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OBJECTIVE

The development of a practical computational technique
for the 1ldentification of constant parameter linear systems
based upon the system response to random or sinusoidal

excitation.
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INTRODUCTION

This study of duration February 1967 - April 1968
has been devoted to the analytical development and digital
simulation experiences of a parameter estimation technique

that appears to be of superior practical significance for

the identification of real systems.

The technique 1s applicable to linear systems and is
simply based upon the properties of statistical expectations
and time averages. It also has a potential application to
non-llnear system identification. The physical situation
that one often encounters 1s that a dynamical model of the
system, via differential equations is given, but the various
physical parameters, in particular, the mass, spring, and
damping factors are unknown. In order to obtain a complete
useful model of the system, it is necessary that these para-
meters are known. The technique presented in this report
requires knowledge of the dynamics of the system; that is,
the displacements, velocities, and accelerations, as well
as the input data. From these data all unknown parameters
can be determined by forming various moments, cr time aver-
ages, of the input and the dynamical output variables of
the system. The resulting linear equations in the unknown
parameters are then solved to yield the desired estimates.

A theoretical study of the technique was accomplished for

linear systems in both the random and deterministic input case.
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These results appear in Chapter II. This theoretical
study greatly clarifies the role of such parameters as the
length of time over which the system is to be observed,
the nature of the spectrum of the excitation, as well as
the role of the steady-state dynamics of the system in
effecting a usable ldentification scheme.

When the mass 1s known, only the displacements and
velocities are required in order to determine the estimates
of the spring and damping constants.

The technique 1is applied to study digitally simulated
models of one-dimensional linear systems with five degrees
of freedom. The parameters for simulation are taken as
those of a NASA-Goddard 5-mass experimental model. The
simulated model is subjected to various random as well as
sinusoidal excitations. The estimated parameters are found
to agree with the actual parameters up to four and five
place accuracy! Even more of a significant feature is that
the actual system simulated parameters have a spread of
five or six orders of magnitude betveen the mass and the
spring constant. A major problem in parameter search tech-
niques is to determine the range of parameter values. For
the present technique this presents no problem as can be

seen by the extremely accurate estimated parameter values.



A completely detalled program for simulation, as well
as estimation of parameters has been developed for linear
chain-like mass-spring-dashpot systems with arbitrary de-
grees of freedom and an arbitrary number of force inputs
to the system. This appears in Chapter 1II.

The technique was also applied to a simulated two-
dimensional system of masses, springs, and dashpots supplied

to us by NASA-Gonddard. Again, parameter estimation was

truly outstanding as can be seen in Chapter III of this report.

It can safely be stated at this point that when dis-
placement, velocity and acceleration data is available,
system identification can be accomplished quite satisfac-
torily by this method.

It was hoped that actual data taken from vibration
tests on the NASA-Goddard five mass system could have been
analyzed to obtain an estimate of the real system parameters.
However, the tests only yielded acceleration data. Digital
integration of this data was attempted in order to yleld
ai. estimate of the velocities and displacements of the five
masses. A least squares trend was removed to account for
the fact that the initial conditions of the velocities and
displacements are unknown at the point at which the accel-
eration record commences. Due to the numerical inaccuracies
present when integrating and removing trends twice, satis-

factory estimates were not obtainable from £he real system

i e e




data during the duration of the contract period. (This is,

in part, due to the tine required to put the vibration data
on tape and then digitize it in a form suitable for compu-
tation. This was all accomplished by NASA-(joddard.) However,
we do not hesitite to add that this 1s merely a numerical
problem of simulation, which can certainly be resolved with
future investigations. Ule present a first step in this dir-
ection in the present report, by integrating the acceleration

once and 1identifylng two parameters of a damped oscillator.

[ W —— Py

Thus, we can say in summary that:

A method has been proposed for identification of
linear and non-linear constant coefficient systems,
by random or sinuscidal excitations as discussed in

Chapter I, Parameter Estimation.

The method 1s studied here for linear systems,

subjected to random or sinusoidal excitations.

The theoretical studies have generated a rather
broad understanding of the method, as presented in

Chapter I1I, Theoretical Development.

The method yeilds extremely accurate parameter
identification ¢ 'r rather complex systems, as
presented in Chapter III, Identification of

Simulated Linear Dynamical Systems.
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E. A complete discussion of the simulation techniques
as well as the prdgram details are presented in
Chapter IV, Computer Simulation and Identification.

F. Suggestions for future investigations are pre-
sented in Chapter V, Summary and Conclusions.

It is to be noted that the identification scheme proposed here
in general places nn restriction on what combination of variables
are to be multiplied together and subsequently time averaged in order
to create the necessary algebraic equations. On the other hand, it
is to be recognized that if the well known method of least squares
curve fitting technique is applied tc the identification problem,
there will result an identification of the type proposed here with

a particular form of variable products. For the hypothetical situation

where one has available both the exact form of the system equations
and error-free response and forcing function data, a trivial case
exists that can be solved without resorting to time averages of
variable products, By trivial it is meant that ali one has to do is
select data at a sufficient number of distinct times to form the
algebraic equations. 1In such a situation, the least squares curve
fitting criterion has no real meaning or significance since there is
no error to minimize. But when one considers "real life" situations,
where a system with an infinite number of degrees of freedom is
approximated by one with a finite number, non-linearities are either
ignored or guessed at in form, measured data contains errors, or the
coupling is incorrectly assumed; the question remains to be answered
as to what "product form" to use to produce the "best" estimate of
the parameters. 1In fact, the "best product form" to use will probably
be a function of the particular assumed form of system equations.

I N RN L I AT LA 1
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CHAPTER 1

PARAMETER IDENTIFICATION

The problem of identification of a system or of a
process is now recognized as a basic part of modern
engineering technique. It is clear that we must identify
in order to design and in order to control in any optimal
fashion. Thus, the subject of identification has been
actively studied in the past decade, and will continue to
develop hoth theoretically and practically as engineers
continue to expand our technology.

Identification problems in engineering have been
most actively pursued by electrical engineers in the past
10-15 years primarily motivated by the desire for adaptive
and optimal control of systems and processes. Thus, the
ideas of cross-correlations and cross-spectral densities
for estimating the impulse response function or the fre-
quency response function have been generated by them.
Furthermore, electrical engineers and optimal control
engineers have heen forward in their efforts to apply
parameter estimation schemes for identification purposes.

Vibrations engineers have, to a large extent,
remained with the classical technique of driving a struc-

tural system by sinusoidal excitations at various
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frquencies to determine the frequency responée charac-
teristics of structural systems. Parameter estimation
ideas have not as yet permeated the bag of tricks that
structural vibrations engineers can use freely in deter-
mining models of structural systems. Although new tech-
niques based upon second order statistics, mean square
approximations, or energy techniques are beginning to
change that picture somewhat.

The purpose of this report is to present a param-
eter identification technique. As we 1indicated above,
there 1s certainly no lack of parameter identification
techniques in the literature. However, the technique that
is presented in the present report possesses noteworthy
features.

In the first place, the technique is simple to
comprehend and to apply. Second, the same theoretical
concept applies to both random and sinusoidal excitations;
indeed, even sweep sinusoldal excitations. Third, it ap-
pears that the technique can be extended to non-linear
systems with unknown parameters since the basic theory

would remain unchanged. Fourth, the technigue does not

appear to be affected by wide ranges of the parameter values

that often plague optimum parameter search techniques.
Finally, in simulation studies the technique has produced
highly accurate parameter estimates for reasonably complex

systems.




Thus, it appears that the identification technique
proposed in this report holds promise of being of practical
significance for identification of arbitrary systems with
unknown constant parameters.

This report is limited to the study of linear sy-
stems. It presents a theoretical development of the 1ideas,
and estimates of parameters of simulated 5-mass chain-like
systems as well as a two-mass two-dimensional system, among
others. These systems, as well as the actual parameters,
were supplied by NASA-Goddard. 1In each case, the mass,
spring, and damping constants are estimated from the digi-
tally simulated system subjected to random as well as sin-
usoidal inputs. It is noteworthy to point out that the
mass and spring constants are six orders of magnitude
apart in their values and yet each is estimated with very
high accuracy. It 1s also noteworthy to add that a single
sinusoidal excitation at what appears to be any arbitrary
frequency will yield the identification of the system
parameters. Thus, one does not have to excite the system
at a multitude of frequencies, or in some frequency band-
width as has been implied by many previous investigations.
Finally, the description of the digital simulation tech-
niques as well as the program for simulation and identi-

fication are presented.
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One point must be made concerning the identification
of systems via parameter estimation techniques. That is,
the methods that have been ceveloped as well as the method
we describe in this report will identify the analytical or
simulated model of the actual physical system. Hence, if '
the analytical model is not a satisfactory equivalent or
approximation to the system, then clearly, one is nct
identifying the real system. Thus, any analytical model
identification scheme (such as parameter estimation) is
only as good as the model that will be used to describe
the physical system. (We note that identification schemes
can sometimes be used to help provide a better system model.
However, we will not dwell on that point here.)

With this understanding of the proper role of
identification by parameter estimation, we can now proceed

to describe our approach.

2 i T sl Y EPTTI
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CHAPTER II

THEORETICAL DEVELOPMENT

2.1 Introduction

The basic assumptions that we make in this chapter
are that a linear time 1nvariant system 1s being driven by
some excitatlon, either random or deterministic. It will
serve our purposes to think of our svstem as being composed
of a4 number of masses connected to one another by linear
springs and linear dashpots. We further assume that each
mass may be driven by a separate excitation and further
that the accelerations, velocities and displacements of
each mass as well as the various excitations may be necise-
lessly observed, or at least, obtainable by suitable means.
We point out that this rules out pure white noise as an
input for reasons that shall be discussed below.

We assume that the various displacements, veloci-
ties and accelerations of the masses are related to the
excltations via a system of linear differential equations
of known form and order, but with unknown mass, spring,

and damping parameters.

In general, our systems have the character of those

given in Figure I. PFigure I (a) shows a one-dimensioconal

& = e e
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chain-like system; Figure I(b) shows a two-dimensional

system.

In either case the form of the linear differential

equation that governs the dynamics of these systems is

§(t) = Ay(t) + F(t)

where the y vector is the vector of all the states of

(2.1.1)

system. That is, its components are the displacements

and velocities of the masses, the A matrix is a constant

matrix made up of the various spring and damping constants,

the f vector is the excitation vector,

We have assumed all mass and inertia constants to
be unity in the general equation (2.1.1). These constants

will enter explicitly in the specific classes of systems

we study below.

Thus, we write

y,(t) £1(6))
Y(e) = : F=|. A
¥, (t) £ (t)

(all ees A

kanl a

for the vectors and matrix defining the system.

ln\

)(2.1.2)

nn
/
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In our development below we shall be concerned with
both steady state oscillations as well as transient oscilla-
tions. Naturally, we assume the system to be stable in
order that the steady state oscillation exists. Having
stated these few introductory remarks, we can now present

our detailed analytical development.

2.2 Random Excitations

Let us assume that the components fi(t), 1=,
., n of the T(t) excitation vector are stationary

random processes possessing as many moments as may be
required by our analysis (in general, for linear systems
only second moment properties will be required). We will
further assume that the excitation processes are smooth
enough to guarantee that all the derivatives &1(t) exist.
(The reader may recall that this is not the case if the
excitation is a Gaussian White noise with Dirac "Delta"
function for its covariance. See appendix)

We can immediately write a general solution to the
A matrix for the linear system 2.1.1 as follows. We
multiply equation 2.1.1 hy the transpose vector y'(t)

and take expectations of the resulting equation to yield

*.
Y
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E(y(t) y'(t)) = AE((t) y'(t)} + E(T(t) y'(t)} (2.2.1)

The equation 2.2.1 can be solved for the matrix A as,

[E{F(t) F'(t)) - E(F(t) ¥F'(t)IMEF) ¥ (e)11™t =4  (2.2.2) '

assuming that the inverse matrix

[E{'i(t) Sf'(t)}}'l (2.2.3)

exists.

The relation 2.2.2 presents a general solution of
the identification of A for linear systems of the form
2.1.1, 1if 2.2.3 exists. The existence of this inverse
is guaranteed if there is no iinear relationship among

the components of the y(t) vector, since the covariance

|

|

\

i

matrix E{y(t) y'(t)} is symmetric and non-negative %
. . :

definite. The non-negative definiteness follows from the :
fact that J
.

W

-
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E(C ] ay y,(60%) 2 0 (2.2.4)
i=]
for any constants (al, +++y ap). Furthermore, the equality

sign in 2.2.4 can only hold if there exists a linear
relationship among the components of y(t). Thus, 2.2.3
exists and the constant matrix A is solvable as given py
equation 2.2.2 on the basis of observations ot the y and
f vectors.

This is somewhat more general than we wish to
consider. Since the estimation of the various moments in
2.2.2 as well as the inverse matrix, especially in the
transient situation where the moments are functions of ¢,
are difficult tc estimate. Therefore, to prodeed with our
development let us assume that the transients have, for
all practical purposes, died out and the system is
operating in the steady state. It is known that the
y-process is a statistically stationary process in that
case and all the moments present in equation 2.2.2 are
constant.

Furthermore, they cai. be estimated simply by taking
time averages over discrete or continuous values of the
time parameter.

Therefore, it follows, in the stationary case, that
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Efys(t)}, Edy(t) yj(&)}, 1,8 =1, ..., n (2.2.4)
r,s = 0,1,2, ...

exist and are constant in time. Hence,

g Elyj(6)) = o0 \

> (2.2.5)
d_E(yF(t) y3(t)) = o
dac “'i Yy

/

for L,J and r,s as above.

We now specify that the y-process is a stationary,

mean square differentiable process. Such processes are

generated, for example, by passing a stationary mean square

continuous process (i.e., a process wi*th continuous
covariance functiori) through a time ‘nvariant linear
filter. Thus, if the excitation pro.:ss f 1is mean
square continuous, we are assured that the stationary
ilprocess is mean square continuous. It is because of the
desired differentiability properties of the y-process

that we are ruling out the white noise type excitations

in the random case. We explain this in full detail in the

Appendix.

iR L s, e,
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Now as a result of the mean sguare differeritiability
of the ikproceas the derivative operator in 2,2,5 can be

taken into the expectation operator to give

E(y}=2(e) y,(6)) = o (a)
(2.2.6)

rE(y] t(t) y,(t) y3(0)) + sEQyI(e) yiThce) yy(t)y = 0 (b)

In particular, it follows that for r = 2 1in
2.,2.6 aand r=s =1 in 2.2.6 b we obtain

E{y,(t) yy(t)} = 0 (a)
(2.2.7)
Ely,(t) yy(£)) + E(y (£) yy(e)} = 0 (b)

The first equality in_equation 2.2.7 states the
well-known fact that a stationary process and its derivative
are uncorrelated at any given time. We repeat that the
equations 2.2.7 do not hold if the excitation process is a

white noise as will be seen in the Appendix.

4
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Thus, on the basis of equations 2.2.6 and 2.2.7,
the identification of the parameter matrix A as given by
formula 2.2.2 reduces greatly in the stationary case. We
i1llustrate these ideas by a few very simple analytical

examples.

Example I.

Consider the system
y(t) + ay(t) = f£(t) (2.2.8)

Upon multiplying 2.2.8 by y(t) and taking expecta-

tions, we find
E{y(t) y(t)} + aE(y°(t)} = E{f(t) y(t)) (2.2.9)

However, from 2.2.7 a it follows that

E{f(t) y(t)} (2.2.10)
E{y®(t)}

For our estimate of a, therefore, one merely estimates

the moments that appear in 2.2.10.

W

A L
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Example II.

i We consider here the somewhat more complex system :
of coupled oscillators as shown in Figure II. ;
i
%1 %2
- -

Ky | ko Q\\‘

A/ F——MvaF——?Q§§

o - ' - \\

S 1] F\Q:

NN
C C N\
r(t)== 1 e N
|
Figure II

Assuming the masses to be unity, we may write the f
equations of the system as, ':
zl(t) + Cl[zl(t) - Z2(t)] + kl[zl(t) - Zz(t)} = f(t) :i
} i
%
M

. . 3 . (2.2.11)
éz(t) +A02 22(t) + k2 Ze(t) - Cl[zl(t) - Z2(t)] g

- kl[zl(t) - z2(t)JA'é -0 . /

AN
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Upon setting
\
2] \‘ Y1
21 Y2
= (2.2.12)
220 3
\ 22 / Yy
we -iay rewrite 2.2.11 as the system
y (t) = y,(t) \
&2(t) = - Cl[yz(t) - yu(t)] - klfyl(t) - y3(t)] + f(t) :
?
yy(t) = = Coyy(t) = kyys(t) + C Ly (t) = y, ()]

+ kyly,(t) - y3(t)]

The second equation in 2.2.13 1s multiplied by Y15 Yo
and then averaged. The fourth equation in 2,2.13 is

multiplied by y3, Yy and averaged. On the basis of

4
gf:

equations 2,2,7 it will follow that,
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E(y3) + Elfy;) = -C; E(y,y,) + k(E(y3) - Ely,y;))

E(fy,) = C; (E(y3} - Ely,yy}) - k; Ely,ys)
(2.2.14)
-Elyy) = - ky E(y5} + C; Ely,y3) + ky(Elyyy;) - E(y2D)

- 2 N 2 4
0 = - C2 E{yu} + Cl (E(y2yu} - E(Yu}) + kl E{yly“}

The set of four linear algebraic equations, 2.2.14,
in the four unknowns are easily solved to determine the
parameters Cl’ kl, C2, and k2.

"Thus, for example,

E(y3) + E(fy;)  E{y}) - Ely;yg) )
E{fy,} - E{y,y,}
c, - 2 2%3
B
\(2.2.15)
- Elyy,) Ely3)} + Elfy,)
2
E{y2} - E{y2yu} E{fyz}
k =
1l B )

Ty

b
|
3‘?
g
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where

2
- E{ylyu} E{yl} = E{Y1Y3}

E{yg} - E{Y2YQ} - E{V2Y3}

Similar equations yield 02, k2 as well. We shall leave
the discussion of numerical results of this system for the
next chapter.

For the case of unknown mass, spring and damping
constants one must obtain one more set of moment equations
in order to obtain a solvable set of linear simultaneous
equations. We illustrate the problems that may occur in
the proper choice of the third moment equation by the
following simple oscillator.

Let us consider the case of the system given by
my(t) + Cy(t) + ky(t) = f(t)(2.2.16)

where m, C, k are all unknown.
Upon multiplying 2.2.16 by vy, y and taking
expectations, we obtain equations analogous to those in

our previous examples, as,

-~
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m E(yy)} + C E{yy} + k E{y°} = E(fy}
(2.2.17)
m E{yy) + C E{y%) + k E{yy} = E(fy)

By equation 2.,2.7 a we can reduce these equations

to yield
- m E{(y%} + k Ely?} = Elfy) (a)
(2.2.18)
¢ E{y°) = E(fy) (b)

However, we require one more equation. One might

2

consider multiplying 2.2.16 by y“, for example, and then

take expectations to yield

m E{y°y} + C Ely°y} + k E{y3} = E{fy°) (2.2.19)

where, by 2.2.6 a it follows that E{y°y} 1s identically

zero.
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But, in general, in practice the excitation func-
tion will be a zero mean Gaussian random process. Hence,
y, &, § are all Gaussian processes; each is a linear
operator of the input process f.

Thus, specifically one has,

t
\
y(t) = H(t-t) f(t) dr
t
y(t) = H(t-1) f(1) dt ) (2.2.20)
t
y(£) = -1 [CH(t-1) + kH(t-1)] £(r) dt + * £(t)
/
Thus, any third order moment in y, y, ¥ will involve
moments of the form
E{f(t,) £(t,) f(t3)} (2.2.21)
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However, it is a well-known fact that all third order
moments of a Gaussian process are identically zero. Indeed,
all odd order moments of a Gaussian process are zero so that
equation 2.2.19 cannot yield any new information as all 1its
terms are zero.

Hence, if we cannot apply odd order moments to yield
our third equation. , the next question. 1s: '"What about
even moments?'", Here, we get into trouble of a different

nature, as we now demonstrate. Let us, for example choose

m E{y3§} + C E{y3§} + kE{&u} = E{ry3} (2.2.22)

3

as our third equation, again the term E{y’y} 1s zero.
It 1s well known that the even product moments of zero
mean jointly distributed Gaussian random variables can be
evaluated in terms of the second moments. In particular

for xl, x2, x3, Xu jointly Gaussian, one has

E{x1x2x3xu; = E{xlxz} E{x3xu}
+ E{X1X3} E{X,Xy} (2.2.23)

+ E(X Xy} E{X2X3}
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If we apply the identity 2.2.23 to the terms of equation
2.2.,22 we obtain

E(y3j) = 3 E(y°} E{y§)
2
Ey'y = 3 (E(y2D) (2.2.24)

E(fy3) = 3 E(y°} E(yf)

Thus, equation 2.2.22 may be written as,

2
3mE(y?) E(§2} + 3 k (E(y%)) = 3 E(y%} E{yf} (2.2.25)

We immediat=ly recognize that equation 2.2.25 is
equation 2.2.18 a multiplied by the factor 3 E{yz}.

Hence, equation 2.2.22 yields no new information.
Again, if one chooses any even moment equation, it will
always reduce to a linear combination of the equations
2.2.18 for the zero mean Gaussian case.

Since, in practice, noise generators yield Gaussian
or near Gaussian processes, it will not be possible to

identify the three unknowns on the basis of moments

—
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obtained from equation 2.2,16 by multiplying by powers

of y, y and averaging. However, if the nolse process
used for excitation is definitely non-Gaussian, then one
can establish moments of the nature of those we have des-
cribed. We shall present data that displays this pheno-
menon in the next chapter. How then are we to obtain a
third condition for evaluating the unknown parameters? The
most obvious cholce is to use the acceleration varlable.
This 1s quite practical since, in general, it is the accel-
eration data that 1is actually obtained from experimental

tests.
Therefore, we can multiply equation 2.2.16 by ¥

and take expectations giving us our third, and independent,

equation

m E{y2)} + C E(yy) + k E{yy} = EIfy) (2.2.26)

Finally, the system of linear equations available

for parameter identification are given as,

\
.2 2
- m E{y~} + k E{y"} = E{fy}
C E{y°) = E{fy) $ (2.2.27)
m E(§°) - k E{y%} = E(£})
/
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Thus, 1in order to identify linear systems by random

excitations, we shall construct moment equations by multi-

plying the coupled equations by the displacement, the

velocity and then the acceleration. We illustrate this

for the general one-dimensional chain-like system as shown

in Figure I (a).

Denoting the displacement, velocity, and accelera-

tion of the 1th mass by Xy ii, §i, the equations of

motion for N masses in the chain are,

fl - Cl(xl-xe) - kl(xl-x2)

f

- c2(i2-i3) - ky(xy=xg) + cl(il-iQ)

+ kl(xl—xQ)

myXn = F - COnXy - KyXyg * Cyo1(Xop-%y)

* ko (xyopxy)

Upon multiplying the ith equation in 2.2.28 by

5(2.2.28)

Xy ii, ii respectively, we obtain the following system

of parameter identification equations.

&
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myE{x;%;} = E{(x,f;} - C,E{x,(x;-%,)} - kiE{x,(x;-x,))

mE{X,X,)} = E{X fy} = CyE(x;(X -%,)} = kqE{X;(X)=X,))

mlz(il2} = E{ilrl} = C{E{X (x;=%,)) - kla{il(xl-xz)}

moE{X,X,)} = E{X,f,} - CQE(xz(iz-k3)} = K E{X5(X;=X3) )
+ °1E(x2(*1‘i2)} + klﬁ{xz(xl-xz)}

myE{X,%,) = E{X,f,} - czz{iz(i2~i3)) - kaE{i2(x2-x3)}
+ CLE{X,(X =%,)} + K{E{X,(X =X,)}

mZE{izz} = E{§2f2} - czz(iz(iz-i3)} - kzz{iz(xz-x3))

+ clE{ig(il-iz)) + KE{X5(Xy-X,5))

etc.

Naturally, in the steady state case we can apply
the ldentities 2.2.7 in order to simplify further the

system of equations 2.2.29. One point, in passing, is

P(2.2.29)
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that the chain-like nature of the system 2.2.28 yields a
set of parameter estimation equatiors that can be solved
sequentially. Trus, in 2.2.29 we can solve for my o, Cl’

and k from the first three equations, then substitute

1
these estimates in the next set of three equations to

yield estimates of Moy s 02, and k2. This procedure may be
continued along the chain. e shall amplify this in
Chapter IV on the details of computer simulation of the
verious systems.

One obvious question that one must consider concerns
thhe errors that are made when the system is not yet in the
stationary state. This is likely to occur when the damping
factor, C, 1is small relatl!ve to the spring constant k.

We can easily illustrate the effects of an error that is
made in the estimated value E{y§}, say, for the simple
oscillator.

Let us assume the mass, m, is unity in the equation
2.2.16 fcr the simple one degree of freedom oscillator.

We assume C, k are unknown.

Then equations 2.2.17 yield for estimates
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N N "
6 _ Ef{fy) - k Elyy} - E{yy}
- > )
E{y}
> (2.2.30)
N s IR
k= ELfy) - C E{yy} - E{yy}
T )
E{y™}

where " A" denotes estimate.

If k 1is very large relative to C, then a small
error in the estimate of E{yy} shall create a large er.or
in C. Thus, upon placing E{y&} equal to zero when it is

N\

not quite zero can yield large errors in C. Indeed, the

N .
k E {yy} greatly dominates the E{yy} term. Hence a

small error in E{&&} will not affect the C as much.
The story is quite different for the estimate of
k, that is, k. The error in E{y§} by setting it equal
to zero has very little effect on % irf 8 << k. Thus,
one would conclude that ﬁ could still be estimated
reasonably well by setting various of the second moments
equal to zero, even when this is in error due to the fact
that the system has not reached steady state yet. One would
also conclude that the damping coefficient estimate would
suffer greatly. This 1s exactly what was observed in our
simulation experiments as discussed in Chapter III.

When the system is in the steady state, the estimates

obtained from simulations were quite acceptable.
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2.3 Deterministic Excitations

We shall now concentrate upon the problem of identi-
fication of linear systems by means of deterministic excita-
tions 2f the type that are readily available in laboratory
test situations. The most common types of excitations that
can be generated in the laboratory are the pure sinusoidal
and the sweep sinusoidal oscillations.

In order to illustrate the approach one takes for
such a deterministic input, let us consider the simple
oscillator with a sinusoidal excitation.

Thus, consider

A

my + C& + ky = sin uwt (2.3.1) .

We assume the system to be asymptotically stable in order
that the transients will die out. 1In this case, it is
equivalei.t ‘o0 specify that bounded inputs yield bounded
outputs.

For zero initial conditions the solution may be

written as,

y(t)= dtr H(t-t) sin w1 (2.3.2)
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where
C -\
- 5=t 2
H(t) = L —— e ™ sn/%-.Lo ¢ (2.3.3)
//* 2 b m
k C
mym = 2
4m
We define an average operator of the form
T
Cu(t)> = lim g u(t) dt, (2.3.4)
T+
0

for functions u(t) for which this operator exists.

Now on the basis of this opzrator, let us attempt
to identify the constants m, C, and k. We shall ‘multiply
equation 2.3.1 by y, y, ¥y, respectively, and take

averages as defined by equation 2.3.4 to yield

m<yy> +C <yy> +k <y2> = LfyD>
m {yy> +c¢ <y°> +k <yy> = <ry> (2.3.5)
m <32 +c &Gy) +k <yy> = Lfy>

We now wish to investigate these terms in somewhat more detail.
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One simply obtains
T
rd ° — l * - l 2 - ,
Cyyy = lim 7 y(t) y(t) dt = 1lim 5T (y(t)] =0 (2.3.6)
T_,oo T—b‘”
0

where we have used the fact that the initial conditions are
zero and y(t) 1is bounded on the interval (0,~) since the
excitation is bounded.

Therefore, we can in the same fashion determine that

Cyj> =0
y  (2.3.7)
<yyd> = -4y
/
It will follow that 2.3.5 can be written as,
r o2 2 )
-m<y“ > +k<y" )y = <Kfy>
c<y°> = <tyY > (2.3.9)
..2 .2 .o
m{y” D -ky™> = <Lfy>
/

The reader will recognize the equations 2.3.9 to be
identical to the parameter identification equations 2.2.27
except that the expectation operator in 2.2.27 1s replaced

by the time average operator as defined in 2.3.4,

SR

v‘\{.
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However, there is a very significant distinction to

R

be made in the derivation of 2.3.9 as opposed to the derivation
% of 2.2.27. In the derivation of 2.2.27 it was assumed that
| the processes over which the expectations are applied are

stationary processes (at least up to the second moments).

This is guaranteed by our assumptlions of a stationary pro-
cess input, into the system 2.1.1, where the constant matrix
A i1s a stability matrix. In that case, the steady state

solution is a stationary random process and equation 2.2.27

applies. On the other hand, the equation 2.3.9 did not
make use of the assumption of stationarity, or steady state,

for its derivation. This is a very significant point. 1In

fact, for the sinusoidal input case, if ys(t) -1s the

steady state solution, we cannot identify all three con-

stants m, C, k. This can be illustrated very simply. in

the following fashiuon. The steady state solution is given.

ys(t) = ) H(t-t) sin wtdr = H(t) sin w(t-1)dTt

(2. 3.10)

Q sin (wt - ¢)
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where Q,¢% are easily determined in terms of the integrals

- @

H(t) sin wt dg. H(t) cos wt dx.

Therefore, we find,

wQ cos (ut - ¢)

&S(t)
} (2.3.11)

- 0% Qsin (wt - ¢)

ys(t)

Upon applying 2.3.11 into the equations 2.3.9 we

find the equations

- m<3}82> + k(y82> = <f'ys>
<y, = Lfy) (2.3.12)
n {5,%> - k<y Sy = K1y

We easily evaluate

-
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T
2
2 1 2 2
(ys > = %_j;x:'ff Q" sin” (ut-¢)dt = g_.
0
T
2.2
<§52> = lim ,‘r]:' [ 0.)2Q2 0052 ((Dt‘¢)dt = ."‘_’_2..&_ (2.3.13)
T-ND
0O
T
y 2
- 1| 4.2 o
‘iys ) = %if T J w Q° sin® (wt-¢)dt = —EQ—
0

The determinant of the linear system of equations

2.3.12 in the unknowns m, C, k 1is

- w2Q2 0 gi
2 2
2Q2
0 5 0 = 0 (2.3.14)
quz 0 _ w2Q2
2 2

since the third row is -w2 times the first row.
Hence, we cannot identify all three unknowns by

these equations in the steady-state case with slnusoidal
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excitations. The reason is quite clear: Vg and its two
derivatives are not linearly independent of one another.
However, any two unknown parameters can be identified.
This will be illustrated in simulated examples in the
next chapter. Of course, this problem does not enter into
the random excitation case simply because the sample func-
tions and their derivatives are not linearly dependent.
Therefore, one would not expect to obtain linearly dependent
moments from the stationary random solution processes.

The equation 2.3.9 was obtained for a simple
oscillator. We can easily establish that similar equations
are possible in higher degree of freedom systems as well.

Thus, let us consider the general solution to the system

W) = aj(e) + (v (2.3.15)

where A, y, f are defined in Section 2.1.

For zero initial conditions, the solution process

can be written as,

y(t) = e A(t-1) T(r) dr (2.3.16)
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Any component yi(t) of the state vector y can be given

by the integral

.t
y (e) = ] I Hyy(E=1) £,(1) dr (2.3.17)
J=1 ‘3

where fJ(r) is the excitation at the th driving point and
HiJ(t-r) is the influence function or impulsc response

h

between the Jth driving point and the it state. From our

assumed stahility we have,

[ | H11(1) | dt < = for i, 3 =1, ..., n (2.3.18)
o)

We are assuming the f,(t) to be of the form

J

t F t 2.3.

fJ( ) = j sin W, (2.3.19)

Thus, it follows that Yy and its derivatives are bounded.
In order to achieve equations of the form analogous

to 2.3.9 we must establish

g
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ay, (6N,
@(c) - 0 (a)
| ~dy, (t) . (6 12320
Ay t e dy, (t N
o Y ot ) e (o)

But this is immediate for by definition ot

P
! dy, (t)
1 n 1 11 n+l
lim | y.(t) —— dt = 1lim 5 —— y (T) = 0 (a)
Tow T 1 dt Taw T D+l 1
‘o
L ¢ 4y (®)
SR
) $2.3.21)
(1‘
- dy,(t)
= 1im ,-},-yi(t) y(T) - lim y (t) e at
T-bm T-bm
@)
T
) dy,(t)
- 1 b (b)
- %1m T yi(t) E dt
T+
"o

In the derivation of 2.3.21 we have used only the fact
that the components yi(t) are bounded on (0,») and that
the initial conditions are zero. (This last condition is

clearly not a requirement for establishing 2.3.21.)

.-\ 4"?
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It was pointed out above that the steady state solu-
é tion is not required for identification. We should now

h notice another remarkable fact. That is, the requirement
of sinusoidal excitatfons is not basic in the derivations

above. All that is basic is that the system is stable in

the sense of bounded inputs ylelding bounded outputs.
Therefore, all that we require is that a bounded function,
any function for that matter, 1s used for excitation pur-
; poses. Thus, for example, a sweep sinusoidal or even a

damped sinusoldal function can lead, theoretically, to the

o ]

identification of the parameters of the system Even more

% interesting, a sample excitation from a random process such
;‘ as those discussed in Section 2.2 will yield identification
é on this basls. We must stop a moment and reflect upon this
- last point.

: Our whole approach to the identification of the un-

é kncwn parameters was originally motivated by the statistical
:; reasoning as put forth in Section 2.2. Now we see that there
é i1s perhaps a more fundamental point that underlies the pro-
1 cedure that we are proposing. We are led to think this way,
! simply because we can establish the same technique for

Ll identification with any test excitation. Furthermore, it

appears that steady state properties are not required.
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There is, in fact, a more basic mechanism going on
here that subsumes all of the previous analyses of Section
2.2 and this section as special cases.

We i1llustrate this mechanism, again, with the
simple linear damped oscillator.

We consider the oscillator driven by a bounded

excitati.n f(t),

my(t) + Cy(t) + ky(t) = f£(t) (2.3.22)

Suppose we are able to observe the excitation,
the displacement, velocity and acceleration exactly at

three different instants tl, t t.. It would then

22 73
follow that we would have three equations,

my | + Cyl + kyl = fl \
my, + Cy, + ky, = f, > (2.3.23)
my3 + Cy3 + ky3 = f3 J

at the observation times.
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Hence, with only three observations, these equations,
if not singular, would lead to identification of the param-
eters. However, even if we can obtain simultaneous records
of the excitation, displacement, etc., we cannot expect to
achieve exact observations of the four quantities at any
given time.

Ineed, the observations would yield some error that
is ¢f uan independent random error type with zero mean.

That 1s, the observations would be of the form,

m(y; + nyy) * C(ifl + ) + k(y; + nyg) = £ + 0y \

m(y, + nyy) + C(y, + ny,) + k(y, + ny3) = £, + ny, } (2.3.24)

.\4.5

where the n's are independent, identically distributed

and E{nij} = 0.
But because the noise in the observations has mean

zero, it follows that

T

|-

[ n(t)dat » 0 as T >

0
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If we write the observed excitation and dynamical variables

as,

v 4"

(), §<t), y(t), y(t)

then it will follow that

< r(e), = <0 \
Cy(e)y = <y
v . X2.3.25)
Qy(e)p = Ly(e)
Cy(e)y = Ly /

that is, the errors in observation will, so to speak, average

out to zero.

If 4f(t)> is identically zero, then all terms in
2.3.25 will be zero. hLence, directly taking a time average
of 2.3.22 would not yield a usable equation for identification
purposes. For this »eason we will use, as before, time
averages of second powers for identification of linear
systems.

Hence, the actual identificatien equations that we

apply in the case of the linear <ystem 2,3,22 are given as,

\J‘
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T T
m % [ y(t) y(t) dat + C T [ y(t) y(t) dt
O 0
T T
v Kk % J y2(t) at = % J £(t) y(t) at
o] 0
T T
m % ’ y(t) §(t) dt + C %— [ ye(t) dt
o] o]
T T
+ k& l y(t) y(t) dt = %l £(t) y(t) dt
0 (o]
T T
m % [ y2(t)dt *+ C % [ y(t)y(t)dt
(o) (o]
T T
+ k ;I,l- J y(t)y(t)dt = % [ f(t)y(t)dt

o] o)

?(2'3'26)
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where the variables are all considered to be the observed
variables.

We wish to make it quite clear that equwation 2,3,26
holds in all cases, random or deterministic. If f(t) 1is
a sample of a random process and T 1is large enough, then
the averages can be replaced by expectation operators,
allowing a number of the terms to go to zerc as we have
discussed before and follow the analysis of Section 2.2.
But, whether T is large or not, equations 2.3.26 will always
hold. As we shall see, they yileld extremely accurate
parameter estimates.

The equations analogous to 2.2.29 for an N mass

chain are,

T T
m § [ yi(®y (et = ¢ J yp(£)£,(6)at
° o
T T
- Cy % J ¥y (£) (33 (t)=y,(t))dt-k, % ‘ y1(t)(y,(t)-y, ()Nt
° o

-
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T T
my % I &l(t)il(t)dt = % J §l(t)r1(t)dt

o o

T T
- Cy % I il(t)(§1(t)-§2(t))dt- kg % [ §l(t)(yl(t)-y2(t))dt

o) G

T T

my % l §§(t)dt = % J §1(t)rl(t)dt

o) (o)

T T

o 0

L

T T
m, % [ y2(t)§2(t)dt = % J y2(t)f2(t)dt

0 o

T T
- C2 % ’ y2(t)(}.'2(t)'3.’3(t))dt-k2 % J yz(t)(Y2(f.)—y3(t))dt

o) 0O

T T
+C % l yo(£)(y,(E)=y,(t))at + k; & f ¥o(t) (y, () =y, (£))at

o 0

etc. (2.3.27)

-
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We repeat that these equations hold for any T. In somes
cases many of the terms will be close to zero relative to
the other terms. This 1s especially so when the excitation
is a sample from a stationary process and the system is
operating in steady state. 1In that case, the analysis of
Section 2.2 will apply.

We also wish to repeat that equations 2.3.27 hold
for any excitation function as long as there 1is-an
appreciable magnitude of the output vector. This is quite
distinct from the analysis of Section 2.2 where the
stationary properties were significant.

In the next chapter we present the results of our
experiments on simulated systems using both the statistical
as well as the deterministic approaches to the identifica-

tion of the unknown parameters for a variety of systems.
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CHAPTER III
IDENTIFICATION OF SIMULATED
LINEAR DYNAMICAL SYSTEMS

3.1 Introduction

Simulation studies were carried out for a number
of linear dynamical systems. Coupled oscillators of the
one-dimensional type as shown in Figure I (a) as well as
a two-dimensional system shown in Figure I (b) were simu-
lated and studied on the digital compater. For the cou-
pled oscillator case stuiies were made on two and five
mass systems. The most significant five mass system was
defined by mass, damping and spring constants provided by
NASA-Goddard. Inputs to the simulated systems were ran-
dom as well as sinusoidal. The random excitations used
were of two types. One was generated on the computer
by passing white noise samples through a filter with
selected band pass properties. The other excitation pro-
cess was that taken from di ital tape records of nolse
generator sources as provided by NASA-Goddard. Inr the case
of sinusoidal excitations, both fixed frequency as well as
sweep frequency excitations were applied. 1In all cases,

identification was accomplished. In many cases, as will be
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seen below, the estimated parameters are remarkably close

to the actual parameters. In the following sections we

present these results as well as various significantly chosen

cases to shed as much light as possible on the present
approach to the problem of identification. 1In Section 3.2
we shall present and discuss results based upon random
excitations. 1In Section 3.3 we present and discuss results
based upon sinusoidal excitation. In Section 3.4 we present
preliminary results related to the estimation of parameters
when only the excitation and acceleration data are known.

In such a case one must integrate the acceleration data to
yileld the velocity up to an unknown initial constant. The
initial condition is then determined by a least squares

linear fit of the integrated acceleration data.

3.2 Identification of Simulated Systems One-Dimensional by

Random Excitations
Among the random excitation simulation experiments,

we have considered cases in which we achieve, for all prac-
tical purposes, a steady state condition so that equations
2.2.7 hold and can be applied to simplify the parameter
identification equations 2.2.29,

We have also considered the si“vation in which the

damping factors are small so that the stationary solution

P
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revert to the time average and

In all cases
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that situation we merely
apply all terms in the

identification of the param-

equation 2.2.29.

eters is quite successful. We shall describe our results

in the experiments that follow.

Experiment I. The object of this experiment is to study

the effect of the transient period before observations are

taken.

For this case we consider a two mass chainlike

system whose dynamical equations are given by 2.2.28 with

N = 2. The parameters for the simulated system are
my =m, =1, k= 16, ky, = 9, c, = b, C, = 3 (3.2.1)
Only one mass, m . is driven. The simulation as well as the

sampling *utervals are 0.05 sec. The number of samples used
for estimation is 2000, which 1s equivalent to an identi-
fication period of 100 secs. The random excitation func-

tion is of the form

W (3.2.2)
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where the {wJ is a sequence of independent zero mean

Gaussian random variables (white noise) and

a, = .1, a, = .2, az = 3, a, = A4 ‘
|
ag = T a9 = 5 1
The standard deviation of the white noise was chosen to be 30.
The simulation was initiated and observations were
taken for a period of 100 seconds commencing at 50 secs,
150 secs, etc. for five successive observation periods.
The parameters were estimated on the basis of the observa-
tions in the periods 50-150, 150-250, ..., 450-550. The
estimates are given in the following table.
Transient Interval Observation Starting At ' ‘
Estimate 650 sec 150 sec 250 sec 350 sec 450 sec True ‘
61 1.0034 1.0176 .9865 1.002 1.003 1.0 }1
A o o - . {
kl 16.037 1h,3288 15.80 1€.C8 15.945 16.C
A ‘ ‘
C, 4.015 h4.r219 3.89 4.039 3.954 4.0
32 1.0038 1.669 .5338 2.009 0.985 1.0 |
l
Qz 9.022 9.3616  8.75 9.067 8.906 9.0 ‘
C, 3.0079  3.1093 2.924  3.034 2.945 3.0

Table 1
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Clearly, the estima.<d parameters are excellent.
The variations are merely random varlations and are not a
function of th=2 transient interval. This, of course, 1is
due to the fact that after a period of 50 seconds, the sys-
tem 1s already in the steady state because of relatively
high ratio of critical damping.

It would appear that after the transients have died
out, observation can be started at an arbitrary time to
yield satisfactory estimates.

It is interesting to note that the average of these
five runs gives

S ———— e

= 1.0025 k] 16.0381 C

4.0039

3.041

1.0001 k

=
N
n

9.0213 C

which are very close to the true parameters.

Experiment II. The object of thls experiment is to demon-

strate the variation in the parameter ecttimates when pass-
Ing from transient state into steady state cond!tions. For
this experiment a twc mass chainlike oscilleto was used.
Hence, the system equaticns are identical to . hose of

experiment I. The system parameters we hosen as,
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k. = 1.5 x 10°

3

i
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n
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For this system we have calculated =411 of its charac-

teristic numbers which are given by the roots of the poly:omial,

K - 2 (Cs + k)P

O
Q
192]

+

(m 52 + 0 (3.2.3)

One finds the solutions to this characteristic

equation to be

2
SN A /(3—-‘-5@) ¢® - 2 (3 - /5K

(3.2.4)

L 7 2
—(—3—1-2—{—))01/(3+‘/)c - 2 (3 + Y5)k
2m

The mode frequencies are approximately 53 c.p.s. and 140 c.p.s.
with corresponding damping factors approximately 26.8 and 185.
The system was excited by a random force generated

by passing white noise samples through a band pass filter

LN
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~ with center frequency 60 c.p.s. and effective band-width

(defined by location of 1/2 power frequency) 40 c.p.s.
Thus, the band has a range of U4¢ c.p.s. to 80 c.p.s.

This 1is generated by a system of the form

£+ Bf + WEf = BX (3.2.5)

A description of the generation of these excitations is
given in Chapter IV. The sampling rate is 1600 samples/sec.
correspondlag to approximately 11 samples per cycle of
highest mode frequency. The estimates of parameters were
taken from observations on the intervals 0 - C.4, 0.4 - 0.8,
0.8 - 1.2, and 0 - 0.8, 0.8 - 1.6, 1.6 - 2.4. The 0-0.4
and 0 - 0.8 contain the transient intervals which are rela-
tively short with the present damping constants. The esti-
mates are given in the following table. Run number one and
run number two are excited by two different samples from the
excitation process.

The major features of these estimates are that they
vary 1in accordance with the variations of the estimates of
the moments that are used in the identification formulas.
Thus, the errors that are present are due, in part, to set-
ting those moments to zero, such as, E{ylﬁl}, E{yzﬁz} ete.,

when they may not actually be small. The greatest errors

‘i o AR e
T e
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~a
, Observa’  ion Interval
0 - 9.4 0.4 - 0.8 0.8 - 1.2 0 - 0.8 0.8 - 1.6 1.6 - 2.4
@ m; .7095 L7142 .6999 .7079 .7103 .7062 .707 o
I
v 3
Gk [1.5173 x 107 1.5124 x 10° 1.4825 x 10°§ 1.5032 x 162 1.5096 x 10° 1.4962 x 10° | 1.5 x Hommm
o
s ¢ 72,70 44271 46.633 | 52.293 55.963 44.603 50 g
: (9]
T A ¥ E
em, | .7533 7146 6742 _ .7125 .7255 .6945 .707 5
V « ; (]
. E A = } o
7k, |1.5532 x 10° 1.5127 x 10° 1.4598 x 10°| 1.5072 x 10° 1.5220 x 10° 1.4860 x 10° | 1.5 x 10° g
~a M A _. m
D, | 76.349 41.902 45.941 ; 52.607 56.599 43.704 50 &
h Run No. 1 Run No. 2
|
|
W Table II
|
ﬁ — e , 5 A S by o e
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occur in the interval o - 0.4 since in this interval the

transient period is roughly 1/3 of the interval length. Thus,

the errors are greatest for estimating "stationary'" moments.
As we have stated in Section 2.2, these errors will be
reflected greatly in the damping constant estimates, and to
a8 much lesser extent in the spring constant estimates. This l
i1s exactly what is shown in the first column of the table

above. Indeed, the spring constant estimates are uniformly

good as well as the mass estimates. The greatest variation

occurs in 8. In run number one, we see an obvious change in

the accuracy of the estimates after the interval o - 0.4

since then we are effectively in the steady state case. Due
to the increased length of intervals of observation, there is
a more definite change in the error of estimation from 0 - 0.4 < 1
to 0.4 - 0.8 than from 0 - 0.8 to 0.8 - 1.6 because the ‘

transient period is a much smaller part of the observation

period in 0 - 0.8. Thus, the variations in the estimates of

o

run number two can be considered as truly random variations. i l

Experiment III. In this experiment, which was performed at

an early stage of the study, a five mass chainlike system
was simulated with only the first mass being excited. The
input excitation is identical to the excitation used in o

experiment I. The interval of simulation was .05 secs with
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5000 samples used for ldentification purposes. The tran-
sient interval was chosen as 50 se¢s, 300 secs, 550 secs.
Thus, after the first 50 second transient interval succes-
sive runs of 250 secs were used for identification. The
results of the three runs are shown in Table III (a). We
denote the estimates for the three successive runs as ﬁi(l),
m(2), m(3), k (1), ete.

The first and third runs are quite acceptable as
estimates of the true parameters. However, the second set
does possess large estimate errors, especially for 61. of
course, as we have already seen in Chapter II, we expect
errors to be greater in the damping constant estimates.
Part of the source of error here was traced to the way in
which the excitation was bteing simulated. A mecdification
in the simulation of the excitation, which was used in all
future simulations, brought the new estimations given here,
in Table III (b), only for the first run.

All estimates in Table III (b) are quite acceptable.
Of course, one should expect good estimates since the damping
is relatively high so that after a transient interval of
50 seconds the system is in steady state. Furthermore, the
observation period is quite long. Hence, stationary mo-

ment estimates should be close to time estimates.

'Y

:
!
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. A A A A A A A .
omom@ om@ sk k@ kg2 k) ¢, & &2 C,(3)
1 1.0 0.873 .655 .940 : 49.0 49.604 46.555 51.594 7.0 9.126 12.433 9.035
!
¢ 1.0 1.163 1.05% 1.048 . 36.0 36.886 33.623 37.971 | 6.0 5.318 7.033 7.647
3 1.0 .94 .924 .928 = 25.0 25.201 23.084 25.528 | 5.0 4.891 5.3u4 6.498
|
4 1.0 1.027  .955  .904 | 16.c 16.198 14.804 15.831 | 4.0 3.884 4.036 4.870
| .
w |
> 1.0 1.020 1.000 .885 ;| 9.0 9.136 8.390 6.702 | 3.0 2.94%0 2.947 3.420
} !
Table III (a)
A A A
m ms xu WM ow QH
1 . 1.6  1.096 49.0  50.32 | 7.0 5.78
2 ' 1.0 0.710 36.0 33.80 W 6.0 7.40
3 M 1.0 1.210 5.0 24.78 | 50 4.3
4] 1o oy 16.0  15.6% “ 5.0 3.72
5 M 1.0 0.939 9.0 €.76 { 3.0 2.82

Table III (b)
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Of course, this system with high damping factors
does not truly reflect actual structural systems in which
the damping ratio is very iow. We, thus, considered a
system with parameters that are comparable to those found

in an actual structural system.

Experiment 1V. In this experiment, we simulated a five

mass chainlike system as shown in Figure I(a) of Chapter II.
The system equations, again, are given by 2.2.28 with N = 5,
We based our estimations upon the assumption of steady state
with a statistically stationary solution process so that
the various moments were set to zero as given by equation
2.2.7. The spring and damping constants were supplied by
NASA-Goddard as reflecting the true parameter values of a
NASA-Goddard five mass experimental model. The simulated
svstem was excited by the same function as in experiment
III, as well as by randomly generated excitations as pro-
vided on a tape recording supplied by NASA-Goddard. The
spectrum of the taped excitation is given by the following
figure,

The sampling frequency was 1400 c.p.s., a total of
42,000 samples were used, representing 30 secs of obser-
vation time. A typical set of estimates is given in the

table below to three places beyond the decimal point.

N 8. i MRS
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!
= 50
| T //(/ \\\
/ \
25.5 49.5 63 T7 123.5 c¢.p.s
Figure III
1 mom k, ky c, c,
1 .667 .666 |.930 x 10° .92¢ x 10°| .900 18.519
2 .667 .667 |.830 x 10° .829 x 10° |1.900 3.513
3 .667 .666 |.930 x 10° .920 x 10°| .900 uu.960
4 .667 .667 |.830 x 10° .829 x 10° [1.900 -4.916
5 .667 .666 |.530 x 105 .529 x 103 | .100 6.023

Table 1V
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The very striking feeture of this set of estinates
is that the spring constants and mass constants are ex-
tremely accurate, whereas the damping constant estimates
are not even close to the true values. Of course, we
recognize this to be a case where the damp.ng constant 1is
extremely small aud for all practical purprses the damping
ratio 1s zero in view of the higl sprin; rate. As we have
indicated in the analysis of Chapter II, we will expect
large errors in 61 and small errors in &1 in this sit-
uation. As we see, the fact that Ci << k1 gives us almost
no effect on ﬁi of an error in @i. It can only effect ﬁi
in the fifth and sixth digits which are outside any prac-
tical significance.

The question is, why do we have such a great error
in %1 in the first place? The reason 1is clear; 31 is so
small that it simply takes too loag for the steady state
to develop. Hence, we did not observe the steady state
over the interval used for identification purposes.
Furthermore, applying loinger transient intervals before
observations were performed on the simulated system did

A

not appreciably help matters. Although %1, ki were al-.-
ways quite good, the 81 were very poor.

It was at this point ﬁhat we applied the time average
ideas as described by equations 2.3.27 of Chapter II in

order to attempt thi: identification of the parameters.

L

ey, TR

L



- IR U BE R S B O R S U T B S @R A E o

(L)

Experiment V. We present in this experiment, the results of

by equations 2.3.27 where the system is not in the steady
state due to the extremely small damping ratio. Simulated,
as well as tape force, inputs were used. Various sampliing
rates and periods of ouservations were applied; these are
presented in the following tables: V(a) and V(b). No tran-
sient interval was used. That 1s, observations for identi-
fication purposes were started at t = 0.

For this table, the force input was the taped exci-
tation provided by NASA-Goddard with spectrum as shown in
Experiment IV. ™he sampling frequency was 1400 c¢.p.s. with
10 secs, 20 secs, and 30 secs used for observation intervals
all starting at t = 0. ;1(1), Qi(l), 81(1) corresponds
to 10 second observation intarval, similarly for 20 secs
and 30 secs. The most obvious feature of Table V (a) is
the remarkable accuracy of the estimates. This appears
to be independent of the length of the observation interval
in this case. But, we do notice, that even at 10 seecs, we
are taking 14,000 points for identification purposes which
is a large number of observations.

Table V (b) shows the results of identification
for exactly the same system and same excitation as in

Table V (a) except that the taped excitation was sgampled as

B TOMDEEUESNTTT. Y 0 GBI LN T R AR U Ry

SR A T e

identification of simulated five-mass chainlike system as ~iven

i i
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Estimated Int -val Estimation Interval Estimation Interval

: True i0 20 30 True True 15 20 30

- Value secs secs secs Value 10 secs 20 secs 30 secs Value secs secs secs

S e

[ ~ -~ oy A A P S

w i my BMCVSMANVEMGV k, k; (1) mMAmv K; (3) Cy @MAC €, (2) €, (3)

. 1 .667 .667 .667 .667 |.93 x 10° .93 x 10% .93 x 10% .93 x 105] .900 .900 .895 894

; 2 .667 .667 .667 .667 |.83 x 10° .83 x 10° .83 x 10° .83 x 109 1.900 1.900 1.900 1.900

¢ 3 -667 .667 .667 .667 {.93 x 10° .93 x 10° .93 x 10% .93 x 105] .900 o904 .885 .878
| L4 667 .67 .667 .667 |.83 x 10° .83 x 105 .83 x 10° .83 x 109] 1.900 1.900 1.905 1.904
: mw -667 .667 .667 .667 1.53 x 107 .53 x 103 .53 x 103 .53 x 103] .100 100 .096 .096
v Table V (a)
N
i my my kg ks Cs C;
; 1 .667 .666 .93 x 10° .93 x 10° .900 .914
2 .667  .666 .83 x 10° .33 x 10° 1.900  1.901
. 3 .667  .666 .93 x 10® .93 x 10° .900 .973
i .667  .656 .83 x 10° .83 x 10° 1.900  1.897
] 5  .667  .666 .53 x 103 .53 x 103 .100 .106

Table V (b)
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700 c.p.s. rather than the previous 1400 c.p.s. to determine
the significance of the sampling rates. Thus, the system
was simulated at an interval of .00l143 secs. Table V (b)
shows these results for 10 second observation time. Agaln,
the ldentification observations commence at t = 0.

We notice a slight change in the accuracy of the 81;
however, &1 and ﬁi do not appear to be affected by this
change 1in sampling rate.

The following table, V (c), shows the parameter iden-
tification of the linear system, all of whose parameters
are taken from the five-mass iiASA-Goddard system. The
spring and damping constants are the same as in Tables V (a)
and V (b). The only change is the mass parameter, which
is .052 instead of .667. Thus, the natural frequencies
of this system are somewhat higher than in the previous
cases. Upon simulation at 1400 samples per second, quite
a bit of error in the estimates were present. It was felt
that the simulation rate was not large enough to account
for the frequency range of this new system which had gone
up about 3.5 times. Thus, it was declided to raise the
simulation rate to 5000 c.p.s. and make a time scale
change on the taped input excitation to account for this

new sampling rate. Therefore, effectively, the excitation

was at a higher frequency range than in real time.

N
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The two sets of estimates are accomplished by the taped
input force with the time scale change for 1 second and 2
seconds observation intervals starting at t = 0.

We see 1in Table V (¢) that the 2 second estimates of
C1 are bettcr than the 1 second estimates. Longer obser-
vation times will undoubtedly yield extremely accurate 81.
Again, ﬁi and %i are uniformly excellent.

We cuan summarize all of the results in this section
by stating that if it 1s reasonably established that the
system 1s in steady state operation, then Equation 2.2.7
may be applied to reduce the number of constants in the
identification equations. However, if there is any doubt
or merely in order to be somewhat more confident of the
estimates, it appears that the time average equations
2.3.27 will always give good estimates without waiting for
the transients to die out. Of course, if transients have
effectively disappeared, the moments that should reduce to
zero will be effectively zero uposn estimation. The fre-
quency range of the excitation does not appear to be a
factor. However, the time of observation is certainly
a factor as well as the sampling rate. A rough figure
that can probably be adhered to is 5 - 10 samples per cycle
of the highest observed frequency of the output of the

system.
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Estimation Interval Estimation Interval Estimation Interval
True True True
Value 1 sec 2 sec Value 1l sec 2 sec Value 1 sec 2 sec
4 A A A N
iom om (1) m(2) iy ky (1) k, (2) c; €;(1) ¢(2)
6 6 6
1 .052 .052 .052 .93 x 10° .93 x 10° .93 x 10 0.900 1.041 1.082
2 .052 .052 .052 .83 x 10° .83 x 10° .83 x 10° | 1.900 1.900 1.903
3 .052 .052 .052 .93 x 10° .93 x 10® .93 x 10° 0.900 1.179 1.037
4 .052 .052 .052 .83 x 10° .83 x 10° .83 x 10° | 1.900 1.865 1.907
5 .052 .052 .052 43 % 10° .43 x 10° .43 x 102 ! 0.100 0.135 0.088
Table V (c)
S O O o el e ) e i G SN S T [N CHVOF [ SR S TP -
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The lowest frequency should be observed for 5 - 10 cycles

as well. These could be approximated by observation on the

oscilloscope during the period that identification tests
are being conducted. This was made quite clear during

Experiment V where the sampling interval had to be changed

A‘ ‘

due to the higher frequency range of the system with smaller

[

mass.
In the next section, we shall see how these points

are reflected in identification by sinusoidal excitations.

3.3 Identification of Simulated One Dimensional Systems
by Sinusoldal Excitations

Experiment I. In this first experiment, w& present the

»
L e

results of identification studles of the same system de- ; !
scribed in Experiment II of Section 3.2. 1In this case, é |
the simulated system was excited at these distinct fre- fzﬁ
quencies: 20 ¢.p.s., 60 ¢c.p.s., and 160 c.p.s. with ampli-

tude 20. The sampling rate was 1600 c.p.s. which is approx-

Co BRI s L T e

imately 11 samples per cycle of the highest mode frequency of i
the system which is 140 c.p.s. The low mode is approximately
53 c.p.s. Hence, we see that the three excitations lie below,
in between and above the system's natural frequencies. For

each excitation the observation intervals were .05 secs,

et

RS
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.l sec, .2 sec, .4 sec, .6 sec, .8 sec, 1.0 sec, all
starting at t = 0. For the lowest mode, this represents
2.5 cycles, 5.3 cycles, 10.6 cycles, etc., up to 53 cycles,
or 80 samples, 160 samples, etc.

The results of these estimates are given in tables
VI (a), (b) and (¢). The estimates are given by equation
2.3.27 for N = 2,

Needless to say, the estimations presented in Tables
VI (a), (b), and (c) are extremely monotonous. They are,
in fact, monotonous to four and five place accuracy! Only
in the sixth and seventh places does one detect significant
differences.

It is obvious that the transient period is still in
effect during the entire period over which we are performing
the parameter identifications since the estimates are ex-
cellent for every estimation interval up to 1.0 sec. This
is reflected in the estimates for the random case of Ex-

periment II, Section 3.2, where it was clear that the

extimates were better in the periods .8 sec on to 2.4 secs

AR L e ol T
" : o

(except for random fluctuations which one must expect

when setting various of the moments toc zero).

SRS s

In the next section, we illustrate an example of i

how the transient periods and steady state periods affect

.
P ey

estimation with sinusoidal excitations. ;

R
R



w0 w—s T @ TR 7w
Es timatiorx Interval
True
Value .05 sec .1 sec .2 sec .4 sec .6 sec .8 sec 1.0 sec
s omy n (1) A2 @) hg) 2,05 A (6) ny (7)
.1 .707 .707 .707 .707 .707 .707 707 .707
2 .T707 .707 .707 .707 .707 .707 . 707 707
N n N N A A N
Pl Ky wwﬁwv xwﬁwv xwﬁwv xwﬁuv xwﬁwv xwﬁmv wwﬁwv
S 1 .15 x10° .15 x 1¢f .15 x 10° 15 x 10° .15 x 10% .15 x 105 .15 x 10 .15 x 100
m
2 .15 x Hom .15 x wom .15 x Hom .15 x Hom .15 x Hom .15 x 10 .15 x 10 .15 x Hom
. \ N - A N A /N N
i Cs owﬁwv oMA-V QHva owﬁnv o»Amv cwﬁmv QHA<v
I
1 50.0 50.0 50.0 50.0 5C¢.0 50.0 50.0 50.0
2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Table VI (a)
Excitation Frequency 20 ¢c.p.s.
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Estimation Interval
True
Value .05 sec .1 sec .2 sec U sec .6 sec .8 sec 1.0 sec
N~ N A /
i om m, (1) m, (2) m, (3) m, (4) m, (5) m; (6) my (7)
1 .707 .707 .707 .707 . 707 .707 .707 .707
2 .707 .707 . 707 707 .707 .707 .707 . 707
. A A A A y A AL A
C Lk k,; (1) k; (2) k; (3) ks (4) k, (5) k, (65 k, (7)
1 .15 x Hom .15 x Hom .15 x wom .15 x Hom .15 x Hom .15 x Hom .15 x Hom .15 x Hom
., 2 .15 x wom .15 x Hom .15 x Hoo .15 x Hom .15 x Hom .15 x Hom .15 x Hcm .15 x Hom
. " A N Fa N \ N
, i Cy OMAHV owhmv owﬁwv OHA:V owﬁmv owﬁmv QMANV
W
1 50.0 50.0 50.0 50.90 50.0 50.0 50.0 50.0
} 2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Table VI (b)
Excitation Frequency 60 c.p.s.
T R R i el el e e o X dooL ot Y bl weesi DD SEEEER
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— b S " R . P LT T R R DR ST . e VO
Estimation Interval
True p
Value .05 sec .1 sec .2 sec .4 sec .6 sec .8 sec 1.0 sec
~ ~ ” A N PAN N
foi my m, (1) m; (2) my (3) BHA:V awﬁmv SMAmv m, (7)
1 .707 L7107 <7107 707 .707 . 707 707 707
P2 . 707 . 707 .T07 .707 . 707 .707 .707 . 707
. A N A N \M \ N
1k k(1) ks (2) k,; (3) kg (4) k (5) k; (6) k; (7)
1l .15 x Hom .15 x wom .15 x wom .15 x wom .15 x Hom .15 x Hom .15 x Hom .15 x Hom
2 .15 x Hom 15 x wom .15 x wom .15 x Hcm .15 x Hom .15 x wom .15 x Hom .15 x Hom
. A . N ~ » P b A\ N N
ioc C; (1) C4(2) 24 (3) C, (1) C;(5) C, (6) C,(7)
1 50.0C 50.0 50.0 50.0 50.0 505.0 50.0 50.0
!
2 50.0 50.0C 50.0 50.0 50.0 50.0 50.0 50.0

Excitation Frequency

Table VI (c¢)

160 c.p.s.
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Experiment II. In Section 2.3 of Chapter lI we presented an

analysis of the identification technique for sinusoidal ex-

citations when the system is in steady state., It was shown there

that one cannot expect to identify all three unknown param-
eters m, k, and C in the stecady state since the steady state
solution under sinusoidal excitation will not yield sufficient
linearly independent equations for identification purposes.

We illustrate this with the present experiment. We take a
system of five masses in the usual one-dimensional chain.

The damping was chosen high in order to put the sys.em into
the steady state condition relatively rapidly. Both 10 c.p.s.
and 100 c.p.s. sinusoidal excitations were applied. Estima-
tions were taken over an interval of 1 sec. The first
observation period was 0.0 - 1.0 sec, the next 1.0 - 2.0 secs,
then 2.0 - 3.0 secs, etc. Thus, the transient period before
observation was taken was 0.0 sec, 1.0 sec., 2.0 secs, etc.
The sampling interval for simulation and estimation purposes
was .00l second four the 10 c.p.s. excitation and .0005 second
for 100 ¢.p.s. excitation. We shall show the variations in
estimates of all three unknowns over 0.0 - 1.0 sec and 1.0 -
2.0 secs for 10 c.p.s, and 100 c.p.s. excitations as well as
the estimates of only spring and damping constants for given

mass.
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Transient Period Transient Perioqd Transient Period
True 0.0 sec 1.0 sec True 0.0 sec 1.0 sec True 0.0 sec 1.0 sec
~N A N .> ~ ~
i my EMAS awhmv ky xwzu mwﬁmv C; oM:v owﬁmv
1 .667 .666 §.428 ].93 x woa <93 x Hom .82 x 105 200 200.687 -.12 x Hcm
2 .667 .667  -1.590 [.83 x 10° .83 x 10° .55 x 10°| 100 100.072 -.51 x 103
T 3 .667 .668 3.129 |.53 x 10% .93 x 10° .45 x 105| 200 191.842 —.o4 5 105
4 .60 .670 -118.337 [.83 x 10° .83 x 10 .10 x 107| 100 56.653 .88 x 10°
5 .667 .662 1C5.593 .53 x wow .53 x How -.31 x wom 100 100.020 -.45 x How
0 Table VII (a)
= Excitation Frequency 10 cps
Mass, Spring., Damping Constants Unknown
Transient Period Transient Period
True True
Value 0.0 sec 1.0 sec Value 0.0 sec 1.0 sec
~N ~ A N \...I
i WM wwﬁwv xuﬂmv oM owﬁrv rwﬁmv
1 .93 x wcm .93 x wcm .93 x Hom 200 199,905 199.969
b2 .83 x10° .83 x 10° .83 x 107 100 99.978 99.999 |
3 .93 x Hom .93 x Hom .93 x wom 200 199.917 199.998
4 .83 x 16° .83 x 10° .83 x 10° 100 100.001  100.001
5 .53 x 103 .53 x 103 .53 x 103 | 100 100.000  100.000

Tabie VII (b).

Excitation Frequency 10 cps
Mass Known, Spring, Damping Unkiown

S =N WEE EEE e e mew el el el el beed i e e e e mn OO
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Transient Period

Transient Periogd

T o~

Transient Period

True True True
Value 0.C sec 1.0 sec Value 0.0 sec 1.0 sec Value 0.0 sec 1.0 sec
A A A A A Fa%
i my auﬁuv m, (2) ky k; (1) wMva Cy QHAMV C;(2)
1 .667 .667 1.679 .93 x Hom .93 x Hoo -.23 x Hoo 200 199.981 -.14 g qu
2 -667 .667 .49k 183 x 10° .83 x 105 .32 x 10 130 99.998 .93 x 102
3 .667 ..67 25.470 .93 x Hcm .93 x pom -.18 x Hom 200 199.896 -. 40 X Hom
Y -667 .867 -4.047 183 x 10° .83 x 105 .43 x 207 | 130 160.030 .87 x 102
5 .€67 .667 2G.508 .53 x wow .53 x How .78 x Hom i 100 99.991 .15 x Hom
Table VII (c¢)
Excitation Frequency 100 c.p.s.
Mass, Spring, Damping Constants Unknown
Transient Period Transient Period
True True
) Value 0.0 sec 1.0 sec Value 0.0 sec 1.0 sec _

i xw xuauv xuamv oM oMAHv owamv

1 .93 x Hom .93 x wom .93 x wom 200 199.999 200.000

2 .83 x10° .83 x10° .83 x 105 | 100 100.000 100.000

3 .93 x10% .93 x 105 .93 105 | 200 199.589 200.001

4 .83 x 10° .83 x 10° .83 x 107 100 100.002  99.999

5 .53 x120° .53 x 103 .53 x 103 100 100.000 100.002

Table VII (4)

Excication Frequency 1G0 C.p.s.

Mass Xnown, Spring, Damping Constants Unknown

- N BN e e e e Gl el el e L bn am B R
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Tables VII (a), (b),' (¢) and (d) show a very
dramatic difference in going from transient to steady state

intervals in attempting to identify the unknown parameters.

In Tables VII (a)and (c), the first transient interval produces

excellent estimates, whereas in the very next interval the
estimates completely fall apart. They are in no way related
to the actual parameter values. Yet, with the mass known in
Tables VII (b) & (d) the 61 and Qi are excellent during both
estimaticn periods. The reason, as we have developed in

Chapter II, is that the equations for estimation become

'singular in the steady state case for three unknowns. But,

they are not singular for two unknowns. Thus, the estimates
will break down as shown, for three unknowns, in passing from
primarily transient to primarily steady state conditions.
This experiment shows quite clearly that in order to
identify all unknowns by sinusoidal excitations, it is

important iLhat the system be in the transinnt state.

Experiment III. In this experiment we simulate the NASA-

Goddard five-mass system as in Experiment III of Section 3.2.

The excitation is sinusoidal with frequency 70 c.p.s.

e RESHER R e 1T R TR G B s i
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The system 1s sampled at 5000 c¢.p.s. Each run starts
the observations at t = 0. The observation period 1is
0.0 - 2.0 secs, 0.0 - 4.0 secs. The results are shown i.n
Table VIII. These estimates are very accurate, which
clearly establishes the importance of the sinusoidal exci-

tation for identification purposes.

Experiment IV. Since it was stated in Section 2.3 of

Chapter II that it appears possible to identify with almost
any "suitable" excitation function, it was decided that
we should generate such an excitation for purposes of

identification. It seemed reasonable that an excitation

that could easily be achieved in the laboratory was the
logilcal choice for identification. Thus, we generated

& sweep sinusoidal excitation of the form

£1(t) = A sin at?

where A

25, o 100.
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A A

Estimation Estimation
Interval Estimation Interval Interval

True 0.0- 0.0- True True 0.0- 0.0~
Value 2.0 4.0  Value 0.0-2.0 0.0-4.0 Value 2.0 4.0

] n R A A A n
i my EHC.V awnmv kg .nu..:v w#Amv Cy QM:V owﬁwv
1 .052 .052 .052 |.93 x 10° .93 x 10° .93 x 10%| 1.900 1.895 1.883
2 .052 .952 .052 |.83 x 10° .83 x 10° .83 x 10°| .900 .896 .895
3 .052 .052 .052 |.93 x 10° .93 x 10 .93 x 10%] 1.900 1.850 1.843
4 .052 .052 .052 [.83 x 10° .83 x 10° .83 x 10| .900 .898 .898
5 .052 .052 .052 [.43 x 10° .43 x 10° .43 x 102! .900 .900 .900

Table VIII




i e i i R i o R S

80

The sampling interval for simulation and estimation
was 0.0014 secs. All observatiocns commenced at t = 0.70
secs in order for the frequency to become reasonably large.
We shall show the results of four runs of duration 3.92 secs,
9.80 secs, 13.72 secs, and 19.60 secs corresponding to 2800
samples, 7000 samples, 9800 samples, and 14,000 samples,
respectively. The results are shown in Table IX.

The results of this experiment show that identification
can be suitably accomplished by functions other than pure

sinusoids or random excitations.

3.4 Identification of Multi-Dimensional Systems

It was found desirable to demonstrate that the proposed
identification technique 1is not dependent upon the fact that
the system to be ldentiried was a one-dimensional system.

The system shown in Figure I (b) of Chapter II was considered.
The equations of motion are given in NASA Technical Note

TN D-3865 ‘'Mechanical Impedance Analysis for Lumped Parameter
Multi-Degree of Freedom/ilulti-Dimensional Systems" by F. J.
On, May 1967.

4
;
&
)
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| Estimation Interval Estimation Interval Estimation lnterval

True 3.92 9.80 13.72 True 3.92 9.80 13.72 .H.u.:.m 3.92 9.80 13.72

Value secs secs secs Value secs secs 3ecs Value secs secs secs

1 m, R (LR (DR (DA Bk, k; (1) ki R Gy e 6@ &2 §(3) 6,4

|1 .667 .668 .666 .666 .666 .93 x 10° .93 x 10® .93 x 10% .93 x 10% .93 x 105 .900 .737 .927 .963 1.083
| |2 -667 .668 .665 .666 .665 .83 x 107 .83 x 10° .83 x 10° .83 x 10° .83 x 10% 1.900 1.895 1.903 1.902 1.903
W 3 .667 .668 .666 .666 .666 .93 x 10° .93 x 10° .93 x 10% .93 x 105 .93 x 105 .900 .741 .984 .gug 1.030
1
wx 4 .667 .668 .666 .666 .666 .83 x 10° .83 x 10° .83 x 10° .83 x 10° .83 x 105 1.900 1.876 1.912 1.908 1.941
a
|5 .667 .668 .666 .666 .666 .53 x 103 .53 x 103 .53 x 103 .53 x 103 .53 x 103 .100 .108 .097 .099 .095|

Table IX
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These equations are as follows.

m, Xy + 2(Cl+c3)xl -2 °3xu + 2(k1+k3)x1 - 2k3xu = fl i
. 2, 2.0 2,0 o). 2, |

2 2 2 2 2 - f

+ 2(k1b +k2a +k3c +kye )x3 - 2(k3cd+kue )x6 13

(3.4.1)

myXy - 203xl + 2C3x“ - 2 k3xl + 2k3xu = f“

m2x5 - 2Cu32 + 2CuX5 - Zkux2 + 2kux5 = fs

IXg - 2(c30d+cue2)i3 + 2(C3d2+Cue2)i6

- 2(k3cd+kue2)x3 + 2(k3d2+ku62)x6 = £

The constants a, b, ¢, and d represent the various vertical
and horizontal distances between the two-mass centers and the 3

spring-damper components.

The system parameters supplied by Mr. F. On of NASA-

Gnddard are as follows.

N - RSN A

- O . e
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= = = = ? = = “!
= = u E = = = =

a =10 ins, b = 20 ins, ¢ = 15 ins, d = 6 ins, e = 12 ins

This system was simulated and driven by random excita-
tions as well as sinusoidal excitations. The system was
simulated and sampled at intervals of .0005 secs. Observations
commenced at ¢t = 0 and were made at intervals of 0.0 - 1.0 secs
and 0.0 - 2.0 secs. In the random case f“, f5, and f6 were
independent random excitations generated as previously by
passing white noise through a filter to yield a process with
spectrum having center frequency 70 c.p.s. and bandwidth 20
c.p.sS. Furthermore, fl, f2’ and f3 were identically zero.
For the sinusoidal case fl, f2, and f3 again were 2zero,

fu, f5, and f6 were given as,

f, = 25 sin 100 = t, fs = 25 sin (100 7 t + )

fg = 25 sin (100 7 t + % ).

The results are presented in tables X (a) and (b)

first for random then for sinusoidal excitations.

[ S ——
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Estimation Intervais
0.0- 1.0~ 0.0- 1.0~ 0.0- 1.0-
True 0.0-1.0 1.0-2.0 True 1.0 2.0 True 1.0 2.0 True 1.0 2.0
Value sec sécs Value sec secs Value sec sac Value sec secs
A A ~ A 1 N 2) ~n n | N ~

1 .99 x 10° .99 x 20° .10 x 10°| 10.0 10.0 10.0 | .26 .26 26 70.0 70.0 70.0

84
N

.40 x Hom 40 x 107 .40 x Hom 20.0 20.0 20.0 | .26 .26 .26 {70.0 70.0 70.0

3.99 x 10° .10 x 10% .10 x 108} 10.0 10.0 10.0

4 .40 x 107 .40 x 10° .40 x 10 20.0 20.0 20.0

Table X (a)
Random Excitation

e
et

e

N bt tm . bl &




Estimation Intervals

0.0- 1.0- 0.0- 1.0~ 0.0- 1.0~

True 0.0-1.0 1.0-2.0 True 1.0 2.0 True 1.0 2.0 True 1.0 2.0
Value sec secs Value sec secs Value sec secs Value sec secs

N\ N V48 N A N v% N N u.
i k wwﬁwv xwﬁmv Cs nwﬁwvowﬁmv m, EHAHVSMA« I, HHAHVHMANV

6
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§ .40 x Hom

1 .99 x 10° .10 x 10

2 .40 x 10° .40 x 10

L40 x 10

6

6

6

.10

.40

3 .99 x 10° .99 x 10° .99

.40

x 10 10.0 10.0 10.0 ) .26 .26 .26 |70.0 70.0 70.0

x 10 20.0 20.0 20.0 | .26 .26 .26 [70.0 70.0 70.0

x 10° | 10.0 10.0 10.0

x 10 20.0 20.0 20.0

e el

Table X (b)

Sinusoidal Excitation
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Again, to the first few places, the estimated param-

eters are identical with the actual system parameters. It

is only at the fifth and sixth places where deviation occurs.

Clearly, multidimensional systems give no problems
for identification as long as it is merely a problem of

parameter identification with known structure.

3.5 Identification Using Only Acceleration Data

It was hoped that we could present a comprehensive
study of the problem of parameter identification by the pro-
posed method when only acceleration data is available.

This, in a sense, is very important to establish since, in
general, acceleration data is the niost commonly recorded.
Velocity and displacement data are not usually present in
vibrations recordings. For the proposed scheme acceleration
data alone is not sufficient for identification purposes.
Thus, it was thought desirable to determine how well we can
identify by integrating the acceleration data in order to
obtain velocity as well as displacement data and accomplish
ldentification on the basis of these calculated data. This

numerical problem was not resolved during the course of the
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present research project. Part of the problem that exists ‘

here is that the initial values of the velocities and dis-

¥

placements are unknown s0 that one has to remove some type of

trend in ofder tc satisfy, for example, that the mean values

should be zero. Upon attempting two integrations and two

trend removals, the estimated parameters obtained possessed

large errors. As there was insufficient time remaining in >
order to resolve these problems as well as the many other

problems tiat came up during the course of this research,

we decided to present a simple example in which only one

integration of the acceleration is required and the initial

r value of the velocity is known so that no trend removal is
required. This example does give credance to the approach
and opens doors for future investigations.

The system chosen for simulation is

1
[ 4
I

x(t) + 30 x(t) + 900 x(t) = f(t) (3.5.1) .

For this system the damp 1g ratio is 1/2, so that

we can expect the transient to last but a few cycles. We are

especlally interested in the steady state here for it will

allow us to identify k and C cn the basis of acceleration

and velocity data alone. The excitation was a random func- ‘

tion with spectrum as shown in Experiment IV of Section 3.2.
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Based upon the assumption of stationarity we can

apply the following equations for identification

E(¥%) + 30 E(XX} + 900 E(xx} = E(fX)

(3.502)
E(xX) + 30 E{x2} + 900 E{xx} = E{fx}
Now, assuming stationarity, we can reduce these
equations to
E (x°) - 900 E{x°) = E{fx)
(3-5'3)
30 E{x°) = E{fx)

Therefore, identification 1is accomplished on the basis of
velocity and acceleration data alone.

The sampling frequency was 140 c.p.s. The periods of
observation were taken on successive intervals of 5.96 secs
duration. This corresponds to 835 samples used for parameter
estimaticn purposes.

The results of this parameter estimate are shown in
the following table, XI.

Naturally, we feel quite encouraged by the success of

this simple simulation experiment. It 1is clear, however, that
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much remains to be accomplished before we can apply our

approach to parameter estimation with acceleration data alone.

Estimation Interval

True 5.96- 11.92- 17.88- 23.84-
Vihlue 11.92 17.88 23.04 29.80

b

k 900.0 k 860.0 860.0 £86.0 900.0

29.1 29.1 29.8 30.2

Q>

C 30.0

Table XI

et il e
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CHAPTER 1V
COMPUTER SIMULATION AND IDENTIPICATION

4,1 Computer Techniques

In order to verify numerically the propcsed identifi-
cation technique, the chain-like system shown in Figure I-a
and described by equation 2.2.28 is simulated, necessary
moments are computed and the system parameters are estimated
on an IBM 7094 computer system. The operations performed by
the computer can clearly be divided into three distinct
functions:

a. Simulation of the system
b. Estimation of the moments
c. Estimation of the system parameters

A description of the computing method used in each case follows.

Simulation of the System

When a computer is used to simulate a system, 1t is
actually prcogrammed to integrate, with respect to time, the
set of differential equations describing that system. In
this case, equation 2.2.28 is rewritten into a set of firste-
order differential equations by change of variables. That
is, let

REES 5

BN T
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X1 % X) = ¥
X2 = ¥3 Xg = Yy
xn * ¥opa1 xn * y2n
dy
1 ©
a - N Yo
dy C k f
—2 & v = o' § Y - -1
ac Yo Ty (yp=yy) my (yy-y3) + my
dy
21-1 _ )
at Yoi-1 Yai
dy c k
i _ - o _ 1 - I § -
g " Ya t T, (¥21-Y2442) iy (¥25-1"Y2141)
c Kk £
. -1 1-1

i

>

-1 - 1
m, (¥24.07Yp3) + m, (¥Y21.3"¥23.1) * 5

(4.1.1)

) (4.1.2)
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-
o O Ay o

i
- on-1 y E

y Yon-1 Yon g

/ ?_3.!_2_2 =y . - Sp- - .'.(.n ¢+ E.g;]; ( - )
dat Yon m Yon m Yon-1 m Yon-2"Y2n
k f
n-l n
+ m (y2n-3'y2n 1) * ﬁ; )

or in a more compact notation

= g(ya i') (u0103)

r=
12

li where g 1in this case i1s a linear function of y and F. A

The operation performed by the computer in the inte-
gration of the set of differential equations consists of two . Z,

parts, the generation of the derivative functions, namely

g(y, F) and the integration with respect to time. The flow

of information is shown in Figure IV.

|
: F ‘-_—_—r—:_ — y y |

Figure 1V

\\ 4
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A fourth-order Runge-Kutta technique of integration
is used to produce tabulated values of the computer integral
at equal time interval H. This 1s a single-step method in
which the value of y_  and F, at t = nH 1is used to com-

pute §ﬁ+l at t, ., ; = (n+tl)H. The relevant formulas are:

yn+l yn + z (SO + 2Sl + 282 + 83) (4.1.4)
where

Sy = Hg (5&, F, » t))

n
S P 4+ F
- - ] n___ " n+l H
S1 H g (yn t3 2 > ty ¥ 5)
S F_+F
. - 1 n n+l H
S, = Hegly,+-35 » 2 s tht 3)

s3 = H g (§'n + Sy, Foop the1)

Estimation of the Moments

The moments as coefficients of the simultaneous equa-
tions in equation 2.2.29 for solving the system parameters
m, , Ci, ki’ i=]l to 5 are estimated from equally-spaced
samples of the system response fun¢tions generated in the-

process of simulating the system.

CE N g s B gt s e e
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The least square estimate of a moment such as g * E(xz]

u
X
from N duplets {xi, zi}, i=1,2,...N 1is simply

(4.1.5)

) 49
"
==
t~)
Lo
(WY
N
-

X2

Estimation of the System Parameters

The set of simultaneous equations for estimating the
system parameters is given by equation 2.2.29. They can be
expressed in matrix notation sequentially for each ith mass,

spring, and dashpot section from i=]l to 5 as follows

(4.1.6)

where P1 is the unknown system parame!er vector of the ith

mass, spring, and dashpot section

P, = Cy (4.1.7)
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The coefficient matrix A1 for i=) to 4 is

3 . " — ]
Y21-1Y21 » (Voq.1Y21.¥31.1Y2142) 0 (¥24.17Y21.1Y 21 41)

- ‘ 2
Ay Ya1¥21 » 21¥21¥2542) » Wpgl1¥247Y21Y2441) (4.1.8)
12, + (¥oy¥0y=¥ )y Vs =Y )
L Yo1 0 WaaYa1~¥ag¥o142) » Woyl1¥21 Y21¥2141
and for 1i=5
M — — ]
A, = v 2 y.y (4.1.9)
5 Y1010 * Y10 > Yo¥10 .
. 2 . .
| Y10 2 Yi0¥10 » YioY9 |
The constant vector B, for 1i=1 1is
113
byafl-
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and for is=2 to 5 is (4,1,11)

o2

By = | (¥p4.Y21=Y53) Cy1 * (Vps_3¥21-Yaq.1¥24) Kyg*¥ayf

21"1

(Ypq.2Y24=Y21Y21) Cyo1 + (Fpy.3¥24-Yo3-1Y21) Ky +y,, 1,

Notice that the vectors Bi for 1i=2 to 5 are func-
tions only of the previous (i-l)th system parameters. Instead
of solving 15 equations simultaneously, each A1 P1 = Bi is
used to solve for the unknown vector P1 gsequentially from

i=]l] to 1i=5,

4,2 Computer Program Abstract I

| a) This program simulates the one-dimensional chainlike
lumped parameter spring-mass-dashpot system whose equations
of motion are given by equation 4.1.2. From the simulated

equally-spaced samples of the system dynamical outputs yJ,

= ' 2 —
(¥24-2Y24-1"Y21-1Y21) Ci-1 * (Wo3_.3¥25-17Y24-1) Ky1*¥aiTy

i
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§J, J=1 to 2N and the system inputs Fi, i=]1 to NF, the
second moments or time averages of Yy¥go nyk’ Yy o F1y21 12

Fiyzi’ and Fiyai are computed and the system parameter trip-
lets (mi, ky» Ci), i=1l to N are estimated.

b) Outputs from this program include:
l) Sample moments or time averages of Yy¥ys J=1 to 2N,

k=§, «.. (J+3) or 2N;  y,y,; J=1 to 2N, k=(J-3)
v 2

or 1, ... (J+3) or 2N; yJ 5 J=1 to 2N;
F1y21-1’ Fiy21 and Fiyaig i=1, ... NF.

2) Sets of simultaneous equations for solving each
system parameter triplet (ﬁi, ﬁi’ 63) and
simultaneous equations for solving each duplet

(ky ¥, Ci*) with m, given for i=1 to N.

3) Tabulation of the true parameters (mi, ki’ Ci)

against the corresponding estimated parameters

I\

(mi, 4 Ci) and (ki*, Ci“) for i=1 to N.

¢) T.imitation of this program#
1) N, the number of mass, is limited to 10 (N 5 10).

2) NP, the number of input forcing functions, 1is
iimited to N (NF g N).

¥Maximum number of masses 1s arbitrary and is
specified by dimension statement.

o 0 . L
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d) Required supporting subprograms

1) RKD

2) DERSUB
3) F@RSUB
4) PAMSQT
5) XSQ

6) XM@NT3
7) L@gc2
8) Lgc3
9) C@EF
10) RLMTX

11) GAURN (if random input is desired)

The descriptions for these subroutines are given 1in

section 3.

Input Cards

a) Degree of Freedom Card

Col. 1-2 N - Number of mass for the chainlike system
(N £ 10)

b) System Parameter Card(s)

A card is used to specify each system parameter trip-
let (mi, k> Ci). N cards are then needed, and they should

be arranged consecutively from i=1 to N.

[ e -
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Col. 1-10 CM(I) - Ploating point constant for the 4th

mass coefficient

Col. 11-20 CK(I) - Floating point constant for the ith

spring coeffici at
Col. 21-30 CC(I) - Floating point constant for the ith

damper coefficient

Number of Input Card

Col. 1 - 2 NF - Number of input forcing functions

Input Forcing Characteristics Card(s)
A card is used to specify each input forcing function
characteristics. NF cards are needed and they should be

arranged consecutively from I=]1 to NF.

Col. 1 - 5 FOST(I) - Amplitude of the sinusoid input
to ith mass, or standard deviation of the white noise
input to a band-pass filter whose output is the input

to ith mass of the system.

Col. 6 =10 FW(I) - Frequency (cps) of the sinusoid
input to ith mass, or center frequency (cps) of the

band=-pass filter for the ith input

Col. 11-15 FB(I) - Phase shift (in degrees) with
respect to t = 0 of the sinusoid input to ith mass,
or bandwidth of the band-pass filter.
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Simulation Specification Card

Col. 1 - 5 FREQ - Sampling frequency for simulation of
the system. The simulatiun interval is then 1/FREQ.

Z0l. 6 =7 ) NI - Number of samples to be simulated
before samples are taken for estimation of the

moments and the system parameters.

Col. 11-15 NO - Number of samples (after initial NI
samples) to be used for estimation of the moments

and the system parameters.

Col. 16-20 K - Only every kth sample (after initial
NI samples) of the equally-spaced samples are to be
used for estimation of the moments and the system

parameters.

Col. 21-25 NORUN - Number of successive times the

moments and the system parameters are to be estimated.

Col. 26-30 INIT - Control index for how the samples are
taken for each successive estimation of the momerts
and parameters.

If INIT < 0, successive NO samples (after the initial
NI ssmples) taken at every kth sample are to be used
for estimation of the moments and the parameters.

If INIT = 0, system is reinitialized each time, NO
samples (after initial NI samples) taken at every

kth sample are used for estimation of the moments andi

parameters.

AR
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If INIT > 0, (after initial NI samples) NO samples I

{‘ are used comniulatively each time; that is, NO, then i

2 x NO, ..., then NORVN x NO samples are success-

ively used for estimation of the moments and parameters

f) Repeat a to e for a different choice of system param-

eters as many times as desired. A blank card after 54

e wlll cause a stop.

Description of Supporting Subprograms

a) RKD (DERSUB, FORSUB, M, NF, H, TI, YI, FOS, K, N, F, ‘
VAL, DAL, ¥) §

This Fortran subroutine generates the solution to a

set of M simultaneous first-order, ordinary differential
equations by the classical fourth-order Runge-Kutta method of

integration. Where

DERSUB - Name of the external subroutine used to compute the é l

derivatives. ? ;
FORSUB - Name of the external subroutine used to generate the j

input forcing functions. g ;

2: M - Number of equations for expressing the system. é 4
NF - Number of input forcing functions ;
i H - Step size for integration :
%‘"’ - TI - Initial value of T
&
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FOS -

VAL -

DVAL -

Initial values of Y, an array of M

Initial values of F, an array of NF. Destroyed in the
process and replaced by the final value of F.

The desired number of stops of size H between values
of the integrals to be stored in VAL, values of the
dcrivatives to be stored in DVAL and the values of the
input forcings to be stored in F.

The number of values to be stored in VAL, DVAL and F.
The final value of T will be TI + (N¥K¥H).

A matrix of NF by N containing the values of input
forcing functions generated by the external subroutine
FORSUB.

A matrix of M by N containing the integrated
values of the M derivatives generated by DERSUB.

A matrix of M by N containing the derivatives

gcnerated by the external subroutine DERSUB.

- The final integrated values of the M derivatives,

an array of M.

b) DERSUR (T, VAR, FS, M, NF, DER)

This TFortran subroutine computes the derivatives given

by equation U4.1.2 for the integration subroutine RKD, where

DER(I);

to T,

I=1,M are derivatives of VAR(I), I=1,M with respect

and are functions of T, VAR and FS (input forcing
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vector of length NF). This subroutine describes the dynamics

of the system; therefore, a different system can be simulated

by simply using a corresponding subroutine DERSUB that describes
the system dynamics by a set of first-order crdinary differential

equations.

c) FORSUB (T, FOS, NF)

This Fortran subroutine generates the input forcing
functions o the system for the integration subroutine RKD,
where FOS(I), I=1,NF are the values of the input forcing
functions at time T. A subprogram for sinusoidal input and
another subprogram for random input are included. The user
can use elther one as desired, and only one is to be used at
a time.

The random forcing function fi is generated by
passing a white noise sequence (simulated by subprogram
RANDPK) through a bandpass digital filter with center frequency
wy and bandwidth B,. The corresponding continuous filter can

i
be described by the differential equation

f‘i+B

ify *wy f; = Byx (4.2.1) {
i

M i i B P S
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li which will yield the following recurrence formula for the %
b I digital simulation
. |
- Fi(N+2) = AlFi(N+l) + AZFi(N) + BiH(x(N+1)-x(N) (4.2.2)

;“ where BiH

oo 2

Al = 2 e cos wdH
. -B,H
- i
ﬂ Ay =~-ce

- "2 2
W4 /wi 'Bi /U

and H 1is the simulation interval

¥
R Y

- d) PAMSQT (A, NV, NO, M, sQ, SUmM, ID)

This Fortran subroutine computes either sums and

sums of products of two variables or averages and averages

of products of two variables from a set of sample vectors.

Where

Al iR i i e e

A -~ Sample matrix NV by NO of a set of vectors.

NV - Number of variables or length of vector

NO - Number of samples




SQ

SUM
ID

e)
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Number of adjacent variables (M ¢ NV - 1) for computing
products of two variables. Y(J) * Y(L) where |L - J|s M.
Sums or averages of products of two variables Y(J) * Y(L),
J=1, NV; L=J, (J+M) or NV, a matrix of (M+1l) * NV -

(M *® (M+1))/2.

Sums or averages, a vector of length NV

Control index

ID = 0 computing sums and sums of products

ID ¥ 0 computing averages and averages of products

Subroutine XSQ (A, B, NV, NO, M, ASQ, AB, IFLAG)

This Fortran subroutine computes either sums or

averages of products c¢f variables between two sets of vectors

and squares of one sttt of vector. VWhere

A
B
NV
NO

ASQ

Sample matrix of NV by NO of one set of vectors

Sample matrix of NV by NO of another set of vectors
Number of variables or length of vector

Number of samples

Number of adjacent variables (M < NV - 1) for computing
products of variables from the two sets of vectors

Y(J) # Z(L), Y or (J -M) s L £ (J + M) or NV.

Sums or averages of squares of variable of the vectors

stored in sample matrix A, a vector of length NV.

N A
I




k“‘
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- Sums or averages of products of one variable of
vectors stored in A and another variable of vectors
stored in B. Y(J) ¥ Z(L), J=1,NV. A matrix of
(2 #¥ M+ 1) ¥ NV-M* (M+1).

IFLAG - Control index IFLAG = 0, compute sums

£)

IFLAG ¥ 0, compute averages

Subroutine XMONT3 (A, NA, B, C, NBC, NO, XM, ID)

This Fortran subroutine computes sums or averages of

products between variable of one vector and variable of two

other vectors. Where

NA

NBC
NO
XM

ID

Sample matrix of NA by NO of one set of vectors

Number of variable or length of vector stored in A
Sample matrix of NBC by NO of another set of vectors
Sample matrix of NBC by NO of the third set of vectors
Number of variables or length of vector stored in B and C
Number of samples

Sums or averages of products of variables

A(J) ¥ B(2J-1); A(J) * B(2J) and A(J) #* c(2J),

J=1, NA

Control index

ID = 0 computing sums

ID # 0 computing averages
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g) Subroutine LOC2 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript

for an element in a symmetric matrix where only M elements
from *he diagonal elements of the upper (or lower) triangular
matrix are stored in a vector. To illustrate the storage
mode, Figure V shows the vectors subscripts for elements in

a 6 x 6 matrix where only 2 eclements from the diagonal

elements are stored.

1 2 3 0 0 0
2 y 5 6 0 0
3 5 7 8 9 0
0 6 8 10 11 12
0 0 9 11 13 14
0 0 0 12 14 15
Figure V

Storage Mode

L <« Row number of element or (J-M) < L < (J+M) or NV

J = Column number of element

LJ

Resultant vector subscript

NV - Number of columns in matrix

M - Number of adjacent elements from the diagonal elements

M ¢ (NV-1)
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h) Subroutine LOC3 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript

for an element in a matrix where only M adjacent elements
from the diagonal elements are stored in a vector. To
illustrate the storage mode, Figure VI shows the vector
subscripts for elements in a 6 x 6 matrix where only two

adjacent elements from the diagonal elements are stored.

10 14 18 0
11 15 19 22
12 16 20 23

CcC O O W N -
©C O 3N o =

Figure VI

L - Row number of element 1 or (J-M) < L < (J+M) or NV

J = Column number of element

LJ - Resultant vector subscript

NV -~ Number of column

M - Number of adjacent elements from the diagonal elements
that are stored |
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i) COEF (J, N, NF, SQ, DY3Q, YDY, XM, EC, EK, A, B)

This Fortran subroutine computes the coefficients for
the three simultaneous equations in solving the jth system

parameter triplet (mJ, kJ, CJ). Where

J - Number of the system parameter triplet to be
N - Number of mass (or degree of freedom) of the
dimensional chainlike system

NF - Number of input forcing functions

SQ - Averages of products of the system dynamical
DYSQ -~ Averages of squares of the derivatives
YDY - Averages of products of the system dynamical

and the derivatives
XM - Averages of products of the system input and

dynamic outputs

solved

one-

outputs

cutputs

the

EC - Previously estimated damping coefficient of the

(J-1)th system parameter triplet

EK - Previously estimated spring coefficient of the (J-1)th

system parameter triplet
A - A 3 x 3 matrix contalning the left-hand side

cients of the equations.

coeffi-

B - A vector of length 3 containing right-hand sides

constants

wnmmwww bt e e B

[ S
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RLMTX (A, NR, NSYS, MARK, DET, INOPT)

This Fortran subprogram evalutes the determinant of

a matrix A with real elements and at the user's option finds

the inverse or solves one or more simultaneous systems.

NR

NSYS

MARK

DET
INOPT

Jrder of matrix A

Number of simultaneous systems to be solved if the
system solving option is chosen. Otherwise, NSYS 1is
irrelevant.

Singularity indicator. If Mark = 1 on return to
calling program, the matrix A is singular.
Determinant of A

Option flag

= 0 for determinant evaluation only

= -1 for system solving option

+1 for inverse option

Array name of the augmented matrix C/B. The sub-
routine is compiled with the dimension A(3,4). This
dimension must be changed if it is inconsistent with
the dimension of A in the calling program. A must
be at least dimension

1) (N by (N+NSYS)) for the system solving option
2) (N by 2N) for the inverse option

If the system option is chosen, the known vectors b

of (Cx = b) must be stored in the (N+1l)st through

Where

R, L S R e

L S

[
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(N+NSYS) column of A (i.e., must constitute the (N by NSY¥S)
matrix B). The solution vectors will be returned in these

game columns.

If the inverse option 1s chosen C'l will be returned

in B. The original matrix C 1s destroyed (on return C

will contain the triangularized matrix).

k) RANDPK (Entry names GAURN, EXPRN, and FLRAN)

This MAP function subprogram generates pseudo-random
numbers and includes three entry points for three different
distributors, Gaussilan (normal), Exponential or Rectangular
(uniform). The function names are GAURN, EXPRN, and FLRAN
corresponding to Gaussian, exponential, and rectangular,
respectively. An example of the generation of a Gaussian-
distribution pseudo-random number which is to be assigned to

the variable Y 1s as follows:

Y = GAURN(X)

where X 1is a dummy variable and has no effect on the random
number generation.
This package of routinss has the characteristics that

each separate run of the program produces the same sequence

P TR Y
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of numbers. If a different set of numbers is desired, it is

possible to preset the routine at a different value by preset-

ting the initializing regula‘ory variable inside the routine.
One possible way to generate a different sequence each run

is to get the value of this special variable after all the
random numbers for that particular run have been obtained.
Then this value could be stored in the routine in the next
program to continue the old sequence. To implement this
capability, included in the package are two subroutines. The

one to get the number from the routine may be executed by

CALL GETNM (NUM)

where NUM 1is the integer variable into which the special
number is stored. The other . . to store an integer (NUM)

into this speclial location may be executed as

CALL STORNM (NUM).

M;M(‘ TR - AP S
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Block Diagram

:{Read number of mass - N

Test N ~ STOP

N >0

v
Read System Constants

CM(I), CK(I), CC(I)
I=1 to N

Read number of input forces - NF

¥
READ force magnitude, center frequency

phase shift or bandwidth for each force
FOST(I), FW(I), FB(I), I=1, NF

Read Sampling frequency for simulation - FREQ
MNMumker of initial samples - NI
Number of samples used for calculating moments - NO
Every kth sample simulated is uscd - K
Number of times NO samples are to be simulated and
coefficients estimated -~ NORUN
Flag index for how previously generateda samples
should be used - INIT
If INIT < 0, system 1s simulated continuously and
and each successive NO samples are used for
estimation
If INIT = 0, system is reinitialized for each
successive estimation
If INIT > 0, system is simulated continuously and
NO, then 2¥NC,..., then NORUN¥NO samples are used
for estimation.
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| Set NON = 0 |

at one time (limited by the allocated storage

Determine number of samples can be simulated }7
space) - NIS

q

Set NOS = NO

!

i

Generate NIS samples of each state variables

Y i=1,2N and DY i=1,2N

i’ i’

and Y., = Y

where DY, = Y 21

i i 2i-1

by calling
Subroutine RKD - fourth-order Runge-Kutta

integration process which calls for two
auxiliary subroutines

Subroutine DERSUB - generates derivatives
DY as functions of Y and T and

Subroutine WORSUB - generates forcing
functions

Calculate sum of squares by

Subroutine PAMSQT - calculate sum of
squares of Y and products of Yi Y'j

Subroutine XSQ - calculate sum of products
DY with Y

Subroutine ..MONT3 -~ calculate sum of products
of Force F with DY or Y

£

ey wcHS GEE GEE GEE D W e BN S NS D N BN ED B B B ..
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NOS = NOS - NIS
NON = NON + NIS

If NOS <«
NIS,

set

NIS =
NOS

NOS > O

Test NOS

NOS <0

. t
Calculate second moments by
dividing sums of products by
NON

3

Print out second moments calling

Subroutine LOC2 and Subroutine LOC3
for storage location of moments

Py 3

-
]
-

Determine coefficients to the equations for
solving Ith mass system constants by calling

Subroutine COEF

Solving the Ith mass system constants CM(I),
CK(I), CC(I) by calling Subroutine RLMTX

Print the estimated Ith mass system cénstantsl

If

I <N SO

};=I+3_

If I >N

@)

@

St et
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If NORUN
< O \ —
- NORUN = NORUN - 1

If NORUN > O

‘ INIT > O
].Test for INIT >

INIT < O

won e
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% i iy b — b - dviake
g‘, 117
%
I
%
lf Listing of the Main Program and Associated Subprograms
i
l: c PRCGRAM TO SIMULATE M DEGREE FREEDOM,ONE DIMFNSIONAL, SPRING MASS -
c AND DAMPER SYSTEM AND ESTIMATE THE COEFFICIENTS ‘
c :
B DINENSION CC(10),CK(10)CMIL0),FIL10),Y(5000)DY(SADC),YFE(2N),
lf LFL250D) s ECL10Q) yEKII0)yEMIL0) o FW(LC) oFB(10),DIS(3,108),YT(20)
y 2FOST(10), SQUAN )y SUM{20) ¢ XMIIN) yA(3,3)4B(3),R(3,4)
* 3,0YSQ(20),YDY(140),SQT(80),SUMT(20) 4 XMNT(30),DYSQT(29),YDYT(140)
l GeEFK(10),FRECL10)ySUMS(20) 4 XMS(30),SQS(8N),DYSQS(20),YDYS(140)
g DOUBLE PRECISION SQS,ySUMS,XMS,DYSQS,YDYS
i EQUIVALENCE (R{1s1}9A(191))9(R(194)yB(1))
le COMMON CCyCKyCMoFOSTFW,FByDIS
; EXTERNAL OERSUB,FORSUB ‘
| c
l; 5 READ(5,500) N
o - IF(N) 450,400,8
4 8 READ(S5,501) (CMOT)oCKIUT)oCCUI)yI=1,yN)
1' READI54502) NFo(FOSTUI)oFW{I)oFB(T) 1=1,NF)
] READ(5,506) FREQ:NI’NO K oNORUN L INIT
‘}% c INIT .GT. O ALL SAMPLES USED FCR SUCCESIVE FSTINAT!ON OF MQMENTS
‘ C . INIT JEQ. O EACH SUCCESIVE RUN IS REINITIALIZED =~ T
- C INIT .LT. O NO SAMPLES USED FOR SUCCESIVE ESTIMATION OF MOMENTS ‘
c INITIALIZATION
L . Hzl .OIFREO e e e e .. Cw e e ’.T._,..AA.;W.,;....,...w«.u«'-aw 0%%“v*<Mﬂmeu~
N2=2%N . oo SR
MX'3 . v ' . S ‘.. o mk .,:; 4.u.h.‘.‘i,..,.,...,...'.-.-‘-.. t . oy » : ey v s na
ITFIN2.LEL.3) MX=N2~-1 | ' : K

| “qu=(mx+1a¢N2~(Mx*ch+1)1/2 T £ S e b e

NXM=3xNF A R o
’NXC’(Z*MX+1)*NZ-(MX+1!*MX e —— e e

DO.10 T1=1,NF T , ;

- BH=6 283185*F8(!)*H - - ot - ,.. e Rt oo ""7"“‘?“ _‘ - o ‘“.‘.'“'”"" f

CHDEFWT)*FW(T) =0, 25*FB(1)*FB(I) ~ S SRS

" YF{WD.LT.0.0) WO==wD = LTI T e e

- WD=56.283185%H*SQRT(WD) - - | e e

"*f'f DIS{141)=2,0%COS{WD)I*EXP(~D. S*aui“'"““'“*“*““*f* TR T

- DISU25I)==1,0%EXP(~1,0%BH) - . R ST S

DIS(3,1)=BH 5 f“"“'fi”“‘f*'rf T T S

15 DG 3(3 1 1 NZ b s e e 3 i . e itk ) & v SN st
G
30 Yi(!)=0 0 ‘
b g st PONEFIFS VN PP o PP 5 [P o 4 . ) - " RICN o AP i
TI=0.0"" ﬁ
« X . i
. . . ¥ % 3
- e e ey »».ove A o s ey N A DA i B ,,4. s S W ift
o B
s |
P i o e o g ey gy, 0 - e - - B .3
[ =)
v ¥ ‘1
e B o, - o P fpe - e L g A g s e A b e e e, g g e o) o S s ¢S
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“"REPRODUCIBILITY

s

© © 0 0 ¢ ¢C C

® © 6 6 6 o0 o

© ©

io0 o © o

Iy

41
42

43

44

45

455

46
48
49
140

50
51

52
54
55
56

58

- TN=NIS#*K

60
65
70

100
110

OF THE GRIGINAL

"PAGEL

IS POOR ™

C'A* L {“\:?SU‘(TIOF‘vNF)

IF{NT.LELN) OG0 TO 41

CALL RKIO(DERSUBy FORSUBy N2 yNFoH N Cy YT oFI NIyl 4F oY oDY,YE)
NO 4C 1=1,N2

YI(U)=sYE(T)

Ti=  FLOAT(NI)®H

NO 42 J=1yNXM

X¥S{J)=".0

NG 43 J=1,NSQ

SRS tJ)=n.N

DO 44 J=1yN2

NYSAS(J)=0,.0

SUMS(J)=D,0

N0 45 J=1,NXQ

YDYS(J)=0,.0

NON s

TIS=TI]

IF(INO®NF).LE.2500} GO TO 4S

MNF=2500 /NF
TF((NO¥N2).LE.5000)
MN2= SO0NO/N2
[FIMNF=MN2) 46946948
NIS=MNF

GO TO SO
NIS=MN2

GC TO S0
IF(INO%XN2).LE.
NIS= 5000/N2
GO TC 59
NIS=NO

NCS=NO

CALL RKD(DERSUB, FORSUB, NZ,NF.H,TI.YI.FI-K-NIS.F.Y.OY,YE)
CALL PAMSQT(Y N2 ,NISyMXysSQTySUMT,0) ,
CALL XSQUDY, Y oN2yNISyMXeDYSQT,,YDYY,0) T
CALL XMONT3(F9NF9Y DVvNZyNIS.XMY,O) s
NCSENOS=NIS B e Shant
N0 52 J=1,NSQ
SQS(J)=SQS(J)+SQAT(J)

DL S4 J=1,N2
DYSQS(J):DYSQS(J)"DYQQT‘J’~ R
SUMS(J’“SUMS(J)*SUMT‘J’

DO 55 J=1,NXQ =
YDYS(J)”YDYS(J’*YOYT(J’

DO 56 J=1,NXM T
XMS(J)=XMS(J)*XMT(J)

DO S8 J=1,N2° T
YI(J)=YE(J)
NON=NON+NIS =

GO TO 4«6

50N0) GO TO 149

Stk LS AT W WA IR Tl e et W tes

e e aew el v

TI=TI+TN%H
IFINDS) 100,100,65 S o 5
TF(NCS-NIS) 70.51.51 T s e reememid s e g
NI1S=NOS | , 3
GO TO 51

DO 110 J=1,NSQ
SQ(J)=SQS (J) /FLOAT(NON)

B e L P L N T S IR
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112 SUM(J)=SUMS(J)/FLOAT (NON)
NC 114 JU=1,NXM
116 XM{J)=XMS(J)/FLOAT (NON)
DO 116 J=1,NX0Q
116 YOV (J)=YDYS(J)/FLOAT(NON)
~ WRITF(6,606) N B J
], WRITE(6,622) (SUMIJ),J=1,N2) |
WRITE(6,620) _
| 00 155 J=1,N2 ' oo
(1 CALL LOC2(JydsK1yN2gMX) ' ‘ | |
‘ J3sJ+MX
CTF(J3.G6T.N2) J3=N2 ' | S
CALL LOC2(J3yJdyK2,N2oMX ) %
155 WRITE(6,621) Jy(SQUJIJI) pJdJImK1,K2) . S |

© DC 112 J=l,yN?
! DYSG(J)=DYSQS(J)/FLOAT(NCN)

L TR B STP T W T Y Aoy T e AL

e s =

WRITE(64623) (DYSQUJ)ed=]1,N2)
WRITE(6,628)

D0 160 J=1,N2

J3zJ+MX ,
IF(J3.GTN2) J3=N2 Tt B |
CALL LOC3(J3yJeK2yN2yMX) : ~

q
1
J3xg=3 | R :
‘ IF(J3.LT.1) J3=] F
: : CALL LOC3(J39JyK1,N2oMi) B o
O 160 WRITE(64629) Jsd3s(YDY(JJ)yJJaK1,K2) | o

WRITE(64626) ‘ :
WRITELGs626} | e
165 WRITE(6,627) JoXM(3#4=2) s XME3%J=1), XM(3%)
" WRITE(6,607) -
PC=0,0 , ‘ C - :
PK'O n . R *-" . S R e ‘Aj,‘, .
[ DO 200 I=1,N | o}
d | CALL COEF{I,NyNFySQsDYSQsYDYsXMsPCsPKyAGB) "~ 7 7 17 ==
NRITE(6,624) I w | o}
' o hRITELes624) e e i el |
d . 170 uriTe(s,625) (ALJsL)sLe1,31,B0d) B 3

BT TR MR R e W e e W T

b T P T T T T STy A2

R Rt L R I S P e :»

CALL RLerta.a.l.nARK,oer,-x) T o o ) 1Y
EM(I)=R{1y4) e e “'"”””mﬁ“”“f‘““f‘m“””’;”
EK(I)=R(2,4) a . s R
EC( ’ )=R ‘ 3' 4 ) .o I i R e ot - W‘T»N ke RS R
WRITE(65031) DET. - S -
c | el S UL S O O W S PO
IF{I.EQ.1) GO TO 175 - SO
PR=EEK(I-1) @ 7Tt e TR
PC=EEC(I-1) = - | o T
7175 CALL COEF([9N!NF15000YSQQYDY:XM PC;P*,A B) T T T —"—”
. Blli=Bl1)-CMLTI*A(1,1) | - St R I T R
 R{1,1)=A{1,2) S B 4““*“f““?;“3,¢,, T T——
R(1,2) = Al1y3) e & B |
“‘“”'“7Rt1.3)=a¢1)‘*'f';“*W““"“*““”“”“““T“ff““*f*f-e;‘4f1;?fv T
B(Z)=Bl2)-CM(I)*A(2,1) ) L co T e

b SR TEL oS o L X RE T VR TR e #» y . on e r‘ B P

'R(ZaI)'A(2g )
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“ RU242)E5A(2,3)

R12+3)=R(2)
WRITE(6,632)

| 00 180 J=1,2

i 180 WRITE(64633) (R(JsL)yL=1,y2)

CALL RLMTX(Re29y19MARKyDETy=1)
WRITE(H,631) DET

o FEK{I)=R(1,3)

EEC(1)=R(2,3)

l PK=EK (1)
). PCacC (1)
200 CONTINUE

i WRITE(64600) N
’ WRITE(6+4601) NFo(IoFOST(I)yFW(I)yFB(I),I=14NF)

HK=FLOAT(K)*H
TIE=sH*FLOAT (NON)
' WRITE(69603) FREQyHyTISoHK,NON,TIE

1 WRITE(64604)
i” DO 330 l=1yN | ‘
330 WRITE(64605) CMUI)sEMUTIsCKITDILEK(I)CC(I)oEC(T)
) WRITE(69634)

1 00 33§ f=1,eN n o ot

A m o

335 WRITE(6+635) CKUT),EEK(TI) CCELI),EECLI) s |
s NORUN=NORUN=1
!. IF(NORUN) 545,340
© 340 IF(INIT) 41,15,455 ;
> 500 FORMAT(2) ' | ) - S T
1 501 FORMAT(3F10.1)
i §N2 FOFMAT(I2/( 3F5.1) )
D 504 FCRMAT(BF10.4} |
X 506 FORMAT(FS.3,515) o
i 600 FCORMAT{(41H1 ESTIMATED COEFFICIENTS OF THE SIMULATED,I2,
= © 7 T 8001 11HMASS SYSTEM ) T,
601 FORMAT(1KN,18HNO OF EXCITATION =, 13/( 1H0,10Xy14HFOR EXCITATION,
6011 1345X911HAMPLITUDE =4F1N,295Xy 18HCENTER FREQUENCY =,F10.195X, "
601226KPHASE SHIFT OR BANDWIDTH =,F10,2) )
- 6173 FORMAT(21HOSAMPLING FREQUENCY =,F10.1, 3HCPS/ T e
_ 6031 LHO 30HSAMPLING INT. FOR SIMULATION =,F8.5/ |
:il 60311HO  16HTRANSIENT INT, = WF17,2/ S ¥
60321H0, 3SHSAMPLING INT. FOR CALCULATING MOMENTS =,FB8.5/ e
60331H0 4 42HTOTAL NO. OF SAMPLES USED FOR FSTIMATION =,14/ <~ == l
:g! 693431HOTIME INTERVAL FOR ESTIMATION =,F10.2,3HSEC) |
8N4 FORMAT(1HO . 16X e AHMIT) 934X 4HKIT ) y34Xo4HCIT ) /3 (14Xs4HTRUE,8Xy =~

60419KESTIMATED, 3X))

5 605 FCRMAT!IHﬂp3(4XaZEl7 8)) . ‘
606 FORMAT(48H1ESTIMATION OF MOMENTS FOR THE IDENTIF!CATIDN OF.

- e - e

e e e w i

{% " 6061 I12,11HMASS SYSTEM) y
i , 607 FORMAT(524.SETS OF EQUATIONS #OR SOLVING THE SYSTEM PARAMETERS)

J
:ﬂl © 620 FORMAT (1HO¢40H2ND MOMENTS Y(J)Y(L)y L=J TO J#3 (OR 2N)) " "~ * = |
- 621 FORMAT(1HO¢BXy2HY{¢1241H)¢SEL404) :
: 622 FORVAT(29HOFIRST MOMENTS OF Y(J)yJul,2N//(SE20.8)) " S
:1| 623 FORMAT(43HOSECOND MOMENTS OF DERIVATIVES ovcd).J-l.ZNllcsezﬂ 8y

" 624 FORMAT(1HO,20HEQUATION FOR SOLVING,I3,27HTH MASS SYSTEM COEFFICTE™
L

. ‘ R . : ' : i
.. R TS 4

L 4

- Soa . . 120 R R R T N Lo Bt e m A e e e meem wmfna e emes B
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= .1 -~ e M
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6241TS)

626 FORMAT(LIEDN) 32X, FlH et g0bi ¢ (43S 1o, Ry THISK & (P18, 9,5H)8C =,F1%5,0)
626 FORMATLLHY, S3HCKOSS MOMENTS €% INPLT FORGE AND Y(2J=1),Y(20),0Y(>
' 6261))

l: bl ECRMAT(LH 3%,y [2,30TH FORCE 2%, 3F1444)

628 FCRYAT(LHM, S LHOND MOYENTS CF NY(JIBY(L)yL=J=3,0R(1) TN J+3(NR 2*))
628 FORMATLAHTOV I 3123415 (41 2431H)yTF14.4)

630 FORVAT(IH1,127)

631 FCRMAT(14HACETFYMINMANT=,F20,8)

632 FORMAT{3LHY FQUATIONS WHEN CM TS KNAWN)

S 627 FORMAT (1H" 24X F15.By6HAK + (oE15.8,5H) %C = ,E2048)
3 634 FCRMAT (26HIESTIMATES WITh MASS GIVEN)
i 635 ECRMAT(LHO,28X,2{4%y2E17.8))
| 400 STOP

‘[ l ENC

121
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12

25
30

40

50

60

62

63
65
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SUBRGUTINE RKD(CERSUByFORSUB MyNFoHyTI s YIoFOS)K oNgFy VAL NVAL,Y)

DIMENSION Y(20),S1(20)4S2(20),S3(2R),54(20),0Y(20),FOSI(

1), YIC 1)y

LVALI1)oF(1) 4A(20),0VALI(Y) H»FOSP(2C),FOSA(29)
H2sH/2.

T=7]

L=0

LF=)

NC 16 I=xl,M

Yir)=vi(l)

CALL DERSUR(T Y oFOSoyMyNF,DY
DO 830 LL=1,N

NO 65 JJd=l,yK

TPaT+H

CALL FORSUB(TP,FOSPyNF)

DO 12 I=14NF

FOSA(I )= (FOS(I)+FOSP(I))/2.0

COVPUTE K SUB 1

DC 3¢ I=1,M
S1(I)=H*DVY (1)
AlI)=Y(I)eS2(1)/2.
TA=T+H2

COMPUYE K SuUB 1

CALL DERSUB(TAsAyFOSA9gM¢NF4DY)
NG 40 I=1,M

S2(1)=H*OY (1)
A(l)ay(1)+S2(1)/2.

COMPUTE K SUB 2

CALL DERSUB(TA,AyFOSAyM,NF,CY)
DO 50 I=1,M

SI(I)=HHNY(T)

A(L)=Y(1)+S3(1I)

TA=T+H

COMPUTE K SuUB 3

CALL DERSUB(TA,AyFOSPyMyNF,DY)
NO 60 I=1yM

S4(1)sHEDY(I)

TaT+H

DC 62 [=1,NF

FOS(I)=FQSP(I)

COMPUTE NEW VALUES OF INTEGRALS

DO 63 I=1,M

BRI em TS PR TS S WY AN T Y W &

o imba Br e m e —a e A e—— g AVAL A ¥ b e

Y1) =Y (I)+(S1(I)+2.,%S2(1)+2,#53(1)+S4(()) /6.0 ~ ~
CALL DERSUB(T,Y,FOSeMeNF,0Y) e e e
DC 70 I=1,M T A | |
L:L’l Ha wae e w8 Gaw s awe e e o ogww o e e ik a a . cwemm e g e e et te P A s - w5 |
DVAL(L)=DY(I) i
e s {
e e - - 1'22' — e —— PR
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PAGE 1S

P~ovaAL(l ) =vY(1Il)
TH [ =Y 4 NF
LE=LF¢]

7% FILF)=FCS(])

80 CCNTINUC
RETURN

END

SURPNUTINE DERSUA(T VAR FS¢MyNF,DER)
PURP(CSE
AUXTLTARY SUBROQUTINE WHICH COMPUYES THE DERIVATIVES FOR THF
INTEGRATION SURPROUTINE RKD
SUERCUTINE CERSUB(T WVARGFSeVMeNF,DER)
NIVENSICN VAR(2C),DER(2N)yCCL1Q)4CK(L1) 4CM(1N)4FS(19)
COMMON CCyCKyCM :
N=M/2
NC 10 T=14N
10 NER{2%]=1)=VAR(2%])
[F(N=2) 57415,15
15 DER(2)=(CK(L)/CM(L1))®*(VAR(3)=VAR{1) )+ (CCLL)/CM(1)IX(VAR{&L)=VARI2))
1 +FS(1)/7CM(1)
IFIN.EQe2) GC YO 30
Nlz=N-}
CC 2% 1=2,N1
DER(2%1) =(CKII)Y/CM(T))I®(VAR(2%[+1)=-VAR(2¥*]=1})
+{(CC({T)/CM{T) )R (VAR{2%T+2)=VAR(2Z2%T]}}
~(CKAT=1)/CM(T))*(VAR(2%]=1)=VAR(2%1=3))
~(CC(I=1)/CM(I))*(VAR(2%]) =VAR(2¥%1-=2))
[F(NF.LTLI) GO TO 25
DER(2%][) =CER(2%[) <+FS(L)/CM(I)
25 CCANTINUE
30 DER{2%N) =={CK(N)/CMIN))I*RVAR(2%N=1)~{CC(N)/CM(N))RVAR(2%N)
1 =(CK(N=1)/CM(N))*(VAR(Z%®N=1)=VAR(2%N=3))
1 ~(CCI(N=1)/CM(N))2(VAR(2%N) =VAR(2%N=2))
[IFINF.LT.N) GC TO 100
DER(2%N) =CER(2%N) +FS(N)/CM(N)
GO 70O 106

Pt pt g

% SC DER(2)==(CK(1)/CM(]1))xVAR(1)=(CC(1)/CM(1))BVAR(2)+FS(1)/CM(%)
! 100 RETUPN
| ENC
" 123
B i e — e e P Ty
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58

SEMECHTEI W Gamw - T’ 6 e r - i S ———————— T S © T BT G T MR A T TE BT RN © W S

SUFRLUTIANE »OSU (T oM F)

SINVENCION CCUIM ) CHLLD) yCHULLIR) W FOSTILIN) yFW XN ) 4 FELLN) R (17
COMMIN CC O 3 CMyFNST ybng ki

o B0 TalyNF

THETAH J20F3TREM(FWIII&TeFB(I)/3€67,.)

FODY=ROSTOI)*OIN(THETA)

CONTINUE

RETURN

ENC

SUERCUTINE FORSUR(IT»FOSyNF)

DIMERNSICN FOSUIN)GFOSTILIN ) oFWI LN ) oFR(LN)I yDISI24510) 4 XF(2417),
ICCELT ) CKULN)HCMLL) W XR(1C)

COVVYON CCyCKyCMyFOSTyFWoFRHDIS

NCQ 8C I=1.NF

TYEYP=FCST(I )4GAURN(F)

FOS(1)=DISt e T)OXF(Lly I)eDIS(2y1)XF(2,1)¢DIS(39I)*(TEMP=XRI(T)
XF{2¢1)=XFll,y1])

XF(ly I)=FS(])

XRUT)=TEMP

5C CCATINUE
RETURN

ENC }
|
!
".'s:t'
{
{ |
, |
“
1 |
I - |
124 |
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SURARCUTINF  PAMSOT(ASNV NG oMeSQeSLM,IN)
PURPOSE
TO0 CALCULATF FITHER PARTIAL FIRST AND SECNND NMCMENTS
CR SUM NF SCUARES AND SUM
LA = CDATA MATRIX, NV RY NO
Y] NO OF VARTABLES
NG NO OF DRSFRVATICNS )
v NOOOF ARJACENT VARTABLES FCR CROSS MOEMNTS,M LESS THAN N
S¢C SUM F SOUARES WREFN D=0
SECCND MIMENTS WhEN ID CTHER THAN 9
MATRIX NF (Mel)xNy=(M*(M+]))/2
SUM = ARRAY OF NV
. SUBRCUTIME PAMSOT (AgNVeNO,#9SQySUMy IN)
! CIMENSICN A(1),SQ(1)y SUM(1)
LJd=n
KJ=9
NE 20 JsiyNV
i~ [FINV=J=M) 49496

[ A

OO0

4 JM=NV
i GC 70 8
. & JM=J+M
8 BC 10 L=J,yJM
Ld=LJ+1l
10 SQ(LY)=0.0
20 SUM(J)=C N

CALCULATE SUM OF SQUARES AND SUM

OO

ne 4C I=1,N0
LJ=N
DC 40 J=1,4,NV
[FINV=J=M) 24,24,26
24 JM=NV ‘
GC TO 28 .
26 JM=J+M ’ ‘
28 1J=(1=-1)*%NV.J
DC 30 LaJyJM
[L=([=1)%NV+L
Ld=LJ+l
3¢ SQILII=SQILJ)+A{TJ)=ALTIL)
40 SUN(J)= SUM(J)I+A(TJ)

CALCULATE MOMENTS IFf ID NOT O

OO0

IF(IC) 60,100,460
60 JN=(M+1)ENV=-(M¥(M+1))/2
CNC=NQ
NC 7C J=14JN
70 SQUJ)=SQ(J)/CNO
DO 80 K=1,NV
80 SUM(IK)=SUM(K)/CNO
100 RETURN
END '




s s o ow mes

S A s

OO0

T IR g

10

2¢

25
30
35
40
50
55
60
80
90
94

96
100

SUBROUTINE XSQUAySoNV NGy My ASQy AByIFLAG)

A = CATA MATRIX OF NV BY NO

B = DATA VMATRIX 0OF NV BY NC

NY = NO DOF VARTAAJLES

NC = NC QF CBSERVATIONS

M = NO OF VARIABLES FOR T+E CROSS MOMFENTS
ASQ - IFLAG FQ r SuUM OF SQUARES OF A

TFLAG NE O SECOND MCVMENTS OF A

AB = IFLAG EQ N SU¥ OF SQUARES OF A(1)¥B{J)sd=J]leJM
TFLAG NE O SECOND MOMENTYS COF A(1)%8(J)eJd=JlyJM

DIMENSICN A(1),8(1),ASQL1),AB(])
DO 1 I=1,NV
ASC(1)=0),n

Nve (2%Me]l ) ENV=ME(Me])
NC 2C Imly,NM

AB(TI)=0 .0

IN=R

N0 80 N=1,NO

[J=N

NDC 8C I=]1,yNV

INsIN#]
ASQ(I)=ASQ(I)+A(INI*A(IN)
IF(I=M) 25,25,30
Il=1

GC TO 35

I1=1-M

IF(NV=I=-M) 40,40,50

I M=NV

GO TC 55

IM=I+M

DC 6C J=11,1IM
JN=(N=1)%NV+)

[J=slJ+] ;
AB(IJ)=AB(IJ)+A(IN)*B(JN)
CONTINUE ‘
IF(IFLAG) 90,100,90
CNO=NO

DC 94 I=],NV
ASQ(I)=ASQ(T)/CNO

DC 96 I=]l,NM
AB(I)=AB(I)/CNC

RETURN

ENC '

T T e e s gt i e e e e
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SUMRCUTINE XMONT3(AyNA9RyCoN3CoNDgXM,1D)

. PURPQOSE
C TC COMPUTE CRCOSS MOMENT OF A(J)*»B(2%J=1),A(J)#8(2%))
C AND A(J)¥*C(2%])
C A =RASE CATA MATRIXyNA BY NQ
C. MA =NOJCF VARTARLES OF A
C 9 «~CRCSS VARIABLE DATA MATRIX
C C CRCSS VARTARBLE DATA NMATRIX
C NBC=MNCCF VARTARLES 0OF B8 AND Cy NB GE. (2%NA)
C NC =NDLCF QRSFRVATICNS
C XM =CR0QSS MOMFENTS,MATRIX CF 2%NA
C [0 =ID NOT ZEROQLZCOMPUTE YHE MCMENTS
c I0 26RO, COMPUTF THF SUMS
U |  oconmcmcscsamnmocnrccannoon cone e e oo e o e - on 2 w» wn o> @ o> v - an > w w B) AP @ s .- - o -
SUBRCUTINE XMONT3(AeNAyBRyCoNBCyNQyXMyID)
DIMENSICN ALL1),BUL)eXM(3) LCH1))
N3=3xNA
DG 10 J=1,yN3
10 XM(J)=0,0
[JA=D
NC 30 I=]1,N0
DO 3C J=1,NA
[JA=TJA+]
[J28=(1=1)%NBC+2%)
1J18=1J28~1
XM(3%kJg=2)=XM(3%J=2)+A(IJA)¥B(]IJ18)
XM(3%J=1)=XM{3xJ=1)+A(IJA)%B(1J28)
XM(3%xJ)=XM(3%J)+A(TJA)*C( 1J2R)
30 CONTINUE
C
C COMPUTE MOMENTS IF ID NOT ZERO
(o
IF(ID) 40,50,40
40 CNC=NO
DC 45 J=1,N3
45 XM{J)Y=XM{J)/CNO
50 RETURN
END
v - P SO ————— gt v

o o e

et el

i i et e S
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SRIGINAL

'W%EI’H()I)U(}IBJlII‘Y ()}‘T}{I”(

R T A S

‘4‘ suemu‘rw LOC2(L s JsLJgNVy V)
M ceThE NOLCF ROGWS FROM THE LIAGONAL
PURBRISE

TO CALCULATE THE STORAGE LCCATICN CF A PARTIAL LOWER HALF MATR]
L =R"W NO.
J =CCLUMN NC,
LJ =STCRAGE LOCATION
NV =RANCE NF THE MATRIX
SURRCUTINE LOC2(LyJyLIyNVyN)
[F{LeLTe(J=NM)) GO TO S0
IF(L.GT(J¢M)) GO TO 5N
IF(L.GESJ) GO TO 1G
I.7=y
JT=L
GC TC 18

10 LT=L
JT=y

~ 15 IF((JT+M=1),LE.NV) GO 70 20

ls N=(JT+M=1)=NV

. Na(Nk(N+1))/2
LI (M+) )R (Tl i+l T=JT=N4*1
GC TO 60

20 LI (Ml )k (JT=1)4LT=JT+]}

GC TN 60

50 WRITE(64691)
601 FORMAT(1HO,49HL AND J ARE NOT IN THE RANGE OF THE STORED MATRIX)

zene B o N
cCoonnan

P poe

-

Ld=N
60 RETURN ;
END ) ) E

[
[
[}
|
i
I
i
i
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“REPRODUCIBIEITY

10

20

50

70

100
601
110
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THE GRIGINAL I’/\(;i

OF

L o A R Y I R B R R B i (TR e R ek e

%Uﬁ?CUT!NE LOC2(LsJeLJIeNV,y M)
PURPCSE
T2 CALCULATE THE STORAGE LCCATICN QF A PARTIAL MATRIX
L = NO. CF ROW OF THE MATRIX
J = NO OF COLUMN (F THE MATRIX
LJ = STCRAGE LOCATICN
NV = RANGE CF THF SCUARE MATRIX
¥ = ONLY M RCW FRCM THE CTAGONAL ARFE STOREN,LESS THAN NV
SUBRCUTINE LOC3(LeJ9LJyNV,eV)
IF(L.LT.(J=M)) GO TO 1C0
TF(L.OT(J+M)) GO YO 120
IFtd=-1=V) 1N,19,59
IF((J=1+M) cLE.NV) CO TO 20
NT=M+2=)
NL=J=1+M=NV
Ls(2%Mel) R {Jol )= ( (MENT )R (M=NT+1) ) /2= (NLE(NL*+1})/2¢L
GO TO 110
NT=Me2=-
Lis (2%M+1 )% (J=1)~( (MENT)*(M=NTe 1)) /2¢+L
GO T0 110
IvtiJd=1+M)LE.NV) GO TO 7C

NL=j=1+VN=NV

LMsL=JeMe}

L= (2%kM+l)*(J=-1)= (M*(M#l!)/Z'(NL*(NLOI))/z*LM

GC T0 110

LMsL=J+M+]

LIs(2%M+1 )% (J=1)=(ME(M+1))/2¢LM

GC TC 110

WRITE(6,4691) |

FCRMAT(1HD,49HL AND J4 ARE OUYT OF THE RANGE OF THE STORED MATRIX)
RETURN

ENC
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SUBROUTINE COEF(JoNyNEySQoDYSQoYDYoXM)EC,BKyA9B)  ~ ©7 7w~

PAGE 1S POOR .

I}{L GRIGINAL

t*g“
0 U W S S M6 S 0 40 400 SN A I - 6 B S e “-q-b’----n----mq- "qﬂm-qt”M

ggggggzlue cnﬁrtJ.N.nr.so.nvsc.vnv;xn,ec.sx.a.a» - ;3;,‘~V,p
TO OBTAIN THE COEFFICIEKYS DF THE 2 BY 3 EQUATIONS FOR .
SOLYING THE JTH SET OF SYSTEM CONSTANTS DOF THE ONE. arneﬁs:aﬂat
N DEGREE FREEDOMoSPRING)MASS AND DAMPER SYSTEM EXCITED BY .
AF SEQUENTIAL FORCES \ e ”**'*’“
“$Q =SECOND MDMENTS OF THE svsteu curﬂurs o

YOY = 2ND MOMENTS OF DY#Y .
XM ~CROSS MOMENTS NP THE SYSTEM INPUTS AND DUTRUTS "= -

- -“----n VA S 00 EHED B ANED A b 0 ..-Q““-wn.-‘mta’nu”“qnnw‘”.-Q

- DINENSION A(393’;0(3i050(llobYSO‘llcVDVCI’vXN¢3’

. CALL LOCS(JRvJRoKlvNVoHK”‘""‘k T T e i s b

" CALL LOCZ(JRsJCIKL NV MX) ~ = T A i

20

. CALL an3 ‘\’R!JCOKltNV'Hx , Cvmre - eme e T_z m,. Y ua o e e e oy ~~fwwm’ ;, - "’f","f””mf -

N § - % U M v Po ST R s e e N e e LR TR e By T ch SEIE AR LA AL K A R e SR« S W K A A
A{242)=~SQ(K3) V C ‘ e K P fad

: . )

i Nv- Z*N o ST B B A SR TR
o

“ : kY . . . .

MX=3 : . e - o

TFINV.LE.3) MXsNV=1' © R el S
Ai3,1)8=DYSQ(2%J) o | i :

JRe2% ‘ - < s I S P O
JC=JR=-1 ,

A(291)==YDY (K1) o
CALL LCCI(JICoJR,KLINVIMX) 77" 7
Ally1)==YDY (K1) S e
CALL LOC2UJRyJCoK3gNV MX) =70 = =t mom s
CALL LOC2(JC,ICyK2,NVoMX) TR et S
SReLasict G SR TR e Dt
iF(J;EQ.N) GO TO 20 | o - | |

CALL LOC2(JRyJCoKLINVIMX) e
A ‘ 1 ' 2 ,'SO!KI "SQ(KZ) . e . Saer o ke Reae : R .*;‘:wa-p 4 ,f.. . 'v..,"_.‘j:‘rs PUPRRE c;uunutf-»u Hre % T
JReJR#1 : SR | -

A‘1'3’*50CKI"SQ‘K3’ ! B L SR ;
JRe2edel i s e e
JC.’*J - E . : C . ‘Y,, ' ) y N b
CALL "OPZ(JR,JC'KL 'Nv. Mx ’ I e e S f_,' e _ e ) : |
AL2,2)=SQIKL)-SQ(K3) L | g 2

JUsJC=1 * | B : S el
AL LOCS Edue dCoRZ oM (RN 5 7 o rmincin s <o e e o e |
A(3,2)=YDY(KL)=YOY(K2Z) : - ; S o

S T JRe IR e e x,.,,’.“.:.(,f,f.?.,ﬁ,.ﬁ...‘
- CALL LOCZ(JR:JCvKloNV:MK) o - ; g l

CALL LOC2CJCIICIKZINVAMKY =~ e
A2,2)=SQ(K1)=-S0(K2) - , . R
CALL LOf‘B(JRqJC.Kl,NV,MX’ s .' - ;AH»% Paaadite e e ...:m PO .‘vgua b i s , RO e . ‘

AlB.B)*YDV(Kl)*A(&.l) ’; ' | T - e

Ga TO 30 N L - - R e e A TP T Ly T a2 e ¢ o - " _e :3 1
. R 2 . e i o . 1

COMPUTE COEFFICIENTS WHEN JaN T o tn s e

A(143)=-5Q(K3) ~ . AT T

i b SR




S

i | B(l)=(SQ(K1)=SQIK2) 1#EK + (30(K6)-50(K3))‘E¢ S i g

(; B(2)s(SCIK4)=SQ(K)) )%EK + (SQ‘KZ’nSQ‘KB".Ec - ‘,w%,@f:w.Q

i ividit

LB B T N —

] T BtLI=B(1)=xM(3kI-) T
: ~ B(3)=B(3)=XMi{3%J) P ) | e S

i B(3)e=XM(3)

: ) B B
i : . . -
- A M -
o o . o gy oo .

GRIGINAL® PAGE 1S POOR ]

| Rt PRODUCIBILITY OF THI

JO= 24

JR=JC -

CALL LOC2(JCyJCoK2oNVoMY)
A(2,2)2-50(K2) ;
CALL LOC3(JRyJCoK2yNVyMX) :
A(3,2)==YDY(K2) | -
Al343)=A{2,1) -

COMPUTE B(1),8(2) B(3)
EC =ESTIMATED (J=1)TH DAMPER CONSTANT R
EK <ESTIMATED (J=1)TH SPRING CONSTANT T

30 IF(J.FQ.1) GO TO %0
JR=2% J=~1
JC=2%J=-3
CALL LOC2(JRyJRyK1oNVyMX)
CALL LOC2(JR9JCyK29NVyMX) . 1
JC=JC+1 | - ' 1
CALL LOC2(JR9JCyK39yNVyMX) § |

BT b W .| MRS e,

S ol 5 U b i 3 ol £
COOOON

e
PR - N T B

i3

J'Z*J IR * *ﬁ““ V“
CALL LEC2(JJoJReK&G9NVyMX)

JR=JR+] |

CALL LOC2(JRyJCoK39NVMX) T
CALL LCC2(JRyJRyK24NV¢MX)

JCsJC~-1 -

CALL LOC2{JRyJCyKLoNVyMX)

AR P Ml

JC=2#%y

JR=IC~1 o R ’

. CALL LOC3(JR9JCyKl¢NVyMX) B B R L %

- JR= JR=2 et e kR wan e e e

| CALL LOC§(JR1JC'K2'NVOHX’ = PO ]
: , JR=JR+1

3 CALL LOC3(J97JC:K4;NV:MX’ '''''

B(3)=s(YOY(X )‘YDV‘Kz),‘EKO(VEV(KZ"VQV(KQ"*fc : 5 e .

45 IF{J.GT.NF) GO TO 100 , T W“”Mwﬁmfﬂfm :

g‘.qwﬂsm-rnf—i’ e ;w nt-«a%
e i

. B ‘ 2 "B( 2,-XM'3*J-1 ’ - . e ,,,,‘.,@}‘,:(MW e .-m‘.iv BT T ey Au&“ww%ﬁ;“,.,", .i;,"

GO TO 100 oo .)m e R e g 4,‘ B e e g BB s e s e B @ »%&a»&ﬁ b Han «.s..yﬁ.mp,,m ke bs BT ..,au..,,\.g w,ﬁﬁ *
1 50 B(l)m=XM(1) e e L g
{ C 0 BU2)m=XM{2) 7t T T e me e e e

]
]
| Aosulr s
: < e x . . B R T R R Ly 9;’» waTn ~‘ N . 1R LR ’v s VM ‘ 1”‘ .m " 1;;’{;'

100 RETURN - | TN T TN
, END L ; : ‘ ‘ S et »%

R e » Ll i g e R U g Rl SO R T AT AN

Bow ik wpn e e e wize g e - e e S e e g g ot YRR E e - wes PRI Ry ant
L B e e ke e A o w1 < e g ke i - & oFen 8 R e T R T i D ok~ ol -y oo 5oy
Y o | e A " d 2 .
¥
. . S S
" . i % B . : S o i
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PRODUCIBILITY OF

OO0 OO OND

10
20

30

40

50
&0

70

80;

90

WY

" APAX = ABS(A(K,I))

‘IF (TEMP) 100,120,100

HE 1S POO

JRIGINAL PAGH

SUARCLT e “fNTX (A NR g NSYSoYARKZLET,y INAPT)
NSYS = hidy SYSTEMS YO KE SOLVED
NR = CIOrY OF A
A = INPUT MATRIX
MARK = SINGULARITY INRICATOR (MARK=] FOR SItGULAR A)
NET = DET(A)
INCPT = =] FUR SYSTFM SOLN. AND DET
f FOR DET ONLY
+1 FOR INVFRSE ANC CET
DINMENSICN STMNT, MUST AGRtE WITH OIM. STMNT. IN MAIN

DIVMENSICN A(3494)4X(4)

PRESEYT PARANMETERS
SIGN = 1},

MARK = 0

IFLAG = INQPT

N = NR

NPL = Nel

NM] = N-1

NN = NeN

NPLSY = N+NSYS

If (IFLAG) 40,40,10

INVERSE OPTION = PRESET AUGMENTED PARY TOD I}
DO 2C I=]1,N

N 2C J=NPL NN

All,J) = 0,

DO 3C I=1,N :

Allsd) = 1. ' T ' T
NPLSY = NN

TRIANGULARIZE A
DO 120 I=1,NMI
1PL = I+1
DETERMINE PIVOT ELEMENT ~ -~ — ™ 7™ 7~ S
MAX = 1} ,

AMAX = ABS(A(lvl)$

DO 60 KsIPLyN

IF (AMAX=ABS(A(K,I))) 50,60,60
MAX = K

CONTINUE

IF (MAX=1) 70,90,70 " ; o
PIVOTING NECESSARY =~ lNTERChANGE RQ“S _ 4
PO 80 L=I,NPLSY R
TENP = A(l,L)

W W IR aF TER MRS YL M o o e
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v
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PROGRAM
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v SuEE MK R AT R ‘

MR T g v

Fphn 5o GETECT I A 0 S W .

A i 68 bt gr w7 4

“A{IeL) = A(MAXoL) ° e e v e e 454 s on ikt Vo e b ; {
AIMAX L) = TEMP , L S ST |
CSIGN = =SIGN T T T T e e |
ELIMINATE A(l*lol)f-vth'l) R T o
DO 120 J=IPLyN ~ ~ ~ o T R g
TENP = A(J, 1) ) 2.
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SREPRODUCIBILITY OF

125

139

125

140
150

oo o O oo

160
170
189
160
200

210

- 220

239
249

250
909

POOR

[H | -

PAGH

GREGINAL

CCOANSTY = =TeMP/ALLLI)

OC 117 L=sI,NPLSY

AlJdoel ' = A(JoL)+AC],L)*CONST
CCNTINUE

COVMPUTE VALUE OF DETERMINANT
TEvP = 10

CC 137 I=)1,N

AGG = A(x'!)

IF (AGG) 137,125,130 1
MATRIX SINGULAR
WRITE (6,900)
MARK = 1

GC TC 135

TEVNP = TEMPHACG
NEYT = SIGN®TEM®

EXIT IF DFT ONLY OPTION

[F (IFLAG) 140y25%, 140

CHECK FOR INVERSE OPTION OR SYSTENS OPTION
IF (IFLAG=1) 160,150,160

INVERSE OPTION = ARORT IF A IS SINGULAR

IF (MARK=1) 160,250,160

BACK SUBSTITUTE TO CBTAIN INVERSE OR SVSTEH SDLU‘IUN‘S)
DO 240 IsNPLyNPLSY "
K= N

X{KY = A(K,1)

IF (K=-N) 180,200,180
DO 169N J=KPLyN

X{K) = X(K)-A(K'J)*X(J’ :

X{(K) = X(K}ZA(KyK) ' D V'mi;*”'”:
IF (K-1) 210,220,210 ,
KPL = K e e e {
K = K=} T
Gc Tn 170 > ¢ » s o . a . TEm o Ko ek . vy:i W oEs . s J:
PUT SOLN, VECT. INYOD APPRO?R!ATE CGLUHN OF A “ O
PO 237 La=l,N . o e e e
A(Ly1) = X(L’ . :

CORTINUE | . L . - B i |

© s AR

R &T URN T PO o e e M e e F_ w3 “ |
FORMAT (//1X15HSINGULAR MATRIX//) v {
ENO » e U ”1..1%:: R T ]

e IR R PSR 30 £ #
' .

E
) :

stk s -
e

- i
e - N
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REPRODUGIBLITY OF

£ annAnan
i C  SUBROUTINE RANDKP for random number generation
| FNTRY  EXPRYN
ENTRY  GAURN
' ENTRY  FLRAN
EMNTRY GETNY
ENTRY  STORNM
l .
EXPRYLDG RANDAM
c oxXn 662,n
l H STA A
MPY CENFRA {
STQ COMMNON+1
l STQ COMEAN :
F MPY GENETA
- STQ RANNOM f
; l CLA COMMON
TLQ P !
LNQ COMMON® L
i L 12
CAL o
- LGL 24
L STN COMMON
1 GLA A
l LLS 12
N - FAD COMMON
l G TN 144
TRA E
8 MPY GENERA
$TQ COMMON
g l CLA PANDUIM
TLQ F {
CLA A : o -
I ADM G
TRA  H
GAURN $XD COMMON+3 44 ?,
| ' cc TSX EXPRN,4
| s AA o
' STO COMMON+4
TSX EXPRN .4
, STO COMMON
l FSB 88
| STO COMMON+]
. Log COMMON®Y
. ' EMP ' COMMONSL~ - -~ e et



i % su8 COMMONGS
| { TPL ol o
. { LXN COMMONG3 44
CLA COMMON
' S LnQq RANDNM
. i : RAL 2N
” 4 LLS n
& TRA 194
. " FLRAN LDQ  RANDOM
: MPY GENERA
. STQ RANDOM
3 cLA AAA
' LGL 28
FAD AAA
TRA S "
o GETNM (LA RANDOM
. Stoe 304 o -
’ : TRA 144
; STORNM CLAW® 9o
l | - 8Tn RANDOM |
- | TRA 194 ‘ \ - )
{ GENERA 0OCT 343277244615
]' {1 RANDOM NEC 30517578128 ° o
] 4 AA - 0OCT A010000000N0
1) DEC l. . -
; AAA  NCT 172000000100 | |
i[ 1 A ocT 00021700000 T " -
! COMMON BSS 5 | e
| , END e e e . .
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Input Cards end OQutput Tabulations for a Sample Problem 11

1
The sample problem is to simulate a five-mass system i

whose parameters are
ml'mz'ooo-ms-OQOSZ

k) = kg = 9.3%10° , ky =k =8.3x 10", Kk, = 43 i

5

C, = C3 = 1.9 , 02 = CM = C5 = 0.9

1

The system is to be driven at mass No. 1 by a random force which

is generated by a white noise of standard deviation 30 being passed
through a bandpass filter with center frequency 70 cps and a band-
width of 20 cps. The sampling frequency for simulation is chosen

to be 5000 samples per sec. 10,000 samples are to be simulated 3

and used for estimation of the parameters.

a) Input Cards

- — - S R CORNGE - . T e -
e e WM WW BEN GHE OO N D BN BN B N Gl Nl Tl s o

001. 1 6 11 . . . 10.60 [] . . ?lo ] . . ?60 L) . ] .
5 %,
0.052 930000.0 9 :
0.05%2 83000.90 0.9 i
0.052 930000.0 1.9 %
i 0.052 83000.0 0.9 %
0.052 43.0 0.9 i
1
»
30.0 70.0 20.0
5000. 10000 1 1 1
8 -
b) Sample Output ;




s  GEmS  WHEN WM BB SN BN BN BB BB D BN B B e B ...

——

e L o

ESVINATICN CF MUMERTS FLEK TRE JLERMDIRICARRCN CF
FIRSY MINEATS GF ViJ)edrle2N

“0e5€ M HY25E~"8
~0elg97c357t=0)

TR Cae Rewe - e em o mmos WOR THAG

~( o L1622626E=C)
~C o 5€36IEEIE=AS

2AD POMERTS YIIIVILD, Loy TC J42 MU0 ZN)

vt
v
vi
\A
vi
i
vi
‘Vl
Vi
v

SECCAC MCMENTS CF CERIVATIVES CYUJ)gdo1e2N
NelBB244%E~C2

1
2)
N
4)
$)
6)
M
8)

9

D]

CoalTH8F=(T
£e2BA2E=(2
OeT161E-C T
Coldt2F-(Q
0o 155%E~C7
Colt24t=-C2
CoBOLOE~CT
C.l?hSE*C?
Qe B4NLIF-CT
Coe82e4E~C2

Ce1208F-C
Co.l251E~CB
Col2876-C7
~CeF2NSE-C?
Coleda¥-01
C.5t16E-CE
ColesCE~C?
~Co.eSegk~-CY
C.1%9E€-CT

CoICINGETIE €4

e O

¥e M3 T ow mke e

=NeyHel3F65aF =18

B

GVASS SV

N e12990723E=71

0. 17%%E~07 D.267T76~017
0.274RE=C2 =N H&6OE-DT
Cel621E-CT NeJ1276=~0n

=0 348TF=C4  =0,B763E-07
0.71976F~C7 N, 2412€6=07
Qe 1621E~C2 -0 1096E~07
G.015%E=01 Ue 1N2%5E~06
0.2884E-C2
Ce26£1¢0850E~02

*0s116694826=0)
13,5635 1363 -5

0.27681C42E 04

04743326256 €3 0o 174466246-C2 0.51664041E 33 0.826416226-02
20D FENEATS CF EVIJIOVILYLed=2,CRIND TC Jo3UCR 2N)
OYE 1DOVE 1) 0,13656-CT  C.2FB7E-62  0.1851€-CH  0,2748E-02
OY( 208VE 1) ~D.2858F-C2  0,21756-02  =0,27586-02 ~C.17916-01  0,12666~03
YO 208%1 1) 0.2677F-CT  0.,2748E=07  0.13676=C7  0,26626=02  =0,8239€-07
Y0 4)OV( 1) =0.27530-C2  C.1703F-01  =0,2667€~02  C.15876=02  C.28176-064
DYE 064 2)  =0.135SF=r3  0.11276-0€  =0.34676=04  C.1684F~07  0,1524E-02
OVE 6D8Y( 30 0.3C46E=C4  ColC25E=3C =0, 1528602  0.41266=N3  =0,1626E-A2
DYC THOYL 41 =0.23706-C2  9.24126-CT  €.16216-02  C.1600E=07  Q,1748€-02
OV BIOYL 5)  =0,1€266=C2  0.0T17F=C2  =0,17506=C2  C.6346E-03  =0,2359E-02
DY SI8VE 61 2.2245k=C2  C.ACZRE-Ce  0.25546-02  0,1598E-07  9.5264E-07
DYOICIOY( 70 =D.25556=C2  C.76686-00  =0,5265E-02  (2413GE=04
TROSS MCWENTS OF INPLT FOKCE AND VEZJ=104¥024),0Y124) "
1T RCKLE =34 1545E=¢ 3 Ue3202F €2

CelGALE-C]

P 5618 8206F A8
-0 1263 7553E-0)

0,1%237CE3E-2
0.43312226¢ 04

“0.3487 =04
“0.1014€-00
0,9619F=-08
“0,TITRE-02
“0.69626=01
-0,7677€~01

SR SR e

e wTRE o oW ma esTM

0.2306€-07
0,1621E-02
-0,22448=N2
0.25%54€-02

A .

E 4
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SETS CF EGUATIGAS HF SCLVING THE SYSTENV FARANETERS

ECUATICM KR SULVING 1T MASS SYST1ENM CUEFFICTIENTS
ColHESCRRCH=J2MNM ¢ ( (CoQGaBSICIE~11D9K o ( Co1)7217475=0700C = N,15430926F~C3
“Co217%4T120=32% ¢ (~Co1)1GELATE~CTINK o !;Gol!47785FE-O3D‘C »=0,19812799€=-01

“Co3CI596TIE COOV ¢ ( (L 1245CE0SE~CI)OK ¢ (=(o2CERCAGOE=NL)SC »=0,328L1AORLF 02
DETERMIANAATS Ne5467¢ 125F=1C |

- EQUATILAS WHEN CM IS KNCWA

Co4GaBSITIE=110K ¢ ( 0411721 747667000 = Neh6258064F=08
—ColLISELGIE=CTK & (=0, 1347TE5HE=-N3)0C = ~00 1N6EAG T4E=01]
DETEAMINMANT® =N ,53877143E=18 '

ECUATICA FUR SCLVING 2TH MASS SYSTEM COEFFICIENTS
Co2€ET454RE=Q24V ¢ (~C,139BESCE-CR)PK ¢ ( CoSSCIECHISE=DTIOC = 0,22745278F=04
“ColS5TIT12E=)2¢N ¢ (=Goa96C61LECE=CTIOK ¢ (=C426563624F=02)9C ==0,104L1E815E~0]

~Ce2TERL2A2E La4%V & | (o 26S8E22SE=T2)¥K ¢ (=0, 102116EL4E=0D)C = 0,79703196E€ 02
DETERNINNANT= CCeR5512921€-C¢

ECUATICAS WHEN CM IS KNCWA

=Ce)29829C2E~CBOK ¢ ( C,95NIELISE=CT)ISC = ~N.11%59€145€E~03
. ,=CaGB0AY I POE-LT8K 4 (=0,26663424E=02)0C = =0 1940CR41E-N]
DETERMINNANT = o Ue37798112F=11

ECUATICA FLR SCLVING 3Tk MASS SYSTEM CCEFFICIENTS |
ColSZRAS4BE=GZON ¢ ( 0,2123€SETE-CSIOK + ( 0, 727424C9E~CBISC = 0027716023F=03
~Co41Z5513MFF=030N ¢ (=(,72242CE2E6-CBIOK ¢ ( 0,97638374E=04)8C =N, h5547C96F=02
~CoT433I2625E 0T¢H ¢ (=CoSTE5CC4A4E~04)OK ¢ (=00 TSSICAISE-H2)SC ==0.12948482E A3
DETEKMIMNANT= ~Ce75561747F-12
EQUATICAS WHEN CF IS KNCWA

(o2123EGETE-CSK ¢ ( 0,72742406F=CAISC = 04157496 73€-03
~CoT2242052E-CARK ¢ ( 0,97636374F~04)9C = -0,65315912F=02
DETERMIMANT= C.2CTBT9RCF~12 |

ECUATICN FLR SGLVING 4Th MBSS SYSTEM CCEFFICIENTS | ‘
Col74973C2E-028M & ( (.185671626-CH)8K 4 | C.BE5SA2E49E-0710C = 0,22020365E-03
~Ce42463121E=034V & (=CoRE526524E-0T)9K ¢ ( CLECS2500SE-03)4C %=0,64767434F=02
=Co91604341F JI0F & (=F,BOOLZI24E=C)K + (~0.HC2(6463E=01)%C ==0,11486747F C3

st B

St kRl [
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:9w“mm“—l"nmW’N—T.ﬂm.nmnwmnmmmvﬁnmn—‘m‘mmmmm.—‘a-—ﬁtMsuﬂi-\-:AA ey i Sl
EQUATICAS WHEN (M IS KNCRWA

ColSEET1GZE=-CHOK ¢ | N AXSP2845F=0TI0C = Ne129259R6E~N3

=~ RER2LEZ4UE=-CTIK ¢ | D,BLG25EC5E-N3)9( = ~N.t45171816~02
DETERNIMNANT S Cel?2671927E~11)
ECUATICA FLR SCLLVING 5Th MASS SYSTEM CLEFFICIENTS ;

€.52654621 k=220 ¢ (~C.B4RCECLEE=CTIOK ¢ (=0,15683417E-0718C = 0,269015T6E=09
~Ca4130TS2GE-04%N ¢ (=CL1S9B241TE=CTIOK ¢ (=Co52€41622E~02)8C 5=0,4A125715€=02
“Ce63213226F 04PN & | Co52684621E-C2)8K ¢ (=3441387929F=04)8C =0.22406352E €3
CETERMIANANTS ~C.17877524E-C8
ECUATICNS WREN CM IS KNOWN

=CoRABOEELEE~CTHK ¢ (=0,159E3417E-NT)8C = “0s27133540F-05
~Ce 1598241 71E-CTOK ¢ (=0,52641622E-021¢C = ~0s47761505E~02 i
DEVERNMIMNAAT = Codéb044b605F=~CS é
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Do 02598999 28

teA30CCC L0t 32
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NuA2984670F CY
0.929%0341¢F N4
0aR299401 8¢ 03
0st3a153008 02

D A9NN0C0E 9)
£491000000F 70
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fy 99%00000¢ 00
€.99700900F 00

0197030126 €3
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§. Computer Program Abstract II

General Description

a) This program is basically the same as I except for
changes made to enable the input force to be read from a tape
unit instead of being simulated. The tape with the desired
input force samples 1s to be mounted on the tape unit with logi-
cal address 21 and consists of binary records. The first re-
cord should have 21 words with the 5th word being the number of
input force samples per second. All succeeding records should
have 1003 words with the first word being the record number
and followed by 167 blocks of six words. The first words of
each six word block should be the input force samples.

b) Output from this program includes the same output as I.

¢) Limitation of this program:

1) N, the number of mass, is limited to 10
2) NF, the number of input forcing function, is limited
to 1l and 1s the driving force at the first mass.

d) Required supporting subprogram

1) RKFOR
2) DERF
3) PAMSQT
4) XxsQ

5) XMONT3
6) LoC2
7) LocC3
8) COEF
9) RLMTX
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¥ e

Input Cards

a) Degree of Freedom Card

i

Col. 1 = 2 N = Number of mass for the chainlike system

b) System Parameter Card(s)

A card is used to specify each system parameter

. r.tam»em% i vt
G AN O B B

triplet (mi, ki’ Ci). N cards are then needed and should

be arranged consecutively from i=1 to N,

Col. 1 - 10 CM(I) - Floating point. constant for the ith

i; mass coefflicient

: Col. 11-20 CK(I) - Floating point constant for the ith
g spring coefficient

% Col. 21-30 CC(I) - Floating point constant for the ith
é, damper coefficient

;

c) Simulation Specification Card

Col. 1-10 NI - Number of samples to be simulated before
samples are taken for estimation of the
moments and the system parameters

Col. 11-20 NO = Number of samples to be used for estima-
tion of moments and system parameters

Col. 21-30 K = Only every kth samples of the equally-

spaced samples are to be used for

estimation of the moments and system

parameters.

S G W SR D G R e e N W e ey
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Col. 31-40 NORUN - Number of successive times the moments

Col. 41-50 INIT

Col. 51-60 1IH

and the system parameters are to be
estimated

Control index for how the samples are
taken for each successive estimation of
the moments and parameters

If INIT < 0, successive NO samples
(after the initial NI samples) taken

at every kth sample are to be used for
the estimation process.

If INIT = 0, system is reinitialized
each time. NO samples (after initieal
NI samples) taken at every kth sample
are used for the estimation process.

If INIT > 0, (after initial NI samples)
NO samples are used cummuiatively each
time; that is, NO, then 2 x NO, ... then
MORUN x NO are successively used for
the estimation process.

Index to change sampling rate of the
fandom force recorded on digital tape
by changing the time scale which will
also change the bandwidth of'frequency
spectrum.

IH = 0, the sampling rate of the input

force recorded on tape is to be used.
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IH # 0, the sampling interval is given
by HTEP
Col. 61-70 HTEP - Floating point constant for sampling

interval, ignored when IH = 0.

d) Repeét a to ¢ for a different choice of system as
many times as desired. A blank card after ¢ will cause a

stop.

Description of Supporting Subprograms

a) RKFOR (DERF, M, H, TI, YI, FI, K, N, F, VAL, DVAL, Y,
FOSP)

This Fortran subprogram generatea the solution to
a set of M simultaneous first-order, ordinary differential
equations by the classical fourth-order Runge-Kutta method

of integration. Where

DERF - Name of the external subroutine used to compute the
derivatives

M - Number of equations for expressing the system

H - Step size for integration

TI - Initial value of T

YI -~ Initial value of ¥

R N -

[ S ——
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FI

VAL

DVAL

FOSP

b)
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Initial value of F

The desired number of steps of size H between values
of the integrals to Le stored in VAL and the deriva-
tives to be stored in DVAL

The number of values to be stored in VAL and DVAL
Input forcing function values read from tape. On
the return, only every kth value will remain in the
array

A matrix of M by N containing the integrated value
of the M derivatives generated by DERF

A matrix of M by N containing the derivatives
generated by the external subroutine DERF

The final integrated value of M derivatives. An
array of M

The last value of F

DERF (T, VAR, FS, M, DER)

This Fortran subroutine computes the derivatives for

the integration subroutine RKFOR where DER(I), I=1, M are

the derivatives of VAR(I), I=1, M with respect to T, and

are functions of T, VAR and FS (input forcing function

value).
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¢) The descriptions for subprograms PAMSQT, XSQ, XMONT3,
LOC2, LOC3, COEF and RLMTX are given in Section 4.2,

Listing of the Main Program and the Subprograms

The main program and only the subprograms RKFOR and
DERF will be listed as follows since the other subprograms
have already been listed in Section 4.2.




OO ON

IO OD

PROGRAM TO SIMULATE N DEGREE FPFECOMZGNF DIMEASICNAL, SPRING MASS
AND DANMPER SYSTEM AND FESTIMATFE YHE COEFFICIENTS

READ FORCE FROM TAPF UNIT 21
DIVMEASICN CCO12),0KU10),CM(10), YI5007) 4DY(SLAN) 4 YE(20)

LE(2500) 2 BECULE) g EK(19) o EMOL1D ), YI(28),
2RECIE1OTIaSQLAN) 4 SUNMILINYN ,AMI15)4A13,2),B(3),/R(3,4) 4IN(2F)

B DYSQULN)YOY( TC) o SAT(4D) s SUMT (IR 9 XMT(15)9DYSQT(IN),¥YDYT( 79)

10

12
14

15
30

GeCEK(IO) o FECILD) oSQSHAN) ,SUMS(18),XMSI15),DYSQS(L10),YDYS(TD)
DOURLE PRECISION SQS,SUMS XMS,0YSOS,YRYS
FCUTVALENGE (RULILACL U o(RELGIARCED)

COMMON CCyCKoCM

FXTERNAL DERF

REWIND 21

READ(S5,500) N

IF(N) 400,400,8

REAC(5,45C1) (CMUT)oCKUTIHCCUT)yIm,N)
READ(5¢506) NIJNCoyKyNORUN9INITy THyHTER

REAC(21) 10O
INIYIALTZATION

[F{IH) 10,124,120

H=HTEP

GC TO 14

H=l0/FLOAT(ID(5))

NZ2=2%N

NF=1

MX=2
NSC={MX+1)%XN2=(MX*(MX+1))/2
NXNV=aBuNF
NXG=(2%MX+ 1) B N2={MX+1 )%&MX
JTEST=168

DO 3G I=14N2

YI(I)=0.0 ,
Ti=n.7 e e e e s
READ(21) COUNTy ((RECILaJ)ol=196)9d=1,167)

 FI=REC(1y167)

31
32

IFINI) 41,4131
LF=n | | : | ik
READ(21) COUNTo((REC(LyJ) sL=196)9d=1y167) = =0 -7 0w
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NG 36 Jd=l,167

LELF+l

FILF)=REC(Yyd)

IP(LF.ECNI) GO T 35

CONTIMUE

6GC T 22

JTEST=J+1

CALL REFDP(DPFRFoN2yH)TI oYL oFI g NI Y9FeYeNYoYF,LFE)
NG 4C [=14N2

- YICDy=YE(D)

TIaS , Y+ FLOATINT )H
Fl=FF

N 42 J=1NXM
X¥S(J)=0,0

-GN 43 J=1,MNSQ

43

44

45

455

46
48
49
140

50
51

1052
1055

1057
1059

SRS (J)=n,hn

DC 44 J=1,N2

NYSAS(J)I=0,.0

SUMS(JI=0G.0

DO 45 J=1,NXQ

YDYS(J)=0.D

NON=n

TIS=TI

IF((NO%* K)oLE.25ND) GO TO 4S
MNF=2520/K
ITFOINOXN2)Y.LELS50C87) GO TO 4¢
MN2= 5000/N2

[F{MNF=MN2) 46446448

o an

NIS=MNF

GC TC 50

NIS=MN2 e

GC T0C 59

ITF{I(NO*N2)LE. S0N0) GO TO 140 o

NIS= 500N/N?

GO TO 50 -

NIS=NO

NCS=NO o

LF=0 :

IF(JTEST.GE.168) GO TO 10E&S ' ‘ S it v

DO 1052 J=JTEST,167

LF=LF+] ' -

FI(LF)=REC(1,J)

READ(2]1) COUNTL((REC(LsJ)oL=196)yJd=1,167) - e

DO 1057 J=1,4167 -

LF=LF+]

FILF)=REC(1yJ) ' o -

IF(LF.EQ.(NIS*K)) GO TO 1059 ,

CONTINUE ‘ ST B T R e e e o bbbt et St it g

GO TOQ 1255 -

JTEST=J+1 i e

SINMULATE SAMPLES AND CALCULATE MOMENTS 7 7 0 7o owmem s
© O CALL RKFOR‘DERFQNZ,H{fIQYIQFx‘K'NIS'F‘Y’DY‘YE'FE’&M%f‘: 
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OO

6n

65
"

100

119

112
114

116

153

155

160

I PAGH

CALL PAYSDT Y s NP IS oMY, SATySUNMT, )
CALL XSGV aYeh2y I8 e MXeDYSQAT o YIIYT ()
TALL XUCS T gNE oY o DY o N2 9 MNISeXMT L)
NS5 =NTS

NO62 A=l oNSQ

SRS IJI=SOs L) #SCT(Y)

P ‘jt’}- J 31 ’ "‘;
AYSENSII=TYSAS(JII+AYSOT(J)
SUMS{JI=SUMS(JI+SUNMT(J)

N0 nh =1y NXQ
YOYS({J)=YDYS(J)¢YNYTLJ)

N 56 Jxl 4 NYM
XMS{J)=XMS(JYXHT(J)

NooRe JdslyN2

YI(JY=YE(J)

Fi=FF

TAN=N]S*X

NON=ACN+NIS

TI=TI+TN*H

IFINCS) 1904137,65
IFINCS-NIS) 77,451,510
NIS=NOS

GQ TO 51

N 11N Jg=1,4NSQ
SAQEJI=SRS(JY/FLOATINON)

NC 112 J=1yN2
DYSG(J)=DYSGQS(J)/FLOATY(NON)
SUMI=SUMS(J)/FLOATINON)
DO L1146 J=L 9y NXM

XMt J)Y=XNS{J)Y/FLOATINON)

DO 116 J=14NXQ
YOY(J)=YDYS(J)/FLOAT(NON)

WRITE VEHE MOMENTS

WRITF(64620) N

D0 155 Js1,N2

CALL LCC2(JrJdsK1gN2yMX)

J3=J+MX

IF(J3.GT.N2) J3=N2

CALL LCC2(J39JeK2yN2yMX )
WRITE(6962)) Jy (SQUJJ)9dJd=K1,K2)

WRITE(649622) (SUM{J)pd=19N2)
WRITF(649623) (DYSQ(J)gJd=19NZ)
WRITE(64628)

DO 160 J=1,N2

J3=J+MX

IF(J3.6TeN2) J3=N2

CALL LOC3(J3¢J09K2yN2yNMX)
J3=J=3 )

IF(J3.LT.1) J3=1 ;

CALL LCC3(J39yJoK1lyN2yMX)
WRITE(69629) Jed39(YDY(JJ) JJI=K1,K2)

WRITE(64626)
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20 Lo JslyNF

168 WRITE(O062T) JoXM(2%J=2) o XM (3%J=1) 9 XM(2%])
PCa,
PK:E.“

ESTIMATE THE COFFFICIENTS

OO0

G0 2087 I=s1yA
CALL COUF{IyNyNFySOyDYSQeYCYyXMyPCyPKyAyB)
T UMRITE(64674) 1
g ovry J=1,1?
17C WRITE(64625) (A({JelL)yL=14y3)4RB(J)

CALL RLMTX(Ry3919yMARKyDET 9=1)
EM(T)=R({144)

EK(1)=R(2,4)

ECLI)=R({3y4)

WRITF(64631) DET

IF{I.FQ.Y1) GO TO 175
PX=FFK{I=1)
PC=fREC(I~1)

175 CALL COEF(TyNoeNFeSQyDYSQyYCY e XMyPCyPKyA,B)
BUL)=B(1l)=CM(I)%xA(1,1)
R{lyl)=A(1,2)

R{142) = A(1,3)
R{1,3)=8(1)
R(2)=8(2)-CV{I1)%*A(2,1)
R{2,1)=A(2,2)
R{2+s2)=A(243)
R(243)=B1(2)
WRITE(64632)
DO 180 J=1,2
180 WRITE(E49623) (R{JyL)yL=1,y32)

CALL RLNTX(Ry291yMARKyDETy~1)
WRITE(H,621) DET
FEK(II=R({1,3)
EEC(I)I=R(2,3)
PK=FEK(T)
PC=EC(TI)

200 CONTINUE

WRI ., 1Y (ID{I)eI=1,8)
HK=FL..aT{K)aH
TIE=H*FLOAT{NCN)
WRITE(69603) HyTISoHKyNON L, TIE
WRITE(E646N4)
ne 333 I=14N

330 WRITF(64675) CM(T)EM{T)9CKIT)$EK(I)CC(I)LECIT)
WRITF(64634)
DG 335 I=1,N

335 WRITE(64,635) CKIT)9EEK{T)CCLY),EEGC(T)
NOGRUN=NORUN=L

A IS{NCRUN) 545,34

340 IF(INIT) 41,154,455
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LA SR AT R R O B

CuiorraesTEORL L)

B84 FUR OATLAF I o8 )

TS *a AT LT Va0 L )

6o f*"T‘lf PER ‘3"*” N s LY EX G, RIHIADLTY nrO TN CLASSIFICATIN
&‘il =.141 PX HHNY =y T2y AN, GMNG 5, 13/7/7210 SAMPLING FREQUAENCY =,18,2H0"
EP L, PRy IGHDATE UF EXDFRTIYNT @ I 2,10/ 912914 /,10)

STa §Ph~n7(7n' 3"5&"'? G IhTe FOR SIMULLATION =,F2,5/

CTELIRG, ’ﬁiT“Av3sf\7 INTe = yFlle?/

BOGZALHD yAGHSAYPLING [NT. FOR CALCULATING MOAVENTS =,FB,5/
6bO=3 T .4°HTﬂTﬁk N?. NECSAMPLES USFEDR FORF FSTIMATICN =,1A/
OHDP 34 IR AT MG INTERVAL EOR FSTINMATICN =yF10 o 2,3HSEC)
834 FORMAT(LIHNY ) 16X 3 4HM (1) y 24X g4 HKI T ) 934X AHCIT ) /3 (14X 4HTRUE 42X,
6NGLOHFSTIMATED, 2X))
6NS FOAMAT(IHN 3 (4X,2E17.,8))
627 FORMAT(IHL,43H2ND MOMENTS Y(J)IYIL)y L=J TO J¢3 (NR 2N) DF,13,
62N112H MASS SYSTEM)
621 FORMAT(IHN B4 2bY (412, 1H)y5F1l4.4)
62? FQR“AY(IH5913HF!§ST MOMENTS//(S5F20,8))
622 FORMAT(ILHOSECOND MOMENTS OF 2MD DERIVATIVES//(SE2N,R))
624 FORMAT(LIHO, 20HEQUATION FOR SOLVING,T12,27HTH MASS SYSTFM COEFFICIE
62417S)
625 FOFMAT(LIHY 93X yF15.806H®M ¢ (yF15.89TH)I*K + (,F15,8,6H)%C =,F]1§,8)
626 FOR: AT(\H”,5?HCRO\S MOMENTS OF INPUT FORCE AND Y(2d=1) oY (2J) o NY(?2
6261))
627 FOPMAT(INT, 3X 9 I12,8HTH FORCE93Xy3F14,4)
628 FORMAT(LIHN,S1H2KD MOMENTS OF DY(J)I%Y(L)yLmJ=3,0R 1) TO J+3(0OR 2N))
629 FPR“AT(QHﬂDY(vf?’4H)*Y(v(éle)9751“-4’
631 FORVMAT(14HICETERMINNANT=,E20,8)
522 FORMAT(31HD FQUATIONS WHEN €M IS KNGCWN)
633 FORMAT(1HD 24X, E15.8,6H%2K ¢+ (4E15.895H)%C =,E20,.8)
634 FORMAT(26HNESTIMATES WITH MASS GIVEN)
635 FORMAT(LIHN 38X 2(4X42E17.8))
4CN STCP
END

LR . - R e W Wt i e et ﬂ’ﬁ'
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SLEIUUTINE REFOR(OF: s T L eV I oF T oK ol o VALY VAL y Yo FOGN)
DIYERSTON Y27 )951(2“) 5?(25) S320)484(20) yDY(20),YI(22),
IVALIL)oF (1) oA(2C)EBVALIL)
NKx
12x Y 5%
T=T1
L =C
N 1N I=lM
12 ¥v(I)=syYI ()
FCSaF1
CALL OERFI(T,YsFCSeMyDY)
Ne 27 I=)4M
20 S1tI)=HAnYL])
DO A7 Li=1eN
RO A% JdslyeK
NKehK+]
FCSP=F(NK)
FCSA=(FCS+FQOSP)/2.0

CCMPUTE K SUB 7

25 DO 30 I=lu
30 Atl)=syY(I)eS1LTI)/2,
TAnTeH2

CCV”UTE K sSuUB 1
CALL CERF(TAyA,FOSAyM, DY)
DC 47 I=1,H
S2(1)=R#ADY(1)

40 All)=sY(I)+S2(1)/72.

CCVPUTE K SUB 2

CALL DERF(TAyA, FOSA, MgDY) J
NC 50 J=1,M
SA(1)=H¥DY (1)
50 A(l)=Y({I)eS3(I])
TA=T+H

CCVMPUTE K SUB 3
CALL DERF(TA,A, FOSP MyDY)
NQ 60 I=1,M

60 S4(1)=H*DY ()

T=T+H B
FCS=FOSP

'COMPUTE NEW VALUES OF x&reenAst
DO 63 T=1,M

63 v(x)uv<r)*¢sxx1:+2.*52(x)*z.*sa(ra+54(r;)/6.

- CALL DERF(T,Y+FOSy MyDY)
”GO 65 I=1,M

65 S1{1)=H*DY(I) Gk | | ,
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L=l ¢l
WALIL)=CY( )
™ VAL(L )Y =Y({1)
F{Li.)=FCSP
BC CCATINUE
LETURN
ENC

SURRCUTINE CERF{TyVAR,FSyVM,DER)

PURPCSF
AUXTLTARY SUBROUTIME WHICH CCMPUTFS THFE DERIVATIVES FNR THE
INTEGRATICN SUPRQUTINE RK:< 0
OF CNT DIVMENSICNyN DFGREE FREFCUM,SPRING,MASS,DAMPFR SYSTEM,
EXCITFD BY NF FORCES FROM MASS 1 T0 MASS NF WHERE MF L,LEGN
NDINENSICN VAR(2C)yDER(20)yCCIIC I CKI1C)CMI1D)
COMMUN CCyCKyCM
N=M/2
9 10 I=1,N
10 NER(2%]=1)=sVAR(2%])
IF(N=2) 50,415,518
15 DER(2)={CK(1)/CM{L))*(VARC2)=VAR(I))+(CC(L)/CM(L))I*(VAR(4)=VAR{?2}}
i ' +FS/CM(1)
IFIN.EQs2) GO TO 32
NlsN=1
DC 25 I=324N1
DER(2%I) =(CK(T)/CMIT))R(VAR(2%T+1)=VAR(2¥[=-1))
1 +(CCUI)/CMUI) IR(VAR(2%T+2)=VAR(2%7))
1 = (CK(T=1)1/CM( 1)) (VAR(2%]=]1)})=VAR(2%]~3))
1 ={CCeI=1)/CM{I) )% (VAR(2%]) =VAR(2%1=2))
25 CONTINUE ‘
30 DER(2¥N) me (CKIN)/ZCMIN) YXVAR(Z2¥N=1)=(CC(N)/CM(N) ) *VAR{2%N)
1 “(CKIN=1)/CMIN))X(VAR(2¥N=]1)=VAR(2%N=3))
1 =(CCIN=1)/CMIN) I H{VAR{2¥%N) 'VAR(Z*N-2)3
GC TO 1300
50 DER(2)==(CK(1)/CM(1))I%VAR(])~ (CC(I’/Cpll))*VAR(2)+F5/CM(1)

1000 RETURN

~ENC
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I
Input Cards and Output Tabulations for s Ssmple Problem

The sample problem is to simulate a five-mass system
whose parameters are

s bt

m =my = ...=mg® 0.66667

Ky = ky = 9.3 x 10°, k, = ky = 8.3 x 10, kg = 530

01-03-009, 32-cu.109, 05‘0.1

< The system is to be driven at mass No. 1 by a random force
; % that has been digitally recorded on a magnetic digital tape.
! ’ 3500 samples abe to be simulated and used for estimation of

 b) Sample Output

Aé the moments and the system parameters.
,i a) Input Cards
| ( Col. 1 6 11 16 21 26 31 36 41 46
F'“ I I e e e L S T T T ey T S T S S S S T T
fl_n‘ 0.666666 930000.0 0.9
(. 0.666666 83000.0 1.9
al 0.666666 930000.0 0.9
: : 0.666666 83000.0 1.9
| 0.666666 530.0 0.1
E R 3500 1 1 1
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% MASS SySTem

Y6 6 0.2772 (6 0,1293¢-09 0,2763E~08 N:1461E«ID
vt 2} G.la39F-02  =0,1330E-C7 0.,1154E=02  =0,1070E<Nh
Yt 3) 0.278)E-06 Jel239E-0n 0.254%E-06 e 1NBOE<06
vt oe) 0el276E<C2 <0, 1CA3E-G8  =0,50786-03 =N,)0796=06
(T Y) CGe2629E~00 0.1 136E~08 0,2632E-06 N.A791E-00
Yi 6) 0e6111E=CY  ~0,5421F-C8 0.,63276-03  =0,59C0F=Q7
Yt 1) Co2626E-r6 Dele3ee-ch N,26336-06 ND.66CIE-DT
Yt a) 0.666TE~L3  =0,6528E6-07 0.1720€-03
vt 9) D.2821E~CH 0. 1806E-08
veny 0,2%16-C2
FIRST MOPENTS
~0s07754540E-03 0.11294784F-04 “0.171063726~03 n.ll!!alis!-oq N, L76798066-02
0.18132111€~04 “Co176693346-03 N.,178100)2E~-04 0. 1756670760) 0.42849763E-0%
SECOND MCMENTS OF CERIVATIVES
C. 13035019 03 0.127604486-02 0.1130451%€¢ 03 0.63112563¢-09
£.66660891F~03 0.10890906¢ 73 0.25668878€-02 0.301021939¢ 03
2ND FTYERTS GF DVEJIIOVILI ) Led=3,CR L) TC Jo3{CR 2N)
ove 1reve 1) 041293-09 0.1039E-02  -0.,1330€-07 C0e1354€-02
OY( 20@¥( 1)  =0.14426-02 0.1254E=02  =0l.13586=02 =0,12)8E<02 Cub3967-03
‘oYE 3deve 1) 0.1461€-07 0.13%E~02 0.1239E-08 0,1276E~02  ~0,1080%¢-06 =0.%5076€6-02
Ove 4deve 1) -0,.1384E-02 0.23986-02  -0.1276€-02 Ce296TE~04 0.5066E~03  ~0,1880¢-01 0.61840=03
DYL S:0V( 21 <-0.%6D6E~C) C.1CO6E~CO  =N,5076E-03 0.1739E~08 0.61116-03  =0.5621£-08 0.83278-03
oYL e)evy 3) 0,30776=-03 D.19246~01  ~0.6)12E-03 C.15626~0% “0.6328E-03  ~0,1147€-02 -0.2920¢-09
OY( 7)0V( 4) =0.6193E~03 0.8791E~8 0.63276-03 0. 1630€=-08 0.66676~03  =0.65206-07  0,17288-9)
OVl 8)ev( S) -0,6327€~02 DeleG4E~02  =0.666TE-03 0.,1930F=0%  «0.1728E-03 «0.1019¢~01
oYe siev( 6) 0.29626~05  0,640% =07 0.1720€-0) 0. J804E=08 0.256T€E-02 ’
DY(10IeYL 7))  ~0.1719€-03 OeVTESE-02  ~0,2367E-02 0.8371£-03

CROSS MOMENTS OF INPUT FORCE AND YE2J-10,Y(2J),0Y42J4)

1TH FORCE
EQUATION FUR SOLVING

=0.2719E-04

0. 1340E~0)

1TH MASS SYSTENM COEFFICIENTS

C.B641E C1

Coleb2LT41E-0201 ¢ (~C,10046115E=T8)8K ¢ ( 0,14478014E=07)6C = 0,27191465€=04
*

“0, 125486 15E-020M ¢ (=C,13426046E-07)0K ¢ (~0.83649829936=04)8C »-0,132699926=01

l
|
I
I
i
I
i
1
| sl
1
i
1
l
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I
1
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«CelICINALBE DISM ¢ | CoROISBBE2F=DG)OK ¢ (=N, 246BT601E-D2)00 s=0,066080]12¢ N}
DETERAINNANT ~N.786968%2F~-12
EQUAT LGNS WHEN CM IS KNDWN

~ColOCGLOLISE~CAOK ¢ ( 0, 140780 14E=-NT)0C = «0.93425793E-N)
=Co13620846E-Q7¢K ¢ (-0.,84582993€-08)¢C » ~0.12953098E-01
DETERMINA ANT = 0.85167640F-13

EQUATION FCR SOLVING 2TH MASS SYSTEM COEFFICIENTS
0.127585E5€~2204 & (=-C.2CR093BLE-CTIO®K ¢ ( 0, INTISTT2E=-NG)OC =-0,07616081F~03
=0:29672290E-04%M ¢ (~C,109%5699T7E~LOIOK ¢ (~0.17B3613CE~02)0C =-0,125029006-N1
=0,11301518€ J30M ¢ (| C.170249GBE-C2)0K ¢ (=0,18831564CE-01)¢C = N,72543009F 02
DETERNINNANT= -0.1237C26C7€-C6
EQUATIGNS WHEN CM 1S KNONWN

~0.208093S1E-CT8K ¢ ( 0.1"T73STT72E~06)¢C = ~0.172694R1F-02
“Ce109%69S1E=CO®K ¢ (=0,17836130E-02)8C = “0.,1264R03154E~01
DETERMINNANTSs Ne37127664E-1C

EQUATION FCR SULVING 3TH MASS SYSTEM COEFFICIENTS
0011 22148E-030M ¢ | C.I059AL12E-09)8K ¢ { 0,7051797CGF-08)%C = 0,691 76084E-N)
=0.15610435€E-03¢M ¢ (=C.71601526E~08)¢K ¢ ( 0,21573403€E~04)0C =-0,67372260€-02
=C.10925123F 03eM ¢ (~0,21504848E-0418K ¢ (~0.13034393E~02)eC «-0,92868278E N2
DETERMINNANT» =0443641966E-12
EQUATIONS WHEN CM IS KNOWN

Ce305G8812E~CI9%K ¢ { 0., 7I51797CFE-0B)eC = N.286457380E-03
~Ce71601526E~08%K ¢ ( 0.21572403F~C4)8C = ~0.06392084E-02
DETERNINNANTs C.€6516971E~-14

EQUATICN FOR SOLVING &TH MASS SYSTEM COEFFICIENTS
0.6666898T7E-038M ¢ (~0,30219737€~06)8K ¢ ( 0.623891GCE~0TI*C = 0,41936446F-03
“0419300176E-038M ¢ (-C,66918778E-CT7)0K ¢ (-0,49393757€-03)9C =-0,66120585E-02
=0.1089C906E 03*M ¢ { (C,49390024E-03)0K ¢ (=0,10385732F-01)¢C =~0,31620084€ 02
DEVERMINNANT = 0.14636974F-09
EQUAT LONS WHEN CM IS KNONWN

“0.30218737E~-098K ¢ ( 0,623689190F=-07)¢C = ~0e24957123E-04
~0.66918778E~CTOK ¢ (-0,49393757L~C3)¢C = ~0.64924011€6-02
DETERMINNANT= 0.15344165F-12
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EQUATION FUR SOLVING 5Tk MASS SYSTEM CCEFFICIENTS
0.25667722E~020M ¢ (-0,2R8213]14SE~-COIOK o (=0,10038338E-NB)8C s N,1%610810€~-02
«0453710299E-030NM ¢ (~C.18038338E~08)0K ¢ (=0,.25660076E-02)0C o=0,064380160F-0)
=0637021939E 030M ¢ ( 0,2%667C22E~N210K ¢ (~0,53710290E~03)9C »-0,19871689¢ 03
DETERMINNANT= =0.200508108€6-06
EQUAT IUNS WHEN CM IS KNOWN

~C.28213149€E-06%K ¢ (-0,1R038338F-CH)¢C » =0.,14994060€-03
=Co100308338E~CB®K ¢ (-0,2%6680876E~02)¢C = ~0.2%50874069€-03
DETERMINAANT = 0e72419984E-0S5




EXAPERIMENT MO »
SABPLING FREGUENCY =«

TRANSEENT INT, -

TEME INTERVAL ¥R ESTIMATION =

wit)
TRUE

0.5666066606¢ 00
D.bt0LBL6GE 00
0.6684b066E 09
0.668680660€ 00
Vebb668660E 00

SARPLING INT, FOR SIRULATION = 09,0014

TOTAL NO. CF SARPLES USED FOR ESTIMATION =

ESYIMATES miTH MASS CIVEN

SAMPLING IhT. FOR CALCULAY ING NOMENTS = £.0014)

1568
2 INFUT SPECTRUN CLASSIFICAYION » NY »
700CPS CATF G+ EXPERIENY - AY/)3/71)
1500
9.0084¢
kil
ESTIRATED TRUE ESTIMAYED
C.06650717C GO 0.9299%9999¢ 06  0,9297560aE
O,h06062989%¢ 0OC 0.82999999% 05 0.02963)008
C.606360%CE 0O 0.,492999999¢ 06 0.92944 1208
D.t664274¢¢F €0 0.02599989¢ 0%  0.0297121 %8
Cot0641%04L CO N.53000N00¢ 0) 0.529020408
0.92999999¢ 94 0.92990238€
0.82999999¢ 09 0,82998689¢
0.92999999F 06 N, 92999488¢
0.82999999F 0%  0,A29782)32¢
0.,%30000C0F 03  0,5)145%3082C

ue
(] ]
e
03
03

ND Q00

e
TRUE

0.92000000¢ 00
9. 19000000¢ ¢}
0.90037000€ 09
2.19000000F 0}
0.,09%9999%¢-00

0.9000900CF 00
0. 1900000GE N1
0, 90000000¢ 00
0, 1 9000700F 0}
9,09999999¢-n1

ESTINATED
0.9417%029F 00
0.1992228 7 01
0, 10704844¢ 0}
0. 180600528 O}
0411177024800

0, 9D28TTH2E Q0
0.1%000702¢ £
Q. 90931174 0O
0.10022029C 0}
D.973015001+ -0}
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4,4 Ccomputer Program Abstract III

General Description

This Fortran program simulates the two-dimensional,
six degrees of freedom system shown in Figure I b and whose

equation of motion, after change of variakle, 1s given as

[ ] - \
Yo1-1 ® ¥2u
2C 2k 2C 2k £
N § o1 3 - 3 - 1
Yo my Y2 my I + my (y8 y2) + my (y7 yl) + my
2C 2k 2C 2k £
Yy == m Yy T w3 + ™ (¥10-¥y) + ™ (yg-y3) + ms
. 2(Clb2+02a2+c3 2+Cue2) 2(k1b2+k2a2+k302+kuez) ﬁ
Y6 = - I, Ye ~ I Y5 1
2{0 i + Cye2) 2(K.ed + Kye2) Y., + I3 }4
+ eu ye Y.. + "3%¢ y 11 i
3 . 12 _ i
I, I, 1 MU, b.1) 1
2C. 2k f 4
’ Z - -_é. - - ...._3. - ...9. 'f'
Vg m, (yg=v,) ™ (yp-y1) #+ o )
;
' “%y 2k, fs i
Yip = - -ﬁ; (ylo-yu) - —55 (y9-y3) + 55 %
, 2(C3d2+cue2) 2(k3d2+kue2) E‘
Yo = - 1, Yi2 - T 1, Y11 1
” 2 2 ;
(C3cd+cue ) 2(k3cd+kue ) f6 |
A S V¢ ¥ 1, Y5 7 1, )
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From the simulated egually-spaced samples of the
system dynamical outputs yJ, 93, J=1l to 12 and the system

inputs ri, i=]l to 6, the second moments or time averages

of Y4V ﬁJyk, ijd, f4¥54.1» £4¥oy» 2nd £,y,, are computed
and the system parameters m, Ii’ k21_1, k21, 021_1, 021

for i=]l and 2 are estimated.

b) Outputs from this program include:

l) Sample moments or time averages of

Yy¥y 5 J=1 to 6u; k=J, ..., (J#7) or 12

Yg¥p ¢ J=1 to 6N ; k=(§=3) or 1, ..., (J+7) or 12

yJ 5 J=1 to 12

f1y21_1 , f1y21 and £,¥5y ; i=]l to 6

2) Sets of simultaneous equations for solving each

set of system parameters.

3) Tabulation of true parameters against the estimated

parameters.
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¢) Required Supporting Subprograms

1) RKD

2) MULVEV
3) MULFOS
4) PAMSQT
5) XSQ

6) XFOT
7) Loc2
8) LOC3
9) RLMTX

Input Cards

a) Number of Mass Card
Col. 1~2 N -~ Number of mass for the two-dimensional

systen (N=2).

b) System Paramecer Card(s)
A card is used to specify each set of system param-
eter (mi, Ii’ kpy_1> koys Coyqs 021). Therefore, N(=2)

cards are needed.

Col. 1-10 CM(I) - Floating point constant for the ith mass
coefficient
Col. 11-20 CI(I) - Floating point constant for the ith moment

of inertia
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Col.

Col.

Col.

c)

Col.

Col.

Col.

Col.

Col.
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21-30 CK(2I-1) - Floating point

coeffici=nt Iin

31-40 CK(2I) - Floating point

coefi'icient in

41-50 CC(2I-1) - Floating point

coefficient in

51-60 CC(2I) - Floating point

System

1-10 A

11-20 B

21-30 C

31-40 D

41-50 E

coefficlent in

Dimension Card

constant for the spring
one direction

constant for the spring
the other direction
constant for the damper
one direction

constant for the damper

the other direction

- Floating point constant for the distance

between C. G of Mass 1 and the spring-

dashpot unit (k2’ 02).

- Floating point constant for the distance

between C. G. of Mass

dashpot unit (kl, Cl)'

1 and the spring-

-~ Floating point constant for the distance

between C. G. of Mass

dashpot unit (k3, C3).

1 and the spring-

- Floating point constant for the distance

between C. G. of Mass

dashpot unit (k3, C3).

2 and the spring-

- Floating point constant for the distance

between C. G. of Mass

dashpot unit (ku, Cu).

2 and the spring-
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d) Number of Input Card

Col. 1-2 NF - Number of input forcing functions (NF=6)

e) Input Forcing Characteristics Card(s)

A card is used to specify each input forcing function

characteristics. NF (=6) cards are needed and they should be

arranged consecutively from I=1 to NF (6).

Col. 1-5 NVEC(I)

Col. 6-10 FOST(I)

Col. 11-15 FW(I)

Col. 16~-20 FB(I)

Index for application of forcing

function fi

A

If NVEC(I) < O, fi is not applied
If NVEC(I)

v

0, fi is applied to mass 1
Amplitude of sinusoid input of the ith
force, or the standard deviation of the
white noise input to a bandpass filter
whose output is the ith input force.
Frequency (cps) of the sinusoid func-
tion or center frequency of the band-
pass filter for the ith input

Phase shift (in degrees) with respect
to t = 0 of the sinusoid function or
bandwidth of the bandpass filter for
the ith input.
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f) Simulation

Col. 1-5 FREQ

Col. 6-10 NI

Col. 11-15 NO

Col. 21-25 NORUN

Col. 26-30 INIT

164

Specification Card

Sampling frequency for simulation of the
system. The simulation interval is then
1/FREQ.

Number of initial samples to be simulated
before samples are taken for estimation
of the moments and the system parameters.
Number of samples (after initial NI
samples) to be used for estimation.

Only every kth sample (after the initial
NI samples) of the equally-spaced (of
interval 1/FREQ) samples are to be used
for estimation.

Number of successive times the moments
and the system parameters are to be
estimated.

Control index for how the samples are
taken for each successive estimation.

If INIT < 0, successive NO samples (after

the initial NI samples) taken at every

kth sample are to be used for estimation.

If INIT = 0, system is reilnitialized each

time, NO samples (after initial NI samples)

are used for estimation.
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If INIT > 0, (after initial NI samples)
NO samples are used cummulatively each
time; that 1s, NO, then 2 x NO, ..., then
NORUN x HO samples are successively used
for estimation.
g) Repeat a to f for a different choice of system
parameters as many times as desired. A blank card after f

will cause a stop.

Description of Supporting Subprograms

a) MULDEV (T, ¥, F, N, NF, DY)

This Fortran subroutine computes the derivatives
as given by equation 4.4.1 for thes integration subroutine
RKD where DY(I), I=1, N are the derivatives of Y(I),
I=l, N with respect to T, and are functions of T, Y,
and F where F(I), I=1, NF are the input forcing values
at T.

b) MULFOS (T, FOS, NF)
This Fortran subroutine generates the input forcing
functions to the system for the Integration subroutine RKD,
where FOS(I), I=1, NF are the values of the input forcing

values at time T. A subprogram for sinusoid input and

ot P i e Sl

At

N s 8 L L e e
.
¥, o
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another for random input are included.
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The user can use

either one as desired, and only one 1is to be used at a time.

d)

XFOT (A, NA, NVEC, B, C, NBC, O, XM, ID)

Thlis Fortran subroutine computes sums or averages

of product between variables of one vector and variables of

two other vectors, where

NA
NVEC

NBC

NO
XM

ID

Sample matrix of NA by NO of one set of vectors
Number of variables or length of vectors stored
If NVEC(I) > 0, then the ith variable of vector
stored in A 1s greater than 0.

Sample matrix of NBC by NO of the second set of
vectors

Sample matrix of NBC by NO of the third set of
vectors

Number of variables or length of vectors stored
B and C

Number of vectors

Sums or averages of products of variables A(J)*¥
B(2J-1); A(J)*B(2J); and A(J)*C(2J); J=1, NA
Control index

ID = 0, computing sums

ID # 0, computing averages

in A

in
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e) The descriptions for subprograms RKD, PAMSQT, XSQ,
LOC2, LOC3, and RLMTX are given in Section 4.2.

Listing of the Main Program and the Subprogram

The main program and only the subprograms MULDEV,
MULFOS, and XFOT are listed since the other subprograms

have already been listed in Section 4.2.°

BRI
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FRCCKAK TG SIMULLATE MULVICENENSICNAL 2 MASSoSPRING ANU DAMPER
SYSTEN AND ESTINMATF THF PARAMETERS

CIFENSICN CClA)CK(4) CM(2)CIH(
1F (2400 )9ECTL 4)EKL &) oEM(2) o VI
ZVCSYL &)DE(8), SC(BC),y SLMUZ FILE) R(3¢4)
3,0YSC(20),yYOY(LaG)oSAT(BC) »SLNT P XNTL3C) o DYSQT(20) yYOYT(140)
4o015(3,6)9E0(6)y SUMSI20) 9 XMS(30)9SQS(EQ)OYSQS(2C)YDYSI14G)

CCUBLE PRECISICN SCSeSUNSyIVMSEHLYSTS,H,YLYS

CCVNMCN CNyCI9yCCoCKoDsNVEC FCST o FUHoFR,CIS

EXTERNAL MULCEV,MULFCS

E)FSLE),
2C)sEI(Z)yNVECIE) 9FN(6) 4FBLE)
CloxNM(3T)
(eClox¥

5 REAC(5,5CC) N
IF(N’ ‘4C0,40C,8
8 Rlbf()vﬁCl) (CM(IY)oCI (L) sCK(ZOI=1)CK(2®I)CCL2%]=))CC(2%]),
1 [21,N)
REAC(S54+5G01) AyR2yCyCHE
REAC(5:503) NFo(NVECUII)oFCSTUI)oFWlIDoFRII)oI=m]oNF)

REAC(54506) FREQoNIoNO9K oNCRUN HIMNIT

INIT .GT. € ALL SAMPLES USEC FCR SLCCESlVé ESTIVMATICN CF MCMENTS

INIT .EQe O EACH SUCCESIVE RUN 1S REINMTIALIZED

INIT LT, C NC SAMPLES USEC FCR SLCCESIVE ESTINMATICN CF MCMENTS

INITIALIZATICN

CO(L)=(B#B)%CCL)+(ARAISCC(Z1+(CHCISCCI2)+(E*E)*CC(4)
£0(2)=(B*B)5CK(1)+(A%AIRCK (2)+(CHCICK (3 )+ (EFE)*CK (4)
CL(2)=(CH0)%CC(2)+(EXE)*CC(4) :
CO(4 )= (CHD)RCK(3)+(E*E)RCK(4)
CO(5)=(0#0)*CC(3)+(EXE)*CC(4)
CC(E )= (CHDI*CK (2 )+ (ESE)*CK(4)
 F=1.0/FREQ |
N2mE&oN
. N222
IF(N2.LE.6) MXaN2-1
CO 10 [=1,NF
IFINVEC(I).LE.O) GO TO 10
BH=¢ . 283185%FB (1)*H
WO2FW([)8Fh(1)=0.25%FB(I)*FB(])

T IF(WCelTedel) wWEL==kD

Wh=€.283185%F%SCRT(WD)
CIS(191)=2.0%CCS{WD)%EXP(=CsEBEH)
DI1S(291)s~1,0%EXP(=1,0%BH)
LIS¢3,1)=Bk

10 CONTINUE

. wm,aa arzie s oxw

q NSGE (MX+1)NZ= (MVX*(MXe1)) /2"

AXV=3RNF

“'&NxcgQZQPXOIl*NZ*‘MX’I)‘Mx

IF(NSC.GT.80) GC TO 35C ~ * .
CIF (NXM.GT.30) 6O T0 350 ~ 7
IF(NXQ.GT. 140) 60 YO 35¢
15 €0 30 I=1,Nz 7" s

Y(48CC)oDY(SRCG) 4y YE(2D),

[ N — il -
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30 YI(D)=D .8 B s TR e SO i 5
Ti=sZ .0 " S Coe et T Tend
CALL PULFOS(TIoF IoNF) - B R AR 1o £ 2 1 ¢

4 IFINTLLELQ) CC TC 41 ~ »§~.1vu«~_

» CALL KKC(MULCEV, NULFGSoNZ.AFoﬁvc,0o¥!pfxoﬂlolofyvtﬂwsxgb R ok Ok

~ CC 40 1al,N2 : . | R LA

4C YI(I)=mYE(]) L S ey '};gé?ﬂf{,

Tis FLCAT(NI)®H LT T T R e T O R
41 CC 42 J=1,NXV : L T e g
42 XMS(J)=u.0 - S T X et
| DC 42 J=1yNSC e T 'dfigﬁ”ffﬂ“‘
1 43 SCS(J)'O;G ) S R ~zﬁ?f
| CC 44 J=1,N2 . S AT 0 SR
CYSCStJI=G.0 T T LR k'3 "““""",
44 SUNS(J)=0.C I SR A S
CC 45 Jsl,NXG | “ R e At S v S
’ 45 YDVS(J)mi,.N . = SRR IV A
: NGA=§ ' § e T L s e
11S=T11 " IR U ST R
"455 IF((NC®AF) LE.240C) GQ TO &S ~~ <7 77 " - = 0 oromemem
MNF® 24C0/NF T TR
IF((NC*N2).LEL48CO) A0 YO ¢ -~~~ 7%
MN2s 48G0/N2 o s
"IF(NNF=MN2) 46946948 T L A
46 NIS=MNF P S S0 e
'Y %0 10 50 . . et
48 NIS=MN2Z o L RO R L
GC 1C 50 . P SO A e
i 49 IF((NC*N2).LE. 4800) 60 10 140 T ik k
, . NIS= 48CC/N2 T A R ]
GC 1C 56 o - SEalLt LT R B e
“14C N1S=NC o R A
50 NCS=NC
51 CALL RKDlMULBEVpMULFOSvNthF;ﬂ,TngIvFngoNISQ’QY|
CALL PAMSQT(YyN2yNISsMXySQToSUNTH0) e T
"CALL XSCUOYoYeNZoNISIMX,BYSCToYOYTHE) " ‘
CALL XFCT(F, nr.nvec.v.ev.ua.N:saxat.e) S A
o N C S NG S§=NTS el ?ﬁf*f?‘ff”f,;.,
CO 52 J=1,NSC el T e e T R
0 B2 SQS(J)mSCSIJIHSCT(YY T ’j£7¢fffﬁ%‘*ﬁf’“ :
| DD 54 J=l,h2 - AT T My
cvscscatasvscs(J)oDYSQT(J) O 0 A A
54 SUMS(J)=SUNS(J)¢SUMTII ) I R N
e b B e 5wy e N cc 55 J.l N‘XC s C e irkfuanwv::/« «Invwm;if»f?
55 vovs&a)aVDVSCJ)nVDVI(J: SN e T
Tt 00 56 JELGNXM l;ﬁ?g“]
56 XMS(J)=XNSIJI#XMTEIY 0
7 00 8B gale: aw;4n¢<?ff;?’
58 YI(J)wYE(JY o
e s N C NS NONN § T T e s
‘TN=NIS®K L
60 FISTISIN®H © =~
| 1FANCS) 1&8.106:65 -
i 65" IF(NCS=NIS) 70,51151
: 70 NISsnGS -
””"”""“””GQ"TG'SL i

Lo i p o ewerm owe T e o we B T 5o m paw w da  w
¥ . .

e
-

o o

L

St g

e el
gL =

S T T e

-\rf’
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112
114
116
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16C

16¢

173

175
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WRITE THE MUCMENTS

CC 110 J=1yNSQ
SwlJ)=SCSJ)/FLCATINCN)

CC 112 J=l ke

CYSCUI)= YSUS(J)/FLOAT(NCN)
SUNMIJIsSUMSIJI/ZFLCATINGN)

CO 114 Js)loyNXM
XMUJ)=XVMS(JY/FLCATINCN)

LG 11E JIs)lyNXGQ
YCY(J)sYLYS(J)/FLCAT(NCN)
WRITE(E ENE) N

nRITE(69€22) (SUMIJ)eJdmlehg)
WRITE(E,€20)

CO 158 J=]l,N¢

CALL LCC2(JyJoKigN24MX)
JisJeMX

IF(J3,CTN2) J23N2

CALL LCC2(J39JoK29N29MX )
WRITE(EYE2)) Jo(SQUJIJ) yJJImK]gKE)

WRITE(Go€23) (CYSQUJ)odmloNg)
wWRITE(6.€26)

0C 16U J=lyNZ

JizJeMX

IF(J3.CTeNE) J2=N2

CALL LCC3(J39JeK29N2yMX)

J3mg=MX

[IF(J3.LT.1) J3i=])

CALL LCC3(J3eJrK1lgN2yMX)
WRITE(E9£29) Jod3g(YDY(JJ)pJdJdasK]lK2)

WRITE(E,E2€)
CO 165 J=lNF
WRITE(&9€27) NVEC(J)y XM{29J=Z) gy XM (38J=1) 9 XM (3%J)

ESTINATE ThE CCEFFICIENTS

[F(NVECL4)) 172,172,175
IF(NVEC(S)) 17S,41750185

FCR F(4).GT+ ¢ CR BOTH F(4) ANC F(Z) JLE.O

CALL LCC2(8,y79K19N2yMX)
CALL LCC2(Ty29K2eN2yMX)
R(lyl) =SG(K1}=SQ(K2)
CALL LCC2(8y19K24N2yMX)
R{Zs2) =SQ(K1)=SC(K2)
CALL LCC2(7974K1oN2,MX)
CALL LCC2(7419K29N29MX)
R{l92) =SG(K1)=SQIK2)
CALL LCC2(E898yK1pN29MX)
CALL LCCZ(8y29K294N2yMX)
R(zZel) =SQ(K1)=SC(K2)
CALL LCC3(7,&9K1yN2yMX)

PAGE 1S POOR
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:‘f‘ ;;'a:"i,;: iﬁ _:__x~' . f’\_"; g ki 9 ANy N
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o OO0 f f .
, 3 :
. B} .! : a
‘ : : . H

R L e R R

»

LA - AT T LA A I B AWK

R(2,2)=SQ{K1)=SC(K2) LT
CCALL LCC2{ S99+K1gN2yMX)

"CALL LCC2I1 G¢34K24N2oMX}
'R(le)‘SQ( YVi1=SCQ(K2)

" CALL LCC2(10y 4y KA'NZaN$)

"CALL LCC3(1041CsK2,N24MX)

PR lﬂca NPT R0 5l S T e - reris e A S A gt N

AT ANY

{ CALL LCC2(B, &, K2 N2yMX) . 171
i . IF(NVEZ(4) oLELC) GO TO 16C
d c
1 C FOR F(4) oCGToe Uy ESTIMATE C(23)4K(3) ANC M(Z) FIRST
k C '
1 | RU1y3) =0 5%YLY (K1)
. R{293)=C5XYLY(K2)
k CALL LCC3(1pEsKI N2y MX)
? 7,2)=YEY(K1)=YCY(K3)
! CALL LCC2(29E4K2gyN2yMX) -
] R{2y1)=YCY(KZ)=YOY(K3)
| R(393)=Co5%DYSC(B)
; R(1ly4)=0.5%XN(1C)
! RU294)=0,54XM(11)

R{3y4)=sC.5%2XNM(12)
J=3
=2
WRITE(E9824) Jedyl

 WRITE(69625) (LR(LyJ)sdmled)olal,3)

CALL RLMTX{R2,1,MARK, DET,-I)
WRITE(69€31) DET

EC(3)=R(1,4)

EK(3)=R(244)

EM(2)=R(2,4)

GO TC 185

Flal ANC F(5) ARE BOTHVO' ESTIMATE CALY C(3) AND K(3) WITH M(2)
GIVEN

R{ly3)==0,5%CM{2)%YDY(KL)
R{(Z293)==D, 5*CN(4’*YDY(K¢3

J=3

WRITE(Ey610) Jod

WRITE(6|633) ((RILyJ)oJmly3 ”L' v2)

CALL RLNTX‘R)Z'I:MARK CETQ”!,

WRITE(6,631) DET T e
EC(3)=R(143) ,

EK(23)=aR(2,3)

CALL LCC2(10999K1gNZoMX)
CALL LCC2( S94K29N29MX)

R(1y1)=SCIK1)-SCIK2) S
CALL LECZ(1043,K2yN2¢MX) \

“CALL" LCCZ‘IS lﬂgKI'NZ'MX’ ‘M”NVWMh@umw%hw-hd:; D e g

R(291)3SQ(K1)=SC(K2) .
CALL LCC3(Sy109K1yN2yMX)

IF(NVEC(4) oLE.S) GO TO 150

'Q‘.\ i
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C Fl4) «GCT, O ESTIMATE C(4)~ﬁhc K(4) -
c ~ R | ;
R{Le3)aC 5% XV(13)=-YDY(KTI)SENM(Z))
R(2¢3)7CQeom(XNM{14)=YDY(K2)¥EM(2))
J=4
: WRITE(6,610) Jyd

. thTE(é.\SB) (lR(LpJ)oJ‘le) Lz1,2)

abdacies:

CALL RLNTX(KyZy1oMARK;CETy=1) - N
WRITE(&,631) DET | | . : ]
i ECl4)=R{1,3) ,

1 EK(4)8R(2,y3) _ - | ,
. GC TG 25C | |

[9C IF(AVEC(5).GT.C ) GO TG 21¢C

BOTH F(4) ANC F(95) ARE 0, ESTIMATE C(4) ANC K(4) WITH M(2) GIVEN

OO0

R(1.3)2-“.5*CN(2)*Y0Y(K1)

: RUZy3)s=0.5%¥CNM(2)*YDY(KZ)

L T Jd=y

WRITE(CLELC) Jod .
WRITE(69633) ((R{LyJ)oJd=Lye3)elnly2)

CALL RULMTX(R92919MARKyCETy=1)
7 WRITE(G,€31) CET
EC(a)=R(1y3) : .
EK(4)=R(242) ’ , i
L

»
sk s "

G0 1C 25C

oy

F(5) «GTe O ANC F(4) JLE. C, ESTINATE C(4) ,K(4) AND M(Z) FIRST

210 R{1y3) = 0.5%YLY(K1)
- R293) = Le5%YLY(KZ)
ot CALL'LCC3(47109K3,N2'MX)
R{3,1)=YCY(K2)~-YCY(K3)
CALL LCC3(32,10,K24N2yMX)
é RUZ2,2)=YCY(K1)=YCY(K3)
YT T OR(3,3)=0.5%DYSC(10) '
R(1y4)=Co5%XN(13) S |
R{Z2v4)=0.5%XNM{14) : o a : 1
' ' R(294)=3C.5%XN(15) . . : S |
i - I=2 ‘ : ; 24
: ! . J=4 “ . » - < 2 N . . ’ ‘
WRITE(G9624) Jedy I o " " - ‘
WRITE(6,625) ((R{LyJ)od=194)els),3) o .

¢® . ik I o g
2TO0

|

’ CALL RLNTX(Ry391yMARKyLETy=1) : . !

|  WRITE(6631) CET ' - : ' ‘ , '
EC(4)=R(144)

T EK(4)=R(244)
EM(2)=R(344)

ESTIMATE C(3) ANC K(3)

eEele!

CALL LCC218y7,K1yN2pMX) - S |
- L 2 T e e e i e

o fet
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RE1y1) =SCIK1I=SG(Ke) 3

CALL LLCZ2(ky lyREWN2yMX)
R(Z292) =SGIKL)=SC(KZ)
CALL LECZ2(ToToKLoNZy¥X)
CALL LCC2(T7319KEaN2yNMX)
R{ly2) =5Q(K1)-SQ(K2)
CALL LCCZ(HyByK1gN2yMX)
CaLtl LCC2(892eKZ29N2yMX)
R{Zy1l) =SU(K1)=SC(K2)
CALL LCC3(7989K19N2yMX)
CALL LCC3I(HyB89KZ29N29¥X)
R{1y3)==Q.5%EM(2)%YDY(K])
Rl{cy3)==0 ReENM(2)RYLY(KZ)
J= 2

WRITE(EWELE) Jod
WRITE(O9£33) ((R{LyJ)eJd=193)ol=],p2)

CALL RLNMTX(R92919MARKyCETy=1)
WRITE(69631) DET

EC(2)=R(1,2)

EK(3)=rR(2y2)

ESTIVMATE 1(2)

EC(2)=(CHC)*EC(3)+(EREI*FC(4)
EQ(4)=(CHD)*EK(3)+(E®E)*EK(4)
EC(E)=(CHD)*EC(3)+(E*E)*EC(4)
EC(E)={C*D)*EK(2)+(E*C)%EK(4)
CALL LCC2(12y114K1yNZyNMX)
CALL LCC2(11ly €9yKZyN2yMX)
CALL LCCZ2(11s119K3yN2yMX)

" CALL LCCZ2(1l1ly S5¢K4yN2yMX)

CALL LCC2(11ly12,K59yN2yNMX)
EI(Z)=(20%(EC(3)#SQIKZI+EC(4)2SC(KAL}=EC(5)*SQ(KL1)=ED(6)8SCIK3))+

1 XM(16))/YCY(KS) N
ESTIMATE C(L),K(1) AND M(1)

CALL LCC2(2y19K1yN2yMX)

RU1,1)=SC(K1)

A Y9 2)=8C(K1)

CAu:., LCC2(1yloK1lgN2yMX)

R{1,2)=SC(K]1)

CALL LCCZ2(2Z2929K1y AZQMX)

R{2,1)=SCQ(KL1l)

CALL LCC3(1lyceKly NZvMX’,

R{1,3)=0.5%YLDY(K1)

R(3,2)=YCLY(K]1)

CALL LCC3(2y2eK19N2yMX)

R(293)=0.,5%YCY (K1) ~

R(391, YEY(K1)
R(32,3)=C.5%DYSC(2)

CALL LCC2(8y1oK1gN24MX)

CALL LCC2( 241y K29N2yMX)

CALL LCC21(T7y19K2gyN2yMX)

"CALL LCC2(1y19KaoN2oMX) ~
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b EFCL )M LSl )I=SCIK2D)I4EK(2)B(SCIKI)=SC(KA4)) 4T 5%XNM(1)
vl LCC2LAy ek 1eN2y X))
CALL LCCZ{2929Kayh24VX)
CALL LCUZ2(T7929K29N24MX)
R12'4)=EC(3)*(SH(K1"SC‘K4))‘EK(3,*(SU(K3)'SC(K2))’0-5*XN(2)
CALL LUC3(892aN1gN2oMX)
CALL LCC3(2929K29N2yMX)
CALL L C2(TeZeK3yN24MX)
CALL LCC2(1y29K4yN24MX)
RU244)=EC(3) M (YCY(KY)=YOY(KEZ))®EK(2)¥(YDY{K3)=YOY(K&4))+Q,5%XNM(3)
[=1]
WRITE(E9€24) Lalyl
WRITELGy425) ((R{LeJ)sJd=194)9l31,3)

PR ——

WRITE(A€31) CET
EC(l)=R(1y4)
EK(1)=R(244)
EM(1)=R(2,4)

l

i

.
CALL RLMTX(R¢3y1sMARKyCETy=1) |

|

!

ESTINATE C(2)4K(2)

OO0

R{1ly1)=SG(K1)
R{Z2y2)=SC(K1)
CALL LCC2(3,329K1eN2y VX)

R(192)=SCIKL1)

CALL LCC2(4494,K1gN24NMX)

R(2,1)=SC(K])

CALL LCC3{3y49KE9yN2yMX)

CALL LCC2(LlCs29sK1yN2yMX)

CALL LCC2( 44924,K29N29MX)

CALL LCC2( 9¢3,K24N2yMX)}

CALL LCC2( 3434K49N2yMX)
R(193)2EC(4)%(SQIKL)=SCIK2))+EK(4)*(SQIK3)=SC(K&))+0.5%XM(4)
1=0.52ENM(1)%YLY(KS)

CALL LCC2(10D4944K1gN2yMX)

CALL LCC2( 444,9K4yN2yMX)

CALL LCC2(¢ SedyK2yN2yMX)

CALL LCC3( 494 9yKE4yN2Z2yMX)
R{2923)=EC(4)N(SQIKL)=SQIKAG))4EK(4)F(SQIK3)=SCIK2))+0.5%XM(4)
1=05%ENM(L)IRYCY(KS)

J=2
"WRITE(E,610) J
WRITE(64632) |

CALL LCC2(4,29K1gN29MX) %

T oy b

")
(RILyJ)ed=192)9Lz1,2)

CALL RLMTX(Ry2y19MARK,CETy=1)
WRITE(6,€31) DET

EC(22=R(1,3)

T EK(Z2)=R(243)

ESTIMATE 1(2)

Aﬂﬁﬁ

EC(1)=(B¥BISECLI)+(ARA)REC(2)+(CHCIPEC(3)+(EXE)HEC(4) R
ED(2)=(B#BISEK(1 1+ (ARAVKEK (Z)+(CHC)FEK(3)+(ESEIHEK(4) S ‘
CALL LCC2( 6457K1oN2oHX) _ 30
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CALL LCCZH D'«OKEoNCvMX)

CALL LCC2(1Lly8yKasNZyMX)

CALL LCC2( Syl oKEYN2yMX)

EI(L)= Lo (EC(3)RSQIKE)IPYEC(4)FSCUKA)=EC(Y)*SQ(K]L)=ED(2)*SQ(K3))
1 «x¥(7))/YCY(KE)

‘VRlTh‘u’é}p)

WRITELE960L) NFo(IoFOSTUL), Fk(l’oFE(l’vl*lvNF)

FKeFLCAT(K)®F
TIE=EXFLCAT(NCN) ’
WRITE(E9EC2) FyTIS)HKy NON9TIE
WRITE(&,E94)
WRITF(E9€35) (I9CCUT)2ECHTI)oCKITI)HE
WRITE(LyE3T) (14yCMUT)EMUIYZCI(]I),
NCRUAN=NCRUN=1
IF(NCEUN) 59543240
340 IF(INIT) 41418,455
350 WRITE(E636) NSCINXMyNXQ
500 FCRMAT(IZ)
E01 FCRMATLEFLULY)
503 FCRMAT (1 2/(1E843FS5.1))
506 FORVMAT(FE,2,515)
€00 FORMAT(SIHIESTIMATION CF THE PARAMETERS OF THE SIMULLATED SYSTEM)
601 FURKNMATI(1rO, 18ENC OF EXCITATICN =,13/(17HCFOR THE FORCE NO,I12,
EOL14X L IHAMFLITULCE =9Fl0e294X 9 1EHCENTER FRECUENCY = FlC,294Xy
€012 27FPHASE SHIFT CR BANC WICTF =3,F1C.2) )
€03 FCRKNAT (LHO,3CHSANMPLING INT, FCR SINMULATICN =4FE45/
60311HOy 16HTRANSIENT INT. = vFl1C.2/
E03ZL1HT 3G RSAMPLING INTs FCR CALCULATING MCVMENTS =,FE.5/
6C321HC,42HTCTAL NCe OF SAMPLES LSED FCR ESTINMATION =,16/

K(L)ylmly4)
EI(I)y1=1,2)

TEC3I4ALIFITINE INTERVAL FOR ESTIMATICN =4,F1C.2+3HSEC)

€Ch FURNAT( 1HD92(20Xs4HTRUE 18799HCST!FA7ED) )

€06 FCRNAT(2SHIGSTIMATION OF THE MCVMENTS CFol2y12H VASS SYSTEM)

610 FORVAT(24HCEQUATICN FOR SCLVING CloIly4H) oK(yI1ylH) )

€2C FCRMAT (1RO 94CH2NC MOUMENTS YLJIYIL)y L=d TO J¢7 (CR 2N})

€21 FORNAT (1RO 42X 2FY( (91291 )9EEL4e4)

622 FCRMAT (2SHCFIRST MOMENTS COF Y{J)oeJ=192N//(5E20.8))

€23 FCRNAT(43HCSECCND MCMENTS CF CERIVATIVES DY(J) od=142N//7(5E20.8))

€24 FORMAT(24HCECUATION FOR SOLVING C(y1194H)oK(o11,8H) AND M(,4I141H))
€25 FORMAT(1HOy3XgEL15.396HYC ¢ (HELE.E9TH)PK ¢ (sEL15.845H)*M =,E£15,8)
626 FCRMAT{1F0,53HCRCSS MUOMENTS.CF INPUT FCRCE AND Y(2Jd=1)Y(2J)DY(2

€2¢1))
€27 FORVAT(1FO92X91248FTH FCRCE92X93ELl4.4)

€28 FORVMAT (1HO951H2NC MOMENTS CF CY(J)2Y(L)oL=J=7yCR 1) TO J¢7(CR 2N))

€29 FORMAT(4HOBY(91294H)%Y(91241k)/(12X9TE14e4))

€31 FORMAT(14HCDETERMINNANT=,E2C.E)

€32 FORNAT(31HO ECGUATIONS WFEN CVM IS KACWN)

€33 FORNMAT(1HO 924X sE15.896H%C 4 (9E1E.8,SH)¥K =4E20.8)

€35 FORMAT(1HD931X94bCUI)94SX94RKIT) 9/ (2HCI=y1142(10Xy2E20.8)))

636 FORMAT(4QHLIAT LEAST ONE OF THE FCLLCWING NCGS. NSC=y12,6Hy NXM=,12

6361 sEhy NXC=913,44H IS GREATER TFAN THE CCRRESPONDING 809304140 )
h37 FOFPAT(IHJ;31X.4HM(I) 49X:4h1(l)9/(’h01891192(10X92520 8)))
400 STCP

ENC

N\
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SUBRCUTINL MLLLEVIT Yy FoNgNFHCY)
CINENSTON CHA2)9Cl 21 0CKEAYLCLA)yLULE)oY(L2)oFLE)DY(L2)
COMMUN CNMyC i g CCyCKyi' T

COCII=(ER ) eCC(L)+(ARA)RCC(2)+(CeCIPCC(2)+(E®T)BCCH4)
CHLZ)=(LUan ) CR{L)+(AXA)ECK(Z)+(C*C)SCK(2 )+ (ESE)*CK(4)
Cul3)=(CAU)%CC()+(LRE)HCC(4)

CC(a)=s(CAOIRCR(2)+({LxE)®CK(4) 5 d
C(E)=(L*CIxCC2)e(E*EIRCC(4)
DCUEN=(CAD)IHCK(2)+(EXE)*¥CK(4)

N2=N/2
CC e I=1,yN2
16 CY(z»l=1)=Y(c*])
CY(2) = =(2.C/CV(1)) * (CC(1)ny
1 + CKUL)eY (1) ¢ CKU3)%(Y())=Y(?

(<) CC(3)e(v(2)=Y(8))

) ))
CY(4) = =(2.C/CM(1)) * (CL(z2)I*rY(4)

)))

(€)

+

+ F(l)/CM(1)

+ CCla)2(Y(4)=V(1C))

+ F(2)/7CM(1)

+C0C(2)8Y(S) - CC(3)*Y(12)

I + (R(2)*Y(3) + CKUa)®x(Y(3)=Y(S
DY(e) = =(2.,8/C1(1)) % (DO(1)ey
1 = CL(a)*Y(Ll1l)) + F(3)/CL(1))
T DYLE) = (2.0/CM(2)) x (CCL2I¥(Y(2)=Y(E)) ¢« CK(3)M(Y(L)=Y(T)))
1 + Fla)/CM(2)
OY(1:) = (2.C/CM(2)s » (CCL4A)»(Y(4)=Y(1C)) + CK(4)®%(Y(3)=Y(9)))
1 ¢ FIUS)/CM(2)
OY(12) = (2.C/C1(2)) % (DC(3)*Y(€)+0C(4)*»Y(5) - CC(5)*Y(12)
1 =CC(6)eY(11)) + F(e)/CI(2) A
RETURN
ENC

[ SN

, |
T 7777 SURRCUTINE MULLFCS(ToFISyNF) ‘ *

DINENSICN CM(2),CI(2)5CCi4)9CKI4)oDDIE)yNVECIE) sFHI6) 4FB(6),
1FOST (&), FOSLE)
CCMNCN CMyCI4CCyCK9yDDINVECoFCSToFWyFE
CQ 210 I=1)NF ‘ , \ 5.
IF(NVEC(I) JLELC) GC TO 1€ | | ; (
THETL=6,282185%(T*FR(T)+FR(I)/3€C.) ' o
FOS(I)=FCST(I)*SIN (THETA) ' s J
GO TC 20 | B | ;
10 FOS(I)=G.0 o | ‘ . ;
20 CONT INUE | g
RETURN ' L 1
oM e e _ * ﬁ
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)
bbxf:tlihﬁ FLLIUS (T ok SyNt )
e G ENE TN LAL2 LI lE)hCCCa) g CRla) s LELE) o MVLC LG ) oFW (L) oF A LOYy 7
) IM‘Hihn.hh IS{Z06) e XF(2aé )y xR {€)

COwplr, UHgCloCuaCitglibg NVEC oFC SVl noFLoUILS
GO 20 1=19NF
[E(ANVECHT) oLt o™) Ci3 T3 12
TENFE=PFCST(L)RGALRNCL)
e ""FUS(I)"C!S(lyl}*ﬁf(lvx’*ClS(ZQ“*XF’(zvl,*SIS‘avx)"‘TEVP-XP(I’,
XF(2y1)sXF(L1y1])
XE(L o J)=FUS(Y)
XR{1)=TENMP
GL 7C 27
10 FOS(L)=suet
e W Lee zor cchT lN“'e - » wr L e a naa ek m Lk ® O% Pe.v e v P ¥ owramEr m. s e 8 -
RETLRN
INC

4

X X T X 2 ¥ ¥ X X X I ¥ L X X X ¥ X 2 ¥ 2 X X ¥ Tt X X X I X X ¥ T 1T ¥ Y ¥ 2 T X t Y X X T X 2 ¥ Y 2 2 Y 1 2 2 2 T ¥ 1 X 2 2 J

PURPCSE
TC CCMPUTE CKCSS MCMENT CF A(J)I®E(290J=1)yAlJ)BR(2%*])
ANC A(JI®C(2%J)
A -8ASC CATA VMATRIXeNA BY NC
NA =NC.CF VARIABLES OF A
NVEC = IF NVEC(I) oGTe CoTrEN 2(I) .C1. O
8 <«CRGCSS VARTABLE DATA MAIRIX
C = CRCSS VARIABLE CATA MATRIX
N3C-NG.CF VARIABLES CF B ANC Cy NB GE. (2@*NA)
N =NC.CF CBSERVATIUNS J
XM =CROSS MOMENTS,MATRIX CF 3%NA
"IC =ID NCT ZERCoCCMPUTE THE MCMENTS
IC ZERCy CCNMPUTE TRE SLNMS
SUBROUTINE XFOT(AyNAJNVEC ByCoNBCoNCoXM,yID)
CINENSICN A(1)sB(1)oeXM(3) 2C(1)sAVEC(]1)
4 - N3=28NA |
] = 00 10 Jalen3 e R
' 10 XMiJ)=C.0 |
1o4d=0
DO 38 I=1,N0
€O 30 J=1,NA
[Ja=s1JA+])
TR ANVEC(J) «LELD) GO TO 20
[JZEB=(I=1)2NBC+2%J
1J1e=1J28-1
XM(2%J~ 2)=XN(3*J~2i+A(IJA)*E(lJIE)
XM{33J=-1)=XM(2xj=1)+A(1JA)IECIJ28)
XN(3*J"XF(3*J)¢A(IJA)*C(!JZE) :

A o4 DA o s e

(XXX sXa s aksXakaXaXaka)

Q%,’JMMQ-M*ML3O CGRTINUE SR - | 'Wﬁ"m'A””L“f”‘m‘ .. e e i

3 c . 3 . 4

€ cowpure NOMENTS If 1D NOT 2ERC - S
3 o IRMIC) 4645Ce4C 0 o | a
R 40 CNC=NC S A ' |
SR 3 ."“"*""’"“‘"f”‘""f"” 00 45 JE1yN3 ~.~ e ks .:,..‘-“.,‘.-._.:.‘u-. R e i S {

4 45 XMLI=XN(JI/CNC e

777 50 RETURN: S |

~_ENC
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Input Cards and Output Tabulations for a Sample Problem

The sample problem is to simulate a two-dimensional,
81x degrees of freedom system snown in Figure I b whose

parameters are

m =m, = 0.26 |, I, = I, = 70
ky = ky = 10 , ko = k, = 4 x 10
C)p = Cy = 10 , C, = Cy = 20

a=10, b=20, C=15, d=6, e = 12

The system is to be driven by three independent
random forces fu, fs, and f6 applied onto mass 2. Each
random force is generated by passing a white noise of standard
deviation 30 through a bandpass filter with center fre-
quency 70 cps and bandwidth 20 cps. The sampling fre-
quency is to be 2000 cps and 2000 samples are to be generated

and used for estimation of the moments and system parameters.

R i R Tt




e el s

a) Input Cards

Col. 1 6 11 16

3 2

| 0.26 70.0
0.26 70.0
10.0 20.0
6

L -1

2
-3

4 30. 70. 20.
5 30. 70. 20.
6 30. 70. 20.
2000. 2000 1

b) Sample Output

100000.0
100000.0
15.0

179

31

400000.0
400000.0
6.0

36 u1

10.0
10.0
12.0

20.0
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CHAPTER V

SUMMARY AND CONCLUSIONS

We have developed analytically and presented numerical
examples of a parameter ldentification approach when the
dynamical structure of the system is known. We have also
constructed the program for system simulation and identi-
fication of chainlike systems in Chapter IV. Equivalently,
we have studied systems of known diff'erential equations with
unknown parameters. We have seen in Chapter II that these
parameters can be theoretically identified by random as well
as sinusoidal excitations. The identification procedure makes
use of displacement and velocity as well as acceleration
information. The method is very straightforward, it does
not make use of subtle theoretical points. Even more, on
the basis of the simulation experiments of Chapter III, we
see that the technique works and works well. The technique
does not appear to be sensitive to the type of excitation
used. Random excitations of various spectral properties as
well as sinusoidal excitations with frequency in a wide
range all yield very good parameter estimates.

The procedure that is to be applied when identifying

a real system that can be described by linear differential




W GM S URD DN G D e P e e e el bl A M B e

p——

185

equations 1s reasonably simple. If the ldentification is to
be done digitally, then the displacement, velocity, and accel-
eration data as well as the excitation data should be roughly
digitized at a rate 5 - 10 times greater than the highest fre-
quency present. This is rough, but it is sufficient to obtain
some estimate of the highest frequency through oscllloscope
observations. A record of sufficient length to cover 5 - 10
cycles at the lowest frequency present will then suffice for
identification purposes. If steady-state conditions have been
achieved for a random excitation, then various moments will

be zero making the estimation equations simpler. However, 1if
all moments are kept regarding them merely as time averages,
one does not need to reflect upon whether the system is in
steady state. In the event the system is being excited by
sinusoidal oscillations and is in the steady state, then not
all parameters can be estimated. Identification by sinusoidal
excitations 1s best achieved during the transient stage of

the dynamics of the system.

One very significant point that must be re-iterated is
that this 1s a direct method, it is not a search technique.
Hence, the relative magnitudes of the parameters do not pre-
sent the problem common to all search techniques. The problem
involved is the size of the step that must be taken for search-
ing parameters. When parameters are large, a small step will
get one to the correct value; wien « narameter is small, one

can easily exceed the paramet.r» vil.z in one step.
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This 18 evident in many of the examples we presented

in Chapter III where the parameter values are many orders of

magnitude apart. Yet, as we have seen the parameter estimates

are amazingly accurate., by the proposed technique.

Although we have not developed the details during the
period of the present contract, it is clear that the same
approach will be applicable to non-linear systems whose
dynamics are describable by differential equations with

polynocmial non-linearities and unknown constant coefficients.

It could be of significant interest and applicability to study

the present parameter identification approach for non-linear
systems.

The major point to be settled relative to the present
study is the practicability of the present approach with
acceleration and excitation data only. If this can be
affirmatively resolved then parameter estimation by the
present technique should become a useful and commonly used
procedure.,

We shall close this report by stating emphatically
that our motivation was to bring forth what appears to be a w
useful idea, not a deep idea nor an idea for which one can
only feel a desire to study theoretically. Our analysis of
the idea as well as the great number of simulation experi-
ments reflects the attitude with which we have performed this

study. Thus, we did not look at this idea in all generality

= R L e S £ T T et s R
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or from the purely fundamental theoretical point of view.
We were interested most of all in how well the idea works.

We sincerely hope that the present study can be looked
upon as having practical significance as it relates especially

to present~-day engineering problems.
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APPENDIX

THE CONCEPT OF THE GAUSSIAN WHITE NOISE PROCESS

It has been stated throughout the development and study
of the present parameter estimation technique that the
Gaussian white noise 1s an unsuitable excitation for a system
that is undergoing investigation by the proposed identifica-
tion technique. This point has been brought out in Chapter
ITI of this final report.

The detailed reasons behind this statement shall

be developed and discussed in this appendix.

The Wiener process is a Gaussian process with sta- }f

EHC RN

tionary independent increments. It satisfies,

Prob {B(o) = 0} = 1 (a) ; 11
i
E{B(t)} = 0 (b) N
2 2 . (I.1) j
E{(B(t) - B(s8))"} = 0% |t~s]| (c) ;
E{(B(ty)-B(t3))(B(t,)-B(t))} = 0 ()

for any ty > t3 2 t2 > tl
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Condition I.1 (c) yields the statistical stationarity
of the increment ([B(t)-B(s)], and condition I.1l (d) yields
the independence of the increments. The joint density
function for the B-process at times 0 < tl < L. < tn is

given by the Gaussian density function.

1
f(x,,t,; XAa,t. 5 eo0 X_,L.) =
12712 %227 . n’’n n/2 _n 1/2
2 n-1 2
X (X4 1=%,)
exp |-ty |25+ ] L (1.2)
20 tl 1=1 i+l i

It is known that the sample functions of the B-process are
continuous and nowhere differentiable. These classical
results were obtained by Norbert Wiener and are the primary
reason that the process bears his name. We note that the
non-differentiability of the sample functions make this
process somewhat unacceptavle as a model of displacements
of actual physical particles in which velocities and accelera-
tions are present because the process does not possess
velocities and accelerations.

The pathological properties of the Gaussian white
ncise are primarily due to the non-differentiability of the

Wiener Process as we shall see.

3
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A white noise refers to any aoise for which the spectral

density function

£(r) = [ F(T)e'iATdr (I.3)

- 00

N'l'—‘
3

ls supposed to exist and be constant for all e (-=,»). Thus,
the term "white" means that the noise contains all frequencies
of the same average power.

The Gaussian white noise is a white noise for which
the distribution functions are Gaussian.

We recall that the power spectral density and the
covariance are Fourier transform pairs. This is referred to
commonly as the Wiener-Khintchin relation. Thus, from I.3

we have
r(t) = J £(r) e aa (I.4)

Strictly speaking, a white nouise process can never occur in

nature since its second moment is gilven by

T Y
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3
02 = r(0) = I £(r) dx (I.5)

which is not a convergent Integral for f(A) constant.

It follows that the covariance of the W-process (white

noise) is given as,

E(W(s) W(t)} = 02 8{t=-5) (I.6)

where 8§ represents the impulse function. That 1is,

§(t) = 0, 1T #0 (a)
(I.7)
l §(r) dr = 1 (b)
) e

M e G AN AW B B e e e s

Hence, no matter how near ty, t, are, if t, # t,, then
W(tl), W(ta) are uncorrelated. But even more, since the
process is Gaussian, then W(tl), W(tz) are not only

uncorrelated, but they are actually independent of one

another.

G G Ry e g
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Ifone first stops a moment and reflects upon what the .
preceding statements imply for the sample functions, tne patho-
logical nature of Gaussian White Noise becomes apparent. Indeed
if we may quote Doob on page 78 of his treatise, "These processes
(independent or purely random) are discussed only in the discrete
parameter case, since the sample functions in the continuous
parameter case are too irregular to arise in practice."

We recall that all of the regularity properties of analysis
(such as continuity, differentiability, etc.) depend upon the
relative values of a function for argument values that are close
to one another.

However, as we have seen above, the values of the Gaussian
White Noise samples are completely independent no matter how
close the arguments tl, t2 are to one another. We must expect
therefore, that the sample functions for the Gaussian White
Noise to be quite pathological and unnatural. In fact, as we
have seen, the Gaussian White Noise is only a mathematical abstrac-

tion that cannot be represented in nature. We shall continue

ocur discussion with an approach to the White Nolse process that

brings these points clearly to the surface.

Y ey

One rather useful way in which one can think of a White Noise

is to conslider initially a process with a covariance of the form,

i L e R i . DG N N R TN

e S
e

¢ el , ©>0, u>0. (1. 8)
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The spectral density corresponding to the covariance 1.8 1is

»
1 -alt| -1t C a
r(A) = I Ce e dtr = o e (1.9)
by - " a- + A
A Ca
= T— A= — ,
a” + Aa ’ "
If we let C, a+e 50 that 55 (= %;) is constant, tnen one obtains
o
the constant spectral density.
We notice that for C, u** guch that g; is constant we
must have
lim -ajT ,
C,are Ce A + 0 for all «t ¥ 0. (I.10)

The limit 1,10 comes from the fact that the exponential beats

any power and C,a approach infinity at the same rate. We have,

furthermore,

c I e~ l4r « C(f-) - 2n($—;) + constant. (I.11)

All of the results above may be summarized and put into order

as follows.

We consider the Gaussian White Noise W(t), te(=-o,»), We

have re-established by limiting operations

a) the covariance function must be an impulse function.
This follows from 1,10,, I.11, Thus, W(t) is uncor-
related at any two distinct times. That is, t, # t,
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implies
E(W(tl)w(tz)} s

b) Since W(t) 1s Gaussian, then a) implieec it is com-
pletely random. Thus, tl t, implies W(tl) is
statistically independent of W(tz). é

Now let us consider {Ec’a(t), tefo,»]}, a Gaussian process

“or which E(EC a(t)} = 0 and
3

-af1]

exists as an integral in the mean square sense. Furthermore,

E{Ec’a(t) Ec,a(t+‘)} = Ce (1.12) }
From the mean square calculus theorem we know that ;
¢ :

Ye,alt) = Io f,alTid (1.13) ;

Jg

i

{yg ,(t), te[o,»]} 1is a Gaussian process for which P{ys ,(0) =0} =1
H H
and E{yc’a(t)} = 0,

o
H,

Now, we are interested in what happens to yc’o(t) as the
covariance of Ec’a(t) goes to the impulse function limit that
we described above. The random variables cc’a(t) will approach
wW(t).

What can we say concerning the second imoments of the Yo o
H]

Y e

process? Clearly,
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¢ ¢
Klyg,a(0)) = ] ary [ e, 60,0 g gty
0 o ’ ’

t t
. Jo ar, [o ar, Bleg 4(1)) 6o (1)) (@14)

(because Ec’a(rl) Ec,a(Tz) are absolutely integrable and their

absolute average exists by the Schwarz inequality.)

t t
2 - -t
E{yc’a(t)} = Io dry Io dr, Ce a|11 Tal

t T t T
= I dry I 1 dr ce~®(T1-72) 4 I dr, I 2dtl ce~(T2=17)
(o] (o] 0

t T
= 2 f ar, I 1 ar,, ce~®(T1=72)
(o] (o]

-atl t

[rl + % e ]

2¢
o

o)

> 02t as C,a+» in such a way that %E

is constant.

We now have that y, a(t) + B(t) as & °L(t:) + W(t) through
] H

covarliances, where

E(B2(t)} = o°t. (1.15)
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Furthermore, for any (tl, tz), we obtain in the same fashion

as above that

E(IB(ty) - B(t))]%) = o?lt,-t,]. (1.16)
Now suppose that t1<t2<t3 then
2 2
E([B(t3)-B(t;)1%) = E([B(t3)-B(t,)+B(t,)-B(t;)]°)
= E([B(t) - B(t,)1%)

+ 2 E{[B(t4) - B(t,)][B(t,) - B(t,)]}
+ E([B(t,) - B(t,)1%) (1.17)

or
02(t3-t1) - 02(t3-t2) + 2E{[B(t4)~B(t,) J[B(t,)-B(t,)1} + 02(t2-t1).
(1.18)

Therefore, we must have

E{[B(t3) - B(t,)1[B(t,) - B(t,)]} = 0. (1.19)

The last expression, (I.19) says that the B-process possesses
independent increments. Furthermore, the B-process is Gaussian,
since the yc’a-process is Gaussian for every C,a. The covar-
iances of the yc’a-process converge to the covariance of the
B-process. Hence, the process {B(t), te[o,»]} 1is a Gaussian

process with stationary independent increments for which we have

e P
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E{(B(t)} = 0

%t (1. 20)

Prob {B(0) = 0} = 1.

E(B2(t)} = o

But, this 1s the definition of the Wiener Process! Hence, it
would follow that

t
B(t) = j W(t)dr. (I. 21)
(@)

Therefore, one would obtain from 1.21)

aBE) o s, (L. 22)

That 1is, the Gaussian White Noise is formally the derivative of
the Wiener process. However, as we recall from our earlier
discussions, the Wiener process does not possess a derivative.
lHence, the pathological nature of the Gaussian White Noise is
explicitly brought out by the formal relation 1.22 . The rela-
tion 1,22 simply states that the Gaussian White Noise is a
mathematical fiction.

Hence, when we write an equation such as

dx(t)

L+ ex(t) = W(t) (s dB(t) (1. 23)

dt

we must understand that it does not exist as an ordinary differ-
ential equation of elementary calculus since the White Noise ing

is a fiction.
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The question we must ask ourselves 15 can one make analytical
sense of the Equation 1,23 . The answer is yes, and this was
first accomplished by K. Ito (%1).

The i1dea is simply that, instead of treating 1[.23 as a differ-
ential equation, one should instead study an equation in differ-

entials

dx(t) + Bx(t)dt = dB(t). (1. 24)

The equation 1.24 is given content and meaning by the sto-
chastic integral which is a well defined operation introduced
by Ito. Hence, the meaning of 1.24 1is

t
x(t)dr = I dB(t) = B(t)'B(to)' (1. 25)

o) tO

t

x(t)-x(to) + B[t

For the most general first order equation,

dgtt m(x(t),t) + o(x(t),t) Q%éEl , 1. 26)

the meaning of this is given by the stochastic integral equation,

t
m(x(1),7)dr + J o(x(1),7)dB(1), (L 27)

o) tO

t
x(t)-x(t,) = Jt

where the integrals are well defined.

(#1) K. Ito. Memoirs of American Mathematical Society
No. 4, 1951.

e

<
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On the basis of this definition, the solution processes of
1.26 , or 1,27 are well defined and have been the subject of

a great deal of research in the past ten years. [For a descrip-

tion of the properties of these processes, see the treatise by
Dynkin (2) on Markov processes.)

We are now in a position to indicate the reason why the
Gaussian "hite Noise is unsuiltable as an input process for the 1
purposgses of identification by the technique we have proposed.

Since the deriveative Q%%El in equation 1.23 dones not exist,

it follows that the derivative Q%%El in L.23, also, does not

exist. Therefore, we do not have the equality

Indeed, we can say even more. In particular,

d_ o2 ey dX(E) :

gt E{x(t)} E{x(t) =5 1, (1, 28) .
that 1s required in our identification procedure. Li{
K

E(x(t) 2{E) ) 4 o (I. 29)

for the process defined by equation 1.23 , or more correctly,
by equation 1.24.
We recall that the B-process possesses independent increments,

thus

dB(t) = B(t + dt) - B(t) (1, 30)

is independent of all prior increments of B(s) for s < t.

(#2)Dynkin. Markov Processes, Springer-Verlag. Berlin, 1965.




209

Finally, in the procedure of ldentification, one's
initial reaction 1s to ask for a wide band-width excitation
in order to assure that enough frequencies are sufficiently
excited so that the parameters of the system can be correctly
estimated. But, as we have already seen in Chapters II and
IITI, not only is this not required but a pure sinusoidal
excitation with a single frequency 1s enough to allow identi-
fication. Thus, the fact that we do not want "white nolse"
is no weakness In the present approach. Indeed, it 1s even
to our advantage. The reader méy recall that many of the
easy ldentification techniques made use of the Gaussian white
noise for thelr theoretical development. But such noilse 1s
impossible to achieve in the laboratory. On the other hand,
the excitations we use in our theoretical development are

exactly those that can and are commonly used in laboratory

testing.
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