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1: ,.TR0Ij LjCT1U,N AND D1 CU:i:iLON OF CONTENTS

This is a summary type report that actually contains

four separate reports on matters relating to state

variable feedback methods in automatic control systems.

This introductory material is included to give the

necessary background and to link the four reports with

each other and with what has been clone in the past.

The idea of state variable feedback in linear con-

trol systems is one of the important practical results

that have resulted from the so called modern control

theory. Means by which state variable feedback can be

used to realize any desired closed loop transfer func-

tion have previously been reported under this contract,

NASA Document # CR-77901 ( 1) . A more recent discussion of

the same topic is included in the author's graduate text

(2), and state variable feedback forms the basic founda-

tion for a senior level book soon to be published by

McGraw-Hill(3). The point being made here is that state

variable feedback methods are becoming well known, and

the reader is assumed to have a basic understanding of I

suZh techniques.

The material described in this report is not well

known.	 An alternate title for
•

this report might well be

"How to Make State Variable Feedback Work".	 The impli-

cation is that state variable feedback doesn ' t work, and,
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in i,,iny piact.ical situations, this iz true. The diffi-

culty i:, not with the, theory, but• with ti.c intcritional

or unintentional violations of bask a5r; u-ptionz,
A basic claim of state variable i:: that any ua.ired

closed loop transfer function may be realized, providing,

of course, that the pole-zero excess of t la •ie resulting

system is at least as great as that of the plant being

controlled. A prime problem then is having a desired

closed loop transfer function to meet time or frequency

domain specification of accuracy, stability, speed of

response, and sensitivity. :his is the topic of Part I

of the report, "The Specification and Synthesis of High-

Order Control Systems". The three report-,s that follow

this one all assume that the selection of the desired

closed loop transfer function has been accomplished

according to the procedure outlined in Part I.

The ability of a closed loop control system to res-

pond according to any desired closed loop transfer func-

tion is not a new idea. This was the approach of the

Guillemin-Truxal method of series equalization described

so aptly in Truxal's classic book(4). Essentially the

series equalizer cancelled (n-1) poles of the plant, and

substituted for these (n-1) new poles to ensure the de-

sired result when the output was feedback to form the

closed loop system. From an input-output point of view,

a Guillemin-Truxal type system and a state variable feed-

2 -
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s; .,LC111 micji ► t telid to ut identical.	 In fact, they are

identical, as long as all system paramc;ters are exactly

those assumed in modeling the given plant. Of course,

this is never the case in practice, end the quc:ition of

which closed loop system can be expected to function as

desired in the face of uncertainties in plant parameters

reduces to one of sensitivity. Part Ii of the report

discusses this question under the heading of "Sensitivity

and State Variable Feedback".

Part III, titles "Intentional Norilinearity in a,

State Variable Feedback System" is concerned with a closed

loop system configuration 4hat is specifically designed

to be insensitive to changes in a particular forward gain

K(5). Actually, the utility of the gain insensitive

design described here goes far beyond that class of systems

for which the gain may actually be changing do to inherent

physical factors. The practical utilization of the inten-

tional nonlinearity is to insure that the plant being

controlled does not saturate. By not saturating is meant

that none of the state variables of the plant is ever

allowed to exceed a value imposed by physical limitations.

. ..	 For example, temperature may be . a state variable, and it

may not exceed a value beyond which a component destroys

itself or melts.'

The need for-some type of limiting action goes back

to the basic ability of state variablesfeedback to realize

1P	 4
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..;;, C&O.006 loop	 fur ►c Lion, regard1cr.3 of the plant,

i-'or a plant with a naLural time conztant of 1 second, a

reaponse of a microoc cond tii;4e constant might be specified.

That such a rapid response could be realized for such a

slow given plant violates our intuition. Also, violated

in practice are physical state variable constraints and

the assumption of linearity. The gain insensitive de-

sign is one means of solving this problem.

Along with state variable constraint:, another basic

fact of life is the unavailability of ,one or more of the

state variables. Any one state variable may simply be too

difficult, too expensive, or too noisy to measure. In

the face of such a situation, how does one proceed to use

the state variable feedb"ck methods. Part IV, "State

Variable Feedback and Unavailable States",.discusses this

problem from,the point of view of generating unavailable

states from these that.are available. The basis for the

method discussed here is the so,celled "observer" system

of Luenberger. The result is a modified observer type

system that overcomes many of theipractical difficulties

in building an observer type system.

Each of the four parts of this, report was, written

as a Masters Thesis in Electri.cal,Engineering at the Uni-

versity of Arizona in Support. of . ther NASA Grant NGR-03- 	 1

002-115. Thus, each of the separate parts of this summary

report is complete in itself,,,,with pits ,own abstract, table

4
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Ctt F.L( IIL.;, iiL;L of figures and pagination. Although two

of Oc:.c reports, Parts I and II,  have: previously been

submitted under the contract cited above, it is felt that

the purposes of NASA are best served by gathering these

four reports under one title. The common factor that

unites these reports is the desire to realize a desired

closed loop transfer function exactly ' . Approximate reali-

zations, particularly those involving plant conditioning,

are the subject of future reports.

- 5 -
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ABSTRACT

The synthesis

threefold problem: (1)

specifications, (2) the

derive a model response

to a C(s)/R(s) function

variable feedback.

of linear control syste-ins is a

selecting values for the performance

use of those :specifications to

and (3) the extension of that model

which is realizable using state

In this thesis, general rules are given for the

selection of the performance measures M p , Wp , BW, DR, Ts,

Td , Tr , PO and FVE. Design charts are presented so that a

low-order model can be constructed from the design specifi-

cations. The last synthesis problem is solved by defining

an equation, similar to the Kalman Equation, which extends

the low-order model to a C(s)/R(s) function compatible with

the complexity of the plant.
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C11APTER I

INTRODUCTION

This study outlines methods for specifying a

desired closed-loop transfer function on the basis of

typical time and frequency domain performance requirements.

This study is motivated by the ability to realize 22.iy

desired closed-loop transfor function in a single-input,

single-output, linear control system in which all of the

state variables are fed back.

While there are numerous treatments of first and

second-order control systems to be found in the literatures

systems of higher order are usually handled by the use of

dominate roots or approximations Mused on the system's

behavior in the vicinity of the opera-loop, gain-crossover

frequency. By applying state-variable feedback techniques,

coupled with a necessary condition for optimality as defined

by the Kalman Equation, the poles and zeros of the high-

u.-pier, closed-loop system can be intelligently placed and

the necessary feedback coefficients calculated.

The investigation is limited to constant coeffi-

cient, linear systems as described by the following set of

matrix equations:

1
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(1.1)

(1.2)

(1.3)

x x Ax + bu

u = r -kTx

C = f Tx

I

Where	 x n column matrix or vector of the n state—

variables in time domain

x 1 time derivative of x

A , nib order square matrix or system matrix of

constant coefficients

b !. nib order column matrix, the control matrix

u t^, control function in time domain

r 0 reference or input function

k n nW order column matrix, the feedback matrix of

constant feedback coefficients

f	 nth order column matrix, the output• matrix

c	 output function

On the basis of these matrix equations, transfer

functions may be defined and block diagrams drawn which are

related to conventional control-system representation. By

Laplace transforming Equation (1.1), a forward transfer

function G(s) may be defined as

C(s) = G(s) = JT (s )b	 (1.4)

"k.
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where

(^ (s) - L sI-AJ-1

and is called the resolvent matrix, the Laplace transform

of the state transition matrix.

In a similar fashion, an equivalent feedback

transfer function, lleq(s), may be defined as

3

T	 TT

	

Neq(s) = kx
	 k(s)b

	

f x	 r .(s)1 , (1.5)

The resulting closed-loop system is represented in

block diagram form in Figure 1. Note here that G(s)

includes any series compensation G c (s), along with the

unalterable plant transfer function G N (s). Thin representa-

tion assumes that the state variables have been chosen so

that lieq(s) includes all tho zeroes of G(s).

G(s)

R(s)	 Q(4	 7	 C (s)

r
H.,cs)

Fig. 1. The Closed Loop System

Further assumptions made throughout this study are

that the gain K of the forward transfer function is
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specified and that the desired input-output dynamics of the

system exhibit an underdamped response with zero steady-

state position error.

The investigation begins in Chapter II with a brief

discussion of performance measurements and their specifica-

tion. Here the choice of specification is based solely

upon a desired performance, and is in no way influenced by

the given, unalterable plant. Of the multitude of perform-

ante measures, only Bandwidth (BW) , M-Peak (M p ) , Final

Value of Error (FVE), Delay Time (T d ), Rise Time	 (Tr),

Settling Time (T s ), Percent Overshoot (PO) and Output

Impedance (Zo ) are selected for use in specifying the step

and sinusoidal responses of the system. 	 Cha p ter IIIy	P

supplies the graphical aids and procedures for synthesizing

low-order, closed-loop models (two or three poles with or

without a zero), to meet closed-loop design specifications.

This low-order model of C(s)/R(s) has satisfactory

dynamics,	 but its sensitivity to load changes, 	 i.e.,	 Lo ,	 is

partly determined by open loop functions G(s) 	 acid tferi(s) .

The discussion of Z 	 And sensitivity in general is given in

Chapter IV.	 The often disregarded Deviation Ratio, DR, is

• I
shown to be intimately related to system sensitivity

',Z(including	 ) and system optimality.	 Methods for deter-0

mining DR (its frequency spectrum) are given, as are the

implications of DR on the low-order model.	 The optimality

equations of Chapter IV are used in Chapter V to define an

_	 I
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optimimo-root-locua, which permits the extonsion of the

low-order model to one of correct order as required by the

comperrsatod plant G(s).
The synthesis problem is concluded in Chapter VI

with a discussion of the mechanics of the high-ordor exten-

lion And the calculation of k. The problem of sr,turation

is described and a method of circumventing this type of

nonlinearity is suggested as an extension of the modeling

process proposed by this thesis.

I



CHAPTER II

PERFORMANCE SPECIFICATION

The problem of system performance specification

forms the basis of the system synthesis. This chapter

begins with a statement of the criteria used by Gibson,

Leedham et al. (1960) to select a sufficient set of

performance measures. The definitions of the performance
measures and then the assignment of values to these

measures, making them performance specifications, con-

elude this section.

Selection of Measures

Performance measures are grouped into .four genera.1

performance areas, each describing an important quality of

the systems response. These are: (1) accuracy, (2)
1

speed, (3) relative stability, (4) sensitivity. There	
II
I

Are a multitude of performance measures to be found in the

literature which could be used to describe each area. To

reduce the number of eligible measures, only those measures

are selected which: (1) convey an easily interpretable

quality of the system's response, (2) are :applicable to

and valid for systems of any order or configuration, (3)

express an'input-output relationship or quality in terms

= .

6
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of closed-loop parameters, (4) provide a sojisitivo and

discrimi:iative measure.

Two sets of performronce measures which meet these

restrictions may be chosen, one not in the frequency domain

and the other in the time domain.

The frequency domain performance measures And their

definitions are:

1. Dl-Beak, M I is the maximum value of the magnitude

of the normalized, closed-loop transfer function.

The normalized function is obtained by dividing

Iby its value at a low enough frequency

such that it is essentially independent of fre-

quency, i.e., the "flat part" of the frequency

response.

2. W-peak, Qp , is the frequency in rad/sec at which

Mp occurs.

3. Bandwidth, BW, is the range of frequencies in

rad/sec between zero and the frequency at which

the normalized closed-loop transfer function has a

magnitude of 0.707.

4. Output Impedance, 2o (s), is the function which
relates the sinusoidal output due to a load dis-

turbance, to that load disturbance. In Figure 2a,
2o (a) is defined as:



Z(3)

F	 ^Csl + f	
QS)

H 6%)

MP
- 1

1
0.101

Icc;W)1

8

(a)
	

(b)

Fig. 2. Specification of C(s)/R(s) for a
System with Load Disturbances

C(a)	 Z(s)
z o (s) - Q^s - 1 + G a Eieq s

5. Deviation Ratio, DR(s), is defined as

DR(s)	 11 + G(s)lieq( -s7l

The frequency domain measures BW, M 
p I 

and 41 p out-

line a region of permitted locations of the magnitude

closed-loop frequency response, as shown in Figuro 2b. The

speed and stability of the system's response to sinusoids

is therefore specified by these parameters. Output

Impedance and DR(s) indicate the system's sensitivity,for

which there is no time domain measure.

The proposed time domain performance measures also

"box-in" the unit step response of the system as it

"^^'	 ^	 ^	 , ^	 k ^. lr	 f-	 ^X^ p .	 y^' P ^. i 3w x	 ^'t ^ s'S,^+T^.s 
«ja d rods ^

	 1. ^ ^ ^'	 x 
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Figure 3. If the output does not have a final value of
unity, the performance measures are applied to the nor-

malized output which does have a forced . response of one.

The two performance measures describing the leading edge of

the transient for a high-order system are assumed to apply

to the smoothest fit of that transient. Definitions of

these specifications are:

1. Delay Time, Td , is the time elapsed in seconds,

after the application of a step input until the

average normalized output reaches 0.5.

2. Rise Time, Tr , is the time required by the system

to rise from 10% to 90% of its final value.

3. Settling Time, T s , is the tim- required for the

response to fall to and remain within a band of

+ x/ of its final value. Typical values for x are

two and five.

4. Percent overshoot, PO, is defined as the maximum

value of response minus the final value of response

divided by the final value of response. The

resulting value is then multiplied by one hundred.

5. Final Value of Error, FVE, is the percentage by

which the final value of the normalized output

fails to reach unity.

The speed and stability of the step response are

measured by Td , Tr , T s and PO, while its accuracy is

J
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CIE)	 1

T-d	 Ts	 C a^

Fig. 3. Specification of c(t)

measured by FVE. The Final Value of Error is determined

experimentally in the time domain, but is also easily

computed in the frequency domain. This measure, therefore,

seems to be basic.

Specification of the input-output dynamics involves

the assignment of values or ranges of values to these

time or frequency domain measures. These measures can be

grouped according to the system characteristic each

describes: accuracy, stability, speed or sensitivity.

1

S

t	
y

x
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Accuracy

For any itiput represented l,y the polynomial
.ti

r(t) _ ^' an tn , the final value of error may be calculated
11=0

from the Laplace transform of the error transfer function:

U(s)	 1
s - 1 +	 s lee s

where the disturbance Q(s) of Figure 2a is neglected.

Maclaurin Taylor series expansion of the right hand side

defines the error constants which relate the system ' s error

to the input, as

(2.2)
p	 v	 a

These error constants, K p , Kv , Ka , for steady - state posi-

tion, velocity, and accoleration error; are the most

convenient form for expressing the error of *.he system's

response. They may be computed. (Truxal 1555) in terms of

closed-loop pole-zero locations, and chin, with tractable

formulas. This feature, plus the hybrid quality of the

measurement, make the error constants it desirable per-

formance measure.

In this study, it is assumed that the system being

designed has zero study-state position-error, i.e.,

K  = 00. The specification of accuracy for the remaining

classes of inputs is restricted to the steady-state

velocity error. This error is equal to the input-ramp

.	 n
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slope all divided by K v , the velocity error coefficient. In

general, K  is made as large as possible for satisfactory

system accuracy in tracking a ramp input.

Stability

The relative stability of the system can be speci-

fied either in the time domain by PO or in the frequency

domain by Mp . The specification of stability is unique in

the sense that it is the only measure which may be specified

by other than a "large" or "small" qualititative criteria.

It has been shown (D'Azzo and lioupis 1960) that PO should be

between ten and forty per cent or that M  should have a

value from 1.1 to 1.5 for "good" system response ( Truxal

1955)•

The measure M  indicates the least stable response

of the system to sinusoidal inputs. If systems are to be

cascaded, it may be important that the M  of the individual

systems do not coincide. Thus, Ql p should be specified when

systems are cascaded. The stability specification stressed

in this thesis is PO because it is the best and most

commonly used of all closed-loop stability measurements.

S. eed

Bandwidth in the frequency domain and Td , Tr and

T' in the time domain are performance measures which are

used to specify system speed. The speed of the system

should be fast enough to respond to the expected range of

?.	 e	 _	 f r^a .k	 } p s	 s^6,
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input signals and slow enough so that the system does not

respond to noise. All of these measures are popular for use

as specifications. In this thesis, dW is stressed for con-

venience, but solutions for T r and Td are given for the

simplest (second order) and the most complex (third order

with zero) modelb discussed.

Sensitivity

The fourth performance area l sensitivity, is the

most difficult to specify because it is a functions of

frequency. In almost all system applications, the serisi-

tivity to unwanted disturbances should he made as small as

possible. The sensitivity measure Z  is made even more

difficult to }candle since the transfer function Z(s) may not

be completely kriowni or linear.

The specification of Z  or DR may be simplified,

with some lo g s of information, by specifying its "worst-

case" (maximum) value. This is tantamount to specifying

the entire dynamic response, C(s)/R(s), by just one "worst-

case" value PIP . The Deviation Ratio, or its reciprocal,

1 + G(s) Heq(s)I	 is stressed in this study, not only

because Z W adds unnecessary complication, but because

^1 + G(s) Neq(s)) ? 1	 (^.3)

f

def7neB a condition for optimality (Schultz and Melsa 1967).
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Summary

The time and frequency domain performance measures

indicating speed (Td , Tr , T s and BW) , stability (PO and

Mp ), accuracy (K V )and sensitivity (DR) have been defined

and are used in the next chapter to specify a desired model

transfer function, C(s)/R(s). Deviation ratio, its effect

on several classical sensitivity measures, and its rela-

tionship to optimal control systems are extensively dis-

cussed in Chapter IV.

{

i	 3`yA1+	 x
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CHAPTER III

THE SPECIFICATION AND SOLUTION OF LOW-ORDER MODELS

In this chapter, graphical ajid, where possibl e,

analytical techniques for determining a desired low - order

transfer function, C (s)/R(s) , are presented. This modol's

existance and the means of locating its poles and zeros

from performance specifications of Chapter II, are dis-

cusses. Three models and their design charts are given in

the order of increasing complexity:

1. The second-order model without zeros.

2. The second-order model with one zero.

3. The third-order model with one zero.

In an example problem which concludes the chapter, a low-

order plant is series-compensated and feedback coefficients

are determined for the realization of the desired model

closed loop transfer function, C(s)/R(s).

Background

A low-order model can usually be found to meet a

combination of performance specifications measuring speed,

stability and accuracy, if the specifications are not self-

contradictory. The performance of a high-order system

meeting very stringent specifications, can be closely

duplicated by a low-order model.

15

t	 ..	 r
a	 k s	

^	 7	 0.. t ^	 ^•	 Tc ^ 'Y	 dt :	 Y
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The existence of the low-order approximation is

verified by the Arguments of dominate root approximation

(D'Azzo and Houpis 1960). 	 and a similar method of dupli-

cating open-loop transfer functions in a marrow region near

the crossover frequency (Chen 1957).

The system's time response is dominated by tran-

sient components contributed by dominate roots (those

relatively near the origin) if:

1. The other poles are far enough to the left of the

dominate poles so that the transients due to these

poles quickly decay.

2. The other poles are far enough away from the

dominate poles or near enough to a zero that the

initial magnitude of the transients are small.

When either of these conditions are met, the dominate pole

response closely resembles the actual response. Neglecting

the other poles results in a slightly faster response.

Analogous arguments in the frequency domain support

the validity of low-order model approximations. The open-

loop transfer function G(j4.1 )tteq(j4)) can be sufficiently

described by its behavior in a narrow region, i.e., + 15db,

near the gain-crossover frequency. Roots located to the

left are approximated by a constant gain while those to the

right are neglected, as shown in Figure 4. The desired

C(s)/R(s) model constructed from the approximation of

G(s)Heq(s) derived in this manner is similar to the

r +
	 qr r+itr sy

Y' ^^.r x	 ar _	 J e	 't	 '' *'^ j 	 w 4}

ro'
	71^ 	

s	 y y
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CWH(s) it	
Q (1 ♦ SAL) 

S ( I + S /bX I *S/CX1 ♦ s/d) .. .

. IU6

4 b /q

a	 b 4 C	 d	 ^^^---------- - - -

Fig. 4. Low Order Approximation of
High Order Response

dominate pole approximation ,just mentioned. Ili conclusioll,

low-order models of one, two or three poles and up to one

zero can be found which cover the spectrum of possible step

or sinusoidal responses#

Having established the existence of low-order

models meeting compcatabla performance specifications, the

formalization of the construction of that model i4 now

presented. The model is made to meet the stability, spend

aIld .accuracy specifications of the previous chapter. In

general, the order of the model is determined by the number

and severity of those specifications. The assumption of

underdramped response rules out Fa .first- order model.

Specification of zero steady-state velocity error requires

the use of a zero in the second-or third-order models. If

more than two specifications (other than K v ) are to be

realized, the third-order model must be used.

' '^»	 ^^-^` 4 ®rtm	 .	 ^,^°iR" '^a `^? ri'`^ . .5: ^ ^h'+1 r ^'S ^^ ^r a ^' ^ tom- [j^<* t^ iF; .^ ""	 ^. 1

k
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The req ,lirement of it pair of complex poles for an

underdamped respcnse permits normalization (if the e-domain

by the natural undamped frequency, tjII, of those poles for

the three models to be discussed. Thins makes it possible

to decrease the number of independent parameter:; by one, so

that the dimensionality of the design charts is similarly

decreased. All design charts apply to the normalized model

having complex -conjugate poles on the unit circle in the

s 
it 

= 8/0
11
 plane. The time domain is correspondingly

normalized, trl = t •6)11'

The Second-Order Model Without Zeros

The simplest and therefore most well known under-

damped system is the second -order system without zeros.

This second -order model is written as:

4!2

C(s)/R(s) = 2	 n	 2	 (3.1)

e ♦ 2 
^ Can ♦ ^n

with a damping ratio ^. This model has a zero steady-state

position error but a finite velocity error.

Equation (3.2), the normalized model equation, is

obtained by dividing the Laplacian operator, s, in Equation

(3.1), by Wn.

C(an )/R(sn )	 2	 1	 (3.2)
sn 2^ n 1



PO = 1 + e
-^n/ V1-^

(Truxnl 1955)
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Tito frequency ruspoiisn of this systow is plotted in many

basic control-system texts (Thaler Find Brown 1960) . The

designer may use these curves to determiiie ^ for any Mp,

WP 
/w tl or !1W /W ,' , or he may molve Cor these performance

treasures using ana lytica l expressions:

BW/w lt 	 1 - 2r 2 + T - ^ 2 + 4
^ 111

 1/2

7
(Truxnl 1955)

Mp T /''	 t - ?
	

(Savant 1958)

4jp/wn 
_ Nr,-- 2
	

(D'Azzo and Houpis 1960)

The time response to a unit s top for this model is easily

found to be

C(t)	 1 - o ^it cos 	 Y1- 2 +	 2 sin W V1- 2

where	 1. Analytical aolutions for Tr , Tp , T 3 and F'0,

given ^^ may be obtained from this expression, so that

r oti	 2^

Td • O
n 

= 1 + 0.7

for 0.1 --r- 	 _ 1.0

(Graham, McRuer at al. 1962)

(Graham, McRuer et al. 1962)

1 1 	 in, 	I 11111p 11 }

x t»"	 w	 „Y	 `r	 X*s;'.	 j1: 1 ° 1	 f ^r'S • 'dy {^1	

c^	

;vk a ^; r,.
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T,9
	 it 

3	 for	 { 0.9 and x =

(Grabbe, Ramo and Wooldridge 1958)

(T,ruxal 1955)

The most straight forward solution of the second-

order model is the graphical one obtained from plots of

performance measures versus the damping ratio, as shown in

Figure 5. These curves, developed by H ausenbauer (1957),

Truxal (1955) and others, give frequency domain measures

normalized by 'jn and time domain measures normalized by

1/Wjl for the model of Equation (3-2)-

The second -order model provides two adju s table

parameters,	 and wrl , with which any one of the stability

specifications (Mp , PO) and any one of the speed specifica-

tions may be exactly realized if finite. The damping ratio

is determined by the stability measure. The remaining

parameter Wn , can then be chc°A n, and the model scaled to

meet one of the speed measurements (DW, T r , Td , "' s ). If

one or both of these specifications lead to a permissible

range of parameter choices, tho added flexibility can be

used to increase K .v

If a second-order model can be found to meet all

requirements except accuracy, then dipole compensation

should be added to increase K  to the desired value or
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Taca,,
2

Tow„

K„ Aj

BW/wn 1

Tsw. /to

0

3

PO/10

me 2
W' /CJ A

1

TA Kv/w o

Ts^w^n

P%—\ Mp

0.8	 0.6	 0.4t	 u. X	 v0
1.0

3

3
Fig. 5. 'Performance Measures of Second-Order Systems



22

infinity. The dipole tadditiota places a pole and zero very

close to the origin so that the transient response is

altered only by the addition of small. but slowly decaying

transient in such a fashion that K  is oorrectly increased

according to Equation (2.2).

A simple example illustrates the procedure outlined

Above:

Specifications: PO = 25%, T 9 = 5 seconds

Synthesis: From the stability specifications plot

ill Figure 5 9 read the required damping ratio

^= 0.45. From the same figure, read the value of

normalized setting time Ts091/10 = 5.5. Solving

for 0n: 
(1I1 

= 11 read/sec.

C(a)/R(s) =
2	

1.21
s + 10s + 121

The Second-Order Model With One 'Zero

The second-order model with one zero call 	 chosen

such that any speed (BW), stability (1 10) or accuracy (Kv)

specification is met, including aal i,ifinite velocity error

coefficient. All three system parameters, 4) 11 ,	 and z (the

negative real-axis zero) of the model, Equation (3.3),

Affect both time and frequency domain performance measures.

The addition of a zero to a model having only a pair of

MIR



complex poles increases the system's speed and accuracy,

while decreasing its stability.

3Y

2V

C(s) /R(s) = wriz
S + Z

V	 v
(3.3)

The performance measures for the normalized form

of Equation ( 3 . 
3) , given in Equrition (3 .4) , are plotted in

Figure 6. The damping ratio ^ and velocity error coef-

ficient are plotted as a family of curves in the z/ w1 - PO

plane. Bandwidth is given at selected points in this

plane, adding a third dimension of freedom and difficulty.

C(s n )/R ( s n ) = Li
► (s 11 + Z /Wtl )

9  + 2 ^ s it + 1
(3.4)

'k.

The choice of W can be delayed to last if the

chart's normalized performance measures, KvA; 
and BW/4,

are taken as a ratio. The desired ratio, obtained from the

specification of K  and BW, can then be located on the

chart for any PO, thereby determining ^ and z/l.)	 The

synthesis of C(s)/R(s) from performance specifications is

completed by using the bandwidth specification to determine

64 . The procedure is best illustrated by an example.
1

Specifications: PO = 2596, K  "e 400 and 150 rad/sec

< BW c 200 rad/sec.

Synthesis: By observing Figure 6 9 it can be seen

rX rt	

+

5	 }.	 ^ { ^ *i 	 r^	 "^^sr++..±ti 	 ZI#^yp ^ ^^ ^,'*t "'r^fi.^* *,,,1j"Tf 
ie'

^:3^ ^ ky^9^ ^ j s	 1
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that aiiy K  may be obtained from the model and the

stability specification met if	 _-%. 0.6 and

z/w
n > 0.6. A damping ratio of 0.7 is selected

and ratios of (Kv
/wn)/(DW/wn) along this curve are

calculated. A comparison of the minimum desired

ratio,

Kv /IlW = 400/300 = 3

with the calculated ratios indicates that the zero

location must be less than 0.85 w n . A value of

z/(Jn = 0.8 is chosen and wIl may be calculated from

DW/wIl = 1.8

For a mediae value of bandwidth, UW = 180 rad /sec,

the result is 
(0J1 

= 100 rad/sec. The velocity error

coefficient for the parameters chosen is K  =

5 • to = 500. The model equation is therefore,

C(s)/R(s) = 1.25 . 10 3 I,	
s + 80

S. + 140s + 10

The Third-Order Model.

The closed-loop transfer function with three poles

has the same number of adjustable design parameters as the

second-order model with one zero, but the performance of

this function is much more sluggish and less :accurate. The

limited usefulness of a model having only three poles

it 
, ' S ri 	 k }	 ^ z AS	 r'	

t r^ 
f ^, F ;: ^ i "j.+^ ^^ ^3 fA^l.j	

e4	

fit ,. } a. 4 v
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suggests that it be cast aside in favor of third-order

models with zeros.

The third order model with one.zern is expressed in

Equation (3.5). This equation also applies to the second-

order model with a dipole mentioned earlier ira this

chapter. This section concentrates on selection of the

four parameters, , 4.) 11 1 z. and A ( the negative real-axis

pole location), in such a way that not only is K  determined

by z and pas in the dipole addition, but speed and

stability characteristics are also adjusted. It will be

seen in Chapter IV that whenp ? > `n the system insensi-

tivity is greatly improved.

r)V

(s + 2^ 
()rls + 4j n ) (s +P)

For the normalized model of Equation (3.6), the

graphical determination of the system's parameters would

require a three dimensional plot for each normalized

performance measure. The design charts of Figure 7 and

Figure 8 restrict the choice of ^ to two values: 0.5 and

0.7 respectively. The normalized parameter, P/;, ,, , is used

to determine speed arid stability measures. Accuracy, K ,v

is held fixed by the correct placement of 
z/W11. These

design charts, obtained from Hausenbauer (1957) 1 lead to

three general conclusions concerning the normalized

parameter, p/Wn.
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1. For a given K  the bandwidth remains approximatel,

constant and e(laual to the value of it second-order

xinglo-,zero model having it 	 damping ratio.

This currespondonce hotels for A/Wn =- 1.

2. For A/44, = 1, the model has an additional. 10% over-

shoot compared to it second-order, single-zero model

with similar  K  and

3. For p/wta , c 1 the model quickly approaches the par-

formance of a dipole compensated second-order model.

The particular method of synthesis using the design

charts is determined by the specifications given. The

following example illustrates one of those procedures.

Specifications: 100 rad/sec c DW c 150 rad /sec,----------	 — —
Kv ^ 200, PO = (20 + 0%.

Svrtthesis: Note that for	 = 0.7 (selected

arbitr arily) and P&II ^ 1 , BW/WJt is from 1.5 to

2.0. Using "worst - oase s ' values of the specified

BW, [v is restricted to the range 66 read /sec e 4jn
J1'-'

e 75 read /sec. Then for a satisfactory Kv , the

plots of Kv /4JJ1 = 3 (gar greater) must be used.

Select Kv/4) , = 4, giving Kv = ::80 . Performance

measure plots for this value must he interpolated

from the 
Kv/4)1
	 and b

y
/(q

1
 -. ti plots.

The stability specificat-on requires that for

= 0.7 and Kv /Wn = 4 ,

f^	
Y .,yj	 L'̂ px_	 F ^X7tij	

r^"`F' rY	 ^ ""`x T ^*71 x
^

g 	 7.
^	 h, 	 v.^ a
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3 ^ P/wn 4.3

i.1 so, for these values, BW /^ 1 is approximately 1 .8.

The range of permitted pole positions can be chosen

on the basis of T ai or Tr . Delay time is usually

desired its small its possible, so the value

A/wll = 4.3 or A = 4.3 41n = 300 rad/sec is chosen

minimizing Td . The model having K  = 280, aW =

-2
126 rad/sec, PO = 19/0, and d = 10	 sec*,

T = 14 10 '3 sec. is thenr

C(s)/R(s) = 3.10 4 	 2	
(g + 49)

(s+ 1009 + 4900)(1 + 300)

It should be rioted that if the plant were second-

order and of the form

3.10 4
s s +

where 0 is positive, it series compensator of the form

G(s) = s + 4
c	 s + 0X

where 0 a	 300 rad/sec, could be added and feedback

%.oefficients k^ and k 3 (k l = 1, for Kp =CO) determined by
Y

equating coefficients in Equation (3.6).

C(s)/R(s) = 1, + G
Gs s)	 s	

(3.6)
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Summary

Methods for synthesizing low-order, closed-loop

transfer functions have been developed from performance

measures of Chapter 11. If the forward transfer function

can be compensated to have zeros identical to those of the

mode]. and the same dumber of poles as the model, their the

synthesis is completed by solving for the feedback

coefficients.

When the plant is complicated by hAving zeros not

found in C(s)/R(s) or more than three poles, two alterna-

tives are possible. The most diffictilt of these alterna-

tives is to specify a high-order mode]_ f.rorn the

specifications. The other method, to be explained in

Chapter V, is to specify a low-order, "ideal" model and

extend it to the desired high-order form as required by

the forward transfer function.

In the next chapter, the 3quation forming the

foundati.i,21 for the model extension is developed. It is

shown that this equation also relates the compensated

plant to the model being specified through the sensitivity

measure, DR(s).

AI



VCHAPTER IV

THE SENSITIVITY-OPTIMALITY CONCIT10N

The performance area, sensitivity, is intimately

related to optimal control systems by the Sensitivity-

Optimality Condition. Equation (2.3) is repeated here for

convenience.

1 + G(s)Fleq(s)	 =. 1

In this chapter, examples of classical sensitivity

functions are shown to be related to Equation (2.3).
Graphical and, for low-order cases, analytical techniques 	 =-

are developed for determining DR (s). The implications

of the Sensitivity-Optimality Condition in terms of the

open-loop and closed-loop transfer functions are then

stated.

It is shown that if this condition is met, the

resulting closed-loop transfer functiou minimizes a

quadradic cost function of x(t) and u(t).

Classical Sensitivity

1

	

	
The system's sensitivity to disturbances at the

output is defined in Chapter II. The appaarance of

(1 + G(s)Heq(s)) in the equation defining Z
o 
(s) in terms

os open-loop functions is the first illustration of its

32
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importance. In this section OR -1 (s) is shown to be of

similar importance to the system's sensitivity to varia-

tions in open-loop gain, K11 and to open-loop pole move-

ments.

The sensitivity of C(s)/R(s) to gain K 1 is defined

as:

C/R K

(s) ^ C s /R 8 8) [C(9)/R(s)]

K	 11

For the single-input, single-output system shown in Figure

9, the sensitivity function is easily calculated illus-

trating the importance of making 1 + G(s)Iieq(s) as large

as possible.

G(e)

Fig. 9. Si„gle-Input, Single-Output System

For Figure 9 C(s)/R(s) is

K1G1(s)
C(s)/R(s)	 1 + K 1 G1 s Jieq s



34

and

C/R	 7 1 + K 1 G 1 (s) lion (s)	 G (8)
(s	 K1

	
K 1 G 1 s	 (1 + K G (s)lloq(s))lK 1 	1 1

[1 + G(s),{eq(s), -1

The sensitivity of C(s)/R(s) to the movement of

an open-loop pole at -a, shown as an interior block of the

system in Figure 10, is similarly defined and calculated.

RN	 ^_	 K I	 GI(s) 	 a	 G3C3)s C c S)

(A

Fig. 10. System With Open-Loop Pole at a

If sensitivity is defined as

C /R
OL(S)	 L [C(.$)/R(s)]f	 C(s)/Rj_97 9 a

a
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and another function F(s) as:

F(s)	 1 + K1Gy(s)N1(s)

and

G,(s)G (s)
G(s) = K1 &as + a

Neq (s ) = fi t (a) + G
2

+ sCx N1 (s )

Then

C R 

	

1+G(s)1fe (s) ; a I	 K1('iy(s)!,^(s)
(s )= a —	 G s	 a s sF s +K 1 G 2 s G 3 s Ji,^ s +aF s

Q	 I	 ^	 `

-a F(s) s+a)
1+G s lieq(s )

The importance of making 1 1 + G (s) fiey (s) I as-large as

possible for all 's' has again been demonstrated.

In its present form, a plot of DR -1 ( g ) along the

j(J-axis would require calculation of the k's to form

Eieq(s). This would make the use of DR -1 (s) in specifying

C(s)/R(s) a difficult and time consuming process. By

writing DR _ 1 (.) in terms of the projected model C(s)/R(s)

and the open-loop plant G(s), the design procedure can

quickly determine DR -1 (s) for any model chosen. The model.

chosen must have the same order and gain as the plant, and

is now further related to G(s) by the sensitivity measure.

rr	 s	 i z 	 2 a

'tam	

^ r r̂ -r , . +, ^	
h r ,r ,^. ;ry 1 J ^ wLw 

;J !
,r

s$	
4	 "^4 }.. ^	 ^5^ Jx 1: . "1n r ^r M a^i ^^#y'^,,	kh„	 ^` 4} :+^

w	
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Assume the forwnrd awl opei ► -loop transfer Function9 are

written its

^^(s) = K 1 U(s)	 C(s),/R(s) = K N(s 9
c

They must have identical zeros . Tile* stet is loop-sensi-

tivity K 1 must equal K sil ► ce He(i( s) 11119 (it - 1) zes•09,

where n is the order of both D(n) and D c (s) . By expwiding

the closed-loop transfer function in terms of G(a), it is

seem that

1 + G(s)1tef{(s) = C(s) G(s) = Dc(s)/D(s)

there£o~e,

r
DR -1 (s) _ 1 + G(s)lleci(s)	 I D c (s)/D(s) I	 (lf.l)

Tliis function han one important feature; since the

order of each polynomial is n, DR -1 (s) must always approach

unity (1/0 0 ) its s becomes infinite.

It is instructive to form analytic expressions For 	 t

the second and third-order casers. Office a rant. the nornial-

ized form of C(s)/R(s) and G(s), (G.(s /till ) ) are used without

loss of generality._ The second-order, normalized model

first introduced in Chapter III is

1.	 tC(s 11 ) /it (s rl ) =	 2	 f
s 	 2S s 	 1
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which corresponds to a forward transfer function

_	 1

	

G 
(sIk	 8 I 911 + 

Oc ^i^

where Q is the unnormalized plant pole shown in Figure 11.

	

+ F	 w=-	 s	 C(S)

	

S +«
I	 1

kt

IV41

ROl

Fig. 11. Second-Order System with State
Variable Feedback

Expanding Equation (4.1), in terms of jW, where

S  = jW, and A = (X/4, 11

e)	 ??	 1/2

JDR - 1 ('W) = r - W " + .j2;W + 1 -W 2 - ,j2^W + 1.,
-W ` + jAW	 -W2 - jAW

A reasonable criteria for DR -1 (jW) is that it be greater

than unity, i.e., the Sensitivity Optimality Condition,

Equation (2.3). This condition is met when

•	 1 •,F.

1; ti

^j (4.2)
Equation (4.2) indicates that at best (A = 0),

the damping for a second-order, cleaed - loop transfer
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runction should too greater thin 0.707. Thus sonsitivity is

improved by increasing ^ corrorponditig to increased

accuracy and stability.

The analytical solution for the parameters of a

third-order system (P and z) that meet the Condition Equa-

tion is much more interesting. The normalized model and

forward transfer functions are

C(s )/R(s ) _	 ,,
P/fin

n	 n	
(sn + 2^8 n + 1) ( s al + P&

and

G (s ) =	
P/wtl

n	
9 1 S

n + CX AW
11 S11 + wn

Substitution of the denominators iitto Equation

(4.1) and setting DR(jW) -1 ^ 1 leads to the following

equation

4 2+P 2 -A 2 -8 2-2 W 4 +	 2P2-2P`-I's"A`+1) iJ ` + P ` 	OY	 4^	 Z

where P = P&.	 and U = P/w_.	 The coofficiont of W 'k I Y,

mu.•t be posit lve it' the inequality 4 s to hold as W becomes

infinite. Vie restriction on the coefficient of W 2 , Z,

depends on the magnitude of Y and P and is unwieldy. But,

the increased flexibility of the third-order case is evi-

dent in the expression obtained .,y requiring Y to be

positive.

r

a, ^ ^	 (	 „,:{	 F ^^	
:,. '^ l( Rl ' F ._ r►t^xs 

^{.x`^
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(4.3)

Titus if the closed-loop pole P i-t made lrtx•wo

tattotigh (greater, th; ►► t A" + l;" + ::) I ^ is limited only by

stability co:tsideratlotts. Comparison of Equatiotts (4.2)

and ( 4 -3) lead -4; to the cottc lusion that it Itecessary cc ► n'ii-

tion for- systems of wiy order, It, is

	

[,	 -	 [poles of C(s/I2(s+ 	holes of G(s )i ^n ^	 n ^	 ct	 I ► 	 r ► J
!	 J

L
(11.4)

Graphical techni(Ittes for high-order systems provide

more insight in plitcing the poles of C(s 11 )/11(9 11 ) for a

given Ms ) . A straight-lime approximation of
I1

I D c (,jW) /h( jw) 1 in #Ittickl y drawm using the property

1lim	 ' II c( 1^ ) I	 1
I+ --a' oo i DO W-11

mentioned before. Starting at it large valtue of Zs t where

DR -1 ( jW) = 1, the function is plotted as W is dec;reitsed1

making the usual slope changes at tt.1w breakpoints, of

U
c ( 

jW) and D ( jW) .

The procedure is demonstrated by obtaining the

straight line plot of DR - I (j%0 for the example problem of

Chapter III. The model and forwtzlr ,,A transfer functions of

that example are:

1	 '^
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C(s)/K( :+) _ 3.101	 s + 49

(a + l oom + 4 900) (s + 300)

and

G(•)	 3.101	
a + a (s +

By writing only the denominator of ouch and normalizing by

W11 = 
7U rad/soc the results are

Dc (s11) = ( a C) + 1.4s^ t + 1) (a n + 4.3)11

and

D(s n ) = s 11 (a it + A) (a it+ B)

Lot the compertsatai • pole ^ be Lit 56 rad/sec, then H = U.A.

The sensitivity measure, DR -I (jw) is plotted in

Figure 12, for the various values of pole position A. The

importance of placing the model pole further from the

origin Clan all blunt poles is indicated. The m a gititudo of

DR( jW ) -1 is greatest at .ill. freduencies for the plant pole

A3'

In conclusion, the closed-loop trai ►sfer function is

least sensitive to output disturbances, static-loop

sensitivity variations and plant pole movements Hheu the

closed-loop poles are placed far from s = O. Since the

static-loop sensitivity for systems using state-variable

feedback and having zero steady-state position error is

equal to the product of closed-loop poles, divided by the



.W

1! 1

Fig. 12. A Typical Plot of UR -1 OW) for j ► = 3

product of clo y ed - loop zeros, K must i.lso be large. Iii the

next section, it is shows ► that not only is sensitivity

decreased by makin g DR -1 (s) large, bait Also that the

closed - loop model defined by C(s)/R(s) is optimized.

Optimality

The performance measures of Cliapter 11 are used to

specify a model transfer function in Cha, t - 11.1. Those

measures Lire often used to judge tho ",i	 less" of the

system's response; i.e., the system which minimizes T s for	 i

a given plant is "best." Other criteria for optimum

ter. i
	

.p	
q^^" ^rilJ	 ► 	 j	 J1
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systems are the irn(licol errc ►: nien^aires (Graham, McPuer

et tai . 1962) .

Iiaclical error criteria typically me asi ► r y the

integrated function of the orror renpoaase to sa stop input.

One of the most useful of these indi.cal orror criteria is

the integrated orror- ,5qu,ared (1SE) criteria given by

00

ISE =	 u2(t)dt

A more general performance index using, a qusdradic

cast function is

00	 T	
1

PI =•	 (-X(t))" + pu"(t) dt 	 (4.4)
 f [

O	 J

where r in a weighting vector of the form

	

11 U.,	 ... , phi-1' O
J

and p is a positive scaler., is miiaimized by a closed-loom

system derived from Equiation (4.5). This is celled the

Kalman Equation. For .a system defined by E(lat;at.ions (1.1),

(1.2) 9 and (1-3) the Kalman Equation takes the form

.I
1 + kT (s)l., i.. = 1 +3^(s)t^i 2 	 (4.^)

I I
(SclTUltz .u ► d Melsa 1967)

or
I

1 + G(s)lled(s)^	 = 1 +	 t (s) 2	
(4.6)

P I r	 I

=

^;	 4: , ^	 "s
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It has been shown (Sch ► tltz and Melsa 1967) that r(s) is the

product of G(n) ; ► ttd tho characteristic equatio n Dn ► (s) of a

model responso determined by jL x( t) . The pole-zoro excess

of F(s) must be greater than zero.

The magnitude of the right hand side: of Equation

(4.6) can never be le g s than unity. Thus they optimum

nature of the inequality ,given oy the Sensitivity-

Optimality Conditiott, Equation (2.3), is shown. If a

system is chosen to meet this condition, there exists it

weighting vector of positive coefficients, I and a

performance index which is minimized.

Summary

In this chapter the importance of the Sensitivity-

Optimality Condition, which forces DR -1 (s) to be greater

than unity, is illustrated. An equation is given, (4.6),

which defines lieq(s) and therefore C(S)/R(S), such that

C(s)/R(s) optimally approximates a lower-order model staving

poles determined by ll tn (s). This equation is used in the

next chapter to extend low-order models specified by the

methods of Chapter III to high-order models compatible with

the forward transfer functions.

i

a^^+ 	 *P^ r:^ 
^ '!'^^., ^	 yJ.^F	

: lrri r !	 rp ; -?Ls'^ h 1 ,,,,^ 
F

ria','



CIIAPTER V

TILE SPECIFICATION OF HIG11-01WER MODELS

Performance specifications .tre used iii Chapter III

to	 specify it low-order, "ideal," closed-,.00p model. The

feedback coofficiorit g k mray be determiiied	 from this model

if:

1 . C(s) /'t(s) includes all the zeros of the forward

tr.aiisfer fuiic tioii G(s).

2.	 The order of the	 deriorriiiiators	 of	 both C(s)/R(s) 

.and G (s) ; p ro equal.

3. The plant's static loop soiisitivity equals the

Closed-loop gain, K.

Iii this ch a j)ter, the low-order modal is optimall.N

modified by the additio:ri of Poles aiid zeros such that all

these restrictions are met for aji), G(s).

Extei ► sioii of Low-Under Characteristic Egiintio ► iis

Equatiou	 may he rewritten iisiiig the relatioit-

ship given by Equation 
(11-3), to form

U c (s) 	 t ^	 Din( s) :^(s) r
L)( 9) I = 1+ 

h 

I K	 5 s7--

where Dm (a) is the characteristic equatioii of the "idoal"

model. The expaisded form of Equation (j.l) is

44
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a=
rti

D 4 (m)D ( -s)	 h`	 1)in(s)ti(s)Um(-:^)ti(-s) 1

1) K D --,47' = 1+ 1)	 D a D -s (5.2)

11oth sides of this t quation have poles 'and zeros in the

left ,in(] right Halves of the n-plane:.

If the closed-loop model being specified is

stabl e ,, it must contain peel em only in the left half of the

s-plane. Therefore, the poles of that model (the roots of

D
c 
(s)) are the left half plane roots of the right-hand side

of Equation (5.2) 9 denoted here as,

2	
^

D (a)	 D(s)D(-g) + h
	

D ( g )N(s)D (- s)N( -4)Ic	 L	 p	 m	 m	 L11P
(5.3)

Since D(s) is assumed to be a high-order'Nolynomial

(1 ► 	 3), the zeros of Equation (5.3) aro difficult to

obtain by direct factorization. A root locus, however, is

easily plot tee d. The root locum contains 2n brunches

originating at the	 21t zeros of 1)(s)D(-s). The work is

greatly simplified by the quadraittal symmetry of the

singularitie s in EtI ation (5.3) .

This symmetry may assist the designer iii several

ways: ( 1) the cen troid of all asymptotes is the origin,

(2) only the roots in one quadrant must be plotted, (3)

the roots going to infinity may be approximately located

for large values of K by placing them at a radius r = K l 2

from the origin. The coefficient L is determined by

4F,^ .e	 ry	 gyp.,

IF
Wit° 'P. §_. _:,...a' ^._.''ru Est •"dt F .,^e`_i.^^tis ."	 k"	 _
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L = ( 2i-m-n ) -,%- 1in —

where in 	 the order of N (s) and ii Inthe order of D rrr (s) . It

should be notod that if L is evert, a 0 0 locus is plotted

instead of the usual 130^ locus which is required when L is

odd.

The equations defining the slopes, 8 9 of thf•

asymptotes lead to two importa.it  canelu yions. Tho equa-

tions are

0 = (2g-1) 2L	 for L even

0 = g L	 for L odd

and g = 1 9 ... , 2L. The first observation is that the

jw-axis is novor an asymptote. The second observation is

that for very large static gains, the excess roots in the

left-half plane approach the location of an Lln order

Butterworth polynomial, 13(s).

If the gain K is infinite, Equation (5.3) rodaz e s

to

D (s) = KD (s)N(s)13(s)c	 m

The n poles of the extended model are placed such that

(1) Dc (s) has nIn roots where D ins) has roots, (2) DC(s)

has in 	 whore N(s) has roots, cancoling all the zeros

from the-plant and (3) D c (a) has L roots of a maximally

flat function, B(s), at infinity.

u" y. 	 ^4j
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Smell values of gaiit make I) (s) identical to thec

compensitted I ► 1 itch' -i (Ienomiitator, 1)(s) . For values of ,grin

betweeii tho two extromes, the bolos of.the extended model

are determined by the loci of optimum roots which r-. ,•-im.ize

the performan(-e index of Equation (4. 4) . The extended

model is the "best" approximatioii of low-order "ideal"

modal for a give>> K.

An example illustrates the procedure.

Spocifications: PO = 25",'0, T s = 5 seconds and a

pl aiit given by

CS(s) =
	 3'00

8 S + j s + 1 0

Synthosis : A second-order mcdel. was determined in

Chapter 'II mectiiig the performajice specifications

PO and T	 The "ideal" model is therefores

C(s)/R(s) = 2	 121	 -	 121

	

s + 10s + 121	 (s + 5)" + 9.8—

The root locus is defined by substituting into Equation

(5.3) and solving for the roots,

r

	

-s y (s+5) (s+lo) (s-5) (s-10) - (17p0)	 (sy+IOs+121)

(n"'-1.09+121) = 0

Later in this chapter it is shown that 1)1/2 is equal to the

"ideal" model gain which for this example is 121.

locus is plotted in Figure 13 by observing

The roct

Ar
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L = 3	 = 1

0 = 0 6 , 180•

The roots of 1) (s), itt tho loft-half plane for v	 z 1::1

are - 30, - 4.7 + ,jR awl the specil'ied closeff-loop function

is

Tho velocit y error coefficioiit cif' the "idnal" moll ol

can he obtained from ejIt = 11 recd/sec and Figure 5. T1 ► e

value of K  is 143. The extended modal does not improve

K,pl. 'If it lorger K  is desired, it zero awt pole :sro added

to the pla ► itt ii ► Vie iisiir ► 1. fashioii.	 The 7c;ro could Ise placod

according to Figure 0 for ciii int'inito K  in the "ideal"

model . But when the model is exteit(led its above. it pole. of

C(s)/R(s) is placed by the root 1 0CLIS Suc11 tltikt it tOII(IR to

cancel the desired zero. If K is large, thn increase in K 

for C(s)/R(s) will btu negligible. This difficulty is it

consequence of E'gxiation (5. 1 ) which :does not permit

inclusion of the "ideal" model's zeros in

Extension of the Ge. ner,il "ideal l ' Model

The author suggests that the Kalman Equation for

single-input, single-output systems he modified to include,

the "ideal" model. zeros , Nm (.s .

as

j
The equation is rewritten

^w

,i	 ^X ^4r -;.^^ / ,^ 'rRTd'J i	 s p	 ^r,Y	 ^ f/ Tf	 :'^d
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Y	 (	 ' w

D(	 111	 , U s

If the operator a is mado very small  the left-

hand side of Lquat ion (5 , 4) fappro ;ac:hom sa large wimbor

Idco/a^ 2w here dco is the Coefficient of j. in p c (is) . Ttae
i
other side of the equation upproachus

I1 ^ K c^mc, 
lac ' I

p I n_n 9 I

O
where dmo * lamc,, and it  tiro the coefd' ic io its of sin Dm (s) a

N m (x) and N(e). Since Kp =00 1 K = d cc^/n o and the cociffi-

cieiat p is given by

,1/2 = d
mo/lamo

This is also equal to the sti+tic gail y of the

"ideal" model if K for that modnl is infinito as assaamed
p

in Chapter III. Therefore, Equation (y.4) may be expressed

in the final form

n c (s)I 3 	 I	 G(s)	
I2

L) s	 s l+	 L(s)/R s'
	 (5.5)

"ideal"
i

For an example, the third-ordor " ideal" model of

Chapter III is extended using Equation (j.j). The per-

formance specifications of that model tare: (l)

100 rad/sec c BW .--1 50 rad/sec .. (2) KV = 200 and (3)
i

1i

>G r.?$	 a, y; i	 t°	 rr 4 r 'i t	 [s	 a	 r	 t
y	 ^a.Mlf`L'as+r`L .) '£'S'+t 44f LYS +Lu ^ 1 #..,.'G ^!^ ^ if'F^ . ! .. ^.	 '4	 M
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110 : (20 + 1 YA. The "Ideal" i.iodel mo elting these Hheeifica-
tions is

C( s ) /^t(s1^ 3.10 4( 5 + 0
"ideal"	 (s` + IOOs + 4 900 ) ( a + 300)

If the given plant is

G (s)	 45.106(.4 ► .00)
p	 s s + 100)( 8 + 15o )(s + 400T'

then a compeasator must be added with the form

s + 4
G c (s) - :e + a

The roots of Equation (5. 5) are found by equating

it to zero,

(M" +100a +4 0o) (s+ oo) ( s +2()O)223-10    I 
's -s+133) (.,;+ :OU s+l. 56 s+a	 -

I

Notice that the desir ° e(f zoro will not affect the root

locus, and thaet a new L' must be defined as

L' = L	 (Number of desired zeros) 	 1

The root - locus defined above is plottod in Figure 14. The

v"lue of Q is chosen to he 300 in order to reduce the labor

involved. This pole, the zero at 300 and the root loci

originating at + 400 are not shown in the figure so that

the more critical roots loci near the origin are emphasized.

The model specified by the root - locus extension is

^I

1 ►̂

^i, `{	 ^ k r' ^ 

At ^^^
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C(a)/ft ( g ) _ --^	
45.1O('(s +200) (s.=.

(g''+ltN 6s+3150) (s+190) (s+300) (s+2000)

This model is very close to the "ideal" model for

the large. gaits constant as oxpectvd. The unwanted zero at

200 is approximately canceled by the pole at 1 90. The

remaining excess pole is a first-order Butterworth

polynomial with a bandwidth of X000 rad/sec, more than ten

times that of the "ideal" model.

Summary

Although the model extension equation, Equation

(5.5), cannot be derived from the quadradic performance

index of Chapter 1V, the rosults are the same as those

based on the Kalman Equatj pLti. For large values of ,gain K,

the specified model approaches the "ideal" model with

excess poles placed in Butterworth fashion.

Its the next chapter, the sVllthesi g is completed

with the calculation of the feedback coefficients k and a

comparison made of the actual time and frequency responses

of both the "ideal" and extended functions.

1'.	 ^' X	 r^F .^ ,..si r ti	 ^	 t 3 ^ ^^ 
'f̂ !	

, F '^^ ' ^	 ^`	 -



CHAPTER Vl

TIIE SOLUTION Or 111G11-URDER SYSTEMS

The calculation of Coodback coefficients that

realize a snacifiod high-order madel , complotes tho system

synthesis. The exempla problems of Chapter III rare com-

plated here. These two exf ► mpl es also  serve to illustrate

typical. difficulties iii the realiratiot ► of k. The chapter

concludes with it discussion of an important difficulty,

Saturation.

Calc: ul; ► tion of Herl(s)

The final step iii the sytitho si s is tho determina-

tion of feedback coefficients of the compensated, linear

plant. These coefficients dofino an equivalent feedback

function Ile(1(s) . The restrictions c► it llerl (s) made through-

out this study are summarized as:

1. Ilecl,(s) has (ti-1) zeros determined by k.

2. Since 
K 

1 =00, the output state variable x 1 must	
J^

have unity _gain feedback, k l = 1. }1

3. All zeros of the compensated plat ► t G(s) must be

poles of 11eq(s) .

The restriction on k  is Rc p t critical. This

coefficient ad justs the static gain to match the

ti

r r'= t	 t ._:^	 xt	
;M	 -	 J	 a^ 

;3^
M	+{'ifs	 .^^M

t
Wf}^r^+	 ry"'
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JJ

coefficiertt:i of s o i ►► botl ► I) c ( s) : g ild U(s) [1 r G(s)11ec1(s)1 ,

but tl;e.se coefficic ias have, alrn illy been mrttched by the

modeling process. Thus, the remaining (n-1) k's call be

chosen so that r, ►► y C(9)/I2(s) cra p he 1-valized.

Completion of the g y ► tthesis of tho -4pucif.ied

second-order "ideal" model of Chapter IV illustrates the

procedure. The speci fied C (a) /It (s) Function ru ► d given

plant are

C(s)/R(s) -

	

	
1.7U0

[(S +

G(s) = G ls) -	
1700

N	 s s + 3) s + lU

By expressing C(s)/R(s) in terms of G(s) and llcq(s)

obtainod from the system block diagrrun, Figure 13, we of

C(s)/I1(s) 00

s ( 9 +5) ( s +10) + 1700 ^1+(k,) + 10k 3) s+k 3S`
VL 

and equating to the speciXio.d C (s)/R(s) , the k's are

determined as

29 .4 = 15 + 17000 3

2 1-4 = 50 + 1 700 (k,, + l Ok 3 )

The solution for k is

1

k	 18.5.10-3

117.10 -3



R(s) CG4

j6

Fig. 15. Block Diagram of :'hirel-Ureter L:xampl.e

The frequency response, Figure 10, and time rospouse,

Figure 17, of both the system and the "ieieal" model. indi

-cate the low gain un ed. A highor gain would improves the

approximation.

Tile third rustr.iction is a possible difficulty only

when a zero exists in the first block of t'he system's block

diagram. This zero, uuilike all the others, does not become:

a pole of Heq unless spocial care. is takoei in selecting the

rilb state variable that is fed back. The other example: of

Chapter IV, having two zeros and five poles has it compen-

sator zero in the first block. Completing the synthesis of

this system illustrates the difficulty a l id its solution.

The specified model and the compensated plant equa-

tions Are

N^

t
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.r

C(s)/R(a) =	 ry-.---115. 10 6 (s+200) (s+49)
(a"+10()y+383u)(s +19O)(s+300)(a+2000)

and

45 - 1 0 
6 

( 5 +200)(8 +4 )
G(s) = s s+lOO s+15U s+30U s+ OU

The block diagram for the system is shown iii Figure 18.

GC(S)
RW+	

y5^ld` 
E 5 , y- xs =

E	 s f Tao	 s * Im

k.1	 1k>1	 1k.

	+ 	 +̂4

Fig. 18. Block Diagram of Fifth-Ordor Example

If 11ey(s) is calcul ated using x 5 as a state

variable, it does not have a pole at -49. A new stitte

variable, x5, replacing x
5 

can be fed lack which places

the desired pole in I1eq(s). This is Accomplished by

building the compowsator and picking the state variable

as shown in F i gure 19.

Before completing the design, it closer look should

be taken at •C (s) /R(s) . As noted in Chapter V, the zero at

-49 does not affect the position of the root loci. The

a

^*u •	 '^	 ^^ fir.	 # ^	 '^+rx	 '/" Lf̂  a^,^	 r r ^`* '# ':^,^i 'J` ,^ X a^^^ f p ^i :{ x 4	
I

y 	 v
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I	 a• b	 Xs 	
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rsib 	 ^ XS(t)	 X 6 (t) a	 X	 E (3)S+b

ks

Fig. 19. Lerom in the First block of it Block Diagram

zero wits pl:acwl at - 149 in the "ideal" model to i ►► crenne Kv.

If K  is computftd from it g defi ►► ing ecIuatic ►► a of Chanter

III, repeated here as

^ r 1
by	

01a 
T	 waes of C R	 , zeros o[' C/11

the K V for the extended s y stem is J25 rid/aec, lust than	 «

its specified ►ninim ► un of 21 00 rnd /sc-c . Tho "ideal' ► model had

a K  of 280 nkd /svc.
The other performance, mviisuri:s have also suffered

by the extension, but there are no charts or formulas to

determine their deteriorittion. Since the zero sloe:: not

affect the root loci	 and	 .a formi ► la does exist for Kv ,	 the

zero is moved to regain an acceptable velocity error

coefficient. A F ► ole must bo moved simultaneously so that

the K remains infinite.
p

^^r"

YAr-
 ̂ '	 r Y	 ii	 t	

: t	 Y^. ^ L. t ,^j
	 y3, 34J•^^f 
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It' the K  specification requires a contribution,

from the compensator zero and pole ( nolect the largest pole

in C(s) /R(n), P), then

a	 p

Tito position error constnllt is mai ► ltailled as ,4pncified if'

P o /ao = P/a

u.here it  and Po are Clio original positions (i ► o = 49, 
110 =

2000 in thim t:xawpl e) . Both equutioiis are solved by placing

the pole at

P = (P	 (6.1)
u	 ^^

and the zero at

a = a0 P/p 0	( 6 - L, )

If Po >> ao , they a (illations ( 6. 1) and (6.2) , reduce to

P = Plit
0 o

a= l /^j
For this example 1'0	ao and	 of 24.6 x 10-3

forces K  to be 300, greater than the 200 of the ideal

model. The zero and pole positions a re them

a = 41

P = 1670

d

t	 "	 - Vj

d r^ rf ^X^,1L}^'idlli^^4l:: i,
y	 i

ds	 ,;+y^..[ 
^	

;^}^_^

^

^y ^^^J

T ^	

^^t}t}^^1__
	#..'

3

^^"j'^ 'y. ^±e+yy .i
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card the closed loop trnivi for 1'ur► ctioi ► to ho roalixed its

COO/11(8) 	 45.1o(0(g+200) (s+41 )
(M ..+1 UGs +3850) ( % +190) (4+3OO) ( m +1670)

The feedback fi ► i ► ctiori obtait ► ed by b lock diagram

mrar ► ipultatiol ► is

lleq(s) = 1 + k. ) m + k 3 r.(s + 1 50) + k^1 K(:S +130) (.9+ 1100)  
V	 0

+ k^ `"^` ^( .4+1 ^o) (:i nr) (r,+1
y+..uc^	 a 1 I)

Ouce cagaira, C(s)/R(s) is expressed in terms of Iley(s) a ►► d

G(s) t"iid the coot- ficioiits of like powers oquated to

evaluate the k' s. After sonic straight forward algebra, k

is found to hf!

I

1 5 . • 10 -3,. 
k _	 10-(i

34,i0—G i.

12, • 10	 J

The plaiit gAtis, especially arotuid the x 1 fe+'clhack

loop, are large. A large static-loop set ► -3itivity leads to

it dose approximation of the " ideal" model. its shouni iii,

Figure ::0 1 but saturation is likely to occur it' the system

is driven hard. In the ii o xt section ► , a mathod is proposed

which attemptm to retain the optimum tiature of C(s)/R(s)

without saturation._

{"1
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Saturation

The closed-loop poles are placed whero specified by

the zero-; of Ileq for any slain. 	 If si,tux-iition occurs in one

of the state variables being fed Lack, at	 least one of the

zeros and possibly the pol es of Ile(109) move or vanish.

When the gain is high, instability becomes inevitable.

Saturation in tho system is not necessarily it Lad

feature if stability is maintained. Merriam (1964) states

that for the simple system shown in Figure 21 ". . . the

saturating controller with a linear zone . . . is the

optimum controller for tho error measure . . ." (I). 20).

00

PI =	 le(r) ` + p ► t ('( J ) `^ j7'

t

K	 t	 LL(t)M	 e(t)
J^T

Fig. 21. Optimum Controller for First-Order System

Merriam shows that the optimum solution for this

system is one with a linear region gain of K = p-1/2 with

velocity saturation occurring at e(t) = M or c(t) = M/h.

Thus, if e(t) is kept as large as possible the system is

driven with maximum velocity-toward the desired output.



G^

The extension of this to high - order systoms is that it

should bo driven as hares as possible; by keeping the ,grai.tn

large .

A possible: method or obtainning an almost maximum

effort sy:9tem while rnaint; ► innitaq optim a lity is suggested by

the root locus of optimal models defined by Equation

If the state variables are fed back so that as the

controller reaches saturratiotn, the zeros of 11eq are still

determinod by k, them the system remains stable,

The cotntroller is built to saturate for excessivo

error signals, but this region can bn extended by dividing

the cotntroller quirt inntc two linear regions, K itK 1) and Kb,

asshown in Figure	 T1ao feedback 1 . 001).-4 an'c3 al do s}>lit

into two groups. When the first stage is saturated, the

reduced gain and now 7erc s of 11eg 1) GO c;ar ► be made to force

the closed - loop pole s of C ( y ) Eil ( g ) toward the pl aint' g poles

along the optimum root lochs . if theme poles are close to

the poles of G(s), the litnvar region is g rer ► tl\, extenoled

and the optimum na tnre% of they s\• s tam maintained.

Stunnnn ar^

The specific-id closed - loofa transfer function can be

modified for improved :system ;accuracy when an alterable,

desired zero is pre s ent in the open-loop pl a nt. If this

zero is in the first block, care mist he taken to insure	 j

that this zero is a pole of Ileol(s).
'!t
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C ($1
R(5)

F i % .	 Optimum Co»troller With Two Modes

The synthesis is completed by the cr ► lculiition oC k

which places the zeron of ileq(s) (or Ileq'I ( s) an d Ne ► l i ' (s) )

so that the aesired closed-loom poles tire. exactly roalized.

A ``, fig.'.
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CHAPTER VII

CONCLUSIONS

The method s of speci fying closed - 1 Oop transfer

functions of any order, coupled with the ,ibility to realize

that function using state variable feedback, make the

synthesis of lineitr control systems straight forward. The

synthesis proceeds from performance criteria to the calcu-

lation of the fredback coefficients in five steps.

1. Values are assigned to performance measures, making

them performance specific a tions 'from the design

criteria. A set of measures, sufficiently

describing eLthor the time or frequency response,

includes nw, rl f^, Cep , T (l , Tr , T .  PO, FVI: (Kv ) , Lo

and DR.

2. An "ideal" model of low order (up to three poles

and one zero) is specified from the design charts.

3. The "ideal" model is extended to be compatible with

^kthe gain, order and zeros of the compensated plait,

G(s), using the equation

Dc(s) I2	 G g	 ^''
I	 ( )	

v

I D(s)  I	 C s /it (s), ideal 11

'Al

67
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4. A pole aikd compensr ► tor zero are ad j ►► sted to improve

K
V 

it necessary.

,. The state variables are then chosen and the k

vector calc ► ilated.

If the gain chosen for the plant i.s large, the

closed-loop system response can he specified and realized

independent of the plait. Saturation, however, places a

limit on the gain r ►nd therefore oii the extent of al ter. ► tion

of the open-loop performance using stato variable feedback.

I



REFERENCES

Chen, K. , "A Quick Method for Estimating Closod-Loop Polo s
of Cositrol Systems," Trans. AIEE, Application and
Industry, May, 1957, m). 80 -87.

D' Azzo, J. J. fanri C. Ii. 11oupi s , _dbiicckk C_ o^i_ trot, Sys
Analysis an-1 S^• ratho sis, McGraw-11i11 Book Company,
Isac . , Now York,  N . Y.7 1960. 

Gibson, J. E. et al. , "Specification and Data Presentation
in Linear Control Systems," A Tecluiical Report,
AFMDC-TR- (10 -3 1 Prepared for , Air force Missile
Development Center, 1lolloman Air Force !lase, New
Mexico, Purdue. 1lsaivorsity, 1900.

Graham, D. et al . , "Performance Criteria for Linear
Coilstant -CoeUricient Systems with Detorm.inistic
Inpatts," A Technical Report, ASP-TR-61-50.1,
Prepared for Aeronautical Systems pivisiois,
Wright-Patterson Air Farce Base, Ohio, Washington,
Government Printiiig Office, 1962.

flausenbauer, C. R., "Synthesis of Feedback Systems," Ph.D.
thesis, 1;niversity of Missouri, Columbia,
Missouri, 1957.

Merriam, C. W . , Optimization Theory and the, Desi gg*si of
Feedback Control Systems, McGraw-Mill Book Company.,
Inc., New York,, N . Y . , 1964.

Schultz D. G. atad .1. L. ^Ielsa Str+te FLOICt.iosl-s sand Linear	 ^	 J^	 ,	 1Control Systems, McGraw-hill Book Coml)any, inc . ,
New York,  N . Y . , 1967.

Thaler, G. J. and lt. G. Browse, Servome,chrastism A nalySi.s,
McGraw-Ili l l Book Company, Inc., New York, 4\0  Y . ,
1953.

Truxal, J. G., Automatic Feedback Control System Synthesis,
McGraw-Hill Book Company, lnc . , New York, N * Y . ,
1955•

69

^5
s}	

,2	
d "	 t •4t

`^	 }	 a	 7" x`;,

	 F^R, 

2 e .a`,. .far!' a }.^
	 •+^c't}^. 4F

^'  	 'AY"l^€.1^.. ^,".	 Y. 3.74^e r.T.l t̂.I19 4I:^	 i!'/rfL	 Lia1' ':a+ :'.^' ..



PART II

SENSITIVITY AND STATE VARIABLE FEEDBACK

Prepared Under Grant NGR-03-002-115
National Aeronautics and Space Administration

by

Robert C. White

and

Donald G. Schultz

Electrical Engineering Department
The University of Arizona

Tucson, Arizona



ABSTRACT

Two new time-domain sensitivity measures, integral sensitivity

and peak sensitivity, are defined in terms of the sensitivity function.

A relation between integral sensitivity and 'classical frequency-domain

sensitivity is established, and the generation or classical sensitivities,

sensitivity functions, peak sensitivity, and integral sensitivity is

discussed. Classical sensitivity is employed in a comparison of the sen-

sitivity properties of linear control systems designed by two methods:

series compensation and state-variable feedback. It is shown that under

certain conditions the system designed by feeding back all of the state

variables may be expected to be less sensitive than the series comptuaated

system. A modification of state-variable feedback, the H-equivalent system,

is considered in further attempt to reduce sensitivity to parameter changes.

Several examples are presented to illustrate the theory.

i
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In system parameters.

CHAPTER I

INTRODUCTION

The need to consider the sensitivity properties of a control system

arises from two general sources. While the system is in operation,

there may be variations in components because of aging, environmental

changes, etc. Secondly, it may be necessary to design a controller for

a system without having an accurate knowledge of the parameters of the

fixed plant. These problems have motivated a search for design methods

that yield systems for which the performance is insensitive to variations

In order to evaluate these design methods, it is necessary to

have quantitative sensitivity measures, many of which have been defined

In the literature. The first definition of "classical sensitivity" was

given in early work on the theory of feedback systems by Bode (1945).

In fact, reduction of the effects of component variations on system

performance was a primary motivation for the use of feedback. Varia-

tions of Bode's frequency domain definition of sensitivity have been

used in further studies by Horowitz (1963) and Haddad and Truxal (1964).

Kalman (1964) has used classical sensitivity to demonstrate a link

between the theory of optimal control and classical control theory.

Sensitivity in terms of pole and zero variations is discussed by Horowitz

(1963), and has been used in the analysis of high order systems by

Van Ness, et. al. (1965). A time-domain measure of sensitivity and its

1 1
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application to control systems analysis is discussed by Tomovic (1964).

Thiq thesis is an attempt to study the sensitivity properties

of a class of linear systems. The systems to be considered are non-

time varying and have a single input R(s) and a single output Y(s).

A vector differential equation of the form

x(t) • A x(t) + tL r(t)	 (1.1)

may be used to characterize the dynamics of the system. However, the

sensitivity properties of a system depend on its topology, which is

not described by Eq. (1.1). Therefore, the systems to be studied are

defined in terms of block diagrams.

The problem to be solved is of the following form. A given

fixed plant, which is unalterable internally, is specified by a transfer

function Gp(a). It is assumed that the state variables of G p (a) are

measurable . , - ' Also - specified is i a'closed-loop transfer function ,. Y(s)/

R(s) • W(s), for the desired system. The general problem is to find a
method for compensati .ig the plant so as to yield W(s) in such a way that

the sensitivity of the system performance with respect to changes in 	 (^
1

the parameters of the system is a minimum.

The design procedure to be investigated here is the method of

obtaining W(s) by feeding back all of the state variables. A detailed

discussion of this method is presented by Schultz and Melsa (1967).

Here, the state-variable feedback system is compared to the system which

realizes the same W(s) by series compensation. The use of series compen-

sation to realise a specific W(s) is known as the Guillemin -Truxal

0	 It



method, which is described in Chapter 5 of Truxal (1955). Thus, given

a fixed plant Gp (a) any specified closed-loop transfer function W(s)

may be obtained, by either of the two methods. In this work the sensi-

tivity propeerties of the resulting systems are examined. M extension

of the state-variable feedback design is also investigated.

It is desired to find a general method of synthesis which yields

W(s) with minimum sensitivity of the system performance with respect to

parameter variations. Henze, a single measure of sensitivity and a

Tingle criterion of system performance must be defined. Then the solu-

tion based strictly on these definitions may be sought. However, such a

procedure may lead to solutions which are impractical. To illustrate, a

system may be designed such that the sensitivity of its performance with

re, ,"ect to a differential change in some parameter is a minimum (in some

sense). But a finite change in the same parameter may result in instabi-

lity. Such a case is demonstrated in Chapter V. Therefore, while attemp-

ting to find a design method based on precise definitions of sensitivity

and performance criteria, the engineer must keep in mind an overall vi!-:

of the nature of the system.

In Chapter II several definitions cf sensitivity from the literature

are discussed, and two new sensitivity measures are defined. The

generation of sensitivity measures is the subject of Chapter III. Chapter

IV is a general discussion of the sensitivity properties of systems designed

by cascade compensation, and by feeding back the state variables. In Chapter

V several numerical examples are presented, and some conclusions are

stated in Chapter VI.

3
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It is found that a system designed by feeding back all of the

state variables may be expected to be less sensitive to parameter

changes than the series compensated system.

r s



CHAPTER II

SENSITIVITY MEASURES

In this chapter several sensitivity measures are discussed in

relation to the type of systems to be studied here. A sensitivity

measure should incorporate two features. It should be mathematically

tractable, in order that its usefulness is not limited by computational

problems. Also, it must be physically meaningful in relation to the per-

formance of the system. In particular, the sensitivity measure should

relate to the performance criteria which are used to design the system.

The systems to be discussed in this thesis are designed for a specific

closed-loop transfer function, W(s) • Y(s)1R(s). Since W(s) is usually

chosen so as to yield a desired response to a step input, a meaningful

sensitivity measure for this type of system should indicate how the

stop response is affected by parameter changes.

2.1 Root Sensitivity

A sensitivity measure which has been used frequently in the analysis

of control systems and circuits is root sensitivity. This measure

estimates the effect of a change in a system parameter on the positions

of the poles of the closed-loop system. The interpretation of the results

of an analysis using root sensitivity depends 'on the correspondence

between closed-loop pole locations and the characteristics of the tran-

sient response. The control engineer gains by experience an intuitive

notion of this correspondence, but for a complicated system, where many

S	 ,



pole locations change with variations in a parameter, this correspon-

dence may not be clear. Also, except in the simplest cdses, the rela-

tion between the changes in pole locations and transient response,

which one can obtain by inspection, is only qualitative. For these

reasons root sensitivity was not used for the problems considered here.

2.2 Classical Sensitivity-

The expression given here for classical sensitivity is the

definition from Truxal (1955). The (classical) sensitivity of a

function T(s, A) with respect to a parameter A may be defined ass

T	 T	 d inT
	S1 ^ S1 (s) ^ d kna 	 (2.1)

^dTT
dA/A

A dT
A	

(2.2)
T d

For Y(e)/R(s) • W(s), SW (s) is a measure of the percentage change in W(s)

for a percentage change in a parameter A. A physical interpretation

of SW is difficult, because SW is 	 a function of the complex variable s.

However, it is shown that SW Q w) is related to a sensitivity measure

which is used extensively in this study. Therefore, some formulas for

classical sensitivity are presented here.

Consider the single-loop feedback system of Fig. 2.11. The

(classical) sensitivity of the closed-loop transfer function with respect

6

to aiss



Figure 2.1 A single-loop control system.

Figure 2.2 An experiment to illustrate
the definition of the sensitivity function.



1
1 + GH

(2.3)

GH
1+GH

(2.4)

SW G dW

C W dG

G d G
W dG 1+ GH

8

1 1f IGH) » 1.

This result expresses the well-known fact that increasing the loop

gain of a system reduces the effects of variations of elements in the

forward path. This fact provides a precise link between classical

control theory and the theory of optimal control. For the system of

Fig. 2.1, the quantity F(s) • 1 + GH(s) is called the return differ-
ence. Kalman (1964) has shown that the control law for a wide class

of linear systems is optimal if and only if 1F(jw)1 > 1 for all real

w. Thus, it might be said that an optimal system is an insensitive

system, and vice 1° .irsa.

The sensitivity of W(s) with respect to H(s) ist

SW^HdW
B W dH

It is seen that for a loop gain much greater than unity component

variations in the feedback path are undiminished in their effect on

W(s) .

Suppose A is a parameter which appears only in a component

block G.



SA ' w as
A dWdGG

WdrdAi

_ G dW A dG
W TG aGdA

e gC S e

9

Consider the functions

K(s+z 1)(s+z2) ... (s+zm)
G(s)	

(s+pl)(s+p2)...(s+pn)

Then SK = 1

SG • --=
pi s + pi

.	
Si

z

s+

(2.S)

(2.6)

(2.7)

It is clear from the above calculations that classical sensi-

tivities are relatively easy to evaluate. This feature, along with

the fact that they are related to another sensitivity measure which

is closely connected with the step response of the system, makes

classical sensitivity a useful tool.in the analysis to follow.

2.3 Sensitivity Functiot:s

The sensitivity measure discussed here is defined by Tomovic

(1964). Let A be a system parameter with a nominal value A.. Let

y(t,A) be the response of the system to a step input. Then for a

change in the parameter 4 the step response may be expanded in a

Taylor &*rise.
z

{



to

y(t, A	 + DA) . y(t, A ) 
+ d t A	

o A 
+ d2 

t AIL
(	

AA 2 +...

(	 2	 2.

A	
dA	

A0	 0
d t A	 I

dA	 , which is a function of time, is a linear approximation of

A
0

the change in (t, A), at the time t, resulting from a change AA in the

parameter A from its nominal value A 0 4 Usually it is desired to have

an estimate of the change in y(t, A) for a percentage change in A.

Therefore, the sensitivity c,f the system with respect to the parameter

A is defined ass

u.. (t) •	
d^ 

A	 (2.8)

A

uA (t) is called the sensitivity function for the parameter A. The

physical meaning of uA (t) may become more concrete if the situation

pictured in Fig. 2.2 is considered. A step input is applied simul-

taneously to two systems. In one system the parameter under consid-

oration has a value A, while in the other system the parameter has a

value A + AA. The difference between the outputs of the systems is:

Ay 0 y(t, A + AA) - y(t, A)

Division by the normalized change in. the parameter yields:

_AY	 y(t A + AA) - v(t. A)

AA/A	 aA/A

Under the assumption that the following limit exists;

lim
AX . d t A

^A^+O DA/A
	 dA/A	

uA M.
A simple example illustrates the interpretation of sensitivity

functions. Fig. 2 . 3 shows the block diagram for a control systems for
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Y(/)

R (s)

Figure 2.3 A second order control system.

Figure 2.4 A second order control system.
w

i
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which W(s) is required to bet

W(s)	
2	 8

s +4s+8

Fig. 2.4 is one possible realisation of W(s). The response (y(t)) of

this system for a step iiaput and the sensitivity functions (uK 1 (t),

UK (t), uk (t)) are plotted in Fig. Z.S. Since the sensitivity
2	 Z

functions approach zero as t♦ as K1 , K2 , and k2 have no effect on

the final value of y(t). From the fact that the magnitudes of uKl(t)

and uK (t) are largest during the time when the output is rising
2

toward its final value, it may be concluded that K1 and K2 affect

the rise time of the system, with an increase in K1 or K2 decreasing

the rise time. Also, a change in K2 has a smaller effect on the

response than does a change in K 1 . The curve of uk
2 
(t) indicates that k2

affects the response in the region close to its peak value, so

that an increase in k 2 decreases the overshoot. This behavior

should be expected, since k 2 is the coefficient of rate feedback.

Fig. 2.6 shows the actual affects of 202 increases in K 1 and k2 for

the particular system of Fig. 2.4. From this figure it is seen that

the qualitative effects of changes in K1 and k2 are as predicted.
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2.4 Peak Sensitivity and Integral Sensitivity

The sensitivity functions have the desirable features of relating

directly to transient response and indicating just how much each

part of the response is affected by the parameters. However, this

wealth of information is not in a compact form, since the sensitivity

functions are functions of time. In an attempt to find a measure of

sensitivity which relates directly to transient response and yet is

more concise in form, two new sensitivity measures are defined here.

The Reak 	 of the system with respect to a parameter

is defined as

u*	 uA (T)
	

(2.9)

where T • the value of t such thatluA (t)J is a maximum. uA gives an

estimate of the maximum change in the response (at time T) for a + 1%

change in A.

The integral sensitivity of the system with respect to a parameter

A is defined as

SA • Io u2 (t ) dt
	

(2.10)

when this integral exists. Unless A is a parameter affecting the final

value of y(t), u  (t) approaches zero as V ow. It is shown in Chapter

III that u  (t) is the response of a linear system. Then if u  (t)+ 0

as t + •, it approaches zero in an exponential fashion. In such a case

u2 (t) is the sum of decaying exponentiaals, so that the above integral

does exist. Therefore, it is concluded that 8 A exists if A does not

affect the final value of y(t). If the final value of y(t) does depend

15
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on a, the integral sensitivity with respect to A is not defined. The

sensitivity of the system with respect to such a parameter might be

characterized by the peak sensitivity and the final value of the

sensitivity function ul(t).

The definition given for integral sensitivity was chosen as a

measure of the overall influence of a parameter A on the step response.

For the integrand, u 2 M was preferred over ju1 (t)l for two reasons.

The squared quantity weights large values of u (t) more heavily than

small values. Also, the integrand u 2 M allows the use of Parseval's

Theorem in the evaluation of the integral. This is discussed in the

next chapter.

Clearly, in obtaining more concise sensitivity measures, some

Information as to the way in which a affects the response is lost.

The sensitivity functions are useful in particular cases where this

Information is important.

16



CHAPTER III

GENERATION OF SENSITIVITY MEASURES

The purpose of this chapter is to show how sensitivity

functions, peak sensitivities, and into gral sensitivities may be

found. To generate these sensitivity measures, an analog or digital

computer is required, while classical sensitivities can be found

easily from a block diagram of the system. It is shown that classical

sensitivity and integral sensitivity are connected by a relationship

which enables one to predict the nature of sensitivity functions and

Integral sensitivity from a knowledge of classical sensitivity.

3.1 The Relation between S 1 and S,.1

From the definition of the sensitivity function,

uA (t) 0 dy ( 0-

A

L (u1 (t)) • UA (s) ` dale

A

R(a) 
d(Y(s)/R(s))
WX

for R(s) not a function of A. Since the sensitivity functions are de-

fined in Chapter II for a .step input, R(s) • ^. Then,

w . a

^1

17



a
0. 1

-! (U(jw) l 22, 	dw

a	 2
• 2e ! W 2
	

ISM OW) 12 dW (3.3)

18
	

Vol
.

U (s)	
1 dW(s) W(s)

A	 s d 1/i W(s)

. W(s) gA

For • • j we

I U^(jW) ( • l wowfl
 (S (jw)' •

NoN,

S1 ! u2 (t) dt
0

m

u2(t) dt

since u(t) • 0 for t<	 Then using Parseval a T?eorem,

31 ^,	 ! jam U(s) U(-s) d•
ZTJ -ja

JW'

(3.1)

(3.2)

Eq. (3.3) shows the relation between integral sensitivity S 1 and

classical sensitivity S W. Clearly, reducing ,SA(Jw)) reduces S^.

In this thesis the systems to be studied have identical trans-

fer functions W(s), but different classical sensitivities with respect

to the same parameter. Then from Eq. (3.3) it is seen that the differ-

ences between integral sensitivities for such systems are determined by

dk^ferences tin -thailr classical sensitivities. This link between



classical and integral sensitivity is important, because classical

sensitivities are easily found from a block diagram of the system,

while the generation of S 1 requires a computer. For this reason it

is desirable to have a method for finding classical sensitivities.

3.2 Generation of Classical Sensitivities

The procedure given here for finding classical sensitivities

from the system block diagram is essentially the same as the method

described by Tomovic (1964). The block diagram of a control system

Is shown in Fig. 3.1, where the component blocks of particular interest

are GI (a) and Hi W. For the case where all of the Gj (a) are first

order and the Hj (a) • k, (constants), Fig. 3.1 is a block diagram

of a system where all of the state variables are fed back. However,

19

- .. n

the expressions derived here for classical sensitivities are valid

for Gj (s) and ."j (a) of any order. Fig. 3.2 shows a reduction of

the block diagram for the purpose of calculating SW and SHL (s) is

the transfer function from E ito Bi t (These variables are defined in

Fig. 3.1.) H(s) represents the sum of tbi feedback through the paths

containing H1 , H2 , ... , Hi`1 when these paths are referred to the

output. N(s) is the transfer function from the output of G  to the

system output. These quantiti a are defined by the following equations.

n
n

L(s) a BI	 Iii +1 Gi	 (3.4)n
$i(s) 1 + n	 (H II Gt)

j+i +1	 to j

.

1

1
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Figure 3.2 & reduced b%ock diagram,
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M(s) • H1 +	 (Hj H	 Ci)
J2	 i•1

i - 1
N(s) • H	 G

(3.5)

(3.6)

Then.

G LN	 •

R(s) • W(s)
	

1 + G
i	 i
L (H + NMI

GiLN

• 1 61LF

where F • Hi + NM.

Then the sensitivity of W(s) with rispect to G i (s) is

SW Gi^ dW e

Ci W(s) dGi(s)

Gi 	1 + GiLF - GiLF
• W LN _	

2(1 i GiLF j

_	 1
=+ G 

i 
LF .

The transfer function from the input to E i(s) Lot

Ei(s)	 1

1 + GiLN (M + Hi)

N

_	 1
1 + G 

i 
L (Hi + NMI

1
1 + GiLF

• SW

Gi

(3.7)

(3.8)

(3.9)

^	 Y Jif "S ^ Y ^ r^^ 4	 '	 t	 G{^ t Y !^f z M!



Thus, the classical sensitivity of the system with respect to

CI (a) is just the transfer function from the input to 91(a).

sensitivity of W(s) with respect to Rt (a) ins

SW Hi^ dW e
Hi W(s)	 dHI($)

In order to simplify calculations, let G (s) be defined ass

LGi

G(s) 1 + LGiM
N

Then ,W(s) • N 1 +"+0GH
i

H1.

gg' .	 14G --- .._.^ 
2

i	 (1+ GH1)

_GH i

1 + GHi

Di(a)

R(s)
	 ( 3.10)

23

The

The classical sensitivity of the system with respect to A 1 (n) is tha

transfer function from the input to Di(s).

Eqs. (3 . 9) and ( 3.10) for classical sensitivities only apply to

the system of Fig. 3.1. However, the series compensated system is

sas.ly treated as a special case. A unity feedback system with a fixed

plant Gp (a) and a series compensator G c(a) is shown in Fig. 3.3. Since

there is no feedback from the output of G c(a), the transfer functions

in the forward path may «e combined. Let G I (a) • Gc (s) Gp (a). Then the
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G c(s) Hcp(s)
J-

D
sl

Figure 3.3 A •aria• compensated system.



series compensated system of Fig. 3.3 is a special case of the system

of Fig. 3.1, with only one block in the forward path l (a)) and with

!t1 (s) a 1. Now. from Eqs. (3.9) and (3.10),

	

l^W	

E1(s)	
1

	

G. 	R̀ ( 	 1 + Cl(s)

1
i 1 + Gc(s)Gp(a)

	

W	 Dl (s)	 -GI(a)

SH1	R(s) ^ 1 + C1(s)

-Gc (a) G2(a)

1 + Gc (a) Gp(e)

For system configuvatione which are not special cases of the

diagram in Fig. 3.1 0 the classical sensitivities can be found by direct
J

application of the definition . (Sq. (2.2)).	 ";

2s



3.3 Generation of Sensitivity Functions, Peak Sensitivity, and

Integral Sensitivity.

In Section 3.1 S
)
 was expressed as an integral in the form of

Eq. (3.2). For the case where U(s) is a ratio of polynomials,

the integral has been tabulated as a function of the coefficients of

the polynomials (Newton, et.al . (1957)). However, the expressions for

this integral become cumbersome rapidly as the order of U(s) increases.

Since for an nth order system the order of U(s) , is 2n, the evaluation

of S1 by Eq. (3.2) is impractical.

The method presented in Section 3.2 for finding classical

sensitivities and Eq. (3.1) for U 1 (a) indicate how sensitivity functions

may be generated. Eq. (3.1) is repeated here:

U1(s)	 s W(s) Sl

If a is a parameter only of GI (a), then

G
Ua(a) • : W(s) SG S	 (3.11)

i o

If 8 is a parameter only of HI (a), then

H
Ua (s)	 W(s) SH SBi	(3.12)

i

The generation of Ua(a) and U0 (a) is shown in Fig. 3.4. A step input

is applied to a system with the transfer function W(s). The output is

applied to the input of a second system (with transfer function W(s))

whose senritivity is to be studied.

26
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E i
(ON
	 Di(s)	 W	 W

The transfer functions Y(-- ^- and Y-	 provide the terms S G and SH

Gi	Ni i
	 i

In Eqs. (3.11) and (3.12). The blocks labeled S 	 and S S provide

the corresponding terms in Eqs. ( 3.11) and ( 3.12) to complete tht

generation of Ua (a) and US (a). For the cases where the parameters

Gia and 8 are gains, poles, or zeros, S
a	 S

and S 0 are simple functions,

as shown in Chapter II. Finally, the blocks labeled I'. S. (Integral

Squared) square the time functions u a (t) and u0 (t) and integrate to

yield S  and S d . (The generation of the sensitivity functions is

carried out in the time domain by a computer, but for convenience,

the method is discussed using the transformed variables.)

For the example systems of Chaster V. a digital computer is

used to generate the sensitivity functions, peak sensitivities, and

integral sensitivities. For the 5th order system of Example 3 in

Chapter V. the sensitivities with respect to eight parameters are

found. The generation of the sensitivity functions, peak sensitivi-

ties, and integral sensitivities for each parameter leads to a system

of equations of order 23. The computer time required for the solution

is approximately 4 minutes.

It has been pointed out that the evaluation of S, from tables

of the integral (Eq. (3.2)) is usually impractical. Ho^tever, for the

third crder system of Example 1 in Chapter V. the integral sensitivities

were found by this method. These results w6re compared to those obtained

from a digital computer program, which approximately solves the differ-

ential equations for the intvgr*1 Kvvr, 'ktl yities. The values obtained

by the two methods agreed tRv	 "A%,

.
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CHAPTER IV

SENSITIVITY AND STATE-VARIABLE FEEDBACK

The sensitivity measures which have been discussed are used

in this chapter and in Chapter V to study the sensitivity of some

linear control systems. In the present chapter a slightly general

discussion of the problem is attempted. Because sensitivity analysis

in terms of sensitivity functions and integral sensitivity is prac-

tically limited to specific cases, much use is made of classical

sensitivity.

4.1 Series Compensation and State Variable Feedback

It is assumed that a given fixed plant is to be compensated in

order to yield a desired closed-loop response. Figs. 4.1 and 4.2 indi-

cate two approaches which may be used to solve the problem. The fixed

plant is of order m. and has a transfer function

Gp (a) w G1 (s)G2 (a) ... Gm(a)

where the GI (s) are first order. In Fig. 4.1 a cascade compensator

GV (a) has been used to realize the required W(a)y which is of order n.

r-GG
W(°) 1 G G
	

(4.1)
c p

Gc (a) may be found by the'Guillemin -Truxal method discussed in Truxal

(1955). In Fig. 4.2 W(s) is obtained by feeding back the state vari-

ables of the fixed plant ands if necessary, by adding first order series

29
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R(s)	
G
	

G
	 Y(s)

c
	

P

Gp(a) • G1 W G2 (a)... m(a) (order u)

Geq(a) • Gc (a)Gp (a)	 (order n)

Figure 4.1 The series compensated system.
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j

compensating elements, whose state variables are also fed back. Th.'x

method of design is described in detail by Schultz and Melee ( 1967).

The resulting system has the same nth order, closed-loop transfer

function W(s) as the series compensated system. The following expression

for W (s) of the state -variable feedback system is derived in the

	

Appendix.	 •

	

W(s)	 G1G2... Gn
	(4.2)

1 + k1G1G2 ...Gn + k^G2...Gn+...+kaGn

n
R

G.^_^ I —	 (4.3)
nn

1 +	 k1 n	 GJ
i • 1	 j • b



4.2 Sensitivities

The sensitivities of the two systems with respect to parameters

In both the forward paths and the feedback paths are studied in this

section. However, more attention is focused on the parameters in the

forward path, expecially those in the fixed plant. This is because

in most cases the designer is able to select compensating components

with production tolerences which are small enough to avoid problems of

sensitivity with respect to these components. Sensitivities with

respect to the compensating elements should still be checked, however,

In order to avoid a situation where the tolerances required are impractical.

Consider the state variable feedback system. Using Eq. (3.9)9

SW	 EI(a)

Gi ^ R(s)

It is shown in the Appendix that

n-i	 n
1 +	 k +	 it	 Gi^	 i

(Gi 	n	 n )

1 +	 k	 II Gi

For example in a third order system these sensitivities aret

SW a	
1 ^' k2G2G3 + k3G3

(4.5a)
G1 1 + k1G1G2G3 + k 2 G 2 G 3 + k 3 G 3

SW1 + k3G3
^^._.	 ^._.^._	 (4.5b)

G2 1 + k 
1 G 1 G 2 G 3 + k2G2G3 + k 3 G 3

W -
	 1

sG3 1 + k1G1G2G3 + k2G2G3 + k3 G3	
(4. 50
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SW	 AI(a)

Gi ^ B(s)

AIOW)

B for e a jw.

-u

k

4

The denominators of SW do not depend on i, so the magnitudes of the
i

SG may be compared by examining the numerators. For this discussion
i

let

34

i

For frequencies less than the system bandwidth, and if all k i > 0 9 it

may be expected that JAI (jw ) l is smaller for larger values of I. In

this case, from the discussion of the relation between classical sen-

sitivity and integral sensitivity, it is expected that the S G are
i

smaller for larger values of !. Intuitively, one might predict this

behavior from noticing that the GI (a) are more imbedded in feedback

loops for larger values of I. For all of the examples studied with

k  >0, it was found that S G decreased as i increased. However, iti
is not always true that all of the k  are positive. If one or more

of the feedback coefficients are negative, it may be expected that

An example of this situation isfor some value of i, S G	> SC .
i + 1	 i

shown in Chapter V.

Consider new the series compensated systew. Let G eq (s) •

Gc (a) Gp (a). :'hen using the fact that the sensitivities for all blocks in

cascade are equal,

5G ^ SQ 
ONS

G	
R(s) for all Is

•q	 c	 i

*kV
t
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n

-ki II G^
1^i
B(a)

(4.7)

Since the closed-loop transfer functions for the two systems are the

same.

SW. E(s)  E- 1 -- SW
Geq	 R(s)	 R(s)	 Gl

where El (s) is defined in Fig. 4.2. and SW ref ers to the state feed-
1

back system. Thus, the sensitivity of W(s) with respect to any block

in the forward path of the series compensated system s equal to the

sensitivity of W(s) with respect to G1 in the system using state-

variable feedback. Then for most cases S W is smaller for the
i

state variable feedback syatem, since 5C decreases as i increases
i

in that system.

The sensitivities of the state -variable feedback system with

respect to the feedback coefficients t kip are now considered. In the

Appendix it is shown that

n

	

-k	 tt	 G^W Ski	 n
1 +	 k	 n Giii'j

'1.

(4.6)

For the case of a third order system these sensitivities are:

SW	
k 

1 
G 

1 
G 

2 
G 
3

kl	 B(a)

^1G2G3 -Y s
B(s)	 R(-,•) (4. Be)

1 +^.,	 r. rr T̂ r	 + f	 .r	 a9:



for k 1 • 1

SW -k2
k2 H(s)

k3 H(s)

36

(4.8b)

(4. SO

For the series compensated system let k • 1 be the unity gain of the
singlu !"adback path. Then,

SW • -Gc___, G	 • -Y e
k 1 + GcG	 R(s)

• Sk	 for k1 • 1
1

Thus, the sensitivity of the state -variable feedback system with

respect to the unity feedback gain from the output is the same as for

the series compensated system. The relative magnitudes of Sk OW),
i

for different values of i, depend on the magnitudes of the G  (jw).

t	 If ^I (j41 > 1 and if the ki are of the same order of magnitude, it

would appear that ISk (jw)l decreacee as i increases. In such cases
i

the state-variable feedback system would not be more sensitive with

respect to changes in the feedback coefficients than would the series

compensated sytem With respect to a change in the single unity feed-

back gain.

4.3 Restrictions Imposed by the Fixed Plantand the Closed-Loop

Transfer Function;

From th4 comparisons made above between the series compensated

system and the state-variable feedback system, it is seen that

,b	

,^ ~ + t ^ ^ ^ r	 ^,_ ^	
r+ t	

fit' ^ , F ,_	 ^^ ^.,^t

	

#	 o



decreased sensitivity may be obtained by a change in the system

configuration. However, it appears that the minimum sensitivity

that can be achieved is limited by the fact that the fixed plant

and the closed-loop response are specified. An example which

illustrates this is the system of Fig. 4.3. The closed loop transfer

function is

W(s) 	
K1K2K3

s 3 + (p2 + p 3 + k3K3)s 2 + (p2p 3 + p2k3K3 + k2K2K3 ) s + K1K2K3

If k2 and k3 are positive, it may be expected that G3 is the least

sensitive block. From Eq. (4.5c),

37

S 4 • -
3 s

s(s + p 2) (8+p3)

+ (p2 + P
3
 + k3K3)s 2 + (p2p3 + P

2k3K3 
+ k2K2K3)a + K 

I 

K 
2 

K 
3

The examples of Chapter V show that the low frequency asymptote of

SW is important in determining 81 0 Here, for small values of W,

p
SW	 K2 ( jW) = 

p
— K3K

w

3	 1 2 3

The product 
P2P3 is determined by the fixed plant, while the product

K 
1 

K 
2 

K 
3 

is specified by the closed-loop transfer functi on. Decreasing

SW by specifying a new cleca + loop response with a larger constant
3

term, K 
1 

K 
2 

K 
V 

is usually not feasible, since ^:.K # onst.an ► t term

determines the loop . gain of the system; the I	 ,;ain is usually

z 1

1

T u t „ ^^	 ^,^ arm	 ,	 ^	 ^^ q^^c
^ a-' ^t	 «. 7^	
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Figure 4.3 A third order control system.	 I
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t

ritetricted so that the system remaine in a linear region of operation

fcr some expected input.

The dependence of sensitivity on the fixed plant and the

closed-loop transfer function Is-currently being investigated by

Dial (1967).

0

n:
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f
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SW

• G
n

(4.10)
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4.4 Modifications of State Variable Feedback

Earlier it, this chapter it was found that, under certain con-

ditione, one would expect the system using state-variable feedback to

be the least seraitive to the G i (a) nearest the input. In an attempt

to extend this minimum value of sensitivity to the other Gi(s),

moditications of the feedback structure are investigated.

If in the system of Fig. 4.2 all the feedback paths are referred

to the output, then the resulting system has the form of Fig. 4.4

where

H (s)	 1 + k22 +	 +...+	
kn

eq	 71 	G1G2	 G1...Gn l
(4.9)

The system in this form is referred to as the "H-equivalent" system.

The transfer function Y(s)/R(s) is unchanged. The H-equivalent system

is often used as a block diagram reduction of the state-variable feed--

back system for the purpose of calculating the closed-loop transfer

function. However, the H-equivalent system here is intended as an

actual physical system; that is, the output is fed back through Heq(s),

and no other state variables are fed back. For the H-equivalent system,

SG V

, Us
• 1 + GH

eq

1•

1 + G G ...G 11 + k2 +...+ 	 kn	 )
1 	2n	 G1	 Gl"'Gn 1

1
1 + G1G2 ...Gn + k2G2 .. Gn +...+ knGn

1000'

,q.

x

r



Gn s)
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-12

Figure 4.4 The H-equivalent system.



Thus, the sensitivity of the H-equivalent system with respect to any

block in the forward path is equal to tho sensitivity of the state-

variable feedback system with respect to G n (s). This is the "minimum

sensitivity" which was sought.

With regard to the construction of a systern, the H-equivalent

configuration has both advantages and disadvantages in comparison to

the state-variable feedback system. For the H-equivalent system orly the

output is actually measured. This is an advantage when measurement

of all of th y: state variables is difficult. However, unless that numerator

and denominator of G(s) are of the same order, the numerator of 11 eq (8) is

of higher order than the denominator. Then in order to realize Heq(s)

approximately, poles must be added. This problem is treated in an

example in Chapter V.

4.5 A Note on Integral Sensitivity and the Poles of the Fixed Plant

Consider again Eqs. (4.?) and (4.3) for W(s) of the state-variable

feedback system. It is assumed that the functions Gi (a) are of the form:

K (e+z )
Gi (e) ^ is + 

p 
i	 (4.11)

i

The factor ( 8 + z i ) is not always present. If the functions in the

numerator and denominator of W(s) are cleared by multiplying by

i ! 1 (s + p i), W(s) may be written as:

- P s - amem + am - 1 

em - 
1 +...+ a.

W(8)	
Q( s )	 n	 n - 1	

(4.12)
s + b  - 1 e	 +...+ be

where the roots of Q(s), the characteristic polynomial, are the closed-

42

loop poles of the system. Similarly, if the expressions for the

.'ij
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classical sensitivities, S, , are cleared of fractions, the sensi-

tivities may be written as:

SW	 Ni(s)

Gi

-
c ts t + c  _ ls i 	+...+ co

	

—'	 (4.13)
an + b 
	

on - 1 +...+ b 	 '

From Eqs. (4.12) and (4 . 13) it is seen that the denominators of the

SW are the characteristic polynomial, which is'specified by the re-
i

quired closed-loop response.

The sensitivity with respect to Cn(a) is 
•	 nSW - 1 :

 I- 
(s + pi)

Gn	 Q(s)	 (4.14)

Recall that the integral sensitivity, 8 1 , depends on the magnitude of

S^. Now 	 ^.

n

SW 
{2 - i n 1 (s + pi ) (-s +

.
Gn l 	 Q(s) Q(-s)	

(4.15)

From Eq. (4.15) it is clear that the integral sensitivity, S
G
 , is the
n

same for two-systems which have the same closed-loop response, but

whose open loop poles are symmetrical with respect to the jw-axis.

Thus, one or more of the open loop poles could be located in the RHP,

and S
O
 would remain the same. This emphasizes the fact that the
n

sensitivity function, u l (t), and therefore S 1 , are defined in terms of

an incremental change in the parameter 1. Clearly, for sufficiently

;.x

t.^•^	 a-g	 fix,	 _^°+4#1 t	 {j/	 r	 f..'.Ta	 •
^ff

TT,3714T11,11M	 ':F	 ^..
Mm	 ^"	 F

3



large changes in the gain Kn , a system with open-loop poles in the

RNP behaves very differently from a system with only LHP open-loop

Polets.

The discussion above indicates that in addition to compen-

eating the system for the desired closed -l.rop response and evaluating

sensitivities, it is necessary to retain a wider view of the system

design - for example, in terms of a root locus.

4.6 Summary

From the analysis in section 4.2 it is seen that, under certain

conditions, the state-variable feedback system is less sensitive to

parameter changes as compared to the aeries compensated system with the

same closed-loop transfer function W(s). However, it appears that the

minimum sensitivity attainable is restricted by the fixed plant and

by the required W(s). The H-equivalent system, or a system using an

approximation to Heq (a), might be used to extend this minimum value of

sensitivity to all of the blocks in the forward path. Chapter V

consists of a series of examples which . illustrate the ideas discussed here.
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CHAPTER V

EXAMPLES

This chapter consists of several examples to illustrate the

sensitivity properties of systems designed by the methods discussed

In Chapter IV. In Example 1 a fixed plant is compensated by feeding

back all of the state variables and by the Guillemin-Truxal method.

The sensitivities of the two resulting systems are compared. The same

fixed plant is compensated with H-equivalent feedback in Example 2.,

and a system with an approximation of H aq (a) is discussed in Example 3.

In Example 4, a zero, which is not desired in W(s), is included in the

fixed plant. Sensitivity analysis is used to determine the parameters

of a cascade compensator which provides for cancellation of the zero

in the closed-loop response.

E&M le 1. Figure 5.1 shows the fixed plant of a control

system which is required to have the following closed -loop transfer

function.

W(s)	 80

s 3 + 14s 2 + 48s + 80

80

(s+10)(a2+48+8)
W(s) is obtained in two ways. One system is syntsheized using state-

variable feedbackg while the Guillemin-Truxal method is used to design

45
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(s)

2	 S	 1
s S	 s+l	 A

Figure 5.1 The fix* ," plant of Example 1.

46

Kl 1	 p2.1	 K•8
K2 5	 p3 • 5	 k2. 35/80

K3 2	 k3. 1/2

Figure 5.2 The compensated system of Example 1.
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the second system. For bath systems In this example elansical

sensitivities and sensitivity functions, as well as peak sensitivities

and integral sensitivities, are found in order to show the connection

between the different sensitivity measures.

For the state variable feedback system (Fig. 5.2) the sensi-

tivities with respect to the bl ,)cks in the forward path are given

by Eqs. (4.5). For this example the equations become:

is
	 _!3 + 14s 2 + 489

Cl s 3 + Ma  + 48s + 80

s	 s
3	 s (6 + 1) (8 ±,,,,^„
5 (a	 1) ( 2 + e— + 1)

10	 8	 2

S 	 s3 + 14s 2 + 13

C2 s 3 + 14s2 + 48s + 80

13 	13 + 1)
80	 2

(10 + 1)(8 + Z + 1)

SW a	 a 3 + 69 2 + 59
C3 s3 + 14s 2 + 48s + 80

s

16	 2
(10 + 1) (8 + 2 + 1)

Asymptotic Bode plots for these sensitivities are shown in Fig. 3.3.

There is also in Fig. 5 . 3 a Bode plot of Geq (a), which is included in

order to indicate the bandwidth 4Z the system. It may be noted that

_	 ..V.	

Y	

yg411^RaE.^^i^ aF'^.i^ 7^ ^r 7f
I AP` °t	 ,`4:	 '1

s	 ^^ t p Na s 7^	 t^^	 ^	 ^A ( i^t• to ^}	 y r

t	 n,
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SWG1

SWG2

48

/W
SG3

Figure 5.3 Gain sensitivities for the state-
variable feedback system of Example 1.
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for frequencies less than the gain crossover frequency, SW
 < SG < SG
3	 2	 1

The classical sensitivities with respect to the specific parameters

in the forward path are:

S
W	

S W
K1 	G1

SK • SC
2	 2

SK.. SK SG
.^	 3

SW • SW —=-p2 	 G2 s + p2

	

-13	 (13 + 1)

	

80	 2

(10 +1)(e +2+1)

SW • SW --- 3--
p3	 G3 s + p3

1 _ SO+1)
16	 2

(10 + 1)(°-8 + 2 + 1)

Asymptotic Bode plots for Sp and Spa re in Fig. 5.4.
2	 3

The sensitivities with respect to the feedback coefficients

are given by Eqs. (4.8).
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PZ

P 1
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I

Figure 5.4 Pole sensitivities for the state-
variable feedback system of Example 1.
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W	 -1
k1 (

I-+ 1)(? + e + 1)
10	 8 2

W	 -7	 e
k2	16 	 + 1)(s 2 + s + 1)

10	 8	 2

SW	 1 _ s(s+1)
k3	

+
10	 +

10	 8	 2	 )

Fig. 5.5 shows Bode plots of these functions.

If the Guillemin-Truxal method is used to compensate the

plant, the final closed-loop system is as shown in Fig. 5.6. For

this system SK , the sensitivity with respect to any gain in the
forward path, is equal to SK for the state-variable feedback system.

1
Similarly, the sensitivity of the series compensated system with respect

to the unity feedback coefficient is equal to Sk for the state-variable
1

feedback system. The sensitivities of the series compensated system

with respect to the poles of the fixed plant are:

SW . SW + p^
P2	 K s + p2

3	 s(6+ 1)(8 + 1)
5	 2

(i- + 1) (8-8 + 2 + 1) (e + 1)

SW SW --- 3
P3
	 K s+p3

3	 s(6+ 1)(8 + 1)
5	 2

(10+1)(^e+Z +1)(5 +1)

r	 , s	 !i } F ^1	 0	 f	 r, r J y.

..	 ^'	 1^ ,..:G t*.a_,4 .^ r^.. ... ' ^^P'.,. 	 4/a:^^p,•;.a^ S p a.,	 .,f{. t'.•
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Figure 5.5 Feedback coefficient sensitivities for
the state-variable feedback system of Example I.
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.

The Bode plots for these functions are shown in Fig. 5.7.

A comparison of the Bode plots of the classical sensitivities

of the two systems shows that for all parameters, the magnitudes of

the classical sensitivities for the state-variable feedback system

are less than or equal to those for the series compensated system

for frequencies less than the gain crossover frequency.

A similar comparison may be made in terms of sw:Aisitivity

functions and integral sensitivities.

Figs. 5.8 and 5.9 show block diagrams for the generation of

sensitivity functions for both systems. Plots of the sensitivity

functions are shown in Figs. 5.10, 5.11, and 5.12, and a table listing

53

peak sensitivities and integral sensitivities is in Fig. 5.18.

From these results it is clear that a reduction in sensitivity

with respect to the parameters K2 , K3 , p29 and p3 has been obtained

using the state-variable feedback method of design.
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R	 10
(s+6)(s+8)	 s(s+1)(s+5)

Figure 5.6 The system of Example 1 compensated
by the Guillemin-Truxal method.
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figure 5.7 Pole sensitivities for the
series compensated system of Example 1.
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Figure 5.9 Generation of sensitivity functions
and integral sensitivities for the state-
variable feedback system.
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Figure 5.12 The sensitivity functions for the feedback
coefficients of the state-variable feedback system.



Fxnmgle2.2. For the state-variable feedback system of Example 1.

the sensitivities with repect to Kl , K2 , and p2 may be reduced by

using H-equivalent feedback. The Heq (a) system is shown in Fig. 13.

From Eq. (4.10) the sensitivity of the H eq(a) system with

respect to any block in the forward path is:

S^ S^	 S^
n	 3

where SW is the sensitivity of the state -variablb feedback system
n

with respect to G  (n • 3). The sensitivities with repect to p2
and p3 are:

S 

W W __-1._

P2 SG (a + 1)

S W

W _5

P3
SG (a +5)

Sp is the same as for the state-variable feedback system. The
3

sensitivity with respect to p2 nas been reduced, since S^I<ISC It
2

where SW is the sensitivity with respect to G 2 for the state-variable
2

feedback system.

The peak sensitivities and integral sensitivities for the

H-equivalent system are listed in the table of Fig. 5.18.
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2	 X3	 5	 X2	 1	 R1 a Y(•)2	 58	 8+5	 8+1	 •

1 +80s +10 s2

Figure 5.13 The H-equivalent system of Example 2.
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Exampl__,e 3. In Example 2. a reduction in sensitivity was obtained

by using H-equivalent feedback. However, H eq (s) is not in a form which

Is easily realizable. It is desirable to approximate H eq (a) by a trans-

fer function which is realizable by RC elements and a gain factor.

eq	 80	 10

•1 +10(a +5.38)

In order to make the second term realizable, poles are added at s • -40

and s • -50, while preserving the low frequency gain.

200 s(s + 5.38)
'	 (5.1)Heq (s)	 1 + (

d + 40) (e + 50)

There are several factors to be considered in choosing the

approximation of Heq (a). The large gain of Heq (s) at high frequencies

is undesirable if there is noise at the system output. The addition

of low frequency poles to H eq (s) alleviates this problem. However, two

other considerations make the use of high frequency poles desirable.,

The poles of Heq (s), which become zeros of W(e), have less effect on

y(t) if they are placed at high frequencies. Secondly, the addition

of poles in the manner shown in Eq. (5.1) causes the zeros of H'' (s)
eq

to be different from those of Heq (9). This error in zero locations,

which also affects y(t), is smaller for high frequency poles. Thus,

a compromise must be made between the filtering of output noise and

the approximation of Heq(s).
 

Mother possiblity is to approximate

Heq (a) by:

63
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H , (a)	 2000 (1 + .5389 + .192)

eq	 (s + 40) (s + 50)

However, with this approximation a change in the pole location or

the gain constant of H' (s) results in a steady-state error at theeq 

output.

One other idea in the approximate realization of H eq (s) is to

obtain a system which has zero steady-state error for a ramp input.

For such a system the velocity error constant, K v , is infinite. K 

may be expressed (Truxal, 1955) as:

K	 ^ 1 ^ z
v	 ^^1 j	 ill

where the p' and z  are the poles and zeros of the closed-loop trans-

fer function. Since K  is determined by the closed-loop poles and

zeros, the poles added to Heq (a) might be placed in such a way that

K
v 

M •. This is a topic for further investigation.

The structure of the system with He q (e) feedback is shown in

Fig. 5 . 14, and a olci:.k diagram for the generation of sensitivity func-

tions is in Fig. 5.15. The table of Fig. 5.18 lists the peak sensi-

tivities and integral sensitvities. For the parameters in the fixed

plant, the ser^i « ivities are approximately equal to those of the Heq(a)

system. The sensitivities with respect to-the parameters of Heq(s)

are reasonably small (less than SK for the state variable feedback
1

system).

J

• -1



65

	

I^

"M—

K3	
X3	

K2	
X2	

K1 X
1 • y(s)

K	
84-p,	 6+P.) 

I 

A s (9+a 1)

(s+b,)(s+b,)

K1 . 1	 p2•
K2 . 5	 p3•

K3 • 2	 a1 .

b1 •

b2 •

Figure 5.14 The H'-equiVtlei

1	 K • 8

5	 A • 200

5.38

40

50

at system of Example 3.
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s+5 YS	
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•	 1	 Y($)

$ w($)	 +	 16 	 5	 i
+	 s+5	 s+1	 $

2009 s+5.38) 1
(s+40)(s+50),

UA (8)
A,^

_110„ Ub (e)

s+L0

I,
b1

Ub
(s)

IS
Sb2s+50

- U {s)

L 5.39_ al
S

s+5.38 . --'al

Figure 5.15	 Generation of sensitivity functions
and integral senstivities for the R' eq (a) system.
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For the It' (a) system the new closed-loop transfer function is
eq

W(s) 
a	 80(s + 40) (s + 50)

(s + 61.9)(s 2 + 29.4s + 287)(s 2 + 4.81s + 9.05)

The pole and zero locations are shown in Fig. 5.16, and a graph of

y(t) is in Fig. 5.17. It is seen that the addition of poles in the

feedback structure has altered the step response. This example demon-

strates that while a system using an approximation to H eq (a) may show

an improvement in sensitivity over a system with state-variable feed-

back, two new problems are introduced. The addition of poles to

Heq(a) affects the closed-loop response, and the high gain of Heq (s)

at high frequencies is undesirable if there is noise at the output.
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F,xnmple 4. Fig. 5.19 shows the block diagram of a fixed plant

for which the transfer function is

C (a) . ^. 5(s + 2)p 
e(a + 1) (s + 5)

The desired closed-loop transfer function is

W(a)	 80

(s + 10)(s 2 + 4s + 8)

In order to realize W(s), the zero of the fixed plant must be cancelled,

and it is assumed that it is impossible to insert a pole immediately

preceding this zero.

Since direct series cancellation is impossible, the zero

appears as a zero of W(s). Thus, W(s) is also required to have a pole

at s • -2. That is,

W(s) 0	 80(s + 2)

(s + Me + 10) ( e2 + 49 + 8)

To accomplish this, the order of the system is increased by inserting

a series compensator as shown in Fig. 5.20, and the new state variable

x4 is fed back. The parameters k2 , k3 , k4 , K, and p4 are then chosen

so as to realize W(s). The values of k 2 , k3 , and K are found to be:

K • 16,	 k2 • 7/16,	 k3 ' -3/4
To obtain the specified W(s), the values of k 4 and p4 must be chosen

x4 (e)
such that the transfer function --- , as defined in Fig. 5.20, is:

1

x= ) 	 16 	 16
a(s) s + p4 + 16k4 s + 10

+'.y . Y	 f•	 A,	 Y ^	 h	 if	 'J	 .T	 I JI ^	 .,j w1 Yy 4!
x". d	 y	 ex	 '^y	 t'' Str	 },}'''^ + ^r t It t•,.	 . I

..	 ^	 ,	 f^!i ; .ua{	 .^i i_)•iJ.i'.,...
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Figure 5.19 The fixed plant of Example 4.

72

R(	 K	 X4	 K3	 X3	 K2(s+z2) 	 X2 K1 X1 Y(s)

	

+ - e+p4 	 s p	 s+p2	 •
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k3	 k2

+	 +

^Cl 1	 K 16	 p2 • 1	 k2 • 7/16
K2 2.5	 Z2 2	 p	 3/43 ^5	 k3^-

K3 • 2

Figure 5.20 The closed-loop system of Example 4.
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-k4K(s + 5)(s + 1)e

Q(s)
(5.3)

Any values of k4 and P4 satisfying P4 + 16k4 • 10 produce the required
pole at a - -2 in the closed loop transfer function.

Bounds on a desirable value of p4 may be obtained from stability

considerations (Schutz and Melsa 1967). If P 4 a 0, the system

has two open-loop poles at the origin, and the root locus, as a

function of the gain K, is in the RHP for small values of K. Another

possible choice is P4 a 10, which requires k 4 a 0. Since the state

variable x4 is not fed back when k4 • 0 9 a zero of Heq (s) is lost.

Therefore, as K -r., two closed-loop poles ( instead of only one) approach

infinity. This is a disadvantage with regard to stability for high

gain.

An intermediate value of P4 may be obtained by considering the

73

From Eq. (4.14)9sensitivity of W(s) with respect to P4 and k4.

W	 to + p4 ) (s + S) (s + 1)s
S 

G4	Q(s)

Therefore,

SW . SW —̂-
P4_ G4 8 + p4

_P4 (8 + 5) (s + 1)s

Q(s)

From Eq. (4.7),

SW ^ -k.^
k4	 B (s)

(5.2)
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It is seen that 
ISP I 

and 
ISk

I 	 are proportional to IP 4 1 and Ik4I
4	 4

respectively. Usually it is desirable to decrease the sensitivity

with respect to elements in the forward path and to accept higher

sensitivities for the feedback coefficients, because the tolerances

for the ki 'a may be controlled. however, in this case the series

compensator is also selected by the designer. A possible solution

is to choose p4 such that the sensitivities with respect to p4 and

k4 are equal. From Eqs. (5.2) and (5.3) this requires 16k4 " p4'

We have

P4 + 16k4 • 10
	

(5.4)

Therefore,

P4 • 5,	 k4 • 5/16

It should be noted that the sensitivities with respect to the

,ther parameters of the system do not depend on the values of k 4 and

p4 , as long as these values satisfy Eq. (5.4). This is seen from the

fact that the transfer functions used to calculate the sensitivities

for the other parameters involve p4 and k4 only through the function

x4(s)

s(s)'

A block diagram for the generation of sensitivity functions for

this example is shown in Fig. 5.21 0 and the results are listed below.
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Peak	 Integral
Parameter	 Sensitivitv	 Sensitivity

K1	0.593	 0.286

K2	0.321	 0.0670

K 3	0.458	 0.152

K	 0.248	 0.0424

z2	0.213	 0.0354

P2	-0.148	 0.0191

P3	 -0.415	 0.132

P4	 -0.223	 0.0366

k2	 -0.396	 0.1366

k3	0.194	 0.0295

k4	-0.223	 0.0366

It is seen that the peak and integral sensitivities with

respect to p4 and k4 are equal, which follows from the equality of

their classical sensitivities. It should also be noted that S K3> SK2.

This occurs because the feedback coefficient k 3 is negative.

It may be noted that ISp 1-+ 0 as P4-* 0. Thus, for minimum
4

sensitivity with respect to p41 the best choice is p4 a 0. However,

as mentioned above, this value of p4 leads to instability for small

values of K. This Illustrates the need to maintain an overall view

of the system behavior when a solution for minimum sensitivity is

being sought.
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CHAPTER VI

CONCLUSIONS

In this thesis a new sensitivity measure, integral sensitivity

(S l), has been defined in terms of the sensitivity function (u AM).

SA • 7 u2 (t) dt
0

where ul (t)	 d 
da 

1 , and y(t, X) is the response of the system to
A

a step input. Although the integral sensitivity contains less

information than the sensitivity function, it does, along with the

peak sensitivity (u*), provide a quantitative measure of sensitivity

In a concise form. Peak sensitivity is defined as:

u* • 
uA

(T)

where T • the value of t such that ju l (t)) is a maximum. Integral

sensitivity is a measure of the overall effect on the system step

response of a parameter variation, while the peak sensitivity is an

estimate of the maximum change in y(t) for a + 1% change in the

parameter. Part of the value of integral sensitivity is derived

from its close connection to classical sensitivity (SA • W al)

by the equation

S1 • 2 7 w 2W 1S W (jw) I dw
W
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From this relation the relative magnitudes of classical sensi-

tivities, which may be found without the use of a computer, can be

used to predict the relative magnitudes of integral sensitivities.

Furthermore, integral sensitivities can be computed for practical

cases only in a numerical fashion, while classical sensitivities can

be'evaluated in terms of the literal parameters of the system. In

this way sensitivity considerations are included early in the design

process.

In Chapter IV a compari6in is made between the sensitivity

properties of state-variable feedback systems and series compensated

systems. It is seen that, under certain conditions, the sensitivities

with repect to most of the system parameters may be expected to be

smaller for the state-variable feedback system, and that the sensi-

tivities with respect to blocks in the state feedback system are less

for the blocks closer to the system input. This behavior is demon-
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strated by the examples of Chapter V.

The use of H-equivalent feedback is seen to be advantageous

with regard to sensitivities for parameters in the forward path.

However, in order to make the feedback transfer function realizable,

it is necessary to add poles to H eq (a). The locations of these poles

must be chosen with attention to their effects on W(s) and the fil-

tering of output noise. There is also the possibility of choosing

the poles such that the resulting system has zero steady-state error

for a ramp input. The judicious choice of these pole locations as

w
y
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an integral part of the system design appears to be a subject for

future work.

The following observations seem to indicate another topic

for further research. By feeding back the state variables, a reduc-

tion in sensitivity for parameters in the forward path is obtained,

but the feedback coefficients which are introduced represent a new

source of sensitivity. Also, it was seen by an example calculation

in section 4.3 that the sensitivity value of the least sensitive

component depends entirely on the given fixed plant and the specified

closed-loop response. These considerations lead to the conjecture

that, given a fixed plant which constitutes the forward path, and a

specified closed-loop response, there may exist a law of "conservation

of sensitivity" for the system. That is, reduction of the sensitivity

with respect to certain parameters may lead to increased sensitivity

due to other parameters, and the total sensitivity is t in some sense,
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a constant.
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APPENDIX

For the system of Fig. 4.2, Eqs. (4.4) and (4.6) are given for

the sensitivities with respect to G i (a) and k  respectively. The closed

loop transfer function W(s) is given by Eq. (4.3). These expressions

are derived here.

The system of Fig. 3.1 is the same as that of Fig. 4.2 for the

case where H  • k  for all J. Consider the reduced block diagram of
Fig. 3 . 2. An expression for S^ 	 Ei(s)/R(s) is given by Eq. (3.8).

i

W	 1,	 1
SG1 1 + GiLN (M + kiIN) • 1 + G 

i 
L [NM + ki)

Substitution for L (e), M(s) and N (s) from Eqe. (3.4), (3.5) and (3.6),

and multiplication of the numerator and denominator of SW by the denom-
i

inator of L(s) yields:

2 * to Gn + ... + knGn

1G1 ... Gn + k2G2 ...Gn +

SW 	 1 + ki
+1G1_ +_ 1G..Gn+ 

k
Gi 1 + k

i+lGi+1 "'Gn + ... + k n G n +

+ ... + kiGi ...G n]

1 + ki+1Gi+1 " ' Gn + k1+2G1+2 " ' Gn + ••• +w
1 + k1G1 ...Gn + k2G2 ...Gn + ... + knGn
n	 n

n. 1 + 
i
1
1 ki+i i•i+i 

Gi

n	 n
1 +	 k	 r Gi

j•1 j	 1•j
This is Eq. (4.4). W(s) may be found from S^ .

n
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Y s	 En(8)
W(s) • R^ • - Gl(s)...Gn(a) • S 

W
G Gl...Gn
n

Gl...Gn

1 + k1Gl ...Gn + k2G2 0..Gn + ... + k 
n 

G 
n

n

Gi
n	 n

1+ I ki n G
i•1	 J•t j

. This is Eq. (4.3).

From Eq. (3.10) and with reference to Fig. (3.2)0

8 	 Di e . -k	 Y e
ki	 R(s)	 i N(s) R(s)

-k

C16
2 
... 

Gi_l

-kiGiGi±1' Gn
T'+ k1Gl ...Gn + k2G2 .. . Gn + ... + knGn

n

-ki 
j•1 

G,

n	 n
1+ I k	 r Gi

Jal j Z '3
This is Eq. (4.6).
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ABSTRACT

In this work a particular type of nonlinear
state variable feedback system is discussed. The
system contains a single nonlinearity, and it is
shown by describing function techniques and examples
that the optimum location of the nonlinear element
for maximum control is at the left end. A method for
designing gain-insensitive systems is presented, and
it is shown by simple reasoning and examples that the
system response for the gain- insensitive design is
better than that of systems designed by conventional
state variable feedback.

A method is given to overcome the effects of
saturation within the fixed plant by introducing an
intentional nonlinearity to limit the saturating
elements to their linear regions of operation. This
makes it possible to apply the above gain- insensitive
design technique so that the nonlinear plant can be
made absolutely stable for all gain. The proposed
method is then applied to improve the response of a
fuel valve servomechanism, and the system is evaluated
using an analog computer.
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I. Introduction

The application of modern control theory to

linear control systems with constant coefficients is

quickly developing into an efficient and powerful

theory. The key idea is the use of state variable

feedback, and it is initially assumed that all of the

state variables are available for measurement and con-

trol. An effective synthesis technique using state

variable feedback is known as the H equivalent

method (Schultz and Melsa, 1967) . The basic assump-

tion of the H equivalent method is that the desired

closed loop transfer function is specified in advance,

and by feeding back all of the state variables, this

desired transfer function can be realized exactly for

a range of inputs for which the system remains linear.

The method is attractive because all manipulations

and calculations are done in the frequency domain with

Laplace transforms.

The basic assumption of state variable feed-

back methods is that the system remains linear during

its entire period of operation. In particular, for

large inputs one or more of the internal state variables E.



Z

may saturate. The resulting behavior of the system

may then be different than predicted by the linear

theory, and, in fact, may even become unstable. In

this work the If equivalent synthesis procedures are

extended to systems in which an intentional nonlinearity

has been introduced to insure that no saturation occurs

in the internal state variables. The technique is

combined with the gain insensitive design of Herring

(1967) to insure that the resulting system is not

only stable, but that the dynamics of the saturated

and unsaturated systems are very much alike.

In the general case minor loop feedback is

applied to the open loop system to force all but one

of the open loop poles to lie at desired closed loop

pole positions. The poles of the closed loop system

are fixed at the desired locations by placing zeros

of Heg (s) at the same places. In the case of the

fuel valve servomechanism with seven open loop poles,

this task was simplified by retaining four of the

complex poles of the plant unchanged. This was pos-

sible because the natural frequencies involved were

far greater than the desired band width of the closed

loop system.

The use of a gain insensitive, saturating

controller for the fuel valve system results is a

;gym=
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marked improvement in overall system performance.

When the system is operating in the linear region, the

second order desired response is almost exactly real-

ized by the seventh order system. For larger inputs,

the system exerts maximum effort, and for small inputs

the system responds in the desired linear fashion.

The improvements obtained in the fuel valve servo-

mechanism using this approach are appreciable. The

table shown below compares the results of the design

discussed in this work with both a conventional lead-

lag compensated system and with a system designed by

linear state variable feedback methods.

Conventional	 Heg (linear)	 Heg/Sat.
controller

Bandwidth BW	 220 Htz	 700 Htz	 350 Htz

Percent PO	 101	 1pi	 8.21

Overshoot

Small inputs

Stability Stable Extensive PO • 101

For decreased overshoot decreased

Large inputs bandwidth BW • 100Htz bandwidth
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outline of Tnesis

In the following chapters it is shown how

the introduction of an intentional nonlinearity can

be coml:ined with state variable feedback to overcome

the effects of saturation. A step-by-step development

is presented with illustrative examples, and the

method is applied to improve the response of a practical

problem.

Chapter II deals with the representation of

linear and nonlinear state variable feedback systems.

Stability criteria for nonlinear systems are presented

along with a brief description of describing function

theory. The effect of the location of the nonlinearity

is inves,tiyated, and it is concluded that the optimum

location is at the left most end for maximum control

over the system. Finally, the chapter is concluded

with illustrative examples.

In Chapter III the effect of saturation in a

system is discussed and the idea of introducing an

intentiona:, saturation type of nonlinearity is described.

The concept of gain- insensitive systems is presented for

linear as well as nonlinear systems. Two systems, gain-

insensitive and non-gain-insensitive, are compared and

discussed. It is shown that the gain-insensitive system

l'

r

vl
r
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it.	 :,tattle and has a satisfactory c tc,)
response whc ri the gain is varied or opurates in the

nonlinear rc , ;ion. Finally, a design technique i5

given for overcoming the effects of saturation Ly

introducing an intentional nonlinearity.

In Chapter IV the techniques developed in

Chapter II anu III are applied to improve t6c response

of a fuel valve servomechanism. The design is evalu-

ated usin ,j Loth digital and analog computers, and the

results are presented in recorded form.

The final chapter presents the conclusions

and sugjestions for further investigation.

x
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CHAPTER II

Gi:U AL T11EORY

In this chapter the modern representation of

.inear syate,ms is discussed and state variable feedback

methods are presented; general expressions for tic

transfer funct io..sGeq (s) , Ii,q (s) , Y/R (s) , etc., are

given in matrix form. It is shown that for systems

which co:.tain a single nonlinearity Lut are otherwise

linear, the corresponding expressions for G eq (s), 11eq(s),

etc., depend on the location of the nonlinearity in

the forward patio.

Tire effects of the location of the nonlinear

ciciaent in a system are further investigated by apply-

ing describing function theory; and it is concluied

that, when the nonlinearity is located at the left end 	 J
1

of the system,, desirable stability properties and

maximum control over the system are achieved. Finally,

the results are illustrated with a third -order system

having a single nonlinearity.

Rep^reagntation of Linear Svstem3	 i 1

There are two different ways to represent

control systems: the input -output form and the modern

6
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state variaLle method. [sere the latter one is of prime

interest and hence is presented in data.'.

Consider Fig. 2-1, showing a general represen-

tation of a linear system. G  represents the plant

and is described by the following set of n first-order

linear difLerential equations:

x = 	 +bu

Ty - c• x

where

(Ab)

(c)

A in the n x n plant matrix

L is the n x 1 control vector

c is the n x 1 output vector

k is the n x 1 column matrix of feedLack coefficients

x is the n x I state vector

u is the input to the plant

r is the input to the system

I is the n x n identity matrix

The transfer function Gp (s) relating the control

function s and the output of the system y is given by

GP (s) = y/u(s) = c I(s)b
	

(2-1)

where O(s) is called the resolvent matrix and is given

by (s. , - A) -1 (Schultz and Melsa, 1967) . The input

and output of the system are related lay

y/R (s ) = ST&b	 (2-2)	
3

I

w	 3.•.	 t •R	 `4	 .'. 'g .^ to	 Fn9„	 {- +
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y

where Ak is the closed-loop resolvent matrix, given-1T -
The system of Fig. 2-1 can be represented Ly

two alternate Llock diagram configurations, the Geq(s)

and Heq ( s) representations shown in Fig. 2 -2(a) and
(b), respectively. General expressions for Ii.q (s),

Geq (s) , and Gp (S) IIcq ( s ) are given below.

Ileq(s) 	 (T^(s)b) /cT^ ( s)b	 (2-3)

Ge9(a) _ Q	 (5)b)/(1 + (k - V' T4Wk)	 (2-4)

Gpkieq (s ) = k TV s ) b	 (2-5)

All the above expressions can be found in terms of Ak

(Schultz and Melsa, 1967).

State Variable Representation of a
PartiSular Type of Nonjincar Systems

Consider the configuration shown in Fig. 2-3 ana

having the single nonlinearity represented by the block

labelled N. G 1 , G 2 ..., Gn each represents a first

order transfer function; i.e., G i = ki (s + z i )/( ai + pi).

Block diagram manipulation yields the modified diagram

shown in Fig. 2-4 1,a), where Gl (s) and G2 (s) represent

(n - i) h and i t- h order linear transfer functions,

respectively, and Il leq (s) and 112eq ( s) are of order

(n - i - 1) and (i - 1), respectively. Further

:r

010 loom yr	 ^,.^^ .r,,	

r f ^ ^ ^ ^ t'3.b>',^ t^.^+	 5:,	 1!+^'	 ^} . 'K	 64 ^	 S ^ •L^ ^ 7y = ^ 

1^^^^	 t r	 '^
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I

eq(s)

(b)

Fig. -2 a Ax ci Seq Method of Representing

a Linear System
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r	 ---^	 G 1 (s) ►—	 N	 G2 (9) —T ----♦ Y

11 1e (s)

I1 2eq (s)

(a)

r-^ -t1 -^(	 -1 G1eq (s)	 N	 -- I G 2 (s)	 r---^ Y

I	 I	 -^^
2eq

(b)

Fig. 2-4 Block Diagram Reduction for the
System Shown in Fig. 2-3



i.3

reduction of the block diagram shows the system in

final form in Fig. 2-4(b).

Now comparing the representations for linear

systems and nonlinear systems, one can observe that

nonlinear systems cannot be represented in the simplest

Geq or Iieq form (as can linear systems) unless the

nonlinearity is located at the left most end. In the

general case ( see Fig. 2-4(b)) linear transfer functions

and characteristicsof the nonlinearity are required

to descriLe the nonlinear system. Heq (s) f:as n - 1

zeros while 112,q(s) has i - 1 zeros. As the non-

linearity is shifted towards the left side, the number

of zeros in 11 2eq (s) increases and finally becomes n - 1

when it is located at the left end.

Describing Function Theogy

The describing function method is based on an

analysis which neglects the effects of harmonics in

the system, so that the accuracy of technique increases

with the order of the system. The system configuration

shown in Fig. 2-5 represents the reduced form of

Fig. 2 -4(b) and is in the correct form for applying

the describing function method. N is the single non-

linearity of the system and is assumed to be insensitive

1

Y.

,h

 rMM y	 ^^y a.x r ^ ^ , rrr • r. l	 <iy ._.	 y	 :,'r	 r^
TM , T
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Fi,;. 2-5 Equivalent or Roduced Form
of Fig. 2-4(b) with r (t) = 0
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to frequency. It is desired to determine whether a

sustained oscillation of sinusoidal form exists in the

system when there is no external input.

The output of the nonlinear element when its

input is a sinusoidal wave having an amplitude E is

written in the form

co = kege f fd (e)	 (2-6a)

The first term on the right -hand side is the

fundamental while the second term represents harmonic

distortion and is neglected. Hence

e0 	 kege	 (2-6b)

keq is known as the equivalent gain, or the describing

function, and it is a function of input-signal

amplitude E. The Cuscribing function for the non-

linearity can be found as follows (Gibson, 1963):
j

where

keq = g(E) + jb(E)	 (2-7)

27r
y (E.)	 E	 f (EsinA)sinAdo	 (2-8a)

0

2
-rr

b(E) _ ,Ê J f (Esin6) cosGd6	 ( 2-8b)
0

From Fig. 2-5

c (`= =• GO O )	 (2-9)
c0 0 ,,J )

Referring to the equations ( 2-6b)and (2-9), one

can see that for the existence of sustained oscillations

x.14

I

k	 r'^Cr	 h^	 rh	 x"• 	 ^ +, r ^P	 c ^i f^	 ^.	 ^fi{ ISI ^^.^ ..	

,
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there must exist a simultaneous solution which satisfies

I

Moth equations; i.e.,

G( jZ ) _ - 1
kuq

(2-10)

A convenient way of investigating equation (2-10) is

to draw polar plots of both sides and check for an

intersection; the point of intersection gives the

frequency and amplitude of oscillation. The oscilla-

tions may be stable or unstable lepending on whether

the amplitude of oscillation decreases or increases

as the operating point on -lAe q locus moves within

the frequency-sensitive locus of G(jLa ); i.e., the

Nyquist plot.

One can apply the describing function method

to check the stability of a system having a particular

type of nonlinearity N. N is single-valued and symmetric,

lying in first and third quadrants. The describing

function for this type nonlinearity will always be real

and non-n^!gative (Gibson, 1963). Fig. 2-6(a) shows a

saturation type nonlinearity, a representative of the

class we are considering. The equivalent gain for such

a nonlinearity is given by (Thaler and Pastel, 1362)

2
keq	 `^^(sin 1	 + Es.	 (1 - E: ) )	 (2-11)

7T'	 E	 E	 E'-

which is always real and non-negative, as expected. The

polar plot is shown in	 2-6(b).	
x

t
^	 ^	 r-4 ^*^F..^' r f	 sr{' ^ TM,ru3^	 ^	 +s^

^ 	 ^!	 '^^ ^i/^'^.^ ^	 ftt	 • • t	 ^-
«	 S N	

^.."a7.Sre' ^.^ ..:..44;
z	

3.i its	 'tN n^^;k^€:.^? r.. 4. xo	 ^^	 1
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(a)

Im.

(h)

Fig. 2-6 Characteristic and the Polar Plot of
Equivalent Gain for the Nonlinearity
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Consider the system whose block diagram is

shown in Fick. 2-7( a) which is similar to Fig. 2-4(b).

It was stated previously that G leq (s) has n - i poles.

G 2 (s) has i poles, and H 2eq (s) has i - 1 zeros. Hence

G(ju)) = G leq (s)G2 (s)H2eq (s)	 (2-12)

has n poles and i - 1 zeros. Now to check for the

existence of oscillations, the polar plot of - --I
-keq

for a single-valued,symmetric nonlinearity is plotted

in Fig. 2-8. For oscillations

c

where 1.-)
c
 is a frequency for which G(j u)) is real. This

is possible if and only if G(jiA)) is inherently unstable

in the linear region or G(JO ) is conditionally stable

as shown in Fig. 2-8, labelled G''(ju) ) and G'(jtd),

respectively.

From Equation (2-13) it can be seen that

oscillations can exist for some value of gain k as

long as the polar plot of G( J O ) crosses the negative

real axis. Thus to avoid oscillations G(j;^ ) should

not cross the negative real axis for any value of gain;

G (j -,J) should have the form shown by the curve

in Fig. 2-8 and labelled G'	 This is possible

if G(j.O ) has a pole-zero excess of < 2 and if the

zeros of G(JO ) are located at proper places. Thus it

is desired to have

s	 t	
"-!err	 y	

^^
'?°t^.^ *	 ^l	 ?!^i ^ir'^ +{ t,wr?^`

	 d y e z^ "	 ^,.j	 E • '	 '
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_._..	 -	 G l eq (s) 
j_

	 N	 G2 (s)  	 1

I
	 (s

L.__ -__^

Fig. 2-7 The System of Fig. 2-4(b)

Im.

- 1	 .1 _
k r,

!-- 8 increases
	 - ► Re .

i
G' (jCJ) 1

G " (1w^

Fig. 2-8 Various Types of G(i W) Functions
Showing the Pos. ' ' ,4 lity of Oscillations
and the Polar Plot of -1/k eq for the
Nonlinoarity
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n - i + 1	 2

i > n - 1	 (2-14)

in order to prevent oscillations. Also, it is known

that the more zeros there are in 112eq (s), the better

a system can be controlled, so that the optimum choice

for i would be n; that is, the best location for the

nonlinearity is at the left most end of the system. It

should be noted that stability of the system still do-

pends upon the zeros of H 2e, ( s) and hence the feedback

coefficients.

Eami31g♦
Consider the plant shown in Fig. 2 -9(a) which

is to be controlled by state variable feedback. All

systems saturate at one or another point. Here satura--

tion is accounted for by the nonlinearity labelled N.

which is presumed to be of the type shown in Fig. 2-6(a).

Different possibilities for saturation are shown in

Fig. 2-.4( b), (c), and (d). It is the purpose of this

example to investigate what happens when the system

saturates at these different points.

Case I

Let N be located as in Fig. 2-9 (b). State"

variable feedback is to be used to achieve the closed-

loop transfer function`

^Y

X
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	 ^	 .	 ;.T ^k	 ^	 i	 h'	 C,{ 	 a f 1.^ ^	 J

^	 -" ^	 ♦ 	 s	 v	 r	 ^	 t 4	 i	 "	 k	 ^^	 ^^ i	 .^ r 1
";	 '":^„ 

', ,f
r 	 ,^,	 ylfi s.	 f , .	

N ^	 ^''- "1E' k~ ^., +C	 ^i`	 vv kp^[^1 ^ t'7	 fIt i'	 °.r

	

L.?'1 r^^".]^iS.^r6Lkr ^-Y+...
	 tf	 }},,	 ^ x z . ti	 1	 ^tii'.^h^q,	 ^ ie i y^ j',Fk f ^ry `,	 ,y !' J r	 + a

	

^'4fi.d	 +l.'a^Ati^i ^.M^., r6♦ .^rOr,. lhtSii^t"^"' ♦ htfi:$.^A^7,iXli.. }1;;_i7^'^^1+^L. ^iu:^`. +.. 	 .. ., f^



Y1
0

21

r

u	 i s+3 x 3 8++^1 ^
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x	 x	 x̂ _

s+3	 S^	 N	 s	 y

(b)

iiO X 3-1-

	

_.1 X 2

 r'I x
s+3	 N	 s+1	 s	 Y

-A

(c)

N	 uI 10 	3
	 x 2 I 1	 x

Y

	

s+3	 a+1	 I _s j

(d)
a

Fig. 2-9 Plant Showing Saturation at
Different Points in the System
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5+ 5.25s + as + 10

when operating in the linear region. The result is

shown in Fig. 2-10(a). When the system operates in

the nonlinear region, the input -output relation does

not hold; but some aspects of the behavior can be

investigated by the describing functijn method. By

block diagram reduction of Fig. 2-10(a)

G 1 eq s $ 2 19
 5.2 5 s
._

G2 (s) = s

I12eq (s) = 1

so that

G(s) = Gleq (s) ' 112eq(s) ' G 2 (s)

s-s7 + 5.25s + 8)

The polar plots of G(j Q) and --k̂ -- 3s given
eq

uy Equation (2-12) are shown in Fig. 2-11. The point

at which G(ju)) intersects with the negative real axis

can be found very easily to be -0 .238 at u) = 2 1.

That is,	 .t

	

G(j ;Z )

_-
	 0

	

= 2 
J2	

2	 (-8 + j 5.25 • 2 v	 + 8)
	

.^ J

= -0.238
w. 7

I
tr

r.
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Fig. 2-10 Nonlinear System Designed by
State Variable Feedback Method
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Vius for oscillation (- rL-)max a -0.238, which givescf.,

the maximum vali ►e of k, the linear gain, which the

nonlinearity can have. In this case oscillation:

w , ll occur when k is increased beyond 1/0.238; '^-,iwever,

examples can be found where even without variation of

k, the system can show oscillations. One such system

is shown in Fig. 2 -12(a) along with its polar plot

in Fig. 2-12(b).

Case

Let K be located as in Fig. 2-9(c). The system

still has the same configuration when operating in the

linear region. When operating in the nonlinear region

Gleq(s) s
	

10
 s + 4.25

If	 (s) _ -'(s ♦. 2.66)

G2(s) =	 1
s(s + 1

so that

G(s) _	 31,75  (s + 2.66)
s(s+ 1)(s+4.25)

The polar plot for J" ( j LO ) and - 1 are shown in Fig. 2-13 0

keq
and it can be seen that there cannot be an intersection

for any value of gain k of the nonlinearity or for any

gain associated with C(JO ). Thus there is no oscillation

and the system is stable for all gain.

x

a*	

,iS !'+- ^	 "p	 ,elf	 ! ,̂ 	 e1	 ^9	 . a
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i

20	 + 1.5 "^ s+0.5L ^. - LO ..	 i

rL^

20( s + 2)G(s) ' 3s(e 2 + 2.0266s + 0.783)
(a)

♦ Im.

key 	 2 -1.0

.75 2.

1

^-- G (j w )

i3 I
10- Re.	

^	 I

(b)

Fig. 2-12 Polar Plot of G (j W) , r-d -1A.fox
the :-fstem Shown in Fig. 2-1219)
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Case 111

Let N be located aL in Fig. 2-9(d)o

nonlinear region

G leq (s) = 1

G2(s)
 _ 	 10

s s + M e + 3T

112eq (a) = 8 (s 2 + 4s + 8)

so that

G(s)  = 1, 25(s 2

 + 4s + ,.^.
s(s+3) s+1^

28

In the

Again, it can be seen from the polar plot of Fig. 2-14

that the system is stable for all gain whether it be

associated with the nonlinearity or with any other gain

in the forward loop.

Comparing all three cases, one can see that as

the N is moved towards the left and the number of zeros

of H 2eq ( s ) increases, forcing the polar plat of G ( j v.) )

to approach the origin at a lower multiple of 900.

Finally, when saturation takes place at the left most

state variable, G(jv3) approaches the origin at -900,

and the example system becomes stable for all gain.

Still, placing nonlinearity at the left end does not

give assurance of stability if the system is conditionally

stable in the linear region, as the location of zeros of

-1
^ ^^	

^d `
	 2	 b	 F	

t

^_	
_	 ^	 a'^^Y„rr$5 .; ^'4^^+5. ^..
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II 2eq (s) influences the shape of the polar plot of G (j O )

and hence helps to determine whether or not there are

any intersections with the plot of - 11 ,,, .

eq
To assure the absolute stability for all values

of gain,a method of designiny a system is presented in

the next chapter. Thus it can be concluded if N is

located at the left end o the number of zeros of H2eq(s)

to control the system is at a maximum; and the system

can Le made stable for all gain by placing these zeros

at proper places.

Although the conclusions derived above were

discussed for the system having a saturation type

nonlinearity, they also hold for any frequency-insensitive,

single-valued, and symmetrical nonlinearity, as k eq for

such nonlinearity is always real and non-negative.
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C1 APTER III

DESIGN OF NONLINEAR GAIN -INSENSITIVE SYSTEMS

In Chapter II it was shown that the stability

of systems containing a single nonlinearity and designed

by using state variable feedback depends upon the loca-

tion of both the nonlinearity and the zeros of 112eq(s).

In this chapter the same type of system is studied

further and a method of making the system gain-insensitive

to ensure stability is presented. Systems designed by

the proposed method are shown to have absolute stability

for any value of gain astociated with the linear part

of the system or with the nonlinearity.

Next, gain-insensitive and non -gain-insensitive

systems having the same closed -loop transfer function

in the linear region are compared and significant

features of gain-insensitive systems are presented.

One can show how the introduction of an additional

intentional nonlinearity and state variable feedback,

can be combined to design systems to have both absolute

stability and satisfactory transient response. The

technique utilizes the results of Herring ( 1967), who	 ^-

ATM.,:'
a
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sr	 4r	 C3, 	 fax	 v,r r	 .	 "F k F • t 1 x}. r!^ 	 .^ 	 !' 	 r. a .te. eu3. -^.5 W ^ .1^'	 yy,,,w X
	 s^ 
	 '' '.^t }}`` §'	 t. '	 yX r	

^	 ^i	 ... ..iRT1L fi,:'P!I1:31Y$.55t.tirf..w 't V{. J*_L 7'.L ^..1^.:_^e^'.4 ti ^^LJ%S;r ,t'. ail h: n.'1 rt fi.+

1



Q

has suggested a method of designing systems which are

absolutely stable for all values of gain. He has shown

that a system can bE: made absolutely stable and insen-

sitive to gain if n - 1 of the n open-loop poles are

placed where n - 1 of the n closed -loop poles are required.

In other words, in terms of Fig. 3-1,the zeros of Heq(s)

are pla^;%-_d at the same places where n - 1 of the n poles

of G(s) are located.

A step-wise procedure for designing a ga 4 n-

insensitive system is given below.

1. Describe the system in physical variables

and assume all the variables are available

for control purposes.

2. Choose the desired locations of the n

closed-loop poles of Y/R.

3. Modify the plant, or open-loop system,

with series or feedback compensation such

that n - 1 open-loop poles are located at

the positions of n - 1 of the desired poles

of Y/R.

4. Use state variable feedback to force the

n - 1 zeros of Heq to coincide with n - 1

of the new poles of G(s).
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G(s)	
*J

(s+a)D s

He9 (s)=kl )N(s)

y

Fig. 3-1 A Linear Gain-Insensitive System, 3
Where G(s)Heq (s)	 k'/s-*a
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5. If all the variables are not available,

use the calculated values of the feedback 	
e•4

coefficients to determine the required

minor-loop compensation (Schultz and

Melsa, 1967) .

A system designed by the gain-insensitive method

has only 1 out of the n closed-loop poles as a function

of gain, whereas a non-gain-insensitive system has all

n of itu closed-loop polec, as a function gain. Thus

when the gain varies, the response of the gain-insensitive

aystem is likely to change very little; however, the

response of the non-gain-insensitive system can change

significantly,and the system may even become unstable.

Also, the gain-insensitive system always satisfies the

frequency criteria for optimal control as the polar

plot for open-loop gain never crosses the unit circle,

while the non-gain-insensitive System does not.

Consider a nonlinear system shown in Fig. 3-2(a)

where N is of the specific type considered in Chapter II;

namely, N is frequency-insensitive, single-valued, and

symmetrical. The system is designed such that n - 1

zeros of H 2eq (s) lie at the same places where n - 1 of

the n open-loop poles are located. Such a system can

be reduced to a simple first-order nonlinear system in

series with an (n - 1)n order system as shown in

^P
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(a)

(b)

Fig. 3-2 Nonlinear Gain-Insensitive System
and Modified Block Diagram
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Fig. 3-2(b). It is easy to analyze such a system by

yraphical methods such as the like isocline method.

The system designed by the non-gain-insensitive method

is of n th order and cannot be reduced to any such simple

form and hence cannot be analyzed as easily by graphical

methods.

Although the gain -insensitive method of designing

a system is superior to ot.ner techniques in many respects,

it is difficult to put the zeros of 11 2eq (a) exactly on

top of the poles of G(s). If cancellation does not

take place, then the system has n poles which vary with

the gain, possibly even becoming unstable if the poles

are near the j ,-k) -axis (Herring, 1967).

The results of this and the previous chapter

are now used to design a system which saturates at a

certain point. It was mentioned previously that all

systems saturate; typical physical components having

saturating characteristics are an amplifier in the for-

ward loop and the movement of some mechanical part which

is restricted to a certain range. In Chapter II it was

shown that the saturating element might cause the system

to oscillate if it is not located at the proper place

within the loop. The locationsof such elements are

not controllable as they are part of the physical system.
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A way to prevent saturation of such an element

is to control the input signal to that element; tAis can

be done by introducing an intentional nonlinearity

having a limiter type characteristic with the proper

limiting values. with the introduction of such an

element the system following the nonlinearity always

operates in its linear region since the nonlinearity

input is always restricted to the range of linear opera-

tion for the nonlinearity.

In Chapter II it was shown that if the location

of the nonlinear element is at the left most end and

state variable feedback is used,there are n - 1 zeros

of H2eq (s) to control the plant. Thus it can be seen

that if a limiter is introduced at the left end and if

state variable feedback is used, then saturation in

other parts of the system can be prevented and the

system can be made stable for all gain, even insensitive

to gain.

The technique is illustrated in the following

example where two methods of designing the same system

are presented for comparison.

Example 1

Consider the plant shown in Fig. 3-3(a) and

having an intentionally introduced nonlinear element

:s
.4:P5
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of the saturation type olhose characteristic is shown

in Fig. 3-3(b). when operating in the linear region

Gp	 10
s (s - 1)

and the required closed -loop transfer function is

chosen to be

R(a) = ( s 10 _5)

Gain-Insensitive Dceicin

Now feeding Lack x 2 to modify the plant so that

n - 1 (1) of the open-loop poles lie at the same place

as (n - 1) one of the closed-loop poles, gives the

modified open-loop plant, as

G(s) =	 10
S - 1 + 10k 2 '	 s

The value of k 2 ' that places one of the poles of G(s)

at the closed-loop pole location s = -2 is k 2 ' = .3.

Next, both x 1 and x 2 are fed back from the modified G(s)

to realize the desired closed-loop transfer function

when operating in the linear region. By Llock diagram

manipulation

Y	 10
R	 s + 2s + 10(k 2s + kl)

Equating the denominators of the required and the designed

closed-loop transfer functions, k 1 and k2 are found to

be k l = 1.0 and k 2 = 0.5.

}Y
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Non-Gain-InsensitiveNon-Ggin-InseneLtive Deaian

liars both x  and x 2 are fed back directly from

Gp (s). Mock diagram manipulation yields

R e s  - s+ 10k2e+kl
Comparing the denominator of the required and designed

expression for Y/R, k  and k 2 are found to be k l a 1.0,

k 2 a 0.800.

Both systems are shown with their root locus in

the linear region of operation in Fig. 3-4(a) and 3-4(b).

Both systems were simulated on an analog computed and

the step responses are presented in Fig. 3 -5(a) and

3-5(b), respectively. It can be seen that for a step

input, in the linear region of operation, both systems

respond in the same way. However, when the input is

increased so that the systems operate in nonlinear

region of N. the non-gain -insensitive system gives

an overshoot while the other system does not; in fact,

the response of the gain-insensitive system does not

differ very much from its response in the linear region.

The behavior of the non-gain-insensitive system

in the nonlinear region can be explained as follows.

Consider the characteristic of a general saturation

type nonlinearity shown in Fig. 3-6. e i is the input

to the nonlinearity, e  represents the output, and k is

`^}{fit	 gti(tr_

1ff^
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J

Operation in the Linear Region

Operation in the Nonlinear Region

(a )
	

(b)

Fig 3-5 Time Response for the System of Example 1
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the gain in the linear region of operation. when the

input has a magnitude less than e s , the output is k

times the input and the equivalent gain is

k'	 input s k

When Jej > e s , the output is ±eek and k' becomes

k task < k
input

Thus it can be seen that as the input amplitude increases

keq ' decreases. In Example 1 when the input amplitude

is increased, so that the input to N is greater than

es = 0.5, k'	 decreases and hence the total gain in

the loop decreases, causing the n poles of non-gain-

insensitive system to assume a different configuration.

The new closed-loop configuration can be a pair of complex

conjugate poles (see root locus sketch Fig. 3-3(b)), which

causes overshoot in the output of the system.

Consider the plant shown in Fig. 3-7(a). The

noniinearity N is of the saturation type as shown in

Fig. 3-7(b). In the linear region

G	 lp = -am. .
s

and the desired closed-loop transfer function is chosen

to be

- .._.i	 _ (s + 10) ( s ue + s + 1)

;.
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Two designs, gain-insensitive and non-gain-insensitive,

are shown with their root locus plots for linear opera-

tion in Fig. 3-8(a) and (b), respectively. In the linear

region both systems respond in the same way, but when

operating in the nonlinear region, as the step-input

amplitude is increased, the non-gain -insensitive system

gives more and more oversnoot and finally becomes

unstable. This does not happen with the gain-insensitive

system. The above phenomenon can again be explained by

the same reasoning given in the previous example and

also can be seen from the root: locus diagram.

Example 3

The last example has the plant shown in .

Fig. 3 -9(a) and the nonlinearity shown in Fig. 3-9(b).

In the linear region

2

and the desired closed-loop transfer function is

X()s 
=	 20

R	 (s + 10) s + 0.4s + 2

Gain-insensitive and non-gain-insensitive designs are

shown in Fig. 3-10(a) and 3-10(b) along with their root

locus diagrams for linear operation. Both systems were

simulated on the analog computer and the response to a

step input is presented in Fig. 3-11(a ) . and 3-11(b).
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Fig. 3-9 Plant and Characteristic of N for Example 3



S
t

^ J+• 1

L .15

.J

r (t)._

49

r(t)	 LL 	 t

A	
^N J10

i

i .15 - -

- I

]2— St.1	 S	 S

1.4
i

-10	
-0.2- "U

6C

(a)

-0. 1

(b)

Fiy. 3 -10 Gain and Non-Gain - Insenzitive System;, Along
With Their Root Locus Sketch in the Linear
Region

-10



Operation in the Ltnear Region

Operation in the Nonlinear Region
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Fig 3-11 Time Response for the System of Example 3
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When operating in the linear region, the response to a

step input 13 the same for Moth systems. when the

input is increased so that the aystemb operate in the

region in which the nonlinearity is :saturated, the

results show that the non-gain-insensitive system

gives more overshoot than when operating in the linear

region and that the transient takes a relatively lone

time to die down. Also, when the magnitude of the in-

put step to the system is increased more and more, a

point is reached where there are sustained oscillations;

these oscillations die down when the input magnitude

is further increased. If the input amplitude is further

increased, it again gives sustained oscillations as

can be seen from Fig. 3-12. As in the previous examples,

the response of the gain-insensitive system coos not

differ much from the linear response when operating in

the nonlinear region.

From the above three examples, it can be seen

that for the same closed-loop transfer function in the

linear region, the system designed by the gain-insensitive

method is absolutely stable and almost insensitive to

gain; its response is good even when operating in the

saturated region. For the system designed by the non-

gain-insensitive method there is more overshoot and
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:, 3

sustained oscillations if the plant is unstaLlo or

conditionally stable. Thus from the above observations

it can be seen that the system stabilized by introducing

an intentional nonlinearity and designed by the gain-

insensitive method gives a more satisfactory performance

although it increases the complexity of the system.

In the next chapter the gain-insensitive design

technique is applied to a practical, high-order design

problem.
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CHAPTER IV

DESIGN OF A FUEL VALVE SERVOMECHANISM

In this chapter the results of the previous

two chapters (that is, an intentional nonlinearity

can be introduced at the left end of the plant to

prevent saturation of signals further down in the

system, and using state variable feedback a system

can be made absolutel^^ stable and insensitive to gain)

are applied to improve the performance of a fuel valve

servomechanism for a General Electric J-85 jet engine.

The engine is being used at Lewis Research Center, a

NASA facility, for studying engine and inlet controls

for the supersonic transport.

In order to apply the design technique it is

necessary to start with a linear model of the physical

system. Fig. 4-1 shows the block diagram of the 7th

order linearized plant where the state variables are

c Actuator position

c Actuator velocity

0c Actuator acceleration

x  Spool valve displacement

x  Flapper valve displacement

54
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x f Flapper valve velocity

I Torque motor current

Let c	 x i , k l = x 2 , x2 = x 3 , x8	 N, x £ = x5,

x5 = x6 , and I = x 7 . Then the plant can be described

by 7 first -order differential equations as shown in the

Appendix and can be represented by equations (Ab) and (c)

i=&+ku	 (Ab)

y = JQ X	 (C)

where

1 0 1 0 0 0 0 0

10 0 1 0 0 0 0

i0 -3.28x108 -6.68x10 3 8.48x10 11 0 0 0
!,

^i =	 + 0 0 0 0 5.76x103 0 0
i
i0 0 0 0 0 1 0

0 0 0 -3.05x106 -2.10xld -3.66x10 3 2.26x106

0 0 0 0 0 0 -2.5x103

^T	
L0 0 0 0 0 0 2.5 •c10^^	 j

SST	 Ll 0 0 0 0 0 0

In the actual physical system the signals x f , xs , and c

are limited to magnitudes less than 0.0012 inches,

0.015 inches, and 0.125 inches, respectively.

There have been at least two previous cor.mpensation

schemes to improve the performance of this control system,

Y â
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both rf which utilized the above linear model. One

scheme was to use conventional lead-lag compensation;

the resulting system had a bandwidth of 220 hertz and

a step response with an overshoot of 1016 for small size

step inputs. For input amplitudes of over Wi^ full

scale the effects of the saturation limits caused an

unsatisfactory deterioration of the response.

The second scheme utilized state variable

feedback and sought to achieve a much faster response

than that resulting from the lead-lag compensation.

The resulting design required feedback from 5 of the

7 state variables and had a bandwidth of 700 hertz and

an overshoot of less than 10% in the step response.

Unfortunately, when the saturation limits on the system

variables were introduced, for disturbances of any

reasonable magnitude the system per cent overshoot in

the transient response was excessive; and the system

bandwidth decreased to approximately 100 hertz (Slivinsky, 	
r

Dellner, Aparasi, 1967).
	 1

In this chapter the linearized system is first

designed by the gain -insensitive method for a bandwidth

of about 350 hertz and an overshoot less than 10%. Then

an intentional nonlinearity of the saturation type is

introduced whose saturating limits are found experimentally

{
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on an analog computer so that the signals at x f , xs,

and the output do not saturate when the full -scale input

is applied.

Design of Gain-Insensitive System

The gain-insensitive design is carried out in

three steps: selecting the desired closed-loop transfer

function, modifying the plant so that 6 of the 7 closed-

loop poles are achieved, and finding the feedback

coefficients so that the closed-loop transfer function

is realized.

As an aid in carrying out the first step one can

refer to the pole-zero configuration for the original

plant as shown in Fig. 4-2. Studying this plot and the

normalized step-and frequency-response curves satisfy-

ing the ITAE performance index (integral of time

multiplied absolute error, Graham and Lathrop, 1955)

a second-order model is chosen with LA) = 2250
n

radians/second and e3 = 0.7 to realize a bandwidth

of about 350 hertz and an overshoot of less than 10%.

Thus the second-order model has the transfer function

(Y)	 _	 2	
06	

(4-1)+	
+

A model	 s	 3.15 x 
1038	 5.0625 x 10

The model is extended to the seventh order by

choosing 2 of the seven poles to be located as in
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Location for the Linear System
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Equation 4-1, 1 at the location s = -1.7 x 10 4 , and

the remainLny 4 at the same positions as the complex

conjugate poles of the fixed plant. The resulting

configuration is shown in FiU. 4-2, and the closed-loop

transfer function is given by

Y	 a	 5.0 991 x 10 26	 --
1 R ) extended (s+3.34149- x 0,^±j1.77998x104)

(s+1.3556x10 !j4.07384x10 )

(s a 1.575x10 ±jl.575x10')(s+1.7x10 ) 	 (4-2)

Note that Y/R approaches .l as a approaches 0 so that

that system has 0 steady-state error for step inputs.

The extended model was checked for time response

and frequency response, and it was found that the re-

suits were almost the same as for the simple second-

order s 1stem; i.e., the bandwidth was 350 :,ertz, and

the overshoot was 8.4% with a rise time of about .0011

seconds.

To carry out the second step it is necessary

to put n - 1 (6) of the open-loop poles where 6 of

the closed-loop poles are located. The plant in

modified such that the new open-loop transfer iunetion is

G(s) -	 2.397x1024 < <
	 (4-3)

s(s+3.34149x10 ±j1.77998x10 ^, )

(s+1.3556x10 ±j4.07384x10 )(s+1.575x10 ±
.
)1.5`I5x10 1

c
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This is done by feeding knack the state variables x2

through x 7 as shown in Fig. 4 -3. With the help of

the IBM 7072 digital computer, using the program of

Melsa ( 1367) and the At t, and c matrices given above

with the slight modification given in the Appendix,

the coefficients were found to be

k 2 ' = -4.6774 x 10-5

-1.7077 x 10-9

k4' s 1.57057 x 101

k5' = 1.272 x 101

kb ' - 4 . x.)671 x 10-3

k 7 ' = -1.13557

and the gain k is 1.063.

Now the modified plant is used in feeding Lack

the variables x l through x 7 to realize the closed-loop

transfer function given in Equation 4-2. T}^(: Joystcr;

is as shown in Fig. 4-4. Again, Melsa's program was

used to perform the calculations, this time with the

A. L, and c matrices corresponding to the modified

plant. These matrices are given below, and the de-

tails of the derivation of the differential equations

can Le found in the Appendix.
r-

LT= LO	 0	 0	 0	 0	 0	 2.70982xlo2

=^i	 0	 0	 0	 0	 0	 0

:,{	 r#^	 ;	 r!' ^ ^ ^^7tdra^^S # ^a ^;^ ji ^i,# hta ,fit ^r^' U	 t.Q^
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$s

U	 1 0	 0	 0	 U 0

U	 U 1	 0	 0	 0 0

0	 U	 -3.28x108 -G.66xl0 3 -8.48x10 11 	0 0

0	 0 0	 0	 5.76x103	 U 0

0	 0 U	 0	 0	 1 0

0	 U 0	 -3.05x10	 -2.10x10 7 -3.66x10 3 2.26x106

0 1.,6x,0-2 4.tj2x10 -7 -4.00x10 3 -3.44x10 3 	-1.26	 12.19x103
^J

The feedback coefficients for this second application

of state variable feedt^ack are given by

k 1 = 1.000

k 2 = 2.03317 x 10- 5

k 3 = 3.0b212 x 10-9

k4 = 1.5242

k 5 = 1.77896

k6 = 3.57654 x 10-4

k 7 = 3.690275 x 10-1

and the gain is	 1.7 x 102.

The system was simulated on an analog computer

(the details of the simulation are given in the

Appendix), and the time response for a stop of 5 volts

is given in Fig. 4-5(a) showing an overshoot of about

8.2% and a rise time of 0.00115 seconds.	 The feedback

coefficients from different states were removed in-

dividually, and it was found that the removal of the

two feedback signals from both c and Id does not effect
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(h)
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(c)

Fig 4-5 Time Responses of the 7 th Order
Linear Gain-In$ensitive System
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the system response very much as can be seen from

Fig. 4-5(b). To check the property of gain-insensitivity

the gain was varied from 100 to 250, and it was found

that the effect is negligible as can be seen from

Fig. 4-5(c). Thus we can conclude that the system is

gain-insensitive, with a bandwidth of 350 hertz, an

overshoot of 8.2% with a rise time of .00115 seconds

and is unaffected by removing the feedback from c and

C*

In a more realistic model of the system saturation

at xs , x F , and c must be taken into account. Here the

technique of Chapters II and III is used, and an in-

tentional nonlinearity of the saturation type is

introduced, whose saturating limits were found experi-

mentally to be +0.595 volts so that the signals at xf

and x  never exceed their saturation limits.

To check whether the nonlinear system is correct

or not, the system response was found for the small in-

put of 0.5 volts, and it was found to be the same as

that or the linear system as shown in Fig. 4-6(a). The

step response for a step size of 5 volts is shown in

Fig. 4-6(b). Comparing this response with that of the

linear system, one can see that the former has a large

rise time because the system operates in part in the

rR t.`M	'^	 4 ..h }T aWi ll
k 	 ^.{^^	 C^ 4 ^k	 M^^^	 1	 43	 ^t^ .'^^! $ 7 t t	 1

.b	

v A
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Fig. 5-6 Time Response for the Nonlinear System
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saturated region. The overshoot is about the same as

for the linear system.

The system response was checked with the feedback

signals removed from t and c, and it was found that the

response is not much affected. The signals x  and xs

do not exceed their saturating limits; and the per cent

overshoot is in the same range as previously, as can

be seen from the time response shown in Fig. 4-6(c).

Also, the effects of varying the gain, which was varied

from 100 to 255, were checked; and the response was

found to be almost unaltered, as can be seen from

Fig. 4-6(d). The system sensitivity was evaluated by

varying the feedback coefficients by ±25%. and it was

found that this variation of the feedback coefficients

does not cause any serious problems. Thus it can be

concluded that the nonlinear system is insensitive to

gay:, variations in feedback coefficients, and the

removal of the feedback signals franc and *c. When

the input is such that the system operates in the non-

linear range, the step response is slower than that of

the linear system but the per cent overshoot is almost

the same.



CHAPTER V

SUMMARY &VD CONCLUSIONS

The representations of linear and a certain

class of nonlinear state variable feedLack systems

have been presented. The nonlinear system was assumed

to have a single nonlinear element of the non-memory

type which was symmetric and had its characteristic

lying in the first and third quadrant. The G eq and

Heq representation was used to show that the optimum

location for the nonlinear element is at the left end,

although stability depends on both location of the

nrinlinearity and the locations of the zeros of 112eq(s).

To ensure absolute stability for all gain, the

gain-insensitive method of design was proposed; and a

step-by-step procedure was presented. Systems designed

by the gain-insensitive method are absolutely stable

and insensitive to gain. In the case of nonlinear

systems, an nth order system can be reduced to a

first-order nonlinear system in series with the

( n-1) st-order nonlinear system which is easy to analyze.

Also, even when working in the nonlinear region the re-

sponse of the nonlinear system is not degraded as much

69
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as that of the same system designed by non-gain-

insensitive methods. Thus the linear and nonlinear

gain-insensitive systems are better in certain respects

than non-gain-insensitive systems.

The property of inherent saturation in a plant

was discussed along with effects which may cause in-

stability. Saturation in the fixed plant can be pre-

vented by introducing an intentional, saturation type

nonlinear element with the proper limits. By coml:ining

this idea with the gain-insensitive method using state

variable feedback, a system not only can be made stable

but also absolutely stable for all gain.

The technique was used in improving the response

of a fuel valve servomechat- ism v° ch saturates at three

different points. The resulting system has a large

bandwidth and a low overshoot in response to a step

input when operating in the linear region; in the non-

linear region, the response was better than that achieved

in two previous design attempts.
1

Although the method worked well in the design

example, there are several things yet to be investi-

gated in connection with the design of the fuel valve

servomechanism. The sensitivity of the system can be

investigated further, perhaps even incorporating'

sensitivity requirements as one of the design criteria.

"y4	 1

N
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Also, whether the system response can Le improved Ly

using the conventional series compensation in combina-

tion with the gain-insensitive design technique can be

investigated. A systematic method is still not available

for choosing the closed-loop transfer function so that

the unavailable feedback coefficients can be made

negligibly small. The technique of introducing an

intentional nonlinearity has been discussed for a

particular type of system. It still has to be deter-

mined whether the technique is applicable to systems

having other types of nonlinearities, such as a relay

with dead space.

I
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APPENDIX

tierc: the derivations of three sets of the (Ab)

and (c) system equations are presented for the fuel

valve servomechanism. Also, details of the analog

computer simulations are given for this same system.

The differential equations describin; the fuel

valve servomechanism are derived with the aid of the

block diagram presented in Fig. A-1. 	 Let c -• xi,

k a x 2 , x2 -2 	 x s = NO x f = x50 ;5 = x00 and

I = x 7 . Assuming all initial conditions to be zero,

the first two equations describing the plant are

Xl :, x 2	 (A-1)

x 2 = x 3 	(A-2)

From the figure the transfer function relating x l to x4

can be used to find x3

x1 =	 8.483 x 1011

X4	 s + 6.u83 x 103S2 + 3.23 x 1005

Cross-multiplying and transferrinu to the time domain,

one gets

k3 = -3.28 x 108x 2 - 6.683 x 10 3 x 3 + 3.483 x 10 11x 4 (A-3)

Also from the relationship

x4 = 5.769 x 103
X 5	 s
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one gets

x4 = 5.7b9 x 10'x 5	(A-4)

and by definition

X5 s X b 	(A-S)

The transfer function relat..r ► ,.; x4 and x7 can be

used to find x6

	4 	 2.262 x 5, 76 1) x 10`j

	X7	 (s + 3.669 x 10 s + 2.103 x 10's + 1.761 x 10 )

Cross-multiplying and transferring to the ti,i,c domain,

one gets

.x4 = - 3.669 x 10 3 x4 - 2.103 x 10 7x4 '0 1.761 c 1010x4

+2.262 x 5.7b9 x 109x7

Substituting for x4 and x5

x6 = -3.055 x 106x4 - 2.103 x 10 7x5 - 3.66-) x 103x6

+2.262 x 106x 7	(A-b)

From the block diagram

x

u ( )	 s + 2.5, x 10J

which gives

x 7 = -2.5 x 10 3 x 7 + 2.5u	 (A-7)

Also

Y = x 1	(A-d)

Thus using Equations (A-1) to (A-3) , the plant

equations (Ab) and (c) can be written in matrix form.
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A =

bT =

For modifying the part of the plant from c to

u l a6 shown in Fiy. 4-3, the required equatito 	 (Ab)

and (c) can be found as follows. The equations for

x2030 xq, x 5 , and xG are the same as those oi-

Equations (A-2, 3, 4 0 5, and 6). From Fig. 4-3

= 2 .5,^x 1_0

u l	 s j- 2500

Cross-multiplying and transforming to the time domain,

one gets

x 7	 -2.5 x 10 3x 7 + 2.5 x 10 2u l 	(A-9)

and

y = x 2	 (A-10)

Thus the modified matrices are

	

0	 1	 0	 0	 0	 0

-3.2x108 -6.5x10 3 8.4x10 11	0	 0	 0

	

0	 0	 0	 5.7x1U3	 0	 U

	

0	 0	 0	 0	 1	 U

	0	 0	 -3.0x106 -2.1x147 -3.6x10' 2.2x1U6

	

0	 0	 0	 0	 0	 2.5

	

C 0	 0	 0	 0	 0	 2.5x102)

r

	

L 1	 0	 0	 0	 0	 0,

To ro-ilize the closed-loop transfrr function

by feeding back all the variables, ' -he differential
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equations describing the modified plant arc used.

The differential equations for x l ^ x 2 , x 3 , :c4 , x.,

and k. are the same as Equations (A-1, 2, 3, 4, 5,

and 6), respectively. Again, from the block diagram

shown in Fig. 4-3

x7 = -2.5 x 10 3x 7 + 2.5 x 102u1

Substit ►1ting for u l in the aLove equation gives

x7 = 1.3675 x 10 -2x 2 + 4.6277 x 10-1x3

-4.0828 x 10 3x4 - 3.4700 x 103x5

-2.1923 x 10 3x 7 + 2.70982 x 10 2 u	 (A-11)

Equations (A-1, 2 0 3, 4 0 5, 6, 11, and 4) are sufficient

to describe the modified plant in matrix form to be

used on the digital computer.

Details of the Analocz CQmngter Simulations

To evaluate the designed gain-insensitive

linear and nonlinear systems an analoU computer of

±100v. was used. The systems were simulated using

equation  a	 ^t	 Ithe differential approach. The ditfere^

variables were scaled using the following scale factors

x 1 (2 x 10 2 ) x2 (1) x3(2.35 x 10 3 ) X5(104 )

x6 (1) x7(2 x 10 3 ) u(2 x 103 ) r(4 x 102)

The limits of the saturating states x i , x40 and x 5 have

the magnitudes 5 volts, 35 volts, and 12 volts,
i -

respectively. The scaled differential equations are

as follows:
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X 1 = 2 x 102x2

x2 = 104x3

X 3 = -- 3.28xlO4X .-6.603x103x3+3.60978x104X4

x4 = 1.3557 x 103x5

x 5 = 104x6

x6 = - 1.3x103X40'2.1030x103x5-3.669x103x6+1.131x1U3x7

x7 = 2.7350x10 1 x 2+9.2554x 3-3.4747x103x4-6.894xlO2x5

-2.5294x10 3xb -2.1923x103x7+4.60669x1U4u

U = (5r(t) - 2 x 10-3kT2)

The feedLack coefficients are k 1 = 10, k2 - 4.Ob6 x10-2,

k3 = 6.124 x 10 -2 , k4 = 1,297188, k 5 = 3.557)2 x lU-1,

k6 = 7.15308 x 10 -1 , and k7 = 3.690275 x 10-10

In order to facilitate the recording of step

responses, the system was time-scaled by the factor lU4

which gives the new differential equations

xl = 0.02X1

x2 2"

ic 3 = -3.26x 2 - 0.6633x 3 + 3.60978x4

x4 = 0.13557x5

X5 = X6

x6 = -0.13x4-0.2103x5-0.3669x6+0.1131x7

x 7 = 0.002735x2+0.00093x3-0.34747x4-0.06894x5

-0.25294x6-0.21923x7+4.60669u

Using the above equatioi . a and the teedLack

coefficients the system circuit diagram is formed as

r	
^*^`F•	 _a^..af3:'

	 ^^	 J	 ^a/t	 J	 } ry(f	 i^ 
Wry^r,. .
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:,own in the Fiy. A-2 for the linear system. For them 

nonline a r :system an intentional nonli.nearity is

introduced, whose characteristic is shown in rig. A-3

along with the diode bridge to realize it.
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Three teehnlqu(! : arc: presented for generriting,

unavailable states to realize a desired closed-loop

response. 31nce all configurations realize the same

closed-loop response. they are compared on the basis of

peak and integral sensitivity. The system twat is the

least sensitive to changes In plant parameters is con-

sidered the best. The first two techniques discussed

result in undesirable systems . The third system results

In a new control system configuration that Is a compro-

mise between a state-variable feedback system and the

corresponding H oq (s) system.
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cHAerEa I
INTRODUCTION

Mod ern control theory states that the optimal con-

trol law should be a function of all the skate variables.

Schultz and Aelsa (1967) develop this state-variable feed-

back configuration in detail for linear systems. White

(1967) has shown that the state-variable feedback config-

uration has sensitivity advantages over a system using

series compensation, designed by the Guillemin-Truxal

technique discussed  in Chapter 5 of Truxal (1955) . In
addition, any desired response can be achieved by feeding

back all the states in the proper combination.

In most practical problems, all the states are not

available for control, and in some cases, only the output

Is available. Schultz and itelsa (1967) describe how un-

available states can be generated by block diagram manipu-

lation3. 'these techniques are limited and do not always

reali ze the sensitivity advantages. rthite (1957) covey

all the feedback to the output by bloc's ". ?ram manipula-

tion, : esultirLs in the 
Hequivalent(s)

	 figuration. He

then shows that for the H eq (s) configuration the sensi-

tivities  of plant parameters are as good as or better

1
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than the state -variable feedback configuration. Howevere

the resulting system is not realizable. except for the

special case where the plant has the same number of poles

and zeroes.

The problem attacked in this work is to find a

way to generate these unavailable states while retaining

some of the sensitivity advantages of state-variable feed-

back. Three techniques for generating unavailable states

are discussed. These three configurations and state-vari-

able feedback are discussed on the basis of sensitivity

largely through the use of examples. Sensitivity is used

as the criterion since all the techniques realize the

same closed-loop transfer function.

Only linear, noiseless, time-invariant :systems

with single input and output are considered. It is also

assumed that a desired closed-loop response has been

specified in terms of a desired transfer function. Dial

(1967) has shown a correspondence between a quadratic

performrnee index and the specification of a closed-loop

response.

Chapter II contains background material. State-

ariable feedback is discussed, and it is shown how to

solve for the required feedback coefficients s given a

plant and a desired response. Different sensitivity

measures are also discussed briefly.

^	 s r'^ e
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Chapter III explains the parallel simulation con-

figuration, where the unavailable states are fed back from

a parallel simulation of the plant. It is shown how this

configuration is nothing more than series compensation,

and an example is presented.

In Chapter IV, the observer system of Luenberger

(1963) is used to feed back the unavailable states. Hera

another linear system, whose order is equal to the number

of unavailable states of the plant, is introduced into the

problem. This new system is driven by the available states

and the input to the plant. The states of the new system

are a linear transformation of the unavailable states of

the plant. New feedback coefficients are defined for the

available states of the plant and the states of the new

system. Examples of the technique are given.

Chapter V develops a new control system configur-

ation that is a modification of the observer syster, of

Chapter IV. This new configuration is a compromise between

a state-variable feedback system and the corresponding

11 a (s) system. It is shown how this new system may be

synthesized directly from the desired closed-loop response.

Examples are presented that show how the technique may be

applied when only the output is available, or when addition-

al states are also available.

The final chapter contains a conclusion, and offers

su`gestions for further work,
}



CHAPTER II

GENERAL THEORY

This chapter discusses pertinent background materi-

al. State-variable feedback and the determination of the

feedback coefficients to realize a given olosed-loop re-

s pons a are described. Sensitivity  meas urea are discussed

briefly.

2.1 State_ Variable Feedback
It is assumed that the given linear plant is repre-

sented in block diagram form. A typical plant is shown in

Figure 2.1. The plant transfer function. G p(s). is given

by

Gp(s) • Gl (s) G2 (s) ... Gn (s )

and

AS) • G(s ) 
: KGp ( s )

U(s)

If the plant transfer function possesses a pair- of complex.

conjugate poles t it is represented as two integrators with

feedback. For example, the open-loop transfer function

4

kf ^ 	

4^Y 
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G(s)	 1s 2 +3s +6

can be represented in block diagram form as in Figure 2.2.
If a state is associated with each block of the

plant, as in Figure 2.1. the plant can be represented as

a system of first-on,­der linear differential equations.
In mattrix notation g these equations are

X = AX + bu

y0gTX	 (2.1)

where

X is an (n x 1) state vector

A is an (n x n) plant matrix

b is an (n x 1) input vector

c is an (n x 1) output vector

u is the scalar input

y is the scalar output

The open-loop transfer function in matrix notation can be

found by taking the Laplace transform of equation (2.1)

with zero initial conditions, as

SX(s) a AX(s) + bu(s)

Y( s ) = gT X(s)

fixL	 xvPt i °	 ,k	 ^	 td	 ^	 fay	 It	 !	 s`71+ ^^	 t^ tX g	 ' '*

_. ,. a:_.+^.....: ^. ry. ,« .X^+^ia _..?wt.a^.xy4^	 ' J ^	
v5 a	 ^" "^ • {	 '4	 ^:	 '" ^a-	 + s

l..A^4:-...•^.f^^c^Y'^.rx.n^"X^ ..FRS:ad':i1^i:fi.*..^..^r_..^^,^F;^._^;X,y,'^,,;_._ ..^;^.. 	 ,
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X =
u 
7—K 
	 Gn Xn - - - G2 x2 G1 1

Figure 2.1	 General Plant

t	 ^z' ^T

r	 4,,

Figure 2.2
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This may be rearranged to give

( sl - ti)x(s) • bu(s)

such that

(s) • (eI - 
A)-lbu(s)

or

IL(s) : g(s) bu(s)	 (2.2)

where

Vs) n (8I - a)-l.

The open-loop trans ferer func tion is

C(s) n 
y(s)

n 
gI z(s) • OT b( s) bu(s)

u(s	 u(s)	 u(s)

or

G(s) • OT $(s) ;b	 (2-3)

Schultz and Melsa (1967) show that any closed-

loop response of the same order as the plant can be

achieved by feeding beck all the states with the proper

weighting. The zeroes of the plant show up as zeroes of

the closed-loop response. If zeroes other than the in-

herent zeroes of the plant are desirede they are added

to the plant using a series compensator that contains
;gy

i

^G

t	 w .	 ^!	 fY'j/	 ^ v	 a	 ^	 ,^	 ^ r
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the desired zeroes and additional poles. The order of

the plant is then increased by tho order of the compen-

Bator e and additional states are created that should also

be used for control. The control Input, ue for state-

vat. able feedback i.: given by

u= r-k_T
;.
	 (2.4)

where

r Is the closed-loop system input

jj is an (n x 1.) vector of feedback coefficients

Substituting equation (2.4) Into (2.1) for u, the olosed-

loop system can be represented by the set of equations

x s (A - bk )XC + br

y s 9.T 
x_	 (2.5)

where

(A - b kT ) is the closed-loop system matrix

Equation (2.5) may be transformed to the frequency-domain

and solved for y ( s)/r(s ). This expression _ for y ( s)/r(s)
In terms of the feedback coefficients is then equated to

a desired response and the feedback coefficients found by

simple algebraic manipulations.

It is simpler to convert the representation of

Figure 2.3 to the Eequivalent(s) configuration as shown

l

^_	

1

x 1
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In Figure 2.4. The expression below can be used to find

Heq (s )

(s) = kT
b(s) 

bHeq 
17 1 (s) b

Well known blook diagram manipulations may also

be used to find Heq(s) by moving the origins of the feed-

back paths to the output. The closed-loop response for

Heq(s) configuration is given by

Y(S)
y......._._ (	 ...^.	 (2,6)r(s )	 1 + G(s) Heq(s )

Equation (2.6) maS be equated to the desired response

and the feedback coefficients found, The output block,

Gl , often contains an integrator, and in this case, k 

	

Is set equal to one to insure zero steady-state position 	
^..^

error for step function Inputs.
As an example of the technique, consider theP	 4

plant shown in Figure 2.5. It is desired to realize

the closed-loop transfer function

y (S) a 	^f 0

r (s)	 s + 14s + 4bs + b0

Figure 2.6 shows the plant with feedback.

(2.7

The forward

4

gain, K. is assumed adjustable, and kl is set equal to

+a^*F^"	 /hr 7	 i	
tit 

)t' 1+ 
iii 

6 t	 "fit' {e J '°" `_

x	 bb	 J . . !	 } hr.^
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Figure 2.3	 Plant with State-Variable Feedback

Figure 2.4	 Heq (s) Configuration
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Figure 2.5	 Platt for Third -Order aample

Figure 2.6	 State-Variable Feedback System

Figure 2.7	 System with Feedback :rioved to x
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one to realize the desired zero steady-state position

error for step function inputs. In Figure 2.7. all the

feedback has been moved to the x i node. Heq (s) is found

by combining the three feedback paths to be

Heq (s) = 1 + k2s + 
5 

k3s (s + 1)

or

He (s) _	 s2 + (	 + k2 ) s + 1	 (2.8)
q	 5	 5

The open-loop transfer function is given by

G(s) =

	

	 IOK	 (2.9)
s(s + 1)(s + 5)

Substituting equation (2.8) and ( 2.9) into equation (2.6)

gives the overall response in terms of the feedback coef-

ficients as

Y(s)
r(s)

10K

" s + (6 + 2Kk3 )s + (5 + 2Kk3 + lOKk2 )s + 10K

(2.10)

Equating coefficients in equation (2.10) with the desired

response equation (2.7) gives the following equations:

10K = 80

2Kk3 r'

rt
`'
	 u d^

7,"
	 #ate

r a.

,. ,

•'U,

KR

re,

4.
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and

2Kk3 + 10% n 43

Salving the first for K. the remaining equations become

linear with the solution,

K = 8

k2 = 7/16

k3 : 1/2

The closed-loop system is now realized as shown in Fig-

ure 2.6.

It would be ideal if all she state variables were

always available fc- control, so that state-variable feed-

back could be applied directly. Often, however, this is

not the case. The state variables may be too difficult

or too costly to measure, or the measurements may be cor-

rupted by an excess amount of noise. In these cases, the

state variables can not be measured, and alternate means

must be used to realize the desired closed-loop transfer

function. In each case, the alternate means described

here realize the same closed-loop transfer function.

Hence, they can not be compared on an input to output

or transfer function basis. The method of comparison

used here is that of sensitivity.

y ,+^^ x yn

Y	 *	 •	 s ^ x ^^r'^	 t 3^1R ^"^	 i W^1^./t^	 ^ r !	 Yo	 i S	 j5.^ i S Ys
a	

ui Jt Yxd :^ ^ s	 Fa,'x eY	 y ^}".'^ a ,.E^ ^J	 ^'k d Mx' 3^r' 	 r Y r.:: +̂ 	 ^

ax
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2.2 Sensitivity Measures

It is important to have measures of how the re-

spouse or overall system transfer function changes with,

system parameters. Several sensitivity measures are des-
cribed here that may be applied to this problem.

The definition of classical sensitivity given
here is from Taruxal (1955). The sensitivity of a fre-
quency function. T(so p),, with respect to a parameters pe

Is defined as

ST a d lnT s p
p d^np T dp

The classical sensitivity expresses the percentage change

In T for a percentage change in a parameter. p. Here. T

Is indicated as a function of s as well as p because the

appl; eation usually involves transfer functions,
An application of classical sensitivity to the

comparison of the sensitivities of plant parameters for
two control system configurations results in two frequency
functions that must be compared. If the magnitude of one

classical sensitivity were smaller for all frequenciese

then the correspondAng system.would be the least sensitive.
Usually, the magnitude of one classical sensitivity is

smaller for some frequency range, and it is not clear what
system is the least sensitiv#et that Ise interpretation is
difficult.

< R	 hy4..S. Y	 ^Y # p 	S O NO IN I
 '
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For an example of classical sensitivity, consider

the classical control system configuration of Figure 2.8.

The overall response is given as

W(s) =	 G(S)
r(s)	 1 + G(s) H(s )

The sensitivity of W(s) with respect to G(s) is given by

W GdW	 Gd	 G s3 G a 
W TG 	 dG ( 1 + G(S) H(S) )

s	 1
1 + G(s) H(s)

which is approximately equal to

G(S H s	
if G(s) H(s) >> 1

By making the loop gain large, the effect of parameter varl-

ations in the forward path is made small.

Classical sensitivities are relatively easy to cal-

culate. Unfortunately, they are a function of frequency

and are difficult to interpret. In order to avoid the fre-

quency dependence oi' classical sensitivity, three time-do-

main measures of sensitivity may be utilized.

Tho sensitiv i ty function, Up(t), is defined by

Tomovic (1964) as the change in the response, y(t), to a

f..
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step input, for a percentage change in a system parameter

p•

U (t) . dY t

	

p	 dp p

Here Up (t) is a function of time, and this is also diffi-

cult to interpret.

White (1967) discusses k-wo, new sensitivity meas-

ures that give a number that can be used to compare the

different control system configurations. He defines the

Reak s_ ensitivlty. U*p . of a parameter, p e as

U*p = U
p
 (T)

where T equals the value of t such that Up ( t) is a maxi-

mum. Also defined is the 113te„gral s ens tiy  tZ of the

system with respect to a parameterg p. as

	

Sp	 jo Up (t)dt

when this integral exists. White shows that integral sen-

sitivity is related to classical sensitivity by the rela-

tionship

S 
a 

1 j.o Iwo ? s 
(Jw) 

2 
dw

p 2 n -.o w	 p

where W(jw) is the overall transfer function with s

replaced by jw.

r

i

i

r
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Peak and integral sensitivities give a number as

a sensitivity measure, rather than a frequency or time

function. Thus, peak and integral sensitivities are easy

to interpret and will be used to compare the examples of

the following chapters. Howevere except for simple cases#

a computer is required for the generation of U*a nd Sp

(see White, 1967).

,"%.	 1



CHAP':'i 3 III

PARALLEL SliQLATION

This chapter and the following two describe three

alternate means of realizing a desired closed-loop trans-

fer function when all the state variables are not avail-

able. 'rhe . `,echnique used in this chapter is that of

parallel simulations and only single-inputs single-output

systems are discussed. The case where only the output is

available is stressed as a "worst" case.

The plant and parallel simulation for generating

the unavailable states in the worst case is shown in Fig-

ure 3.1. Stars are used to denote the generated states.

which are only estimates of the actual states. Assume

Gp (s) is the unalterable plant of nth-order. where

Gp (s) in Gl G2
 
00 . G 

It is only necessary to simulate n -1 of the states since

the output is assumed available for feedback. The blocks#

G 2 through G*  .
a re simulations of the corresponding G2

through Gn of the plant. Each G i contains one pole. or

one pole and a zero. If Gp (s) contains complex conjugate

roots, these can be simulated using two integrators with

feedback, as discussed in Chapter II. If Gp(s) is a

19
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line!irized mo,'el of the actual plant, the simulated states

are only equal to the actual states near some operating

Point where the linear model Is valid.

The state-variable feedback coefficients may be

found as if all the states were available, but the unavall-
able states are fed back from the parallel simulation. Fig-

ure 3.2 shows the closed-loop system with the unavailable

states generated by the parallel simulation. The transfer

function from node e 2 to e l in Figure 3.2 is equivalent to

the Guillemin-Truxal series compensator as discussed in

Truxal (19 ^5) . Assuming the desired closed -loop response,

y(s)/r(s). is known, the Guillemin-Truxal compensator, Ge.

is found from the relation

I

_	 y/r
Go	

Gp(1 - y/r)
t3. 1)

The Guillemin-Truxal configuration is shown in Figure 3.3.

White (1967) has sho;ern that the sensitivities,

both classical and sensitivity functions, for a state-

variable feedback configuration are considerably better

than those achieved using series compensation. Although

sensitivities do vary in general with the system config-

uration, the sensitivities of the plant; parameters in

Figure 3.2 are only dependent on the overall function,

Gc , and not how It is realized. This is true in general

A	
a 
Y "' h '^ ^1i i	 '^ 111' f
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Figure 3.1	 Plant and Parallel Simulation
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Figure M	 Series Compensated System
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since any system compensated by the parallel simulation

technique can always be reduced to the configuration of

Figure 3.3. Here, G. must equal the Guillemin-Truxal

equalizer, since if two systems are identical except for
one block, then that block must also be the same.

As an exAmple, consider the third -order plant of

Figure 3.4. It Is assumed that only the output is avail-

able for control, and zero steady-state position error is

desired. The desired closed-loop response is

a	 80
r(s)	 (s + 10)(s + 4s + 8)

The problem is first solved using the Guillemin -Truxal

approach and then using a parallel simulation.

The desired series compensator is found using

equat iota ( 3.1) as

G ,^ 8(s + INS +
c	 (s +	 (s +

The closed -loop system is shown In Figure 3.5•

The feedback coefficients and forward gain for the

parallel simulation system were found in Chapter II as

I

K = 8.0

k  s 1.0

k2 : 7/16

k3 = 1/2

}	

f



Figure 3.5 	 Series Compensated System

Figure 3.6	 Parallel Simulation System
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The parallel simulation system is shown in Figure 3.6.
The corresponding series compensator calculated from this

configuration is

Go = 8(s + V (S + ,+I
(s +	 s + ts)

This is the same as was found using the Guillemin-Truxal

approacho and the parallel simulation scheme is simply a

way of mechanizing the required equalizer. Of course,

the sensitivity of the closed-loop system to plant param-

eter variations is unaffected by how G. is realized.

The peak and integral sensitivities of the plant

parameters for the series-compensated (or parallel simula-

tion) system were calculated. Also calculated were the

sensitivities for the state-variable feedback configura-

tion and the corresponding Heq (s) system of Chapter II.

A computer program, written from White's (1967) thesis,

was utilized to obtain the sensitivities which are listed

In Table 3.1.

The sensitivities of the gain. K1 . in the output

block are the same for the series-compensated system and

for the state-variable feedback configuration. The sensi-

I

tivitles of the parameters in the inner blocks are reduced

appreciably for the state variable system. The inner most

block of the state-variable feedback system is the least

sensitive. because It is surrounded by the greatest number

of feedback paths. All blocks of the H eq (s) system exhibit
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'fable 3.1	 Sew3it:ivitles for Parallel Simulation Example

Param-
eter

System
1	 2	 3

Al .593 .140 .593

K2 .321 .140 .593

K3 .14o .140 .593

P2 .148 .061 .329

P3 .120 .120 .548

Peak Sensitivity

Param-
eter

System
1	 2	 3

Kl .2.86 .012 .286

K2 .067 .012 .286

K3 .012 .012 .286

P2 .019 .0031 .133

P3 .0096 .0096 .260

Integral Sensitivity

System
	 Description

1	 State-Variable Feedback

2	 Heq (s) System

3	 Series Compensation or Parallel Simulation
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sensitivities of the same order of magnitude as the inner

most block of the state -variable feedback configuration*

but, unless the plant has the name number of poles as

zeroes, the resulting Heq (s) is not physically realizable.

Observe that Heq (s) is driven only by the output of

the system, and not by the input. Therefore, the system

used to generate the unavailable states should be weighted

heavily on the output of the plant. The next two chapters

look at schemes for generating unavailable states that are

dependent on both the input and the output of the plant.

An intuitive feeling for the poor sensitivity

characteristics associated with the parallel simulation

configuration can be obtained by considering Figure 3.7.

If a parameter in one of the blocks of the plant is per-

turbed, say G3 , the control, u, is not affected immedi-

ately, as it would be if the states were fed back directly

from the plant. By using state-variable feedback. the

control always knows what the plant is doing.

The parallel simulation configuration may be

looked at as merely a block diagram manipulation where

the origins of all the feedback coefficients (except the

output) are moved to the input of the plant. This tech-

nique may be of value when a small percentage of the states

are unavailableg as discussed in Chapter 9 of Schultz and

Melsa (1967). However, it should not be considered when

only the output is available for control..
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Figure 3.7	 Third-Order System



CHAPTER IV

OBS6RVdR SYSTEM

This chapter dis eu4ses another method of gener-

ating unavailable state variables. An observer, as

developed by Luenberger (1963). is used to generate the
unavailable states. The observer is a second linear sys-

tem that is driven by the available outputs and the input

to the plant. The states of the new system are related

to the unavailable states of the plant by a linear trans-

formation.

The generated states, along with the available

states of the plant, are fed back to realize a desired

closed-loop response. New feedback coefficients are

defined, but, as the poles of the observer are moved

out to improve the sensitivities  of the plant parameters,
the new feedback coefficients become very large.

4.1 Observer Theory

The theory is developed in matrix notation. Most

modern control theory texts, such as Schultz and Nelsa

(1967)o describe the representation of control systems

using matrices.

29
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The time-invariant linear plant of nth order is

described by the matrix differential equation (2.1).

repeated here as

x = Ax + bu	 (4.1)

where

x is an ( n x 1) state vector

A is an ( n x n) system matrix

b is an (n x 1) input vector

u is the scalar control input

The state vector, L. completely describes the

present state of the system, and the future behavior is

governed by the first-order matrix differential equation

If it is only desired to generate the unavailable

states of the plant, then the observer is of mth order,

where m is the number of unavailable states. The observer

Is also described by a first-order matrix differential

equation of the form

where

z is an (m x	 1) state vector

p is an ( m x m) system matrix

F is an ( m x n) input matrix



or

••	 sTA DT r (4.b)

31

& is an (m x 1) input vector

x and u are as defined in equation (4.1)

It is assumed that the states of the observer and

the plant are related by a linear transformation

Z s Tx	 ( 4 .3)

Equation (4.3) is substituted into equation (4.2) for 2

and z to find the relations that the observer matrices—

must satisfy. If this is done. then

Ti s (DT + F) X + fu	 (4.4)

Equation (4.1) is pre-multiplied by T to give

Ti = TAX + Tbu
	 (4.5)

Comparing equations (4.4) and (4.5) shows

DT + F s TA

and

K = T 
	

(4.'l )	 1

Rit	 ,vr ET•,. r7	 S +	 11

^ ^	 t T-v	
s*v ,



32

The matrices A and b aro known. If the observer is chosen.

equation (4.o) may be solved for T. if A and D have no com-

mon eigenvalues.

It is originally assumed that z and x were related

by a linear transformation. That this is a valid assurap-

t1on may be shown in the following way. Equation (4.5) is

subtracted from equation (4.2). giving

i -Tx D -Tax +r'x + (g-Tb)u	 (4.6)

Using equation (4.6) to substitute for 3:&  in the above

equation gives

z - Tx • P. ( z - TL ) 	(4.9)

By choosing u T b. the above differential equation can

be integrated giving

z= Tx +  c D t 14(o) - 1x(0)	 (4.10)

If the initial conditions are also related by the linear

transformationg the second tern drops out, and

z = Tx

It is probable that the initial conditions do not

match; thereforee the eigenvalues of D should be chosen

sufficiently far out in order for the initial condition

term in equation (4.10) to be small after a shorlt time.
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This initinl condition term represents the error between

z and	 and the sooner it disappears q the better.

4.2 An =zk

As an example of how the equations are salved,

consider again the example of Chapter III. The plant is

shown again in Figure 4.1. It is assumed that x 2 and x3

are unavailable. The system matrix for the plant is

0 1 0

n 0 -1 5

0 0 -5

and for K • 8, the input vector, b. is

0

b ^
	

0

L16 J

The observer, with I ts poles chosen at s = -( and s = -7*

Is shown in Figure 4.2. The system matrix for the obser-

ver is

-7 1

P
0 -6



8
s ; P3

K1 a 1.0

K2 = 5.0

K3 0 2.0

K2
g P2

P2 = 1.0

P 3 = 5.0

3`a

Ki
s

Figure 4.1
	

Open-Loop Plant

Figure 4.2	 Observer



The (2 x 3) transformation matrix. 7, is found

using equation (4.6). and it is repeated here as

TA - 21 =E.

where

T Q	 t 1 t12 t13

t21	 t22	 t23

and the Input matrix for the observer is

0 0 0
g

1 0 0

'35

After substituting the appropriate matrices into equation

(4.6). the result is

0 1 0

	

Ftll t12 t13	 0 -1 5  	 -? 1	 tll t12 t13

	

t21 t22 t29	 0 -b t21 t
22 t23

LO o -5

0 0 0
s

1 0 0

Performing the above matrix multiplicntloti: qtr: ^:;:;:z- y;`;

,^	 Mf	 tr  	 '^'	 } 7 r C ?

I'M
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corresporc^ L	 elements results in the following set of

equations for the elements of T:

7t11- t21 = 0

t11 + 6t12 + t22 * 0

5t12+2t13-t2300

6t21 = 1

t21 + 5t22 = 0

5t22 + t^ 3 = 0

The preceding equations may be solved to give

-r03
T =

30	 1
6

Now the control input vector for the observer is found from

a=Tb

as

12
7

^ a 8
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The unavailable states of the plant are now found in terms

of the available states of the plant and the states of the

observer using equat ion (4.3) as

rx
2 1 	^ - 1	 A	 1

=	 x2zp 	 L i	 - ^	 ; j L 
x3

Solving for x2 and x 3 gives

	

x 2	 7x 1 + 84z 1 - 54z2

x* _ 2 x + 84 z - 24z

	

3	 5 1	 5 1	 5 2

where the stars have been introduced to indicate that x 2

and x3 are only estimates of the actual states of the

plant.

Figure 4.3 shows the plant and observer wi t'a the

generated states. ^he feedback coefficientse that were

found in Chapter II for -his problem, could now be fed

back from x i . x* , and x3 to give the desired closed-loop

response. Rather than actually finding x2 and x 3 . it

Is simpler to find new feedback coefficients that are fed

back directly from z l , z2 . and x l . The next section

defines new feedback coefficients in terms of the trans-

formation matrix and the original feedback coefficients.

x	 . ,^x^
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Figure 4.3	 Plant and Observer with Generated States

1

a71'^"T
 t.f	 1 ^^tt

 .A1i»F^ 
L
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4.3 Closed -Loop System

This section discusses the closed-loop system

and defines new feedback coefficients. The state-vari-

able feedback coefficients can be found as if all the

states are available, and the available states of the

plant and the generated states can be used for control.

It is simpler to find new feedback coefficients that may

be fed back directly from the available states and the

states of the observer.
It should be pointed out that the overall re-

sponse using an observer is of n plus m order. However,

the poles of the observer show up as poles and zeroes of

the overall response and cancel to give the desired nth-

order response. If any of the parameters of the system

are perturbed, the cancellation is inexact and the response

is of m +m order.

The new feedback coefficients, jj * , are found as

follows. The k and x vectors and the T matrix are parti-

tioned as

X
1

X :	 --

x 

2
,►

kT	 k1T 2T
k

^ ^ Y	 ^'4r i^ Y^^ Y^' µ^ q
	

b
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I

T •	 T1 i T2

where

x l is the available states ((n - m) x 1)

x is the generated unavailable states (m x 1)

kl corresponds to the available states ((n - m) x 1)

k2 corresponds to the unavailable states (m x 1)

T1 is an ((n - m) x m) matrix

T2 is an (m x m) matrix

In terms of the partitioned matrices. equation (4.3) is

solved for the unavailable states, as

z	 T1 XT2	 —
*2

X

or

x"2 = ( T2 ) 1 (z - T1 x 1)

The feedback is

k 1 x1 ♦ k 2 
X 
*2

Substituting for 
x*2 

gives

2T ( T2 )
-1 

z + k1T - k2T (T
2 ) -1 T1 R1
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The new feedback vector is

k*T =	 k2T (T2 ) -1	 (k1T - k2T(T2)-1 T1)
i

(4.11)

The closed-loop system configuration, in terms of the new

feedback coefficients, is as shown in Figure 4.4 for the

case where only the output is available. The steps in-

volved in solving a closed- loop problem are listr, •d in

Figure 4.5.

4.4 Closed-Loop Example

A second-order plant with one unavailable state

Is chosen. The single pole of the observer is left arbi-

trary to show the effect of different pole locations. The

example is almost trivial, but it suffices to demonstrate

how the new feedback coefficients become large as the

poles of the observer are moved out.

The plant to be controlled and the chosen obser-

ver are shown in Figure 4.6. The desired closed-loop

response is

Y(S) =	 6
r( s )	 s +3s +6

Lettiri kl equal unity for zero steady-state position

-..

Ji
1

'I

p^! v^^'^^i'"";{	 f 
► t i

t̂  o'YAI^^^I riZ ilk 
{Fi .:i^^^, ^^^.rtx 9 4 µ .^
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Figure 4.4	 Closed-Loop System

kep Description

1 Find k and K as if all states were available

2 Choose an observer of mth order

3 Jolve T A - DT = F for T

4 Find ausirle, T b

5 Find new feedback coefficients usinF

k*T [,2T(.12).l	 (k1T - k2T(T2)-1 T1^

Figure 4.5	 Steps in Solving Closed-Loop Problem

.' 1

 77



E1

u e{1	 1	 1 Xl+	 a^z1

	

a+	 s	 s+a

Figure 4.6	 Plant and Observer

6
a(l -a) —^
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6	 XlOy+
s s + 1—^

a	 Z1
$ a i

a

x	 y i
	

t±r+Pf;̂;p''

Figure 4.7	 Clo.led-Loop System

6
_	 s s +17 ^—

6	 +
s a+2 +3a

s(a+2) +3a
3(s +a)

I

Figure 4.8	 Nodified Closed-Loop System

9Y A,	 ,7^3
	 L

aA 3'At	

/eNr	
*bi 1^^;^^tj*P':yy

	 5 ` y	 y..
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f j

error, the k vector and K are

kT . r110	 ^1/3]
L

K = 6.0

The A and b matrices are

0 1
A =

0 -1 b L6J

The matrix reduces to a scalar. -a, for this problem.

Solving T A	 for T, gives

T =	 1	 ---1—
1 - a

The input vector for the observer is

a =	 b
all - a)

The new feedback coefficients are

k"T =	 3 (1 - a)	 3 (2 + a)

The closed-loop system is shown in Figure 4.7.

II	 i

i

r r

rr	 r	 ^<
a4,"^ 	 x.	

Yq a ^.^ ^	 y .^6q	
r	 ^^ i	 aft	 ,	 r i, ^^^,. LV;	

^^. to
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As "a" is increased in Figure 11 .7. the new feed-

beck coefficients become largo. One feedback coefficient

goes towards plus infinity and the other towards negative

Infinity, while the weightin g; on u becomes small. It is

suspected that letting "a" go to infinity would result in

Hequivalent (s) , since " eq (s) has its poles at infinity

(if the plant contains no zeroes) and has zero weighting

on u. As "a" becomes infinite in Figure 4.8. the network

that is driven by u goes to zero while the feedback net-

work becomes Heq ( s) ; that is,

limit	 6	 a 0
a --^ so s(a + 2) +'tea

and

li:uit 3(a .+ 2 )2 a l s+ 1
a—.co	 3(s + a)	 5

The configuration of Figure 4.7 still gives zero

steady-state error, since the original k1 was unity, even

though k 2 is not unity. For a step input, in the steady-

state, there is still a signal being applied to the obser-

ver. The feedback from the observer and the plant add up

to one in the steady-state to give zero position error.

Unfortunately, the new feedback coefficients become large

as the observer pole is moved out. The next section shows,

by example, the effect of observer pole location on plant

sensitivities.

r^	 i')s-	 s^,;s
	 "	 +^ ^" ^a	

^{S	
try	 !	 4^^	 ''^	 w

1

n^.

41



S	 4

46

4.5 "sensitivity sxA mp le
This section considers again the third-order

example of Chapter II and III. The problem was started

in section 4. 1 with the poles of the observer at s = -6

and s a -7. but the new feedback coefficients have yet

to be found. The plant sensitivities and final system

for the s ame problem with the obsorver poles at s = -10

and s * -12 are also given.

The feedback coefficients to realize the closed-

loop response

y (s ) a	 80
r(s)	 (a + 10)(s 2 + 4s + 8)

for the plant of Figure 4.1 were found In Chapter II to be

t  =
	 1.0	 1	 1]

1
Ti a
	

72	
(T2)-1
	 84	 4054

1	 —	 8!i - 24
b	 5	 5

The new feedback coefficients are found using equa-

tion ( 4.11). repeated below

k*T 
s,2T(^2)-1
	 (k1T - k2T

(7.
2 ) -1 ^1)

where



and
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kl * 1

Li J
The new feedback vector becomes

k'T a M
20

_ 1041
40

4
80 1

or
I*T	

45.15
	

-26.02
	

4.261
J

The final closed-loop system is shown in Figure

4.9. The parameter values that result if the observer

poles are picked at 10 and 12 are also given. Moving

the observer poles about twice as far out has increased

the feedback coefficients tremendously.

Table 4.1 lists the peak and integral sensitiv-

ities of the plant parameter's for both observer systems.

The sensitivities for the state-variable feedback con-

figuration. the Heq (s) configurationo and the series-

compensated system are also shown again for comparison.

The data for the Heq (s) system is included .because it is

the least sensitive system, but it is not physically

realizable.

4.
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Parameter Poles of Observer at

6&7	 10&12a & b

61 1.86 -OLD 56

92 2.77 .178

k i 45.2 866.2

k -26.1 -177.2

k" 4.26 11..5

Figure 4.9
	 Closed-Loop System
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Table 4.1 Sensitivities for Observer System

Param-
eter

System
1	 2	 3	 4	 5

K1 •593 .140 .593 .401 .317

K2 .321 .140 .593 .401 •317

K 3 .140 .140' .593 .401 .317

P2 .148 .061 .329 .190 .144

P .120 1	 .120 .548 .358 .279

Peak Sensitivities

Param-
eter

System

1	 2	 3	 4	 5
K1 .286 .012 .286 .106 •o53

K2 .067 .012 .286 .106 .063

K3 .012 .012 .286 .106 .063

P 1 0019 .0031 .133 .032 .017

P2 000196 .0096 1	 0260 .092 .053

Integral Sensitivities

System	 Description

1	 State-Variable Feedback

2	 °rie,q (s) Configuration

3	 Series Compensation or Parallel Simulation

4	 Observer System with Poles at s = -5 and s -7

5	 Observer System with Poles at s = -10 and s = -12

J J

s

d

;a
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It appears that the observer approach may be of

value if the large feedback coefficients can be avoided.

The next chapter looks at a modification of the observer

system that attempts to eliminate the large feedback

coefficients,

<1

I
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This chapter discusses a modification of the

closed-loop observer system. This new configuration has

been developed in an attempt to avoid the lnrs,-e feedback

coefficients that result when the observer poles are

chosen far out. The modified observer system 1s devel-

oped for the "worst" case where only the output state is

available. It is also shown now the technique may be

applied when additional states are available.

5.1 3.Xs temCnnfjc^uratlon
'1^.

The new system configuration was discovered by

manipulating; second and third order ob s erver systems. A

second order example is shown in Figure 4.8. The general

system configuration is shown in Figure 5.1. The feedback

is a funetion of both the input, u, and the output of the

plant as in the observer system. In Figure 5.19 Kv p (s )

is the plant and associated gain. If n is the order of

the plant, A(9) is defined as

A(S)	 an-25n
-2 + ...	 + ais + ao

(5.1)
hn-is n-1 + ...	 + hls + ho

51
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Gp(s) s Gl( s )'G2( s ) ... Gn(s)

Figure 5.1	 General System Configuration

52
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and H(s) 1:; defined a:,

hn-l sn-1 + ... + h is + ;lo
bn- 1 3 n-1 +	 + b is + ho

The denominator of A(s) is the :game as the nu^;erator of

H(s) . The n- 1 roots of the denominator of H(s) are

chosen in the same manner as the poles of the observer.

'these roots may be distinct or all the same.

The example of section 5.2 shores that the sensi-

tivitics of the plant parameters improve as these poles

are moved further out. As the poles of H(s) are moved

out, the weighting on u decreases and H(s) looks like an

approximate realization of H eq (s) . White (j.96?) snowed

that for the H eq (s) configuration the sensitivities of

the plant parameters werev in generalg better than the

sensitivities for a state-variable feedback system. If

the plant has no zeroes. Re. (s) has its poles at infinity.

and the weighting on u is zero. 	 r

Is s-	 s o lve	 c	 or thIt i . irr,pler to of a dire tly f	 e transfer

functions A(s) and H(s) rather than manipulatincr an obser-

ver system. To solve a problem using, this new configura-

tion, y(s)/r(s) is found from Figure 5.1 in terms of the

transfer functions.

iG (s )
(5.2)r(s)	 1 + H(s) &G p (s) + A(s )

1

^	 !^" R	 ^ S fi 11

1 at

	

.. w
9 41"

 r'd^^.a,,'.x ?.^,^^`,^ .t'+5 .f r': 
b4 X': 

,•! k	

.x

I



If Gp (s ), J(L; ), and A(s) arc written in terms of nume ra-

tor and denominator polynomials as,

Gp(s) = GD

h(s) s '

A(s)	
kD
	

(5.3)

then y(s)/r(s) can be written in terms of these polyno-

mials by substituting the equations (4.3) into (5. 2) as

Y( .3) =	 K•GN ID•Ar
r(s)
	

110-GD-AD + K•Gi^ • HN • AD + &N-GD•HIs

:since AD was chosen equal to Iiti, the AD's can be cancelled

In the above expression to give

r( s )	 fiL' • GD + K • GlOH1; + Atq'•GD
	

(5-4)

where GT': ar.C: GD are known, RD is chosen, K Is the same as

for a stag e-variable feedback System,, and HN and Al; are

unknown. Assuring the desire" clo.•ed-loop response is

known, Its numerat or and d enom ina tor can he multiplied by

iD to give the actual response that is realized. Now the

coefficients of the actual response and equation (5.4) can

be equated and the unknown coefficients of A(s) and H(s )

found .

#r
a	 Y xa' 	 ^1:°.k.^M

PIT;vii,F.S r	 yMve ,
#.hx6	 ^^,: t^	

is
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In ;general, the denominator of the closed-loop

response, equation (5- 4 )a is of (2n - 1) order. To Lee

this, consider a fourth-order plant as an example. The

denominator of the closed-loop response is

HD • GD + K • GN -11 + Ah •GD
	

(5.5)

where, from equation 5.1

AN = a2 s 2 + als + ao

and

Htd = h3s 3 + h2 S2 + his + ho

The denominator of the plant transfer function is repre-

sented by

•1%.	 j

GD = s 4 + E3 s3 + K2s 2 + gls + go

and the numerator is a constant, that is

GN = A

Since the first term in equation (5.5) is known, let it

be represented as

HD • GD = 3 7 + c63 6 + ... + c is + co

These polynomials are substituted into equation (5.5).

multiplications are performed, and like pokers combined,

L	 r T	 Pb`

,;

14
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to give

S? 
+ ( c6 + 94a2 )s6 + ( c5 

+ g3a2 + 94
al ) ,5

+ ( 04 + 92a2 + 9 3a1 + ao ) S4 + ( c3 + gla2

• 92a  + g3 ao + A3 )s 3 + ( c2 + goal + glal

• 92ao + Kh2 )s 2 + ( cl + goal + glao + Khl)s

+ ( cp + goao + Kho )

In the above expressions the a's and h's are the unknowns,

Starting with the highest power of s. each successive term

.Wtains a new unknown, so that any 7th order polynomial

could be realized by the proper selection of the a's and

h's. Section 5'.2 shows the equations for a third-order

example. In the general case, the characteristic equation

Is of the form

S2n-1 + (02n-2 + gn6n-2)s2n-2 + (02n-3 + gnan-3

♦ Rn- lan-2)s2n
-3 + ... + ( c l + goal + glao

+ Ah 1 )s + (c 0  + P'oao + Kho )

where A ne%r "n" term appears in each successive terW, such

that the s n term contains ao through an-2. The first  "hit

terra. h 1,-1* appears in the s n-1 terms with a new "h"

appearing in each successive term.

I
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If the plant possesses zeroes, the h" will appear

In higher order terms. If an nth- orc!er plant contains

one zero, there I s an hn_ 1 term in the an term. il1E'r^:-

fore, the s n term will contain two new unknowns over the

sn+l term. Although (2n -1) equations and (2n . 1) un-

knowns still result if the plant does contain zeroes, it

is not possible to say that the equations are always inde-

pendent. The next section presents a third-order example

with no zeroes.

5.2 L^ample One

As an example, consider again the problem of

Chapter II, III, and IV. The plant is shown in Figure

M. The desired closed -loop transfer function is

Y( s )_	 80
r.
	

s + 14s + 46s + 60

The poles of H(s) are chosen at s a -10 9 giving

HD = (s + 10)2

The y(s) /r(s) that roust actually be realized is

Y(.-")- 
_'_ 3	

-	
-	

80(s + 10) 
2
	 ._..

	

2	 (5.6)r( s )	 (s	 1+a + ,,bs + &0)(s + 10)

or

Y(s) a	 00(s + 10)2_
r(:.;)	 s + 34s + 428s3 + 2440s + 6400s + &000

0
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The polynomial s of equation (5.3) are

wr, W 10

GU = s(s + 1)(s + 5)

A1: o ais + ao

HN = h 2s 2 + his + ho

RD = (s + 10; 2	(5.7)

The polynomialso equations (5.7). are substituted

Into equation (5.4) to give

Y( S ) 	 l0Y(s2	 20	 100)
r(s)	 s5 + (26 + al )s + (225 + ao + 6ai)s

+ (700 + 5al + ciao + 1OKh2

+ 500 + 5ao + OKhi s +10lKho

(5•s)

Lo, %vat::-,F ':';o cao officiartS o If egU3t2ons (50,i) and (5.8)

gives the following set of equations:

10.; = so

26 + al = 34

225 + ao + 6a1 = 428

x.,	 fl 	p	 +	
,tFill
	 Yi.. a
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700 + 5a l + 6ao + lOKh2 s 2440

500 + 5ao + 10&hl c 61,00

104ho = 8000

which may be solved to give

K	 8.0

al = 8.0

ao = 155.0

h2 = 9.625

hl = 64.0625

ho = 100.0

The closed-loo system is shown in Figure .2 aloe with
p Y	 6	 5	 S	 ^

the resulting system if the poles of H(s) are chosen at
s	 -50. The high frequency gain of 11(s), h2 , becomes

prohibitively large for the system with poles of 1I(s)

at s = -50. The system with poles of H(s) at s = -10

has a reasonable value for h2 , I
Table 5.1 list-- the sensitivities of the plant

parameters for both systems. The ro sults are also 1 i

oluded for the systems considered in the previous chap -
ters for comparison. The modified observer system with

poles of :i(s) at s a -10 results in sensitivities of the
same ord er of magnitude as for the observer system with

poles of s = -10 and s = -12.

i	 s	
^^x	

'^!} A' •	 ^ ^ w ;	 ky	
^y-^
	 T	 7 M^	 }S w'f ^ ''^'^rr r ^^	 ^	 i'



8	 2xl Ys 5	 s+	 s

60

als & ao
h2s + his + ho

h28 2 + hls + ho

(s + b)

Parameter Poles of H(s)
10	 50b

155.0 795.0ao

a1 8.0 8.0

ho 100.0 2500.0

hl 64.0625 1394.0
h2 9.624 244.625
K 8.0 8.0

ri

Figure 5.2
	

Modified Observer System for Example One

I

i
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Table 4.1	 Sensitivities for ivodified Observer Systen.

Param-
eter

System
1	 2	 3	 4	 5	 6	 1	 7

K1 .593 .140 .593 .401 .317 .332 .189

K2 .321 .140 •593 9401 .317 •332 .189

K3 .140 .140 .593 .401 .317 •33 2 •189

P1 .148 .061 .329 .190 .144 .152 .086

P2 .120 .120 .548 •358 .279 1•293 .166

Peak Sensitivities

Param-
eter 1

0286

2

.012

3

.286

System
4

.106

5

.063

6

.070

7

.022K1

K2 .067 .012 .286 .lo6 .063 .070 .022

K3 .012 .012 .286 .106 .063 .070 .022

P1 .019 .0031 .133 .032 .017 .019 .0062

P2 .0096 .0096 .260 .092 .053 1	 .059 .O18

Integral Sensitivities

System (	 Description

1	 State-Variable Feedback

2	 Heq(s) Configuration

3	 Series Compensation or Parallel Simulation

4	 Ubserver System with Poles at s = -6 and s = - 7

5	 Observer System with Poles at s = -10 an6 s = -12

6	 ^',odifled Observer System. Poles at s = -10

7	 i..odified Observer Systemq Poles at s = -50

^ ^ k {^h r	 •^ i ti
	

k
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It was stated in Chapter IV that the weightinlF,

on the available outputs of the plant increased, vjhile

the vielghting on the input decreased, a, the poles of

the observer were moved out. The poles of H(s) have the

same effect. To see this, consider the frequency re-

sponses (Bode)  of A (s) and 11(s) in Figures 5.3 and 5.14

^r

respectively for the example of this section.

H(s) is about the same as an approximate realiza-

tion of the corresponding H eq (s). From Chapter II,

Heq (s) was found to be

H - (s)	 1s2 + ^s +1
10	 80

If Heq (s) viere approximately realized by adding two poles

at. s = -10, the result is

He (S) = 
lOs 2 + 53.7 s + 100

q	 (s + 10)2

The corresponding Fi(s) for the same pole location is

is (s)	 9.524 s 	 64.1 s + 100
(5 + 10)--

Therefore, the modified observer ^vston, is like an approxi-

mate Heq (s) syctern, but the modified observer system realizes

the desirce, response exactly.

she configuration of Figure 5.2 gives zero steady-

state position P-ror, but only if the 11 100 1' terms in the

4

ZASK



Poles of H(s) at s Q -10

- Poles of H(s) at s = -50

Figure 5.3	 Approximate Frequency Response of A(s)

-----.- Poles of H(s) at s = -10

-. - -Poles of H(s) at s = -50

63

Figure 5.4	 Approximate Frequency Response of H(s)
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numera tor and denoraina tor of :i(s) are equal. As an alter-

nate realization of J(s), consider the configuration of

Figure 5.5. here H (s) has been divided out to give

H(s)	 1 + s (8.62 s^± 4
s + 20s + 100

Now zero steady-state position error is assured by the

unity feedback and the integrator at the output of the

plant.

5.3 scram le Two

It was stated at the bee-Inning of the chapter

that the technique could also be applied when addition•

al states are available. This section demonstrates the

procedure using the running; third -order example of this

study. The problem is first solved with xl and x 2 avail-

able and then with x l and x3 available.

rt is necessary to assume that the state-variable

feedback coefficients and forward gain, that were found

In Chapter II, are known. Figure 5.6 shows the state-

variable feedback system. The technique is exar ;r the

same as when only the output was available, but the trans-

far function from r to 
x2 

is the desired response. From

Figure 5.6. this transfer function is

X 2( s )	 00

r2 (s ) 	 + 14s + 48	
t5.9)

e ^,.^	 ^ ^•	 ^..	 ^t rr_. n ^F ndjj;;X	 ,^	
}^t fa ^ ̂ ":^^^,^^r^'%^^> ^i	

^" 5 xY i
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a

=_	 5	 1 X10 y
—'v	 s +5	 s +1	 s

As + 155
7. 6s + 64s + 100

S 8 . Us + ^^^

S 2 + 120s + 100

Figure 5 . 5	 Alternate Closed-Loop System

0 0 0 VA I $` 4
f.Wi 	 n
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r	 r2	 r	
6	

2	 x	 r_ X0 1 Xi m Y
^	

s ♦ 1 	 s
M	 _

Figure 5.6	 State-Variable Feedback System
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and the corresponding plant transfer function is

X 2.... (	 a	 80
u( s )	 (s + 1)(s + 5)

Choosing the pole of H(s ) at s = -10o the polynomials of

equation (5.4) are

GN = 80

GD = (s + 1)(e + 5)

HN = hls + h0

HD = s + 10

AN=r'o

Substituting these equations into equation (5.4) and

combining like terms gives

X2 (s =	 80 s + 10
r2 (8)	 s3 t (16 + ao)s + (65 + ao + 80hl )s

+ (60 + 5ao + 80ho)

The actual response that is realized is found by multi-

plying numerator and denominator of equation (5.9) by

( s +10)  to give

x 2( s ) _	 60( s - + 10)
r2 s	 0 +ii^ ,,2. +18$s t480

i
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Equating coefficients of like powers of s in the two

expressions for x2 (s)/r2 (s) gives the following set of

equations:

ao + 16 • 24

65 + 6ao + 80hi = 188

60 + 5ao + 80ho = 480

which may be solved to give

ao = 8.0

hl = .938

ho = 4.?5

Since there is only one additional state, which

Is available, the problem is solved. The resulting

closed-loop system is shown in Figure 5.7.

The second case considers x i and x3 as available.

From Figure 5.6, the transfer function from r3 to x3 is

X	 =	 6
r3 (s)	 s +

In this case, H(s ) reduces to a uonstant,. h o , and A(s ) is

zero. Of course, the constant, ho , is just the state-

variable feedback coeffi-lent k3.
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Figure 5.7	 Imodifled Observer System with

x, and X2 available

1A.

Akli	 7k 'j-'I
TTIM
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;:ow the teehnIque is applied at the x l node with

a new plant transfer function, which is

xl(s) 80^.. :
U(S)	 s(s + 1)(s + 13)

With the poles of H(s) again at s a -10 9 the polynomials

of equation (5.4) are

GN a 80

GD = s(s + 1)(s + 13)

AN = a 
1 
s + a 

HN = h232 + h 
1 
a + ho

HD = (s + 10)2

These polynomials are substituted into equation (5,4) to

give

Y(S) =	 80(s + 10)4
r( s )	 s + --(34 + al )s + (393 + 14al + ao)s,

+ (1660 + 13al +-14ao + 80h2)s

+ (1300 + 13ao + 80hl )s + 80ho

?	 ^' Y+Y	 i	 t	 p	 I'.	
T 	 )^j	 ^. 	 „^yy ^ R .^
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The actual response that is realized is

Y(s)	 80(s + 10 2
r(e) 0 + 34s + 428 + 2440s + 64008 + 80OU

Equating coefficients in the two expressions for y(s)/r(s)

and solving for the unlcnowne gives

al•0

ao=35

h2 • 3.625

hl a 58.0625

ho • 100

The overall system configuration is shown in Figure 5.8.

Figure 5.9 shows the alternate configuration that results

If H(s) is divided out to give

2. a s + - 14.5..), H(S)1 + s +20s +100

The configuration-of Figure 5.9 assures zero steady-state

position error.

Peak and integral sensitivities were found for

both configurations of this se	 19 Table 5.2 lists the

sensitivities for these syg tCL .long with the state-vari

able feedback system and the modified observer system with

only x  available for comparison. The plant parameters are

as defined in Figure 3. 4 • ; r most parameters. the
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2	 x	 X2 1 Xl a y

is 5	 st1	 s 1

1 1i
35

3.6s + 58s + 100

3.6s 2 + 58s + 100

S2 + 20s +100

Figure 5.8	 Modified Observer System with x 1 and x3

Available

r	 u	
C	

2	 x3 	 x2 1 X1 % Y

s +1	 s

3.()s 
z  +5 8s +loo

.6s 2 + 58s + 100
S +20S +100

Figure 5.9	 Alternate Configuration with xi 
and x3

Available

,^^ ^^	
to	

h x >r^	 _	
TLS	 , r t
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Table 5.2 Sens itivities for ample Two

,
Param-
eter

System
1	 2	 3	 4

Kl .593 . 3 12 .498 .412

K2 .321 •332 .246 .412

P2 .148 .152 .111 1197

P^ .120 I	 .293 .217 .156

73

Peak Sensitivities

Param-
eter

System
1	 2	 3	 4

Kl 0286 .07 0 .287 .113

K2 .067 .070 .038 .113

P2 .019 .019 .010 .034

P3 .0096 .059 .032 .016

Integral Sensitivities

Sys tern

1
2
3
4

y,+,s.,^	 `" ^ rte w

Description

otate-Variable Feedback

x l available. Poles of H(s) at s = -10

xl and x2 available, Poles of H(s) at s = -10

x1 and x3 available. Poles of H(s) at s = -10

S

ti r f	 r * 	r
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Sensitivities are slightly better for the systemwith x  and

x2 available. The system with x  and x 2 available is also the

most appeasing with the unity feedback from x1"

5.4 Physical Realizability

Since the poles of 11(s) are chosen, it should	 -ays

be realizable. If Ii(s) has zeros in the right-half plane, then

A(s) will have poles in the right half plane and will not by

physically realizable.

However, this problem can be avoided if the block

diagram shown in Figure 5-1 is redrawn in a slightly different

form. The now form of the system is shown in Figure 5-10.

Since the zeros of Ii(s) are equal to the poles of

A(s) they cancel, leaving only the realizable parts of FI(s)

and A(s). It is possible that 1/(1-AII) which represents the

equivalent series compensation has poles in the right half

plane. Special effort in the selection of the poles of H(0)

must be made to avoid this situation.

The form of the block diagram obtained in Figure 5-10,

combined with the knowledge that the zeros of H(s) are close

to the zeros of Heq(s), suggest the following intuitive inter-

pretation of the modified observer system, although this new

approach is somewhat different except in the case where the

poles of H(s) are very far from the origin.

The desired system is of the Heq (s) form; however,

Heq (s) is not realizable. In order to get around this problem

CIS

a[	

9	
^ t. _,	

. ^,^i`?'L r 3 :̀ :,tS _ ^. a... ''k.+ x,"1.1 ^^,Y
	 y
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Figure 5-10 Realizable Form of Modified Ohserw.r.

Fiqures 5-11 Alternate Method of Obtaining
Realizable H ea (a) Tvne Svstem
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poles are introduced i--'--o Heq (s) . Call the new feedback trans-

fer function Iieq (s) Ii* (s) . I1eq (s)	 11* (s) is physically reali-

zable; however, y(s)/r(s) no longer has the desired form. To

solve this problem a series compensator, Gc, is placed in the

forward loop. The block diagram i,ow has the form shown in

Figure 5-11.

The required form for Gc(s) can now be obtained by

equating the transfer function obtained from 5-11, to the trans-

fer function from a system in Heq(s) form and solving for Gc(s).

•	 KG (s)	
KGc (s) G (s)1 + KGp s Iieq s

	

	 (5.10)F + I.Gc s Gp s Iieq s Ii s

Gc (s ) s 
1 + KG-	 11eq s	 - Ii s	 ( 5.11)

If this method is compared to the modified observer

method it is obvious that the form of the resulting system is

similar; however, the modified observer provides a simpler ex-

pression for Gc(s) than does solving for Gc(s) using Equation

5.11. Thus, the modified observer system can be considered to be

a method of finding a realizable form for Heq(s) in order to

realize the sensitivity advantages of that form while retaining

the desired y (s) /r (s) . Ii* (s) should be selected so that Gc(s)

is realizable.

5.5 Summary

The modified observer system avoids the large feed-
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back coefficients, but has the sensitivity advantages of an ob-

server system. Th e feedback network, li(s), is comparable to an

approximate lieq(s) that was realized by adding poles, and the

modified observer system has the added advantage of giving the

desired response.

^	 '	 ^	 n4 ^;* .'.^`Y+^}r -^ 4 aY	 ^« { ^^'^F;	,^ !^ ^,{ ab
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CHAPTER VI

CONCLUSIONS

Three configurations have been presented that

may be used when not all the states are available for

feedback. A ,parallel simulation, an observer system, and

the modifies. observer system were described. All three

gave the desired response exactly if the parameters of the

system did not vary.

The parallel system configuration was shown to be

the same as a series compensated system. The system was

only driven by the input to the plant and not by the avail-

able output. In practical pro'-,lems ;:here may be a tendency

for the two systems to drift apart, since they would only

be exact around some linearized operating point of the plant.

The second configuration discussed was th;, observer

system. The poles for the observer system could be selected

far out so as to improve the sensitivities of the plant

parameters. Unfirtunately, the new feedback coefficients

become large in magnitude as the poles are moved out. Moving

the poles out increases the dependence of the observer on

the available outputs of the plant while decreasing the

weighting on the input of the plant. The observer poles show

up as poles and zeroes of the overall response so that the

desired response is achieved through cancellation. The poles

of the observer should be chosen"far enough out so that the

T^

Milli!
#..t	 )¢	 ,r+	 ^un^	 *YrQ	 x	 ^ ^ a	 :	 j

- 3t	 t,	 x	 ^ a x'	 11
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response is not appreciahly affected if exact cancellation

does not occur. Sensitivities of plant parameters can

be made nearly as small as those achinved us;i.ng state-variable

feedback by placing the observer poles far enougl, out.

The resulting large values for the new feedback coefficients

makes this impractical.

The modified observer systen was developed in

order to avoid the large feedback coefficients of the

observer system. Although individual coefficients of the

observer system go to infinity , their sure is finite. Sensi-

tivities of plant parameters in the outer blocks can be

improved over a state-variable feedback system by nicking

the poles of H(s) far enough out, while the high frequency

gain of 11(s) is still reasonable.

It is shown that the modified observer system can

be considered to be a method of obtaining a system which

is physically realizable from the non-realizable Heq(s)

form, in order to retain some of the sensitivity advantages

of the Iieq (s) type system. A method was given whereby the

modified observer system could be svnthesized directly by

algebraic manipulation of polynomials in the frequency

domain. The technique could be ap plied when only the

output was available, or when additional states were also

	

available. Unity feedback of the output could be employed 	
i.

with the new configuration to insure zero steady-state

position error.

o,
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As an overall conclusion from this work, it was

concluded that any system used to generate unavailable

states should lie weighted as heavily as possible on the

available outputs and as little as nossible on the inputs

of the plant to be controlled. If block diagram manipu-

lations are used when only one state is unavailable, it is

best to move the origin of the feedback towards the output.

. r a y.0 e.:. _
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