OF THE RANGE OF THE STORED MATRIX)
  110 RETURN
      END
```

```
C
      SUBROUTINE COFF(J.N.NF.SQ.DYSQ.YDY,XM.EC.EK,A.B)
C
      PURPOSE
C
        TO OBTAIN THE COEFFICIENTS OF THE 3 BY 3 EQUATIONS FOR
C
        SOLVING THE JTH SET OF SYSTEM CONSTANTS OF THE ONE DIMENSIONAL
        N DEGREE FREEDOM, SPRING, MASS AND DAMPER SYSTEM EXCITED BY
C
        AF SEQUENTIAL FORCES
C
       'SQ -SECOND MOMENTS OF THE SYSTEM OUTPUTS
C
      DYSQ - 2ND MOMENTS OF DY
C
      YDY - 2ND MOMENTS OF DY#Y
C
        XM -CROSS MOMENTS OF THE SYSTEM INPUTS AND DUTPUTS
      SUBROUTINE COEF(J.N.NF.SQ.DYSQ.YDY.XM,EC,EK,A,9)
      DIPENSION A(3,3),B(3),SQ(1),DYSQ(1),YDY(1),XM(3)
      NV=2+N
      MX=3
      IFINV.LE.3) MX=NV-1"
      A(3,1)=-DYSQ(2*J)
      JR=2*J
      JC=JR-1
      CALL LOCS (JR. JR. KI. NV. MX)
      4(2.1)=-YDY(K1)
      CALL LCC3(JC, JR, K1, NV, MX)
      A(1,1)=-YDY(K1)
      CALL LOCZIJR, JC, K3, NV, MX)
      CALL LOCZ(JC.JC.K2.NV.MX)
      JR=JR+1
      IF(JEC.N) GO TO 20
      CALL LOCZ(JR, JC, KI, NV, MX)
      A(1,2)=SQ(K1)-SQ(K2)
      JR=JR+1
      CALL LOC2(JR, JC, KI, NV, MX)
      A(1,3)=SO(K1)-SQ(K3)
      JR=2*J+1
      JC=2+J
      CALL LOCZ(JR.JC.KL.NV.MX)
      A(2.2)=SQ(K1)-SQ(K3)
      CALL LDC3(JR.JC.K1.NV.MX)
      JJ=JC-1
      CALL LOC3(JJ+JC,K2,NV,MX)
      A(3,2)=YDY(K1)-YDY(K2)
      JR=JR+1
      CALL LOC2(JR.JC,K1,NV,MX)
     CALL LOCS (JC.JC.K2.NV.MX)
      A(2,3)=SQ(K1)-SQ(K2)
      CALL LOG3 (JR. JC. KI. NV. MX)
      A(3,3)=YDY(K1)+A(2,1)
      GC TO 30
       COMPUTE COEFFICIENTS WHEN J=N
C
   20 A(1.2)=-SQ(K2)
      A(1.3)=-SQ(K3)
      A(2,2)=-SQ(K3)
```

```
しい=2*1
    18=16-1
    CALL LOC2(JC, JC, K2, NV, MX)
    4(2,3)=-SO(K2)
    CALL LOC3(JR, JC, K2, NV, MX)
    A(3,2)=-YDY(K2)
    A(3,3)=A(2,1)
    COMPUTE B(1), B(2) B(3)
    EC -ESTIMATED (J-1)TH DAMPER CONSTANT
    EK -ESTIMATED (J-1)TH SPRING CONSTANT
 30 IF(J.FQ.1) GO TO 50
    JR=2*J-1
    JC=2+J-3
    CALL LOC2(JR, JR, K1, NV, MX)
    CALL LOC2(JR.JC.K2.NV.MX)
    JC=JC+l
    CALL LOC2(JR, JC, K3, NV, MX)
    L*5 = LL
    CALL LOC2(JJ, JR, K4, NV, MX)
    B(1)=(SQ(K1)-SQ(K2))*EK + (SQ(K4)-SQ(K3))*EC
    CALL LOC2(JR.JC.K3.NV.MX)
    CALL LCC2(JR.JR.K2.NV.MX)
    JC=JC-1
    CALL LOC2(JR, JC, KI, NV, MX)
    B(2)=(SQ(K4)-SQ(K1))*EK + (SQ(K2)-SQ(K3))*EC **
    JC=2+J
    JR=JC-1
    CALL LOC3 (JR. JC. K1. NV. MX)
    JR=JR-2
    CALL LOCS (JR, JC, K2, NV, MX)
    CALL LOC3(JC,JC,K3,NV,MX)
    JR#JR+1
    CALL LOC3(JR, JC, K4, NV, MX)
    B(3)=(YDY(K1)-YDY(K2))*EK+(YDY(K3)-YDY(K4))*EC
45 IF(J.GT.NF) GO TO 100
    B(1)=8(1)-XM(3*J-2)
   B(2)=B(2)-XM(3*J-1)
    B(3)=B(3)-XM(3*J)
    GO TO 100
50 B(1)=-XM(1)
    B(2)=-XM(2)
    8(3)=-XM(3)
100 RETURN
```

```
SUBROLITILE ATMIX (A,NR,NSYS,MARK,DET,INOPT)
NSYS = NO. C: SYSTEMS TO BE SOLVED
     NR = CECER OF A
C
      A = INPUT MATRIX
C
      MARK = SINGULARITY INDICATOR (MARK=1 FOR SINGULAR A)
C
      DET = DET(A)
      INCPT = -1 FOR SYSTEM SOLN. AND DET
C
              O FOR DET ONLY
             +1 FOR INVERSE AND DET
      DIMENSION STMNT. MUST AGREE WITH DIM. STMNT. IN MAIN PROGRAM
      DIMENSION A(3,4),X(4)
      PRESET PARAMETERS
      SIGN = 1.
     MARK = 0
      IFLAG = INOPT
      N = NR
     NPL = N+1
     NMI = N-1
     NN = N+N
     NPLSY = N+NSYS
      IF (IFLAG) 40,40,10
Č
      INVERSE OPTION - PRESET AUGMENTED PART TO I
     DO 20 I=1.N
10
     DO 20 J=NPL.NN
 20
      A(I,J) = 0.
     DO 30 I=1.N
      J = I + N
     -1 = (L, I)A
30
     NPLSY = NN
     TRIANGULARIZE A
40
     DO 120 I=1.NMI
      IPL = I+1
     DETERMINE PIVOT ELEMENT
     MAX = I
      AMAX = ABS(A(I,I))
     DO 60 K=IPL.N
     IF (AMAX-ABS(A(K, I))) 50,60,60
 50
     MAX = K
     APAX = ABS(A(K,I))
 60
     CONTINUE
     IF (MAX-1) 70,90,70
     PIVOTING NECESSARY - INTERCHANGE ROWS
     DO 80 L=I.NPLSY
 70
     TEMP = A(I,L)
     A(I,L) = A(MAX,L)
     A(MAX,L) = TEMP
 80.
     ELIMINATE A(I+1, I)---A(N, I)
 90
     DO 120 J=IPL.N
     TEMP = A(J, I)
      IF (TEMP) 100,120,100
```

```
100
      CONST = -TEMP/A([.])
      DO 110 L=I, NPLSY
 110
      \Delta(J_1L) = \Delta(J_1L) + \Delta(I_1L) + CONST
 120
      CONTINUE
C
C
      COMPUTE VALUE OF DETERMINANT
      TEMP = 1.
      DC 137 I=1.N
      AGG = A(I,I)
      IF (AGG) 130,125,130
      MATRIX SINGULAR
 125
      WRITE (6,900)
      MARK = 1
      GC TO 135
 130
      TEMP = TEMP#ACG
      DET = SIGN+TEMP
C
C
      EXIT IF DET ONLY OPTION
 135
      IF (IFLAG) 140,250,140
      CHECK FOR INVERSE OPTION OR SYSTEMS OPTION
 140
      IF (IFLAG-1) 160,150,160
      INVERSE OPTION - ABORT IF A IS SINGULAR
 150
      IF (MARK-1) 160,250,160
C
      BACK SUBSTITUTE TO OBTAIN INVERSE OR SYSTEM
      DO 240 I=NPL, NPLSY
 160
      K = N
 170
      X(K) = A(K, I)
      IF (K-N) 180,200,180
 180
      DO 190 J=KPL,N
 190
      X(K) = X(K) - \Delta(K,J) + X(J)
 200
      X(K) = X(K)/A(K,K)
      IF (K-1) 210,220,210
 210
      KPL = K
      K = K-1
      GC TG 170
      PUT SOLN. VECT. INTO APPROPRIATE COLUMN OF A
 220
      DO 230 L=1,N
237
      A(L,I) = X(L)
240
      CONTINUE
250
      RETURN
900
      FORMAT (//1X15HSINGULAR MATRIX//)
      END
```

REPRODUCIBULITY OF THE GRIGINAL PAGE IS TOOR

C SUBROUTINE RANDKP for random number generation ENTRY EXPRN ENTRY GAURN ENTRY FLRAN ENTRY STORMM EXPRN LOQ RANDOM C 9XD 952,0 H STA A MPY GENERA STQ COMMON+1 STQ COMMON+1 STQ COMMON CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON GLA GAMON CLA GAMON CLA GAMON CLA GAMON TLQ R COMMON CLA GAMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+4 TSX EXPRN,4 STC COMMON ESB BB	ion Ion
ENTRY GAURN ENTRY FLRAN ENTRY GETNM ENTRY SYORNM EXPRN LOQ RANDOM C 2XD 952,0 H STA A MPY GENERA STO COMMON+1 STO GOMMON F MPY GENERA STQ RANDOM CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STO COMMON CLA A LLS 12 E FAD COMMON CLA A LLS 12 E FAD COMMON CLA A LLS 12 E FAD COMMON CLA A CLS 12 CAL C COMMON CLA A CAL C COMMON CLA A CAL C CAL C CAL C COMMON CLA A CAL C CAL C CAL C CAL C COMMON CLA A CAL C COMMON CLA A CAL C COMMON C CAL C C COMMON C C C C C C C C C C C C C C C C C C C	
ENTRY FLRAN FNTRY SYORMM EXPRN LOQ RANDOM C 9XD 952.0 H 5TA A MPY GENERA STO COMMON+1 STO COMMON F MPY GENERA STC RANDOM CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON CLA A LLS 12 E FAD COMMON CLA A LLS 12 E FAD COMMON CLA PANDUM TLQ F CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3.4 CC TSX EXPRN,4 ADD AA STO COMMON+4 ISX EXPRN,4 STC COMMON	
ENTRY STORNM EXPRN'LOQ RANDOM C 9X0 952,0 H STA A MPY GENERA STQ COMMON+1 STQ COMMON+1 F MPY GENERA STC RANDOM CLA GOMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA RANDUM TLQ F CLA A ADM G TRA H GAURN SXO COMMON+3,4 CC TSX EXPRN,4 STC COMMON STC COMMON+4 ISX EXPRN,4 STC COMMON	
FNTRY STORM FXPRA LOQ RANDOM C 9XD 952,0 H STA A MPY GENERA STQ COMMON+1 STQ COMMON+1 F MPY GENERA STQ RANDOM CLA COMMON TLQ B LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON CLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON CLA PANDUM TLQ F CLA PANDUM TLQ F CLA PANDUM TLQ F CLA PANDUM TLQ F CLA A ADM C TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
EXPRN LOQ RANDOM C 2XD 952,0 H STA A MPY GENERA STO COMMON+1 STO COMMON F MPY GENERA STC RANDOM CLA COMMON TLO B LOO COMMON+1 RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STO COMMON CLA PANDOM CLA PANDOM CLA A STO COMMON CLA PANDOM CLA PANDOM TLO F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 STO COMMON+4 TSX EXPRN,4 STO COMMON	
C PXD 95?,0 H STA A MPY CENERA STO COMMON+1 STO COMMON F MPY GENERA STQ RANDOM CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON CLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON CLA A LLS 12 E FAD COMMON CLA A LLS 12 C TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON	
C PXD 95?,0 H STA A MPY GENERA STO COMMON+1 STO COMMON F MPY GENERA STQ RANDOM GLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STO COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 C TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F GLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON	
H STA A MPY GENERA STQ COMMON+1 STQ COMMON+1 F MPY GENERA STG RANDOM CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON TSX EXPRN,4 STC COMMON	
MPY CENERA STQ COMMON+1 STQ COMMON F MPY GENERA STG RANDOM GLA GOMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STG COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 CAL C STQ COMMON GLA A CLS 12 CAL C C CAL C CAL C C C CAL C C C CAL C C C CAL C C C C C C C C C C C C C C C C C C C	
STQ COMMON+1 F MPY GENERA STG RANDOM CLA COMMON TLQ B LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON GLA A LLS 12 E FAD COMMON CLA PANDOM CLA PANDOM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 STC COMMON SXD COMMON+4 TSX EXPRN,4 STC COMMON	
F MPY GENERA STQ RANDOM CLA COMMON TLO R LDQ COMMON+1 RQL 12 CAL C LGL 24 STG COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
F MPY GENERA STQ RANDOM CLA COMMON TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON CLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A AOM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
STQ RANDOM CLA COMMON TLQ B LDQ COMMON+1 RQL 12 CAL C LGL 24 STC COMMON CLA A LLS 12 E FAD COMMON GLA A CLS 12 E FAD COMMON CLA PANDUM TLQ F CLA A AOM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON TSX EXPRN,4 STC COMMON	
CLA COMMON TLQ B LDQ COMMON+1 RQL 12 CAL C LGL 24 STG COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STQ COMMON	
TLQ R LDQ COMMON+1 RQL 12 CAL C LGL 24 STG COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STQ COMMON	
RQL 12 CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 STC COMMON TSX EXPRN,4 STC COMMON	
CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A AOM G TRA H GAURN SXO COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
CAL C LGL 24 STC COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
LGL 24 STG COMMON GLA A LLS 12 E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STG COMMON GLA PANDUM TLQ F GLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
E FAD COMMON G TNZ 1.4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3.4 CC TSX EXPRN,4 ADD AA STO COMMON TSX EXPRN,4 STO COMMON	
E FAD COMMON G TNZ 1,4 TRA E B MPY GENFRA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
E FAD COMMON G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
G TNZ 1,4 TRA E B MPY GENERA STQ COMMON CLA PANDOM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
G TNZ 1.4 TRA E B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
B MPY GENERA STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STC COMMON	
STQ COMMON CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
CLA PANDUM TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
TLQ F CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 COMMON+4	
CLA A ADM G TRA H GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 COMMON	
GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 COMMON	
GAURN SXD COMMON+3,4 CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	•
CC TSX EXPRN,4 ADD AA STO COMMON+4 TSX EXPRN,4 STO COMMON	
ADD AA STO COMMON+4 TSX EXPRN.4 STO COMMON	
STO COMMON+4 TSX EXPRN.4 STO COMMON	
TSX EXPRN.4 STO COMMON	
STO COMMON	
FSB BB	
	•
STO COMMON+1	•
LDQ COMMON+1	eg e e e e e e e e e e e e e e e e e e
FMP COMMON+1	and the state of t

	SUB	COMMON+4
	TOL	
	TPL LXD	CC COMMON+3 • 4
		
_	CLA	COMMON
S	LDQ	RANDOM
•	RQL LLS	29 0
	TRA	1,4
FLRAN	LDC	RANDOM
	MPY	GENERA
	STQ	RANDOM
		et de la companya de La companya de la co
	CLA	ΑΛΑ
	LGL	28
	FAD	AAA
CETNIM	TRA CLA	S RANDOM
GETNM	STO*	3,4
	TRA	1.4
STORNM	CLA*	3,4
	STO	RANDOM
	TRA	1,4
GENERA	OCT	343277244615
RANDOM	DEC	30517578125 001000000000
88	DEC	
AAA	OCT	17200000100
Α	OCT	00021700000
COMMON	855	5 The second of
	END	
ing and the second of the seco	e de marin de la colonia d La colonia de la colonia de	ender all and
o lander • • o o o Santa anti-	And the second s	新聞の食い day in the in the indication in the indication and an
e ver pare		
en e	The second of th	் மக்க மக்க மக்க மாம் மாக மக்க காக காக காக காக காக காக மக்க மக்
	e de la companya de l	
* * *	e sala ere di salam reddige e e e egite	The majority of the season of
Tariff Comment of Comments and Comments	eren er jeder er joder er 1964 Meriorie. Generalise	· Park Company And
engan di kabasa di	en e	் நால்கார் மான்று நாளுக்கு இருந்து இரு அரசு கொள்ள காண்கள் காண
	## ∳n • w w dank	Marie a service and a comparison of the comparis
i i i i i i i i i i i i i i i i i i i		
and the second		
		물 생활하는 항상 아름다면 가득하는 물꾸었다. 아무리는 사람들은 사람들이 다른 사람들은 사람들은 사람들은
	هامه این استانهای در های در افراد در افراد های این افراد در افراد	on the street on the street of the common the street of th
	en e	TO THE STREET OF THE WAY OF THE W

Input Cards and Output Tabulations for a Sample Problem

The sample problem is to simulate a five-mass system whose parameters are

$$m_1 = m_2 = \dots = m_5 = 0.052$$
 $k_1 = k_3 = 9.3 \times 10^5$, $k_2 = k_4 = 8.3 \times 10^4$, $k_5 = 43$
 $c_1 = c_3 = 1.9$, $c_2 = c_4 = c_5 = 0.9$

The system is to be driven at mass No. 1 by a random force which is generated by a white noise of standard deviation 30 being passed through a bandpass filter with center frequency 70 cps and a bandwidth of 20 cps. The sampling frequency for simulation is chosen to be 5000 samples per sec. 10,000 samples are to be simulated and used for estimation of the parameters.

a) Input Cards

Col. 1 6	11	16 21.	26
5			
0.052	930000.0	.9	
0.052	83000.0	0.9	
0.052	930000.0	1.9	
0.052	83000.0	0.9	
0.052	43.0	0.9	
1			
30.0	20.0		
5000.	10000	1 , 1	1

b) Sample Output

```
ESTIMATION OF MEMENTS FOR THE IDENTIFICATION OF SMASS SYSTEM
FIRST PERENTS OF VIJI.Jal.2N
                                                                      -0.11669457E-03
-0.56357353E-05
                                                                                           -0.563562966-05
-0.126375536-03
    -0.56105125E-05
                          -C .11423636E-C3
                                                -0.561384586-05
    -0.14976357E-03
                                                -0.129987238-03
                          -0.563676636-05
2AD PEPERIS VIJIVILI, L-J TC J43 ICH 2A1
        ¥1 1)
                  C.7758E-C7
                                  C.1305F-C7
                                                 0.17598-07
                                                                0.24776-07
         V ( 2)
                  0.28A2E-C2
                                  C.1851E-C8
                                                 0.2748E-02
                                                               -0.8469E-07
         V ( 3)
                  4.7761E-C7
                                  C.13676-C7
                                                 G.7621E-67
                                                                0.11276-06
        Y ( 4)
                  C.2562F-C2
                                 -G.F2.19E-C7
                                                -0.3467F-C4
                                                               -0.8743E-07
         Y1 51
                  0.79556-07
                                  6.1444-67
                                                 0.79766-07
                                                                0.24126-07
         ¥1 6)
                  0.15246-02
                                  C. 5615E-CB
                                                 0.16216-02
                                                               -0.7096E-07
                  C. BOCGE-C7
                                                 0.8155E-07
                                                                U. 1025E-06
        Y ( 7)
                                  C.169CE-C7
        'v( #)
                  C.1745E-02
                                 -C.+562E-G7
                                                 0.2554E-C2
        V ( 4)
                  Q. 8481F-C7
                                  C.159EE-C7
         ¥4131
                  0.52646-02
SECOND PUPENTS OF CERTIVATIVES GYIJ). J=1.2N
     0.20823444E-C2
0.74332625E C3
                                                 C.26616850E-02
0.91664041# 03
                                                                                            0.152376636-02
                           C.30359671E C4
                                                                       0.276810428 04
                           C.17446624E-C2
                                                                       0.526416226-02
2AD PEMEATS OF CVIJIOY(LI,L=J-2,CRII) TO J+3(CR 2N)
DV( 13+V( 1)
                 0.1305E-C7
                                 C.2FE2E-G2
                                                0.1851E-08
                                                               0.27486-02
DA1 51+A1 11
                -0.2690E-62
                                                              -C.1791E-Q1
                                0.21756-02
                                               -0.2755E-02
                                                                              0.12666-03
DY( 234Y( 1)
                 0.24776-67
                                                C-1367E-C7
                                                                             -0.8239E-07
                                                                                             -0.34676-04
                                0.2748F-02
                                                               0.2662E-02
BY( 4)4Y( 1)
                -0.27538-02
                                 C.1713F-01
                                               -0.7667E-02
                                                               C.1557E-92
                                                                              C.2817E-04
                                                                                             -0.1016E-00
                                                                                                             0.23066-03
                -0.1359F-f3
                                                                              0.1524F-02
                                                                                              0.96196-06
DY1 51+41 21
                                 9-11276-06
                                               -0.3467E-04
                                                               C.1684F-07
                                                                                                             0.1621E-02
                                                                             -0.1626E-02
                                                                                             -0.7178E-02
                                                                                                            -0.22446-02
DV4 614V1 31
                 0.30466-04
                                 C.1C25E-3C
                                               -0.1528E-02
                                                               0-4126E-03
                                                                              0-1745E-02
                                                                                             -0.6962E-07
                                                                                                             0.2554F-02
DY( 71+Y( 4)
                -0.2370E-03
                                 0.24128-07
                                                0.16216-02
                                                               C-1690E-07
DY1 81+41 51
                -0.1626F-C2
                                 0.7717F-C2
                                               -0.1750E-02
                                                               0.4346E-03
                                                                             -0.2559E-02
                                                                                             -0.7977E-01
                                                               0.1598E-07
                                                                              9.5264E-07
DY( 5)+V( 6)
                 3.2240E-02
                                0.1025E-06
                                                0.25548-02
DYILCIAYE 71
                                                               0.4139E-04
                -0.2555E-C2
                                C.7995E-01
                                               -0.5265E-02
CROSS MCMENTS OF INPUT FURCE AND VIZU-11. VIZUI, DYIZUI
    1TH FCRGE
                     -0.1549E-03
                                     C.1681E-01
                                                    0.3282F 02
```

```
SETS OF EGLATIONS FOR SOLVING THE SYSTEM PARAMETERS
EGUATION FOR SULVING. ITH MASS SYSTEM COEFFICIENTS
    C.2889682CF-02*M + ( C.494853C1E-11)*K + ( C.117217476-07)*C = 0.15488926E-C3
   -C.27754712E-J2*M + (-C.11196143E-C7)*K + (-C.13477858E-03)*C =-0.10812799E-01
   -G.303596718 04*M + 1 (.134506056-03)*K + 1-6.20680898-01)*C *-0.328189818 02
DETERMINANT=
                   9.54676725F-1C
  . EGUATIONS WHEN CM IS KNOWN
                        C.49489301E-11+K + ( 0.11721747E-071+C =
                                                                     0.462580646-05
                        -C.111961436-07+K + (-C.134778586-03)+C =
                                                                     -0.10668474F-01
DETERMINANT= -0.53577143F-15
EGUATION FOR SOLVING 2TH MASS SYSTEM COEFFICIENTS -
    C.2667454PE-02*M + (-C.139829C3E-C8)*K + ( C.59C36615E+071*C * 0.22740278F-04
  -C.15571713E-J2*M + (-0.9606118CE-C7)*K + (-C.26563624E-02)*C =-0.10480815F-01
   -C.27681342E C4*M + ( 0.26956239E-C2)*K + (-0.10311664E-00)*C = 0.79703196E 02
DETERMINANT=
                  0.89513931E-CE
    ECUATIONS WHEN CM IS KNOWN
                       -C.139829C3E-C8*K + ( C.99036615E-C7)*C = -0.11596145E-03
                      -0.46661180E-C7*K + (-0.26963624E-021*C =
                                                                   -0.10400841E-01
DETERMINANT=
                  C.37798112E-11
EGUATION FOR SOLVING 3TH MASS SYSTEM COEFFICIENTS
    C.15284548E-02*M + ( 0.21236567E-05)+K + ( 0.72742469E+08)+C = 0.27710023E+03
  -C.41259130F-U3*M + (-C.72242C52E-C8)*K + ( 0.97638374E-04)*C =-0.65547C96F-02
  -C.74332625E 03*M + (-C.9765CC44E-04)*K + (-0.75910815E-02)*C =-0.12948482E 03
DETERMINANT=
                 -c.79591747F-12
    EQUATIONS WEEN OF IS KNOWN
                        (.21236567E-C5+K + ( 0.72742405F-CA)+C = 0.15749673E-03
                       -C.72242052E-C8+K + ( 0.97638374E-C4)+C +
                                                                    -0.65315912F-02
```

C.174973C3E-02*M + 1 C.15567142E-CB1*K + 1 C.85582849E-071*C = 0.2202C365E-03

+G.43463121E-03+N.+ (-C.86526524E-07)+K.+ (-C.805258C5E-03)+C.+-0.64767434E-02

-C.91664341F 33+M + (-C.80912324E-C3)+K + (-O.80206463E-01)+C #-0.11486947E 03

DETERMINANT=

C.2C78798CF-13

EQUATION FOR SOLVING 4TH MASS SYSTEM COEFFICIENTS

"DETERPIRKANT# "" ""-ሮ". 379ኛሮ 32%፻- 11 "

EQUATIONS WHEN OF IS KNOWN

C.15667192E-C8+K + | 0.85582849F-071+C = 0.12925986E-03

-0.86526524E-G7*K + 1 0.8G925EC5E-03)*C = -0.64517181E-02

DETERMINNANT= C.12671927E-11

ECUATION FOR SOLVING STH MASS SYSTEM COEFFICIENTS

C.52654621E-32*M + I-C.848CE616E-C71*K + I-O.15983417E-071*C = 0.26901576E-C3

-0.41387929E-04*M + (-0.15983417E-07)*K + (-0.52641622E-02)*C #-0.48129715E-02

-C.43313226F 04 FM + 1 C.52654621E-C2) FK + (-3.41387929E-04) FC =-0.22406352E C3

DETERMINANT= -C.17877524E-C5

EQUATIONS WHEN OF IS KNOWN

-G.84806616E-C7+K + (-0.15983417E-07)*C = -0.27133540E-05

-0.15983417E-C7*K + (-0.52641622E-021*C = -0.47361505E-02

DETERMINANT = C.44644605F-C9

ESTIPATEL CERFFICIERTS OF THE SINGLATER SHASS SYSTEM

NC CF ENCITATION OF I

FOR EXCITATION 1 APPLITUDE = 30.00 CENTER PREQUENCY = 70.0 PHASE SHIFT OR BANDWIRTH = 20.00

SAMPLING AFFILIENCY . SCIGLECES

SAMPLING INT. FER SIPLEATION . C.FR. 22C

THANSIENT INT. . C.

SAMPLING INT. FOR CALCULATING MEPPAIS . C.CCC20

TOTAL NO. OF SAPPLES USED FOR ESTIPATION * 10000

TIME INTERNAL FOR ESTIMATION . Z.CCSFC

	HII) Thue	ESTIMATEC	K(f)	ESTIMATEN	CIL) TRUÉ	ESTIPATEN
,	e.5222000ue=d1	6.520302458-01	C. 92495959E 76	0.93000745F GA	C.19000000F 01	0,109929616 01
	6.92c13603F-61	0.520015636+03	0.425954545 35	0.033010368 05	0.90000000 00	0.89994791E CC
	C. 52333000E-01	0.420401656-01	0.525959596 76	0.92972419E C6	0.100000COF 01	0.18771325F C1
	0.5200000E-01	\$.5227C171E-C1	0.029959696 05	0.026546606 05	0.99000708 30	0.86226630F 90
	0.520000001-01	0.51783C1CE-C1	0.436760606 02	0.428154048 02	0.90000rrs on	0.91976299E DE
ESTIPA	ITEE MITH PASS CI	VEN				
			0.42449446 06	0.93025953F C4	0.1900000E 01	0.197830126 01
			0.4259699E 05	0.02494670E CS	c. 900000cc# 70	0.90057462E CC
			0.42444446 06	0.929901416 06	n.tennonne ot	0.19071131E 01
			D.02596969E 35	0.829840156 05	r. 400000000 00	0.40033124E 00
			C.430CCC COE 32	0.434155485 02	C. 90000000E 00	0.899944478 00

4.3 Computer Program Abstract II

General Description

- a) This program is basically the same as I except for changes made to enable the input force to be read from a tape unit instead of being simulated. The tape with the desired input force samples is to be mounted on the tape unit with logical address 21 and consists of binary records. The first record should have 21 words with the 5th word being the number of input force samples per second. All succeeding records should have 1003 words with the first word being the record number and followed by 167 blocks of six words. The first words of each six word block should be the input force samples.
 - b) Output from this program includes the same output as I.
 - c) Limitation of this program:
 - 1) N, the number of mass, is limited to 10
 - 2) NF, the number of input forcing function, is limited to 1 and is the driving force at the first mass.
 - d) Required supporting subprogram
 - 1) RKFOR
 - 2) DERF
 - 3) PAMSQT
 - 4) XSQ
 - 5) XMONT3
 - 6) LOC2
 - 7) LOC3
 - 8) COEF
 - 9) RLMTX

Input Cards

- a) Degree of Freedom Card

 Col. 1-2 N Number of mass for the chainlike system
- b) System Parameter Card(s)

A card is used to specify each system parameter triplet (m_1, k_1, C_1) . N cards are then needed and should be arranged consecutively from i=1 to N.

- Col. 1 10 CM(I) Floating point constant for the ith mass coefficient
- Col. 11-20 CK(I) Floating point constant for the ith spring coefficient
- Col. 21-30 CC(I) Floating point constant for the ith damper coefficient
 - c) Simulation Specification Card
- Col. 1-10 NI Number of samples to be simulated before samples are taken for estimation of the moments and the system parameters
- Col. 11-20 NO Number of samples to be used for estimation of moments and system parameters
- Col. 21-30 K Only every kth samples of the equallyspaced samples are to be used for
 estimation of the moments and system
 parameters.

Col. 31-40 NORUN - Number of successive times the moments and the system parameters are to be estimated

Col. 41-50 INIT - Control index for how the samples are taken for each successive estimation of the moments and parameters

If INIT < 0, successive NO samples

(after the initial NI samples) taken at every kth sample are to be used for the estimation process.

each time. NO samples (after initial NI samples) taken at every kth sample are used for the estimation process.

If INIT > 0, (after initial NI samples)

NO samples are used cummulatively each time; that is, NO, then 2 x NO, ... then NORUN x NO are successively used for the estimation process.

Col. 51-60 IH - Index to change sampling rate of the random force recorded on digital tape by changing the time scale which will also change the bandwidth of frequency spectrum.

IH = 0, the sampling rate of the input force recorded on tape is to be used.

IH \neq 0, the sampling interval is given by HTEP

- Col. 61-70 HTEP Floating point constant for sampling interval, ignored when IH = 0.
- d) Repeat a to c for a different choice of system as many times as desired. A blank card after c will cause a stop.

Description of Supporting Subprograms

a) RKFOR (DERF, M, H, TI, YI, FI, K, N, F, VAL, DVAL, Y, FOSP)

This Fortran subprogram generates the solution to a set of M simultaneous first-order, ordinary differential equations by the classical fourth-order Runge-Kutta method of integration. Where

- DERF Name of the external subroutine used to compute the derivatives
- M Number of equations for expressing the system
- H Step size for integration
- TI Initial value of T
- YI Initial value of Y

- FI Initial value of F
- K The desired number of steps of size H between values of the integrals to be stored in VAL and the derivatives to be stored in DVAL
- N The number of values to be stored in VAL and DVAL
- F Input forcing function values read from tape. On the meturn, only every kth value will remain in the array
- VAL A matrix of M by N containing the integrated value of the M derivatives generated by DERF
- DVAL A matrix of M by N containing the derivatives generated by the external subroutine DERF
- Y The final integrated value of M derivatives. An array of M
- FOSP The last value of F

b) DERF (T, VAR, FS, M, DER)

This Fortran subroutine computes the derivatives for the integration subroutine RKFOR where DER(I), I=1, M are the derivatives of VAR(I), I=1, M with respect to T, and are functions of T, VAR and FS (input forcing function value).

c) The descriptions for subprograms PAMSQT, XSQ, XMONT3, LOC2, LOC3, COEF and RLMTX are given in Section 4.2.

Listing of the Main Program and the Subprograms

The main program and only the subprograms RKFOR and DERF will be listed as follows since the other subprograms have already been listed in Section 4.2.

```
C
       PROGRAM TO SIMULATE N DEGREE FREEDOM. CHE DIMENSIONAL. SPRING MASS
         AND DAMPER SYSTEM AND ESTIMATE THE COEFFICIENTS
C
C
C
      READ FORCE FROM TAPE UNIT 21
      DIMENSION CC(10), CK(10), CM(10).
                                                 Y(5000).DY(5000).YE(20).
     1F(2500),EG(10),EK(10),EM(10),YI(20),
     2REC (6,167), SQ (40), SUM (10), XM (15), A (3,2), B (3), R (3,4) , ID (20)
     3.DYSQ(10),YDY( 70),SQT(40),SUMT(10),XMT(15),DYSQT(10),YDYT( 70)
     4, EEK(10), EEC(10) , SQS(40), SUMS(10), XMS(15), DYSQS(10), YDYS(70)
      DOUBLE PRECISION SQS, SUMS, XMS, DYSQS, YDYS
      EQUIVALENCE (R(1,1),A(1,1)),(R(1,4),B(1))
      COMMON CC.CK.CM
      EXTERNAL DERF
C
    5 REWIND 21
      READ(5,500) N
      IF(N) 400,400,8
                     (CM(I),CK(I),CC(I),I=1,N)
    8 REAC(5,501)
      READ(5,506) NI,NO,K,NORUN,INIT, IH, HTEP
      REAC(21) IO
C
C
      INITIALIZATION
      IF(IH) 10,12,10
   10 H=HTEP
      GC TO 14
   12 H=1.0/FLOAT(ID(5))
   14 N2=2*N
      NF=1
      MX=3
      IF(N2.LE.3) MX=N2-1
      NSC = (MX + 1) \times N2 - (MX \times (MX + 1)) / 2
      NXN=3*NF
      NXC = (2 \times MX + 1) \times N2 - (MX + 1) \times MX
      JTEST=168
   15 DO 30 I=1.N2
   30 YI(1)=0.0
      TI=ワ.ウ
      READ(21) COUNT, ((REC(L,J),L=1,6),J=1,167)
      FI=REC(1,167)
      IF(NI) 41,41,31
   31 LF=0
   32 READ(21) COUNT, ((REC(L,J),L=1,6),J=1,167)
```

```
DO 34 J=1.167
     LFWLF+1
     F(LF)=REC(1,J)
     IF(LF.EC.NI) GO TO 35
  34 CONTINUE
     GC TO 32
  35 JTEST=J+1
     CALL RKFOP(DERF, N2, H, TI, YI, FI, NI, 1, F, Y, DY, YF, FE)
     00 40 I=1.N2
  40 YI(I)=YE(I)
     TI=0.0+FLOAT(NI)*H
     FI=FF
  41 DG 42 J=1,NXM
  42 XMS(J)=0.0
   -> UDO 43 J=1,NSQ
  43 SQS(J)=0.0
     DC 44 J=1,N2
     DYSQS(J)=0.0
  44 SUMS(J)=0.0
     DO 45 J=1,NXQ
  45 YDYS(J)=0.0
     NON⇒0
     TIS=TI
 455 IF((NO* K).LE.2500) GO TO 49
     MNF=2500/K
     IF((NO*N2).LE.5000) GO TO 46
     MN2= 5000/N2
     IF(MNF-MN2) 46,46,48
  46 NIS=MNF
     GC TO 50
  48 NIS=MN2
     GO TO 50
  49 IF((NO*N2).LE. 5000) GO TO 140
    .NIS = 5000/N2
     GO TO 50
 140 NIS=NO
  50 NCS=NO
  51 LF=0
     IF(JTEST.GE.168) GO TO 1055
     DO 1052 J=JTEST,167
     LF=LF+1
1052 F(LF)=REC(1,J)
1055 READ(21) COUNT, ((REC(L,J),L=1,6),J=1,167)
     DO 1057 J=1,167
     LF=LF+1
     F(LF)=REC(1,J)
     IF(LF.EQ.(NIS*K)) GO TO 1059
1057 CONTINUE
     GO TO 1055
1059 JTEST=J+1
     SIMULATE SAMPLES AND CALCULATE MOMENTS
     CALL RKFOR(DERF, N2, H, TI, YI, FI, K, NIS, F, Y, DY, YE, FE)
```

CC

```
CALL PAMSOT (Y, NP, MIS, MX, SQT, SUMT, C)
    CALL XSC(DY,Y,N2,NIS,MX,DYSQT,YDYT,C)
    CALL XMCNT3(F,NF,Y,DY,NZ,NIS,XMT,C)
    NES=NOS-NIS
    90 52 J=1.NSQ
 50 SCS(U)#SOS(U)+SCT(U)
    60 54 J=1,N2
    OYSOS(J)=OYSOS(J)+OYSOT(J)
 54 SUMS(J)=SUMS(J)+SUMT(J)
    DO 55 J=1.NXQ
 55 YCYS(J)=YCYS(J)+YCYT(J)
    DC 56 J=1,NXM
 56 \times XMS(J) = XMS(J) + XMT(J)
    90 58 J=1,N2
 58 YI(J)=YE(J)
    FI=FF
    TN=NIS*K
    NON=NON+NIS
 60 TI=TI+TN*H
    IF(NOS) 100,100,65
 65 IF(NGS-NIS) 70,51,51
 70 NIS=NOS
    GC TO 51
100 DO 110 J=1,NSQ
110 SQ(J)=SQS(J)/FLOAT(NON)
    DC 112 J=1,N2
    DYSG(J)=DYSQS(J)/FLOAT(NON)
112 SUM(J)=SUMS(J)/FLOAT(NON)
    DO 114 J=1,NXM
114 XM(J)=XMS(J)/FLOAT(NON)
    DO 116 J=1.NXQ
116 YDY(J)=YDYS(J)/FLOAT(NON)
    WRITE THE MOMENTS
153 WRITE(6,620) N
    DO 155 J=1,N2
    CALL LCC2(J,J,K1,N2,MX)
    J3=J+MX
    IF(J3.GT.N2) J3=N2
    CALL LCC2(J3, J, K2, N2, MX
                                )
155 WRITE(6,621) J, (SQ(JJ), JJ=K1,K2)
    WRITE(6,622)
                  (SUM(J),J=1,N2)
    WRITE (6,623) (DYSQ(J), J=1,N2)
    WRITE(6,628)
    DO 160 J=1, N2
    13=J+MX
    IF(J3.GT.N2) J3=N2
    CALL LOC3 (J3, J, K2, N2, MX)
    J3 = J - 3
    IF(J3.LT.1) J3=1
    CALL LOCS (J3, J, K1, N2, MX)
160 WRITE(6,629) J,J3, (YDY(JJ),JJ=K1,K2)
    WRITE(6,626)
```

CC

C

```
DG 165 J=1.NF
  165 BRITE(6,627) J,XM(3*J-2),XM(3*J-1),XM(3*J)
      PC=0.0
      PK=3.0
C
C
      ESTIMATE THE COEFFICIENTS
C
      00 20° I=1, N
      CALL COEF(I,N,NF,SQ,DYSQ,YCY,XM,PC,PK,A,B)
      WRITE(6,624) I
      00 170 J=1,3
  170 WRITE(6,625) (A(J,L),L=1,3),B(J)
      CALL RLMTX(R, 3, 1, MARK, DET, -1)
      EM(1)=R(1,4)
      EK(1)=R(2,4)
      EC(I) = R(3,4)
      WRITE(6,631) DET
C
      IF(I.FQ.1) GO TO 175
      PK=FFK(I-1)
      PC=EEC(I-1)
  175 CALL COEF(I,N,NF,SQ,DYSQ,YDY,XM,PC,PK,A,B)
      B(1)=B(1)-CM(1)*A(1,1)
      R(1,1) = A(1,2)
      R(1,2) = A(1,3)
      R(1,3)=B(1)
      B(2)=B(2)-CM(1)*A(2,1)
      R(2,1)=A(2,2)
      R(2,2) = A(2,3)
      R(2,3) = B(2)
      WRITE(6,632)
      90 180 J=1,2
  180 WRITE(6,633) (R(J,L),L=1,3)
      CALL RLMTX(R, 2, 1, MARK, DET, -1)
      WRITE(6,631) DET
      EEK(I)=R(1,3)
      EEC(I)=R(2,3)
      PK=EK(I)
      PC=EC(I)
  200 CONTINUE
                (ID(I), I=1,8)
      WRI.
      HK=FLUAT(K)*H
      TIE=H*FLOAT(NON)
      WRITE(6,603) H, TIS, HK, NON , TIE
      WRITE(6,604)
      00 337 I=1.N
                     CM(I), EM(I), CK(I), EK(I), CC(I), EC(I)
  330 WRITE(6,605)
      WRITE (6,634)
      DO 335 I=1,N
  335 WRITE(6,635) CK(1), EEK(1), CC(1), EEC(1)
      NORUN=NORUN-1
      IF(NORUN) 5,5,340
 340 IF(INIT) 41,15,455
```

```
HOP DERMAT(TO)
531 8534XT (271 - . 1)
504 FEFERAT (AF10.6)
SOA PURYAT (611), (11.8)
601 FORMATCIONIEXPERIMENT NO =, 110, 5x, 31HINPUT SPECTRUM CLASSIFICATIO
6011 = , [3,5X,4HNV = , [3,5X,4HNC = , [3]//2]H SAMPLING FREQUENCY = ,[8,3HCP
6012, EX, 1980ATE OF EXPERIENT -, 13, 18/, 12, 18/, 12)
603 FORMATILHO, 310-SAMPLING INT. FOR SIMULATION #, 68.5/
Englisher, 16HTRANSIERT INT. = -
                              ,F17.2/
60321H0,39HSAMPLING INT. FOR CALCULATING MOMENTS =,F8.5/
60331HO.42HTOTAL NO. OF SAMPLES USED FOR ESTIMATION =.16/
603431HOTIME INTERVAL FOR FSTIMATION #,F10.2,3HSEC)
804 FORMAT(1H0,16X,4HM(I),34X,4HK(I),34X,4HC(I)/3(14X,4HTRUE,8X,
60419HFST[MATED.3X])
605 FORMAT(1H0,3(4X,2E17.8))
621 FORMAT (1H1,43H2ND MOMENTS Y(J)Y(L), L=J TO J+3 (OR 2N) OF,13,
620112H MASS SYSTEM)
621 FORMAT(1H0,8X,2HY(,12,1H),5E14.4)
622 FORMAT(1H0.13HFIRST MOMENTS//(5F20.8))
623 FORMAT (34HOSECOND MOMENTS OF 2ND DERIVATIVES//(5E20.8))
624 FORMAT (1HO, 20HEQUATION FOR SOLVING, 13, 27HTH MASS SYSTEM COEFFICIE
6241TS1
625 FORMAT(1H0,3X,815.8,6H*M + (,815.8,7H)*K + (,815.8,5H)*C =,815.8)
626 FORMAT (1HO, 53HCROSS MOMENTS OF INPUT FORCE AND Y(2J-1), Y(2J), DY(2
6261))
627 FCPMAT(1H), 3X, 12,8HTH FORCE, 3X, 3E14.4)
628 FORMAT(1H1,51H2ND MOMENTS OF DY(J)*Y(L),L#J-3,OR 1) TO J+3(OR 2N))
629 FORMAT(4HODY(,[2,4H)*Y(,[2,1H),7E14.4)
631 FCRMAT(14H)CETERMINNANT=, E2C.8)
632 FORMAT (31H)
                    EQUATIONS WHEN CM IS KNOWN)
633 FCRMAT(1H0,24X,E15.8,6H*K + (,E15.8,5H)*C =,E20.8)
634 FORMAT(26HOESTIMATES WITH MASS GIVEN)
635 FORMAT(1H0,38X,2(4X,2617.8))
400 STOP
    END
```

```
SUBJCUTINE RESCRIBER, M, H, TI, YI, FI, K, N, F, VAL, DVAL, Y, FOSP)
      DIMENSION Y (20), $1(20), $2(20), $3(20), $4(20), DY(20), YI(20),
     1VAL(1), F(1) , A(20), DVAL(1)
      NK=1
      112×1.5*F
      T=TI
      [ *(
      DC 10 I=1.M
   10 Y(I)=YI(I)
       FCS*FI
       CALL DERF(T,Y,FOS,M,DY)
      00 20 1=1,4
   20 S1(I) #H*DY(I)
      DO NO LLEIN
      DC 65 JJ*1.K
      NK#NK+1
      FCSP#F(NK)
      FCSA=(FCS+FOSP)/2.0
C
C
      COMPUTE K SUB 9
C
   25 DO 30 I=1.M
   30 A(1)=Y(1)+S1(1)/2.
      TA=T+H2
C
C
      COMPUTE K SUB 1
      CALL DERF (TA, A, FOSA, M, DY)
      DC 40 I=1,M
      S2(I)=H*DY(I)
   40 A(I)=Y(I)+S2(I)/2.
C
C
      COMPUTE K SUB 2
      CALL DERF (TA. A. FOSA, M. DY)
      DC 50 I=1.M
      S3(i)=H*DY(I)
   50 A(I)=Y(I)+S3(I)
      TA=T+H
C
C
      CCMPUTE K SUB 3
      CALL DERF (TA, A, FOSP, M, DY)
      DO 60 I=1.M
   60 S4(1)=H*DY(1)
      T=T+H
      FCS=FOSP
C
C
      COMPUTE NEW VALUES OF INTEGRALS
      DO 63 I=1,M
   63 Y(I)=Y(I)+(S1(I)+2.*S2(I)+2.*S3(I)+S4(I))/6.0
      CALL DERFIT, Y. FOS. M. DY J
      00 65 I=1.M
   65 S1(I)=H*DY(I)
      DO 70 I=1.M
```

152

```
L=L+1
DVAL(L)=DY(I)
70 VAL(L) =Y(I)
F(LL)=FCSP
80 CCNTINUE
METUPN
END
```

```
SUBROUTINE CERECT, VAR, ES, MIDER)
C
C
      PURPOSE
C
        AUXILIARY SUBROUTINE WHICH COMPUTES THE DERIVATIVES FOR THE
                                    RKELR
          INTEGRATION SUPPOUTINE
C
          OF ONE DIMENSION N DEGREE PREFOOM SPRING MASS DAMPER SYSTEM.
C
          EXCITED BY NE FORCES FROM MASS 1 TO MASS NE WHERE NE .LE.N
C
      DIMENSION VAR(20), DER(20), CC(10), CK(10), CM(10)
      COMMON CC.CK.CM
      N=M/2
      90 10 I=1.N
   10 DER(2*I-1)=VAR(2*I)
      IF(N-2) 50.15.15
   15 DER(2)=(CK(1)/CM(1))*(VAR(3)-VAR(1))+(CC(1)/CM(1))*(VAR(4)-VAR(2))
             +FS/CM(1)
     1
      IF(N.EQ.2) GO TO 30
      N1=N-1
      DC 25 I=2,N1
      DER(2*1) = (CK(1)/CM(1))*(VAR(2*1+1)+VAR(2*1-1))
                +(CC(I)/CM(I))*(VAR(2*I+2)-VAR(2*I))
                -(CK(J-1)/CM(I))*(VAR(2*I-1)-VAR(2*I-3))
     1
                -(CC(I-1)/CM(I))*(VAR(2*I) -VAR(2*I-2))
     1
   25 CONTINUE
   30 DER(2*N) =- (CK(N)/CM(N))*VAR(2*N-1)-(CC(N)/CM(N))*VAR(2*N)
                 -(CK(N-1)/CM(N))*(VAR(2*N-1)-VAR(2*N-3))
     1
                 -(CC(N-1)/CM(N))*(VAR(2*N) -VAR(2*N-2))
     1
      GC TO 100
   50 DER(2)=-(CK(1)/CM(1))*VAR(1)-(CC(1)/CM(1))*VAR(2)+FS/CM(1)
  100 PETURN
      END
```

Input Cards and Output Tabulations for a Sample Problem

The sample problem is to simulate a five-mass system whose parameters are

$$m_1 = m_2 = \dots = m_5 = 0.66667$$
 $k_1 = k_3 = 9.3 \times 10^5, k_2 = k_4 = 8.3 \times 10^4, k_5 = 530$
 $c_1 = c_3 = 0.9, c_2 = c_4 = 1.9, c_5 = 0.1$

The system is to be driven at mass No. 1 by a random force that has been digitally recorded on a magnetic digital tape. 3500 samples are to be simulated and used for estimation of the moments and the system parameters.

a) Input Cards

Col. 1 6	11 16	21	26	31	36	41	46
							•
5							
0.666666	930000.0	0.9					
0.666666	83000.0	1.9					
0.666666	930000.0	0.9					
0.666666	83000.0	1.9					
0.666666	530.0	0.1					
	3500		1		1		1

b) Sample Output

```
2ND POMENTS VIJIVILI, L=J TO J+3 (OR 2N) OF
                                               5 MASS SYSTEM
                                0.1293F-C9
        V4 1)
                  0.27736-06
                                               0.27636-04
                                                              0:1461E-07
        41 31
                  0.1439F-02
                               -0.1330E-C7
                                               0.1354E-02
                                                             -0.10206-06
        ¥1 31
                  0.27538-06
                                0.1239E-08
                                               0.25456-06
                                                             9-1086E-06
        ¥1 4)
                  0.1276E-C2
                               -0.1093E-G6
                                              -9.5076E-03
                                                             -0-1079E-06
        V1 51
                  G-2629E-06
                                0.1739E-CB
                                               0.26326-06
                                                              0.8791E-08
        VI 61
                  0.61116-03
                               -0.5421F-08
                                               0.6327E-03
                                                             -0.5900E-Q7
        ¥1 71
                  C.2636E-C6
                                0.163FE-C6
                                               0.26336-06
                                                             9.64C3E-07
        Y ( A)
                  0-66676-13
                                               0.1720E-03
                               -0.6528E-07
        ¥1 91
                 0.2821E-06
                                0.1894E-C8
        A4101
                  0.2567E-C2
FIRST MOPENTS
    -0.17794540E-03
                          0.11294794E-04
                                              -0.17784372E-03
                                                                    0.117328356-04
                                                                                        -n.17678886E-03
     0.18132111E-04
                         -0.17669534E-03
                                               7.17610012E-04
                                                                   -0.17564707E-03
                                                                                         0.428497636-05
SECOND MCMENTS OF
                       CERIVATIVES
     0.143873898-02
                                               0-127604486-02
                          C.13035915E 03
                                                                    0.11301915E 03
                                                                                         0.61112563E-03
                                               0.10890906E 03
     0.10925123F 03
                          C.66668891E-03
                                                                    9.25668876E-02
                                                                                         0.300219398 03
2ND POMENTS OF DV(J) OY(L), L=J-3, CR 1) TO J+3(CR 2N)
DY( 110Y( 1)
                0.12936-09
                               0.1439E-02
                                             -0.1330E-07
                                                            0.13546-02
DY( 210Y( 1)
               -0.1442E-02
                               0.12546-02
                                             -0.1358E-02
                                                           -C.1214E-02
                                                                           0.5596F-03
DA1 310A1 FI
                0.1461E-07
                               0.1354E-02
                                              0.12395-08
                                                            0.1276E-02
                                                                          -0.1083E-04
                                                                                         -0.5076E-03
DYE 410YE 11
               -0-1354E-02
                               0.2338E-02
                                             -0.1276E-02
                                                            C.2967E-04
                                                                           0.50668-03
                                                                                         -0.1880E-01
                                                                                                         0.61848-03
DV4 500V4 21
               -0.5606E-03
                               0.1C66E-C6
                                             -7.3076E-03
                                                            0.1739E-08
                                                                           0.6111F-03
                                                                                         -0.5421E-08
                                                                                                         0.4327E-03
DY( 6)*Y( 3)
                0.5077E-03
                               0.1924E-Q1
                                             -0.6112E-03
                                                            C.1562E-03
                                                                          -0.6328E-03
                                                                                         -0.1147E-02
                                                                                                        -0.2928E-05
DYE 71-YE 41
               -0.6193E-03
                                                                                         -0.4528E-07
                               0.87916-48
                                              0.6327E-03
                                                            0.1638E-08
                                                                           0.6667E-03
                                                                                                        .0.1728E-03
DYE 810YE 51
               -0.6327E-03
                               0.1494E-02
                                                            0.1930F-03
                                                                          -0.1728E-03
                                             -0.6667E-03
                                                                                         -0.1019E-01
DY1 910Y1 61
                0.29628-05
                               0.6403F-07
                                              0.1720E-03
                                                            0.1804E-08
                                                                           0.2567E-02
DY(1010Y( 7)
               -0.1719E-03
                               9.9765E-02
                                             -0.2567E-02
                                                            0.53715-03
CROSS MOMENTS OF INPUT FORCE AND VIZJ-11.VIZJ1.DVIZJ1
    1TH FORCE
                   -0.2719E-04
                                                  C.6641E C1
                                   0.134CE-01
EQUATION FOR SOLVING 1TH MASS SYSTEM COEFFICIENTS
    C.14421741E-020M + (-C.10046115E-08)0K + ( 0.14478014E-07)0C = 0.27191465E-04
   -0.12544415E-02*M + (-0.13426846E-07)*K + (-0.84582993E-04)*C =-0.13399992E-01
```

```
-0.13035915E 03*M + 1 0.84158862E-041*K + (-0.24687601E-021*C =-0.86404012F 01
DETERMINA ANT
                 -0.78698362E-12
    EQUATIONS WHEN CH IS KNOWN
                        -C.10C46115E-C8+K + 1 0.14478014F-071+C =
                                                                     -0.93425793E-03
                        -C.13426846E-07*K + (-0.84582993E-04)*C =
                                                                     -0.12563098E-01
DETERMINA ANT =
                  Q.8516744CE-13
EQUATION FOR SOLVING 2TH MASS SYSTEM COEFFICIENTS
   0.12758565E-020# + 1-0.20809391E-0710K + 1 0.10735772E-0610C --0.87616081F-03
  -0.29672240F-04*N + (-C.10956997E-06)*K + (-0.1783613CE-02)*C =-0.12502900E-01
   -0.11301515E 03*M + ( 0.17824958E-G2)*K + (-0.1883164CE-01)*C = 0.72549099F 02
DETERMINNANT=
                 -0.137C26C7E-C9
   EQUATIONS WHEN CM IS KNOWN
                        -0.20809391E-07*K + ( 0.10735772E-06)*C =
                                                                      -0.17269481F-02
                        -C.10956957E-C6*K + (-0.17836130E-02)*C =
                                                                     -0.12483154E-01
DETERMINA ANT =
                  0.37127664E-1C
EQUATION FOR SULVING 3TH MASS SYSTEM COEFFICIENTS
   0.61122146E-030M + ( C.30598812E-09)0K + ( 0.70517976E-08)0C = 0.69176064E-03
   -0.15618455E-03*M + (-C.71601526E-08)*K + ( 0.21573403E-04)*C =-0.6737226CE-02
   -C.10925123F 03*M + (-0.21584848E-04)*K + (-0.13034393E-02)*C =-0.92868278E 02
DETERMINA ANT -
                 -0.43641966E-12
   EQUATIONS WHEN CH IS KNOWN
                        0.30598812E-C9*K + ( 0.70517970E-08)*C =
                                                                       0.28457380E-03
                       -C.71601526E-08*K + ( 0.21573403F-C4)*C *
                                                                     -0.66392884E-02
DETERMINA ANT=
                  0.66516971E-14
EQUATION FOR SOLVING 4TH MASS SYSTEM COEFFICIENTS
   0.66668987E-03+M + (-0.30219737E-09)+K + (-0.62389190E-07)+C = 0.41934446E-03
  -0.19300176E-03*M + (-0.66918778E-C7)*K + (-0.49393757E-03)*C =-0.66128585E-02
   -0.1089C906E 03*M + { 0.49390024E-03)*K + (-0.10385732E-01)*C =-0.31620084E 02
DETERMINANT=
                  0.14638974F-09
   EQUATIONS WHEN CM IS KNOWN
                                                                     -0.249571238-04
                       -0.30219737E-09*K + ( 0.62389190F-071*C =
```

-0.66918778E-C7*K + (-0.49393757E-C3)*C =

0.15344165F-12

DETERMINA ANT=

-0.64924011E-02

EQUATION FUR SOLVING 5TH MASS SYSTEM COEFFICIENTS

0.25667022E-02*M + (-0.28213145E-06)*K + (-0.18038338E-08)*C = 0.15610611E-02

-0.53710299E-03*M + (-0.18038338E-08)*K + (-0.25668876E-02)*C --0.64580160F-03

-0.30021939E 03*M + (0.25667G22E-021*K + (-0.5371G299E-03)*C =-0.19871689E 03

DETERMINNANT= -0.20050818F-96

EQUATIONS WHEN CM IS KNOWN

-C.28213149E-06*K + (-0.18038338E-08)*C # -0.14994060E-03

-C.18038338E-C8*K + (-0.25668676E-02)*C = -0.25087469E-03

DETERMINAANT= 0.72419984E-05

700CPS SAMPLING INT. FOR SIMULATION - 0.00143 SAMPLING INT. FOR EALCULATING MOMENTS - 0.00143 TOTAL NO. OF SAMPLES USED FOR ESTIMATION . 3500 TIME INTERVAL FOR ESTIMATION .

5.005£C

4(1) True	ESTIMATED	K(1)		C(1)	
IFUE	COLLMAISO	TRUE	ESTIMATED	TRUE	ESTIMATED
0.66666666 00	C.66650777E GO	0.929999996 06	0.92975486E UB	0.99000000£ 00	0.44135029F 00
0.4666666 00	0.666258956 00	0.829999996 05	0.8296336RE 05	9.190000000 01	0.190222678 01
0.06666666 00	0.6663605CE 00	0.429999498 06	0.929641286 06	0.9000000E 00	0.107445446 01
0.66666666 00	0.666427446 00	0.829999996 05	0.02971213# 05	3.1900000E 01	0.109640526 01
0.0666666E 00	C.66643504E GO	0.530000006 03	0.529820408 03	0.09999998-00	0.111770246-00
ESTEMATES WITH MASS CIT	/EN				
		0.92999996 06	0.929982386 06	0.9000100CE 00	0.902077028 00
		0.82999998 05	0.02998689E 05	0.19000066 01	0.1900070SE C1
		0.9299999F ()6	0.92999488E 06	0.9000000000000	Q. 90431174F CC
		0.8299999¥F 05	0.829782326 05	0.190000000 01	0.19022629E 01
		0.53000000E 03	0.531455020 03	0.09999996- 00	0.97361500%-01

4.4 Computer Program Abstract III

General Description

This Fortran program simulates the two-dimensional, six degrees of freedom system shown in Figure I b and whose equation of motion, after change of variable, is given as

$$\begin{split} \dot{y}_{21-1} &= y_{21} \\ \dot{y}_{2} &= -\frac{2C_{1}}{m_{1}} y_{2} - \frac{2k_{1}}{m_{1}} y_{1} + \frac{2C_{3}}{m_{1}} (y_{8}-y_{2}) + \frac{2k_{3}}{m_{1}} (y_{7}-y_{1}) + \frac{f_{1}}{m_{1}} \\ \dot{y}_{4} &= -\frac{2C_{2}}{m_{1}} y_{4} - \frac{2k_{2}}{m_{1}} y_{3} + \frac{2c_{4}}{m_{1}} (y_{10}-y_{4}) + \frac{2k_{4}}{m_{1}} (y_{9}-y_{3}) + \frac{f_{2}}{m_{1}} \\ \dot{y}_{6} &= -\frac{2(C_{1}b^{2}+C_{2}a^{2}+C_{3}c^{2}+C_{4}e^{2})}{I_{1}} y_{12} + \frac{2(K_{3}ed + K_{4}e^{2})}{I_{1}} y_{11} + \frac{f_{3}}{I_{1}} \\ \dot{y}_{8} &= -\frac{2C_{3}}{m_{2}} (y_{8}-y_{2}) - \frac{2k_{3}}{m_{2}} (y_{7}-y_{1}) + \frac{f_{4}}{m_{2}} \\ \dot{y}_{10} &= -\frac{2C_{4}}{m_{2}} (y_{10}-y_{4}) - \frac{2k_{1}}{m_{2}} (y_{9}-y_{3}) + \frac{f_{5}}{m_{2}} \\ \dot{y}_{12} &= -\frac{2(C_{3}d^{2}+C_{4}e^{2})}{I_{2}} y_{12} - \frac{2(K_{3}d^{2}+K_{4}e^{2})}{I_{2}} y_{5} + \frac{f_{6}}{I_{2}} \end{split}$$

From the simulated equally-spaced samples of the system dynamical outputs y_j , \dot{y}_j , j=1 to 12 and the system inputs f_1 , i=1 to 6, the second moments or time averages of $y_j y_k$, $\dot{\dot{y}}_j y_k$, $\dot{\dot{y}}_j^2$, $f_1 y_{21-1}$, $f_1 y_{21}$, and $f_1 \dot{\dot{y}}_{21}$ are computed and the system parameters m_1 , I_1 , k_{21-1} , k_{21} , C_{21-1} , C_{21} for i=1 and 2 are estimated.

- b) Outputs from this program include:
 - 1) Sample moments or time averages of

$$\overline{y_{j}y_{k}}$$
; j=1 to 6N; k=j, ..., (j+7) or 12

 $\overline{\dot{y}_{j}y_{k}}$; j=1 to 6N; k=(j-3) or 1, ..., (j+7) or 12

 $\overline{\dot{y}_{j}^{2}}$; j=1 to 12

$$\overline{f_1y_{21-1}}$$
, $\overline{f_1y_{21}}$ and $\overline{f_1y_{21}}$; i=1 to 6

- 2) Sets of simultaneous equations for solving each set of system parameters.
- 3) Tabulation of true parameters against the estimated parameters.

- c) Required Supporting Subprograms
 - 1) RKD
 - 2) MULDEV
 - 3) MULFOS
 - 4) PAMSQT
 - 5) XSQ
 - 6) XFOT
 - 7) LOC2
 - 8) LOC3
 - 9) RLMTX

Input Cards

- a) Number of Mass Card
- Col. 1-2 N Number of mass for the two-dimensional system (N=2).
 - b) System Parameter Card(s)

A card is used to specify each set of system parameter $(m_i, I_i, k_{2i-1}, k_{2i}, C_{2i-1}, C_{2i})$. Therefore, N(=2) cards are needed.

- Col. 1-10 CM(I) Floating point constant for the ith mass coefficient
- Col. 11-20 CI(I) Floating point constant for the ith moment of inertia

- Col. 21-30 CK(2I-1) Floating point constant for the spring coefficient in one direction
- Col. 31-40 CK(2I) Floating point constant for the spring coefficient in the other direction
- Col. 41-50 CC(2I-1) Floating point constant for the damper coefficient in one direction
- Col. 51-60 CC(2I) Floating point constant for the damper coefficient in the other direction
 - c) System Dimension Card
- Col. 1-10 A Floating point constant for the distance between C. G. of Mass 1 and the spring-dashpot unit (k2, C2).
- Col. 11-20 B Floating point constant for the distance between C. G. of Mass 1 and the spring-dashpot unit (k_1, C_1) .
- Col. 21-30 C Floating point constant for the distance between C. G. of Mass 1 and the spring-dashpot unit (k_3, C_3) .
- Col. 31-40 D Floating point constant for the distance between C. G. of Mass 2 and the spring-dashpot unit (k_3, C_3) .
- Col. 41-50 E Floating point constant for the distance between C. G. of Mass 2 and the spring-dashpot unit (k_{μ}, C_{μ}) .

- d) Number of Input CardCol. 1-2 NF Number of input forcing functions (NF=6)
 - e) Input Forcing Characteristics Card(s)

A card is used to specify each input forcing function characteristics. NF (=6) cards are needed and they should be arranged consecutively from I=1 to NF (6).

- Col. 6-10 FOST(I) Amplitude of sinusoid input of the ith force, or the standard deviation of the white noise input to a bandpass filter whose output is the ith input force.
- Col. 11-15 FW(I) Frequency (cps) of the sinusoid function or center frequency of the bandpass filter for the ith input

f) Simulation Specification Card

- Col. 1-5 FREQ Sampling frequency for simulation of the system. The simulation interval is then 1/FREQ.
- Col. 6-10 NI Number of initial samples to be simulated before samples are taken for estimation of the moments and the system parameters.
- Col. 11-15 NO Number of samples (after initial NI samples) to be used for estimation.
- Col. 16-20 K Only every kth sample (after the initial NI samples) of the equally-spaced (of interval 1/FREQ) samples are to be used for estimation.
- Col. 21-25 NORUN Number of successive times the moments and the system parameters are to be estimated.
- Col. 26-30 INIT Control index for how the samples are taken for each successive estimation.

 If INIT < 0, successive NO samples (after the initial NI samples) taken at every kth sample are to be used for estimation.

 If INIT = 0, system is reinitialized each time, NO samples (after initial NI samples) are used for estimation.

If INIT > 0, (after initial NI samples)
NO samples are used cummulatively each
time; that is, NO, then 2 x NO, ..., then
NORUN x NO samples are successively used
for estimation.

g) Repeat a to f for a different choice of system parameters as many times as desired. A blank card after f will cause a stop.

Description of Supporting Subprograms

a) MULDEV (T, Y, F, N, NF, DY)

This Fortran subroutine computes the derivatives as given by equation 4.4.1 for the integration subroutine RKD where DY(I), I=1, N are the derivatives of Y(I), I=1, N with respect to T, and are functions of T, Y, and F where F(I), I=1, NF are the input forcing values at T.

b) MULFOS (T, FOS, NF)

This Fortran subroutine generates the input forcing functions to the system for the integration subroutine RKD, where FOS(I), I=1, NF are the values of the input forcing values at time T. A subprogram for sinusoid input and

another for random input are included. The user can use either one as desired, and only one is to be used at a time.

d) XFOT (A, NA, NVEC, B, C, NBC, NO, XM, ID)

This Fortran subroutine computes sums or averages of product between variables of one vector and variables of two other vectors, where

- A Sample matrix of NA by NO of one set of vectors
- NA Number of variables or length of vectors stored in A
- NVEC If NVEC(I) > 0, then the ith variable of vector
 stored in A is greater than 0.
- B Sample matrix of NBC by NO of the second set of vectors
- C Sample matrix of NBC by NO of the third set of vectors
- NBC Number of variables or length of vectors stored in B and C
- NO Number of vectors
- XM Sums or averages of products of variables A(J)* B(2J-1); A(J)*B(2J); and A(J)*C(2J); J=1, NA
- ID Control index
 ID = 0, computing sums
 ID ≠ 0, computing averages

e) The descriptions for subprograms RKD, PAMSQT, XSQ, LOC2, LOC3, and RLMTX are given in Section 4.2.

Listing of the Main Program and the Subprogram

The main program and only the subprograms MULDEV, MULFOS, and XFOT are listed since the other subprograms have already been listed in Section 4.2.

```
168
      FREGRAM TO SIMULATE MULTICEMENSIONAL 2 MASS. SPRING AND DAMPER
      SYSTEM AND ESTIMATE THE PARAMETERS
      DIMENSION CC(4), CK(4), CM(2), CI(2), FS(6), Y(48CC), DY(48CC), YE(20),
     1F(2400), EC( 4), EK( 4), EM(2), YI(2C), EI(2), NVEC(6), Fh(6), FB(6),
                                                              R(3,4)
                         SQ(8C), SUM(2C), XM(3C), F1(6),
     2FOST( 6), DC(6),
     3.DYSC(20), YCY(140), SQT(8C), SLMT(2C), XMT(3C), DYSQT(2O), YDYT(140)
     4,DIS(3,6),ED(6), SUMS(20), XMS(30), SQS(FO), DYSQS(2C), YDYS(14G)
      CCUBLE PRECISION SGS.SUMS. > MS.CYSGS.YCYS
      COMMON CM, CI, CC, CK, DD, NVEC, FCST, FW, FB, DIS
      EXTERNAL MULCEV. MULFOS
C
    5 REAC(5,500) N
    ....IF.(N) 400,400,8
    8 READ (5,501) (CM(I),CI(I),CK(2+I-1),CK(2+I),CC(2+I-1),CC(2+I),
     1 = 1, N
      REAC(5,501) A,8,C,0,E
      REAC(5,503) NF, (NVEC(1), FOST(1), FW(1), FB(1), I=1, NF)
      REAC(5,506) FREC, NI, NO, K, NCRLN, INIT
      INIT .GT. C ALL SAMPLES USEC FOR SUCCESIVE ESTIMATION OF MOMENTS
C
      INIT .EQ. 0 EACH SUCCESIVE RUN IS REINITIALIZED
      INIT .LT. O NO SAMPLES USEC FOR SUCCESIVE ESTIMATION OF MOMENTS
C
C
      INITIALIZATION
      CD(1)=(B+B)+CC(1)+(A+A)+CC(2)+(C+C)+CC(3)+(E+F)+CC(4)
      DD(2)=(B*B)*CK(1)+(A*A)*CK(2)+(C*C)*CK(3)+(E*E)*CK(4)
      CD(3)=(C+0)*CC(3)+(E*E)*CC(4)
      CD(4)=(C*D)*CK(3)+(E*E)*CK(4)
      CD(5)=(0*D)*CC(3)+(E*E)*CC(4)
      CD(6) = (D*D) * CK(3) * (E*E) * CK(4)
      H=1.0/FREQ
      N2=6*N
      NX=7
      IF(N2.LE.6) MX=N2-1
      CO 10 1=1,NF
      IF(NVEC(1).LE.Q) GO TO 10
      BH=6.283185*FB(I)*H
      hD=Fh(I)*fh(I)-0.25*FB(I)*fB(I)
      IF (hC.LT.J.O) hC=-WD
      WD=6.283185*H*SGRT(WD)
      CIS(1,1)=2.0*CCS(WD)*EXP(-C.5*BH)
      DIS(2, I)=-1.0*EXP(-1.0*BH)
      DIS(3,1)=BH
   10 CONTINUE
      NSC=(*X+1)*N2-(*X*(MX+1))/2
      NXN=3*NF
      NXC= (2*MX+11*N2-(MX+1)*MX
      IF(NSC.GT.80) GC TO 350
      IF (NXM.GT.30) GO TO 350
      IF(NXQ.GT. 140) GO TO 350
   15 CO 30 [=1.N2
```

```
30 YI(I)=0.0
      TI=C.O
      CALL PULFOS(TI.FI.NF)
      IF(NI.LE.O) GC TC 41
      CALL RKD (MULCEV, MULFOS, N2, AF, H, C.O. YI, FI, NI, 1, F, Y, PY, )
      CC 40 I=1.N2
  40 YI(1)=YE(1)
      TI= FLCAT(NI)+H
  41 CC 42 J=1.NXM
  42 XMS(J)=ù.0
      DG 43 J=1.NSC
  43 $C$(J)=U.0
      CC 44 J=1,N2
      DYSCS(J)=0.0
  44 SUPS(J)=0.C
      DC 45 J=1.NXC
  45 YDYS(J)=0.0
      NUN=C
      TIS=TI
 455 IF((NO+NF).LE.2400) GQ (TO 45
      MNF=24CQ/NF
      IF((NC+N2).LE.48CO) 50 TO 46
      MN2= 4800/N2
      IF(MNF-MN2) 46,46,48
  46 NIS=MAF
      GO TO 50 -
  48 NIS=MN2
      GC TC 50
  49 IF ((NO+N2).LE. 4800) GO TO 140
      NIS= 48CC/N2
      GC TC 50
 14C NIS=NC
  4C NISTNO
50 NGS=NC
51 CALL RKD(MULCEV, MULFOS, NZ, NF, H, TI, YI, FI, K, NIS, F, Y, DY, YE)
     CALL RKD(MULGEV, MULFUS, NZ, NP, M, 11, V1, P1, N, N13, F, VI UT TO CALL PAMSQT(Y, NZ, NIS, MX, SQT, SUNT, Q)

CALL XSC(DY, Y, NZ, NIS, MX, DYSQT, YÖYT, Q)

CALL XFOT(F, NF, NVEC, Y, DY, NZ, NIS, XMT, Q)

NCS=NOS-NIS

CO 52 J=1, NSC

SQS(J)=SCS(J)+SCT(J)

DO 54 J=1, N2

CYSCS(J)=DYSCS(J)+DYSQT(J)
    "NCS=NOS-NIS
  52 SQS(J)=SCS(J)+SCT(J)
      CYSCS(U)=0YSCS(U)+0YSQT(U)**
 54 SUPS(J)=SUPS(J)+SUMT(J)
CO 55 J=1.NXC
55 YDYS(J)=YDYS(J)+YDYT(J)
CO 56 J=1, NXM
56 XMS(J)=XPS(J)+XMT(J)
CO 58 J=1.
58 YI(J)=YE(J)
NCA=ACN+NIS
  TN=NIS*K
60 | | TI=TI+TN*H
  65 IF (NCS-NIS) 70,51,51
 70 NIS=NGS
```

```
170
C
Ĉ
       WHITE THE MCMENTS
  100 00 110 J=1.NSQ
  110 St(J) = SQS(J) / FLCAT(NON)
      CG 112 J=1,N2
      OYSC(J)=CYSCS(J)/FLOAT(NON)
  112 SUM(J)=SUMS(J)/FLCAT(NON)
      CO 114 J=1,NXM
  114 XM(J)=XMS(J)/FLCAT(NCN)
      CC 116 J=1,NXG
  116 YDY(J)=YDYS(J)/FLCAT(NCN)
      WRITE(6,606)
                     ٨
      wRITE(6,622)
                     (SUM(J), J=1, N2)
      WRITE(6,620)
      CO 155 J=1,N2
      CALL LCC2(J,J,K1,N2,MX)
      13=J+MX
      [F(J3.GT.N2) J3=N2
      CALL LCC2(J3,J,K2,N2,MX
  155 WRITE(6,621) J, (SQ(JJ), JJ=K1,K2)
      WRITE(6,623) (CYSQ(J),J=1,N2)
      WRITE(0.628)
      00 160 J=1,N2
      J3=J+MX
      IF(J3.GT.N2) J3=N2
      CALL LCC3(J3,J,K2,N2,MX)
      XM-L=EL
      IF(J3.LT.1) J3=1
      CALL LCC3(J3,J,K1,N2,MX)
  160 WRITE(6,625) J,J3,(YDY(JJ),JJ=K1,K2)
      WRITE(6, 626)
      CO 165 J=1.NF
  165 WRITE(6,627) NVEC(J), XM(3*J-2), XM(3*J-1), XM(3*J)
C
C
       ESTIMATE THE COEFFICIENTS
C
      IF(NVEC(4)) 173,173,175
  173 IF(NVEC(5)) 175,175,185
C
      FOR F(4).GT. U CR BOTH F(4) AND F(5) .LE.O
  175 CALL LCC2(8,7,K1,N2,MX)
      CALL LCC2(7,2,K2,N2,MX)
      R(1,1) = SG(K1) - SG(K2)
      CALL LCC2(8,1,K2,N2,MX)
      R(2,2) = SQ(K1) - SC(K2)
      CALL LCC2(7,7,K1,N2,MX)
      CALL LCC2(7,1,K2,N2,MX)
      R(1,2) = SG(K1) - SG(K2)
      CALL LCC2(8,8,K1,N2,MX)
      CALL LCC2(8,2,K2,N2,MX)
      R(2,1) = SQ(K1) - SQ(K2)
      CALL LCC3(7, 6, K1, N2, MX)
```

184 11

```
171
      CALL LCC3(8, 8, K2, N2, MX)
      IF (NVEC(4).LE.C) GO TO 180
      FOR F(4) .GT. C, ESTIMATE C(3),K(3) AND M(2) FIRST
      R(1,3)=C.5*YCY(K1)
      R(2,3)=0.5*YCY(K2)
      CALL LCC3(1,8,K3,N2,MX)
     R(3,2)=YCY(K1)-YCY(K3)
      CALL LCC3(2, 8, K3, N2, MX)
      R(3,1)=YCY(K2)-YCY(K3)
      R(3,3)=0.5*DYSG(8)
      R(1.4) = 0.5 + X + (10)
      R(2,4)=G.5+XM(11)
      R(3,4)=0.5*X*(12)
      J=3
      1 = 2
      WRITE(6,624) J.J.I
      WRITE(6,625) ((R(L,J),J=1,4),L=1,3)
      CALL RLMTX(R,3,1,MARK,DET,-1)
      WRITE(6,631) DET
      EC(3)=R(1,4)
      EK(3)=R(2,4)
      EM(2)=R(3,4)
      GO TO 185
      F(4) AND F(5) ARE BOTH O. ESTIMATE ONLY C(3) AND K(3) WITH M(2)
C
C
      GIVEN
  180 R(1,3)=-0.5*CM(2)*YDY(K1)
      R(2,3)=-0.5*CM(2)*YDY(K2)
      J=3
      WRITE(6,610) J,J
      WRITE(6,633) ((R(L,J),J=1,3),L=1,2)
      CALL RLMTX(R, 2, 1, MARK, CET.-1)
      WRITE(6,631) DET
      EC(3)=R(1,3)
      EK(3) = R(2,3)
C
  185 CALL LCC2(10,9,K1,N2,MX)
      CALL LCC2( 9,4,K2,N2,MX)
      R(1,1) = SC(K1) - SC(K2)
      CALL LCC2(10,3,K2,N2,MX)
      R(2,2)=SG(K1)-SG(K2)
      CALL LCC2( 9,9,K1,N2,MX)
      CALL LCC21 9.3.K2,N2,MX)
      R(1,2) #SQ[: 1)-SQ(K2)
      CALL LCC2(10,10,K1,N2,MX)
      CALL LCC2(10, 4, K2, N2, MX)
      R(2,1)=SC(K1)-SC(K2)
      CALL LCC3(9,10,K1,N2,MX)
      CALL LCC3(10,1C, K2, N2, MX)
      IF(NVEC(4).LE.G) GO TO 190
```

```
172
      F(4) .GT. C ESTIMATE C(4) AND K(4)
C
      R(1.3)=0.5=(XM(13)-YDY(K1)+EM(2))
      R(2,3) #0.5 + (XM(14) - YDY(K2) + EM(2))
       J=4
      WRITE(6,610) J.J
      WRITE(6,533) ((R(L,J),J=1,3),L=1,2)
      CALL REMIXIR, 2, 1, MARK; DET, -1)
      WRITE(6,631) DET
      EC(4)=R(1,3)
      EK (4) = R (2,3)
      GO TO 250
  19C IF(NVEC(5).GT.G ) GO TO 21C
C
      BOTH F(4) AND F(5) ARE O. ESTIMATE C(4) AND K(4) WITH M(2) GIVEN
      R(1,3)=-0.5 + CM(2) + YQY(K1)
      R(2,3)=-0.5*CM(2)*YDY(K2)
      J=4
      write(6,610) J,J
      WRITE(6,633) ((R(L,J),J=1,3),L=1,2)
      CALL RLMTX (R, 2, 1, MARK, CET, -1)
      WRITE(6,631) DET
      EC(4)=R(1,3)
      EK (4)=R(2,3)
      GO TO 250
       F(5) .GT. O AND F(4) .LE. C. ESTIMATE C(4) .K(4) AND M(2) FIRST
  210 \text{ R(1,3)} = 0.5 * \text{YCY(K1)}
      R(2,3) = 0.5 * YCY(K2)
      CALL LCC3(4,10,K3,N2,MX)
      R(3,1)=YCY(K2)-YCY(K3)
      CALL LCC3(3,10,K3,N2,MX)
      R(3,2)=YCY(K1)-YCY(K3)
      R(3,3)=0.5*DYSC(10)
      R(1,4)=C.5*XV(13)
      R(2,4)=0.5*XM(14)
      R(3,4)=C.5*XM(15)
      I = 2
      J=4
      WRITE(6,624) J,J,I
      WRITE(6,625) ((R(L,J),J=1,4),L=1,3)
      CALL RLMTX (R, 3, 1, MARK, CET, -1)
      WRITE(6.631) DET
      EC(4)=R(1.4)
      EK (4)=R(2,4)
      EM(2)=R(3,4)
C
       ESTIMATE C(3) AND K(3)
      CALL LCC2(8,7,K1,N2,MX)
      CALL LCC2(7,2,K2,N2,MX)
```

```
173
      R(1,1) = SG(K1) - SG(K2)
      CALL LCC2(E, 1, K2, N2, MX)
      R(2,2) = SQ(K1) - SC(K2)
      CALL LCC2(7,7,K1,N2,MX)
      CALL LCC2(7,1,K2,N2,MX)
      R(1,2) = SO(K1) - SO(K2)
      CALL LCC2(8,8,K1,N2,MX)
      CALL LCC2(8,2,K2,N2,MX)
      R(2,1) = SQ(K1) - SC(K2)
      CALL LCC3(7,8,K1,N2,MX)
      CALL LCC3(8,8,K2,N2,MX)
      R(1,3)=-0.54EM(2)*YDY(K1)
      R(2,3)=-0.5*EM(2)*YDY(K2)
      J=3
      WRITE(6,610) J,J
      WRITE(6,633) ((R(L,J),J=1,3),L=1,2)
      CALL RLMTX(R,2,1,MARK,CET,-1)
      WRITE(6,631) DET
      EC(3)=K(1,3)
      EK(3)=K(2.3)
C
      ESTIMATE 1(2)
  250 ED(3)=(C*D)*EC(3)+(E*E)*EC(4)
      ED(4) = (C * D) * EK(3) + (E * E) * EK(4)
      ED(5)=(C*D)*EC(3)+(E*E)*EC(4)
      ED(6)=(C*D)*EK(3)+(E*E)*EK(4)
      CALL LCC2(12,11,K1,N2,MX)
      CALL LCC2(11. 6,K2,N2,MX)
      CALL LCC2(11,11,K3,N2,MX)
      CALL LCC2(11, 5,K4,N2,MX)
      CALL LCC3(11,12,K5,N2,MX)
      EI(2)=(2.0*(ED(3)*SQ(K2)+EC(4)*SC(K4)-EC(5)*SQ(K1)-ED(6)*SC(K3))+
     1 XM(16))/YCY(K5)
C
      ESTIMATE C(1), K(1) AND M(1)
      CALL LCC2(2,1,K1,N2,MX)
      P(1,1)=SC(K1)
      3(3,2)=SC(K1)
      CALS LCC2(1,1,K1,N2,MX)
      R(1,2)=SC(K1)
      CALL LCC2(2,2,K1,N2,MX)
      R(2,1)=SC(K1)
      CALL LCC3(1,2,K1,N2,MX)
      R(1,3)=0.5*YDY(K1)
      R(3,2)=YCY(K1)
      CALL LCC3(2,2,K1,N2,MX)
      R(2,3)=0.5*YCY(K1)
      R(3,1)=YCY(K1)
      R(3,3)=0.5*DYSC(2)
      CALL LCC2(8,1,K1,N2,MX)
      CALL LCC2(2, 1, K2, N2, MX)
      CALL LCC2(7, 1, K3, N2, MX)
      CALL LCC2(1,1,K4,N2,MX)
```

174

```
,4)=EC(3)*(SG(K1)-SG(K2))+EK(3)*(SG(K3)-SG(K4))+C.5*XM(1)
  LL (CC2(8,2,K1,N2,PX)
CALL LCC2(2,2,K4,A2,PX)
CALL LCC2(7,2,K3,N2,MX)
R(2,4) = EC(3) * (SQ(K1) - SQ(K4)) + EK(3) * (SQ(K3) - SQ(K2)) + O.5*XM(2)
CALL LCC3(8,2,K1,N2,KX)
CALL LCC3(2,2,K2,N2,MX)
CALL LCC3(7,2,K3,N2,MX)
CALL LCC3(1,2,K4,N2,NX)
R(3,4)=EC(3)*(YCY(K1)-YCY(K2))+EK(3)*(YCY(K3)-YCY(K4))+0.5*XM(3)
 I = 1
WRITE(6,624) 1,1,1
WRITE(0,625) ((R(L,J),J=1,4),L=1,3)
CALL PLMTX(R,3,1,MARK,CET,-1)
WRITE(6,631) DET
EC(1)=R(1,4)
EK(1)=R(2,4)
EM(1)=R(3,4)
ESTIMATE C(2).K(2)
CALL LCC2(4,3,K1,N2,MX)
R(1,1)=SG(K1)
R(2,2)=SC(K1)
CALL LCC2(3,3,K1,N2,MX)
R(1.2) = SC(K1)
CALL LCC2(4,4,K1,N2,MX)
R(2,1)=SC(K1)
 CALL LCC3(3,4,K5,N2,MX)
CALL LCC2(10,3,K1,N2,MX)
CALL LCC2( 4,3,K2,N2,MX)
CALL LCC2( 9,3,K3,N2,MX)
CALL LCC2( 3,3,K4,N2,MX)
K(1,3)=EC(4)*(SQ(K1)-SQ(K2))+EK(4)*(SQ(K3)-SQ(K4))+C.5*XM(4)
1-0.5 * EM(1) * Y CY (K5)
CALL LCC2(10,4,K1,N2,MX)
CALL LCC2( 4,4,K4,N2,MX)
CALL LCC2( 9,4,K3,N2,MX)
CALL LCC3( 4,4,K5,N2,MX)
R(2,3)=EC(4)*(SQ(K1)-SQ(K4))+EK(4)*(SQ(K3)-SC(K2))+0.5*XM(4)
1-0.5*EM(1)*YCY(K5)
 J=2
WRITE(6,610) J,J
WRITE(6,633) ((R(L,J),J=1,2),L=1,2)
CALL RLMIX(R,2,1,MARK,CET,-1)
WRITE(6,631) DET
 EC(2)=R(1,3)
 EK(2) = R(2,3)
ESTIMATE 1(2)
 ED(1)=(8*8)*EC(1)+(A*A)*EC(2)+(C*C)*EC(3)+(E*E)*EC(4)
ED(2)=(8*8)*EK(1)+(A*A)*EK(2)+(C*C)*EK(3)+(E*E)*EK(4)
 CALL LCC2( 6.5,K1,N2,MX)
```

CCC

C

CC

```
175
    CALL LCC2(12,5,K2,N2,MX)
    CALL LCC2( 5,5,K3,N2,MX)
    CALL LCC2(11,5,K4,N2,MX)
    CALL LCC3( 5,6,K5,N2,MX)
    EI(1)=(2.0*(EC(3)*SQ(K2)+EC(4)*SQ(K4)-EC(1)*SQ(K1)-EO(2)*SQ(K3))
   1 +XM(7))/YCY(K5)
    WRITE (6,60C)
    wkITE(6,601) NF,(I,FOST(I),FW(I),FE(I),I=1,NF)
    FK=FLC/T(K)*F
    TIE=H*FLCAT(NON)
    WRITE(6,603) H,TIS,HK,NON,TIE
    WRITE(6,604)
    WRITE(6,635) (1,CC(1),EC(1),CK(1),EK(1),I=1,4)
                   (I,CM(I),EM(I),CI(I),EI(I),I=1,2)
    WRITE(6,637)
    VCRFV=VCRRV-1
    IF(NC&UN) 5,5,340
340 IF(INIT) 41,15,455
350 WRITE(6,636) NSC, NXM, NXQ
500 FORMAT(12)
501 FCRMAT(6F1G.1)
503 FORMAT (12/(15,3F5.1))
506 FORMAT (F5.3.515)
600 FORMAT (53H1ESTIMATION OF THE PARAMETERS OF THE SIMULATED SYSTEM)
601 FORMAT(1HO, 18HNO OF EXCITATION =, 13/(17HOFOR THE FORCE NO.12,
60114X,11HAMPLITUDE =,F10.2,4X,16HCENTER FREQUENCY =,F10.2,4X,
6012 27HPHASE SHIFT OR BAND WICTH = , F1C.2) )
603 FORMAT (1H0, 3CHSAMPLING INT. FCR SIMULATION =, F8.5/
60311HO.16HTRANSIENT INT. =
                               ,F1C.2/
60321HC, 39HSAMPLING INT. FCR CALCULATING MCMENTS = FE.5/
6C331HG, 42HTCTAL NO. OF SAMPLES USED FOR ESTIMATION =, 16/
603431FOTIME INTERVAL FOR ESTIMATION #,F10.2,3HSEC)
             1HO,2(20X,4HTRUE,18X,5HESTIMATED) )
606 FORMAT(29HIESTIMATION OF THE MCMENTS CF. 12, 12H MASS SYSTEM)
610 FORMAT (24HOEQUATION FOR SCLVING C(, $1,4H), K(, $11,1H) )
62C FORMAT (1HO, 4GH2NC MOMENTS Y(J)Y(L), L=J TO J+7 (CR 2N))
621 FURMAT(1HO,2X,2HY(,12,1H), EE14.4)
622 FORMAT (29HOFIRST MOMENTS OF Y(J), J=1,2N//(5E2C.8))
623 FORMAT (43HOSECOND MOMENTS OF CERIVATIVES DY(J).J=1,2N//(5E20.8))
624 FORMAT(24HOEQUATION FOR SOLVING C(, I1,4H), K(, I1,8H) AND M(, I1,1H))
625 FORMAT(1HO, 3X, £15.8, 6H*C + (, £15.8, 7H)*K + (, £15.8, 5H)*M =, £15.8)
626 FORMAT(1HO,53HCROSS MOMENTS.CF INPUT FCRCE AND Y(2j-1),Y(2J),DY(2
627 FORMAT(1H0,3X,12,8HTH FORCE,3X,3E14.4)
628 FORMAT (140,51H2NC MOMENTS OF CY(J) +Y(L), L=J-7, CR 1) TO J+7(CR 2N))
629 FORMAT (4HODY(,12,4H)*Y(,12,1H)/(12X,7E14.4))
631 FORMAT (14HCDETERMINNANT=, E2G.E)
632 FORMAT (31HQ
                    ECUATIONS WHEN CM IS KNOWN)
633 FORMAT (1HO, 24x, E15.8, 6H+C + (, E15.8, 5H) +K =, E2C.8)
635 FORMAT (1HO, 31X, 4HC(I), 49X, 4HK(I), /(3HCI=, I1, 2(1OX, 2E2O.8)))
636 FORMAT (40HIAT LEAST ONE OF THE FOLLOWING NOS. ASC=,12,6H, NXM=,12
6361 ,6H, NXC=,13,44H IS GREATER THAN THE CCRRESPONDING 80,30,140 )
637 FORMAT(1HU,31X,4HM(I),49X,4HI(I),/(3HCI=,I1,2(1OX,2E20.8)))
400 STCP
    ENC
```

```
176
      SUPRCUTINE MULLEV([,Y,F,N,NF,CY)
      DIMENSION CM(2), CI(2), CK(4), CC(4), CU(6), Y(12), F(6), DY(12)
      COMMON CM.CI.CC.CK.PD
(
      00(1)=(E*B)*CC(1)+(A*A)*CC(2)+(C*C)*CC(3)+(E*E)*CC(4)
C
C
      DD (2)=(5*6)*CK(1)+(A*A)*CK(2)+(C*C)*CK(3)+(E*E)*CK(4)
0000
      EU(3)=(C+U)*(C(3)+(E*E)*CC(4)
      DD(4)=(C*D)*CK(3)+(E*E)*CK(4)
      CD(5) = (C*O)*CC(2) + (E*E)*CC(4)
      DD(6)=(D*D)*CK(3)+(E*E)*CK(4)
      N2=N/2
      OC 16 I=1,N2
   1C CY(2*I-1)=Y(2*I)
      DY(2) = -(2.6/CV(1)) * (CC(1)*Y(2) + CC(3)*(Y(2)-Y(8))
     1 + CK(1)*Y(1) + CK(3)*(Y(1)-Y(7))) + F(1)/CM(1)
      DY(4) = -(2.6/CM(1)) * (CC(2)*Y(4) + CC(4)*(Y(4)-Y(1C))
     1 + (K(2)*Y(3) + CK(4)*(Y(3)-Y(9))) + F(2)/CM(1)
      DY(6) = -(2.6/CI(1)) * (DD(1)*Y(6) +DC(2)*Y(5) - CC(3)*Y(12)
     1 - CC(4)*Y(11)) + F(3)/CI(1)
    -1.0Y(8) = (2.0/CM(2)) * (CC(3)*(Y(2)-Y(8)) + CK(3)*(Y(1)-Y(7)))
     1 + F(4)/CM(2)
      DY(13) = (2.C/CM(2)) * (CC(4)*(Y(4)-Y(10)) + CK(4)*(Y(3)-Y(9)))
     1 + F(5)/CM(2)
      DY(12) = (2.C/CI(2)) * (DD(3)*Y(6)*DC(4)*Y(5) - CD(5)*Y(12)
     1 - DC(6) * Y(11)) + F(6)/CI(2)
      RETURN
      ENC
```

```
SUPRCUTINE MLLFCS(T,FOS,NF)
DIMENSION CM(2),CI(2),CC(4),CK(4),DD(6),NVEC(6),FW(6),FB(6),
1FOST(6),FOS(6)
CGMMCN CM,CI,CC,CK,DD,NVEC,FCST,FW,FB
CO 20 I=1,NF
IF(NVEC(I).LE.O) GO TO 10
THETA=6.283185*(T*FW(I)+FB(I)/36C.)
FOS(I)=FCST(I)*SIN (THETA)
GO TC 20
10 FOS(I)=G.O
20 CONTINUE
RETURN
```

ENC

SUPPOLITING MULTURALITY FOR AND)

ENC

177

318ENS JUN 64(2), 61(2), 66(4), 66(4), 66(4), 806(6), 806(6), FW(6), FB(6),

```
1FCST(6),105(6),01S(3,6),XF(2,6),XR(6)
     COMMON CM, CL, CL, CK, DL, NVEC, FCST, FW, Ft, DIS
     DG 20 1=1, NF
      IF(NVEC(I).LE.C) OU TO IC
     TEMP#FCST(I)#GAURN(E)
     FUS(1) = 01S(1,1) + XF(1,1) + DIS(2,1) + XF(2,1) + DIS(3,1) + (TEMP - XR(1))
      XF(2,1) = XF(1,1)
     XF(1,1)=FCS(1)
     XR(I)=TEMP
      GC TO 20
  10 FOS(I) = 0.6
~~" 20~ CONTINUE ~~
      RETLRN
      ENC
         PURPCSE
  C
           TC CCMPUTE CRCSS MCMENT CF A(J)+E(2+J-1).A(J)+E(2+J)
  C
           AND A(J)*C(2*J)
  C
            -BASE CATA MATRIX, NA BY NC
         NA -NO.CF VARIABLES OF A
         NVEC - IF AVEC(I) .GT. G.TPEN A(I) .GT. O
            -CRGSS VARIABLE DATA MATRIX
  Č
         C - CROSS VARIABLE DATA MATRIX
  C
         NSC-NO.CF VARIABLES OF B AND C, NB .GE. (2+NA)
         NO -NC.CF CBSERVATIONS
         XM - CROSS MOMENTS, MATRIX OF 3+NA
         IC - ID NGT ZERC. COMPUTE THE MCMENTS
             ID ZERC, COMPUTE THE SUMS
         SUBROUTINE XFOT(A, NA, NVEC, B, C, NBC, NC, XP, ID)
         CIMENSICN A(1), B(1), XM(3) , C(1), NVEC(1)
         N3=3#NA
         CO 10 J=1.N3
     10 XM(J)=0.0
         IJA=0
        DO 30 I=1,NO
        00 30 J=1,NA
         I+ALI=ALI
         IF (NVEC(J) .LE.0) GO TO 30
         IJ28=(I-1)*NBC+2*J
         IJ10=IJ28-1
         XM(3+J-2)=XM(3+J-2)+A(IJA)+E(IJ1P)
         (92LI)3*(ALI)A+(I-Lvc)MX=(IJA)*8(IJ28)
         XM(3+J)=XM(3+J)+A(IJA)+C(IJ2E)
     30 CONTINUE
  C
  C
        COMPUTE MOMENTS IF ID NOT ZERC
        IF(IC) 40,50,40
     40 CNC=NC
        00 45 J=1,N3
     45 XM(J)=XM(J)/CNC
     50 RETURN.
```

Input Cards and Output Tabulations for a Sample Problem

The sample problem is to simulate a two-dimensional, six degrees of freedom system snown in Figure I b whose parameters are

$$m_1 = m_2 = 0.26$$
 , $I_1 = I_2 = 70$
 $k_1 = k_3 = 10^5$, $k_2 = k_4 = 4 \times 10^5$
 $c_1 = c_3 = 10$, $c_2 = c_4 = 20$
 $a = 10$, $b = 20$, $c = 15$, $d = 6$, $e = 12$

The system is to be driven by three independent random forces f_4 , f_5 , and f_6 applied onto mass 2. Each random force is generated by passing a white noise of standard deviation 30 through a bandpass filter with center frequency 70 cps and bandwidth 20 cps. The sampling frequency is to be 2000 cps and 2000 samples are to be generated and used for estimation of the moments and system parameters.

a) Input Cards

Col	. 1	6	11	16	21	26	31	36	41	46	51	r-
	• • • •	• • • • •	• • • • • •	• • • •	• • • • • • • •		•••••	• • • • •	• • • • •	• • • • •	• • • • •	• • • •
	2											
	0.26		70.0		100000.0		400000.0		10.0		20.0	
	0.26		70.0		100000.0		400000.0		10.0		20.0	
	10.0		20.0		15.0		6.0		12.0			
	6											
	-1											
	-2											
	- 3											
	4	30.	70.	20.								
	5	30.	70.	20.								
	6	30.	70.	20.								
	2000	•	2000	1	1	1						

b) Sample Output

FATIMATICS OF THE P	1 MINT	Ţ, ₩					
FIRST MERENTA LE YE	J 1+J* E+ZN						
mingstate flate. I mingstate in her mee meet the test meet	* 44 ** 772 } CF HE 4 HE 444 PEF PEF HE 4 HE 444 BASEF 48 HE	0.67004+7		रमभाक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षक्षक	-0.11"*45A7 0.24" [9089		
ZKE MEMPILS VESTVEL	1, (*) 1/ J.7 (t) 6W)					
V(1) / ++ 186+			.65421 x x 15	33241-17 -	0.1110F-08	C-4420F-47	-0.44605-00
VI 21	1 1.0211.0.00	1.14HFF#34	*111#*** C	\$409F=16	6.4495EmU6	0.1864F-01	0.15346-0
VI 31 1.25316+	50 - 2,2830 page	- MANZEWES P	442421410 Ab	.12721-1*	H.21026-07	Can sont -na	-0.45456-0
VI 41 0.2151+-	11 -r, 675"1 -10"	*37/3F=37 -L	-146 (t-17 O	17961 - 4	G.5114F***	1.11926-03	-0.103CF-0
VI 5) .h*156-	14 *********	*\$15 F#12 P	41.1726 - C	e firehare.	n.e300F-10	P-1445E-13	-0.24668-1
VI el	NA174 E-CA	6.20376-26	.7673(+10 . +c	4218F=07	C.37736+12	C-12696-07	
VI 7) 2.1.636-	NE 1.2559F#CF -	*.esc##=10 -9	.43116-57 C	.17691-11 -	r.4019F-08	ing and the state of the state	
YI () + 10241+	G1 C.447FF+C1	.32/45-04 0	. 1984F-CH 0	4291E-06			
V(5) 1.1771E-	P9 6,45756*68 +	1444E-12 O	.16741-49				
VIICI 1 +074 1E=	73 +C.14028+CS +	0.1164F-C6					
VILLE CATHRES	19 (.11/000-12						
V(12) [.2157E-	0.1						
SECOND MERELIS IF D	FHIVATIVES DVIJET	, s N					
C-115469736-31 C-44C742611-02 C-215674C75-37	1. 302605666-01	0.8850048		1149A73F (**) 2431943F+(**)	0.54049172		
2ND MEMENTS OF LYES	1*V(L1,(*J-7,CR 1) 1	C J471C# 6N)					
	936-0# 0.11556-61 646-61	C.63766-0A	r.1488F-04	¢•11196≈08	r,14086-06	n.4495F-	06
	55F-P1 P./626E-F7 HBE-F3 -F,265E-F4		-^.754AF-07	-C.1488E-06	0.35617-03	-0:1463F-	91
	926-04 C.14866-04 966-04 C.51161-08		^.2351F-03	-0.4750E-10	-0.3760F-07	-0.19826-	07
	#15-04 0.75505-02 116-12 -0.37516-07		0.3077F+03 0.6770F-07	0.3744F-01	-0.25906-04	-9-17A6E-	
	378-03 0.14586-06 376-05 0.76786-15		-0,3760F-07 0,3773F-12	0.13145-13		-7.17905-	
						네트를 가장했다.	

-0.1417F-00 -0.54611-01 -0.35566-67 C.62386-67 7.3755E-07 1.4411E-04 7.7597E-04 -0.1069E-07

181

6¥(7)•¥(₁)	· • • • • • • • • • • • • • • • • • • •	0.15868-11 447++-(1	0.31026-07	1.1796F+94 1.1984F+08	0.1772F-08 0.4241F-08	0.20375-06	0.25598-68			
CAL HI-AL II		-0.14221 -re	+1.1727F+04 145e(+(1	-1,4018F#07 -1,463Ff#36	-0.71/46-06 -0.12/36-02	n.5459E-F3	-0.7776F-01			
DA4 41+44 +	• 14 774 - 1 4 • • • 1 1 • 14	-**, 4 *4* -*! *************	0.37921-03 -0.18121-03	.#1 (F-10 1164F+06	-0.6238F-07	-2.43118-67	0.32646-04			
LA(10)+A(·)	17:11:04 -17741-11	"" . # 5 7 5 6 " " ? " - 1 1 3 5 5 - 1 6	0.61298=08 = 1.1 1.41=03	-0,43455-04	+C • 31856 +04	1.13806-01	-9.62326-03			
CV(11)+V(4)	fr.f.n7	-7.246.6-17 21111-01	7.17456-77	,40196-08	0.42511-06	7.16798-09	-9.1164F- 96			
C4(15)+4(5)	** • 1 * 7 * * * * * * * * * * * * * * * * *	-6.3.111-11	- 0 . 4 ? 3 + 5 + 0 +	-0.1205E-02	^.11F2E-06	0.1011F-03	-0.21576-07			
CRESS MERENTS	CF TREET F H	CF AND YESS-11.	168149,(6514)							
-1 TH FERCE	•	· .	^.							
-21H FERCE	•	•	a •				•			
-314 (101)	•	€. •	€.							
41H	• * * 4 20	F-13	- 100.20,36							
51H (Cac)	. + +5.61	5-64 5-19076	-61 -6.12376	· C3						
6Th ICHC.	. 4 ' 5 \$ (E-PA	T C+67AMF							
EQUATION FOR S	501 VINC ((?),)	FC1) AND MC2)								
-0.4461411	7+- 646 + 1 6	. 610 6115 (6 0 0 7) 6	K + 6-0.15127F	1401 -011 +M + 0.	16841 * 776-03					
G.11f.4f"	1 - 6 1 • 6 · 6 · 6 · 6	4 6 5 6 5 1 6 5 - 1 1 3 4	F + 1 0.452926	of 66 =1,23 €M × 6.	1622#C60F-00					
6.15/2276	· · · • · · · · · · · · · · · · · · · ·	11/222401-011	K + 1 + 442492	441 .43 PM =-(-	101966108 02					
DETERMINNANT	17.	1946-07								
EQUATION FOR S	((vite ((4) .)	(14)								
	- •	, 4 f # P 9 5 C + F = C + O C	+ (3.2072175	24 - 10 J + K +	C.122617856-	n 3				
	٠.	245112666-5240	· (3,59 12365	78 m. F 3 *K . a	^.* CC 11994F-	ri 2				
DETERMINNANT	It is, t	"1f-1"								
EGUATION FOR S	C (v 1 h C (()) . P	(1) ME MIT								
7.11967	,, m, 4 f . 1 f .	4 18125 H = 110	K + 1+0.577340	228 - 21+H + Q.	257654748-02					
1.11 44 1.14 14 4 (1.115 72571-1814K + 1 0.33128571-1314K # 0.115614864-00										
6.6 . 171115										
GETERMINANTE.										

182

EQUATION FOR SCHOOL CLASSICS

* . 2 3 2 7 4 6 5 4 5 4 6 4 6 7 . 2 6 20 6 3 1 1 6 4 5 7 1 0 6 1

1.10122985E-03

* 1 - 1 - 1511 - 1 246 + (- 232956685 - 1910K -

1.47452#51F-02

A "IPATETA OF THE PARAMETERS OF	THE SIMULATED	SYSTEM						1		
NO OF EXCITATION . F										
FOR THE FURCE NO 1 APPLIFULE	# "A	CENTER	FREGUENCY	*	-n.	PHASE S	HIFT O	DAND	WIOTH "	-0.
FOR THE FURIE NO 2 AMPLITUDE	* "Û*	CHATER	FREQUENCY		-0.	PHASE-S	H1FT 01	DHAM P	wtoth =	-0.
FOR THE FURCE AC 3 AMPLITUDE	# #f*•	CENTER	EMECHENCA	#	÷ċ.	PHASE S	HIFT DI	-	winth -	-0.
FOR THE FERCE NO . AMPLITUDE	9. 120	CENTER	I HE CUENCY	*	70.00	PHASE S	HIFT O		MIDTH -	70,01
FOR THE FORCE AD 5 APPLITUDE	• 35.00	CENTER	FREQUENCY	•	70.10	PHASE S	MIFT OI	BAND	#101# =	20.60
FOR THE FUNCE NO 6 APPLITUDE	* 26.00	GENTER	FRECUENCY	•	75.10	PHASE S	HIFT O	RAND	w101H = '	20.00
SAPPLING INT. FOR STMULATION = 6			·							i distributione. Tanggina
TRANSTENT INT			•							
SAPPLING INT. FOR CALCULATING MO	CHENTS = CACCC	54				4	•	*		
TOTAL NO. OF SAMPLES USED FOR ES	STINATION . 34	ten	en e		ا دوسی داخل					e de la seguina de la composición del composición de la composición de la composición del composición de la composición del composición de la composición del composición del composición del composición del composición del composición del composic
TIME INTERVAL FOR ESTIMATION *	1. U. SFC	_								
TRUE	E\$11	MATED			TRUE			FSTIM	ATED	

	TRUE		ESTIMATED		TRUE		FETIMATED		
		CIII				KELI			
1=1	0.09999999	92	6.9999955E C1		O.nandadede C	6	0.9999972E //S		
1=2	c.aratate one	6.2	G.20000004E 02	:	0.40 (seerce o	6	0.39999977E 06		
1=3	÷.694966196	02	C.55959513F 01		0.04955959E 0	6	C.ICCOCCITE OF		
1=4	£ . 20 mot of 40 t	G2	1999994E CZ		∂,4 000000€∙0	6	0.400000% F 76		
		PEE				1471			
1-1	o. Zet are me	wf (C.255599236-00		0.700eceque o	2	0.6494485E 02		
1=2	2.260°C010F	-06	0-Ser.40059E-00		0.701000000	2	a.7c000035e.02		

CHAPTER V

SUMMARY AND CONCLUSIONS

We have developed analytically and presented numerical examples of a parameter identification approach when the dynamical structure of the system is known. We have also constructed the program for system simulation and identification of chainlike systems in Chapter IV. Equivalently, we have studied systems of known differential equations with unknown parameters. We have seen in Chapter II that these parameters can be theoretically identified by random as well as sinusoidal excitations. The identification procedure makes use of displacement and velocity as well as acceleration information. The method is very straightforward, it does not make use of subtle theoretical points. Even more, on the basis of the simulation experiments of Chapter III, we see that the technique works and works well. The technique does not appear to be sensitive to the type of excitation used. Random excitations of various spectral properties as well as sinusoidal excitations with frequency in a wide range all yield very good parameter estimates.

The procedure that is to be applied when identifying a real system that can be described by linear differential

equations is reasonably simple. If the identification is to be done digitally, then the displacement, velocity, and acceleration data as well as the excitation data should be roughly digitized at a rate 5 - 10 times greater than the highest frequency present. This is rough, but it is sufficient to obtain some estimate of the highest frequency through oscilloscope observations. A record of sufficient length to cover 5 - 10 cycles at the lowest frequency present will then suffice for identification purposes. If steady-state conditions have been achieved for a random excitation, then various moments will be zero making the estimation equations simpler. However, if all moments are kept regarding them merely as time averages, one does not need to reflect upon whether the system is in steady state. In the event the system is being excited by sinusoidal oscillations and is in the steady state, then not all parameters can be estimated. Identification by sinusoidal excitations is best achieved during the transient stage of the dynamics of the system.

One very significant point that must be re-iterated is that this is a direct method, it is not a search technique. Hence, the relative magnitudes of the parameters do not present the problem common to all search techniques. The problem involved is the size of the step that must be taken for searching parameters. When parameters are large, a small step will get one to the correct value; when a parameter is small, one can easily exceed the parameter sales in one step.

This is evident in many of the examples we presented in Chapter III where the parameter values are many orders of magnitude apart. Yet, as we have seen the parameter estimates are amazingly accurate, by the proposed technique.

Although we have not developed the details during the period of the present contract, it is clear that the same approach will be applicable to non-linear systems whose dynamics are describable by differential equations with polynomial non-linearities and unknown constant coefficients. It could be of significant interest and applicability to study the present parameter identification approach for non-linear systems.

The major point to be settled relative to the present study is the practicability of the present approach with acceleration and excitation data only. If this can be affirmatively resolved then parameter estimation by the present technique should become a useful and commonly used procedure.

We shall close this report by stating emphatically that our motivation was to bring forth what appears to be a useful idea, not a deep idea nor an idea for which one can only feel a desire to study theoretically. Our analysis of the idea as well as the great number of simulation experiments reflects the attitude with which we have performed this study. Thus, we did not look at this idea in all generality

or from the purely fundamental theoretical point of view. We were interested most of all in how well the idea works.

We sincerely hope that the present study can be looked upon as having practical significance as it relates especially to present-day engineering problems.

APPENDIX

THE CONCEPT OF THE GAUSSIAN WHITE NOISE PROCESS

It has been stated throughout the development and study of the present parameter estimation technique that the Gaussian white noise is an unsuitable excitation for a system that is undergoing investigation by the proposed identification technique. This point has been brought out in Chapter II of this final report.

The detailed reasons behind this statement shall be developed and discussed in this appendix.

The Wiener process is a Gaussian process with stationary independent increments. It satisfies,

(I,1)

Prob
$$\{B(o) = 0\} = 1$$
 (a)

$$E\{B(t)\} = 0 (b)$$

$$E\{(B(t) - B(s))^2\} = \sigma^2|t-s|$$
 (c)

$$E\{(B(t_4)-B(t_3))(B(t_2)-B(t))\} = 0$$
 (d)

for any $t_4 > t_3 \ge t_2 > t_1$

Condition I.1 (c) yields the statistical stationarity of the increment [B(t)-B(s)], and condition I.1 (d) yields the independence of the increments. The joint density function for the B-process at times $0 < t_1 < \ldots < t_n$ is given by the Gaussian density function.

$$f(x_1,t_1; x_2,t_2; \dots x_n,t_n) = \frac{1}{(2\pi)^{n/2} \sigma^n [t_1(t_2-t_1)\dots(t_n-t_{n-1})]^{1/2}}$$

$$\exp \left[-\frac{1}{2\sigma^2} \left(\frac{x_1^2}{t_1^2} + \sum_{i=1}^{n-1} \frac{(x_{i+1}^2 - x_i)^2}{t_{i+1}^2 - t_i} \right) \right]$$
 (I.2)

It is known that the sample functions of the B-process are continuous and nowhere differentiable. These classical results were obtained by Norbert Wiener and are the primary reason that the process bears his name. We note that the non-differentiability of the sample functions make this process somewhat unacceptable as a model of displacements of actual physical particles in which velocities and accelerations are present because the process does not possess velocities and accelerations.

The pathological properties of the Gaussian white noise are primarily due to the non-differentiability of the Wiener Process as we shall see.

A white noise refers to any noise for which the spectral density function

$$f(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Gamma(\tau) e^{-i\lambda\tau} d\tau \qquad (I.3)$$

is supposed to exist and be constant for all $\lambda \in (-\infty, \infty)$. Thus, the term "white" means that the noise contains all frequencies of the same average power.

The Gaussian white noise is a white noise for which the distribution functions are Gaussian.

We recall that the power spectral density and the covariance are Fourier transform pairs. This is referred to commonly as the Wiener-Khintchin relation. Thus, from I.3 we have

$$\Gamma(\tau) = \int_{-\infty}^{\infty} f(\lambda) e^{i\lambda\tau} d\lambda \qquad (I.4)$$

Strictly speaking, a white noise process can never occur in nature since its second moment is given by

$$\sigma^2 = \Gamma(0) = \int_{-\infty}^{\infty} f(\lambda) d\lambda \qquad (I.5)$$

which is not a convergent integral for $f(\lambda)$ constant.

It follows that the covariance of the W-process (white noise) is given as,

$$E\{W(s) \ W(t)\} = \sigma^2 \delta(t-s) \qquad (I.6)$$

where δ represents the impulse function. That is,

$$\delta(\tau) = 0, \quad \tau \neq 0 \tag{a}$$

(I.7)

$$\int_{-\infty}^{\infty} \delta(\tau) d\tau = 1$$
 (b)

Hence, no matter how near t_1 , t_2 are, if $t_1 \neq t_2$, then $W(t_1)$, $W(t_2)$ are uncorrelated. But even more, since the process is Gaussian, then $W(t_1)$, $W(t_2)$ are not only uncorrelated, but they are actually independent of one another.

If one first stops a moment and reflects upon what the preceding statements imply for the sample functions, the pathological nature of Gaussian White Noise becomes apparent. Indeed if we may quote Doob on page 78 of his treatise, "These processes (independent or purely random) are discussed only in the discrete parameter case, since the sample functions in the continuous parameter case are too irregular to arise in practice."

We recall that all of the regularity properties of analysis (such as continuity, differentiability, etc.) depend upon the relative values of a function for argument values that are close to one another.

However, as we have seen above, the values of the Gaussian White Noise samples are completely independent no matter how close the arguments $\mathbf{t_1}$, $\mathbf{t_2}$ are to one another. We must expect therefore, that the sample functions for the Gaussian White Noise to be quite pathological and unnatural. In fact, as we have seen, the Gaussian White Noise is only a mathematical abstraction that cannot be represented in nature. We shall continue our discussion with an approach to the White Noise process that brings these points clearly to the surface.

One rather useful way in which one can think of a White Noise is to consider initially a process with a covariance of the form,

 $C e^{-\alpha |\tau|}$, C>0, α >0.

The spectral density corresponding to the covariance I.8 is

$$f(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C e^{-\alpha|\tau|} e^{-i\lambda \tau} d\tau = \frac{C}{\pi} \frac{\alpha}{\alpha^2 + \lambda^2}$$
 (I.9)

$$= \frac{A}{\alpha^2 + \lambda^2} , A = \frac{C\alpha}{\pi} .$$

If we let C, $\alpha + \infty$ so that $\frac{A}{\alpha^2}$ (= $\frac{C}{\pi \alpha}$) is constant, then one obtains the constant spectral density.

We notice that for C, $\alpha \rightarrow \infty$ such that $\frac{C}{\pi \, \alpha}$ is constant we must have

$$\lim_{C,\alpha\to\infty} Ce^{-\alpha|\tau|} \to 0 \quad \text{for all } \tau \neq 0. \tag{I.10}$$

The limit I.10 comes from the fact that the exponential beats any power and C,α approach infinity at the same rate. We have, furthermore,

$$C \int_{-\infty}^{\infty} e^{-\alpha |\tau|} d\tau = C(\frac{2}{\alpha}) = 2\pi (\frac{C}{\pi \alpha}) \Rightarrow constant.$$
 (I.11)

All of the results above may be summarized and put into order as follows.

We consider the Gaussian White Noise W(t), $t\epsilon(-\infty,\infty)$. We have re-established by limiting operations

a) the covariance function must be an impulse function. This follows from I.10,, I.11. Thus, W(t) is uncorrelated at any two distinct times. That is, $t_1 \neq t_2$

1mplies

$$E\{W(t_1)W(t_2)\} = 0$$

b) Since W(t) is Gaussian, then a) implies it is completely random. Thus, $t_1 \neq t_2$ implies W(t₁) is statistically independent of W(t₂).

Now let us consider $\{\xi_{C,\alpha}(t), t\epsilon[o,\infty]\}$, a Gaussian process for which $E\{\xi_{C,\alpha}(t)\}=0$ and

$$E\{\xi_{C,\alpha}(t) \xi_{C,\alpha}(t+\tau)\} = Ce^{-\alpha|\tau|}$$
(I.12)

From the mean square calculus theorem we know that

$$y_{C,\alpha}(t) = \int_{0}^{t} \xi_{C,\alpha}(\tau) d\tau \qquad (I.13)$$

exists as an integral in the mean square sense. Furthermore, $\{y_{C,\alpha}(t),\ t\epsilon[0,\infty]\} \quad \text{is a Gaussian process for which } P\{y_{C,\alpha}(0)=0\}=1$ and $E\{y_{C,\alpha}(t)\}=0$.

Now, we are interested in what happens to $y_{C,\alpha}(t)$ as the covariance of $\xi_{C,\alpha}(t)$ goes to the impulse function limit that we described above. The random variables $\xi_{C,\alpha}(t)$ will approach W(t).

What can we say concerning the second moments of the $y_{C,\alpha}$ -process? Clearly,

$$E\{y_{C,\alpha}^{2}(t)\} = E\{\int_{0}^{t} d\tau_{1} \int_{0}^{t} d\tau_{2} \xi_{C,\alpha}(\tau_{1}) \xi_{C,\alpha}(\tau_{2})\}$$

$$= \int_{0}^{t} d\tau_{1} \int_{0}^{t} d\tau_{2} E\{\xi_{C,\alpha}(\tau_{1}) \xi_{C,\alpha}(\tau_{2})\} \qquad (I.14)$$

(because $\xi_{C,\alpha}(\tau_1)$ $\xi_{C,\alpha}(\tau_2)$ are absolutely integrable and their absolute average exists by the Schwarz inequality.)

$$E\{y_{C,\alpha}^{2}(t)\} = \int_{0}^{t} d\tau_{1} \int_{0}^{t} d\tau_{2} \operatorname{Ce}^{-\alpha | \tau_{1} - \tau_{2}|}$$

$$= \int_{0}^{t} d\tau_{1} \int_{0}^{\tau_{1}} d\tau_{2} \operatorname{Ce}^{-\alpha (\tau_{1} - \tau_{2})} + \int_{0}^{t} d\tau_{2} \int_{0}^{\tau_{2}} d\tau_{1} \operatorname{Ce}^{-\alpha (\tau_{2} - \tau_{1})}$$

$$= 2 \int_{0}^{t} d\tau_{1} \int_{0}^{\tau_{1}} d\tau_{2} \operatorname{Ce}^{-\alpha (\tau_{1} - \tau_{2})}$$

$$= \frac{2C}{\alpha} \left[\tau_{1} + \frac{1}{\alpha} e^{-\alpha \tau_{1}}\right] \Big|_{0}^{t}$$

$$+ \sigma^{2}t \text{ as } C, \alpha + \infty \text{ in such a way that } \frac{C}{\pi \alpha}$$

We now have that $y_{C,\alpha}(t) \to B(t)$ as $\xi_{C,\alpha}(t) \to W(t)$ through covariances, where

is constant.

$$E\{B^{2}(t)\} = \sigma^{2}t. \qquad (I.15)$$

Furthermore, for any (t_1, t_2) , we obtain in the same fashion as above that

$$E\{|B(t_2) - B(t_1)|^2\} = \sigma^2|t_2 - t_1|.$$
 (I.16)

Now suppose that $t_1 < t_2 < t_3$ then

$$E\{[B(t_3)-B(t_1)]^2\} = E\{[B(t_3)-B(t_2)+B(t_2)-B(t_1)]^2\}$$

$$= E\{[B(t_3) - B(t_2)]^2\}$$

$$+ 2 E\{[B(t_3) - B(t_2)][B(t_2) - B(t_1)]\}$$

$$+ E\{[B(t_2) - B(t_1)]^2\}$$
(I.17)

or

$$\sigma^{2}(t_{3}-t_{1}) = \sigma^{2}(t_{3}-t_{2}) + 2E\{[B(t_{3})-B(t_{2})][B(t_{2})-B(t_{1})]\} + \sigma^{2}(t_{2}-t_{1}).$$
(I.18)

Therefore, we must have

$$E\{[B(t_3) - B(t_2)][B(t_2) - B(t_1)]\} = 0.$$
 (I.19)

The last expression, (I.19) says that the B-process possesses independent increments. Furthermore, the B-process is Gaussian, since the $y_{C,\alpha}$ -process is Gaussian for every C,α . The covariances of the $y_{C,\alpha}$ -process converge to the covariance of the B-process. Hence, the process $\{B(t), t\epsilon[o,\infty]\}$ is a Gaussian process with stationary independent increments for which we have

$$E\{B(t)\} = 0$$

 $E\{B^2(t)\} = \sigma^2 t$ (I. 20)
 $Prob \{B(0) = 0\} = 1$.

But, this is the definition of the Wiener Process! Hence, it would follow that

$$B(t) = \int_{0}^{t} W(\tau) d\tau. \qquad (I.21)$$

Therefore, one would obtain from 1.21)

$$\frac{dB(t)}{dt} = W(t). \tag{I.22}$$

That is, the Gaussian White Noise is formally the derivative of the Wiener process. However, as we recall from our earlier discussions, the Wiener process does not possess a derivative. Hence, the pathological nature of the Gaussian White Noise is explicitly brought out by the formal relation I.22. The relation I.22 simply states that the Gaussian White Noise is a mathematical fiction.

Hence, when we write an equation such as

$$\frac{dx(t)}{dt} + \beta x(t) = W(t) \left(\equiv \frac{dB(t)}{dt} \right)$$
 (I.23)

we must understand that it does not exist as an ordinary differential equation of elementary calculus since the White Noise ing is a fiction.

The question we must ask ourselves is can one make analytical sense of the Equation I.23. The answer is yes, and this was first accomplished by K. Ito (*1).

The idea is simply that, instead of treating I.23 as a differential equation, one should instead study an equation in differentials

$$dx(t) + \beta x(t)dt = dB(t). (I.24)$$

The equation I.24 is given content and meaning by the stochastic integral which is a well defined operation introduced by Ito. Hence, the meaning of I.24 is

$$x(t)-x(t_0) + \beta \int_{t_0}^{t} x(\tau)d\tau = \int_{t_0}^{t} dB(\tau) = B(t)-B(t_0).$$
 (I. 25)

For the most general first order equation,

$$\frac{dx(t)}{dt} \equiv m(x(t),t) + \sigma(x(t),t) \frac{dB(t)}{dt}, \qquad (I.26)$$

the meaning of this is given by the stochastic integral equation,

$$x(t)-x(t_0) = \int_{t_0}^{t} m(x(\tau),\tau)d\tau + \int_{t_0}^{t} \sigma(x(\tau),\tau)dB(\tau),$$
 (I.27)

where the integrals are well defined.

^(*1) K. Ito. Memoirs of American Mathematical Society No. 4, 1951.

On the basis of this definition, the solution processes of I.26, or I.27 are well defined and have been the subject of a great deal of research in the past ten years. [For a description of the properties of these processes, see the treatise by Dynkin (2) on Markov processes.]

We are now in a position to indicate the reason why the Gaussian White Noise is unsuitable as an input process for the purposes of identification by the technique we have proposed.

Since the derivative $\frac{dB(t)}{dt}$ in equation I.23 does not exist,

it follows that the derivative $\frac{dx(t)}{dt}$ in I.23, also, does not exist. Therefore, we do not have the equality

$$\frac{d}{dt} E\{x^2(t)\} = E\{x(t) \frac{dx(t)}{dt}\}, \qquad (I.28)$$

that is required in our identification procedure.

Indeed, we can say even more. In particular,

$$E\{x(t) \frac{dx(t)}{dt}\} \neq 0$$
 (I.29)

for the process defined by equation I.23, or more correctly, by equation I.24.

We recall that the B-process possesses independent increments, thus

$$dB(t) \equiv B(t + dt) - B(t)$$
 (I.30)

is independent of all prior increments of B(s) for $s \le t$.

^(*2)Dynkin. Markov Processes, Springer-Verlag. Berlin, 1965.

Finally, in the procedure of identification, one's initial reaction is to ask for a wide band-width excitation in order to assure that enough frequencies are sufficiently excited so that the parameters of the system can be correctly estimated. But, as we have already seen in Chapters II and III, not only is this not required but a pure sinusoidal excitation with a single frequency is enough to allow identification. Thus, the fact that we do not want "white noise" is no weakness in the present approach. Indeed, it is even to our advantage. The reader may recall that many of the easy identification techniques made use of the Gaussian white noise for their theoretical development. But such noise is impossible to achieve in the laboratory. On the other hand, the excitations we use in our theoretical development are exactly those that can and are commonly used in laboratory testing.