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INTROLLETLION AND DISCULGION OF CONTENTS

This i5 a summary type report that actually contains
four scparate reports on matters relating to state
variable feedback methods in automatic control systems.
This introductory material is included to give the
necessary background and to link the four reports with
each other and with what has been done in the past.

The idea of state variable feedback in linear con-
trol systems is one of the important gractical results
that have resulted from the so called modern control
theory. Means by which state variable feedback can be
used to realize any desired closed loop transfer func-
tion have previously been reporﬁed under this contract,
NASA Document #CR-77901 (1). A more recent discussion of
the same topic is included in the author's graduate text
(2), and state variable feedback forms the ba;ic founda-
tion for a senior level book soon to be published by
McGraw-Hill(3). The point being made here is that state
variable feedback methods are becoming well known, and
the reader is assumed to have a basic understanding of
such techniques.

The material described in this report is not well
known. An alternate title for this report might well be
"How to Make State Variable Feedbaqk Work". The impli-

cation is that state variable feedback doesn't work, and,
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““REPRODUCILIBITY OF THE ORIGINAL PAGE IS POOR "

1h tany practical situations, this is truc. The diffi-
culty is not with the theory, but with the intentiornal
or unintentional violations of basic assumptions.

A basic claim of state variabic is that any desired
closed loop transfer function may be recalized, providing,
of course, that the pole-zero cxcess of the resuiting
system is at least as grecat as that of the plant being
controlled. A prime problem then is having a desired
closed loop transfer function to meet time or frequency
domain specification of accuracy, stability, speed of
response, and sensitivity. This is the topic of Part I
of the report, "The Specification and Synthesis of High-
Order Control Systems". The three reports that follow
this one all assume that the selection of the desired
closed loop transfer function has been accomplished
according to the procedure outlined in Part I.

The ability of a closed loop control system to res-
pond according to any desired closed loop transfer func-
tion is not a new idea. This was the approach of the
Guillemin-Truxal method of series equalization described //
so aptly in Truxal's classic book(4). Essentially the
series equalizer cancelled (n-1l) poles of the plant, and
substituted for these (n-1) new poles to ensure the de-
sired result when the output was feedback to form thne

closed loop system. From an input-output point of view,

a Guillemin-Truxal type system and a state variable feed-
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bacrk system andgiht tend to be identical. In fact, they are
identical, as long as all system paramcters are cractly
: 4
those assumcd in modeling the given plant. Of course,
this is never the case in practice, and the question of
'

which closed loop system can be expected to function as
desired in the face of uncertainties in plant paramecters
reduces to one of sensitivity. Part II of the report
discusses this question under the heading of "Sensitivity
and State Variabie Feedback".

Part III, titles "Intentional Nonlinearity in a
State Variable Feedback System" is concerned with a closed
loop system configuration that is specifically designed
to be insensitive to changes in a p&rticular forward gain
K(5). Actually, the utility of the gain insensitive
design described here goes far beyond that class of systems
for which the gain may actually be changing do to inherent
physical factors. The practical utilization of the inten-
tional nonlinearity is to insure that the plant being )*/)
controlled does not saturate. By not saturating is meant |
that none of the state variables of the plant is ever . [ J
allowed to exceed a value imposed by physical limitationg. |
For example, temperature may be a state variable, and it
may not exceed a value beyond which a component destroys | |
itself or melts.’ T

The need for some type of limiting action goes back ‘

to the basic ability of state variable:feedback to realize
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any clrosed loop transier function, regardless of the plant.
i‘or a plant with a natural taime constant of 1 sccond, a
response of a microsecond tile constant might be specified.
That such a rapid rcsponse could be realized for such a
slow given piant violates our intuition. Also, viciated
in practice are physical state variable constraints and
the assumption of lincarity. The gain inscensitive de-
sign is one means of solving this problemn.

Along with state variable constrainte, anotner basic
fact of life is the unavailability of one or more of the
state variables. Any one state variabie may simply be too
difficult, too expensive, or too noisy to measure. 1In
the face of such a situation, how does ane proceed to use
the stAte variable feedbuck methods. . Part IV, "State
Variable Feedback and Unavailable States" .discusses this
problem from the point of view of generating unavailable
states from these that are available. The basis for the
method discussed here is the so.cglled "observer" system
of Luenberger. The result is a modified observer type
system tnat overcomes many of the . practical difficulties (
in building an observer type system.

Each of the four parts of this. report was written
as a Masters Thesis in Electrical .Engineering at the Uni-
versity of Arxizona in Suppart. of .the NASA Grant NGR-03-
002-115. Thus, each of the separata parts of this summary

report is complete in itself,,with its.own abstract, table -
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or o contents, 1ist of figures and pagination. Although two
of{ thesce reports, Part.s I and II, have previously keen
submitted under the contract cited above, it is felt that
the purposes of NASA arce best scerved by gathering these
four reports under one title. The common factor that
unites these reports is the desire to realize a desired
closed loop transfer function exactly. Approximate reali-

zations, particularly those involving plant conditioning,

are the subject of future reports.
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ABSTRACT

The synthesis of linear control systcems is a
threefold problem: (1) selecting values for the performance
specifications, (2) the use of those specifications to
derive a model response and (3) the extension of that model

to a C(s)/R(s) function which is realizable using state

variable feedback.

In this thesis, gencral rules are given for the

[

selection of the performance measures Mp, Q%, BW, DR, Ts,
Td’ Tr’ PO and FVE. Design charts are presented so that a
low-order model can be constructed from the design specifi-
cations. The last synthesis problem is solved by defining
an equation, similar to the Kalman Equation, wnhich extends

the low-order model to a C(s)/R(s) function compatible with

the complexity of the plant.
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CHAPTER I
INTRODUCTION

This study outlines methods for specifying a
desired closed-loop transfer function on the basis of
typical time and frequency domain performance requirements.
This study is motivated by the ability to realize any
desired closed-loop transfer function in a single-input,
single-output, lincar control system in which all of the
state variables are fed back.

While there are numerous treatments of first and
second-order control systems to be found in the literature,
systems of higher order are usually handled by the use of
dominate roots or approximations based on the System's
behavior in the vicinity of the open-loop, gain-crossover
frequency. By applying stnte—variuble'feeAback techniques,
coupled with a necessary condition for optimality as defined
by the Kalman Equation, the poles and zeros of the high-

v: der, closed-loop system can be intelligently placed and
the necessary fecedback coefficients calculated.

The investigation is limited to constant coeffi-
cient, linear systems as described by the following set of

matrix equations:



2
% = Ax + bu (1.1)
u = r'&?i (1.2)
¢ = £fx | (1.3)

Where column matrix or vector of the n state

1.3
wo

variables in time domain

I1%-
W

time derivative of x

1>
1>

nt® order square matrix or system matrix of

constant coefficients

ic
uo>

. ntt order column matrix, the control matrix

control function in time domain

c
n(>

"
WD

reference or input function

n® order column matrix, the feedback matrix of

1=
o

constant feedback coefficients

1™
no

ntd order column matrix, the output matrix

c g output function

On the basis of these matrix equations, transfer
functions may be defined and block diagrams drawn which are
related to conventional control-system representation. By
Laplace transforming Equation (1.l1), a forward transfer

function G(s) may be defined as

Ty = 6(s) = £'d(a)p (1.4)



(s) = [5_1_-5_1'1

and is called the resolvent matrix, the Laplace transform
of the state transition matrix.
In a similar fashion, an equivalent feedback

transfer function, Heg(s), may be defined as

T TZ
Hoa(s) = % - K&(=)b (1.5)
T}

The resulting closed-loop system is represented in
block diagram form in Fignre 1. Note here that G(s)
includes any series compensation Gc(s), along with the
unalterable plant trausfer function Gp(s). This representa-
tion assumes that the state variables have been chosen so

that Heq(s) includes all the zeroes of G(s).

GG
/—W’—_\
|

Res) —&?-o K G@ G | Ce
| Ky |

Fig. 1. The Closed Loop System

Further assumptions made throughout this study are

that the gain K of the forward transfer function is
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specified and that the desired input-output dynamics of the
system exhibit an underdamped response with zero steady-
state position error.

The investigation begins in Chapter II with a brief
discussion of performance measurements and their specifica-
tion. Here the choice of specification is based solely
upon a desired performance, and is in no way influenced by
the given, unalterable plant. Of the multitude of perform-
ance measures, only Bandwidth (BW), M-Peak (Mp), Final
Value of Error (FVE), Delay Time (T, ), Rise Time (T ),
Settling Time (Ta)’ Percent Overshoot (PO) and Output
Impedance (Zo) are selected for use in specifying the step
and sinusoidal responses of the system. Chapter III
supplies the graphical aids and procedures for synthesizing
low-order, closed-loop models (two or three poles with or
without a zero), to meet closed-loop design specifications.

This low-order model of C(s)/R(s) has satisfactory
dynamics, but its sensiti?ity to load changes, i.e., 60, is
partly determined by open loop functions G(s) and Heq(s).
The discussion of Zo and sensitivity in general is given in
Chapter IV. The often disregarded Deviation Ratio, DR, is
shown to be intimafely related to system sensitivity
(including Zo) and system optimality. Methods for deter-
mining DR (its frequency spectrum) are given, asz are the
implications of DR on the low-order model. The optimality

equations of Chapter 1V are used in Chapter V to define an
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optimime-root-locus, which permits the extonsion of the
low-order model to one of correct order as required by the
compensated plant G(s).

The synthesis problem is concluded in Chapter VI
with a discussion of the mechanics of the high-order exten-
sion and the calculation of k. The problem of saturation
is described and a method of circumventing this type of
nonlinearity is suggested as an extension of the modeling

process proposed by this thesis.
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CHAPTER I1

PERFORMANCE SPECIFICATION

The problem of system performance specification
forms the basis of the system synthesis. This choapter

begins with a statement of the criteria used by Gibson,

N -

Leedham et al. (1960) to select a sufficient set of
performance measures. The definitions of the performance
measures and then the assignment of values to these
measures, making them performance specifications, con-

clude this section.

Selection of Measures

Performance measures are grouped into four general
performance areas, each describing an important quality of
the systems response. These are: (1) accuracy, (2)
speed, (3) relative stability, (4) sensitivity. There
are a multitude of performance measures to be found in the
literature which could be used to describe each area. To
reduce the number of eligible measures, only those measures
are selected which: (1) convey an easily interpretable
quality of the system's response, (2) are applicable to
and valid for systems of any order or configuration, (3)

express an input-output relationship or quality in terms



o closed-loop parameters, (4) provide a sensitive and

discriminative measure.

Two sets of performance measures which meet thesec

restrictions may be chosen, one set in the frequency domain

and the other in the time domain.

The frequency domain performance measures and their

definitions arec:

1.

M-Peak, Mp, is the maximum value of the magnitude
of the normalized, closed-loop transfer function.
The normalized function is obtained by dividing
'C(s)/R(s)l by its value at a low enough frequency
such that it is essentially independent of fre-
quency, i.e., the "flat part'" of the frequency
response.

W-peak, ©, is the frequency in rad/sec at which
Mp occurs.

Bandwidth, BW, is the range of frequencies in
rad/sec between zero and the frequency at which
the normalized closed-loop transfer function has a
magnitude of 0.707.

Output Impedance, Zo(s), is the function which
relates the sinusoidal output due to a load dis-
turbance, to that load disturbance. In Figure 2a,

Zo(s) is defined as:
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Fig. 2. Specification of C(s)/R(s) for a
System with Load Disturbances

7 (s) _ C(S) - Z(s)
"o " Q(s) " 1 + G(s)Heq(s)

5. Deviation Ratio, DR(s), is defined as

1
1 + G(s)Heq(s)

DR(s3) =

The frequency domain measures BW, Mp, ani Up out -
line a region of permitted locations of the magnitude
closed-loop frequency response, as shown in Figure 2b., The
speed and stability of the system's response to sinusoids
is therefore specified by these parameters. Output
Impedance and DR(s) indicate the system's sensitivity, for
which there is no time domain mecasure.

The proposed time domain performance measures also

"box-in" the unit step response of the system as inr



Figure 3. If the output does not have a final value of

unity,

the performance mecasures are applied to the nor-

malized output which does have a forced response of one.

The two performance measures describing the leading edge of

the transient for a high-order system are assumed to apply

to the smoothest fit of that transient. Definitions of

these specifications are:

1.

measured by T

Delay Time, T is the time elapsed in seconds,

d’
after the application of a step input until the
average normalized output reaches 0.5.

Rise Ti@e, Tr’ is the time required by the system
to rise from 10% to 90% of its final value.
Settling Time, Ts’ is the tim~ required for the
response to fall to and remain within a band of

+ x% of its final value. Typical values for x are
two and five.

Percent overshoot, PO, is defined as the maximum
value of response hinus the final value of response
divided by the final value of response. The
resulting value is then multiplied by one hundred.
Final Value of Error, FVE, is the percentage by

which the final value of the normalized output

fails to reach unity.

The speced and gtability of the step response are

d° Tr’ Ts and PO, while its accuracy is
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Fig. 3. Specification of c(t)

n.rasured by FVE., The Final Value of Error is determined
experimentally in the time domain, but is alsé easily
computed in the frequency domain. This measure, therefore,
seems to be basic.

Specification of the input-output dynamics involves
the assignment of values or ranges of values to these
time or frequency domain measures. These measures can be
grouped according to the system characteristic each

describes: accuracy, stability, speed or sensitivity.
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Accurnc_);

For any input represented by the polynomial
N
r(t) = 5, antn, the final value of crror may be calculated
n=0 '
from the Laplace transform of the error transfer function:

U(s) _ 1
R(s) " T +« G(s)lleq(s)

where the disturbance Q(s) of Figure 2a is neglected.
Maclaurin Taylor series expansion of the right hand side
defines the error constants which relate the system's error

to the input, as

c
o~
(]
S~
+jr
[
f
[\&]

K *K S+R—'s * e 0o 0 (202)

These eryror constants, Kp, Kv, Ka, for steady-state posi-
tion, velocity, and acceleration error, are the most
convenient form for expressing the error of the system's
responsc. They may be computed (Truxal 1955) in terms of
closed-loop pole—zéro locations, and gain, with tractable
formulas. This feature, plus the hybrid quality of the
measurement, make the error constants a desirable per-
formance measure.

In this study, it is assumed that the system being
designed has zero steady-state position-error, i.e.,
Kp =00. The specification of accuracy for the remaining

classes of inputs is restricted to the stecady-state

velocity error. This error is equal to the input-ramp
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slope ) divided by Kv’ the velocity error coefficient. In
general, Kv is made as large as possible for satisfactory

system accuracy in tracking a ramp input.

Stability

The relative stability of the system can be speci-
fied either in the time domain by PO or in the frequency

domain by Mp. The specification of stability is unique in

the senge that it is the only measure which may be specified

by other than a "large" or ''small'" qualititative criteria.

It has been shown (D'Azzo and Houpis 1960Q) that PO should be

between ten and forty per cent or that Mp should have a
value from 1.1 to 1.5 for "good" system response (Truxal
1955) .

The measure Mp indicates the least stable response
of the syastem to sinusoidal inputs. If systeﬁs are to be
cascaded, it may be important that the Mp of the individual
systems do not coincidg. Thus, Up should be specified when
systems are cascaded. The stability specification stressed
in this thesis is PO because it is the best and most

commonly used of all closed-loop stability measurements.

Sgeed

Bandwidth in the frequency domain and T Tr and

d’
Ts in the time domain are performance measures which are
used to specify system speed. The speed of the system

should be fast enough to respond to the expected range of

/

!
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input signals and slow enough so that the system does not
respond to noise. All of these measures are popular for use
as specifications. 1In this thesis, BW is stressed {or con-
venience, but solutions for Tr and Td are given for the
simplest (second order) and the most complex (third order

with zero) models discussed.

Sensitivity

The fourth performance area, sensitivity, is the
most difficult to specify because it is a function of
frequency. In almost all system applications, the sensi-
tivity to unwanted disturbances should bhe made as small as
possible. The sensitivity measure Z0 i8 made even more
difficult to handle since the transfer function Z(s) may not
be completely known or linear.

The specification of Zo or DR may be simplified,
with some loss of information, by specifying its "worst-
case" (maximum) value. This is tantamount to specifying
the entire dynamic response, C(s)/R(s), by just one "worst-
case' value Mp. The Deviation Ratio, or its reciprocal,

Il + G(s) Heq(s)l is stressed in this study, not only

because Z(s) adds unnecessary complication, but because
|1 + G(s) Heq(s)| =1 (2.3)

defines a condition for optimality (Schultz and Melsa 1967).
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Summnrx

The time and frequency domain performance measures
indicating speed (Td, T., T, and BW), stability (PO and
Mp), accuracy (KV) and sensitivity (DR) have been defined
and are used in the next chapter to specify a desired model
transfer function, C(s)/R(s). Deviation ratio, its effect
on several classical sensitivity measures, and its rela-
tionship to optimal control systems are extensively dis-

cussed in Chapter 1V.




CHAPTER III
THE SPECIFICATION AND SOLUTION OF LOW-ORDER MODELS

In this chapter, graphical and, where possible,
analytical techniques for determining a desired low-order
transfer function, C(s)/R(s), are presented. This model's
existance and the means of locating its poles and zeros
from performance specifications of Chapter II, are dis-
cussea. Three models and their design charts are given in
the order of increasing complexity:

1. The second-order model without zeros.

2. The second-order model with one zero.

3. The third-order model with one'zero.
In an example problem which concludes the chabter, a low-
order plant is series-compensated agd feedback coefficients
are determined for the realization of the desired model

closed loop transfer function, C(s)/R(s).

Background

A low-order model can usually be found to meet a
comhination of perfﬁrmance specifications measuring speed,
stability and accuracy, if the specifications are not self-
contradictory. The performance of a high-order system
meeting very stringent specifications, can be closely

duplicated by a low-order model.

15
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The existence of the low-order approximation is
verified by the arguments of dominate root approximation
(D'Azzo and Houpis 1960) and a similar method of dupli-
cating open-loop transfer functions in a narrow region near
the crossover frequency (Chen 1957).

The system's time response is dominated by tran-
sient components contributed by dominate roots (those
relatively near the origin) if:

1. The other poles are far enough to the left of the
dominate poles so that the transients due to these
poles quickly decay.

2. The other poles are far enough away from the
dominate poles or near enough to a zero that the
initial magnitude of the transients are small.

When either of these conditions are met, the dominate pole
response closely resembles the actual response. Neglecting
the other poles results in a slightly fastei response.

Analogous argumenfs in the frequency domain support
the validity of low-order model approximations. The open-
loop transfer function G(j¢)Heq(j¥) can be sufficiently
described by its behavior in a narrow region, i.e., % 15db,
near the gain-crosséver frequency. Roots located to the
left are approximated by a constant gain while those to the
right are neglected, as shown in Figure 4. The desired
C(s)/R(s) model constructed from the approximation of

G(s)Heq(s) derived in this manner is similar to the
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g I.G(;u)H(MI

}

= Q(i+s/a) HSh
G(s)H(s) S(1+s/oXivs/cXies/d) Oas

-1Sde

Fig. 4. Low Order Approximation of
High Order Response
dominate pole approximation just mentioned. In conclusion,
low-order models of one, two or three poles and up to one
zero can be found which cover the spectrum of possible step
or sinusoidal responses.

Having established the existence of low~order
models meeting compatable performance specifications, the
formalization of the construction of that model is now
presented. The model is made to meet the stability, speod
and accuracy specifications of the previous chapter. In
general, the order of the model is determined by the number
and severity of those specifications. The assumption of
underdamped response rules out a first-order model.
Specification of zero steady-stute velocity error requiras
the use of a zero in the second-or third-order models. If
more than two specifications (other than Kv) are to be

realized, the third-order model must be used.
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The requirement of a pair of complax poles for an
underdamped respcnse permits normalization of the s-domain
by the natural undamped frequancy,(dn, of those poles for
the three models to be discussed. This makes it possible
to decrease the number of independent parameters by one, so
that the dimensionality of the design charts is similarly
decreased. All design charts apply to the normalized model
having complex-conjugate poles on the unit circle in the
s = sﬁwn plane. The time domain is correspondingly

n

normalized, t = t-& .
n n

The Second-0Order Model Without Zeros

The simplest and therefore most well known under-
damped system is the second-order system without zeros.

This second-order model is written as:

w2

C(s)/R(s) = H (3.1)
52 + 2(:“%’ +'w§

with a damping ratio €. This model has a zero steady-state
position error but a finite velocity error.

Equation (3.2), the normalized model equation, is
obtained by dividing the Laplacian operator, s, in Equation

(301)’ bywno

C(sn)/R(sn) =

(3.2)
s: + Zgan + 1
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The frequency responso of this system is plotted in many
basic control-system texts (Thaler and Brown 1960). The
designer may use these curvues to deterﬁina 4 for any Mp,
“pA“n or BW/w", or he may solve for these performance

measures using analytical expressions:

BW/y = [1 - 9{2 + Vo . 1{2 . lag"]l/a

(Truxal 1955)

M = L/QC Vi _cz (Savant 1958)

W/, - V1 -¢ e (D'Azzo and Houpis 1960)

The time response to a unit step for this model is easily

found to be
- t 2 .
c(t) =1 - o Cu" cos () Vi-22 & sin w_V1-/2
n l_C n

p’ Ts and PO,

given C, may be obtained from this expression, so that

where g-: l. Analytical solutions for Tr’ T

2
] . 7.04 + 0.2
Tr Ull = 2€ for 0015-42100

(Graham, McRuer et al. 1962)

Td'gn £ 1 + 0.7§ (Graham, McRuer et al. 1962)

(Truxal 1955)
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. - [
'I‘s w, = 3/§ for C-z 0.9 and x = 5
(Grabbe, Ramo and Wooldridge 1958)
1 2( . 1 RS 1
K: - Z @, Z poles of C/R Z zoros ol C/R

(Truxal 1955)

and

The most straight forward solution of the second-
order model is the graphical one obtained from plots of
performance measures versus the damping ratio, as shown in
Figure 5. These curves, developed by llausenbauer (1957),
Truxal (1955) and others, give frequency domain measures
normalized by wn and time domain measures normalized by
I/Ah for the model of Equation (3.2).

The second-order model provides two adjustable
parameters, C and Wy with which any one of the stability
specifications (Mp, PO) and any one of the speed speccifica-
tions may be exactly realized if finite. The damping ratio
is determined by the stability measure. The remaining
parameter¢yn, can then be chc=en, and the model scaled to

T ). If

meet one of the speed measurements (BW, Tr’ Td’ s

one or both of these specifications lead to a permissible
range of narameter choices, the added flexibility can be
used to increase Kv'

If z second-order model can te found to meet all
requirements except accuracy, then dipole compensation

should be added to increase Kv to the desired value or
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infinity. The dipole addition places a pole and zero very
close to the origin so that the transient response is
altered only by the addition of small but slowly decaying
transient in such a fashion that KV is ocorrectly increased
according to Equation (2.2).

A simple example illustrates the procedure outlined

above:

Specifications: PO = 250k, 'I“4 = 5 seconds

Synthesis: From the stability specifications plot

in Figure 5, read the required damping ratio
§=:o.h5. From the same figure, read the value of
normalized setting time Ts'ah/lo = 5.5. Solving

for Un: W, = 11 rad/sec.

C(s)/R(s) =

121
2
s + 10s + 121

The Second-Order Model With One Zero

The second-order model with one zero can be chosen
such that any speed (BW), stability (PO) or accuracy (KV)
specification is met, including an infinite velocity error
coefficient. All threec system parameters, W C and z (the
negative real-axis zero) of the model, Equation (3.3),
affect both time and frequency domain performance measures.

The addition of a zero to a model having only a pair of



complex poles increascs the system's speed and accuracy,
while decreasing its stability.

2

w
C(s)/R(s) = = — — (3.3)

s
8 + 2.8 + u2
< ctﬁl n

The performance measures for the normalized form
of Equation (3.3), given in Equation (3.4), are plotted in
Figure 6. The damping ratio g and velocity error coef-
ficient are plotted as a family of curves in the z/ah - PO
plane. Bandwidth is given at selected points in this

plane, adding a third dimension of freedom and difficulty.

(s" + z/wn)

2
-

sn + 2¢s“ + 1

NLﬁ

C(s, )/R(s ) = (3.4)
The choice of & can be delayed to last if the
chart's normalized performance measures, Kv/aﬁ and BW/ah,
are taken as a ratio. Thg desired ratio, obtained from the
specification of Kv and BW, can then be located on the
chart for any PO, thereby determining C and z/ah. The
synthesis of C(s)/R(s) from performance specifications is
completed by using the bandwidth specification to determine

o, The procedure is best illustrated by an example.

Specifications: PO = 25%, Kv 2 400 and 150 rald/sec
< BW < 200 rad/sec.

Synthesis: By observing Figure 6, it can be seen
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that any KV may be obtained from the model and the
stability specification met if C > 0.6 and
zAwn = 0.6. A damping ratio of‘0.7 is selected
and ratios of (Kv/wn)/(BW/wn) along this curve are
calculated. A comparison of the minimum desired
ratio,

Kv/nw = 400/200 = 2

with the calculated ratios indicates that the zero
lecation must be less than 0.85 w,+ A value of
zﬁun = 0.8 is chosen and W, may be calculated from

13W/wn = 1.8

For a median value of bandwidth, BW = 180 rad/sec,
the result is ©, = 100 rad/sec. The velocity error
coefficient for the parameters chosen is K, =

5’«% = 500. The model equation is therefore,

s + 80
C(s)/R(s) = 1.25:10° — A

s + 140s + 10

The Third-Order Model

The closed-loop transfer function with threc poles
has the same number-of adjustable design parameters as the
sccond-order model with one zero, but the performance of
this function is much more sluggish and less accurate. The

limited usefulness of a model having only three poles



suggests that it be cast aside in favor of third-order
models with zeros.

The third order model with one zero is expressed in
Equation (3.5). This equation also applies to the second-
oruer model with a dipole mentioned earlier irn this
chapter. This section concentrates on selection of the

four parameters, C, w,.» z and 0 (the negative real-axis

n
pole location), in such a way that not only is Kv determined
by z and [Qas in the dipole addition, but speed and
stability characteristics are also adjusted. It will be
seen in Chapter IV that when ﬁ)>=>ah the system insensi-

tivity is greatly improved.

2

“ryj (s + 2)

C(s)/R(s) = — , (3.5)
2 (s*+ 2l ws +w2)(s +0)

For the normalized model of Equation (3.6), the
graphical determination of the system's parameters would
require a three dimensional plot for each normalized
performance measure. The design charts of Figure 7 and
Figure 8 restrict the choice of é to two values: 0.5 and
0.7 respectively. The normaliied parnmeter,[?/gh, is used
to determine speed and stability measures. Accuracy, Kv,
is held fixed by the correct placement of z/wn. These
design charts, obtained from Hausenbauer (1957), lead to

three general conclusions concerning the normalized

parameter, [)/a)n .
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Fig. 8. Performance Measures for Third-Order System
with One Zero and Damping Ratio of 0.707
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1. For a given Kv the bandwidth remains approximatel,
constant and equal to the value of a second-order
single-zero model having a similar damping ratio.
This courrespondence holds for p/a)n =1,
2. For ,O/gn = 1, the model has an additional 10% over-
shoot compared to a second-order, single-zero model
with similar KV nndC .

3. For p/wn, <1 the model quickly approaches the per-

formance of a dipole compensated second-order model.

The particular method of synthesis using the design
charts is determined by the specifications given. The
following example illustrates one of those procedures.

Specifications: 100 rad/sec < DW < 150 rad/sec,

K, = 200, PO = (20 ¢+ 1)%.

Svnthesis: Note that for C = 0.7 (selected
arbitrarily) and p/"n =1, BW/gy is from 1.5 to
2.0. Using "worst-case" values of the specified
BW, & is restricted to the range 66 rad/scc = W,
< 75 rad/sec. Then for a satistCactory Kv, the
plots of Kv/‘h = 3 (or greater) must Le used.
Selcct Kv/aﬁ = 4, giving K, = 280. Performance
measure plots for this value must be interpolated
from the Kv/“ﬁ = 2 and Kv/aﬁ = 5 plots.

The stability specificat.on requires that for

€='0.7 and Kv/“h = &,
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J < /O/wn < 4.3

i.1s0, for these values, BW/LM is approximately 1.8.
The range of permitted pole positions can be chosen
on the basis of ’I‘d or Tr' Delay time is usually
desired as small as possible, so the value

ﬁ»hh = 4.3 or ﬁ): 4.3 dn

The model having K = 280, BW =

300 rad/sec is chosen
minimizing Td'
126 rad/sec, PO = 19%, and Yy T 1072 sec.,
T, = 14 10"3 sec. is then

C(s)/R(s) = 3,104 -~ (s + 49)

(s + 100s + 4900)(s + 300)

It should be noted that if the plant were second-

order anq of the form

4

. 3.10
Sp(2) = SETY

where P is positive, a series compensator of the form
G (s) = s + 49
c + Q

where 0 < & < 300 rad/sec, could be added and feedback
coefficients k, and k3 (k1 =1, for Kp =C0) determined by

equating ccefficients in Equation (3.0).

_ G(s)
C(s)/R(s) = 3= G(S?Heq(s) (3.6)



Summarx

Methods for synthesizing low-order, closed-loop
transfer functions have been developed from performance
measures of Chapter II. If the forward transfer function
can be compensated to have zeros identical to those of th
mode) and the same number of poles as the model, then the
synthesis is completed by solving for the feedback
coefficients.

When the plant is complicated by having zeros not
found in C(s)/R(s) or more than three poles, two alterna-
tives are possible. The most difficult of these alterna-
tives is to specify a high-order model from the
specifications. The other method, to be explained in
Chapter V, is to specify a low-order, '‘ideal'" model and
extend it to the desired high-order form as required by
the forward transfer function.

In the next chapter, the 2quation forming the
foundation for the model e#tension is developed. 1t is
shown that this equation also relates the compensated
plant to the model being specified through the sensitivit

measure, DR(s).

31
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CHAPTER 1V
THE SENSITIVITY-OPTIMALITY CONCITION

The performance area, sensitivity, is intimately
related to optimal control systems by the Sensitivity-
Optimality Condition. Equation (2.3) is repeated here for

convenience.
1 + G(s)Heq(s) =1

In this chapter, examples of classical sensitivity
functions are shown to be related to Equation (2.3).

Graphical and, for low-order cases, analytical techniques

Yinl: The implications

of the Sensitivity-Optimality Condition in terms of the

are developed for determining DR~

open-loop and closed-loop transfer functions are then
stated.

1t is shown that if this condition is met, the
resulting closed-loop transfer functio:l minimizes a

quadradic cost function of x(t) and u(t).

Classical Sensitivity

The system's sensitivity to disturbances at the
output is defined in Chapter II. The appzarance of
(1 + G(s)Heq(s)) in the equation defining Zo(s) in terms

os open-loop functions is the first illustration of its

32
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importance. In this section DR-I(S) is shown to be of
similar importance to the system's sensitivity to varia-

tions in open-loop gain, K and to open-~loop pole move-

1’
ments.
The sensitivity of C(s)/R(s) to gain K, is defined

as:

C/R

K
o 1 b=l
f (s) = TIR(ST 5] [C‘”/R"’J
1

K

For the single-input, single-output system shown in Figure
9, the sensitivity function is easily calculated illus-
trating the importance of making 1 + G(s)Heq(s) as large

as possible.

G
/W—\
R(s) - K, G C(s)
Heg®)

Fig. 9. Single-Input, Single-Output System

For Figure 9 C(s)/R(s) is

K.G, (s)

1l 1
C(s)/R(s) = 1 + Klﬁl(s)ﬂeq(s)

T @ e s
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and
C/R ) 1 + KlGl(s)Heq(s) G](s)
(s) = K . -
xf[ 1 K G (s) (1 + K G (s)lleq(s))?

= [1 + G(s)l{eq(s)} -1

The sensitivity of C(s)/R(s) to the movement of
an open-loop pole at -0, shown as an interior block of the

system in Figure 10, is similarly defined and calculated.

R —4;9?—9 K, G, =GO co
C%S 6

Fig. 10. System With Open-Loop Pole at &

If sensitivity is defined as

C/R 5
) x
[ 0 2 ey 5 [ /mres)]
o




and another function F(s) as:

F(s) €1 + K G, (s)H, (s)
and
G,(s)G,(s)
a(s) = k)~
Heq(s) = H,(s) + éz+sa Hl(a)
Then
C/R n [
(s) = o |1¥Gls)Heq(s) R Klﬁz(S)“;(S)
st = G(s) d0a sF(s)+K G_(s)G,(s)il (s)+aF(s)
o 1%L 122 3 2

F(s)/(s+a)

=& T+G(s)Heq(s)

The importance of making |1 + G(s)Heq(s)| as large as
possible for all 's' has again been demonstrated.

In its present form, a plot of PDR™L(s) along the
JW-axis wéuld require caiculation of the k's to form
Heq(s). This would make the use of pR™Y(s) in specifying
C(s)/R(s) a difficult and time consuming process. By
writing DR-l(s) in terms of “he projected model C(s)/R(s)
and the open-loop plant G(s), the derign procedure can
quickly determine PR Y (s) for any model chosen. The model
chosen must have the same order and gain as the plant, and

is now further related to G(s) by the sensitivity measure.
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Assume the forward and open-loop transfer functions are

written as

‘ . N(s) _ e N(s)
G(s) = hl DisY C(s)/R(s) = K B:T;T

They must have identical zecros. The static loop-sensi-
tivity K, must equal K since Heq(s) has (n - 1) zcros,
where n is the order of both D(s) and Dc(s). By expanding
the closed-loop transfer function in terms of G(s), it is

seen that

R(s)

1 + G(s)lleq(s) = 0]

G(s) = Dc(s)/D(s)
therefo-e,
DR-l(s) 5! 1 + G(S)Heq(s)! -| Dc(s)/D(s)i (4.1)

This function has one important feature; since the
order of each polyvnomial is n, DR-l(s) must always approach
unity (1/0°) as s becomes infinite.

It is instructive to form analytic expressions tor
the second and third-order cases. Once again. the normal-
ized form of C(s)/R(s) and G(s), (C(S/mn)) are used without
loss of generality. The second-order, normalized model

first introduced in Chapter III is

Cls )/R(s ) =

)
-

1
)
]
s, + “Ssn + 1
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which corresponds to a forward transfer function

1
) + (l]ql)

G(s") = sn(s

where & is the unnormalized plant pole shown in Figure 1l1l.
Ry — w ' (9
d S 4o S
Be
lv

Fig. 11. Second-Order System with State
Variable Feedback

Expanding Equation (4.1), in terms of jW, where

Sn = jW, and A = a/mn

", ) 1/2
- J2LW + 1 -W- - iZgw + 1

w2 4 AW w2 - jAw

pR™L(jw) =

(o] £ 2

A reasonable criteria for DR-l(jW) is that it be greater

than unity, i.e., the Sensitivity Optimality Condition,

Equation (2.3). This condition is met when
2 /<
2
(= [‘-ﬁ-é-i (4.2)

Equation (4.2) indicates that at best (A = 0),

the damping for a second-order, clcsed-loop transfer
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function should bLe grecater than 0.707. Thus sonsitivity is
improved by increasing (:corresponding to increasecd
accuracy and stability.

The analytical solution for the parameters of a
third-order system (ﬂ)und z) that meet the Condition Equa-
tion is much more interesting. Thc¢ normalized model and

forward transfer functions are

(s )/R(s.) Pl
s s = —
n n (s; + 2§sn + .‘.)(s'l *X?A“n)

and

P/
G(s ) = L
n sn ( sn + (117(:)’17 (sll j/(dn—y

Substitution of the denominators into Equation

(4.1) and setting DR(jW) . =1 leads to the following

1

equation

[4§2+92-A2-B2-2} UL [Aczpz-zpz-nz;\zu]zwa + P2 50
where P = ﬁ»w“ and D = ﬁ/w". The coefficient of w“, Y,
must be positive it the inequality i3 to hold as W becomes
infinite. The restriction on the coefficient of w2, Z,
depends on the magnitude of Y and P and is unwieldy. But,
the increased flexibility of the third-order case is evi-

dent in the expression obtained vy requiring Y to be

positive.

Y I
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Y na1/2
2 ~— ‘;- - )=

Thus if the closced-loop pole P is made laryge
enough (greater than A"3 + ”2 + 2), g is limited only by
stability considervations. Comparison of Equations (4.2)
and (4.3) leads to the conclusion that o necessary condi-

tion for systems of any order, n, is

| 2y ca s 2107
‘) ) M , - . '
{-+.'n‘poles of b(sn)l "QLPULQS of s"/ syt
ga | 4 J
-
(4.4)

Graphical techniques for high-order systems provide
more insight in placing the poles of C(s")/ﬂ(sn) for a
given G(sn). A straight-line approximation of
!

,Dc(jw)/h(jW){ is quickly drawn using the property
|

mentioned before. Starting at a large value of W, where
DR-](J'W) = 1, the function is plotted as W is decreased,
making the usual slope changes at the breakpoints of
DC(JW) and D(jw).

The procedure is demonstrated by obtaining the

straight line plot of DRul(jW) for the example problem of

Chapter I1I. The model and forward transfer functions of

that example are:




4o

s + 4o
+ 100s + h9ou)(s + 300)

C(l)/R(S) ¥ 3‘10,‘ "
(s

and

_ iy s + 49
G(s) = 3.10 s(s + Q)(s + [)

By writing only the denominator of each and normalizing by

w, = 70 rad/sec the results are

r

Dc(sn) = (si + l.llsn + 1)(5n + 4.3)

and

D(sn) = sn(s" + A)(s“ + B)

Let the compensator pole  be at 56 rad/sec, then B = 0.8,
The sensitivity measure, DR-](jW) is plotted in
Figure 12, for the various values of pole position A. The
importance of piacing the model pole further from the
origin than all plant poles is indicated. The magnitude of
DR(jW)_1 is greatest at all frequencies for the plant pole
Aj'
In conclusion, the closed-loop transfer function is
least sensitive to output disturbances, static-loop
sensitivity variations and plant pole movements when the
closed-loop poles are placed far from s = 0. Since the
static-loop sensitivity for systems using state-variable

feedback and having zecro steady-state position error is

equal to the product of closed-loop poles, divided by the



Fig. 12. A Typical Plot of DR-I(jW) for n = 3

product of closed-loop zeros, K must wlso be large. 1In the
next scction, it is shown that not only is sensitivity
decreased by making prR™ 1 (s) large, but also that the

closed-loop model defined by C(s)/R(s) is optimized.

Optimality

The performance measures of Chapter il are used to
specify a model transfer function in Cha t ~ I[lI., These
measures are often used to judge the "¢ 1ess" of the

system's response; i.e., the system which minimizes Ts for

a given plant is '"best." Other criteria for optimum
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systems are the indical error measures (Graham, McRuer
et al. 1962).
Indical error criteria typically moasnure tho
integrated function of the error rcesponse to a steop input.
One of the most useful of these indical error criteria 1is

the integrated error-squared (1SE) criteria given by

00
)
ISE = /‘ u“(t)dte
0

A more general performance index using a quadradic

cast function is

AT, .
PI - Jf [(_g(t))“ + pu“(t) dt (4.4)
0 v

where Z’is a weighting vector of the form

{_

o
and p is a positive scaler, is minimized by a closed-loop

system derived from Equation (4.5). This is called the
Kalman Equation. For a system defined by Equations (1.1),

(1.2), and (1.3) the Kalman Equation takes the form

o |
’1, K" (s)n = 1 %{T@(s)glz (h.5)
|

(Schultz and Melsa 1967)

or

2

| o |
'1 + Gsdiieqls) © = 1« ;‘;-i[“(s) (4.6)

|
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It has been shown (Schultz and Melsa 1967) that r(s) is the
product of G(s) and the characteristic equation Dm(s) of a
model response determined by:ZTi‘t’- The pole-zoro excess
or[ﬁ(s) must be greater than zero.

The magnitude of the righé hand sidc¢ of Equation
(4.6) can never be less than unity. Thus the optimum
nature of the inequality given vy the Sensitivity-
Optimality Condition, Equation (2.3), is shown. If a
system is chosen to meet this condition, there exists a
weighting vector of positive coefficients, Z: and a

performance index which is minimized.

Summnrx

In this chapter the importance of the Scensitivity-
Optimality Condition, which forces DR—](s) to be greater
than unity, is illustrated. An equation is given, (4.6),
which defines leq(s) and therefore C(s)/R(s), such that
C(s)/R(s) optimally approximates a lower-order model having
poles determined by D™(s). This equation is used in the
next chapter to extend low-order models specified by the
methods of Chapter III to high-order models compatible with

the forward transfer functions.

/




CHAPTER V
THE SPECIFICATION OF HIGH-ORDER MODELS

Performance specifications are used in Chapter IIIX
to specify a low-order, '"ideal," closed-.oop model. The
feedback coefficicnts k may be determincd f(rom this model
if:

1. C(s)/it(s) includes all the zeros of the forward

transfer function G(s).

2. The order of the denominators of both C(s)/R(s)
and G(s) are equal.
3. The plant’'s static loop sensitivity equals the

closed-loop gnin, K.

In this chapter, the low-order model ix optimally
modified by the additicn of poles and zcros such that all

these restrictions are met for any G(s).

Extension of Low-Order Characteristic Equations

Equation (4.5) may be rewritten using the relation-

ship given by Equation (4.3), to form

. Dm(s)N(s)
l l =1 + — 'h D) (5.1)

where Dm(s) is the characteristic equation of the "idcal"
model. The expanded form of Equation (5.1) is

4y




DC(H)DC(-s) K2 nm(s)x(s)nm(-s)x(-s)!

D(s)D(-a) = 1 ¢ P D(s)D(-3) | (5.2)

Both sides of this cqgquation have poles and zoeros in the
left and right halves of the s-plane.

If the closed-loop model heing specified is
stable, 4t must contain poles only in the left half of the
s-plane. Therecfore, the poles of that model (the roots of
Dc(s)) are the left half plane roots of the right-hand side

of Equation (5.2), denoted here as,

‘)

D (s) =, D(s)D(-58) + K p (s)N(s)D (-s)N(-sﬂ
c i Y m m /
L

| R |

Since D(s) is assumed to be a high-order polynomial
(n > 3), the zeros of Equation (5.3) are difficult to
obtain by direct factorization. A root locus, however, is
easily plotted. The root locus contains 2n branches
originating at the 2n zeros of D(s)D(-s). The work is
greatly simplified by the quadrantal symmetry of the
singularities in Equation (5.3).

This symmetry may assist the designer in several
ways: (1) the centroid of all asymptotes is the origin,
(2) only the roots in one quadrant must be plotted, (3)
the roots going to infinity may be approximately located
for large values of K by placing them at a radius r = Kl/2

from the origin. The coefficient L is determined by
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L = (n-m-n ) =1
m -

where m is the order of N(s) and n_ the order of Dm(s). It
should be noted that if L is even, a 0® locus is plotted
instead of the usual 180" locus which is required when L is
odd. .

The equations defining the slopes, 0, of the«
asymptotes lead to two important conclusions. The equa-

tions are

n
@ = (2g-1) 30 for L even
n
0 = g T for L odd

and g =1, ..., 2L. The first observation is that the
jw-axis is never an asymptote. The seacond observation is
that for very large stutié gains, the excess roots in the
left-half plane approach the location of an L% order
Butterworth polyncmial, B(s).

If the gain K is infinite, Equation (5.3) reduces

to

D (s) = KD (s)N(s)B(s)
C [1}]

The n poles of the extended model are placed such that
(1) Dc(s) has n roots where Dm(s) has roots, (2) Dc(s)
has m roots where N(s) has roots, canceling all the zeros
from the plant and (3) Dc(s) has L roots of a maximally

flat function, D(s), at infinity.
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Smiall values of gain make l)c(s) identical to the
compensated plaant's denominator, D(s). For values of gain
between the two extremes, the poles of the extended model
are determined by the loci of optimum roots which r.  -imize
the performance index of Equation (%#.4). The extended
model is the "best" approximation of low-order "ideal"
model for a given K.

An example illustrates the procedure.

Specitications: PO = 25%, Ts = 5 seconds and a

plant given by

)
G (s) s(s + p)

Synthesis: A second-order mcdel was determined in

Chaptor III meoting the performance specifications

PO and Ts' The "ideal" model is theretfore

C(s)/R(s8) = 5 121 z - 131 -
s + 10s + 121 (s + 5)° «# 9.8~

The root locus is defined by substituting into Equation

(5.3) and solving for the roots,

.

o)
153 =y b 0
~s2(5+5) (s+¢10) (8-5) (8-10) - L& 20’ (s=+10s+121)

s ]
(s™-10s+121) = O

1/2

Later in this chapter it is shown that p is equal to the
"ideal" model gain which for this example is 121. The roct

locus is plotted in Figure 13 by observing
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I‘9
L = 3-2 =1
e = 0°, 180°
. . : ' . 1/2 .
The roots of nc(s), in the left-half plane for v z 1zl

are -20, -4.7 + j8 and the specifiod closed-loop function
is

1 /00
i 2 27, -
[(s + h,7)" « 8 J(s + 20)

C(s)/nk(s)

The velocity error coefficient of the "ideal" model
can be obtained from o, = 11 rad/scc and Figure 5. The
vialue of Kv is 143. The extended model does not improve
Kv' If a larger Kv is desired, a zcro and pole are added
to the plant in the usual fashion. The 7c¢ro could be placed
according to Figure 6 for an infinite K, in the "ideal®
model. DBut when the model is extended as above. a pole of
C(s)/R(s) is placed by the root locus such that it tends to
cinmcel the desired zero. I K is large, the increase in Kv
for C(s)/R(s) will be negligible. This difficulty is a
consequence of Equation (5.1) which does not permit

-
inclusion of the "ideal'" model's zeros in !(s).

Extension of the General "I[deal" Model

The author suggests that the Kalman Equation for
single-input, single-output systems be modified to include
the "ideal'" model zeros, Nm(s). The equation is rewritten

as
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| (a)]? ' b (s) 2
| ¢ 1 . m N(s)
i

If the operator s is made very small, the left-
hand side of Equation (5.%) approaches a large numbor

]
“, where d_, is the coefficient of % in Dc(s). The

!
idCO/s

other side of the equation upproaches

2

[—]
\ d n
mo o

n' ;_w
mo

P

where dmo’ "r;m’ and n, are the coefficie:ts of s° in Dm(s),
N (s) and N(s). Since K_ =00, K = d_ /n_ and the coeffi-
m P co’ o

cient p is given by

p1/2 < a /n

1 n
mo mo

This is also equal to the static gain of the
"ideal" model if Kp for that modal is infinite as assumed
in Chapter III. Therefore, Equation (5.4) may be expressed

in the final form

2 l I
Dc(s)l ' G(s) 2 (5.5)

[ 2 A (1 PO V4TI D) B
' J b §

| deul":
For an example, the third-order "ideal" model of
Chapter III is cxtended using Equation (5.5). The per-

formance specifications of that model are: (1)

100 rad/sec = BW < 150 rad/sec. (2) K, = 200 and (3)
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PO = (20 + 1)%. The "ideal"” nodel moeting these specifica-

tions is

| 4 .

1 3.10 (s + 49)
- C(s)/R(s) "w = < 00
T > videal (s° + 1008 + 4902)(s + 300)

If the given plant is

Q}.IOG(S + 200)
s(s + 100)(s ¢+ 150)(s + 100) °

G (s) =
P
then a compeasator must be added with the form

s + i
GC(S) TN o+ Q

The roots of Equation (5.5) are found by equating

it to zero,

6 :(su+1005+ﬁgoo)(s+;g0)(s+2no){2
‘s(s*lUO)(siﬁOU)(S#lSU)(s#&) ;

Notice that the desired zero will not affect the root

1 + 225.10

locus, and that a new L' must be defined as

L' = L - (Numver of desired zeros) .-~ 1

The root-locus defined above is plotted in Figure 14. The
value of & is chosen to be 300 in order to reduce the labor
involved. This pole, the zero at 300 and the root loci
originating at + 400 are not shown in the figure so that
the more critical root loci near the origin are emphasi zed.

The model specified Ly the root-locus extension is
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45.106(s+300)(s+h9)
(5°+106343850) (5+190) (3+300) (3+2000)

C(s)/R(s) =

This model is very closc to the "idcal" model for
the large gain constant as expected. The unwanted zero at
200 is approximately canceled by the pole at 190. The
remaining excess pole is a first-order Butterworth
polynomial with a bandwidth of 2000 rad/sec, more than ten

times that of the "ideal" model.

Summnry

Although the model extension equation, Equation
(5.5), cannot be derived from the quadradic performance
index of Chapter 1V, the results are the same as those
based cn the Kalman Equation. For large values of gain K,
the specified model approaches the "ideal" model with
excess poles placed in Butterworth fashion.

In the next chapter, the synthesis is completed
with the calculation of the feedback coefficients k and a
comparison made of the actual time and frequency responses

of both the "ideal" and extended functions.




CHAPTER V1

THE SOLUTION OF lIGII-ORDER SYSTEMS

The calculation of {eedback coefficients that
realize a specified high-order model, complectes the system
synthesis. The example problems of Chapter III ire com-
pleted here. These two examples also serve to illustrate
typical difficulties in the realization of k. The chapter
concludes with a discussion of an important difficulty,

saturation.

Calculation of Heq(s)

The final step in the synthesis is the determina-
tion of feedback coeffticients of the compensated, linear
plant. These coefficients define an equivalent feedback
function Heq(s). The restrictions on lleq(.s) made through-
out this study are summnrized HER //
1. Heq(s) has (n-1) zeros determined by k.
2. Since l\'p =00, the output state variable Xy must
have unity guin feedback, kl = 1.

3. All zeros of the compensated plant G(s) must lLe

poles of lleq(s).

The restriction on kl i8 not critical., This

coefficient adjusts the static gain to match the

5h
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coetficients of s® in both Dc(s) and D(s) [1 r G(s)leq(s) !,
but tlinse coefficients have already been matched by the
modeling process. Thus, the remaining (n-1) k's can be
chosen so that any C(s)/R(s) can be realized.

Completion of the synthesis of the specified
second-order "ideal" model of Chapter 1V illustrates the
procedure. The specitied C(s)/R(s8) function and given
plant arec

C(s)/R(s) = 1700

o EY%]
[(s + h.7)" «+ 8= (s + 20)

1700
(s + 3)(s + 10)

G(s) = G (s)
P

By expressing C(s)/R(s) in terms of G(s) and lieq(s)
obtained from the system block diagram, Figure 15, we get

C(s)/n(s) = 1700

r 2
s(s+¢5)(s+10) + 1700L1+(k0+10k3)s+k38"]

and cquating to the specitied C(s)/R(s), the k's are

determined as

29.% = 15 + 1700x3
274 = 50 + 1700(x,, + 10k3)

The solution for 5 is

ry )
E = 8.5'10 3
c1n-3

. 47-10 §
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{ | {
1700 ‘ $+S s$+lo S C('s)

Fig. 15. DBlock Diagram of Third-Order Example

The frequency rononse, Figure 16, and timc respouse,
Figure 17, of both the system and the "ideal'" model indi-
cate the low gain used. A higher gain would improve the
approximation.

The third restriction is a possible difficulty only
when a zero exists in the first block of the system's block
diagram. This zero, unlike all the others, does not become
a pole of Heq unless specinl care is taken in selecting the
nt state variable that is ffed back. The other example of
Chapter 1V, having two zeros and five poles has a compen-
sator zero in the first block. Completing the synthesis of
this system illustrates the difficulty and its solution.

The specified model and the compensated plant equa-

tions are
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- 6
[l‘ ’
C(s)/R(s) = — 45.10 (s+200)(s+49)
(s“+1005+3850) (3+4190) (3+300) (3+2000)
and
45 106(q+°00)(q¢Q9)
G(s) J s+2 [

8(3+100) (s+150)(s+300) (a+400)

The block diagram for the system is shown in Figure 18.

G.G)

RGs), “5“0‘ €| seng| Xs| | X | se2o0] Xa | v %] __‘Cﬁ)
/ S +300 9410 smﬂ 3¢50 S
e A
ks Ky Ka Ke

Fig. 18. Block Diagram of Fifth-Order Example

If Heq(s) is calculated using x5 as a state
variable, it does not have a pole at -49. A new state
variable, xé, replacing XS can be fed back which places
the desired pole in Heq(s). This is accomplished by
building the compensator and picking the state variable
as shown in Figure 19,

Before completing the design, a closer look should
be taken at C(s)/R(s). As noted in Chapter V, the zero at

-49 does not affect the position of the root loci. The



6o
| " —= = = - = 1G@)
| , '
I a-b| Xs « | Sta
E(S)T—sﬁb ' Xg{s) Xg(s) = [ S e b ]E(ﬂ

e

Fig. 19. 4Zcros in the First Block of &« Block Diagram

zero was placed at =49 in the "ideal" model to iucrease l\'v.
It Kv is computed from its dofining cquation of Chapter
II1, repeated here as

%- é > - !‘\‘"i ]

v pulns of C/R 7, zeros of C/R

the K for the cxtended system is 125 rad/sec, less than
its specified minimum ot 200 rad/sec. The"ideal" model had
a K of 280 rad/sec.

The other performance measures have also suffered (
by the extension, but there are no charts or formulas to
determine their deterioration. Since the zero does not
affect the root loci and a formula does exist for Kv’ the
zero is moved to regain an acceptable velocity error
coefficient. A pole must be moved simultauneously so that

the Kp remains infinite.
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If the Kv specification requires a contrihutiou,y/,
from the compensator zero and pole (sclect the largest pole

in C(s)/R(s), P), then

-1 1
¢/1 i
The position error constant is maintained as specified if

Po/ao z P/a

there a_ and P are the original positions (a = g, p =
o o 0 o
2000 in this oxample). Both equations are solved by placing

the pole at

P = (Pu/uU - 1)/&7 (6.1)

and the zero at

a = a /P (6.2

If P >>a_, the equations (6.1) and (6.2) reduce to

. / : ’
p()/‘.() ’h/ /
/Y

For this cxample P _ - a, and a {;'jof 24.6 x 1077

P

i

a

forces Kv to be 300, greaterr than the 200 of the ideal
model. The zero and pole positions are then

a = i

P = 1670
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and the closed loop transfer tunction to beo realized is

4;,10C(5+300)(s+h1)
(8°+106843850) (34190) (5+300) (8+1670)

C(s)/R(s) =

The feedback function obtained by block diagram

manipulation is

s(8+¢150) (s+400)

S [ 4
s(s ¢+ 150) + ko, .+ 200

Heq(s) =1 + k, 9 + k3

~2593(s+150) (s+400) (5+100)
5 (4+200) (s+¢h1)

+ k

Once again, C(s)/R(s) is oxpressed in tcrms of leq(s) and
G(s) and the coefficients of like powers oquated to
evaluate the k's. After some straight forward algelra, k
is found to be

- . ]

;15.3-10'3

l -
| =59°10 6

=
]

6

{ 34107

1251077 J

The plant gains, especially around the X, feedback
loop, are large. A large static-loop scnsitivity leads to
a cirose approximation of the "ideal" model as shown in
Figure 20, but saturation is likely to occur if the systen
is driven hard. 1In the next section, a method is proposed

which attempts to retain the optimum naturc of C(s)/R(s)

without saturatio: .
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Saturation

The closed-loop poles are placed where specified by
the zeros of lleq for any gain. If saturation occurs in one
of the state variables being fed back, at least one of the
zeros and possibly the poles of lleq{s) move or vanish.

When the gain is high, instability becomes inevitable.

Saturation in the system is not necessarily a bad
feature if stability is maintained. Merriam (1964) states
that for the simple system showi in Figure 21 ". . . the
saturating controller with a linear zone . . . i8 the

optimum controller for the error measure . . ." (p. 20).

> ‘ o)
PI = j (e + pu(P)? 4T
t
M
o W) . l/A e(® | (€
—-D@ ‘>‘ + T S
- I'N )

“ig. 21. Optimum Controller for First-Order System

Merriam shows that the optimum solution for this
system is one with a linear region gain of K = p-l/2 with
velocity saturation occurring at e(t) = M or c(t) = M/K.
Thus, if e(t) is kept as large as possible the system is

driven with maximum velocity toward the desired output.



The extension of this to high-order systoms is that it
should be driven as hard as possible by keeping the gain
large.

A possible method of obtaining an almost muximum
elfort system while maintaining optimality is suggested by
the root locus of optimal models defined by Equation (5.5).
If the state variables are fed back so that as the
controller rcaches saturation, the zeros of lleq are still
‘determined by k, then the system remains stable,

The controller is built to saturate for excessive
error signals, but this region can be extended by dividing
the controller gain intc two linear regions, KnKh and Kb’
as shown in Figure 22. The feedback loops avre also split
into two groups. When the first stage is saturated, the
reduced gain and new zercs of lieqh(s) can be made to force
the closed-loop poles of C(s)l’.n(s) toward the plant's poles
along the optinum root locus. If these poles are close to
the poles of G(s), the linear region is greatly extended

and the optimum nature of the system maintained.

Swummary
The specified closced-loop transfer function can be
moditied for improved system accuracy when an altervable,
desired zero is present in the open-loop plaut. TIf this
zero is in the first block, care must be taken to insure

that this zero is a pole of lleq(s).
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Fig. 22. Optimum Controller With Two Modes

The synthesis is completed by the calculation of k
ag 1
which places the zeros of leq(s) (or Heq" (&) and Heq (s))

so that the desired closed-loop poles are exactly realized.




CHAPTER VII
CONCLUSIONS

The methods of specifying closed-loop transfer
functions of any order, coupled with the ability to realize
that function using state variable feedback, make the
synthesis of linear control systems straight forward. The
synthesis procecds from performance criteria to the calcu-
lation of the fcedback coefficients in five steps.

1. Values are assigned to performance mecasurcs, making
them performance specifications from the design
criteria. A sct of measures, sufficiently
describing either the time or frequency response,
includes BW, Mp’ Qp, Td’ Tr’ TS, PO, FVE (Kv), Lo
and DR,

2. An "ideal" model of low order (up to three poles
and one zero) is specified from the design charts.

3. The "ideal" model is extended to be compatible with

the gain, order and zeros of the compensated plant,

G(s), using the equation

2 | '
| ~ : G(R) (-
| = TeEIRG] l

J "jdeal"|

(s)

(=)

L=
o
o

67
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L., A pole and compensator zero are adjusted to improve

Kv il necessary.

v

The state variables are then chosen and the k

vector calculated.

If the gain chosen for the plant is large, the
closed-loop system rcesponse can be specified and realized
independent of the plant. Saturation, however, places a
limit on the gain and therefore on the extent of alteration

of the open-loop performance using state variable fcedback.
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ABSTRACT

Two new time-domain senaitivity measures, integral sensitivity
and peak sensitivity, are defined in terms of the sensitivity function.
A relation between integral sensitivity and classical frequency-domain
sensitivity is established, and the generation of classical sensitivities,
sensitivity functions, peak sensitivity, and integral sensitivity is
discussed. Classical sensitivity is employed in & comparison of the sen=
sitivity properties of linear control systems déaigned by two methods:
series compensation and state-variable feedback. It is shown that under
certain conditions the system designed by feeding back all of the state
variables may be expected to be lesé sensitive than the series compeusated
system. A modification of state-variable feedback, the H-equivalent systen,
is considered in further attempt to reduce sensitivity to parameter changes.

Several examples are presented to illustrate the theory.
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CHAPTER 1

INTRODUCTION

The need to consider the sensitivity properties of a control systen
arises from two general sources., While the system is in operation,
there may be variations in components because of aging, environmental
changes, etc. Secondly, it may be necessary to design a controller for
a system without having an accurate knowledge of the parameters of the
fixed plant. These problems have motivated a search for design methods
that yield systems for which the performance is insensitive to variations
in system parameters. .

In order to evaluate these design methods, it is necessary to
have quantitative sensitivity measures, many of which have been defined
in the literature. The first definition of "classical sensitivity" was
given in early work on the theory of feadback systems by Bode (1945).
In fact, reduction of the effects of component variations on system
performance was a primary motivation for the use of feedback. Varia-
tions of Bode's frequency domain definition of sensitivity have been
used in further studies by hHorowitz (1963) and Haddad and Truxal (1964).
Kalman (1964) has used classical sensitivity to demonstrate a link
between the theory of optimal controi and classical control theory.
Sensitivity in terms of pole and zero variations is discussed by Horowits
(1963), and has been used in the analysis of high order systems by

Van Ness, et. al. (1965). A time-domain measure of sensitivity and its
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application to control systems analysis is discussed by Tomovic (196&).
This thesis is an attempt to study the sensitivity properties
of a class of linear systems. The systems to be considered are non-
time varying and have a single input R(s) and a single output Y(s).

A vector differential equation of the form

x(t) = A x(t) + b r(t) (1.1)

may be used to characterize the dynamics of the system. However, the
sensitivity properties of a system depend on iél topoloéy. which {1e
not described by Eq. (1.1). Therefore, the systema to be studied are
defined in terms of block diagrams.

The problem to be solved is of the fcllowing form. A given
fixed plant, which is unalterable internally, is apecified by a transfer
function Gp(l). It is assumed that the state variables of Gp(a) are
measurable. ' Alse specified is-a closed-loop transfer function, Y(s)/
R(s) = W(s), for the desired system. The general problem is to find a
method for compensatiag the plant so as to yield W(s) in such a way that
the sensitivity of the system performance with respect to changes in
the parameters of the system is a minimum,

The design procedure to be inv;stigated here 1is the method of
obtaining W(s) by feeding back all of the state variables. A detailed
discussion of this method is presented by Schultz and Melsa (1967).
Here, the state-variable feedback system is compared to the system which
realizes the same W(s) by series compensation. The use of series compen-

sation to realize a specific W(s) is known as the Guillemin-Truxal



method, which is described in Chapter 5 of Truxal (1955). Thus, given
a fixed plant Gp(l) any specified closed-loop transfer function W(s)
may be obtained by either of the twoc methods. 1In this work the sensi-
tivity proprrties of the resulting systems are examined. An extension
of the state-variable feedback design is also investigated.

It is desired to find a general method of synthesis which yields
. W(s) with minimum sensitivity of the system performance with respect to
parameter variations. Hen:ce, a single measure of sensitivity and a
eingle criterion of system performance must be defined. Then the solu-
tion based strictly on these definitions may be sought. However, such a
procedure may lead to solutions which are impractical. To illustrate, a
system may be designed such that tho sensitivity of its performance with
re.nect to a differential change in some parameter is a minimum (in some
sense). But a finite change in the same parameter may result in instabi-
lity. Such a case is demonstrated in Chapter V. Therefore, while attemp-
ting to find a design method based on precise definitions of sensitivity
and performance criteria, the engineer must keep in mind an overall vi~:
of the nature of the system.

In Chapter II several definitions cf sensitivity from the literature
are discussed, and two new sensitivity measures are defined. The
generation of sensitivity measures is the subject of Chapter III. Chapter
IV is a general discussion of the sensitivity properties of systems designed
by cascade compensation, and by feeding back the state variables. In Chapter
V several numerical examples are presented, and some conclusions are

stated in Chapter VI.



It 1is found that a system designed by feeding back all of the
state variables may be expected to be less sensitive to parameter

changes than the series compensated system.



CHAPTER II

SENSITIVITY MEASURES

In this chapter several sensitivity measures are discussed in
relation to the type of systems to be studied here. A sensitivity
measure should incorporate two features. It should be mathematically
tractable, in order that its usefulness is not limited by computaticnal
- problems. Also, it must be physically meaningful in relation to the per-
formance of the system. In particular, the senéitivity measure should
relate to the performance criteria which are used to design the system.
The systems to be discussed in this thesis are designed for a specific
closed~-loop transfer function, W(o)'- Y(s)/R(s). Since W(s) is usually
chosen so as to yield a desired response to a step input, a meaningful
sensitivity measure for this type of system should indicate how the

step response is affected by parameter changes.

2.1 Root Sensitivity

A sensitivity measure which has been used frequently in the analysis
of control systems and circuits is root sensitivity. This measure
estimates the effect of a change in a system parameter on the positions
of the poles of the closed-loop system. The interpretation of the results
of an analysis using root sensitivity depends on the correspondence
between closed-loop pole locations and the characteristics of the tran-
sient response. The control engineer gains by experience an intuitive

notion of this correspondence, but for a complicated system, where many



pole locations change with variations in a parameter, this correspon-
dence may not be clear. Also, except in the simplest cdses, the rela-
tion between thie changes in pole locations and transient response,
wvhich one can obtain by inspection, is only qualitative. For these

reasons root sensitivity was not used for the problems considered here.

2.2 Classical Sensitivity

The expression given here for classical sensitivity is the
definition from Truxal (1955). The (classical) sensitivity of a

function T(s, A) with respect to a parameter A may be defined as:

T

T d 4nT
8y =8y (8 = 5 (2.1)

T
A

a.jn.
a ~
=3 >

(]
>
=
>

(2.2)

For Y(8)/R(s) = W(s), Sz (s) is a measure of the percentage change in W(s)
for a percentage change in a parameter A. A physical interpretation

of 5/ 1s difficult, because S\
However, it is shown that Sz (jw) is related to a sensitivity measure

is a function of the complex variable s.

wvhich is used extensively in this study. Therefore, some formulas for
classical sensitivity are presented here. ‘

Consider the single-loop feedback system of Pig. 2.J1. The
(classical) sensitivity of the closed-loop transfer function with respect

to G 18
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G(s)

H(s) IL

Pigure 2.1 A single-loop control system.

F__'J W(a, A\ +A) )
ﬁ+

el W (8,))

Figure 2.2 An experiment to illustrate
the definition of the sensitivity function.



“1T+0cH - (2.3)

1
o 1f leu| »> 1.

This result expresses the well-known fact that increasing the loop
gain of a system reduces the effects of variations of elaments in the
forward path., This fact provides a precisa ligk between classical
control theory and the theory of optimal control. VFor the system of
Fig. 2.1, the quantity F(s) = 1 + GH(s) 1s called the return differ-
ence. Kalman (1964) has shown that the control law for a wide class
of linear systems is optimal if and only if |F(juw)| > 1 for all real
w, Thus, it might be said that an optimal system is an insensitive
system, and vice v:rsa.

The sensitivity of W(s) with respect to H(s) ie:

W_HdW

Sq " W an

GH
@ mensTE——
14+ GH

(2.4)
It is seen that for a loop gain much greater than unity component
variations in the feedback path are undiminished in their effect on
W(s).

Suppose A is a parameter which appears only in a component

block G.
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Consider the function:

K(s+z1)(s+zz)...(s+zm)

G(8) = R T (atpy s (avp)
Than sg -1

¢ "1

sp1 s +p,

G Z4

szi - s+ z1

It is clear from the above calculations that classical sensi-
tivities are relatively easy to evaluate.
the fact that they are related to another sensitivity measure which
is closely connected with the step response of the system, makes

classical sensitivity a useful tool in the analysis to follow.

2.3 Sensitivity Functions

The sensitivity measure discussed here is defined by Tomovic
(1964). Let ) be a system parameter with a nominal value ).
y(t, A) be the response of the system to a step input.

change in the paramester ) the step response may be expanded in a

Taylor ceries.

This feature, along with

Then for a

(2.5)

(2.6)

(2.7)
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2 2
y(e, A+ 82) = y(t, A ) + 21%&;.&1 A + 9-1155-51 -1%%1- $oe

A da \
0 (o]

d d; A » which is a function of time, is a linear approximation of

A
)

the change in »(t, 1), at the time t, resulting from a ciiange A\ in the
parameter A from its nominal value Ao. Usually it is desired to have
an estimate of the change in y(t, )\) for a percentage change in A.

' Therefore, the sensitivity «f the system with respect to the parameter

A 1is defined as:

t, A
u () = ﬂc%-—)- (2.8)

K}

"A(t) is called the sensitivity function for the parameter . The

physical meaning of “A(t) may become more concrete if the situation
pictured in Fig. 2.2 is considered. A step input is applied simul-
taneously to two systems. In one system the parameter under consid-
eration has a value A, while in the other system the parameter has a

value A + A\, The difference betwesn the outputs of the systems 1is:

8y = y(t, A + 4x) - y(t, })

Division by the normalized change in, the parameter yields:

dy oy, A+ AN - y(t, ))
Ax/ 2 AX/A

Under the assumption that the following limit exists,

1lim
by _dy(e, M)
a0 % aA/ A u, (t).

A simple example illustratcs the interpretation of sensitivity

functions. PFig. 2.3 shows the block diagram for a control system for
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K K
R(s) + 2 . o
ky
Figure 2.3 A second order control system.
1
. X(s)

2375

&

Figure 2.4 A second order control systen.
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which W(s) is required to be:

W(s) =

8
02 4+ 4s + 8

Fig. 2.4 1is one possible realization of W(s). The response (y(t)) of

this system for a step Zuput and the sensitivity functions (uK (t),
1

uxz(t). ukz(t)) are plotted in Fig. 2.5. Since the senaitivity
functions approach zero as t+ =, Kl. Kz. and kz have no effect on

the final value of y(t). From the fact that the magnitudes of uxl(t)
and uxz(t) are largest during the time when the output is rising
toward its final value, it may be concluded that K1 and Kz affect

the rise time of the system, with an increase in K1 or Kz decreasing
the rise time. Alsc, a change in Kz has a smaller effect on the

response than does a change in Rl‘ The curve of u, (t) indicates that kz
2

affects the response in the region close to its peak value, so

that an increase in kz decreases the overshoot. This behavior
should be expected, since k2 is the coefficient of rate feedback.
Fig. 2.6 shows the actual affects of 20X increases in Kl and kz for
the particular system q! Fig. 2.4. From this figure it is seen that

the qualitative effects of changes in K1 and kz are a3 predicted.
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2.4 Peak Sensitivity and Integral Sensitivity
The sensitivity functions have the desirable features of relating

directly to transient response and indicating just how much each

part of the response is affected by the parameters. However, this

wvealth of information is not in a compact form, since the sensitivity

functions are functions of timef In an attempt to find a measure of

sensitivity which relates directly to transient response and yet is

more concise in form, two new sensitivity measures are defined here.
The peak sensitivity of the system with respect to a parameter

is defined as

u: - u, (T) . (2.9)

vhere T = the value of t such thatluA (t)lio & maximum. u, gives an
estimate of the maximum change in the response (at time T) for a + 1X

change in A,

The integral sensitivity of the system with respect to a parameter
A is defined as

5, = f: ui (t) dt (2.10)

when this integral exists. Unless A is a parameter affecting the final
value of y(t), u, (t) approaches zero as t+=, It is shown in Chapter
IITI that u, (t) is the response of a linear system. Then 1£'"A (e)+ 0
as t + », it approaches zero in an exponential fashion. In such a case
ui(t) is the sum of decaying exponentisls, so that the above integral
does exist. Therefore, it is concluded that 8, exists if A does not

A
affect the final value of y(t). If the final value of y(t) does depend

¢



on A, the integral sensitivity with respect to A is not defined. The
sensitivity of the system with respect to such a parameter might be
characterized by the peak sensitivity and the final value of the
sensitivity function uA(t).

The definition given for integral sensitivity was chosen as a
measure of the overall influence of a parameter A on the step response.
For the integrand, ui(t) was preferred over |uA(t)| for two reasons.
The squared quantity weights large values oé u kt) more heavily than
small values. Also, the integrand ui(t) allows the use of Parseval's
Theorem in the evaluation of the integral. This 4s discussed in the
next chapter.

Clearly, in obtaining more concise sensitivity measures, some
information as to the way in which A affects the response is lost.
The sensitivity functions are useful in particular cases vhere this

information {is important.

16



CHAPTER III

GENERATION OF SENSITIVITY MFASURES

The purpose of this chapter is to show how sensitivity
functions, peak sensitivities, and intcgral sensitivities may be
found. To generate these sensitivity measures, an analog or digital
computer is required, while claésical sensitivities can be found
easily from a block diagram of the system, It is shown that classaical
sensitivity and integral sensitivity are connected by a relationship
which enables one to predict the nature of sensitivity functions and

integral sensitivity from a knowledge of classical sensitivity.

3.1 The Relation between §, and st

From the definition of the sensitivity functionm,

u,(t) = %}%Q'
Y
L(ux(t)) - UA(O) - gié%l
A
d(Y(s)/R(s

for R(s) not a function of A. Since the sensitivity functions are de-

fined in Chapter II for a step input, R(s) -'%. Then,

17
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o L du(s) W(s)
Up(®) = 2 T2/ Wis)
A_ dW(s)
= W) W(s) di
.1 W (3.1)
. W(e) SA .
For & = ju,
v, (3u) | -ﬂ’-fﬁ’ﬁ s} awl.
" Now,
s, = I: ud(e) de
2 2
=L uy(t) de
since u(t) = 0 for t< U, Then using Paruval‘o Theorem,
c 8, mslo 3% Ute) UC-n) a8 (3.2)
85% ,215'_3-. .
=5 7 |ugw |2 a
o 2
- .51;’._‘{ Mj;-’l-l- |s‘; (jm)iz dw (3.3)

Eq. (3.3) shows the relation between integral sensitivity SA and

classical sensitivity S‘;. Clearly, reducing |S‘:(Jw)| reduces SA'
In this thesis the systems to be studied have identical trans-

fer functions W(s), but different classical sensitivities with respect

to the same parameter. Then from Eq. (3.3) it 13 seen that the differ-

ences between integral sensitivities for such systems are determined by

differences 4n theixr classical sensitiwities. This link between

*

RSP RRY ;I’".g”‘,‘.:z,‘, N i
S e e gas o g L
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classical and integral sensitivity is important, because classical
sensitivities are easily found from a block diagram of tha system,
while the generation of SA requires a computer. For this reason it

is desirable to have a method for finding classical sensitivities.

3.2 Generation of Classical Sensitivities

The procedure given here for finding classical oénaitivities
from the system block diagram is essentially the same as the method
described by Tomovic (1964). The block diagram of a control system
is shown in Fig. 3.1, where the component blocks of particular interest

are Gi(') and Ki(s). For the case where all of the G,(s) are first

b
order and the Hj(a) - kj (constants), Fig. 3.1 is a block diagram

of a system where all of the state variables are fed back. However,
the expressions derived here for classical sensitivities are valid
for Gj(a) and Hj(c) of any order. Fig. 3.2 shows a reduction of

the block diagram for the purpose of calculating Sg and Sw . L(s8) is

H
i i
the transfer function from Eito Bi' (These variables are defined in

Fig. 3.1.) M(s) represents the sum of thn feedback through the paths
containing Hl, Hz, cee Hi—l when these paths are referred to the

output. N(s) is the transfer function from the output of G1 to the

system output. These quantitiss are defined by the following equations.

n
It
: B, (s) c
E(0) ;. ‘I‘ -, i G,)
! =3
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M e
B, ¢

A — N
-

Pigure 3.2 A reduced block diagram.
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1{-1 §-1
M(s) = K, + (M, T G,) (3.5)
A T T
1-1
N(s) = It GJ (3.6)
1=1

Then,

GiLN .

l+ GiL [H1 + NM])

= W(s) = (3.7)

Y{l)
R(s)
GiLN

l+ GiLF

where F = Hi + NM.

Then tho'-onsitivity of W(s) with respect to Gi(o) is

M o 1) gue)
"6y W(s) dGi(l)

G l+G,LF - G,LF
i W it L

W (14 cix.nz

1

l+ GiLF

The transfer function from the input to Et(') iet
E,(s) i} 1 .
R(s) 1+ G,LN M+ “1]
N

(3.8)

- 1
1+ GiL m1 + NM]

1

) SeEEeE——————
1+ cinr

- s“ (309)
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Thue, the classical sensitivity of the system with respect to
Gi(') is just the transfer function from the input to !1(0). The

sensitivity of W(s) with respect to Ht(l) iss

R A1)
H,  W(s) dH,(s)

In order to simplify calculations, let G(s) be defined as:

LG

1+ LGM *
N

G(s) =

Then,W(s) = N 17 ol

" R(s) (3.10)

The classical sensitivity of the system with respect to Hi(o) is tha
transfer function from the input to‘Di(o).

Eqs. (3.9) and (3.10) for classical sensitivities only apply to
the system of Fig. 3.1. However, the series compensated system is
eas.ly treated as a special case. A unity feedback system with a fixed
plant Gp(l) and a series compensator Gc(l) is e¢hown in Fig. 3.3, Since
there is no feedback from the output of Gc(')‘ the transfer functions

in the forward path may %“e combined. Let Gl(') - Gc(l) Gp(n). Then the

e
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B, (s
X 6,8 [, o)

D, (s)

Figure 3.3 A series compensated system.
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series compensated system of Fig. 3.3 is a special case of the system
of Fig. 3.1, with only one block in the forward path (~1(a)) and with
Hl(l) w 1, Now, from Eqe. (3.9) and (3.10),

v  E@ 1

301 "R "1 +'c1(-)

1
1+ Gc(l)cp(l)

W ,Dl(') ‘ -Gl(u)
1 R(s) 1+ Gl(')

'Gc"’;ﬁp<"
1+ Gc(') Gp(l) '

Por system configui‘ations which are not special cases of the
diagram in Fig. 3.1, the classical sensitivities can be found by direct
application of the definition (Eq. (2.2)).
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3.3 Generation of Sensitivity Functions, Peak Sensitivity, and

Integral Sensitivity.

In Section 3.1 S, was expressed as an integral in the form of

)

Eq. (3.2). For the case where U(s) is a ratio of polynomials,

the integral has been tabulated as a function of the coefficients of

the polynomials (Newton, et.al. (1957)). However, the expressions for

this integral become cumbersome rapidly as the order of U(s) increases.

Since for an nth order system the order of U(s) is 2n, the evaluation

of Sx by Eq. (3.2) is impractical.

The method presented in Section 3.2 for finding classical

sensitivities and Bq. (3.1) for Ux(a) indicate how sensitivity functions

may be generated. Eq. (3.1) is repeated here:
. 1 W
Ux(a) -5 W(s) sA

If a 1s a parameter only of G1(°)' then

G
1 L
ua(.) - ;'W(o) SGi Su

i

If B 1s a parameter only of Hi(.)' then

‘ R
1 U

i

The generation of Ua(a) and Ua(s) is shown in Fig. 3.4.

is applied to a system with the transfer function W(s).

(3.11)

(3.12)

A step input

The output is

applied to the input of a second system (with transfer function W(s))

whose seneitivity is to be studied.
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Bi(l) D, (s) W
The tranafer functions ??:T-'and ;T:T-'provide the terms sGi “1
G H

in Eqe. (3.11) and (3.12). The blocks labeled Sa1 and SB1 provide

and Sw

the corresponding terms in Eqs. (3.11) and (3.12) to complete the

generation of Ua(n) nﬁd UB(a). For the cases where the parameters

G H
a and B are gains, poles, or zeros, sai and SB1 are simple functions,

as shown in Chapter II. Finally, the blocks labeled I. S. (Integral

Squared) square the time functions "a(t) and us(t) and integrate to

yield S, and 88. (The generation of the sensitivity functions is
carried out in the time domain by a computer, but for convenience,
the method is discussed using the transformed variables.)

For the example systems of Chapter V, a digital computer is
used to generate the sensitivity functions, peak sensitivities, and
integral sensitivities. For the 5th order system of Example 3 in
Chapter V, the sensitivities with respect to eight parameters are
found. The generation of the sensitivity functions, peak sensitivi-
ties, and integral sensitivities for each parameter leads to a system
of equations of order 23, The computer time required for the solution
is approximately 4 minutes.

It has been pointed out that the evaluation of 8, from tables
of the iategral (Eq. (3.2)) is usually impracticel. However, for the
third crder system of Example 1 in Chapter V, the integral sensitivities
were found by this method. These resulta wire compared to those obtained
from a digital computer program, which approximsately solves the differ—-
ential equations for the inte;rvl ner.(tivities. The vaiuou obtained

by the two methods agread t« :iihiv “, 3%,

L]
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CHAPTER IV

SENSITIVITY AND STATE-VARIABLE FEEDBACK

The sensitivity measures which have been discussed are used
in this chapter and in Chapter V to study the sensitivity of some
linear control systems. In the present chapter a slightly general
discussion of the problem is attempted. Because oenoitivity analysis
in terms of sensitivity functione and integral sensitivity is prac-
tically limited to specific cases, much use 1is made of classical

sensitivity.

4.1 Series Compensation and State Variable Feedback

It 48 assumed that a given fixed plant is to be compensated in
order to yield a desired closed-loop response., Figs. 4.1 and 4,2 indi-
cate two approaches which may be used to solve the problem. The fixed
plant is of order m, and has a transfer function

Gp(a) - Gl(n)Gz(a)...Gm(l)

where the Gi(°> are first order. 1In Fig. 4.1 a cascade compensator
Gc(n) has been used to realize the required W(s), which 1is of order n.
;G G .
W(s) = =B (4.1)
Gc(l) may be found by the Guillemin-Truxal method discussed in Truxal
(1955). In Fig. 4.2 W(s) is obtained by feeding back the state vari-

ables of the fixed plant and, if necessary, by adding first order series

29 -



R(s) Y(»)

Gp(o) - Gl('>G2(')"‘Gm(') (order m)
G‘q(o) - Gc(.)cp<') (order n)

Figure 4.1 The series compensated systen.
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compensating elements, whose state variables are also fed back., This
method of design is described in detail by Schultz and Melsa (1967).

The resulting system has the same nth order, closed-loop trangfer
function W(s) as the series compensated system. The following expression

r

for W(s) of the state-variable feedback system is derived in the

Appendix, .
G G ...G
172 n
W(s) = (4.2)
1 + klchz.OOGn + k:czoﬂocn+l..+knc'n
n
n
10
- A =21 1 (4.3)

!zl n
1+ kK, 1 G
z-1["3-z 3]

L g
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4.2 Sensitivities

The sensitivities of the two systems with respect to parameters
in both the forward paths and the feedback paths are studied in this
section, However, more attention is focused on the parameters in the
forward path, expecially those in the fixed plant. This is because
in most cases the designer is able to select compensating components
with production tolerences which are small enough to avoid problems of
sensitivity with respect to these components. Sensitivities with
respect to the compensating elements should ltill be checked, howvever,
in order to avoid a situation where the tolerances required are impractical.

Consider the state variable topdbock systen. Using Eq. (3.9),

M. E, (e)
G1 R(s)

It is shown in the Appendix that

n-z'i{ n
1+ k n c]
oM ge1 li+donq4q !

G, B n n (4.4)
1+ ] |k, 1 ¢
je1[d ey
~ For example in a third order system these sensitivities are!
sw ) 1 4 k26283 + k3c3 5.58)
G1 l+ k1616263 + k2(:2G3 + k303
¢ '1+kcclc+:l:'3co k.G (4.5b)
2 117273 2°273 373
W 1 ' ,
g a - (4.5¢c)
03 1+ k1616263 + k20263 + k363
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The denominators of S: do not depend on i, so the magnitudes of the
i
Sg may be compared by examining the numerators. For this discussion
1

let
Mo Ai(a)
G1 B(s)
A, (Ju)
B(jw) for s = juw.

For frequencies less than the system bandwidth, and if all ki> 0, it
may be expected that IAi(jw)l is smaller for larger valuves of 1. 1In
this case, from the discussion of the relation between classical sen-
sitivity and integral sensitivity, it is expected that the Sci are
smaller for larger values of 4. Incuitively, one might predict this
behavior from noticing that the Gi(e) are more imbedded in feedback
loops for larger values of 1. For all of the examples studied with
ki >0, it was found that SGi decreased as i1 increased. However, it
is not always true that all of the k1 are positivt; If one or more
of the feedback coefficients are negative, it may be expected that

for some value of {, SG >S. . An example of this situation is

1+1 B

shown in Chapter V.
Consider now the series compensated systeu, Let Geq(s) -

Gc(') Gp(')' “hen using the fact that the sensitivities for all blocks in

cascade are equal,

W W E(s)
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Since the closed-loop transfer functions for *he two systems are the

M JEe) B

Geq R(s) R(s) Gl
vhere El(u) is defined in Fig. 4.2, and Sz refers to the state feed-

1
back system. Thus, the sensitivity of W(s) with respect to any block
in the forward path of the series compensated system .s equali to the
sensitivity of W(s) with respect to G1 in the system using state-
variable feedback. Then for most cases sz is smaller for the

RS §

state variable feedback syatez, since Sg decreases as 1 increases

i
in that system.

The sensitivities of the state-variable feedback system with
respect to the feedback coefficients, ki' are now considered. In the
Appendix it is shown that

n
s ™ 1 E—L~Fj (4.6)
k1 n o , U
1+ ) k, T G
J=1 ey
n
T fag
- B(B)J (‘07)
For the case of a third order system these sensitivities are:
T 6 b
kl B(s)
-G.G,G
(] —-—; 2 j; - "'Y(Q)_ (4.8.)

B(s) R()
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-k.G.G
W 27293
® T B(s) (4.8b)

-k .G
W 33
sk3 ® B(.) ¢ . (608°)

For the series compensated system let k = 1 be the unity gain of the

singlu isedback path. Then,

I A= { O]
k 1+ GG R(s)
- S: for kl -]
1

Thus, the sensitivity of the state-variable feedback system with
respect to the unity feedback gain from the output is the same as for

the series compensated system. The relative magnitudes of s: (Jw,
i
for different values of 1, depend on the magnitudes of the G1 (Jw.

If |c1(1¢.,)| >1 and 1if the k,
would appear that !Si (ju$| decreasees as 1 increases. In such cases
i

the state-variable feedback system would not be more sensitive with

are of the same order of magnitude, it

respect to changes in the feedback coefficients than would the series
compensated sytem with respect to a change in the single unity feed-

back gain.

4,3 Restrictions Imposed by the Fixed Plant and the Closed-Loop
Transfer Function.

From th: comparisons made above between the series compensated

system and ths state-variable feedback system, it is seen that
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decreased sensitivity may be obtained by a change in the system
configuration. However, it appears that the minimum sensitivity

that can be achieved is limited by the fact that the fixed plant

and the closed-loop response are specified. An example which
illustrates this is the system of Fig. 4.3, The closed loop transfer
function is

3

2
s + (p2 + Py + k3K3)| + (pzp3 + pzk3K3 + k2K2K3)| + K1K2K3

W(s) =

If kz and k3 are positive, it may be expected that G, is the lamast

k)
sensitive block. From Eq. (4.5¢),

"y s(s +p,) (s+p,)

G 3 2
J s + (p2 + Py + k3K3)| + (pzp3 + p2k3K3 + k2K2K3)u + K1R2K3

The examples of Chapter V show that the low frequency asymptote of

s: is important in determining SA' Here, for small values of w,

PyPqw
Isg, G0l = T
3 17273

The product PoP, is determined by the fixed plant, while the product

K1K2K3 is specified by the closed-loop trensfer function., Decreasing

Sg by specifying a new cleszzd locp response with a larger constant

3
term, K1K2K3. is usually not feasible, since "b.¢ onstant term

determines the loop gain of the system; the 1..- - _.ain is usually



R(a)+/

= Y(s)

| X , X K X
K, 3 K, 2 _:_ 1
- 8t+p1q a+£z
k, k,
O
+ +

Figure 4.3 A third order control system.

38
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restricted so that the system remaine in a linear region of operation
fcr some expected input.

The dependence of sensitivity on the fixed plant and the
clcsed-loop transfer function is currently being investigated by

Dial (1967).
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4.4 Modifications of State Variable Feedback

Farlier in this chapter it was found that, under certain con-
ditions, one would expect the system using state-variable feedback to
be the least sernsitive to the Gi(s) ncarest the input. In an attempt
to extend this minimum value of sensitivity to the other Gi(l),
modifications of the feedback structure are investigated.

If in the system of Fig. 4.2 all the feedback paths are referred

to the output, then the resulting system has the form of Fig. 4.4

wvhere
kz k3 kn
Heq(.) -] +'&'; +-G_1-G.—2. *ooot Gl...Gn 1 (l’o9)

The system in this form is referred to as the "H-equivalent' system.
The transfer function Y(s)/R(s) is unchanged. The H-equivalent system
1s often used as a block diagram reduction of the state-variable feed-.
back system for the purpose of calculating the closed-loop transfer
function. However, the H-equivalent system here is intended as an
actual physical system; that is, the output is fed back through Heq(')'
and no other state variables are fed back. For the H~equivalent systenm,

W _E'(s) 1

S = = »
G R(s) 1+ Gﬂeq .

1

, k2 kn
1+GG¢00G [1 Sl JUP J ]
172 n Gl Glooncn- 1

1
Gzo . ..Gﬂ +oo ot kncﬂ

" 1+6G6G....6 +k
n 2

12

W « |
- S (l. . 10)
Gn




+/

]
Gn - T lcz lcl

Figure 4.4 The H-cqu:lvnhnt system.

s)
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Thus, the sensitivity of the H-equivalent system with respect to any
block in the forward path is equal to the sensitivity of the state-
variable feedback system with respect to Gn(s). This 1is the "minimum
sensitivity" which was sought.

With regard to the construction of a system, the H-equivalent
configuration has both advantages and disadvantages in comparison to
the state-variable feedback system. For the H-equivalent system only the
output is antually measured. This is an advantage when measurement
of all of thm state variables is difficult. ﬁowever, unless the¢ numerator
and denominator of G(s) are of the same order, the numerator of Neq(a) ie
of higher order than the denominator. Then in order to realize Heq(l)
approximately, poles must be added. This problem is treated in an

sxample in Chapter V.

4.5 A Note on Integral Sensitivity and the Poles of the Fixed Plant

Consider again Eqs. (4.2) and (4.3) for W(s) of the state-variable
feedback system. It is assumed that the functions Gi(s) are of the form:
K1(° + zi)

8 + pi

Gi(s) - (4.11)

The factor (8 + zi) is not always present. If the functions in the

nuperator and denominator of W(s) are cleared by multiplying by
4 I 1 (s + pi). W(s) may be written as:

m m-1
Wee) _Bs) | as + a _ 18 +eoot a4 (6.12)
Q(s) 8" + bn -1 " 1 +..++ b, '

where the roots of Q(s), the characteristic polynomial, are the closed-

loop poles of the system. Similarly, if the expressions for the
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classical sensitivities, sz » are cleared of fractions, the sensi-
i
tivities may be written as:

Moo N, (s)
Gy Q(s)
cls‘ +ec, _ llz “late
i —— = . (4.13)
s + bn - 1' oot b°

From Eqs. (4.12) and (4.13) it is seen that the denominators of the

8: are the characteristic polynomial, which is specified by the re-

1 |
quired closed-loop response.

The sensitivity with respect to Gn(o) 10}
n
M _iﬂ}t(.+p}.). (4.14)
G, Q(s)

Recall that the integral sensitivity, sx. depends on the magnitude of
W

81. Now,
n
1., (e+p)(-s+0p,)
W 2 - -1-_- Jl( Jir 1_
ISG,,‘ Q(e) Q(-8) (4.15)

From Eq. (4.15) it is clear that the integral sensitivity, SG s is the
same for two seystems which have the same closed-loop responoc? but
whose open loop poles are symmetrical with respect to the ju-axis.
Thus, one or more of the open loop poles could be located in the RHP,
and SGn would remain the same. This emphasizes the fact that the

sensitivity function, "A(t)' and therefore SA' are defined in terms of

an incremental change in the parameter 1. Clearly, for sufficiently
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large cha'.ges in the gain Kn' a system with open-loop poles in the
RHP behaves very differently from a system with only LHP open-loop
poles.

The discussion above indicates tha' in addition to compen-
sating the syr *em for the desired closed-1l.op response¢ and evaluating
sensitivities, it is necessary to retain a wider viev of the system

design - for example, in terms of a root locus.

4,6 Summary

From the analysis in eection 4,2 it is seen that, under certain
conditions, the state-~variadble foedpack system is less sensitive to
parametar changes as compared to the series compensated system with the
same closed-loop transfer function W(s). However, it appears that the
minimum sensitivity attainable is restricted by the fixed plant and
by the required W(s). The H-equivalent system, or a system using an
approximation to Heq(‘)’ might be used to extend this minimum value of
sensitivity to all of the blocks in the forward path. Chapter V

conuists of a series of examples which illustrate the idnes discussed here.




CHAPTER V

EXAMPLES

This chapter consists of several examples to illustrate the

sensitivity properties of systems designed by the methods discussed

in Chapter 1V, In Example 1 a fixed plant is compensaten by feeding
back all of the states variasbles and by the Guillemin-Truxal method.

The sensitivities of the two resulting systems are compared. The same
fixed plant is compensated with H-equivalent feedback in Example 2.,
and a system with an approximation of H‘q(l) is discussed in Example 3.
In Example 4, a zero, which 1o not desired in W(s), is included in the
fixed plant. Sensitivity analysis is used to determine the parameters
of a cascade compensator which provides for cancellation of the zero

in the closed-loop response.

Example 1. Figure 5.1 shows the fixed plant of a controi
system which is required to have ths following closed-loop transfer

function.

W(s) = 3 80

o3 + 1482 + 48s + 80

80 .
(s + 10)(.2 4+ 48 +8)

W(s) is obtained in two ways. One system is syntehsized using state-

variable feedback, while the Guillemin-Truxal method is used to design

45
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e

1 s+5

s+l

p——*_:_ pemns——

Figure 3.1 The fixe" plant of Example 1.

K X K | x K, | X, =Y
¢ b K 2 5P Ye
- | .tZQ s+p (]
ky ky
e e
K1 -] P, * 1 K= 8
K, = 5 py = 3 k= 35/80
Fs -2 k3- 1/2

Figure 5.2 The compensated systes of Example 1.
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the second system. For both systems ir this example claseical
sensitivities 2nd sensitivity functions, as well as peak sensitivities
and integral sensitivities, are found in order to shov the connection
between the different sensitivity measures.

For the state variable feedback system (Fig. 5.2) the sensi-
tivities with respert to the blocks in the forward path are given
by Eqe. (4.5). For this example tha equations become:

W __!? + 1402 + 48s

——

1 o7 4 148% + 48s + 80

-] -]
o 3_8(6+1)(8+1)
5 2
8 [ 8
@+ +z+D

w 03 + 1632 + 13
S¢. * 3 2
2 8 + 148" + 4Bs + 80
8
L) 9(13 + 1)
80 8 52 8
('1'3+1)("8‘"+"2'+1)
k] 2

W 8 _+ 68 + 58
8. " 3

J s + 14.2 + 48a + 80

s
1 _s(s+1)(5+1)
16 2

8 8 8
G+ DG +7+D

Asymptotic Bode plots for these sensitivities are shown in FPig. J5.3.
There is also in Fig. 5.3 a Bode plot of G.q(l), vhich is included in

order to indicate the bandwidth 4Z the system. It may bes noted that




Pigure 5.3 Gain sensitivities for the state-
variable feedback system of Example 1.

48
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for frequencies less than the gain crossover frequency, Sg < Sg < sg .
3 2

1
The classical sensitivities with respect to the specific parameters

in the forward path are:

-p
Moo P2
P Gao0tp

13 SG5t L
" 780

2
[ ] -] 8
("'"'10 +1) ('-"'8 + 2 +1)

-p
Moo 3
Py Gy 8 +p,

= § s(s + 1)
1€ 2

Y (B 8_ .8
G+ DG+

7+ 1)

Asymptotic Bode plots for Sﬁ and S: are in Fig. 5.4.
2 3
The sensitivities with respect to the feedback coefficients

are given by Eqs. (4.8).




G.q 10

Figure 5.4 Pole sensitivities for the state-
varisble feedback system of Example 1.
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W -1
S -
k1 8 52 8
(15 + 1)("‘5-!'-2-4-1)
sw - =1 ‘ 8
k2 16 s 02 8
(-i-6+ 1)(_§+E+1)
8" - Y s(s + 1)
k3 10 s 82 .
(T6+ 1)(—§+-2-+ 1)

Fig. 5.5 shows Bode plots of these functions.

If the Guillemin-Truxal method is used to hompensatc the
plant, the final closed-locp system is as shown in Fig. 5.6. For
~ this system S:. the sensitivity with respect to any gain in the
forward path, is equal to Sﬁ for the state-variable feedback system.
Similarly, the sensitivity o: the series compensated system with respect
to the unity feedback coefficient is equal to Sz for the state-variable
feedback system. The sensitivities of th} oerie: compono.ted system

with respect to the poles of the fixed plant aret

-p
s"-s"[ 2]
K |s + Py

s(-g- + 1)(% +1)

L
]
wnijw

2
G+t DG+ 3+ DG+

5]

o(% + 1)(% +1)

v
=
8
w
R

|
wlb

2
GG+ VE+3+DE+ D)
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P
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/
/
/
/
W /
8 P
ky 1
/ ’
rd
W
S /
ky
.01

Figure 5.5 Feedback coefficient sensitivities for
the state-variable feedback system of Example 1.
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The Bode plots for these functions are shown in Fig. 5.7.

A comparison of the Bode plots of the classical sensitivities
of the two systems shows that for all parameters, the magnitudes of
the classical sensitivities for the state-variable feedback system
are less than or equal to those for the series compensated system
for frequencies less than the gain crossover frequency.

A similar comparison may be made in terms of s:isitivity
functions and integral sensitivities.

Figs. 5.8 and 5.9 show block diagrams for the generation of
sensgitivity functions for both systems., Plots of the sensitivity
functions are shown in Figs. 5.10, 5.11, and 5.12, and a table listing
peak sensitivities and integral sensitivities is in PFig. 5.18.

From thesa results it is clear that a reduction in sensitivity
with respect to the parameters KZ’ K3, Pys ;nd'p3 has been obtained

using the state-variable feedback method of design.
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rea)y * 8(s+1) (s+5) 10 i {()
(e+6) (9+8) s(s+l) (s+5)

Figure 3.6 The system of Example 1 coupuno.tod
by the Guillemin-Truxal method.




eq

Jigure 5.7 Pole sensitivities for the
series compensated system of Example 1.
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Figure 5.9 Generation of sensitivity functions

and integral sensitivities for the state~-
varisble feedback system.
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I35

o5
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Figure 5.12 The sensitivity functions for the feedback
coefficients of the state-variable feedback systenm.



Example 2. For the state-variable feedback system of Example 1.

the sensitivities with repect to Kl' Kz. and p, may be reduced by
using H-equivalent feedback. The Heq(s) system is shown in Fig. 13.
From Eq. (4.10) the sensitivity of the H.q(u) system with

respect to any block in the forward path is:

vhere Sz is the gensitivity of the state-variable feedback system

n
with respect to Gn (n = 3), The sensitivities with repect to P,

and P, are:

W U -1
sp2 sG (a + l)

¥ o gW (=S

Py G (l + S)

s: is the same as for the state-variable teedback system. The

3
sensitivity with respect to p, 1as been reduced, oincels:|<lsg R
2

wvhere sg is the sensitivity with respect to 62 for the state-variable

2
feedback systen.

The peak sensitivities and integral sensitivities for the

H-equivalent system are listed in the table of Fig. 5.18.

61
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xl = Y(s)

a je-

mz—t?———g-——-m————-ﬂm -

43 1 2
1+ 80 s + 10 8 om

Figure 5.13 The H-equivalent system of Example 2.
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Example 3. In Example 2. a reduction in sensitivity was obtained

by using H-equivalent feedback. However, Heq(s) i{s not in a form which
is easily realizable. It is desirable to approximate Heq(l) by a trans-

fer function which is realizable by RC elements and a gain factor,

- 43 12
Heq(#) = 1+ 358 + 95 e

8
-] + 10(. + 5.38)
In order to make the second term realizable, poles are added at s = =40

and s = -50, while preserving the low frequency gain.

200 s(s + 5.38)
(s + 40) (s + 50) (5.1)

There are several factors to be considered in choosing the

H;q(a) -] 4

approximation of Heq(s). The large gain of Heq(e) at high frequencies
is undesirable if there is noise at the system output. The addition
of low frequency poles to Heq(s) alleviates this problem. However, two
other considerations make the use of high frequency poles desirable. -
The poles of H;q(s). which become zeros of W(s), have less effect on
y(t) 1f they are placed at high frequencies. Secondly, the addition
of poles in the manner shown in Eq. (5.1) causes the zeros of H;q (s)
to be different from those of Heq(s). This error in zero locations,
which also affects y(t), is smaller for high frequency poles. Thus,
a compromise must be made between the filtering of output noise and
the approximation of “eq(')‘ Anothar possiblity is to approximate

»

H'q(l) by:
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2000 (1 + .538s + .1s2)
(s + 40)(s + 50)

H;q(o) -
However, with this approximation a change in the pole location or
the gain conotant'of R;q (s) results in a steady-state error at the
output.

One other idea in the approximate realization of‘Heq(s) is to
obtain a system which has zero steady-state error for a ramp input.

For such a system the velocity error constant, Kv’ is infinite. Kv
may be expressed (Truxal, 1955) as:

L §L_§L

o oge1 Py oge1 %
where the pJ and zJ are the poles ahd zeros of the closed-loop trans-
fer function. Since Kv is determined by the closed-loop poles and
zeros, the poles added to Heq(e) might be placed in such a way that
Kv = o, This is a topic for further investigation.

The structure of the system with H;q(a) feedback is shown in
Fig. 5.14, and & bicck dlagram for the generation of sensitivity func-
tions is in Fig. 5.15. The table of Fig. 5.18 l1ists the peak sensi-
tivities and integral sensitvities. For the parameters in the fixed
plant, the seraitivities are approximately equal to those of the Heq(s)
system. The sensitivities with respect to.the parameters of H;q(o)

are reascnably small (leoﬁ than S, for the state variable feedback

K

system).

RTINS ST PR I LI Tt
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Ky X, K, Ky X, = Y(o)
K * s+ .‘|+ s
. | LEPs | P2
A n(a+al) J‘
(a+bl)(a+b2) |
K, = 1 Py " 1 K= 38
K, = 5 Py = 5 A = 200
KS - 2 al = 5,38
b1 = 40
b2 = 50

Figure 5.14 The H'-equivalent system of Example 3.
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Figure 5.15 Generation of sensitivity functions
and integral senativities for the H'eq(s) system.
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For the “;q(l) system the new closed-loop transfer function is

80(s + 40)(s + 50)

W(e) = 2 2
(s + 61.9)(8” + 29.48 + 287)(8” + 4.Bls + 9.05)

The pole and zero locations are shown in Fig. 5.16, and a graph of
y(t) 1is in Fig. 5.17. It is seen that the addition of poles in the
feedback structure has altered the step response. This example demon- .
strates that while a system using an approximation to Heq(a) may show
an improvement in sensitivity over a system with state-variable feed-
back, two new problems are introduced. The addition of poles to

'

H.q(u) affects the closed-loop response, and the high gain of “eq (s)

at high frequencies is undesirable if there is noise at the output,
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Fxample 4. Fig. 5.19 shows the block diagram of a fixed plant

for which the transfer function is

- S(s + 2)
G (8) ® S+ D(s +3)

The desired closed-loop transfer function is

80
(s + 10) (82 + 4s + 8)

W(s) =

In order to realize W(s), the zero of the fixed plant must be cancelled,
and it is assumed that it is impossible to insert a pole immediately
preceding this zero.

Since direct series cancellation is impossible, the gzero
appears as a zero of W(s). Thus, W(s) is also required to have a pole
at ¢ = -2, That {is,

80(s + 2)

W(e) = 3
(o + 2)(s + 10)(8” + 48 + 8)

To accomplish this, the order of the system is increased by inserting
a series compensator as shown in Fig. 5.20, and the new state variable
x, is fed back. The parameters kz. k3, kb’ K, and P, are then chosen
so as to realize W(s). The values of kz, k3' and K ara found to be:

K = 16, k, = 7/16, k3 = -3/4
To obtain the specified W(s), the values of ka and P, must be chosen

x, (8)
such that the transfer function -;?;7 » 88 defined in Pig. 5.20, is:

x,(9) 16 16

2(s) 8 + Py + 16k, s + 10 —




2

N 2.5(s8+2)
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|

8+5

Figure 5.19 The fixed plant of Example 4.

s+l

1
-_
]

K X3 K, (s+z,) | %2 [x, ] % = Y(®
R( + a%p 3 o 22772 v
- - 4 s+p, l stp, s
oS
ks ky
+ +
K, =1 K= 16 Py = 1 k, = 7/16
K, = 2.5 Z, =2 Py =5 ky = =3/4
Ky = 2

Figure 5.20 The closed-loop system of Example 4.
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Any values of ka and Py satisfying P, + 16k4 » 10 produce the required
pole at 8 = -2 in the closed loop transfer function.

Bounds on a desirable value of P, may be obtained from stability
considerations (Schultz and Melga 1967). If Py " 0, the system
has two open-loop poles at the origin, and the root locu?. as a
function of the gain K, is in the RHP for small values of K. Another
possible choice is P, " 10, which requires k4 » 0. Since the state
" variable x, is not fed back when ka =0, a zaro.of Heq(o) is loet.
Therefore, as K +», two closed-loop poles (instead of only one) approach
infinity. This is a disadvantage with regard to stability for high
gain,

An intermediate value of P, may be obtained by considering the
lcngitivity of W(s) with respect to Py and kb' From Eq. (4.14),

(s + pa)(s + 5)(s + 1)s
S -
64 Q(.)

Therefore,

-p
sw - sw 4
P, G,8%*p,

-pa(s + 5)(s + 1)s

- Q(s) (5.2)
From Eq. (4-7)t ‘
¥ A
kb B(s)
-kAK(I + 5)(s + 1)s
- (5.3)

Q(s) ,

G
PRUEEA .
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It is seen that Iszal and |Sﬁ6| are proportional to |p,| and |k, |
reaspectively. Usually it is desirable to decrease the sensitivity
with respect to elements in the forward path and to accept higher
sengi{tivities for the feedback coefficients, because the tolerances
for the ki'a may be controlled. However, in this case the series
compensator is also selected by the designer. A possible solution
18 to choose Py such that the sensitivities with respect to p, and
kb are equal. From Eqs. (5.2) and (5.3) this requires 16k4 ol Y
We have
P, *+ 16kb = 10 (5.4)
Therefore,
P, = 3 k, = 5/16
- It should be noted that the sensitivities with respect to the
. ther parameters of the system do not depend on the values of k,  and
P,» @8 long as these values satisfy Eq. (5.4). This is seen from the
fact that the transfer functions used to calculate the sensitivities

for the other parameters involve P, and ka only through the function
x,(s)
z(s)’

A block diagram for the generation of sensitivity functions for

this example is shown in Fig. 5.21, and the results are listed below.
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Peak Integral
Parameter Sensitivity Sensitivity
Kl _ 0.593 0.286
K, | 0.321 | 0.0670
K, " 0.458 0.152
K 0.248 0.0424
z, - 0,213 . 0.0354
" Py -0.148 0.0191
Py -0.415 ’ 0.132
Py ~0.223 0.0366
kz -0.396 ' 0.1366
k3 0.194 ’ 0.0295
kk -0.223 0.0366

It is seen that the peak and integral sensitivities with
respect to P, and ka are equal, which follows from the equality of
their classical sensitivities. It should also be noted that Sx3> SKZ.
This occurs because the feedback coefficient k3 is negative.

It may be noted that Isg |+ 0 as p,* 0. Thus, for minimum
sensitivity with respect to p:, the best choice is P, = 0. However,
as mentioned above, this value of pé leads to 1nstability for small
values of K. This illustrates the need to maintain an overall view

of the system behavior whin a solution for minimum sensitivity is

being sought.




CHAPTER VI
CONCLUSTONS
In this thesis a new sensitivity measure, integral sensitivity

(Sx). has been defined in terms of the sensitivity function (ux(t)).
2
s, = Z uy (t) de

d

where “A(t) - , and y(t, 1) 1is the response of the system to

o ler
~[S
>

a step input. Although the integral sensitivity containes less
information than the sensitivity function, it does, along with the
peak sensitivity (“R)’ provide a quantitative measure of sensitivity
in a concise form. Peak sensitivity is Jdefined as:

e
u “A(T)

where T = the value of t such that |ux(t)| is a maximum. Integral
sensitivity is a measure of the overall effect on the system step
response of a parameter variation, while the peak sensitivily is an
estimate of the maximum change in y(t) for a + 11 change in the

parameter. Part of the value of integral sensitivity is derived

A dw

from its close connection to classical sensitivity (8‘; "W a

by the equation

L 7 -L‘-'-Uz-"ﬂl s 3w | du
u .

sl © 2X ==
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From this relation the relative magnitudes qf qlaasical sensi-
tivities, which may be found without the use of a computer, can be
used to predict the relative magnitudes of integral sensitivities.
Furthermore, integral sensitivities can be computed for practical
cases only in a numerical fashion, while classical sensitivities can
be evaluated in terms of the literal parameters of the system. 1In
this way sensitivity considerations are included early in the design
process.

In Chapter IV a comparicun is made between the sensitivity
properties of state-variable feedback systems and series compensated
systems. It is seen that, under certain conditions, the sensitivities
with repect to most of the system parameters may be expected to be
smaller for the state-variable feedback system, and that the sensi-
tivities with respect to blocks in the state feedback system are less
for the blocks cl.ser to the system input. This behavior is demon-
strated by the examples of Chapter V.

The use of H-equivalent feedback is seen to be advantageous
with regard to sensitivities for parameters in the forward path.
However, in order to make the feedback transfer function realizable,
it is necessary to add poles to Heq(s). The locations of these poles
must be chosen with attention to their effects on W(s) and the fil-
tering of output noise. There is also the possibility of choosing
the poles such that the resulting system has zero steady-state error

for a ramp input. The judicious choice of these pole locations as

L)



an integral part of the system design appears to be a subject for
future work,

The following observations seem to indicate another topic
for further research. By feeding back the state variables, a reduc-
tion in sensitivity for parameters in the forward path is obtained,
but the feedback coefficients which are introduced represent a new
source of sensitivity. Also, it was seen by an example calculation
in section 4.3 that the sensitivity value of the least sensitive
component depends entirely on the given fixed plant and the specified
closed-loop response. These considerations lead to the conjecture
that, given a fixed plant which constitutes the forward path, and a
specified closed-loop response, there may exist a law of 'conservation
of sensitivity" for the system. That is, reduction of the sensitivity
with respect to certain parameters may lead to increased sensitivity
due to other parameters, and the total sensitivity is, in some sense,

a4 constant,
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APPENDIX

For the system of Fig. 4.2, Eqs. (4.4) and (4.6) are given for
the sensitivities with respect to Gi(') and k1 respectively. The closed
loop transfer function W(s) is given by Eq. (4.3). These expressions
are derived here.

The system of Fig. 3.1 is the same as that of Fig. 4.2 for the

case vhere H, = k, for all j, Consider the reduced block diagram of

b I

Fig. 3.2. An expression for Sw

c " Ei(o)/R(a) 10'31ven by Eq. (3.8).

i

W 1 1
- — -
G1 l+ GiLN M+ ki/N] 1+ GiL (NM + kil

S

Substitution for L(s), M(s) and N(a$ from Eqs. (3.4), (3.5) and (3.6),

and multiplication of the numerator and denominator of Sw by the denom-

Gy
inator of L(s) yields:
sw - 1+k1+1 !+!...Gn+ki+2ci+2...c + o0 0 +kc
Gt 1 + k1+1G1+1.0.G + s 00 + kncn + [klcl...G + kzcz...c +

o
eee + kici cooGn]

1+k1+1 i+1..OG +k1+2G1+2...G + [ N ] +kcn

1n+ klcl...c : kzcz...c + [ N 4 + k G

" o6

14+ a1 %444 petsg G

This 1is Eq. (4.4). W(s) may be found from S: .
n
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B (s)
W(e) = L&) o 6,(8)...C_(8) = 54 G,...0

R(s) R(l) n 1
Gl...c

1+klc ...G +k262.000 +.'.+kc
n
n

o t=1 G

li n

1+ k n G
=1 b gmp

. This 1is Eq. (4.3).

Prom Eq. (3.10) and with reference to Fig. (3.2),

ki R(s) i N(s) R(s)
-k
4 W(s)
Gl(’z. L .Gi‘.l
k1°1°1+1"'c

l*kc ...G +k2020006 +000*kc

n
L)

%y a1 G4

le n
1+ 3 » G
IC A

This 1is Bq. (4.6).
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ABSTRACT

In this work a particular type of nonlinear
state variable feedback system is discussed. The
system contains a single nonlinearity, and it is
shown by describing function techniques and examples
that the optimum location of the nonlinear element
for maximum control is at the left end. A method for
designing gain-insensitive systems is presented, and
it is shown by simple reasoning and examples that the
system response for the gain-insensitive design is
better than that of systems designed by conventional
state variable feedback.

A method is given to overcome the effects of
saturation within the fixed plant by introducing an
intentional nonlinearity to limit the saturating
elements to their linear regions of operation, This
makes it possible to apply the above gain-insensitive
design technique so that the nonlinear plant can be
made absolutely stable for all gain. The proposed
method is then applied to improve the response of a
fuel valve servomechanism, and the system is evaluated
using an analog computer,
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I. Introduction

The application of modern control theory to
linear control systems with constant coefficients is
quickly developing into an efficient and powerful
theory. The key idea is the use of state variable
feedback, and it is initially assumed that all of the
state variables are available for measurement and con-
trol, An effective synthesis technique using state
variable feedback is known as the H equivalent
method (Schultz and Melsa, 1967)., The basic assump-
tion of the H equivalent method is that the desired
closed loop transfer function is specified in advance,
and by feeding back all of the state variables, this
desired transfer function can be realized exactly for
a range of inputs for which the system remains linear,
The method is attractive because all manipulations
and calculations are done in the frequency domain with
Laplace transforms.

The basic assumption of state variable feed-
back methods is that the system remains linear during
its entire period of operation. 1In particular, for

large inputs one or more of the internal state variables



2
may saturate., The resulting behavior of the system
may then be different than predicted by the linear
theory, and, in fact, may even become unstable. In
this work the |l equivalent synthesis procedures are
extended to systems in which an intentiocnal nonlinearity
has been introduced to insure that no saturation occurs
in the internal state variables. The technique is
combined with the gain insensitive design of Herring
(1967) to insure that the resulting system is not
only stable, but that the dynamics of the saturated
and unsaturated systems are very much alike.

In the general case minor loop feedback is
applied to the open loop system to force all but one
of the open loop poles to lie at desired closed loop
pole positions. The poles of the closed loop system
are fixed at the desired locations by placing zeros
of Heg(s) at the same places. In the case of the
fuel valve servomechanism with seven open loop poles,
this task was simplified by retaining four of the
complex poles of the plant unchanged. This was pos-
sible because the natural frequencies involved were
far greater than the desired band width of the closed
loop system.

The use of a gain insensitive, saturating

controller for the fuel valve system results is a



marked improvement in overall system performance.

When the system is operating in the linear region, the

second order desired response is almost exactly real-

ized by the seventh order system,

For larger inputs,

the system exerts maximum effort, and for small inputs

the system responds in the desired linear fashion.

The improvements obtained in the fuel valve servo-

mechanism using this approach are appreciable. The

table shown below compares the results of the design

discussed in this work with both a conventional lead-

lag compensated system and with a system designed by

linear state variable feedback methods.

Conventional

Bandwidth BW

Percent PO
Overshoot
Small inputs

Stability
For
Large inputs

220 Ht:z

10%

Stable
decreased
bandwidth

Heg (linear)

700 Htz

10%

Extensive
overshoot
BW = 100Htz

Heg/Sat.
controller

350 Htz

8.2‘

PO = 10%
decreased
bandwidth



Ou f Thesis

In the following chapters it is shown how
the introduction of an intentional nonlinearity can
be comlined with statc variable fecdback to overcome
the effects of saturation. A step-by=-step development
is presented with illustrative cxamples, and the
method is applied to improve the response of a practical
prolblem.

Chapter I1 deals with the representation of
lincar and nonlincar state variable fecedback systems.
Stakility criteria for nonlinear systems are presented
along with a brief descraption of describing function
theory. The effect of the location of the nonlinecarity
is i1nvestigyated, and it is concluded that the optimum
location 1s at the left most end for maximum control
over the system. Finally, the chapter is concluded
with 1llustrative examples.

In Chapter III the effect of saturation in a (
system is discussed and the idea of introducing an
intentiona’, saturation type of nonlincarity is descriled.
The concept of yain-insensitive systems is presented for
linear as well as nonlincar systems. TwoO systems, gaine
insensitive and non-gain~insensitive, are compared and

discussed., It is shown that the gain-insensitive system -

!
M ‘;;
i

g
T Al



1u absodutely stable and has a satisfactory step
response when the gain 1s varied or operates in the
nonlincar rcyion. Finally, a design technique is
given for overcoming the effects of saturation Ly
introducing an intentional nonlinearity.

In Chapter IV the techniques developed in
Chapter Il anu 1II are applied to improve thic response
of a fuel valve scrvomechanism. The rdesign is cvalu=
ated usiny Loth digital and analog computers, and the
results are presented in recorded form.

The final chapter presents the cunclusions

and suggyestions for f{urther investigation.



CHAPTER II
GLNERAL TIIEORY

In this chapter the modern representation of
+incar systems 1s discussed and state variable fcedback
methods are prescnted; general expressions for tuc
transfer functxouchq(s), Heq(sf, Y/k(s), etc., arc
given i1n matraix form. It is shown that for systems
which contain a single nonlinearity bLut are otherwise
lincar, the corresponding cexpressions for ch(s). ueq(s).
etc,, depend on the location of the nonlinearity in
tne fcrward patn.

Tlie cfiects of the location of the nonlinecar
celcent an a system are further investigated by apply-
ing describing function theory:; and it 18 concluded
that, when the nonlinearity is located at the left end
of the system, desirable stability properties and
maximum control over the system are achieved. Finally,
the results are illustrated with a third-order system

having a single nonlinearity.

Repr Lj 3y System
Therec are two different ways o represent
control systems: the input-output form and the modern

6



state variabic mcthod. Here the latter one is cf prime
anterest and hence is presented in deta.'.

Consider Fig. 2-1, showing a gcueral represen-
tation of a linear system. Gp represents the plant
and is described by the following set of n first-order

linear dificrential equations:

#

AX + bu (Ab)

s;Tﬁ (c)

X

Y

where

>
.-0
&)
[ad
o1
)
o
x
o

plant matrix

L 15 the n x 1 control vector

o
>
w
"
o3
0
o]
x
-

output vector

n x 1 column matrix of fecdlack cocfficients

i~
()
L]
ct
>
0

15 the n x 1 state vector

j

u is the input to the plant
r is the input to the system
I is the n x n identity matrix
The transfcr function Gp(s) relatang the control

function u and the output of the system y is given by

Gp(s) = y/u(s) = STg(s)b (2-1)
where &(s) 1s called the resolvent matrix and is given
by (sI - A)~! (Schultz and Melsa, 1967). The input
and output of the system are related Ly

Y/R(s) = cTg,b (2-2)
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where &, is the closed-1loop resolvent matrix, given
by (sI - &) ' or (sI-a+p7L

The system of Fig., 2«1 can be represented Ly
two alternate block diagram configurations, the Geq(s)
and Hoq(s) representations shown in Fig. 2-2(a) and
\b), respectively. General expressions for Heq(s),

Geq(s), and Gp(s)ncq(s) arc given below.

Heg(s) = (2T@(s)k)/c 8(s)h (2=3)
Geq(s) = (cTE8(s)R)/(L + (k - gi &(s)p) (2-4)
Gplieq(s) = kTg(s)k (2-5)

All the above expressions can be found in terms of &
(Schultz and Mclsa, 1967).

State Variable Representation of a

Particular e _of Non ar _Svsten

Consider the configuration shown in Fig. 2-3 ard

having the single nonlinearity reprecsented by the block
labelled N. Gt, ¢ ..., 6" each represents a first-
order transfer function; i.e., G! = kils + zi)/(s + pi).
Block diagram manipulation yields the modified diagram
shown in Fig. 2-4’a), where Gl(s) and G,(s) represent
(n = 1)&2 and i¥Porder lincar transfer functions,

respectively, and nleq(s) and HZCq(s) are of order

(n - i -1) and (1 - 1), respectively. Further
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r(t Vi Gl(s)JL__T__? N Ga(s) J——Y——»Y

| T
pi&),%rgg}~__i‘ Gleq(s) N f_“_.t— G, (s) —— Y

Fig. 2-4 Block Diagram Reduction for the
System Shown in Fig. 2-3
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reduction of the block diagram shows the system in
final form in Fig. 2-4(b).

Now comparing the representations for linear
systems and nonlinear systems, one can observe that
nonlincar systems cannot be represented in the simplest
G

or H form (as can linear systems) unless the

eq cq
nonlinearity is located at the left most cnd. In the
general case (sece Fig. 2-4(b)) linear transfcr functions
and characteristicsof the nonlinearity are rcquired

to descrile the nonlincar system. Heq(s) has n - 1
zeros while uch(s) has { = 1 zeros. As the non-
linearity is shifted towards the left side, the number

of zeros in Hzeq(s) increases and finally becomes n - 1

when 1t is located at the left end.

Des F i heo

The describing function method is based on an
analysis which neglects the effects of harmonics in
the system, so that the accuracy of technique increases
with the order of the system. The system configuration
shown in Fig. 2-5 represents cthe reduced form of
Fig. 2-4(b) and is in the correct form for applying
the describing function method. N is the single non=-

lincarity of the system and is assumed to be insensitive




c e
r__i_- N o
< -G (s)
Fi1g. 2-5 Equivalent or Rcducced Form

of Pig. 2-4(b) with r(t) =0

14



to frequency. It is desired to determine whether a
sustained oscillation of sinusoidal form exists in the
system when there is no external anput.

The output of the nonlinear element when its
input is a sinusoidal wave having an amplitude E is
written in the form

ey = Kgg® * £4(e) (2-6a)
The first term on the right-hand side is the
fundamental while the second term represcents harmonic
distortion and is neglected. Hence
~ Kan€ {2-0b)

Co cq

keq is known as the equivalent gain, or the describing
function, and 1t is a function of input-signal
amplitude E. The vescribing function for the non-

lincarity can be found as follows (Gibson, 1963):

keq = 9(E) + )b(E) (2-7)
where
277
g(E) = == 5 £ (Esin@)sinede (2-8a)
. o)
21"
b(E) =Trl'E f £ (Esin®)cosede (2=-8Db)
(o]

From Fig. 2-5

c(yw)

co (3w =6hw) (2-9)

Referring to the equations (2-0b)and (2-9), one

can see that for the existence of sustained oscillations
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therc must exist a simultancous solution which satisfies

both equations; i.e.,

G(jW) = - ,-;i—; (2-10)

A convenient way of investigating equation (2-10) is
to draw polar plots of both sides and check for an
intersection; the point of intersection gives the
frequency and amplitude of oscillation. The oscilla=-
tions may be stable or unstable 4depending on whether
the amplitude of oscillation decrcases or incrcases
as the operating point on -l/keq locus moves within
the frequency-sensitive locus of G(jd)): i.e., the
Nyquist plot.

One can apply the describing function method

to check the stability of a system bhaving a particular

type of nonlinearity N. N is single-valued and symmetric,

lying in first and third quadrants. The descriling
function for this type nonlinearity will always be real
and non-nagative (Gibson, 1963). PFig. 2-6(a) shows &
saturation type nonlinearity, a representative of the
class we are considering. The cquivalent gain for such

a nonlincarity is given by (Thaler and Pastel, 1362)

-1 2 '
keq = %%(sin <§§ + g% V/(l - gg) ) zig” (2-11)

which 1is always real and non-ncgative, as expected. The

polar plot is shown in Fiv. 2=6(b).

i Hr’ta
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Consider the system whose block diagram is
shown in Fig. 2=7(a) which is similar to Fig. 2-4(b).
It was stated previously that Gleq(a) has n - { poles,
G,(s) has i poles, and “2cq(8) has i - 1 zeros. Hence
G(jw) = G)aq(8)Gy(8)Haeq(s) (2-12)
has n poles and 1 - 1 zeros. Now to check for the
existence of oscillations, the polar plot of = fﬁ;
for a single-valued, symmetric nonlinecarity is plotted

in Pig. 2-8. For oscillations

-4 (2-13)

GOWIL 5 - 0. S %
C

where W _ is a frequency for which G(jw) is rcal. This
is possible if and only if G(jw ) is inherently unstable
in the linear region or G(jw ) is conditionally stable
as shown in Fig. 2-8, labelled G''(jw ) and G'(;wW),
respectively.

From Equation (2-~13) it can bc seen that
oscillations can exist for some value of gain k as
long as the polar plot of G(jwW ) crosses the neyative
real axis. Thus to avoid oscillations G(jw ) should
not cross the negative real axis for any value of gain;
i.e., G(j.v) should have the form shown by the curve
in Fig. 2-8 and labelled G'''(jwW). This iz possible
if G(j»') has a pole-zero excess of < 2 and if the
zeros of G(jw ) are located at propcr places. Thus it

is desired to have
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Fig. 2-7 The System of Fig. 2-4(Db)
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Fig. 2-8 Various Types of G(i0J)} Functions
Showing the Pos. '-‘lity of Oscillations
and the Polar Plot of -l/keq for the
Nonlinearity
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n-41+1 ¢ 2

i >n-=-1 (2-14)
in order to prevent oscillations. Also, it is known
that the more zeros there are in u2°q(s). the better
a system can be controlled, so that the optimum choice
for i would be n; that is, the best location for the
nonlinecarity is at the left most end of the system. It
should be noted that stability of the system still de-
pends upon the zeros of HZeq(S) and hence the feedback

coecfficients.

Example
Consider the plant shown in Fig. 2-9(a) which

is to be controlled by state variable fecedkack. All
systems saturate at one or another point. Here satura-
tion 1s accounted for by the nonlincarity labelled N,
which is presumed to be of the type shown in Fig. 2=6(a).
Different possibilities for saturation are shown in

Fig. 2-3(b), (c), and (d). It is the purpose of this
example to investigate what happens when the system

saturates at these different points.

Case I
Let N be located as in Pig. 2-9(b). State

variable feedback is to be used to achieve the closed-

loop transfer function
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) = 3
93 + 5.258Q + 8s + 10

(s

Pe3 LS

when operating in the linear region. The result is
shown in Fig. 2-10(a). When the system operates in
the nonlinear region, the input=-output reclation does
not hold; but some aspects of the bchavior can be
investigated by the describing function method. By

block diagram reduction of Pig., 2-10(a)

leq =~ g2 4 5.255 + 8

Ga(s) = é

x,zeq (S) = ]

so that
G(s) = Gyoq(8) * Hpeq(s) * Gyis)

= 10
s(s® + 5.25s + 8)

The polar plots of G(jW ) and - Ei; as given
vy Equation (2-12) are shown in Fig. 2-l1ll. The point
at which G()WwW) intersects with the negative rcal axis
can be found very easily to be -0.238 at W= 2/2,
That is,

G(jw) 10

Wa2 /2 Z72(-8 F j5.25 -2 72 + 8)

= =0,238
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y— Y(t)

- el

‘ Fig. 2-10 Nonlinecar System Designed by
State Variable Feedback Method
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A 1nm.
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Fig. 2=-11 Polar Plot of G(jw) and 'l/an for Case I
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Thus for oscillation (- r%a)max = «0,238, which gives
the maximum value of k, the linear gain, which the
nonlincarity can have. In this case oscillations

w'll occur when Kk is incrcased beyond 1/0.238; awever,
examples can be found where even without variation of
k, the system can show oscillations. Onec such system
is shown in Fig. 2-12(a) along with its polar plot

ir Fig. 2-12(b).

Case I
Let N be located as in Fig. 2-9(c). The system

still bhas the same configuration when operating in the

linear region. When operating in the nonlinear region

Sleqls) = ;%

Hyeq(s) = 3ls + 2.66)

_ 1
G2(s) = S+

so that

= 3.20(8 ¢+
G(s) = oo D) s +4.25)

The polar plot for 3(jwW)and =- E;_ are shown in Fig. 2-13,
and it can be seen that there caﬁgot be an intersection
for any value of gain k of the nonlincarity or for any
gain associated with G(jw ). Thus there is no oscillation

and the system is stable for all gain.
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Fig. 2-13 Polar Plot of G(jw) and -l/keq for Case II
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Let ¥ be located atL in Pig. 2-9(d). 1In the
nonlinear regyion

)
Ga(s) = o511 7+ 37

Hyeq(8) = %(82 + 43 + 8)

(=]

80 that

2
. 1,25(8® + +
G(s) = s(s + 3)(s + 1

Again, it can be seen from the polar plot of Fig. 2«14
that the system is stable for all gain whether it be
associated with the nonlinearity or with any other gain
in the forward loop.

Comparing all threce cases, one can scc that as
the N is moved towards the left end the number of zcros
of Hch(s) increases, forcing the polar plot of G(jw)
to approach the origin at a lower multiple of 90°.
Finally, when saturation takes place at the left most
state variable, G(jw) approaches the origin at =90°,
and the example system becomes stable for all gain.
Still, placing nonlinearity at the left end does not
give assurance of stability if the system is conditionally

stable in the linear region, as the location of zeros of
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"ZCq(S) influences the shape of the polar plot of G(jw)
and hence helps to determine whether or not there are
any intersections with the plot of - _1 .

To assure the absolute stabiliig for all values
of gain,a method of designing a system is presented in
the next chapter. Thus it can be concluded if N is
located at the left end, the number of zeros of Hzeq(s)
to control thc system is at a maximum; and the system
can be made stable for all gain by placing these zeros
at proper places,

Although the conclusions derived above were
discussed for the system having a saturation type
nonlinearity, they also hold for any frequency-inscnsitive,
single-valued, and symmetrical nonlinearity, as kg, for

q
such nonlinearity is always real and non-negative.




CHAPTER III
DESIGN OF NONLINEAR GAIN-INSENSITIVE SYSTEMS

In Chapter II it was shown that the stability
of systems containing a single nonlinearity and designed
by using state variable feedback depends upon the loca-
tion of both the nonlinearity and the zeros of Hch(s).
In this chapter the same typc of system is studied
further and a method of making the system gain-insensitive
to ensure stability is presented. Systems designed by
the proposed method are shown to have akbsolute stability
for any value of gain ase&ociated with the linear part
of the system or with the nonlinearity.

Next, gain-insensitive and non=-gain-inscnsitive
systems having the same closed-loop transfer function
in the linear region are compared and significant
features of gain-insensitive systems are presented.
One can show how the introduction of an additional
intentional nonlinearity and state variable feedback
can be combined to design systems to have both absolute
stability and satisfactory transient response. The

technique utilizes the results of lerring (1967), who

ke |
3l
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has suggested a method of designing systems which are
absolutely stable for all values of gyain. He has shown
that a system can be made absolutely stakle and insen-
sitive to gain if n - 1 of the n open-loop poles are
placed where n - 1 of the n closed-loop poles arc required.
eq(s)

are placcd at the same places where n - 1 of the n poles

In other words, in terms of Fig. 3-~1, the zeros of H

of G(s) are located.

A step-wise procedure for designing a ga‘ne

insensitive system is given below.

l. Describe the sysfem in physical variables
and assume all the variables are available
for control purposes.

2. Choose the desired locations of the n
closed=loop poles of Y/R.

J. Modify the plant, or open~loop system,
with series or feedback compensation such
that n = 1 open-loop poles are located at (
the positions of n - 1 of the desired poles
of Y/R.

4. Use state variable feedback to force the

n-12zeros of H to coincide with n = 1

eq
of the new poles of G(s).
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~ N Y
’? G(s) (s+a)Dis, —»

Heq(s)=K1Dis)
°q N(s)

Fig. 3-1 A Linear Gain=-Insensitive System,
Where G(s)aeq(s) = k'/s+a
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5. If all the variables are not available,

usce the calculated values of the fcedback
coefficients to determine the requirced
minor~loop compensation (Schultz and
Melsa, 1967).

A system designed by the gain-insensitive method
has only 1 out of the n closed-loop pcles as a function
of gain, whercas a non-gain-insensitive system has all
n of its closed-loop poles as a function gain. Thus
when the gain varies, the responsc of the gain-insensitive
system is likely to change very little; however, the
resporise of the non-gain-insensitive system can change
significantly, and the system may even become unstable.
Also, the gain-insensitive system always satisfics the
frequency criteria for optimal control as the polar
plot for open-loop gain never crosses the unit circle,
while the non-gain-inscnsitive system does not.

Consider a nonlinear systcm shown in Fig. 3-2(a)
where N is of the specific type considered in Chapter II;
namely, N is frequency-insensitive, single-valued, and
symmetrical. The system is designed such that n - 1
zeros of Hch(s) lie at the same places where n - 1 of
the n open-loop poles are located. Such a system can
be reduced to a simple first—-order nonlinear system in

series with an (n - 1)L order system as shown in




r(t)

[H2eq(®

(a)

(b)

Fig. 3-2 Nonlinear Gain-Insensitive System
and Modified Block Diagram
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Fig. 3-2(b). It is ecasy to analyze such a system by
graphical methods such as the like isocline method.
The system designed by the non-gain-insensitive method
18 of ntM order and cannot be reduced to any such simple
form and hence cannot be analyzed as easily by graphical
methods.

Although the gain-insensitive method of designing
a system is superior to otner techniques in many respects,
it is difficult to put the zeros of uch(S) exactly on
top of the poles of G(s). If cancellation does not
take place, then the system has n poles which vary with
the gain, possibly even becoming unstable if the poles
are near the ja) -axis (Herring, 1967).

The results of this and the previous chapter
are now used to design a system which saturates at a
certain point. It was mentioned previously that all
systems saturate; typical physical components having
saturating characteristics are an amplifier in the for-
ward loop and the movement of some mechanical part which
is restricted to a certain range. In Chapter II it was
shown that the saturating element might cause the system
to oscillate if it is not located at the proper place
within the loop. The locatiomof such elcments are

not controllable as they are part of the physical system.
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A way to prevent saturation of such an clement
is to control the input signal to that clement: tais can
be done by introducing an intentional nonlinearity
having a limiter type characteristic with the proper
limiting values. With the introduction of such an
element the system following the nonlinearaty always
opcrates in its lincar reqgion since the nonlinearity
input is always restricted to the range of lincar opcra-
tion for the nonlinearity.

In Chapter Il it was shown that if the location
of the nonlinear element is at the left most end and
state variable feedback is used, there are n - 1 zeros
of H

2e
that if a limiter is introduced at the left end and if

q(s) to control the plant. Thus it can be seen

state variable feedback is used, then saturation in
other parts of the system can be prevented and the
system can be made stable for all gain, even insensitive
to gain.

The technique is illustrated in the following
example where two methods of designing the same system

are presented for comparison.

Example 1
Consider the plant shown in Fig. 3-3(a) and

having an intentionally introduced nonlinear element
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(a)

(b)

Fig. 3-3 Plant and Characteristic of N fcr Example 1
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of the saturation type “hose characteristic is shown

in Fig. 3=3(b). When operating in the linear reyion

s(s = 1)
and the recquared closed=loop transfer function is
chosen to be

Q
§8) = o ths ray

Gain- ¢
Now fcecding rack x, to modify the plant so that
n -1 (1) of the open-loop poles lie at the samc place
as (n = 1) one of the closed-loop poles, gives the

modified open-loop plant, as

= 11r0 'L
G(s) s - 1 + 10k2' 8

The value of k,' that places one of the poles of G(s)
at the closed-loop pole location 8 = =2 is kQ' = .3.

Next, both x., and x., are fed back from the modified G(s)

1 2
to realize the desired closed-=loop transfer function
when operating in the linear region. By block diagram

manipulation

10
R ™ ;77+ 2s + 10(kys + kl)

Equating the denominators of the required and the designed
closed-loop transfer functions, kl and kz are found to
be k; = 1.0 and k, = 0.5,
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Non=-Gain-Insensitive Dejiqn
liere both X, and X, are fed back directly from

Gp(s). Block diagram manipulation yields

% Y AN +l%0(k23 + k)

Comparing the denominator of the required and designed
expression for Y/R, kl and kz are found to be kl = 1,0,
ko = 0.800.

Both systems are shown with their root locus in
the linear region of operation in Fig. 3-4(a) and 3-4(b).
Both systems werc simulated on an analog computer, and
the step responses are presented in Fig. 3-5(a) and
3=5(b), respectively. It can be seen that for a step
input, in the lincar region of operation, both systems
respond in thc same way. However, when the input is
increcased so that the systems operate in nonlinear
region of N, the non-gain-insensitive system gaves
an overshoot while the other system does not; in fact,
the response of the gain-insensgsitive system does not
differ very much from its response in the lincar region.

The behavior of the non-gain-insensitive system
in the nonlinecar region can be explained as follows.
Consider the characteristic of a general saturation
type nonlinearity shown in Fig. 3-6. e, is the input

to the nonlinearity, e represents the output, and k is

o

R T Y ey

o ¥
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FPig. 3-4 Gain-Insensitive and Non-Gain-Inscnsitive
Systems with Their Root Locus Sketch in
the Linear Region
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Operation in the Linear Region

Operation in the Nonlinear Region

(a) (b)

Fig 3-5 Time Response for the System of Example 1
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Fig. 3-6 Explains the Decrease in k' When
N Operates in the Nonlinear Region
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the gain in the lincar region of opecration. When the

input has a magnitude less than e the output is Kk

8.
times the input and the equivalent gain is

Quiput _
k' = input k

When |ei| > e¢g, the output is te k and k' becomes

tesk
input

k' =

< k

Thus it can be seen that as the input amplitude increases
keq' decrecases. In Example 1 when the input amplitude

is increased, so that the input to N is grcater than

e. = 0.5, Kk° decreases and hence the total gain in

s
the loop decreases, causing the n poles of non=-gain-
insensitive system to assume a different configuration.
The new closed-loop configuration can be a pair of complex
conjugate poles (see root locus sketch Fig. 3-5(b)), which

causes overshoot in the output of the system,

Example 2
Consider the plant shown in Fig. 3=7(a). The

nonlinearity N is of thec saturation type as shown in
Fig. 3=7(b). In the linecar region

Gp = &
P= 3

and the desired closed-loop transfer function is chosen

to be

Y _;u%{
R(S) =T + 10)(s + s + 1)
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(a)

(b)

Fig. 3=7 Plant and Characteristic of N for Example 2
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T™wo designs, gain-inscnsitive and non-gain-insensataive,
are shown with their root locus plots for linear opera=-
tion in Fig. 3-8(a) and (b), respectively. In the linear
reyion both systems respond in the same way, but when
opcrating in the nonlinear region, as the step-input
amolitude is increased, the non-gain-insensitive system
gives more and more oversnoot and finally becomes
unstakle. This does not happen with the gain-insensitive
system. The above phenomenon can again be explained by
the same reasoning given in the previous example and

also can be seen from the root locus diagram.

Example 3

The last example has the plant shown in .
Fig. 3-9(a) and the nonlinearity shown in Fig. 3=9(b).
In the linear region

o (a) = 2
Spl8) = T 5% 1Te

and the desired closed-loop transfer function is

Y. . 20
R(s) (8 + 10) (82 + 0.48 + 2)

Gain-insensitive and non-gain-insensitive designs are

shown in Pig. 3-10(a) and 3-10(b) alonyg with their root
locus diagrams for linear operation. Both systems were
simulated on the analog computer and the rcsponse to a

step input is presented in Fig. 3-1ll(a) and 3-11(b).
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Operation in the Linedr Region

Operation in the Nonlinear Region
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Fig 3-11 Time Response for the System of Example 3
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when operating in the lincar regaion, the response to a
step input 18 the sane for both systems. when the
input is increcased so that the systems operate in the
rcyion in whicn the nonlinearity is saturated, the
results show that the non-gain-insensitive system
gives more overshoot than when operating in the linear
region and that the transient takes a relatively long
time to die down. Also, when the magnatude of the in-
put step to the system is increased morc and more, a
point 1s reached wherc there are sustained oscillations;
thesec oscillations die down when the input maygnitude
is further increcased. If the ianput amplitude is further
increased, it again gives sustaincd oscillations as
can be sccen from Fiy., 3=-12. As in the prcvious examples,
the responsce of the gain-insensitive system aoes not
differ much from the linear response when opcecrating in
the nonlincar region.

From the above three examples, it can be secen
that for the same closed-=loop transfer function in the
linear region, thec system designed by the gain=insensitive
method is absolutely stable and almogt insensitive to
gain; its response is good even when operating in the
saturated region. For the system designed by the non-

gain-insensitive method there is more overshoot and




.

52

€ 9jdmexy x03
SUOIITTIT980 Bulmoys asuodsay wmrl ZI1-€ °*313

WV smnnn

Bt

o A e g i

e A A o (A i e



vl
sustained oscillations 4f the plant {8 unstable or
conditionally stable. Thus from the ahove ohservations
1% can be secn that the system stabilized hy introducing
an intentional nonlinearity and designed by the gain-
insensitive method gives a more satisfactory performance
although {t increases the cumplexity of the system,

In the next chapter the gain~insensitive design
technique is applied to a practical, high~order design

problem.




CHAPTER IV
DESIGN OF A FUEL VALVE SERVOMECHANISM

In this chapter the results of the previous
two chapters (that is, an intentional nonlinearity
can be introduced at the left end of the plant to
prevent saturation of signals further down in the
system, and using state variable feedback a system
can be made absolutely stable and insensitive to gain)
arec applied to improve the performance of a fuel valve
servomechanism for a General Electric J=-85 jet engine.
The engine is being used at Lewis Research Center, a
NASA facility, for studying engine and inlet controls
for the supersonic transport.

In order to apply the design technique it is
necessary to start with a linear model of the physical
system. Fig. 4-1 shows the block diagram of the 7th

order linearized plant where the state variables are

0O

Actuator position’

Q)

Actuator velocity

c Actuator acceleration

X Spool valve displacement
-Flapper valve displacement
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if Flapper valvé velocity

I Torgque motor current

Let ¢ = X, X) = X3, X2 = X3, Xg = X5 Xp = Xgu
X = Xg, and I = x5. Then the plan:t can be described
by 7 first-order differential equations as shown in the

Appendix and can be represented by equations (Ab) and (c)

X = AX + hu ' (Ab)
Y= S?& (c)
where
~ 7
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 -3.28x108 -6.68x103 8.48x10l 0 0 0
a= 0 0 0 0 5.76x103 0 0
{
0 0 0 0 0 1 0
0 0 0 -3.05x10% =2.10x10 -3.66x10° 2.26x%10° |
3
0 0 0 0 0 0 -2.5x10" |
T - 0
R = [0 0 0 0 0 0 2.5%10 ]
. (
s =1 0 0 0 0 0 o ] |

In the actual physical system the signals Xeo Xgo and ¢
are limited to magnitudes less than 0.00l12 inches,
0.015 inches, and 0.125 inches, respectively.

Therc have been at least two previous ccmpensation

schemes to improve the performance of this control system,
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both ¢f which utilized the above linear model. One
scheme was to usce conventional lecad-lag compensation;
the resulting system had a bandwidth of 220 hertz and
a step response with an overshoot of 10% for small size
stecp inputs. For input amplitudes of over 10% full
scale the effects of the saturation limits caused an
unsatisfactory deterioration of the responsc.

The second scheme utilized state variable
feedback and sought to achieve a much faster response
than that resulting from the lcad-lag compensation.

The resulting design required feedback from 5 of the

7 state variables and had a bandwidth of 700 hertz and

an overshoot of less than 10% in the step response.
Unfortunately, when the saturation limits on the system
variables were introduced, for disturbances of any
reasonakle magnitude the system per cent overshoot in

the transient response was excessive; and thc system
bandwidth decreased to approximately 100 hertz (Slivinsky,
Dellner, Aparasi, 19G7).

In this chapter the linearized system is first
designed by the gain-insensitive method for a bandwidth
of about 350 hertz and an overshoot less than 10%. Then
an intentional nonlinearity of the saturation type is

introduced whose saturating limits are found experimentally
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on an analog computer so that the signals at Xgo Xgo
and the output do not saturate when the full-scale input

is applied.

G -Ins ' S

The gain-insensitive design is carried out in
three steps: sclecting the desired closed-loop transfer
function, modifying the plant so that 6 of the 7 closed~-
loop poles are achieved, and finding the fcedback
coefficients so that the closed-loop transfer function
is realized.

As an aid in carrying out the first stecp one can
refer to the pole-zero configuration for the origyinal
plant as shown in Fig. 4-2, Studying this plot and the
normalized step-and frequency-response curves satisfy-
ing the ITAE performance index (integral of time
multiplied absolute error, Graham and Lathrop, 1955)

a sccond-order model is chosen with u3x1== 2250
radians/second and & = 0.7 to realize a bandwidth
of about 350 hertz and an overshoot of less than 10%.

Thus the second-order model has the transfer function

Y 5,0625 x 10°
—— - 4~
(R)model 8¢ + 3.15 x 1038 + 5.0625 x 106 (4-1)

The model is extended to the seventh order by

choosing 2 of the seven poles to be located as in
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Equation 4-1, 1 at the location 8 = -1.7 X 104, and
the remaininyg 4 at the same positions as the complex
conjugate poles of the fixed plant. The resulting
conficuration is shown in Fig. 4-2, and the closed-loop

transfer function is given by

R extended (8+3.34149x10°+;1.77998x107)

(s+1.3556%x10°+j4.07384x10")
b

(8+1.575x10°+3J1.575%10°) (s+1.7x10%)  (4=2)

Note that Y/R approaches 1 as s approaches 0 so that
that system has 0 steady-state crror for step inputs.

The extended model was checked for time response
and frequency response, and it was found that the re-
sults were almost the same as for the simple second-
order fystem; i.e., the bandwidth was 350 aertz, and
the overshoot was 8.4% with a rise time of alout .0011
seconds.

To carry out the second step it is necessary
to put n - 1 (6) of the open=loop poles where 6 of
the closed-loop poles are located. The plant is

modified such that the new open-loop transfer iunction is

) 2.997x1024 .
T 8(8+3.34149%x10%+j1,77998x10%)

G(s) (4=3)

(5+1.3556x1054+)4.07384x103) (5+1.575%105+) 1.575x103)
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This 1s done by feeding back the state variables Xq
throuyh x5 as shown in Fig. 4=3, With the help of
the IBM 7072 digital computer, using the program of
Mclsa (1967) and the A, k, and g matrices given akove
with the slight modification given in the Appendix,
the coefficients were found to be

ky' = =4.6774 x 107

k3" = =1.7077 x 1077

Kg' = 1.57057 x 10

1.272 x 101

~
n
]

K.' ® 4.5071 x 10~

ky' = -1.13557
and the gain k is 1.083v,

Now the modified plant is used in fceding Lack
the variables x) through x, to rcalize the closed-loop
transfer function given in Equation 4-2, Tho system
1s as shown in Figy. 4-4. Again, Melsa's program was
used to perform the calculations, this timc with the
A, £, and ¢ matrices corresponding to the noditficd
plant. These matrices are given kelow, and thec de-
tails of the derivation of the differcential cquations
can be found in the Appendix.

;?={} 0 0 0 0 0 2.70982x10°2

=
g=01 0 0 0 0 0 0



02

Lx ybroxyy Ix sopgeracpy woeg

Py

Curpoag -1 1ueld 3O UOTIEedIITPOW ¢€-p °HT3
® o0 m w o oo + m . m
% bFdomrs- | ToerwerE 7| e 00T
{rOH°*D { G N e
T L4}
| U




63

Lx ybnoayy Ix S3ITQuTaITA Aoeq Hurpoog g
uorliIdoung xoisuel] dooI-pIsSNld IO UOTITZTIEIY = *£13

¥

Ty - - R B o ]
_ Foga} |
— . ,
3s N
huM \ -
(""" +,8)s s Y¢S 00sc+s . \ _ -
W%J aaoﬂxmﬁv.m Sx MOAxh.m Ix ||p0TXC9T°C |4 s°¢ A T + ()=
T -
. 53 ]
7y
%xﬂm
Zys




64

The feedback coefficients for this second application
of statc variable fcedlack are given by

k, = 1.000

k. = 2.03317 x 1072

k3 = 3.00212 x 1077
kg = 1.5242
ky = 1.77896
kg = 3.57654 x 107
k, = 3.690275 x 1071
and the gain is 1.7 x 102.

The system was simulated on an analog computer
(the details of the simulation are given in the
Appendix), and the time response for a step of 5 volts
is given in Fig. 4=5(a) showing an overshoot of about
8.2% and a rise timc of 0.00115 seconds. The fecdback
coefficients from differont states were removed in-

dividually, and it was found that the removal of the

two feedback signals from both ¢ and °d does not effect

0 1.36%x10-2 4.02x10"7 -4.08x103 -3.44x10° -1.20 12.19x10

- a
0 1 0 0 0 0 0

0 v 1 0 0 0 0

0 0 -3.28x10% -6.66x103 -8.48x10%! 0 0

0 0 0 0  5.76x107 0 0

0 0 0 0 0 1 0

0 0 0 -3,05x10°% -2,10x107 =3.60x10° 2.26x10°

3

—
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(a)

S

(b)

a

(c)

Fig 4-5 Time Responses of the 7th Order
Linear Gain-Insensitive System
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the system response very much as can be seen from
Fig. 4=5(b). To check the property of gain-inscnsitivity
the gain was varied from 100 to 250, and it was found
that the effect is negligible as can be scen from
Fig. 4-5(c). Thus we can conclude that the system is
gain-insensitive, with a bandwidth of 350 hertz, an
overshoot of 8.2% with a rise time of .0011l5 seconds

and is unaffected by removing the feedback from ¢ and

L X J
[ ]

In a more realistic model of the system saturation

at xs. X and ¢ must be taken into account. Illere the

€
technique of Chapters II and III is used, and an in-
tentional nonlincarity of the saturation type is
introduced, whose saturating limits were found experi-
mentally to be +0.595 volts so that the signals at Xg

and X, hever exceed their saturation limits.

To check whether the nonlinear system is correct
or not, the system response was found for the small in-
put of 0.5 volts, and it was found to be the same as
that or the linear system as shown in Pig. 4-6(a). The
step response for a step size of 5 volts is shown in
Fig. 4-6(b). Comparing this response with that of the

linear system, one can see that the former has a large

rise time because the system operates in part in the
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(a) (b)

(c) (d)

Fig. 5-6 Time Response for the Nonlinear System

d il R b
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saturated region. The overshoot is about the same as
for the lincar system.

The system response was checked with thc feedback
siynals removed from ¢ and ¢, and it was found that the
response is not much affected. The signals X¢ and xg
do not exceed their saturating limits; and the per cent
overshoot is in the same range as previously, as can
be seen from the time response shown in Fig. 4-6(c).
Also, the effects of varying the gain, which was varied
from 100 to 255, were checked; and the response was
found to be almost unaltered, as can be seen from
Fig. 4-6(d). The system sensitivity was evaluated by
varying the feedback coefficients by +25%, and it was
found that this variation of the feedback coefficients
does not cause any serious problems. Thus it can be
concluded that the nonlinear system is insensitive to
ga.:. variations in feedback coefficients, and the
removal of the feedback signals fran¢ and c. When
the input is such that the system operates in the non-
linear range, the step response is slower than that of
the linear system but the per cent overshoot is almost

the same.




CHAPTER V
SUMMARY AND CONCLUSIONS

The representations of linear and a ccrtain
class of nonlincar state variable feedback systems
have been presented. The nonlinear system was assumed
to have a single nonlinear element of the non-memory
type which was symmetric and had its characteristic
lying in the first and third quadrant. The G,. and

q
H representation was used to show that the optimum

eq
location for the nonlinear element is at the left end,
although stability depends on both location of the
nonlinecarity and the locations of the zeros of uzeq(s)'
To ensure absolute stability for all gain, the
gain-insensitive method of design was proposcd; and a
step-by-step proccdure was prescnted. Systems designed
by the gain-insensitive method are absolutely stable
and insensitive to gain. In the case of nonlincar
systems, an nth order system can be reduced to a
first-order nonlinear systcm in series with the
(n-l)St-order nonlincar system which is easy to analyze.
Also, even when working in the nonlinear region the re-

sponse of the nonlinecar system is not degraded as much
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as that of the same system designed by non-gain-
insensitive methods. Thus the linear and nonlinecar
gain-insensitive systems are better in certain respects
than non-gain-insensitive systems.

The property of inherent saturation in a plant
was discussed along with effects which may cause in-
stability. Saturation in the fixed plant can be pre-
vented by introducing an intentional, saturation type
nonlinear elerient with the proper limits. By comlining
this i1dca with the gain-insensitive method usiny state
variable feedback, a system not only can be made stable
but also absolutely stable for all gain.

The technique was uscd in improving the response
of a fuel valve servomechar ism v- ch saturates at three
different points. The resulting system has a large
bandwidth and a low overshoot in response to a step
input when operating in the linear region; in the non-
linecar region, the response was better than that achieved
in two previous design attempts.

Although the method worked well in the design
example, there are several things yet to be investi-
gated in connection with the design of the fuel valve
servomechanism. The sensitivity of the system can be
investigated further, perhaps even incorporating

sensitivity requirements as one of the desiyn criteraia.
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Also, whether the system responsc can be improved by
using the conventional scries compensation in combina-
tion with the yain-insensitive desigyn technique can be
investigated. A systematic method is still not available
for choosingy the closed-loop transfer function so that
the unavailable feedback coefficients can be made
neygligibly small. The technique of introducing an
intentional nonlinearity has been discussed for a
particular type of system. It still has to be deter-
mined whether the technique is applicable to systems
having other types of nonlinearities, such as a relay

with dead space.



APPENDIX

Herc¢ the derivations of tlircec sets of the (Ab)
and (c) system equations are presented for the tuel
valve servomechanism. Also, details of the analogy
computer simulations arc given for this samec system,

The differential ecquations describan; the fuel
valve servomechanism are derived with the aid of the
block diagram presented in Fig. A=1l. Let ¢ = %y,

X, = X5, % = X3, Xg = Xg. Xg = Xg, *g = X, and

I = x9. Assuming all 1initial conditions to be zero,
the first two equations describing the plant are

X, = X (A-1)

Xy = X5 | (A=2)
From the figure the transfer function relating Xy to x,

can ke used to find §3

X 8.483 x 1011

Xs 83 + 6.083 x 10982 + 3.28 x 10%s

Cross-multiplying and transferring to the tame aomain,

one gets

i3 = 3,28 x 108x2 - 6,083 x 103x3 + 3.483 x 101184 (A=3)

Also from the relationship
X4 5,769 x 10°
XS 2 )
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one ycts

X4 = 9.769 x 10%x, (A=4)
and by definition
Xe = Xg (A=5)
The transfer function relat.in: X4 and x- can be

used to tind *6

Xg _ 2.262 x 5,769 » 10’
X9 (83 + 3.609 x 1078 + 2,103 x 10's + 1.761 x 10*Y)

Cross-multiplying and transferring to the ti.uc domain,

one gets

X, = =3.669 x 10°%, - 2.103 x 1073, - 1.761 < 10'0x,

+2.262 x 5.769 x 10°x,

Substituting for i4 and xg

Ox4 - 2.103 x 10'xg5 = 3.669 x 10°xg

Xg = =3.055 x 10
+2.262 x 10°x, (A=6)

From the block diagram

X7 1) = e 2u3
T8) = T o 5 < 103

which gives
X7 = =2.5 x 10%x, + 2.5u (A=7)
Also
Yy = %3 (A=3)
Thus using Equations (A-l) to (A-8), the plant

equations (Ab) and (c) can be written in matrix form,
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For moditying the part of the plant from c to
u; as shown in Fig. 4-3, the requircd cquatio.s (Ab)
and (¢) can be found as follows. The equataons for
X5, X34 X4, ¥g, and k; arc the samc as those of

Equations (A-2, 3, 4, 5, and 6). From Fig. 4-3

X7 _ 2,5 x 10°
u; 8 + 2500

Cross-multiplying and transforming to the time domain,

one gets
X, = =2.5 x 10%x, + 2.5 x 10%u; (A=9)
and
Y = X2 (A=10)
Thus the modified matrices are
) 1 0 0 0 o ]
-3.2x10% -6.5x10° 8.4x10't 0 0 0
0 0 0 5.7%10° 0 0
0 0 0 0 1 0
6 7 5 . o
0 0 0 0 0 2.5
L y
[ o 0 0 0 0 2.5x10%)
-
L1 0 0 0 0 o )

To realize the closed=loop transfer function

by fceding back all the variables, “he diffcrentaal
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equations describiny the modified plant arc used.
The differcntial equations for *1: *2' Xy %40 is.
and *o are the same as Equations (A-l, 2, 3, 4, 5,
and 6), respectively. Again, from the block diagyram
shown in Fig. 4-3

X, = =2.5 x 10%%, + 2.5 x 10%u,

Substituting for u; in the alove equation ygives

X, = 1.3675 x 1072, + 4.6277 x 107 'x,

-4.0828 x 10%x, - 3.4700 x 10%xg

-2.1923 x 10%x, + 2.70982 x 10%u (A=11)
Equations (A-l, 2, 3, 4, 5, 6, 11, and 8) arc suftficient
to describe the modified plant in matrix form to be

used on the digital computer.

s c al S3 LORS

To evaluate the designed gain-inscnsitive
lincar and nonlinear systems an analoy computer of
+100v. was used. The systems were simulatcd using
the differential equation approach. The datferent
variables were scaled using the following scale tactors
x1(2 x 10%)  x,(1) x3(2.35 x 103)  xg(10%)
xg (1) x-(2 x 103)  u(2 x 10%) r(4 x 102)
The limits of the saturating states Xyo Xgo and Xg have
the magnitudes 5 volts, 35 volts, and 12 volts,
respectively. The scaled differential cquations are

as follows:
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X, = 2 x 102x2
4
Xy = 10 x4
= -3.28x10%x,-6.683x10%x1+3.60978x10"x,

Xq = 1.3557 x 1o3x5

. 4
Xg = 10 Xg

3 3

= -1.3x10%x4-2.1030x10°x5=3.669x10°x,+1.131x10"x

;

X, = 2.7350x10%x,+2.2554%3=3.4747x107x,~6.894x10°x,
-2.5294x10%x=2.1923x10°x5+4.60669x10%u

u = (5r(t) - 2 x 10'35?3)

The feedbLack coefficients are kl = 10, k2 - 4,006 xlO'z,

ky = 6,124 x 1072, kg = 1.297188, k, = 3.55722 x 10-1,
kg = 7.15308 x 1071, and k, = 3.690275 x 107,

In order to facilitate the recording of step
responses, the system was time-scaled by the factor 104
which gives the new differential equations
x] = 0.02x;

%o = X3
Xy = -3.28x2 - 0.6683x, + 3.60978x,

Xq4 = 0.13557:(5

X5 = %g
x6 = "0. 13)(4"0. 2103’(5-00 366986+0. 1131)(7
X, = 0.002735x2+0.00093x3—0.34747x4-0.06894x5

-0.25294x6-0.21923x7+4.60669u
Usinyg the above equatior3 and tne teedback

coefficients the system circuit diagram is ‘ormed as
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shown in the Fig. A=-2 for the linecar system., For the
nonlinear system an intentional nonlincarity is
introduced, whose characteristic is shown in Fig. A=3

along with the diode bridge to rcalize it.
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Realizing the Lindter and its
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ABOTHRACY

Tnree techniques arc prescnted for generatling
unavallable states to rcallize a desired closed=-lo00p
resporise, J3ince all configurations reallze tihe saaxe
closed=-loop response, they are compared on the basls of
peak and integral sensitivity., The systen thnat is the
least sensitive to changes in plant paramecters 1s cor=
sidered the best. The first two techniques dlscussed
result in undesirable systems. The third system results

in a new control systen configuration that 1s a compro-

mise retween a state=variable feedback system and the

eorresponding Heq(s) system.
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CHAPTER I
INTRODUCTION

itfodern control theory states that the optimal cone
trol law should be a function of all the state variables,
Schultz and wvelsa (1967) develop this state=variable feede-
back configuration in detail for linear systems. white
(1967 ) has shown that the state-variable feedback confige
uration has sensitivity advantages over a system using
series cbmpensation. designed by the Guillemin=Truxal
technique discussed in Chapter 5 of Truxal (1955). In
addition, any desired respons¢ can be achleved by feeding
back all the states in the proper combination.

In most practical problems, all the states are not
available for control, and in some cases, only the output
is avallatle. Schultz and i‘elsa (1967) describe how un=-
avallable states can be generated by block diagram zmanipu=-
lation3. These techniques are lizited and 4o not always
realize the sensitivity advantages. white (1957) moves
all the feedbacx to the output by bloc¢)r ' gzram manipula=

tion, resulting in the i . iguration., He

cqulvalent(s)
then shows that for the Heq(s) configuration the sensi-

tivities of plant parameters are as good as or better

1
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than tne state-variable feedback configuration, However,
the resulting system is not realizable, except for the
special case where thé plant has the same nutber of poles
and zeroes,

The problem attacked in this work is to find a
vay to generate these unavallable states whlle retaining
some of the sensitivity advantages of state=variable feed=-
back. Three techniques for generating unavailable states
are discussed. These three configurations and state-varie
able feedback are discussed on the basis of sehsitivity
largely through the use of examples, Sensitivity 1s used
as the criterion since all the techniques realize the
same closed=loop transfer function,

Only linear, noliseless, time-invarlant systens
with singzle input and output are considered., It 1s also
assumed that a desired closed-=loop response has been
specified in terms of a desired transfer function. Dial
(1967 ) has shown a correspondence between a quadratic
performetice index and the specification of a closed=loop
response.

Chapter II contains background material. State=-
-rariable feedback is discussed, and it 1s shown how to
solve for the required feedback coefflclents, given a
plant and a desired response, Different sensitivity

measures are also discussed briefly.




3
Chapter III explains the parallel simulation con-

flguration, where the unavallable states are fed back from
a parallel siculation of the plant., It i3 shown how this
configuration 1s nothing more than series compensation,
and an exaxple 1s presented.

~ In Chapter IV, the observer system of Luenberger
(1963) is used to feed back the unavallable states., Hers
another linear system, whose order is equal to the nuaber
of unavailable states of the plant, is introduced into the
problem. This new system is driven by the available states
and the 1input to the plant. The states of the new system
are a linear transformation'of the unavallable states of
the plant, New feedback coefficients are defined for the
avallable states of the plant and the states of the new
system, IKxamples of the technique are given.

Chapter V develops a new control systeu configure
ation that i1s a modification of the observer systew of
Chapter IV. This new configuration is a compromise between
a state-variable feedback system and the corresponding
Heq(s) system., It is shown how this new system may be
synthesized directly from the desired closed=loop response,
Exanples are presented that show how the technique may bve
appliecd when only the output is avallable, or when additione
al states are slso avallable,

The final chapter contains a conclusion, and offers

suggestions for further work.,




CHAPTER Il
GENERAL THEORY

This chapter discusses pertinent background materi-
al. State-variable feedback and the determination of the
feedback coefficients to realize a given closed=loop re-
sponse are descrinhed. Sensitivity measures are discussed

briefly.

2.1 State-Variable Feedback

It is assumed that the given linear plant is repre-
sented in block diagram form. A typlcal plant is shown 1in
Figure 2.1. The plant transfer function, Gp(s). is given
by

Gp(s) = Gl(s) Gz(s) oo Gn(s)

and

-~

¥(S) u G(s) = KGP(S)

S

If the plant transfer function possesses a palr of complex.
conjugate poles, it is represented as two integrators with

feedback. For example, the open~=loop transfer function
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G(s) = 1

s€ + 35 + 6

can be renresented in block diagram form as in Figure 2.2,

If a state 18 associated with each block of the

plant, as in Figure 2.1, the plant can be represented as

a system of first-order linear differential equations.,

In matrix notation, these equations are

X=Ax +bu
y=g'x

where

4

is an (n x 1)

1>

is an (n x n)

o

is an (n x 1)

is an (n x 1)

jo

is the scalar

[~

is the scalar

<

(2.1)

state vector

plant matrilx

input vector

output vector
input

output

The open=loop transfer function in matrix notation can be

found by taking the Laplace transform of equation (2.1)

with Zero initial conditions, as

sx(s) = Ax(s) + bu(s)

y(s) = gT.:g(S)
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Figure 2.1 General Plant
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Figure 2.2 Representation of Complex Conjugate Roots




This may be rearranged to give
(sl = A)x(s) = bu(s)
such that
x(s) = (51 = &)  pu(s)
or
x(s) = 2(s) bu(s) (2.2)

where

B(s) = (s - A)7?

The open=loop transfer function 1is

_yis) _glhx(s) _ cTB(s)bu(s)
6(s) u(s) u(s) u(s)

or
T .
G(s) = ¢ p(s) p (2.3)

Schultz and Melsa (1967) show that any closed=-
loop response of the same order as the plant can be
achleved by feeding back all the states with the proper
welghting. The zeroes of the plant show up és zeroes of
the closed=lo0op response. If zeroes other than the in-
herent zeroes of the plant are desired, they are added

to the plant using a seriles compensator that oontalns




the desired zeroes end additional poles., The order of
the plant is then increased by the order of the compen=-
sator, and additional states are created that should also
be used for control. The control input, u, for state-

va: .able feedback iz given by

us pye- kT; (2.4)

where
r is the closed=loop system input

k is an (n x 1) veotor of feedback coefficients

Substituting equation (2.4) Ainto (2.1) for u, the closed-

loop system can be represented by the set of equations

= (A-bk)xe+br
y=¢c'x (2.5)

where

(A - QKT) is the closed~lo0p system matrix

Equation (2.5) may be transformed to the frequency-domain
and solved for y(s)/r(s). This expression.for y(s)/r(s)
in terms of the feedback coefficlents 1s then equated to
a desired response and the feedback coefficients found by
simple algebraic manipulations.

It is simpler to convert the representation of

Figure 2.3 to the Hgqujvalent(s) configuration as shown
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in Figure 2.4, The expression below can bte used to find
ng(s)

T

k* p(s)b
Heq(s) - .TQ

¢ R(s)k

Well known blcok diagram manipulations may also
be used to find Heq(s) by moving the origins of the feed=-
back paths to the output. The closed-lo0p response for

Haq(a) configuration 1s given by

yis) _ G(s)
r(s) 1 + G(8)Hgeq(s) (2.6)

Equation (2.6) may be equated to the desired response
and the feedback coefficients found. The output block,
Gy, often contains an integrator, and in this case, k1
1s set equal to one to insure zero steady-state position
error for step function inputs.

As an example of the technique, consider the
plant shown in Figure 2.5. It is desired to realize

the closed-loop transfer function

y(s) . 80 ' (2.7,
r(s) s + 1452 + LBs + 80 ’

Figure 2.6 shows the plant with feedback. The forward

gain, K, 1s assumed adjustable, and kl is set equal to




-
r - l X X X3y
(Ve K=o C N _ - - G 2 G 1
. | a T — 2 1 {
L———d‘ '
== !
Kn I
k2
oy
1
Figure 2.3 Plant with State=~Variable Feedback
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Figure 2.4 Heq(s) Configuration
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one to realize the desired zero steady-state position
error for step function inputs. In Figure 2.7, all the
feedback has been moved to the Xx; node. Heq(s) is found

by combining the three feedback paths to be

Heq(s) =1 ¢+ kys + -ls-kjs(a + 1)

or

Heq(s) = 55232 * (%2 + ko )s + 1 (2,.8)

The open-loop transfer function is given by

10K 2.
G(s) = g8(s + 1)(s + 5) (2.9)
Substituting equation (2.8) and (2.9) into equation (2.6)
gives the overall raesponse in terms of tihe feedback coef=-

ficients as

<
P e Y
n
~

g

o~
w

g

10K
" 83 4 (6 + 2Kkq)s® + (5 + 2Kk; + 10Kkp)s + 10K

(2,10)

Equating coefficients in equation (2.10) with the desired
response equation (2.7) gives the following equations:
10K = 80
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and
ZKR3 + lOKkZ = 43

Sclving the first for K, the remaining equations become
linear with the solution.

K=38

The closed=100p system is now realized as shown in Fig-
ure 2.6,

It would be 1deal if all the state varlables were
always avallable fcx control, so that state-variable feed=-
back could be applied directly. Often, however, this is
not the case. The state variables may be too difficult
or too costly to measure, or the measurements may be cor-
rupted by an excess amount of nolse. In these cases, the
state variables can not be measured, and alternate means
must be used to reallze the desired closed-loop transfer
function. In each case, the alternate means described
here realize the same closed=loop transfer function.
Hence, they can not be compared on an input to output
or transfer function basis. The method of comparison

used here is that of scensitivity.
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2,2 0Sensitivity ileasures

It is Aimportant to have measures of how the re=-
sponse or overall system transfer function changes with.
system parameters. Several sensitivity measures are des-
cribed here that may be applied to this problen,

The definition of classical sensitivity given
here is from Truxal (1955). The sensitivity of a fre-
quency function, T(sS. p) . With reapect to a parameter, p,

i8 defined as

The classical sensitivity expresses the percentage change
in 1 for a percentage change in a parameter, p. Here, 7T
is indicated as a function of s as wq;l as p because the
application usually involves transfer functions.

An application of classical sensitivity to the
comparison of the sensitivities of plant parameters for
two control system configurations results in two frequency
functions that must be compared. If the magnitude of one
classical sensitivity were smaller for all frequencles,
then the corresponding system.would be the least sensitive.
Usually, the magnitude of one classical senéitlvity is
smaller for some frequency range, and it is not clear what
system i1s the least sensitive; that is, interpretation is
difficult,
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For an example of classical sens.tivity, consider

the classical control system configuration of Figure 2.8.

The overall response i1s given as

¥i{s) . = G(s)
r(s) W(s) 1 ¢+ G(s) H(s)

The sensitivity of W(s) with respect to G(s) is given by

G W4 WdG 'l + G(s) H(s)

- 1l
1 + G(8) H(s)

which 18 approximately equial to

1 if > 1

™ G(sT B(s)

G(s) H(s)

By making the loop gain large, the effect of parameter vari-

ations in the forward path is made small,

Classical sensitivities are relatively easy to cal-

culate. Unfortunately, they are a function of frequency

and are difficult to interpret. In order to avoid the fre- -

quency dependence ot classical sensitivity, three time-=do-

main measures of sensitivity may be utilized.
The sensitivity function, Up(t). 18 defined by
Tomovic (1964) as the change in the response, y(t), to a

L e P
iR cdgal

NS RIRR TN VL £ ORI
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Figure 2.8
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Classical Control System Configuration
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step input, for a percentage change in a system pa.ameter

P.

day(t
Up(t) = dﬁﬂ

Here Up(t) is a function of time, and this is also diffi-
cult to interpret.

white (1967) discusses WO new sensitivity mease
ures that give a number that can be used to compare the

different control system configurations. He defines the

peak sensitivity, U?,. of a parameter, p, as
L
Up = Up(T)

is a maxi-

where T equals the value of t such that 'Up(t)
mum, Also defined is the integral sensitivity of the
system with respect to a parameter, p, &s

sp = Jo Up(t) dt

when this integral exists. White shows that integral sen-
sitivity is related to classical sensitivity by the rela-
tionship

1 7 uggw)] 2| gY
Sp = 5= I"‘l—w-rl-l p(JW)

wnere W(Jw) is the overall transfer function with s

2dﬁ

replaced by Jw.
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Peak and integral sensitivities give a number as
a sensitivity measure, rather than a frequency or time
function., Thus, peak and integral sensitivities are easy
to interpret and will be used to compare the examples of
the following chapters. However, except for simple cases,

& computer is required for the generation of U:) and Sp
(see White, 1967).




CAAPTuER IIIX
PARALLEL SIMULATION

This chapter and the following two describe three
alternate means of realizing a desired closed=-loop transe
fer function when all the state variables are not avalle
able., The %“echnlque used 1in this chaﬁter is that of
parallel simulation, and only single=input, single=-output
systems are discussed. The case where only the output is
avallable is stressed as a '"worst" case,

The plant and parallel simulation for generating
the unavailable states in the worst case is shown in Fige=
ure 3.1, Stars are used to denote the generated states,
vhioh are only estimates of the actual étates. Assume

Gp(s) is the unalterable plant of nthe=order, where
Gp(S) = 0102 L ) Gn

It i1s only necessary to simulate n=1 of the states since
the output i1s assumed available for feedback. The blocks,
G”2 through G*n , are simulations of the corresponding GZ
through Gn of the plant. Each Gi contains one pole, or
one pole and a zero., If Gp(s) contains complex conjugate
roots, these can be simulated using two integrators with

feedback, as discussed in Chapter II., 1If Gp(s) is a

19
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linearized molel of the actual plant, the simulated states
afe only equal to the actual states near sone operating
point where the linear model is valid.

The state=variable feedback coefficlents may be
found as if all the states were avallatle, but the unavail=-
able states are fed back from the parallel simulation., Fig=
ure 3.2 shovis the closed=loop systexr with the unavallable
states generated by the parallel simulation. The transfer
function from node e, to ey in Figure 3.2 i1s equivalent to
the Guillemin-Truxal series compensator as discussed in
Truxal (1955). Assuming the desired closed=100p response,
y(s)/r(s), is known, the Guillemin=Truxal compensator, Gg,

is found froa the relation

b = Gp(i/f y/t) | (3-1)
The Guillemin-Truxal configuration is shown in Figure 3.3.

white (1967) has shown that the sensitivities,
both classical and sensitivity functions, for a state-
variable feedback configuration are considerably better
than those achieved using serics compensation., Although
sensitivities do vary in general with the system config-
uration, tne sensitivities of the plant parameters in
Figure 3.2 are only dependent on the overall function,

Gc' and not how it is realized. This is true in general
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1 ‘
x PIEY
* x“ & x*

Figure 3.1 Plant and Parallel Simulation
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Figure 3.2 Closed=Loop Systenm




Figure 3,3

Series Compensated Systen
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since any system coampensated by the parallel simulation
technique can always be reduced to the configuration of
Figure 3.3. Here, G, must equal the Guillemin-Truxal
equalizer, since if two systems are identical except for
one block, then that block must also be the same.

As an exsumple, consider the third-order plant of
Pigure 3.4. It is assumed that only the output is availe
able for control, and zero steady-state position error 1is

desired. The desired closed=-loop response is

y(s) . 80
r(s8) (8 + 10)(52 + 4s + 8)

The problem 18 first solved using the Guillemin=Truxal
approach and then using a parallel simulation,
The desired series compensator 18 found using

equatior (3.1) as
= 8(8 + 1)(s +
Ge (s + 6)(s +é$l

The closed=loop system is shown in Figure 3.5.

The feedback coefficlients and forward gain for the

parallel simulation system were found in Chapter II as

K= 8.0
kl = 1,0
ko = 7/16
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The parallel simulation system is shown in Figure 3.6,
The corresponding series coapensator calculated froa this
conflguration 1s
G = 8(s + 5)(s tj%%
(s « 6)(s +

This 41s the same as was found using the Guillemin-Truxal

approach, and the parallel simulation scheme is simply a
way of mechanlizing the required equalizer. Of course,
the sensitivity of the closed-=loop Ssystem to plant param=
eter variations is unaffected by how G, is reallzed.

The peak and integral sensitivities of the plant
parameters for the series-compensated (or parallel simula=-
tion) system were calculated. Also calculated were the
sensitivities for the state-variable feedback configura=-
tion and the corresponding Heq(s) system of Chapter II.

A computer program, written from White's (1967) thesis,
was utilized to obtain the sensitivities which are listed
in Table 3.1.

The sensitivities of the‘gain. Kl' in the output
block are the same for the Series-compensated system and
for the state=variable feedback configuration. The sensi-
tivitles of the parameters in the inner bloocks are reduced
appreciably for the state varlable system. 'The inner most
block of the state=variable feedback system is the least
sensitive, because it 1s surrounded by the greatest number

of feedback paths. All blocks of the Heq(s) system exhibit
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Table 3.1 Sencitivities for Parallel Simulatlon Exanple

Parame= System
eter 1 P 3
Ko 321 140 «593
K3 140 . 140 593
Peak Sensitivity
Parame Systen
eter 1 2 3
KZ . 067 .012 .286
KB .012 .012 .286
Py .019 .0031 133 (
P53 .0096 .0096 .260
Integral Sensitivity
Systen Description "  £
1 State-Varliable Feedback .
2 Heq(s) Systen
3 Series Compensatlion or Parallel Simulation
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sensitivities of the same order of magnitude as the inner
most block of the statec=variable feedback configuration,
but, unless the plant has the same number of poles as
zeroes, the resulting Heq(s) is not physically realizable.

Observe that Heq(s) is driven only by the output of
the system, and not by the input. Therefore, the systen
used to generate the unavailable states should be welghted
heavily on the output of the plant. The next two chapters
look at schemes for generating unavalillable states that are
dependent on both the input and the output of the plant,

An intuitive feeling for the poor sensitivity
characteristics associated with the paréllel simulation
configuration can be obtained by considering Figure 3.7.

If a parameter in one of the blocks of the plant 1s per-
turbed, say 63. the controi. u, is not affected immedi-
ately, as it would be if the states were fed back directly
from the plant. By using state-variable feedback, the
control always knows what the plant 1s doing.

The parallel simulation configuration may be
looked at as merely a block diagram manipulaticn where
the origins of all the feedback coefficlients (except the
output) are moved to the input of the plant, This tech=-
nique may be of value when a small percentage of the states
are unavailable, as discussed in Chapter 9 of Schultz and
Melsa (1967). However, it should not be considered when

only the output is available for control.:
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Figure 3.7

Third=0Order System
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CHAPTER IV
OBS£RVLR SYSTEM

This chapter discusses another method c¢f genere
ating unavallable state variables, An observer, as
developed by Luenberger (1963), 1s used to geneere the
unavailable states, The observer 1s a second linear sys-
tem that i1s driven by the avalladble outputs and the input
to the plant., The states of the new system are related
to the unavailable states of the plant by a linear transe
formation.

The generated states, along with the avallable
states of the plant, are fed back to realize a desired
closed=l00p response. New feedback coefficlents are
defined, but, as the poles of the observer are moved
out to improve the sensitivities of the plant parameters,

the new feedback coefficlients become very large.

L.1 Observer Theory

The theory is developed in matrix notation, lost
modern control theory texts, such as Schultz and lelsa
(1967), describe the representation of control systems

using matrices,

29
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The time-invariant linear plant of nth order 1is
described by the matrix differential equation (2.1),

repeated here as
X =AX +bu (4.1)

where

b

is an (n x 1) state vector

P>

is an (n x n) system matrix

o

is an (n x 1) input vector

[ -4

is the scalar control input

The state vector, x, completely describes the
present state of the system, and the future behavior is
governed by the firsteorder matrix differential equation
(4.1).

If 4t is only desired to generate the unavaileble
states of the plant, then the observer 1s of mth order,
where m is the number of unavailable states., The observer
is also described by a firste-order matrix differential

equation of the form
z=Dz +Ex +gu (9.2Y

where
z is an (m x 1) state vector
D 1s an (m x m) system matrix

F 1s an (@ X n) input matrix
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g is an (m x 1) input vector

X and u are as defined in equation (4.1)

It is assumed that the states of the observer and

the plant are related by a linear transformation
‘z-- -T_z (uOB)

Equation (4.3) is substituted into equation (4.2) for 2
and zZ to find the relations that the observer matrices

must satisfy. If this 1s done, then
Tk = (DT + F)x + gu (4.4)
Equation (4.1) is pre-multiplied by T to give

= TAX + Tbu (4.5)

1o

I
Comparing equations (4.4) and (4.5) shows

DT +E=TA

or
TA - DI =F (4.6)
and

g=71b | (4.7)
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The matrices A and b are known. If the observer is cnosen,
equation (%.0) may be solved for T, if A and D have no coxe-
mon elgenvalues,

It 1s'orlginally assumed that z and X were related
by a linear transformation. That this 18 a valld assuup-
tion may be shown in the following way. Equation (4.5) is
subtracted from equation (4.2), giving |

zZ-Tx =Dz =TAXx+Ex +(g=20)u (4.6)

Using equation (4.6) to substitute for TA in the above

equation gives

z=-Tx =D(z=21x) (4.9)

By choosing g = Tb, the above differential equation can

be integrated giving

z=TX + e2?t [g_(o) - 2;&_(0)] (4.10)

If the initial conditions are also related by the linear

transformation, the second term drops out, and
zZ=1Ix

It is probable that the iriitial conditions 4o not
match; therefore, the eigenvalues of D should be chosen
surficiently far out in order for the initlal condition

tern in equation (4.10) to be small after a short tiame.
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This initinl condition term represents the error between

2 and Tx , and the sooner it disappears, the better,

L,2 An ixample

As an example of how the equations are solved,
consider again the example of Chapter III., The plant is

shown again in Figure 4,1, It 18 assumed that X, and x

3
are unavailable. The system matrix for the plant 1is
0 1 0]
A = 0 =1 5
0 0 -SJ

and for K = 8, the input vector, b, is

B 0]
b = 0
16J

b

The observer, with 1ts poles chosen at S = =6 and s = =7,
is shown in Figure 4.,2. The system matrix for the obser=-

ver 1is



K" Kz El
S + Pj 8 +P2 s
Kl s loo P2 = 1.0
KZ = Soo P3 = 5.0
K3 s 2,0

Figure 4,1 Open=Loop Plant

S +6 | 7

0]
+

Figure 4,2 Observer
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The (2 x 3) transformation matrix, T, is found

using equation (4.6), and it is repeated here as

ZA - DI =L

vhere

(2]
n

-
>
-
N
-
)

g
]

After substituting the appropriate matrices into equation
(4.6), the result is

-0 1 0ﬁ
t t t -7 1l t t t
Xl 2

12 311, s - il 712 713

21 taz tpj 0 =6 itz1 tpy tpq

O 0O =

i >

0 0 0

-
1l 0 0

Perforning the above matrix multiplicationa and eguating



corresponding elements results in the following set of

equations for the elements of T:

7ty =t = 0

t + 61:12 + tzz = 0

1l

6t21 = ]

)

t21 ¢ 5tpz = O

The preceding equations may be solved to give

%

b

!
L2

"33

"3

i
6

S

-
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Now the control input vector for the observer is found from

)
N

Wi =
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The unavailable states of the plant are now found in teras
of the avallable states of the plant and the states of the

observer using equation (4.3) as

r- -
© 1 o1 IRRS!
21 L2 105 235

) 3 3 SR
22 -
| - 3% 8] | *3

Solving for xz and x3 gives

x% = 7x, + 8z, - skz,

x“B --z-xl +

8l 24
5 5

where the stars have been introdused to indlcate that 1*2
and xs are only estimates of the actual states of the
plant.

Figure 4,3 shows the plant and observer witih the
generated states, The feedback coefficients, that were
found in Chapter II for ._his probvlem, could now be fed
back from'xl. x%, and x; to give the desired closed=loop
response. Hather than actually finding x"2 and x“B o iC
is simpler to find new feedback coefficlenbé that are fed
back directly from Z10 25, and X, The next section
defines new feedback coefficients in terms of the trans-

formation matrix and the original feedback coefficlents.



: 12
3 7
15 9 1 |x 1 |z 1 z
L-s+5 s+1 S 1% s...B 2‘:& s +7 1
7
X’ L
2 L '
+ =54 [
8l y
2
9
X“3 + E
T
4
2

Figure 4.3

Plant and Observer with Generated States
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4,3 Closed=l.oop System

This section discusses the closed=loop systen
and defines new feedtack coefficlients., The statc=-vari-
able feedback coefficients can be found as if all the
states are available, and the available states of the
plant and the generated states can be used for control.
It is simpler to find new feedback coefficients that may
be fed back directly from the available states and the
states of the observer.

It should be pointed out that the overall re-
sponse using an observer is of n plus m order. However,
the poles of the observer show up as poles and zeroes of
the overall response and cancel to give the desired nthe-

order response. If any of the parameters of the system

are perturbed, the cancellation is inexact and the response

is of m+m order.

*

The new feedback coefficients, kK, are found as

follows. The k and X vectors and the T matrix are parti-

tioned as
- 4 -
X
X = T
.4 *2
=
T 1T 2T
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where

gl is the avallable states ((n = m) x 1)

»
X 2 is the generated unavallable states (m x 1)

51 corresponds to the available states ((n - m) x 1)
52 corresponds to the unavailable states (m x 1)
Tl is an ((n = m) x n) matrix

2? is an (m x m) matrix

In terms of the partitioned matrices, equation (4,3) 1is

s0lved for the unavallable states, as

or

xiZ - (22)-1 (z = T

The feedback is

(1T 1 + k2T 52

Substituting for 5’2 gives

KZT('.P.Z)-IE . E.'l.'I‘ - K2'i‘(,r2)-l 1]. ?El
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The new feedback vector is

|

(4.11)

The closed=loop system configuration, in terms of the new
feedback coefficients, is as shown in Figure 4.4 for the
case where only the output is avallable. The steps in=-
volved in solving a closed-loop problem are listed in

Figure 4.5.

4.4 Closed=Loop Example

A second=~order plant vwith one unavallable state
is chosen. The single pole of the observer is left arbl-
trary to show the effect of different pole locations. The
example is almost trivial, but it suffices to demonstrate
how the new feedback coefficients become large as the
poles of the observer are moved out.

The plant to be controlled and the chosen obser-
ver are shown in Figure 4.6. The desired closed=loop

response \is

6
;2 + 35 + 6

0%
”~~
9}
S

]

g}

o~
&

~r

Letting kl equal unity for zero steady-state position
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Figure 4.4 Closed=Loop Systeu

Slep Description

Find ¥ and K as if all states were avallable
Choose an observer of mth order

solve TA - DT = F for T

Find g using gz = Tb

Find new feedback coefficients using

|
T . [KZT(IZ)-I (T - §2T(g2)=1 21):,
]

Figure 4.5 Steps in Solving Closed-=Loop Problem



oy ——

g1
l
X2 Xy + <
- - & s}-l % : ' siaL_—ll
Figure 4,6 Plant and Observer
6
a(l=-a) |
—Q 6 [:a=vy RN
- 5(s +1) S+a
2 +a |
l=-a l
L3 __J

Figure 4.7 Closed=Loop Systen

ls(a-rZ) + 3a

s(a+2)+3a

3(s +a)

Figure 4.8 Modified Closed=Loop Systenm
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error, the k vector and K are

kT = [1.0 '1/3]

K=6.0

The A and b matrices are

The D matrix reduces to a scalar, =a, for this problen,

Solving TA = DT = F for T, glves

- [0

The input vector for the observer 1is

b

&= a(l = a)

The new feedback coefficlents are
*T 1 i
k" = [3 (1 - a) | 3(2 +a)]

The closed-loop system is shown in Figure 4.7.
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As "a" is increased in Figure 4,7, the new feed=-
back coefficlents become large., One feedback coefficlent
goes tovards plus infinity and the other towards negative
infinity, while the welighting on u becomes small, It is
suspected that letting "a" go to infinity wcoculd result in
Hequivalent(s)' since Heq(s) has its poles at infinity
(1f the plant contains no zeroes) and has zero weighting
on u, As "a" becomes infinite in Figure 4,8, the network
that 1s driven by u goes to zero while the feedback net-

work becomes Heq(s); that 1is,

limit

et e v t°

and

1imit {8 +2) +3a . 3
a—iwo 3(s + a) §s +1

The configuration of Figure 4.7 still gives zero
steady=state error, since the original kl vas unity, even
though k*z 1s not unity. For a step input, in the steady-
State, there 1s still a signal being applied to the obser=-
ver. The feedback from the observer and the plant add up
to one in the steady=state to give zero position error,
Unfortunately, the new feedback coefflcients become large
as the observer pole 1is moved out. The next section shows,

by example, the effect of observer pole location on plant
sensitivities,
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h,5 vensitivity txample

This section considers again the third-order
example of Chapter Il and IIl. The problem was started
in section “,1 with the poles of the observer at s = =6
and s = =7, but the new feedback coefficients have yet
to be found, Tne plant sensitivities and final systex
for the same problem with the obsorver poles at s = =10
and 8 = =12 are also given,

The feedback coefficients to realize the closed-

loop response

y(s) _ g
r(s) (8 + 10)(s2 ¢ 4s + 8)

for the plant of Figure L.l were found in Chapter II to be
K - [1.0 & %:l

The new feedback coefficients are found using equa=-

tion (4.,11), repeated below

7 - [5”(3:2)'1 E(g“-.xs”m")'lzl)]

where
-, " - -
L2 -l 8l -54
Tl = (22) =
i g .2k
| | S 5

-
Sa
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and - -

=

The new feedback vector becomes

ST (203 w1 am
= N 20 40 80

or

-
k*T = |us.15  -26.02 u.zc]

e

The final closed=100p system is shown in Figure
4.9, The parameter values that result if the observer
poles are picked at 10 and 12 are also given., lioving
the observer poles about twice as far out has increased
the feedback coefficlients tremendously.

Table 4.1 1ists the peak and integral sensitive
ities of the plant parameters for both observer systeus,
The sensitivities for the state-variable feedback con-
figuration, the Heq(s) configuration, and the series=-
compensated system are also shown agaln for comparison,
The data f'or the Heq(s) system is included because it 1s
the least sensitive system, but it is not physically

realizabdble,
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N e

&

%

Parameter Poles of Ovserver at
a&b 687 10 & 12
8 1.86 .0l 56
&2 2.77 178
k3 45.2 866.2
k% -25.1 -177.2
k'j 4,26 11.5

Figure 4.9

Closed=Loop System
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Table 4.1 Sensitivities for Observer Systen

Parau= System
eter 1 2 3 4 5
Ky 593 140 593 401 317
Ko 321 140 «593 401 «317
K4 .140 .140° 593 401 317
P2 .148 . 061 . 329 .190 e 1ll
327 .120 .120 .S48 .358 .279
Peak Sensitivitles
Param- Systenm
eter 1 2 3 n 5
Ky «286 .012 .286 .106 .063
Ko . 067 012 | .286 .106 .063
Kq .012 .012 .286 .106 .063
Py .019 .0031 133 .032 .017
P> .0096 .0096 .260 .092 .053
Integrai Sensitivities
System Description
1 State=Variable Feedback
2 Heq(s) Configuration
3 Series Compensation or Parallel Simulatlon
L Observer System with Poles at 8 = =5 and s = =7
5 Observer System with Poles at s = =10 and 8 = =12

SRR L T

S



50

It appears that the observer approach may be of

value if the large feedback coefficients can be avoided.

The next chapter looks at a modification of the observer
system that attempts to eliminate the large feedback

coefficients,

e ———



CiiarToenr V
MODIFIED OBS SRVER OYO T

This chaptcr discusses a modification of the
closed=1l00p observer systein. This new configuration has
teen developed in an attempt to avoid the larse fcedback
coefficients that result when the oLserver poles are
chosen far out., The modified observer system is devel=-
oped for the "worst" case where only the output state is
available, It is also shown how the technique may be

applied when additional states are available.

5.1 GSystem Conflouration

The new systea configuration was discovered by

manipulating second and third order observer systems., A
second order example is shovn in Figure 4.8. The general
systen configuration is shown in Figure 5.1. The feedtack
is a function of both the input, u, and the output of the
plant as in tne observer system. In Figure 5.1, KGp(s)

is the plant and associated gain. If n is the order of

the plant, A(s) 1s defined as

n=2
8ne2S + co0 + 248 + 2,

A(s) = (5.1)

hpe1st™1 + ... + h1s + hg

51
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A(s)

-2

1

His)

—

Gp(s) = G1(8)*Ga(s) ... G,(s)

Figure 5.1

General System Configuration

52
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and B(s) 1i defined as

haoo18T™L 4 L. ¢ 198 + 4
H(s) = n-l 1 o}

bn-lsn-l * e ¥ 1'18 + ho

The denominator of A(s) 1s the same as the numerator of
H(s). Tne ne=1 roots of the'denOmlnator of H(s) are
chosen in the sane manncr as the poles of the observer,
These roots may be distinct or all the same,

The example of section 5.2 shows that the sensie
tivitics of the plant parameters lmprove as these poles
are moved further out. As the poles of H(s) are poved
out, the welghting on u decreases and H(s) looks like an
approxiimate realization of Heq(s). white (1967) snowed
that for the Heq(s) configuration the sensitivities of
the plant parameters were, in general, better than the
sensitivities for a state=variable feedback systewm, If
the plant has no zeroes, Heq(s) has its poles at lnfln;ty.
and the velghting on u is zero.

It is siupler to solve directly for the transfer
functions A(s) and H(s) rather than manipulating an obser=
ver system. To¢ solve a problem using this new conflgurae-
tion, y(s)/r(s) is found froa Figure S.l in terms of the

transfer functions.

y(s) _ KGp ()

(5.2)
r(s) 1+ H(sS_[ka(s) + A(Si]
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Ir Gp(s). U(s), and A(s) are written in terms of numera-

tor and denominator polynomials as,

>

,s
4

Gp(s) = éﬁ
h(s) = ";%
AN
Als) = o5 (5.3)

then y(s)/r(s) can bve written in terms of these polyno=-

mials by substituting the equations (4.3) into (5.2) as

y(s) _ _ KeGNo D AD
r(s) HD+GD+*AD 4 KeGi*HN*AD + AN+GD+HN

bince AD was chosen equal to iiN, the AD's can be cancelled

in the above expression to give

z(3) - £eSN4D |
r(s) YL'GD # K'Gh-HIl + AK+GD (5.4)

where Gli and GD are known, HD 1ls chosen, K is the same as
for a state=variable feedlack System, and HN and Al are
unknown. Assuning the desire? closed=loop response is
knovn, its numeratcr and denowxinator can bve multiplied by
HD to give the actual response that is realized. Now the
coefficlients of the actual response and equation (5.4) can
be equated and the unknown coefficlents of A(s) and H(s)

founc.
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In zeneral, the denoaninator of the closed=loop
response, equation (5.4), is of (2n « 1) order., To see
this, consicer a fourth-order plant as an exaumple., The

denominator of the closed=loop response 1is

HD*GD + Ke.GN+HN + AN*GD (5.5)
vhere, from equation S.1l

AN = 8,82 + a5 + a,

and

HN = h353 + hys2 + hys + hy

The denominator of the plant transfer function is repre-

sented by
GD = su + 5383 + 3282 + €8 + g,
and the nunerator is a constant, that 1s

GN = K

Since the first term in equation (5.5) is known, let it

be represented as

These polynomials are substituted into equation (5.5),

multiplications are performed, and like powers combined,



56
to glve

s’ + (°6 + gua2)36 + (°5 + g3 + gual)s5
L
+ (¢, + 828, + E389 + ao)s + (e3 + g18,
+ 8231 +‘8380 + Kh3>33 + (02 + 3032 + glal
+ €280 ¢+ Khz)sz + (cq + BoB1 + 818, + Khl)s
+ (eg + go8, Khy)

In the above expression, the a's and h's are the unknovins,
Starting with the highest power of 8, each successlive term
pqﬁfalns a new unknown, so that any 7th order polynomial

could be realized by the proper selection of the a's and

. h's, Section 5.2 shows the equations for a third-order

example. In the general case, the characteristic equation

is of the fornm

in=1

s + (copn + gnan_,?_)sz“"2

+ (°2n-3 + gnan_3

2n=3 .(

+ gé_lan_z)s + o0 *+ (cl + 858, * E18

+ Ahl)s + (co + 880 * Kho)

vhere a ne® "a" term appears in each successive teri, such
that the s" tera contains a, through a,_p. The first "h"
ter:u, hn-l' appears in the sh=1 term, with a new "n"

appearing in each successive tern,
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If the plant possesses zeroes, the h's will appear
in higher order terms. If an ntheorder plant contains
one zero, there 1s an hp.) ters in the c™ term, There-
fore, the s® term will contain two new unknowns over the
s"*l term, Although (2n-1l) equations and (2n-1) un-
knowns still result if the plant does contain zeroes, 1t
is not possible to say that the equations are alvways inde=-

pendent. The next section presents a third~-order example

with no zeroes,

5.2 Example One

As an example, consider again the problem of
Chapter I1, Il1I, and IV, The plant is shown in Figure
3.4, The desired closed=loop transfer function is

y(s) _ 80
r(s) sJ 4 1Usé + 483 + 80

The poles of H(s) are chosen at s = =10, giving
HD = (5 + 10)2

The y(s)/r(s) that must actually be realized 1s

y(a) - 80(s + 10)2 . (5.6)
r(s) (s§»+ 14s° + Lbs + £0)(s + 10)2

or

y(s) o0(s + lO)2
S35 + 3us¥ 4 L28s3 + 24L0s2 + 6400s + €000




‘"he polynomials of equation (5.3) are
GN = 10
GD = 8(S + 1)(8 + 5)
Al = a5 + a,

HN = h,8% + hys + h,

AD = (8 + 10)2 (5.7)

The polynomials, equations (5.7), are substituted
into equation (5.4) to give

y(s) _ 10K(s? + 20s + 100)
r(s) 85 + (26 + al)s“ + (225 + ay + 6al)37

+ (700 + 5ay + hag + loxhz)g

+ (500 + 5a, + 10Khy )s +10shg

(5.8)

> L ge v ¢&a
Squating the

2 coofficients of equations (5.5) ané (5.C)
gives the following set of equations:
10xk = 80

_26'+ a, = 34

225 + o, + 6a1 = 428
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770 + 5a1 ¢+ Gag + 10ih, = 2440

500 + 5a4 + 10&h; = 6/.00
10kh, = 8000

vhich may be solved to give

K= 8,0
A, = 8,0

ag = 155.0
hz = 9.625

ho = 100.0

The closed=loop system 1s shown in Figure 5.2 along with
the resulting system if the poles of H(s) ars chosen at
s = =50, The high frequency gain of H(s), h,, becomes
prohibitively large for the system with poles of H(s)

at 8 = «50, The system &1th poles of H(s) at s = =10
has a reasonable value for h,.

Table 5.1 lists the sensitivitlies of the plant
parameters for both systems. The results are also 1=
oluded for the systems consldered in the previous chap-
ters for comparison. The modified observer system with
poles of ii(s) at s = =10 results in sensitivities of the
same order of magnitude as for the observer system with

poles of s = =10 and s = =12,



xl-y

r 2 5
.f;> 8 s+5 S +1 %
818 + ag .é
h?_S:r-f his + hy
h2s2 + hy8 + hg
(s + b)2
Parameter Poles of HK(s)
b 10 50
a, 155.0 795.0
a, 8.0 8.0
ho 100.0 2500.0
hy 64,0625 |139%.0
h, 9,624 | 244,625
K 8.0 8.0

Figure 5.2
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Modified Observer System for Example One
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Table 4,1 Sensitivities for rodified Observer Systeuw
Parame System
eter 1 2 3 b 5 6 7
Ky 593 JA40 | .593 U401 317 | .332 «189
Ko .321 140 | .593 .1+01 317 | .332 | .189
K3 «140 140 | ,593 401 317 | .332 .189
Py .148 .061 | .329 .190 AUk | 152 . 086
Py «120 .120 | ,548 .358 279 | .293 .166
Peak Sensitivitlies
Parame System
eter 1 2 3 4 5 6 7
K, .286 012 | .286 .106 .063 .O%O .022
K, . 067 .012 .286 .106 063 | .070 .022
Kq .012 .012 | .286 .106 .063 | .070 . 022
Py .019 .0031{ .133 .032 .017 | .019 .0062
Po .0096 | ,0096 | .260 .092 .053 | .059 018
Integral Sensitivitles
Systen Description
1 State-Varliable Feedback

N O W

Heq(s) Configuration

Series Coapensation or Parallel Simulation

nodified Observer System, Poles at s = =10
nodlfied Observer System, Poles at s = =50

Qbserver System with Poles at s = =6 and 8 = = 7

Observer System with Poles at s = «10 arii 8 = =12
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It was stated in Chapter 1V that the welghting
on the avallable outputs of the plant increased, vhile
the velghting on the input decreased, as the poles of
the observer ware moved out., The poles of H(s) have the
same effect. To see this, consider the frequency re=-
sponses (Bode) of A(s) and H(s) in Figures 5.3 and 5.4
respectively for the example of this section.

H(s) 1s about the same as an approximate realizae-
tion of the corresponding Heq(s). From Chapter II,

Heq(s) was found to be

Heq(S) = %0-82 + %%s + 1

Ir Heq(s) viere approximately realized by adding two poles

at s = «10, the result is

' (s) = 10s° + 53.75 + 100
€q (s +10)2

The corresponding li(s) for the same pole location 1s

i(s) = 9,524 52 + 66,135 + 100
(s + 10)<

Therefore, the modified observer system 15 like an approxie=

nmate Heq(s) systemn, but the modified observer system realizes

the ceslircd respounse exactly.

The configuration of Flgure 5.2 gives zero steady-

state position error, but only if the "100" terms 1in the

& et L s |

..
e vy okl

i R v N
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A(s) A
w
1 —
.1 L,
014

Poles of H(s) éi S = =10
- = = = Poles of H(s) at 8 = =50

Figure 5.3 Approximate Prequency Response of A(s)

x

H(s)

100 /

L o

10 | /

'€

1 100

Poles of H(s) at s = =10
- - — —Poles of H(s) at s = =50

Figure 5.4 Approximate Frequency Response of H(s)



56
nuzerator and dcnoninator of d(s) are equal., As an altere
nate reallzation of (i(s), consider the configuration of

Figure 5.5. Here H(s) has been divided out to give

H(s) = 1 + S(8.625s + 4')
s€ 4+ 20s + 100

Now zero steadye=state position error 1s assured by the
unity feedback and the integrator at the output of the

plant,

5.3 igxample Two

It was stated at the beginning of the chapter
that the technique could also be applied when addition-
al staies are available. This section demonstrates the
procedure using the running third-order example of this
study. The problem is first solved with xj and x, aveil-
able and then with xj anc X4 avallable,

Jt i1s necessary to assume that the state=variable
feedback coefficlients and forward ialn, that were found
in Chapter 11, are known. Flgure 5./ shows the state=
varliable feedback system. The technique is exac 7y the
same a8 vhen only the output was available, but the transe-
fer function from r to X5 1s the desired response., From

Pigure 5.4, this transfer function is

X2(s) 30
I‘zzS; s ¢ 1 s + 48 (5.9)
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Figure 5.5

Alternate Closed=Loop System
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and the corresponding plant transfer fuhction is

x2(3) _ 80
u(s) (s + 1)(s + 5)

Choosing the pole of H(s) at s = «10, the polynomials of

equation (5.4) are
GN = 80
GD = (s + 1)(s + 5)
HN = hls + ho
HD = 8 + 10
AN = o,

Substituting these equations into equation (5.4) and

combining like terms gives

Xp(s) _ 80(s + 10)
rzzss ;3 + (16 + ao)s + (65 + a5 + 80h1)s

+ (60 + Sa, + 80hy)

The actual response that i1s realized is found by nmultie-
plying numerator and denominator of equation (5.9) by
(s +10) to give

Za(s) _ _ 50(s_+ 10)
ro(s) 83 + 2hu? + 188s + 480
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Equating coefficlients of like powers of 8 in the two
expressions for xz(s)/rz(s) gives the following set of

equations:

8y + 16 = 24
65 + 6a, + 8Oh1 = 188
60 + 5a, + 80h, = 480

which may be solved to give

a, = 8.0
hl = 0938

hy, = k.75

Since there is only one additional state, which
is available, the problem is solved. The resulting
closed=loop system is shown in Figure 5.7.

The second case conslders X, and x3 as avalilable.

From Figure 5.6, the transfer function from r3 to 13 is

X.,(s)
J——ﬂ 6
r3(s) S + 13

Ir. this case, H(s) reduces to a constant,. h,, and A(s) 1is
zero, Of course, the constant, hye is just the state-

variable feedback coeffisient k3.
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O—2{s 2 I%3| s (2| 1| M7
A S+5 S +1 s | 1
Ols + L.75
L9bs + 4,75
s « 10

Figure 5.7 ¥odified Observer System with
Xy and Xp available
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wow the technlque 1s applioed at the Xy node wvwith
& new plant transfer function, which is

xl(s) 80

u(s) 8(s « 1)(s « 13)

With the poles of H(s) again at s = =10, the polynomials

of equation (5.4) are
GN = 80
GD = s(s + 1)(s + 13)
AN = als + ao
HN = h 32 + hy8 + h
2 1l (o]

HD = (s + 10)2

These polynomials are substituted into equation (5.4) to
give

y(s) _ 80(s + 10)°
r(s) ;37+ (34 «+ al)s¢'+ (393 + 1lba, + ao)35

+ (1660 + 133, +-lbag + 80h,)s?

+ (1300 + 13a, + 80h;)s + 80h,
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The actual response that is realized 1is

y(s) _ 80(s + 10)°
T(8) &35 + 3ust ¢ L2BaJ + 2440s% + 64005 + 8000

Equating coeffiocients in the two expressions for y(s)/r(s)

and solving for the urnknowns gives

8, =0
&g = 35

hy = 3.625
hy = 58.0625
ho = 100

The overall system configuration is shown in Figure 5.8.
Figure 5.9 shows the alternate configuration that results
Af H(s) is divided out to give

2.6s(s + 14,9)
n(s) =1 8¢ ¢+ 208 + 100

The configuration of Figure 5.9 assures zero steady=-state
position error.

Peak and integral sensitivities were found for
both configurations of this se = i, Table 5.2 lists the
sensitivities for these systs.  ..loang with ihe stateevari--
able feedback system and the modified observer system with
only x1 available for comparison. The plant parameters are

as defined in Pigure 3.4, .  r most parameters, the
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Figure 5.6 Modified Observer System with Xy and Xq
Available
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Figure 5.9 Alternate Configuration with X, and x3
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Table 5.2 Sensitivities for i>xample Two

‘ Paramne System
eter 1 2 3 4
Ky «593 .332 498 L12
Ko .321 .332 2U5 JL12
Pa .148 .152 .111 «197
4527 .120 .293 .217 .156
Peak Sensitivities
Parame Systenm
eter 1 2 3 L
Kq .286 .070 .287 .113
Ko .067 .070 .038 .113
Ps .019 .019 .010 034
P3 .0096 .059 .032 .016
Integral Sensitivitiles
System Description
1 State~Variable Feedback
2 x; avallable, PFoles of H(s) at s = =10
3 Xq and X, available, Poles of H(s) at s = =10 ; |
4 x; and X, avallable, Poles of H(s) at s = =10 i |
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Sensitivities are slightly hetter for the system with Xy and
X, available., The system with X, and X, available is also the
most appea.iing with the unity feedback from X -

5.4 Physical Realizability

Since the poles of li(s) are chosen, it should ‘ays
be realizable. If H(s) has zeros in the right-half plane, then
A(s) will have poles in the right half plane and will not by
physically realizable.
llowever, this problem can be avoided if the block
diagram shown in Figure 5-1 is redrawn in a slightly different
form. The new form of the system is shown in Figure 5-10.
Since the zeros of H(s) are equal to the poles of
A(s) they cancel, leaving only the realizable parts of H(s)
and A(s). It is possible that 1l/(1-All) which represents the
equivalent series compensation has poles in the right half
rlane. Special effort in the selection of the poles of H(0)
must be made to avoid this situation. f*f/
The form of the block diagram obtained in Figure 5-10, //'
combined with the knowledge that the zeros of H(s) are close |
to the zeros of Heq(s), suggest the following intuitive inter- '
pretation of the modified observer system, although this new
approach is somewhat different except in the case where the
poles of H(s) are very far from the origin.
The desired system is of the Heq(s) form; however,

Heq(s) is not realizable. 1In order to get around this problem
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B
\— H(s)A(s) T
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Figure 5-10 Realizable Form of Modified Ohserver
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*
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Figqures 5-11 Alternate Method of Ohtaining
Realizable Heq(s) Tvpe Svstem
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poles are introduced in*o Heq(s). Call the new feedback trans-
fer function lieq(s) H*(s). 1lleq(s) H*(s) is physically reali-
zable; however, y(s)/r(s) no longer has the desired form. To
solve this problem a series compensator, Gc, is placed in the
forward loop. The block diagram now has the form shown in
Figure 5-11,

The required form for Gc(s) can now be obtained by
equating the transfer function obtained from 5-11, to the trans-

fer function from a system in Heg(s) form and solving for Gc(s).

’ KGp (s)

= KGc(s) Gp(s)
1 + KGp(s) Heq(s) I ¥ RGcTs) Gp(s) leq(s) ¥ (sy (°-10)
Ge(s) = 1 (5.11)
1 + KG-(s) Heq(s) (1 - H*(s) ) *

If this method is compared to the modified observer
method it is obvious that the form of the resulting system is
similar; however, the modified observer provides a simpler ex-
pression for Gc(s) than does solving for Gc(s) using Equation
5.11. Thus, the modified observer system can be considered to be
a method of finding a realizable form for Heq(s) in order to
realize the sensitivity advantages of that form while retaining

the desired y(s)/r(s). H*(s) should be selected so that Gc(s)

is realizable.

5.5 Summary

The modified observer system avoids the large feed-
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back coefficients, but has the sensitivity advantages of an ob-
server system. The feedback network, li(s), is comparable to an
approxinate Heg(s) that was realized by adding poles, and the
modified observer system has the added advantage of giving the

desired response,.




78

CHAPTFR VI
CONCLUSIONS

Three configqurations have been presented that
may be used when not all tne states are available for
feedback. A parallel simulation, an observer svstem, and
the modifieu observer system were described. All three
gave the desired response exactly if the parameters of the
gsystem did not vary.

The parallel system configuration was shown to be
the same as a series compensated system. The system was
only driven by the input to the plant and not by the avail-
able output. In practical protlems there mavy he a tendency
for the two systems to drift apart, since they would only
be exact around some linearized operating point of the plant.

The second configuration discussed was th> observer
system. The poles for the olserver system could be selected
far out so as to improve the sensitivities of the plant
parameters. Unfnrtunately, the new feedback coefficients
become large in magnitude as the poles are moved out. Moving
the poles out increases the dependence of the observer on
the available outputs of the plant while decreasing the
weighting on the input of the plant. The observer poles show
up as poles and zeroes of the overall response so that the
desired response is achieved through cancellation. The poles

of the observer should be chosen far enough out so that the
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response is not appreciably affected if exact cancellation
does not occur. Sensitivities of plant parameters can
be made necarly as small as those achieved using state-variable
feedhack by placing the observer poles far enough out,

The resulting large values for the new feedback coefficients
makes this impractical.

The modified observer system was develoned in
order to avoid the large feednack coefficients of the
observer system, Although indivicdual coefficients of the
observer system go to infinity, their sum is finite., Sensi-
tivities of plant parameters in the outer blocks can be
improved over a state~variable feedback system by picking
the poles of H(s) far enough out, while the high frequency
gain of li(s) is still reasonabla,.

It is shown that the modified observer system can
be considered to be a method of obtaining a system which
is physically realizable from the non-realizable Heq(s)
form, in order to retain some of the sensitivity advantages
of the Heq(s) type system. A method was given whereby the
modified observer system could be svnthesized directly by
algebraic manipulation of polynomials in the frequency
domain. The technique could be apnlied when only the
output was available, or when additional states were also
available. Unity feedback of the output could be emnloyed

with the new configuration to insure zero steady-state

position error.
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As an overall conclusion from this work, it was
concluded that any system used to qgenerate unavailable
states should Le weighted as heavily as possiblec on the
available outputs and as little as nossible on the inputs
of the plant to be controlled. 1If block diagram manipu-
lations are used when only one state is unaveilable, it is

best to move the origin of the fecdback towards the output.
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