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Study of Elastic and Thermodynamic Continuous
Media in General Relativity

Jean-Francois Bennoun

(Institut Henri Poincare)

ABSTRACT: This work is devoted the formulation of a relativistic
theory of continuous media, due consideration being taken of the
fact that, within the general theory of relativity, only the var-
fation of physical quantities is operationally accessible. In the
first part the structure of elastic media is dealt with: 1linking
equations are established which describe the variation of states;
the problem of elasticity in general relativity is then fully des-
cribed. The study is then extended to relativistic thermodynamics,
on the basis of a tensorial interpretation of the second principle;
a continuity hypothesis related to the rate of change of the entropy
density permits of study of characteristic varieties and derivation:
of the general form of the relativistic equation for thermodynamic
wave fronts. The'work concludes with an application of the theory
to the isotropic use. ,

Introduction

The problem of representing the gravitational field sources in general
relativity is fundameﬁtally linked to the solution of a difficulty of a
conceptual nature: General relativity, based rigorously on the principle of
slight equivalence, assumes the validity of the laws of special relativity
within a local inertial frame of reference on condition that the value of the
local measurement standards at each space-time point is modified. The con-
sequence of this situation, from the point of view of the description of the
material media whiqh create the field, is that the definition of a natural
reference state of the'medium, which is n:cessary to establish an absolute
scale to measure the conditions of staée, loses all physical significance and,
therefore, that the total representation of the media with the aid of equations
of state can no longer be considered.

This difficulty may, however, be overcome on condition that the”éfgg;g;g
description of the states of a material medium is abandoned in favor of the
description of the variation of the states of the medium in the course of its
changes. This point of view constitutes the central idea of this work, the
object of which is to study a representation of the continuous media compatible
with the theory of general relativity.

Translated by
. ' TECHTRAN CORP,
-1~ Glen Burnie, Md.
under Contract NAS 5-14826
HIZ
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In Chapter I of this work I shall endeavor to show from an analysis of
the basic principles of general relativity the need to introduce the point of
view of the variation of states in the formulation of a relativistic theory
of continuous media.

In Chapter II, T consider a precise physical situation related to adiabatic
elastic media, and I z.rmulate the group of correlating equations describing
the variation of states of these media. I then present the problem of linking
the gravitational field to its sources according to a diagram adapted to the
point of view of the variations of states. ‘

. I then extend this representatlon to the thermodynamic continuous media
stating the fundamental postulates of relativistic thermodynamics; this study
is the object of Chapter III. .

During the investigation of the characteristic varlations of the problem
of thermodynamic continuous media, developed in Chapter IV, I established the.
general equation of thermodynamic wave fronts.

As an illustration of this general study, in Chapter V, I apply the pre-
ceding results to the specific case of isotropic media. After proposing a
definition of these media adapted to general relat1V1ty, I set forth certain
properties of the thermodynamlc wave fronts propagatlng in 1sotrop1c media;
in closing I studied by means of an example the structure of the gravitational

field created by a particular class of isotropic thermodynamic continuous media.

ChapteE L. The Problem of Representing Continuods Media in General Relativity

1. Basic Principles of the Theory of General Relativity.

The problem of the representation of the gravitational field sources is
closely linked to the significance of the principles of the general theory of
relativity; for the purpose of presenting this problem in all its generality,
we propose briefly to retrace the road which leads from the classical Newtonian
mechanics to Einstein's gravitation theory.

The Newtonian mechanics assume essentiallylz ‘

(i). The equivalence of reference systems in repose in relation to one

another, thus ensuring the existance of inertial systems.-

(ii). The equivalence of the inertial systems in the determination of

space and time. |

1cf. S. Kichenassamy (1964)




(iii). The principle of action at a distance. :
From these postulates we deduce the following consequences: \
(a) To each reference system S is associaed a three-dimensional space
which may be provided with an Euclidian structure, and a single time valid
throughout this space. Clocks have been synchronized by means of a signal

travelling at infinite velocity.

(b) .At a point of such a Newtonian frame of reference §, measurement of
the gravitational field as described by Newton's gravitational theory (1679)
becomes identified with the measurement of the acceleration of a test body
placed at this same point, this field having the remarkable empirical charac-
teristic of being independent of the nature of the test body (Eotvds (1889),
Dicke (1962)). This is the fact which is at the source of the purely con-
tingent result of the proportionality between the passive gravitational mass,

a concept of theoretical origin, and the, inertial mass of a body; from the
postulate of the identity between these two masses, and by virtue of the active
and passive identity between the gravitational masses, a rigorous consequence

of the principles of mechanics, the process of unification of the concept of
mass is achieved, just as it appears in the statement of the fundamental law

of dymnamics.

(¢) When the space associated with S is not the source of a gravitational
effect on the bodies in the presence of each other, every free material point
assumes, in regard to S, a uniform motion of translation, this fact constituting
the background of the principle of inertia; the inertial systems S are defined *
in an absolute manner.

The invariance of the Newtonian mechanics in the Galileo group therefore
asserts that it is impossible to show the uniform translation movement of a
reference system S exclusively through mechanical expegiments conducted in the
interior of S; this is the situation described by the Newtonian principle of
relativity. ' '

We know that Einstein (1905) was led by a critical‘analysis of the notion
of remote control simultaneity to extend this principle to all experiments,
both mechanical and optical, conducted in the interior of S; such a special
principle of relativity led to tﬁe adoption of the Lorentz group to be adopted
as the invariance group of the laws of physics.



The special theory of relativity assumes?:
(i) 'Like classical mechanics, the equivalence of frames of reference in
|  relative repose for the determination of space and time; this postulate
maintains for space-time the properties attributed to the Newtonian
- space and time, and in the same manner introduces the existence of
. inervial frames of reference.
(1i) The propagation of isotropic light, at a constant speed in relation
to the entire inertial system. )
This theory ied us to abondon Newton's absolute space and time; the possi-
bility of bringing into evidence the accelerated motion of a reference system
S in relation to an inertial system, by means of physical experiments inside
S and causing fictitious inertial forces to participate, does however remain.
However, Einstein's principle of equivalence (1916), founded on the
identity between gravitational mass (passive) and inertial mass, does not permit -
the inertial field and the homogeneous gravitational field to be distinguished
locally; this situation means that in a sufficiently small space-time region
in which it is impossible to detect the gravitational ficld source, the reference
system S may be compared to an inertial system. In return, if we consider an
expanded space-time region, S no longer constitutes an inertial systenm, 56 thatg.
in this case we can actually describe the gravitational field. ‘This means that °
at each point of the reference system S there are two events which are no longer
characterized by the same intervals of length and duration. The cffect of the
presence of a gravitational field is therefore to modify the geometrical space-!
time structure at each point; the reference system S is constituted by an
“infinity of inertial systems, and space-time is represented by a line graph.
~ Thus, the representation of space-time by a line graph expresses the
situation created by the local equivalence between the inertial field and the
homogeneous gravitational field. Does it follow that this equivalence is
substantial, i.e., that the laws of the special theory of relativity, their
numerical content included, are valid in an inertial frame of reference in-
dependently of the position of said frame of reference in space-time? Actually
that is not so, because S is not a true }nertial frame of reference; the

2These two postulates suffice to substantiate the entire special theory of _ .

relativity, the character of reciprocity of tiue refereuce systems in uniform
relative translation being rigorously deduced; cf. S. Kichenemassy (1964). l
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measurement standards do not coincide with those of the special theory of reclativity
except in extremely small areas. The equivalence between inertial field and
gravitational fjeld is slight and this situation resembles the only one described

by the Eotvds experiment?3,

2. The Postulates of the General Theory of Relativity.

The prescnce of a gravitational field leads to the representation of space-
time by a line graph. Einstein stated this concept providing this V4 variation
with a Riemann structure defined by the normal hyperbolic type metric equation
(signature: -2), which is assumed to be regular:

ds? = gy (xY)dx de (e and all Greek sub- and superscripts =

0, 1, 2, 3). 2.1

The local coordinates (xY) have only a purely topological meaning; the
geometrical characteristics of V4 and the definition of the local measurement
standards can only be obtained through the metric equation (2.1).

According to the interpretation of the theory, the gop 3TC indentified

with the gravitational potentials. The local determination of these potentials

is obtained by assuming that: Co

(i) In the domains of V4 vacuums of non-gravitational energy, the metric

equation is regular and meets Einstein's external equafions.

\/_c~3=o | | \ 2.2

— e

\\\ \
or: \
| g=dét (gg) | - 3 \
e 2.3
and GaB designates Einstein's tensor V4:
G = '{5 1/2,,«.; | . 2.4
RaB being Ricci's tensor, and R the scalar curvature of V4.
(ii) In the V, domain provided with an energy distribution with which the ’

9
B

pulse -rate-energy T° 8 is. associated, the g af which are assumed .to_

- 3cf. S. chhenassamy (1964).

“The choice of units adopted in this work is SUuh that ¢ = 1,
the speed of light in a vacuum and X = 1, or X =
and Gn Newton's gravitational constant.

c de51gnat1ng
816G /c2 is Einstein's constant,

-5 .
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be regular meet Einstein's internal equations“.

'al—c —— L4

“ ,_-— go«; Tﬁ;. 2. 5
(iii) At the boundary hypersurfaces which limit the energy distributions,
the gravitational potentials dag and their first derivatives are
continuous, according to the conditions of Schwarzschild's line.
These postulates are compatible with an hypothesis of differentiability

of V, which we assume to be of the c2 - c4 class by bitsS.

4 1 -
The arbitrariness of the choice of coordinates is ensured by the existence

of four identities:
?

v;c’s’-'—‘on ' ! : 2.6

P

where V designates the operator of covariant derivation relating to the metric
9og’ these identities, a consequence of the Bianchi identities, as a result of

(2.4) introduce the four equations of conservation of the pulse-energy density:

. uT®=0,

2.7

= —

These equations play the role of conditions of compatibility during the
search for accurate solutions for the field equations; at the time of the cal-
culation of approximate solutions, their integration over the domain of V4
represeniiing the variation of the material medium furnished the total conservation
.of energy and the motion of the field sources.

3. The Problem of Representation of Gravitational Field Sources.

The descriptioﬁ of the gravitational field sources is ensured by the known
quantity of the pulse-energy density 8 which appears in the second member
of Einstein's internal equations. The formulation of a relativisticWZEgg;y of
® with the aid of
hypotheses of phenomepologic origin adapted to the properties of the material

matter congists in the characterization of the structure Ta

medium under consideration. The precise adjustment of such a problem requires

that we revert to the significance of the principles of general relativity.'

°Cf. A. Lichnerowicz (1955).




We have seen that this theory is rigorously based on the principle of slight
equivalence, which leads us to assume that if the laws of special relativity
remain valid within a local inertial frame of reference, the effect of the
presence of a gravitational field is, however, to modify either the local
measurement standards, or if these standards re¢main identical to those of
special relativity, the value of the physical quantities. Necedless to say that
these two interpretations are rigorously equivalent from the point of view of
numerical content of the laws of general relativity, but thé choice of one of
them is profoundly linked to the comprehension of Einstein's theory of gravitation.

We know that S. iichenassamy (1964) was led to assume that the presence of
the gravitational field changes the value of the local measurement standards, to
the extent that the phenomena of a small space-time region are described by the
same numbers attributed to them in a true inertial frame of reference® 7.

Such an interpretation is based on the point of view adopted for the study
of the problem of representing continuous media in genera) relativity. In order
to properly understand this point, it is necessary to revert to the manner in
which a similar problem is presented in classical mechanics: In this case we
revert to the determination of the equations of state of the material medium
which link the conditions of state characteristic of the physical properties
of the medium to the characteristic values of the configuration of said medium.
The conditions of state have an absolute significance, to the extent that they
characterize the state of the material medium in relation to a reference state
defined a priori in an absolute manner, i.e., prior to any influence external
to the medium. The hypothesis which might define such a natural reference state
is quite fundamental in the classical theory of continuous media, even though
it is not always formulated explicitly.

Now, the definition of a natural reference state ceases to be possible
in géneral relativity when the medium considered is itself the source of a
gravitational field which contributes to alter the value of the measurement
standards intended to characterize such a state. It follows that it is im-
possible to attribute absolute values to the conditions of state characteristic

of the medium, and therefore that the representation of material media in

6The 1ink between the proper time associated to a refersnce system S linked to

a test particle and the acceleration of S in relation to an inertial system

S. linked to the laboratory could be expressed in the case of a uniformly -
super-accelerated movement of S in relation to S,; cf. S. Kichenassamy (1965).
’This interpretation makes it especially possible to provide a satisfactory
explanition of the phenomenon of drift towards red which, in total effect
distinguishes the classical Doppler effect from the purely gravitational effect.

-7 -
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general relativity can no longer be made with the aid of the equations of state
of the medium. This conceptual difficulty which was first brought to light

by Synge (1959) must lead to a radical change ‘. the classical ideas concerning
the problem of the representation of continuous media.

If representation of a material medium in the classical sense escapes us,
we can always describe the latter from the known characteristics of an extremely
closc prior state which acts as a reference state; in other words, it is possible
to atiribute an intrinsic »hysical significance to the variation of states of
a material medium in the course of the variation of said medium, i.e., indepen-
dent of a natural reference state®. The pulse-energy density TQB ceases to
havé an absolute physical significance, and only the variation of this quantity
remains operationally accessible. The problem of the representation of material
media therefore concerns the problem of the determination of the variation of
states of the medium under consideration compatible with the assumed inte}pre-
tation of general relativity. '

This point of view, initially suggested by Synge (1959), is the one we are
adopting here, and we systematically exploit its consejuences so as to evolve
a relativistic theory of continuous media.

L)

Chapter Il. Representation of Elastic Continuous Medlia.

4. Introduction '

Qur goal is the formulation of a relativistic theory of elasticity according
to the point of view of the variation of states.

The problem of elasticity already appears tn be of great importance in the
special theory of relativity as a result of the great peculiarity of the class
of rigid motions within the scope of a Minkowski space-time, since said movements
have only three degrees of freedom?; particularly as shown by Herglptz (1910) and '
No&ther (1910), the rigid non-irrotational motions always constitute and isometry
of M,. ' ‘
The situation appears to be less restrictive in general relativity, where
the rigid motions in the Born Meaning!? do have the required six degrees of

freedom; however, it has been shown!! that the rigid motions of the material

°This point of view is also comtempi.ted in the classical mechanics in a different

- sense, especially by C. Truesdell (1955), W. Noll (1955, 1958), B. Bernsteln

9and J. L. Ericksen (1958); cf. B. Bernstein (1960).

10“' Born (1909), G. Herglotz (1910), F. No&ther (1910); cf. W. Pauli (1958) Par. 45.

i N. Rosen (1947), G. Salzman and A. H. Taub (1954); cf. Pirani and Williams (1962).
*C. 3. Rayner (1959), F. A. E. Pirani and G. Williams (1962), R. H. Boyer (1965).

- 8 -




media represented with aid of a normal type pulse-energy density are always
produced with a constant angular velocity. Consideration,of given physical
situations makes it therefore necessary to study more generai types of motions.
The problem of elasticity in general relativity was initially prescnted by
Syng012 (1959). In order to eliminate the difficulties connected with the
action of the gravitational field, this author introduces a group of correlating
equations‘intended to describe the variations of state of elastic media; these
cquations, however, do not appear to be entirely satisfactory due to the non-
cquivalence between the definition of the rate of change of the constraints
and that of the rate of change of deformations which this author adopts!3.
The theory proposed shortly afterwards by Rayner (1963) reintroduces the diffi-
culties connected with the vifinition of a natural reference state of the
elastic medium in the presence of a gravitational field, and this author is
being forced to introduce an auxiliary metric of space which is completely alien
to the general theory of relativityl? in'order to characterize such a state; by
changing the Rayner equations it is however possible to deduce a groupfgfwcorrelat;hg
equations which no longer present the difficulties of the Synge equations!3.
In any event, said theories have an arbitrayy.character in the sense that they
do not specify the hypotheses of the structure of the medium subjacent to the
proposed equations.
In the course of the following work, we propose to formulate a theory of
elasticity which is compatible with the general theory of rélativity according
to the ideas developed above. We shall first set forth the structure of the
pulse-energy density describing the elastic character of the medium under con-
sideration in order to deduce, by a process of variation, the correlated equations
of the medium linking the rates of change of the constraints with the rate of
change of the deformations. We are confining this study to the case of adiabatic
elas:.. media, without interaction with an external field other than the gravi-
tational field, so as to clearly disengage the characteristic properties of
these media; subsequently we shall extend this representation to a larger class

of continuous media.

127he problem of elasticity in general relativity has been remarkably dealt with
by J. L. Synge (1959) and C. B. Rayner (1963); we are also citing the works of
J. M. Souriau (1958), A. Bressan (1963), B. de Witt (1963), who adOpt a
rigorously classical point of view.
13¢cf. J. F. Bennoun (1963).



A. Determination of the Structure of TQB.

In this section we propose to show that, under a simple hypothesis making
the transpositirn in relativity of the Cauchy-Green hypothesis of elastic media,
the pulse-energy density revealing this structure is of the normal type, with

a density of constraints described by 4 group of six equations of state which
“we shall determine.

5. Geometric Representation of a Material Me@ium in V4.

Let us consider, in the Rieman variation V4 of general relativity, a class

‘of point transformations, assumed to be correct and of the c? class!h,

P . —— B

~C e e
X% == x%(yH), dd@“hw ) =www» S.1

.- oo e e
————

the tfajectories of which form a three-parameter family (ya) (a and all Latin
sub- %nd superscripts = 1, 2, 3) of lines oriented in time, and parametrized:.
by (y ), this scalar being by hypothesis a rigorously increasing function of the
proper times; the Lagrangian variables (y*) behaving like scalars of V4; the
forr vectors (x“.u) define a frame of reference at each point (x) of the Q
domain of V4 filled by world lines; if we choose s as the variable parameter
along these world lines, they may be considered as trajectories of the field of

velocity vectors:

—— VR . T T~ Vv

e w/am (D:/Dy°)"x’ (as/bxo)==g,;x',.x° | 5.2

e e e R
- @ . —————

unitary, and oriented in time:

cme ' 5.3
anu“ua = 1
Let I be the trlplanar field of orthogonal space dxrectxons in g %; P
designates the space pro;ectlon operator which enables us to associate to the,
total value U of V4, its space component P(U) over I; for example, the space
component g, = P(gas) of the metric V4 is defined by the expression:

. - S, e . e e
E b ean ) —— . e

e gy = PPy == gap — thatig, gwxﬂ—O‘ TP uup 0 24

«
ettt ce e s ee

14C£. " Pham Mau Quan (1954)
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Let us consider an infinitesimal displacement at I: \
; ‘dx“-f-:x".udyu, ’ x“.“=P(x“.“). 5.5

IS I

L e

Noting that Fo/e depends only on the differentials dy®, since:

:;ﬂ ==x“ -u;,u"x“ = 0. 5.6

1 s e -
O P

The relations (5.5) define a type of point transformations of @, which depend
on the parameter (yo); by «pplying the points (y*) of the natural reference
state of a material medium to the points of the triplanar field I associated with
the variation of the states of the medium under consideration. Let us state
certain characteristics of these types of transformations.

(i) Let dZ be the elem:acary length interval of I, defined by:

&= zasdx‘dx" n«dy“&'y'. 5.7
, where the Pfaff forms "dx*=P(dx) are not exact differentials except when I is
integrable, and where Yu9 designates the Lagrangian metric:
Yab ;Eﬂﬂ?,;a,bn Yox = Oo . 5 . 8

-

The six ygb quantities define the deformation of the material medium; it is
immediately evident that such a concept depends on the definition of the natural
reference state of the medium. , |

In turn, the deformation variation may be characterized in the absence of
the natural reference medium with the aid of the deformation variation rate

tensorli0 15;

(YA S

; _Ed = llzt}aay = P(V@ug)), - | 5.9

L

introduced by the expression:

o/osdsa = ZB,ga’x“da. ‘ - 5.10

-r

1% designates the Lie derivative operator for the Vector field u; cf. A.
Lichnerowicz (1958).

- 11 -
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This situation constitutes a first illustration of the fact that only the
variations of state quantities have an intrinsic physical significance, i.e.,

that they do not depend on the definition of a natural reference state.

[

(ii) Let us now consider the volume element defined byvz:,--:”’“w
J:&é& - V=3g1/3! c,;,swd:;ﬂdx;da‘ = \/:E det (ﬁﬁ iy, 5.11 |
% .. o L St
where saBYé designates the Kronecker indicator, and :
LG () = 15 et 71 = sy di (s,). 5.12

The deformation of this .uliume element, or dilation, is characterized by

the quantity:

Y : cmae A L ‘_..?‘ :
i V=y=Vmgdi () y=dét(n), 5.13
where by virtue of the original hypothesis (5.1) and of the fact that the world

lines are assumed rigorously oriented in time, we have:

dét (x%.,) #0, . 5.14

which ensures the regularity of the point transformation (5.5); the three vectors
Eh.u form a space frame of reference which characterize the ﬁfinciple directions
of deformation of the medium. ‘ |

This concept'of dilation depends on the definition of the natural state of
reference of the medium; but in the absence of the existence of sucﬁ\a state we

\

can, as heretofore, define the dilation variation rate 6: ‘ \\\ \
LV —gdx) = 04/=gdx, O0=g¥E,=Vus. \ 5.15

We have just determined the characteristics of the geometrical repreSgntation4
of a continuous medium in V4; in the following paragraphs we are going to.ggt

-forth the properties of the dynamic representation of such a medium.

<12 -
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6. A Lemma on the Conditions of State Quantities.

Let us establish a preliminary result related to the behavior of the conditions
of state; we assume that these quantities depend only on the configuration of the
continuous medium under consideration, i.e., that they are entirely determined
by the known quantity of the variations of state (umn,“nxﬂLL.

Let U be such a quantity; U is referred to the following hypotheses, which
suffice for the purpose of our work:

(i) U is a contravariant tensor density of space of the nth order:

U_‘,M‘.““’,lu“‘ = o’ = 1, .e ..'n. ‘ 6.1

D A S ST ;

(ii) The Lagrangian components of U, which may be considered either as
tensor densities U of the same type as U in the group of parameter

transformations (y“) or. as an ensemble of n! scalar densities of
V4 defined by:

y'-
d

ot Utz T apa oy 6.2
H U" = I._J“ Maxss e x“a.“. dét= (¥ ),
depending only on the Lagrangian metric ypy:
B y=.?(7“")' ‘ : 6.3

oy

(a) Let us take the Lie derivative through the two-member vector field
% of Eq. (6.2) bearing in mind the identity:

£x* =0 6.4

arising from the fact that £ does not change the numerical values of the coordinates

(xa) and commutates with a/ay° since the (ya) values are constants all along the
length of each world line; we thus obtain:

P(cua....u,,) ﬁ(U"‘”'“"‘ a. e det"* (xz ) ;’I

. . e s e

(b) Let us bear in mind the second hypothesis (ii) concerning U, taking the

-

- 13 - | | | '
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two-member variational derivative of Eq. (6.2) in relation to the metric gaale-

»

we arrive at:

8/8.3.;,1}"‘""’.". = B8y (UP PN, oo XM 32 3B detet (30 ), 6.6

where we have introduced this notation:
aaéékﬁ*‘”*“) - 'I'J’.(S/Sg‘,;;(u.}"--""’.r-)),ﬁ7 6.7
(c) .Finally, by virtue of the hyfotheses (i) aﬂd (ii), we‘have identically:
U™ = s/sv“.ggjw.v;jcygv. e 6.8

Bringing together the thrée results (a, b, ¢) set forth we obtain the final
result sought: '

P(SU"f“'*ﬂ) = é'/ sg‘:’(u’ﬂm\’,.)c;,"a’ ; | 6.9

bearing in mind:

vy S

e ; "_‘ - 6.10
Bt = Cou)® 20 :

The initial structure hypothéﬁis concerning U is therefore equivalent,
. . °
from the point of view of the variation of U, to the hypothesis that U depends
only on the dynamic variables gag:

-
———

S 6.11
U = U(gap)-
Let us summarize these results in the following lemma, which will be very
useful: ' .
LEMMA. Let U be a countervariant tensor density of space (weight +11) and

of the arbitrary order n, and let U be the Lagrangian component of U:
L] .

. . (S SN S A A L LA -—-vw;;;;,.)",‘,,‘;{j"‘ b . e
Ut Ubmbiges T gaei (e ) s |
° xf'“'"’..'xx,,'“udﬁct (x '“)' LU “‘. "oy = 0.

L N KN . |
naite Wt el g (), L. ke -

16c£. Appendix I.
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]
The two following hypotheses are equivalent from the variational point of
view:

1. U depends only on the Langrangian metric:
[}
U=UM)  (re=Ea )
2. U is a function of the space component of the metric dup

U U(S’ 03)
whlch means, likewise, that the variation rate of IJ along a worlq line is char-

acterlzed by the relation: «\

PEU) = §Ugusdun. \

7. Dynamic Representation of a Material Medium in V4 \

In this paragraph we are going to set forth the characteristics of %he

. representation of the state of a continuous medlum

We propose the hypothesis, which is fundamental later on in this study,
that the structural properties of the medium are entirely deductible from the
known quantity of the energy density L aitached to the unit.volume of this medium;
it is assumed that this quantity meets the following conditions:

(i) 'L is a scalar density ’

(ii) L is a function of the CO-C2 class of the variables of the state of
the medigm.

For subsequent developments it will suffice to consider functions of the

type:.

iy Pt 7.1
.(a) Having presented this, let us apply to the total Lagrangian of general
relativity, field + matter, a variation principle:

sf(\/ R+2L)d‘xa—0 o 7.2

- - ‘e -
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we arrive at:

(a) "Einstein's gravitational field equations:

" N/— G = ,T“’; ) 2.5

(B) The equations of state of the medium, by definition of the pulse-energy
. af :
density T ":
T = 28185

P B
-~ - - S4 m o : » o

7.3

ag

(y) The equations of conservation of T~ as condequences of the invariance

of L in the group of general transformations of coordinates:

RS

VeI =0. . 2.7

(b) The postulated structure (7.1) of L ensures, by virtue of the invariance
of this quantity under the group of transformations of coordinates, the validity

of the identities:

" SL/82ut @ + AL /5xt L@, — Du(LE) =0, 7.4

Ja r—

where Z is a field of arbltrary vectors of V4, from this arbltrary characterlstlc
it follows that the terms of the flrst member of (7.4) which are factors of E,
and the terms which are ;he first derivatives of said vector can be cancelled
separately; we are thus led to the group of identities!7”:

‘:SL/SX“.“VTx“.“ - er = 0. _ 7.5¥a

e et p e o e * ,‘ Jp— 7.S-b )

—— e
g?(a“ﬂl' “SL/ 3x?.“' =‘ op

7. Noéther (1918); Cf. A. Trautman (1963)
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where the marks ( ) and [ ] designate the symmetrization and antlsymmetrxzarlon
of the sub- and superscripts; T aB designates the pulse energy density (2. 7),

and t% od the canonical pulse energy density:

8= BL/0K% 30, o+ L8 76

-® »

In conclusion, the dynamic representation of a continuous medium in relativity,
which is deduced from the known quantity of the energy density of the medium L,
‘is obtained from the 10 equations of state (7.3); the invariance properties of L
are set forth, bearing in mind, the hypothesis of the particular structure (7.1),
from the group of No&ther's identities (7.5). '

" These results will be applied to the specific study of the characterization

of "the structure of eréstic-type media. |
" Remarks. In the éontemplated formalism, the quantity which is naturally
attached to the description of pulse-energy of the contemplated continuous medium
is the pulse-energy density T aB’ i.e.; a symmetrlc countervariant tensorial density
of the second order, to which the pulse tensor-energy 1ya[v/;;€- corresponds.

8. Structure of Elastic Continuous Media.

As in every theory of phenomenological origin, we must distinguish between
the different types of energy associated with the properties of the material
medium under consideration.

An elastic continuous medium is characterized by the energy density:
.‘L=m-§7E’ 8.1

where the scalar density m designates the density of the mass of conservation,
and the scalar density E the elastic energy density which characterizes the action
of constraint forces, and identical in the case under consideration to the internal
energy density of the medium. Densities m and E are each supposed to satisfy the
hypotheses (i) and (ii) of paragraph 7.

(a-a). Let us designate with m the J.agrangian component of m; the conéer-

vation quality of m is ensured by the rolation.

;}13},0,:, =0, 8.2
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which means, by integration, and by referring to a natural frame of reference of

local coordinates (cf. 6.2):

s e ok -~

m=mly) dans (3,,). 8.3

(8) By virtue of (6.5) the initial Eq. (8.2) is written in this frame of

reference.

" tm=o,

Lt . 8.4
(vy) The canonical pulse-energy density (7.6) associated with m is written

(18):

;E(m) == mu,u“. 8.5

This is the pulse-energy density associated with a free particle.

(b-a) Let us propose a structural hypothesis on E adapted to the elastic
character of the medium under consideration, expanding in the relativistic case
the Cauchy-Green hypothesis of the classical theory of elasticity:

Definition. The internal energy density associated with an adiabatic

elastic medium in general relativity is of the type:
. E=E(gg;3) 8.4
From the study of the No&ther identities (7.5) we shall determine the form
of the function E (8.6). Let us say first that these identities are met indepen-
dently by m as a result of Eq. (8.5)!8, so that we merely require that they also
be independeritly met by E; this will actually be so if the folldk}ng relations

are also metl8; \

-————

. BESRY B g =0. .\ 8.7-a
WYSE/8xY , = 0. ' \ 8.7-b
e o \
. v e pi b a4 - . . - f \
285[3343=-§"?.u85/3?‘7.u+E » . . 8.7-c

PR - -
S b v e o o Krme e e ot it i % e sv——n ket 6. o s * — Sy b — < - -

18c£. Appendix I.
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bearing in mind:
6 e ST
1(E) = gIx® SE[EXY, + ED. 8.8

A sufficient condition for these conditions (8.7) to be likewise is that

the Lagrangian component E of E be of the typel®:
[

E=Elha) 8.9
By accepting this condition, we can express it with the following equivalent
form (cf. par. 6):
Proposition. The elastic density energy associated with an isothermal and
_adiabatic elastic medium in general relativity is of the type:

i

(8) Bearing in mind (6.2, 6.6) the hypothesis (8.9) means that the canonical

density (8.8) associated with E is written under the form of18;
19%(E) = 28E/8g.5 + Ewaub. | 8.11

(Y) Energy density E of the type (8.10) duly meets all the conditions for
the application of the lemma of paragraph 6; we thus obtain directly, with the
aid of Eq. (6.9), the equation which expresses the value of the variation rate
of the elastic energy density at the time of the variation of the medium:

CLE = 3E[bgulrs . 8.12

(¢). Let us bring together the results (8.5, 8.11), bearing in mind the
identity between pulse-energy and canonical density; we thus obtain the equations

of state which express the form of pulse-energy associated with an elastic con-

tinuous medium:

— - . “—

Co i T 8.13
To? = (m -+ E)uii® +- 23E/82.5.
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(a) T is of the normal type; the constraint density associated with the
medium is defined with the aid of six equations of state:

093 s -« 23E/8g,5, | 8.14
in which the integrability conditions are written:

5/5gy 008 = 5 830" 8.15

(B). The density of mass p is 1dent1cal to the energy density associated with
the medium.

—

PBan'*'Eo‘ ¢ ’ 8016

aB

(Y) The eigen vector, oriented in time, of T " is identical to the world

velocity vector associated with the elastic medium:

R -,

0 weedeps 8.17

Let us summarize the results:

Proposition. The structure of an elastic medium, which is assumed to be
isothermal and adiabatic, is represented in general relatzvxty by a pulse-energy

density ¢ ub

(i). 7T

which meets the following conditions:

°8 is of the normal ‘type:

L s vom———— by —— b e s e -

Tod o= pu'u° - 6’5 Ui = 1, 08y, = 0. 8.18

v e e . . . -

(ii). Its eigen vector, oriented in time, is i/ ntical to the world velocity
vector of the medium,
(iii). The associated eigen value, i.e., the density of mass is identical

to the energy density of the medium.

(iv). The space component of % af

is identified with the constraint densities
ag

%P

of the elastic medium; 6 = is determined from the elastic energy density E

with the aid of six equations of state:

648 = — 23E/3g.s,

e et ¢ emeameane s e e et 3 - , e
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and must satisfy the integrability conditions of these cquations:

§/0gya0% = 3/8g,508,

-

B. Represcntaticn of the Variation of States of Elastic Media.

Taking as a buse the representation of states of an elastic medium established
in the preceding section, we propose to set forth the representation of the vari-
ation of states of the medium in accordance with the assumed principles of
general relativity; we shall make a special effort:

(i). To introduce the concept of internal energy in a form adapted to the
point of view of the variation of states, which will not introduce the mass of
conservation of the medium, but which reintroduces the Newtonian concept of mass
already abandoned by the special theory of relativity;

(ii). To establish the form of linking equations of the medium which des-

cribing the variation of states of said medium and are compatille with the
- known quantity of the intermal energy density.
| 9. The Concept of Rate of Change of Internal Energy.
Let us consider the equations of conservation (2.7) of the pulse-energy
density (8.18) attached to a medium of the elastic type under consideration;
these equations are equivalent to the group:

Lo = — 120007, | >

i pua=P(V405),

gll-b

where ua designates the acceleration vector attached to the medium:

hd —ts _— - PRS- .- s

Wiy =0, - | 9.2

I3

;‘a = Ly, = a“Vgu,,

These equations express locally the conservation of total energy and pulses

e of the elastic medium.

€

a1 .




Let us refer now to certain results established in the preceding paragraph;
first of all, by virtue of (8.4, 8.16) we have:

LE=L(p; ‘ 9.3

furthermore, according to (8.12, 8.14) the rate of change of E is charactgrized‘by

the equation: \
\

@ e B .,

LE= --1/26“38.;'4;. \ 9.4

One of the three equations (9.1-a), (9.3) or (9.4) is rigorously deduced from
the other two; we can therefore equally define the rate of change of the elastic
energy E by Eqs. (9.3) or (9.4). The expre551on (9.3), which links the variations
of two quantities, appears to us to be the only way of introducing the concept
of internal energy in relativity under a form accessible to physical measurements;
this definition does not introduce the theoretical concept of a mass of conser-
vation of the medium directly; it concerns continuous media of any type whatso-
ever and expresses the‘relativistic principle-of the unification of mass and
energy according to the point of view of the variations of state.

These arguments lead us to define the concept of rate of change of the
1nterna1 energy in general relativity as follows:

Definztton. The rate of change of the internal energy den51ty associated
with a medium in general relativity is identical to the rate of change of the

mass density of said medium:

.
o e e 3 ae

1-' cE = cp.

10. Determination of the Correlating Equations of the Elastic Medium.

According to the ideas developed above we propose to deduce from the

representatlon of states of an elastic ..edium the representation of the variation

’

of states of the medium compatible with general relativity. ‘

The correlating equations which provides the description of the variation
of states will be obtained by direct application of the lemma of paragraph 6 to
the constraint density equations (8314), as this quantity duly meets the conditions
of application of this lemma. By changing two members of Eq. (8.14) we thus obtain
the eduations: ‘ | ' —
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P(L0%3) = 1/2Ce3vegg. . i ' 10.1

where we have made:

Cod18 == 25/8,40% s= = 45°E/8gys8a3. 10.2

aByé characterizes the

The contravariant density with four superscripts C
structural properties of the elastic medium; by analogy with the classical theory
of elasticity, we give this quantity the name of density of modulus of elasticity
CQ‘BY(s is subject, by definition, to the following conditions:

(i). It is a space tensor density.

(ii). It depends on the state variables ygB:

c-aya = C¢5~(8( gm) | ' - 10.3

I - -

i g g e

(iii). It is subject to the conditions of symmetry derived, on the one hand,
from its definition (10.2) and, on the other, from the integrability conditions
(8.15) of the equations of state (8.14):

4

— 1 et

C OO = c(aaxmm

10.4-3

G D, N 10.4-b

R
B

(iv). Finally, it:meets all the requirements of the differential conditions:

S/Sgncla’(ﬁ 8/ 83‘ 80«390 ‘ 10.5

o
ensuring the integrability of (10.1). _ ‘
By virtue of (i) and (iii) CQBYG has N(N + 1)/2 = 21 independent compcnents
of the type (N = n(n + 1)/2, n = 3), which agrees with the resultp of the classical
theory of elast1c1ty, but C* aBy§ alsc agrees with the (N - 1) + SCN\- 1))/2 =
differential conditions (iv) which leaves 56 supplementary conditioniéof‘the‘same
d

RN S

type of pnenomenological origin which must be imposed on C‘J‘BY‘S in or

\r‘to\deter-
mine this quantity perfectly.

1
E)
v b S




—— - g o s A . . s e o T

Let us bring together these results in the following proposition:
Propositior,. The correlating equations of elastic media in general relativity

assume the form:

 P(E0) = 1/2Cs30Cg,,, |

'

where thlic denslty of the modulus of elasticity'CaBYG

(1). It is a space tensor density.

. & L3 2 » » L3

(ii). It is a c®-c p.m. type function of the variations of state Eqa.
(iii). It has the symmetries compatible with the existence of an elastic

energy density: i : -

.

Codve o Clad¥D), | Cedvs — Criad,

..

(iv). It meets the conditions which ensure the integrability of the

correlating equations:

- 3/8gpaCo88 =3[8gysC0%0, ;

C. The Problem of Elasticity in General Relativity

We now propose to outline the problem of linking the gravitational field
to its sources according to the point of view of the variation of states ad0pted:
in this work. ' ‘ |

11. Equations of the Variation of States

We are primarily interested in the field equations; Laving'assumed that only
the variations of the conditions of state have physical significance, we must
assume that the Einstein equations. play the role of initial conditions, and the
determination of the field itself must introduce the variation of these equations.

To this end let us take the Lie derivative in the two-member vector field X
of the field equations (2.5) taking into account the normallchéracter of TQB;
‘let us immediately express the variation of constraints from the second member of
the correlating equations (10.1); we thus obtain the sought form of the éduation

of variation of states:

- 24 -
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£(1 [ — gG“a) = E;xﬂu"’ - 281(“0’7)&47 -— Cﬂ’!ﬁaﬂ. .
, ] - 11.1

We shall not express here the form of the first member of (11.1).

12. Various Equations of Conservation.

The 'second member of the correlating equations (10.1) of the elastic media
must meet the requirements of a group of three conditions which we now proﬁBse
to establish.

For this purpose, we start with the following identitlies!9, applied to

the constraint density e“B: :

Vol0m — LV 093 = — GAETE,, 12.1

where the TB de51gnate the Chrlstoffel symbols. ’ L
Due to the spatial character of 6 8, only the componentsE(tP&)and 2(u L J
of ﬁfﬁ,f intervene in the calculation of (12.1); we shall calculate these two
quaﬁ%i%ies as a function of the acceleratibn vector U, (9.2), of the tensor
representing the ratg of change of deformations EaB (5.9) and of the tensor

representing the rate of change of the vortices.

Qa3 = unOga(u®) = B(V5ip), - 12.2
where the explicit components are given by the identity:

vuuD—Eaﬂ+Q¢3+ucu3 : | 12.3

- - .o b '

. 1
lw h

. .
. N

p(a;) andv:_P(V:)ies;Lgnate ‘the operations of partial and covariant space
derlvatlve actlng on the. geometrlc quantxtles t eV o

From the well known 1dent1ty. '

ﬁf‘s ‘= 1/23“(%‘5&7 -+ V-ﬁm - Vsﬁgw). . 12.4

we arrive at the results:

-

19C£. A. Lichnerowicz (1958), Chapter II.
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P(CTY;) = VL E}~+ EDE;- V'Ea3 + 2ua Q57 + &TE.;. 12.5-a

P(u.,CP 5) =-. —£Eq — oty - -L 'V(atf;) 12.5-b
By inserting these expressions in the second member of (12.1) we obtain a

group of three identities equivalent to (12.1); we now have to express in the

first member of these new identities the terml'P@Oﬂ)‘frbm its value deduced

from the correlating equations (10.1) in order to arrive at the group of three

desired conditions of compatibility of (10.1); these various equations of con-

servation are expressed as:

12.6
P(V;.(Cﬁ“'f‘E.,,)) = P(V-Vae"" - 05*73(538., + D-,&'a Eva&’“))

where, by definition:

Vi = P(ghrT,0), ete, ~

13. Equations of Variation of the Tensors Repfesenting the‘R:EQ of Change

of Deforﬁations and Vortices. / ' ‘\\

We propose to establlsh a last group of equatlons describing the varlatuon
of the change of deformations and vortices of the continuous media under con-
sideration which are necessary for the complete formulation of the problem of
elasticity in general relativity. “\\

To this end we start from the group of identities: \

v

£E.5 = Viity — ity + (EL + OF)(Bay + Qn) + w7 Ry 13.1-a
' L0y = Vi, 13.1-b

B is known through integration of the _

correlating equations (10.1) it is possible to deduce frem the equations of

When the density of constraints 6
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conservation (9.1) the value of the acceleration vector u, as a function of the

density of mass, of the metric and of its principal derivatives; when this value
of ;a is inserted in the second members of the identities (13.1) we obtain the
desired equations deducing the variation of deformations and vortices of the
continuous medium under consideration?0 21,
14. The Problems of Elasticity in General Relativity
The combination of results obtained causes us to present the problem of the
determination of the gravitational field created by continuous elastic medium of
the type under consideration in the following manner21
Propostition:
—The 10 equations of the variation of fields,
—The 4 equations of conservation of the pulse-energy density (9.1),
—The 6 correlating equations (10.1),
—The 3 equations of variations of'conservation (12.6),
—The 9 equations of variation of the tensors representing the rates of
change of deformations and‘vortices,
form a group of 32 equations which should allow us to determine the 32 quantities
consisting of: ‘ ’
—The 10 gravitational potentials,
—The 3 independent components of the world velocity vector, bearing in mind
the unitary character of this vector,
—The density of mass,
—The 6 components of the constraint density,
- —The 3 components of the acceleration vector,
—The 9 independent components of the tensors representing the rate of chénge

of deformations and vortices.

20yme equations of variation of the vortices (J.-F. Bennoun (1964) constitute the
relativistic extension of Helmholtz's equations in classical hyd: rodynamics;
Lupse equations especially comprlse, as specific cases, the analogous equations

established by Y. Bruhat (1958) in the case of perfect fluids and of perfect

fLULdS interacting with a Maxwell electromagnetic field, and by A. Lichnerowicz
(1564-1965) in the case of perfect adiabatic fluids.

21cf. J.-F. Bennoun (1964); we must approach the point of view considered here
from the one adopted by A. Lichnerowicz (1964-1965) when he established the
theorems of the existence of equations of perfect adiabatic fluids.

- 27 -




Chapter |li. Representation of Thermodynamic Continuous Media

15. Introduction .

The plhienomenological macroscopic thermodynamics established on a purely
axiomatic basis may be developed coherently and autonomously, even if its profound
significance can be{attained only by a statistical interpretation of the basic
concepts.

This theory assumes??:

(i) The conservation of the total energy of the system.

(ii) The strictly non-decreasing character of total entropy at the time of
variation of the system under consideration.

It is this axiomatic character of the theory which enables it to be success-
fully absorbed by the special theory of relativity and, as we shall see, to be
integrated into the general theory of relativity, this synthesis being at the
origin of a mutual enrichment of the two theories.

We shall attempt to set a basis for the study of relativistic thermodynamics
through an anlysis of the ideas presented in prior works carried out in this
field?3. '

a. Iz is necessary at first to determine the structure of the pulse-energy
density associated with a thermodynamic continuous medium; such a quantity must
include:

(i) A purely temporal term associated with the mass, i.e., to the energy

of the system under consideration.

22ye are not considering here the zero principle, which introduces the concept
of temperature by means of the postulate of its identity among the different
parts of a system in thermodynamic equilibrium (Fowler (1931), ¢ited by
A. Sommerfeld (1956)), or the third principle (Nernst's Law (1906)), which
defined an absolute scale for measuring entropy, since these postulates do not
have an immediate significance in the assumed interpretation of the theory of
genieral relativity. o

23The early studies related to the formulation of relativistic thermodynamic
(Planck (1907, 1908), Einstein (1907)) concern the study of the variance of
certain thermodynamic quantities in the Lorentz group. Investigation of an
axiomatic formulation of the theory appears with Tolman who became interested
in the study of the second principle but limited himself to the study of
stationary world models in thermodynamic equilibrium. A clear formulation of .
the two principles is due to Eckart (1940), within the special theory of rela-
_tivity. The later works of Pham Mau Quan (1954), then Stuelckelberg (1962) and
‘Ehlers (1961), tending to find a thermodynamics within the framework theory of
general relativity, are based on the principles initially postulated by Eckert.

More recently, Lichnerowicz (1964-1965) established a series of existence theorenms

for the equations describing the perfect adiabatic fluids originally studied by
Van Dantzig (1939-1940), then by A. H. Taub (1948).

- 28 -




s TR RGBT T, T T T T T T .-

R A

R IS SR

R b Jes . wedgyyy e P L. at flOw
(i1) A e monentdm Lype, 1inked to the eX.oienot L. he
11 o n SRR AL} FHL S
within the medium. ‘
(111) A purely spatial term des cribin
the continuous medium under comsideration,

g the action of the constraints cf

These requirements lead to the adoption of the Eckart-type (1940) of pulse-

energy density.

.o v - -

Tod = prrud — 2ug™H — 0%, 4,q* =0, Qady, = 0. \ 15.1

Contrary to the extremely clear physical situation presented by thé initial

af

study of elastic media, the pulse-energy density T =~ is no longer of the ncvmal

type; this situation involves the following consequence: TaB

is formed b}\lS
quantities constituted by the three independent components of the world velocity
vector u%, the density of mass (energy) p, the 3 components of the density gf

heat flow qa and the 6 independent components of the constraint density 9“6;

now 18 contains only 10 independent components; it follows that these 13
quantities must necessarily be linked by a group of 3 relations. The investigation
of these 3 equations constitutes one of the important problems of relativistic .
thermodynamics, closely linked to the relativistic formulation of the second
principle.

b. From the fact of the unification of the concepts of pui:e and energy in
Telativity we must think that the most normal relativistic expansion of the first
principle of thermodynamics must consist of 4 equations of the total conservation
of pulse-energy; we know that said equations are the immediate consequence of
the field equations in general relativity; in this respect, we can say that the
first principle of the rélativistic thermodynamics is contained in the basic
hypotheses of Einstein's theory of gravitation.

Let us consider the temporal portion of these equations:

 £p = Vag® — gou, — G49E,, : ©15.2

which describe the total conservation of energy during the variation of the con-
tinuous medium, and which is therefore the analogue, in a rigorous sense, of the
first principle of classical thermodynamics; the second member of this equation,
in its contribution to the rate of change of the heat energy,'reveals the
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existence of a term linked to the accelcration of the medium, term which does
not ¢isappcar unless the heat flow vector is orthogonal to the accelerating
ficld. The existence of this term, with a purely relativistic origin, is of
particular importance as we shall see in a moment.

¢. Let T be the scalar field of the material system under considerationm,
and S the entropy density associated therewith. The second principle of the
relativistic thermodynamics of Eckart et al assumes that:

(i) A vector density is with the total entropy of the system:
% = Sut — Tige, . 15.3

(ii) The flux of the total entropy density along the edge of the system
under consideration is rigorously non-decreasing during the variation of said
system; this condition is expressed locally by the inequality:

VeS* =S — V,(T-ig%) >0. . 15.4

A glance at (15.4) brings to light an‘essential difficulty overcome by this
.interpretation of the second principle: The first member of the inequality
Eq. (15.4), which is characteristic of the rate of change of total entropy does
not contain a term linked to the contribution of the acceleration of the medium
in the variation of the heat flux; now, we must logically rely on the existence
of such a term, by virtue of the interpretation of the first principle. A con-
tradiction thus appears at the very level of the formation of the basic concepts
of relativistic thermodynamics which should compel us to reflect anew on the
subject of the interpretation of the second principle in relativity.

The statement 6f Fourier's relativistic law obtained, under convenient
hypotheses, as a consequence of the two principles, sheds light on one of the
aspects of this difficulty: When we adopt the formulation Eq. (15.4) of the
second principle, we ére led to a phenomenological law of heat conduction of the
type (Eckart, Stuelckelberg, Ehlers):

:" ¢ =~; (T-10,T — up), 15.5

—me




where XaB is a tensor density of the second order, symmetrical and defined as
positive; this law is distinguished from Fourier's classical law by the appecarance
‘ of a supplementary term linked to the acceleration of the medium, a term whose
i form leads to the following difficulty: During the study of Cauchy's problem
the postulated continuity of qa, while a condition of state, involves the dis-
appearance of transverse wave fronts, leaving only the longitudinal waves which
is in disagrecment with the results of the theory of continuous media.
d. The investigation of the equations of state of the medium was undertaken
by Pham Mau Quan (1954) in the particular case of perfect fluids. In addition
to an equation of state among mass, pressure and temperature, this author proposes
| equation of heat conduction, the examination of which calls for certain observations:
| (i) Like the statement Eq. (15.4) of the second principle, this law does
not take into account the contributiontto the rate of change of the heat energy
' made by the term linked to the acceleration of matter,
(ii) The thermbd}namic quantities are defined therein in relation to the
mass unit of the mediuﬁfﬁand the vblume changes are represented with the aid of
mass changes; now, these definitions which are admissible in the classical .
thermodynamics as a result of the direct link between mass and volume resulting
from the, character of conservation of the mass:
< ‘
B gm0, | . 15.6
must be abandoned in relativity as a result of the principle of unification of
energy, since all forms of energy contribute to the variation mass:
& RPN 15.7
p#0. '
In this respect, let.us say that a number of authors define the thermodynamic
quantities relative to the unit of conservation of mass of the medium; now, this
procedure introduces an artificial complication into the theory, since such a
'concept, a survival from Newtonian mechanics, has no further definite significance

within the relativistic mechanics; as previously shown, only the variation of the

mass (energy) has meaning.
This brief analysis of the present state of thermodynamics in relativity

dictates the road to follow. After we made an effort to establish a statement of
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the two principles of thermodynamics rigurously compatible with relativistic
idecas, we shall approach the problem of the representation of states of a
thernodynanic continuous medium to deduce therefrom a description of the variation
of states of said medium adapted to the accepted interpretation of the general
theory of reclativity.

A. The Two Principles of Relativistic Thermodynamics

In this secion we propose to establisﬁ a special formulation of the two
principles of thermodynamics compatible with relativity, introducing, on the
“one hand, a genecral postulate of un.fication of mass and energy and, on the
other, appcaling to a suitable definition of the concept of total entropy of a
thermodynamic system.
| 16. The First Principle of a Relativistic Thermodynamics

We always consider a Q domain of the V4 graph of general relativity subjected
to specified conditions of differentiability, a domain created by a family of

world lined oriented in time, and trajectories of the field of world velocity

vectors:

1 = dxo/ds, S =1,

16.1

The geometrical structure of ? is determined with the aid of the syst:m of

internal field equations:
A= G =T, 2.5

where, for reasons which have been analyzed in the preceding paragraph, the

pulse-energy density TaB is of the type2“:

v

T“3 = 9“’“9 2u(¢q 3) -— 055 uq* = 0 "aeca = 0 15.1

where p designates the density of mass (energy) of the system under consideration
qa the heat flow density and e“B the constraint density. Contrary to the results
of the dynamic study of elastic media made in the preceding paragraph, the form

Z“We recall that the quantities (p, g2, 93,) whlch characterize respectively mass
(energy) per unit of volume medium, the heat flow, the comstraints operating on
the surface of a unit of volume element, and the specific entropy of the medium
attached to the unit .of volume of said me.lium ary of weight tensor densities + 1.
In return, the quantities (g, T) which characteri.: the deformation and the

temperature of the medium are tensors.
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of 79 constitutes a postulate which is independent of the theory of thermodynamic
continuous media. |

Let us. clarify the form of these equations of conservation of TGB:

et

- ek

2 VTod o= £p — V.qa.x..qaz,c_*_ 1/20°5£E.3==o. 16.2-a

P(V4T2) = pita =~ £qu + 20503 — P(V408) = 0.
. LT N He T 16.2-b

These equations describe the total conservation of pulse-energy associated
with the medium during'@ts variation; the characterization of each of the ternms
thch intervene is immediate; their examination, however, calls for certain comments:

(1) The heat flow density 3 behaves like a momentum density; this is
especially clear in the examination of the 3 equations of the total conservation
of pulse (16.2-b), where this quantity intervenes, on the one hand, due to its
variation and, on the other, through a term with a purely relativistic origin,

a term linked to the rotation of the medium and formally analogous to a Coriolis
acceleration. o ‘

(ii) In the equation of conservation of energy Eq. (16.2-a) the contribution
to the rate of change of the heat energy introduces, in addition to a divergence
linked to the variation of the heat flux and rigorously analogous to the corres-
ponding term in the classical theory, a term which is purely relativistic in
origin linked to the acceleration of matter & . \

These 4 equations of conservation of pulse rate-energy appear to us to be
the foundation of the first principle of relativistic thermodynamics\yhich thus
becomes the rigorous consequence of the field equations; the tensorial form of
this principle, which had not been set by the classical thermodynamics‘ifmes
from the unification of the concept of energy in relativity.

For reasons which will soon be clear, we shall not, hcwever, make u§i of the
scalar equation of conservation of energy Eq. (16.2-a) which constitutes the
interpretation in the strict sense of the first principle in’relativity. Let us
introduce the concept of internal energy associated with the continuous medium
considered with the aid of the general definition established following the con-

siderations in paragraph 9:
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of the second Eckart-Pham Mau Quan principle is not adapted to relativistic con-

LE=f£p. . 16'. 3

Thus presented, with:

—the postulate Eq. (16.3) of unification of mass and energy,

—the equation of conservation of total energy Fq. (16.2-a),
we justify the introduction of the following proposition, which constitutes the
special formulation of the first principle of relativistic thermodynamics.

Proposition. The rate of éhange of the internal energy density associated
with a thermodynamic continuous medium is equal to the sum of the contributions
of the rate of change of the heat energy, and of the rate of change of the energy

of constraint forces acting within the medium under consideration:

B = Vog® = g — 12090500 . 16:4

17. The Second Principle of Relativistic Thermodynamics.

In the introduction to this chapter we were lead to assume that the formulatjon

ccpts because it does not take into account the term linked to the acceleration
of the medium, a term whose existence is neverthcless strongly suggested by the
relativistic interpretation of the first principle, in the expression of the rate
of change of total entropy.

Furthermore, we have seen that the univoqual definition of pulse rate-energy,
which is no longer of the normal type, requires the introduction of 3 unknown
supplementary relations. |

We have been led to believe that the solution of the indicated difficulties
may be found in a tensorial formulation of the'secqnd princinle, substituting
for the initial vector formulation; such a formulation must inClude, in addition
to an inequality of the scalar type which explicitly introduces the missing term
in the initial formulation of the second principle, three new relations which
must be in the origin of the 3 equations missing {rom the complete statement of
the p. blem of the determination of the structure of the thermodynamicwcontinuous
Tiéf?' Thiwipvgstlgatlon oz a tensorial formulation of the second prlnC1p1e may

be greatly aided by using an analogy w1th the formulat1on of the flrst principle,

even though it is evident that we cannot provide immediate Justlflcatlon for such

an analogy. | _ R
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The dynamics of the continuous media in general relativity is deduced from
the following hypotheses: |

(i) The pulse-eneryy associated with a material medium is represented by
a symmetric contravariant tensor density of the second order TaB.

(ii) The divergence of TaB described the rate of change of pulse-total
energy; this quantity of conservation by virtue of the field equations.

In the same manner, we assume that:

(1) A sym metrlc contravariant tensor density of the second order s* B
associated with the characteristic total entropy of a material system.

aB

(1i) The divergence of the total entropy density S = describes the rate of

change of the total entropy during the variation of the medium under consideration.

We can . eawily set forth the structure of Sm8

in the case of thermodynamic
continuous media; such a quantity must, in effect, include in said case:

(i) A rurely temporal term which characterizes the entropy density S
associated with the system under consideration; S is a scalar density, assumed
to be rigorously non-negative?“. |

(ii) A momentum type of term which characterizes-the appearance of the
entropy flow density g *ﬂq. due to the existence of the heat density q ; the

temperature field T of the medium is a field of rigorously non-negative scalars?¥,

It follows from these requirements, that the total entropy density s* of

characteristic of the thermodynamic continuous medium necessarily assumes the form:

P e ) e e e

{69 = Sy — 2r=u<~q9> 17.1°

The rate of change of the total entropy density is a vector quantity whose

- time and space components are explicitly set forth by the relations:

17.27&

“avﬁsas ﬁS V (T -xqu) -+ T ““et |

o 17.2-b
P(V‘;SE) Su; -_— c(T"‘q,) -+ 2T“qgQ°.

- cer s gt 0 et W -
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It is very encouraging to notice that the relation Eq. (17.2-a) leads to the
appearance of the term missing from the initial interpretation Eq. (15.4) of the
sccond principle, a term characteristic of a contribution to the total entropy
variation due to the acceleration of the medium. The hypothesis adopted thus
causcs the disappearance of the difficulty present in the second principle of
Eckart et al; the complete tensor formulation of the second principle requires
the prior interpretation of three new quantities Eq. (17.2-b).

We are therefore limiting ourselves at present to A formulation of the second
principle in the strict sense, i.e., introducing only the scalar density (17.2-a)

which we postulate to be rigorously non-negative:

2V 5% = LS — Vo (T-1g%) + T-3g%s > 0. 17.3
. . - .\\‘

Summarizing, we have assumed the following fundamental hypotheses: \

Proposition. (i) The total entropy associated with a thermodynamli‘contlnuous

\

medium is characterized by the total entropy density:
Sad =‘Sd“u3 - 2’1“"u‘“q°).

(ii) The rate of change of the total entropy density during the variation

of the medium is defined by the dlvergence of S B

V358 =L — V(T-'g9) + 2T-'g%
"+ P(V4SE) = Sty — L(T-ig.) - 2T-3g, 0%

These hypotheses have led us to the special formulation of the second principle
of relativistic thermodynamics:
Prcposition. The temporal portion of the rate of change of the total entropy

associated with a thermodynamic continuous medium is rigorously non-negative:

’ : £8 — Vu(T7'¢%) + 9““‘4 = 0.

B. Determination of the Structure of TaB.

The object of the developments of this section is the deduction of equations

of state of a thermodynamic continuous medium which generalize the equations
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established previously for the elastic media by means of a hypothesis of simple ,

structure regarding the free energy deusity of the medium.
18. Structure of Thermodynamic Continuous Media

From the special formulation of the two principles of thermodynamics which
we have just established, and of a suitable hypothesis of the structure of the
continuous medium under consideration, we shall deduce a representation of the
thermodynamic states of such a medium.

The fundamental hypothesis is that the structure properties of tﬁermodynamic
continuous media are entirely deducible from the known quantity of the free energy
density (in the Helmholtz sense) associated with such a medium. Let us introduce
this concept in a manner adapted to general relativity: If E designates the
internal energy density associated with the medium, the rate of;change of the

free energy density F is defined by the relation:

LF ={(E — TS). 18.1

a. By extension of the hypotheses concerning the elastic media, we assume.
that:

(i) The conditions of state (I*% 5% F). are tensor densities of‘thewco‘i“cz :

p.m. class.

(ii) These quantities are functions of the independent state variables

| @«3 ;‘ T>"
According to the initial hypothesis, the ensemble of structure properties
of the medium is deduced from the known quantity of the function F which satisfies

(i) and (ii).

b. From Eq. (16.4) and Eq. (18.1) let us write th® special formulation of

the first principle:

CF = Vg% = g%y — 1/20%8

- ' - 18.3
cg«S - £(T8).




The second principle under the special form Eq. (17.3) affirms, bearing in
mind Eq. (18.3) that:

- o iy e i

-&F ST—UN“%ﬂ qﬂ“&T}O 18.4

¢. By virtue of the above hypotheses (i) and (ii), and of the known quantity
of the function F Eq. (18.2), the preceding relation (18.4) is written:

- (oF/ST S)’I‘ — (8"/8;;“3 + 1/20"3)Cg,9 < q“T“D' T>0. 18.5

G w W e

First, let us con51der the case of an adiabatic system in thermodynamlc
" equilibrium; the posnulated independence of the state varlables Qha.T)‘ means

that the following relations must also be confirmed:
S= —SF/ST. | 18.6-2

e-s =~ ZSF/Sgaa | 18.6-b

They are the equations of state of the thermodynamic continuous medium; these

equations are integrable on condition that:

- e

3698/8T = 235/3zu3¢  18.7-a

8/ 88’750“3 S/Sgage?s 18.7-b

So as not to renounce to a-description of the thermodynamic system when it
undergoes irriversible variation, we must offer the hyposthesis that this variation
does not depart too far from a reversible-type variation, so that the equations |
(18.6) always describe the state of the system under consideration.

Under this condition, according to Eq. (18.6), the second principle Eq.i(l8.5)
required that:

‘Q‘PASin;O.L
N 18.8.
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Remarks. The preceding inequality is particularly satisfied by the equation:

‘18.9
where tﬁe symmetric space tensor density and its definition as positive XGB
characterize the thermal conductivity of the medium; this equation is théiexact
transposition in relativity of Fourier's.classical law (1888) of heat conducticn.
Said result, according to the opinion of Pham Mau Quan causes the form Eq. (15.5)
of said law (Eckart, Stuelkelberg, Ehlers) deduced from the formulation of Eckart's
second principle to be abandoned, since it led to the difficulties which have been
pointed out. ’

d. Bearing in m?nd Eq. (18.3) the equations of 'state Eq. (18.6) we arrive
~ at the equation?S: | '

TS = Vag* - g =0, 18.10

Let us include this result in the equation of conservation of energy Eq.
(16.2-a); we arrive at:

Cp = TCS - 1/2095 . = 0 .

P =TS+ 2% 18.11

from this equation, and bearing in mind the hypotheses of structure (i) and (ii)

of conditions of state, we deduce the relations:
87/8T =.T8S/8T. 18.12-a
 F0/5gus = T3S/8gu5 — 1/20%, | 18.12-b

The group of equations (18.12) is quite integrable by virtue of the conditions
of integrability Eq. (18.7) of the equations of state Eq. (18.6) thus ensuring
the coherence of the postulates of relativistic thermodynamics.

We can summarize the ensemble of results obtained.

25The adiabatic fluids (qu = 0) have been studied in the isotropic case, especially 54
by Van Dantzig (1940), Taub(1948) and Lichnerowicz (1964-1965). : i
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Proposition. The representation of the states of a thermodynamic continuous
medium in general relativity, close to thermodynamic equilibrium, is ensured by
the ensemble of the following relations:
(i) The equations of state of the medium, linking the densities of constraints
and entropy of the medium to the free density energy:
 §= — 3F[T, 0% = — 23F/3gas, |

"and the conditions of integrability of these equations:

"8/8g40% = §/8ga3070.

8093/8T = 285/3g.5y

R

t

(ii) The equations of state linking the density of mass (energy) of the

medium to the densities of entropy and constraints associated with said medium:

G _o38 S _ g3 1y
7= 1aT S . %

(iii) The fundamental inequality, governing the phenomenon of heat conduction

within the medium:

BTG

C. Representation of the Variation of States of the Thermodynamic Continuous

Media.

In this section we propose to deduce the linking equations which ensure the
description of the variation of states of the medium, rigorously compatible with
the principles of general relativity from the breceding purely-th@oretical des-
cription of the states of a thermodynamic continuous media. \

19. Linking Equations of the Thermodynamic Continuous Media \\

The deduction of the equations ensuring the representation of the, variation
of states of a thermodynamic continuous medium from equations of state Eq. (18.6)
is immediate if we note that the conditions for applications of the lemmz in .
paragraph 6 are properly combined insofar as the entropy density S and the coustraints
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aensity g@® attached to said medium are concerned, bearing in mind the hypotheses

of the structure of the conditions of state (i) and (ii) set forth in paragraph 18.

Through variation of equations of state Eq. (18.6) we thus arrive at the

'group?®
TCS = 1/2L's%Cg, -1
N 1/2L"%ge3 + CT T. 19.1-a
P(E6) = 1/2C%500g. - LYV T,
e 19.1-b
where, by definition, -~
. ;' C=Tzss/3’r. s ’ 19.2-a
L'ed = 2T038/8gag.. . 19.2-b
Lol = THETOS.,
LW =Top10™ 19.2-¢
émi =2§[ 5{:?:.6““_- :
L e e 19.2-d

R e IR Lt Y

(i) The quantltle..nc:"‘M L'a3, L are space tensor densities characterizing
the structure properties of the thermodynamlc continuous medium.

(ii) These quantltles are C° C p.m. type functions of the independent
state variables th ?) '

(iii) By formulatlon the den51t1es Co3ve, L’“5 et L'““ satisfy the symmetry con-

B

‘ditions:

26C£, J. F. Rennoun (1964). ' ~ [—
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Lo e L),

19.3-a
TLed e L, : 19.3-b
Caﬁ';'s = vc(aﬁi(ya);' 19.3-¢

(iv) Moreover, they satisfy the following supplementary conditions deduced
from the conditions of integrability Eq. (18.7) of the equations of state Eq. (18.6):

1904-3

i

L/sd L7a3,

.2;«%:@8«?.' ' 19.4-b

It follows that the structure properties of the thermodynamic continuous
media are characterized by a group of 28 quantities constituted by the specific
heat density under conditions of rigidity T™* C, the N = 6 components of the

B Eq. (19.4-a) and the N(N + 1)/2 = 21 components
apyd

density of heat deformation e

of the density of modulus of elasticity C
(v) Said 28 quantities satisfy the requirements of a group of differential

conditions which ensure the integrability of the linking equations Ed. (19.1)

which are expressed:

TH/(T-1L%%) = 25C/oga3. 19.5-a
. T3[3TC=¥ = 25/8g.5 L3, ) 19.5-b

i
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§/8g50Co3Y8 == 8/3g,sCaso,
- . 19.5-¢
These conditions number (N + N(N +1)/2 + (N - 1)3/2 + 3(N -1)/2 = 97, which
means that there are still 99 conditions of the same type to be established by
a phenomenological process so that the structure of the continuous medium under
consideration may be perfectly determined.
The representation of the variation of states of a. thermodynamic continuous
medium is thus completed. We shall now assemble the necessary elements for such
a description under the form of the following statement.
Proposition. The linking equations of the thermodynamic continuous media
in general relativity, which link the rates of change of the entropy and constrzints
densities to the rates of change of temperature and deformation of the medium ‘

under consideration close to thermodynamic equilibrium, assume the form:

R & t——— et re b ey o n it -—

5= 1/2L“3Cgag + cTi 1, p(cow) = 1/z«~wcg,,s +! L«»r-x T

..... . e e -

where the structure coefficients of the medium, constituted by the specific heat

density -under conditions of rigidi‘v T.1 C, thz deformation heat aensity LQB,

and the density of modulus of elasticity COLBY(S

, are subjected to thé‘following
conditions: Do )
(1) They are space tensor densities, CO - Cz p.m. functions of the state
variables (g.z,’h T) ’ ’ \\
(i1) These quantities confirm the symmetry properties which ensure the

existence of a free energy density:

‘ Lead = L(GS)' Cadtd C(GS')(YS). CaS C v3a3,

(iii) They meet the conditions which ensure the integrability of the

linking equations.

N ‘ampese

Tss/sT(T-lLaﬁ) 28C/8g¢3, T8/a>’I‘C°*M —-28/8g.,5L¢°
8/&g c:aﬁYs glgg%5(:¢$oo _ \\\\~ .

Chapter V. Study of the Characteristic Variations

The following developments concern the study of the characteristic variations
. of the equations of a thermodynamic contiruous medium. By means of a general

continuity hypothesis related to the variation of total entropy of the medium,
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a hypothesis which clarifies one of the aspects of the second principle, we propose
to sct forth the types of characteristic variations of the problem, which will

lead to a study of the phenomenon of propagation of thermodynamic wave fronts.
20. Position of the Problem.

We have just established an ensemble of equations adapted to the description
of thermodynamic continuous media in general relativity; however, by reason of
the present lack of interpretation of threec of the four quantities which must
iﬁtcrvene in the tensorial formulation of the second principle, we do not know
the form of the four relations which must complete the proposed group of equations.
It is not therefore possible to deal here with Cauchy's problem, i.e., to approach
the problem of the search of an effective local solution to these equations.

In return, however, we shall be abie fully to characterize the characteristic
variations of these equations; this situation becomes possible with the aid of a
hypothesis of continuity related to the'entrOpy variation in the course of the
variation of the medium under consideration, a nypothesis which interprets in the
main one of the ;spects of the second principle.

We thus consider the following ensemble of relations as they have been set
forth throughout the study of the thermodynamic continuous media in relativity,
i.e.: |

(i) The gravitational field equations:

/= 5Ge =T, 2.5

where o
T = e =g =09, g0, w0920, s L 15.1
(ii) The 4 pulse rate-energy conservation equations:
T = - Va4 12095 0, .
P(%a;fﬁ)”-*-" pu« —tg. 4 2490;;‘ — P(V48) =0. | : 16.2-b
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(iii) The 7 linking equations, which ensure the descripti. i of the variation

of states of the thermodynamic continuous media:

_ L 10.1-3
TLS = |[2Leg,0 - CT T,
P(C093) = 1/2Cw3¥3Cg. ; - LadT=1 T, 19.1-b

(iv) 4 relctions, unknown at present, which must come from the second

principle of thermodynamics and introduce the rate of change of total entropy

density:
UV ;8% == 0§ — Vo(T-3g%) 4+ T-ig%s 17.2-a
VS =Sk Oy b amgen 17.2-b

We present the following differentiability conditions relating to the
ensemble of quantities iuvolved in the problem: presented:

B are of the C1 - C2 p.m. type.

(1) The gravitation potentials ga
(i1) The conditions of state constituted by the pulse rate-energy TaB,
the total entropy dens.ty SQB, and the structurc coefficients of the continuous

medium under consideration CQBYG, LYB 2

p.m. type. , -
(iii) The rate of change of the total entropy density V5%. is assumed to
be of the C0 type. |

and C, are assumed to be of the c®-c

Hypotheses (i) and (ii), to which we refer, have their origin in an analogy
with the Newtonian theory of gravitation and classical dynamics.

Hypothesis~(iii) is fundamental; it is the hypothesis which enables us com-
pletely to solve the problem of the search for the characteristic variations of
the equations of the thermodynamic continuous media. We believe that this hypo;hesis

must in the main be a direct consequence of the second principle of relativistic




thermodynamics; in the absence of a complete formulation of the second principle,
we soesery it as an independent postulate of the theory under consideration.

Tlue ensemble of these hypotheses leads us to present the problem in the
following manner?’ 2%, “

(i) To the initial hypersurface (§) we ascribe the value of theeset of
values constituted by: 3 . | , | b

aB

—The 10 gravitational potentials g = and their 1N derivatives normal to (S),

—-The 15 conditions of state (@z;quieﬁ T, SL

—The 28 structure coefficients of the medium (C"""sl-“a CL \
which satisfy the conditions of 1ntegrab111ty Eq. (19.5) of the linking equations.

(ii) Having presented this, we seek to determine the behavior of the
ensemble of the 25 quantities Qna.u“ m ea s 13 in the vicinity of the initial
hypersurface (S) with the aid of the 25 relations (i) to (iv) which describe the
thormodynamic continuous media. C

' We are going to show that the problem thus presented enables us to establish

the general form of the characteristic hypersurface equations related to the

thermodynamic continuous media by means of suitable differentiability hypotheses.
21. Nature of the Wave Fronts.

Let us designaﬁe withf
s
the hypersurface equation (S) which includes the initial date,'end let:
LA | 21.2
be a vector normal to S. _
Let  be a geometrical quantity of V4 which constitutes one of the initial

data of the problem; the quantity ¢, which is assumed to be of the c® type, is

therefore continuous over S, but it is not with respect to its derivative 39,

27¢f. 3. Hadamard (1903), T. Levi-Civita (1931). -

28y4hen we have a satisfactory formulation of the second principle, we must seek

. to deal with the problem of the gravitational field link created by a thermo-
dynamic coentinuous medium in accordance with the point of view of the variation
of states, in the same manner that it was possible to deal with this problem in
respect to the elastic media (cf. Chapter II Sectinn C).




continuous by bits in V4 and which is therefore liable to be discontinuous when ;
it traverses the initial hypersurface S; we will always indicate such a discon- 5
tinuity in [ ]. '
We note first of all that by virtue of the assumed continuity of the metric |
and its first derivatives we also have: ' ‘
- po=fvel : . 21,3 ‘
The components of the ¢ derivatives in S are known since this quantity is
given over S; we submit the essential hypothesis that these derivatives assume
the same conditions of differentisbility as ¢, i.e., that they are continuous
6ver (S); it follows that the only possible discontinuities of V¢ when they
traverse (S) are those of the derivative of this quantity along the normal to

(S), which leads us to present:

. 21.4
The discontinuities Eq. (21.4) are said to be of the Hadamard typ327. If
one or several discontinuities of this type are #0, (S) is a characteristic
variation of the problem presented; by reason of the arbitrary nature of the : ;
discontinuities of V¢, Cauchy's problem does not admit a physically single 3

solution in this case: it is undetermined. Let us assume that (S) is such a

| characteristic variation; let TE;;Sffsibe the two-dimensional plane of the space
directions orthogonal to the normal to (S), and let # be the unit space vector

" which characterizes thi direction of said normal:

— mrerne A L &

ag=(=BBL, L=, mat=0, matem =l 21.5

(7) is termed the wuive front associated w.ch the characteristic variation
{8) in relation to the timne direction Z and % the wave vector wpich characterizes’ ;
the direction of propagation of the wave front. ' ' |
The existence of the characteristic variations of a given Cauchy problem thus " P
leads to the setting of the phenomenon.of wave propagation transporfing discon- .

tinuities of the material quantities of the field quantities. We now probosg to

set forth certain general characteristics of these wave fronts.




Let us use,5==P09 to designate the space component of the discontinuity ¢
(21.4); ¢ may be singularly decomposed locally over (n) and the pormal direction
to (w) with the aid of a projector:

.?2=

M

o3t

sfna?, Pir=0, Plr=0. 21.6

Specifically, the component :g=P(%) of § in (m) is called the transverse
component of ¢, and its component along the normal to (m) its longitudinal com-
ponent. Let it be, for example, a vector discontinuity $~a; it may be locally’
decomposed into a transverse discontinuity $ % and a longitudinal discontinuity
s Q . ‘
$ , defined by:

s - . e . AN

- Lk - T “ ‘v .
=t %, ugt=0, ne*=0, nlef=0, ' 21.7

‘
. « . IR D e - [T

| B ey 3 |
or manifestly ¢ =_Q’§+naﬂ°)?“ °t"??"‘j "."u"a?“', . These ideas will be useful when
we study the independent propagation of longitudinal and transverse wave fronts.

Following one of A. Lichnerowicz's?® results, we introduce the ideas of the

velocity v of propagation of the wave front (1) by the relation:

v (- T =Ly | ' 21.8

[

According to relativistic ideas,‘such a velocity cannot be greater than the

unit (speed of light in a void):
r<lL | 21.9
This requirement may be expressed equivalently with the aid of the following
postulate:

 Proposivcuii. Every characteristic hypersurface of a Cauchy problem in

general relativity is rigorously non-oriented in space:

hle0. | \ 21.10

oLl

25Cf£. A. Lichnerowicz (1955), Chapter II. N
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The introduction of these ideas will enable us directly to undertake the study

of the phenomenon of propagation of wave fronts in thermodymamic continuous media.
¢

22. Study of thé Characteristic Variations and Determination of the

Equation of Propagation of Thermodynamic Wave Fronts.

The-.study of the characteristic variations of a thermodynamic continuous
medium introduces, on the one hand, the conditions of geometrical compatibility
of the Eq. (21.4) type of the quantity discontinuities involved, and, on the other,
the conditions of dyﬁamic compatibility imposed upon these discontinuities by
the ensemble of equaiions governing the medium under consideration; when the
linear and homogeneous system of equations related to the ensemble of these-dis-
continuities is regular, they are also null, and the .initial hypersurface is not
characteristic; therefore, we now propose explicitly to write such a system in
the case of the thermodynamic continuous media under consideration.

a. First of all, let us write the conditions of geometrical compatlblllty

of the quantity discontinuities which intervene in this problem:

[D.Ysg“:’] = dagl-{ls, [VuP] = al“, [Vasual = balcv

’ 22.1
[B(V g®)] =’ [P(V<a>65*)1=:3w [’I“"V,T]-—tl,. (v S]—-sl

where every sub- and superscript in parenthﬁses is withdrawn from the action of

the space projection operator P. By 'virtue of the unltary nature of u° , and, on

af

the other hand, as a result of the spatial character of q and e » the discon-

tlnu1t1es (b R e » £ ) are space quantities:

~

=° . 22.2-a
Mu:.c“ '0.

e i : | 22.2-b
U =0 ' .

IR » ' ‘ | 22.2-¢
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and we have manifestly:

o

l [chslh‘? (c? - q.{bv“s)la : | ) 22.3-a

(VO = (18 = 2uB0b) e , 22.3-b

B. By reasuil of the developments of paragraph 20, we assume that the ensemble
of compatibility conditions which the preceding discontinuities must satisfy are
derived from the following hypotheses: |

(1) The continuity of Einstein's tensor G B, a -consequence of the postulated

continuity of 7*® 2nd of the field equations Eq. (2.5) means:

[G*] =0. | 22.4

(ii) The continuity of the first member of the conservatlon equations Eq.
(16.2), a consequence of the structure of the field equatlons requlres, on the
other hand: o _ '
[v o'm = [(t; - Vaq" + g+ 120" T e \

+ pia — £4u -+ 2:1351” ~®(7s M=o N 22,5

i \

(iii) The postulated cdntinuity of the rate of change of the total entropy

density Eq. (17.2), ascumed &s a consequence of the second principle of\ thermo-

dynamics, imposes, moreover: . o \\

k [VS8] = [(LS — Vy(T-'¢%) + T-2q%up)us

+ Sita — £(T-ge) -+ 2T-1g05] = 0. \22.6

(iv) Finally, the linking equations Eq. (19.1) of the thermodynamic con-
tinuous medium requires that the following conditions be confirmed:

C o e — o P

. [p(ca«a)- I/2C“°‘f°ﬁg s-wr-xn 0 . 22.7-a

[TES — 1/2L#86ge3 — CT=* T] = 0.




The 25 discontinudities Eq. (22.1) must therefore Satisfy the entir: 25 con-
ditions Eq. (22.4-7). ‘

c. The discontinuities a, of the gravitational field satisfy the entire

8 .
10 conditions Eq. (22.4) independently of the conditions imposed upon the other
discontinuities; these 10 conditions are not independent since, as a result of

the identities:

S L[Ryys] =0,
. o3y | 22.8

satisfied by the discontinuities of the curvature tensor, the discontinuities of

Einstein's tensor likewise satisfy the 4 relations:

LG =0,

22.9

The investigation of the initial data on (S) compatible with Eq. (22.%)
constitute the problem of initial conditions; these conditions show only 6 of the
conditions Eq. (22.4) as independent, those which introduce only the discontinuity
components of the gravitational field on the initial hypersurface (S); only these

components thus appear able to have a physical significahqe; they are:

[G] = — 1210, (@'*® — 1/2g'*%a5), sl =0, a'apl*=0, 22.10

B B

where g‘d and a‘a designate respectively the components of ga and a, in

8
=0, i.e., if

B

(S). The conditions Eq. (22.4) are likewise confirmed if a‘as

the gravitational field is not discontinued on traversing the hypersurface (S).

If in return, one of the discontinuities ¢” _ is # 0, S is the characteristic

aB
vaviation of the problem presented, and the conditions Eq. (22.4), in that event,

e

impose the condition: . : T

Ml=0; ' 22.11-a

the vector field T having been assumed to be of the integrable type Eq. (21.2),

it is easy to show that the trajectcries of S are isotropic geodesic lines of V4:
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Dl =0. | 22.11-b

The wave fronts associated with the characteristic variations Eq, (22.11)
tangent to the elementary cone ds? = 0 are the gravitational wave fronts; we
have seen that the characteristics of these fronts do not appear to depend on the
structure of the material media which constitute the field sources. '

d. Let us now assunc that S is not such a variation, i.e., it does not
carry the discontinuities of the gravitational field:

LA ' 22.12

We are then led to consider the special ensemble of 15 conditions Eq. (22.5-7):

which must be satisfied by the 15 discontinuities (a, % c""f ﬂ» asL , where
ba, e , and t® 4B are space quantities, by virtue of Eq. (22. 23

Ye are goinug to show that such a study is reduced to the consideration of
a system of 5 conditions related to the behavior of the 5§ discontinuities a, ba,
and ¢. ]

The contemplated 15 discontinuities are in effect subjected to the ensemble
of the following 15 conditions which are rigorously equivalent to the initial
conditions Eq. (22.5-7)30;

B 3 .

. v’u.+M b3+vN¢l—O v‘ 22.13-a
P uCr=0, | 22.13-b
:‘vi‘.‘?‘ = Uebtingby + oL, : 22.13-¢

30These relations are obtained by carrying out the following successive operations:
(i) Eliminating in Eq. (22.5) the [Vag?] with the aid of Eq. (22.6). (ii) Then
eliminating the £Vas] in Eq. (22.5-6) with the aid of (22.7-b). (iii) Eliminating
[Vag®] and [VB6%P] in the new relations (22.5'-6') with thke aid of Eq. (22.7-a)
and of the spatial portion of Eq (22.6'").
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ey = Viby =+ vqat, 22.13-d

,,,,,,

22.13-¢

v designates the velocity of propagation Eq. (21.8) of the wave front associated
‘'with (8), and _r; the unitary spece vector Eq. (21.5) which characterizes the

direction of propagation of said wave front, and we have noted:

| M> == oy (5 4 637 = LM, o v3((L — TS)35 + 62) | L 22lhea
- = Ol — Bngnagd, \

- Ny = — (€ + g¥ng)ua — (V0 + ".’»Lf):: - o « D

P LTS 4 Bk i, 2.16mc

j;éq?s ;__ C¢3~{8 + 25«(‘(08)3 — 633275. . o 22 14-d

V3= oTSgd — gun® — g¥n,gs, | 22.14-¢

We = (L5 — TSged), . 22.14-f

ﬁ"“”“h&;;;:égw"’-w“i“ﬂ‘\‘ RECEE
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The 5 conditions Eq. (22.13-a,b) govern the behavior of the 5 discontinuities

(a, ¢, ba) independently of the value of the remaining discontinuities; it follows

a o . ok i 3w

that if said 5 discontinuities are null, the 10 discontinuities (taa, %, g) are
aiso annulled by virtue of Eq. (22.13-c, d, e) and thus the Cauchy problem may be
prescnted in respect to (S).

If, on the other hand, one of the discontinuities (a, ¢, ba) is # 0, the initial
hypersurface (S) is a characteristic variation; we are thus led to the conclusion
that the investigation of the characteristic variations of 1l5-condition system
Eq. (22.5-7) iinking the 15 discontinuities under consideration reverts to the
invéstigation of the situations for which the 5-conditions system Eq. (22.13-a,b)
is}hoted. By explicitly setting forth the spatiul characteristics of the dis-
coptinuities b® with the aid of condition Eq. (22.2:a), we write this system in

the form:
. E:?ﬂ=° ‘(A, 200 =o. l. 2, veey 5)’ ‘ ' 22 15
or
i ?‘,ié“.'”.:‘, L i,?.‘.= @ L “i’ - ' 22.16-a ,
Ea Ma ~E:~ ;:;l:. o EE = vN“.
E{=P, ~ El=0 CEb=C, :
. _EE=u0. E::O. B E‘—o‘ , 22.16"b

System Eq. (22.15) is singular if:

Fdét (ER) = 1/6 1 SRS ENENETESELES = 0, | 22.17

.

-

By virtue of Eq. (22.16-P) this condition becomes explicit in the form:

v(v(‘ Gét (N’ 3) — (min M)E\I P“) =0, . |  22.18

b e i e e G e e O . - i

where EEECEa)'and(“Uﬁv')areSPectlvely designate the space determinant and the

space minor of the matrix 4 x 4 formed by the, components of the symmetrlc space ;
tensor M B 3. o | S , \\ R :
- * - . . \ ) .
S1c£. Appendix II : \
w 54 = , | \\ \




> ‘v‘!;%:-;_p R LR

ddt (MZ) = 1/3 1 8320w, M M2MY, . 22,19-a
: (min :ﬁ); = 1/2 | 8’3‘{511;14":\73&?3. | 22.19-b

wyoe

Thus, only the space quantities appear in the material wave front equation

(22.18):

- . . .- S . ¢ [ %
Mt 22{(p = TSVgE + 02) — Oy ~— E0rivrsgl, 22.20
* Ny=s = (vga +nLE), 22.21
| Pem gL = TSP) + 2+ 200 22.14-c

e. The equation (22.18) is annulled in particular for v = 0, i.e., when:

as=0. . 22.22-2
Since we have assumci 1 to be of the integrable type, we deduce that the

trajectories of this hypersurface Eq. (22.22-a) are equation curves:

22.22-b
The ‘conditions Eq. (22.22) characterize the seccnd type of characteristic

variations of the Cauchy problem related tc thermodynamic continuous media equations,

which are the hypersurfaces tangehtial to the flow lines or generated by them; the

associateid wave fronts carry the discontinuities linked to the ‘material medium.
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f. Let us suppose that (S) is not such a hypersurface: '\
Iy # 0, 22.23
Equation (22.18) means that we must also confirm -he condition:
r ' - -
vC dEt (M) — (min M);N;P* = 0. 22.24
‘ o L.
|

This equation describes the propagation of the thermodynamic wave frents; it
is of the scventh degree in v; we must anticipate what it reveals:

—The propagation of 6 elastic wave fronts, the unfolding of the 3 known
wave fronts of the classical theory being due to the existence within the medium
under consideration of the privileged direction of the heat flow 3.

—The propagation of a thermal wave front linked to the existence cf the heat
flow within the medium. '

These remarks will be clarified during the particular study of the isotropic -
media. Let us now bring together the entirely general results established in the
course of this paragraph:

Propogition. The characteristic variations of the thermodynamic continuous
media equaticns in general relativity involve:

; (i) The hypersurfaces tangential to the elementary coﬁe, propagating at
‘the unit velocity along the isotropic geodesic lines of V4, which characterize
the propagation of the discontinuities of the gravitational field:

- - .

Jaf, =0, L(Dla=0. -

(ii) The hypersurfaces tangential to the world lines, or generated by them,
which characterize the propagation of discontinuities linked to the centinuous

medium under consideration,

I;u;=.,0‘_ - .£1“=o_

o~

(iii) The hypersurfaces which characterize the 7 thermodynamic wave fronts,

having the equation:

Co 3 (M2) — (min MNP = 0, :
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where: . .
2\” = oY(p — 'I'S)"3 -+ 05) Ct¥nny — 6¥inngd,

« D - (Wla + nﬁLg)o
P2 =2 uny(Led = TSged) - 2500 == 20%g%,

Chapter V. Application: The Isotropic Thermodynamic Continuous Media

-

A. Characterization of the Isotropic Media.

In this chapter, we propose to apply the formulism developed with the study
of thernodynamic continuous media in general relativity to the particular case of
isotropic media.

In this first section we shall introduce the concept of the isotropy of a

continuous medium from a particular property of the material wave fionts.
23. Introduction of the Concept of Isotropy

The phenomenon of independent propagation of longitudinal and transverse
wave fronts is characteristic of the isotropic media in the classical theory of
elasticity; we propose to show that this prbperty suffices to define the isotropic
character of an elastic continuous medium in general relativity.

Let us therefore consider an elastic-type medium, i.e., described by the
linking equations Eq. (10.1), and let us study the propagation of elastic waves
in said media; by restricting the results Eq. (22.13) of the preceding paragraph
to the case under consideration, the phenomenon of propagation of\slastic waves

e e s A s e e T e e W 1 o

is governed by the three equations:

Mg =0, M3 = vi{sgh + 02) — CPn — Ovonnigl. 23.1
\

By definition, we say that there is independent propagatiop of 1ong3tudina1
and transverse walc fronts if the three conditions Eq. (23.1) @ -la d to ﬁhe
discontinuities b arc separable into a sroup of two conditions which 1ntroduce
the only tranbvyrse discontinuities 5 , and one conditian related to the longi-
tudinal discontinuity ka’ where, by V1rtue of the defi: - \s in paragraph 21

these quantities are characterized by the relations:
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. bc =2 b¢ - bu ll'b; sl 0, nfle = 0. 23.2

. ¥

The three equations (23.1) are equivalent to the group:

-—-Q ) - .7 ‘ _
n8M3By o n3M'2b; =0, . 23.3-a
——— L -, ?T _ o

n‘“M'mYb7 t n[,‘M &) b* == VU, | 23.3-b

The postulate of.the independent propagation of wave fronts requires that the

system be reduced to:

: u-- .L ., ....~‘
‘:"’ nuMozba = 0,_ | A 23.4-3

ao
-

B
m M0y =° 23.4-b

i.e., by virtue of the arbitrary nature of the discontinuities b and of the

symmetry of the space tensor M‘B, that the following conditions be also confirmed:.

S

| n‘“ﬁ'm.’ny = 0. ' ' 23.5
We are thus led to investigate the structure of the tensors M‘B of the Eq.
(23.5) type which satisfy Eq. (23. S), i.e., such as:

e =G *wa—O- | 236

L er - e s . et

As these conditions inust also be confirmed by each of the velocities v of

wave fronts propagation it is also required that the two types of conditions be

" carried out simultaneously:

=°sl m “_°’ . 23.7-a

o pme

w S8 «
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n,Cyy*enterie =0. 23.7-b

(i) The conditions Eq. (23.7-a) mean that 7 is the eigenvector of the con-

straint density BGB, i.e., it is one of the three principal constraint vectors
-y
€

defined by:

a3 ] 8 5 e '
¢ =m"3’“5. 85 5*-‘0. .vw=—8u.' 23,8

We are therefore led to present:

Ny = e | 23.9-a
I

(ii) That being the case, the density of modulus of elasticity CQLBWS must

satisfy the two conditions Eq. (23.7-b); bearing in mind tte symmetry conditions

Eq. (10.4-a) of this quantity, a purely algebraic study shcws that the most general

aBys

structure of C which satisfy such conditions becomes explicit in the form32;

Z { aercPeve® 4 b(ercPere® e“ef‘c‘fe")

kk k k & P N

u¢u¢k> 23.9-b
't ok e{ctaeetred)) - d(e(xaﬁ)a(Ygs).L clag®elred)) ot o(cedette® e<“c-’*>e'fe5)}
) kl J il kk & k) k] k1 kkki i )] kk

The algebraic expressions Eq. (23.9) are such that the conditions Eq. (23.7)
of independent wave front propagation are likewise satisfied; however, the
struciure of the media studied are not entirely determined; in effect, by virtue
of the integrability conditions Eq. (10.5) of the linking equations, the 15

scalar densities (a, b, e, d, e) are not 1ndependent the conditions imply that
1 1 i z
the densities C* BY& which belong to the Eq. (23.9- b) are not necessarily of the

type:

| Coo18 = = Ngadg¥® — 2ugelrg¥B, | 23.10-a

where:

P

359 = — 284/08u3 ; 81/834‘3"*‘ = Sk/ 3"703“" . 23.10-b '

i
;
|
]
]
!
;
+
i
i
¥
:
1.
i
!
i
!
{
|

2In the case of more general types of continuous media, the two necessary and
sufficient conditions Eq. (23.9) to have independent propagation of longitudinal
and transverse wave fronts involve the remarkable peculiarity that each of the
transverse wave propagates at a different velocity; cf. J.-F. Bennoun (1964).
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By virtue of the Eq. (23.10-b) the structure coefficiunts can be expresscd
from a single independent variable, for example, the density of mass p; if we

use the consequence of the conservation of energy equation:

pgd = —2%/%mi 23.11

the desired link is written:

Ch= =k (o WU, | 23.12
where: ’ " '\\

\

R Ve e \ s

The medium described is a perfect fluid33: - \\

|08 = g, \\ 23.14
8

. Eq; (23.1) assumes the form:

It follows that the tensor Ff"

M2 = (p - w(igd 4 dp/Opman®), ' . 23.15
which, from Eq. (23.4), immediately involves the well known result that there is
propagation of a single longitudinal wave in the elastic medium under consideration,

with the velocity:
v, = (Qu/Oe)? ~ 23.16

Thus, the mere postulate of the independent propagation of iongitudinal and -
transverse wave fronts suffices fully to define the isotropic character of s

a medium:
Proposition. =~ Given an adiabatic elastic medium in general relativity, there

is a rigorous equivalence between the two hypotheses:
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(i) The longitudinal and transversc wave fronts propagate independently:

(ii) The medium is isotropic:

go8 = pged,

Cod18 = (p = (o =+ lp)bp/;}?)z,.agya - 2pz,a(v'£6)5,

24. Structure of the Isotropic Thermodynamic Continuous Media.

a. Expanding the preceding result, we define the isotropic character of the

thermodynamic continuous media with the aid of the conditions:

C«ﬁ’f‘ e Ag“ﬁg‘ﬁ Zpg“'fgm 24.1-a

Le? = Lg* 24.1-b

.

y virtue of the equations Eq. (19.2) and Eq. (19.5), consequences’&fdfﬁé

linking equations and their integrability conditions, the four structure co-
efficients of the medium under consideration are linked by the ensemble of

rclations:
e T.S .. .
et = — 2hulBg  24.2-a
=TT, . SR ‘
- e 24.2-b
L§¢3 = ZT-éS/ SZune
' 24.2-¢

- [

33Bernstein (1960) established the following extremely restrictive result in
classical theory: The only elastic media whick can be described by variation

of state equations, and compatible with the known quantity of -an elastic energy
density, are the isotropic media, such a result cannot however be retained, since
it is based on an unsuitable choice of Truesdell's (1955) equatlons of the

variations o - -« plastic media. \
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'C="Tus)iT. 24.2-d

o . p
| TENSTg® = — 28L/8¢ax. , ' 24.2-¢

T*3(T-3 L)/3Tg#? = 25C/8gue 24.2-f
I aga = T, 24.2-3

‘Moreover, the equations (18.12) derived from the conservation of energy

equation enables us to link the density of mass to these coefficients:

- -

- 8/8T = TOSST. . 24.3-a
S e

B} integration of the linking equations, we deduce that the medium thus des-
cribed is a perfect fluid:

r&b»“.‘fﬁ‘

TR 24.4-a

where the scalar pressure density p is defined by the relation:

= 24.4-b

which justified a posteriori the adopted definition of the isotropy of the thermo-

dynamic continuous media.
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b. The isotropic thermodynamic continuous media are thus described with the

aid of two independent parameters of state; here we choose as parameters the

Y
\

temperature T, and the scalar V defincd by the relation: \
"Vnc'x;? f?ds ' 24.5

where the integral is extended all along a world line, in such & way that we have:
"2Y.-x's‘v/sg'¢,,%§fa.f\ ’ | 24.6

That =~ .ng the case, the structure coefficients of the medium are expressed

from the scalar pressure density p by the relations:

y-==p 24.7-a
A= —3GVypv 24.7-b

: L;’?“iplb'r ﬂ- 24.7-¢

) C-= Y"* f ’i."‘b'.v’/?’f"d—;" | 24,7-d

and the densities of mass (energy) and entropy of said medium are deduced from p

with the aid of the integrals:

-

o = V- [TRT-)RTIV . 24.8-a
 S=V"0p/0Tav. . .-24.8-b
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c. We deduce that the free enthalpy density attached to the isotropic medium

under consideration assumes the expression:
P+1; ~TS= V;*fvlap/avgvp 24.9
and that the dilat.on heat density is written:
L-Ts -% -’Ta/ar(v-x vap/av(zv)
where, by definition:

3@poVaV = /= [VorpViory/ =gavi”

When the conditions of state ure not dependent on V, the second members of
these last two expressions are also annulled, and we can then say that the system
under consideration varies reversibly according to a succession of states extremely
close to thermodynamic equilibrium. This situatior occurs, particularly, in the
case of rigid motions of the medium under consideration.

In the following paragraph we shall set forth the structure of the two classes
of insotropic media of this type.

25. Two Particular Classes of Isotropic Thermodynamic Continuous Media

a. Let us propose to set forth the characteristics of the isotropic media,
since these can be described with the aid of a single independent variable; the
examination of the results of the preceding paragraph immediately reveals that
the state of sucli a medium depends only on its temperature T.

(i) The structure coefficients of the isotropic medium under consideration,

expressed, for instance, from the pressure p, are writ’:en: \\
, N A
b=2 \ 25.1-a
\“\ v \
Ne=—p , \ 25.1-b
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L ﬂTS")/ST

25.1-¢
b = T‘E‘p/ST'. .
i o 25.1-d
(ii) The solution to the linking equations is written:
p = T*8/3T(T-3p), 25.2-a
v ‘ ' 25.2-b

As we have just seen, the five conditions of state (n2 T,S,L) are linked

by the relations:

L—TS=p+p—TS=0, | | 25.3

A single relations of phenomenological origin suffices perfectly to determine
the structure of these media; we shall immediately give two examples of this

situation.
(b-i) Let us first of all assume that the densities of pressure and mass

are linked by the relation:

"‘( P/‘V —g= m(P/‘V. - 8)". »/m == Ctc, n == cic; —n -,é l.~ 25.4

According to Eq. (25.1-2), in this case the equations of state of the medium

assume the form:

_ S cee e 25.5-a
e /1 [ g= (m'*(a’f“"*’fﬂ — 1))11(«-;)

T 5
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PIV = g == mi{mi=H(@Tr=3ln — |))ritn=1) 25.5-b

S ‘\/. - -=aT"I"":'n-l(aT(n-u/n..1)):/;.-;).
o . ' 25.5-¢

where a is an integration constant whose meaning is linked to tha physical inter-

pretation of the solution.
(ii) Let us study separately the particular case n = 1 which is not included

in the preceding study, i.e., we present:
. P = mp, m == Cte, ‘ 25.6

By the same procedure we obtain the equacions of state:

. p/\/-—lg = gTG+i/m) ' 25.7-a

. plv —g= maT(H-x-/m) | ' 25.7-b
‘\/— =3 3 im :

St vl ‘<,m+ IJG.T,I ) 25.7-c

This second type of solutions to the isotropic thermodynamic continuous media
equations will subsequently serve us as an example of application of the formalism
developed in this work to the study of link between the gravitational field and

its sources.

B. Propagation of the Thermodynai:ic Waves in Isotropic Media.

By means of a particular study of the phenomenon of thermodynamic waves pro-
pagation in the case of isotropic continuous media, we propose to set forth certain
of the peculiarities of these wave fronts where we had been able to offer only a

qualitative aspect in the general case.

- 66 «

R



26. Propagation of the Thermodynamic Waves in Isotropic Continuous Media.

Wo refer to the thermodynamic wave equation:

" uCdE (M2) = (mia MENLP? == 0,

where, by virtue of Eq. (24,1) the quant.ties Eq. (22:20), Eq. (22.21)

(22.14-c) assume the particular expressions:

. -~
/

M3 = (p - p = TS)'ZE o vinaa?),

¢ - -~

ﬁc - (vga + I-na)l.

P = (L, - V;I'S).n“ -+ 2n50%n% +“2;)3q=,

bearing in mind the relation drawn from Eq. (24.2,3):

A ==‘—-p + (¢ +b - L)Dp/39,

and where we have noted:

= (o0 — L)f(e + 2 — TSOp/%.

\

22.24

uind Eq.

26.1-a

26.1-b

26.2

26.3

We immediately see that when the medium varies according to a succession of

states of thermodynamic equilibrium,'the wave equaticn (22.24) is also confirmed,

which means that in said case ther¢ is no more thermodynamic wave propagation.

If we discard this situation, we can write the thermodynamic wave equafion

with the following form, after eliminating the superfluous factor (p + p - TS)v43“:

Clo 4 p — TS)i(u — 18) — L(L — TS) + 2Lnag™* = 1)

o (L = TS)n, j*0* 4+ 2quq20(v* — v3) + 2(n.q% w(l — v3) =0.

3bpg ‘

Cf. Appendix II
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This equation is of the third degrce in v, where as the gencral equation is
of the scventh degree: we immediately interpret this fact'by saying that the
isotropy causes the disappearance of the transverse wave fronts, a known result
in the hydrodynamic theory of perfect fluids. The equation Eq. (26.4) must
ther.Jore enable us to set ferth two elastic wave propagation velocities, the
difference between these two waves being due to the existence of the privileged
direction of the heat flow vector 3 within the medium, and a thermal wave pro-
pagation velocity.

.In order to set forth these characteristics and to give an order of magnitude
of the propagation velocities of these different types of waves, let us place
ourselves in a position close to the thermodynamic equilibrium, whereby we are
justified in disregarding the quadratic terms in Ial in Eq. (26.4). Bearing this
hypothesis in mind, we readily obtain the desired values of the three velocities
of thermodynamic wave propagation in the isotropic media in the first order of
approximation (which we indicate with the symbol ~):

D~ 0 = (L(3 = 202) = TS)/2C(p ++ p —~ TS)nogu. ° 26.5-a

v~ — (iL/v;’)/C(9 +p = TS).ng, 26.5-b

where:

—tts

o=} +‘1",(L: fr§)'/l:(,o +- p - TS) Y 26.6

Eq. (26.S—a) actually shows the separation of the elastic wave front into two
‘distinct wave fronts, due to the existence of the heat flow, and indicates the
correction to be made in the velocity m;¥=gzaﬁﬁbéyﬁ of the hydrodynamic-theor;

of perfect fluids; let us remark thdt‘this separation does not take place, at
least in the order of approximation adopted, when the heat flow propagates trans-

versally, i.e., according to a direction situated in the two-plane orthogonal

i

.8
5
i
EY
ol

space to the direction of wave propagation n Eq. (26.5-b) indicates the value of
the thermal wave front propagation velocity; this‘type of wave disappears during

a transverse propagation of the heat flow within the medium.
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Remark: This result eliminates one of the great difficulties presented by
Pham Mau Quan's theory, a difficulty which is probably due to the fact that this
author had been constrained, during the study of the Cauchy problem, to introduce
a superfluous variable Z = T; this author, in effect, revealed the existence of
a sveond type of thermal waves propagating at extremely high velocity inversely
proportional to anaqa, this velocity becoming notably infinite in the case of
adiabatic motionsrof the medium under consideration; such a result is in absolute
contradiction with relativistic ideas, and it is therefore gratifying to note
that, according to the hypotheses adopted in this work, this type of thermal

waves does not exist.

C. The Stefan-Boltzmann World
In closing this work we shall seek to characterize the structure of the
gravitational field created by a continuous medium which forms part of a particular,

class of isotropic thermodynamic continuous mcdia defined above.
27. Position of the Problem:

Let us consider the particular class of isotropic thermodynamic media des-
cribed with “1e aid of equations (25.7); applying the preceding general consider-‘
ations, we propose to study the structure of the gravitational field created by
such a source.

We are limiting the scope of this study by presenting the following hypotheses:

(1) The state of the medium is adiabatic: It is therefore described with

*he aid of the pulse rate-energy:

| T8 = 4/ gaT(ueud — 1/(n — 1)g*). - 27.1

By reason of the finite character of the hydrodynamic wave propagation velocity
the only admissible values of n are found in the domain:

a>2 ~ 27.2

(ii) The world lines form a congruence normal to the triplanar field of

space directions:

Qup=0. 27.3
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(iii) This congruence is without distortion:

Cap == E«S -— 1/3‘,“3 =0 » (a: = O), \\ 27.4
a. The writing of the gravitational field equations related td\such a source

calls for the decomposition of the curvature tensor of V4 in terms of‘space and
time: \
\

P(Rewo) == R«:ws + 29«39 5= 2an-;Qs.a + 2 ¢{y\ 515 | \ 27.5-a

PRt =2V By - Q) = 2 27.5-b

= = Ty ey B FLE Ot B © g

where R a8y is a tensor generalizing the space curvature tensor, the latter being
defined only in ihe case of integrable space sect10ns35
The desired equations are written:

‘ . - .;-....'a. - .-;-~....:--.- ...." 27.6-3’
i [Rga -+ V(aua) - ug.;'u;;}*' = 0,: .

- R—2/362= —24T", 27.6-b

35§; Ve has the following properties: 1. It is a space tensor. 2. It has the
sy&met

ry properties of a Riemann variation of curvature tensor. 3. When I is
an integrable space section (Q,5 = 0), it_is reduced to the curvature tensor I.

Finally, when the motion of I 1is rigid (£gdB = 0), RGBYG is invariant during
the motion of I (£RQBY5 = 0).

Note added to the galley proof: The tensor Ra s has also been set forth by
G. FERRARESE, Rend. Mat. (1,2), 24 (1965), p. gy¢
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27.6-c

Fie = i — 6 — 1/30% = (1 + 2)/2(n — 1)aT", 27.6-d

the mark [ ]+ designating the traceliss portion of the expression situated in
brackets, and the mark. ® the operatox (u“va).

b. The field equations Eq. (27.£) must be compatible with the four equations
of conservation of T%; '

e
e
L gpe—

0= — (s — 1)TT, 27.7-a
; l;,, ===!3“T./T.f .
Lo ' 27.7-b

c. Let us consider the decomposition of the metric of V4 into a sum of
squares:
. PN - 3 - . -—- . o e . .
detem = (00 o (09 = 2% o (adi®)™ 27.8

(L33 _ \

The equations Eq. (27.3) and Eq. (27.7) are the necessary and sufficient
conditions of integrability of the Pfaff form 0° = uadxa; it follows that the
3 planes I are of the integrable type and may be provided with a Riemann variation
structure defined by the metric 337, whose curvature tnesor is the tensor ﬁ;BYG
introduced above3®, The form of the conservation equations (27.7) enables us to

determine the choice of the metric Eq. (27.8) of the type3t: x
| e \

A5t = — T=sin=tliagss 1+ T-3dps, \\ o e I

28. Structure of the Gravitational Field. \ \“» ﬁ

We propose to show that the structure of the field equations intré§uce the g;

following consequences: | I v é

ICE. M. Trumper (1962). . \ f
e P77 w
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A. The space I provided with the metric ds? is isotropic.
B. The Riemann yariation V4 is in agreement with Euclidian theory.
C. The world lines describe geodesic lines of V41.
That being the case, we shall show that the group of field equations is
reduced to a single differential equation which we shall stucy in a particular case.
a. In order to establish fA) it is necessary to separate two preliminary
results.

(1) From the general formula:

f_v “ua == Vﬁ,u; - u,ﬁu;. + u-‘a( + 'QZ)‘;T - Q?P(ﬁf‘l'a) 28.1

and by virtue of the hypotheses Eq. (27.3-4), of Eq. (27.7) and of Eq. (12.5-2a)
we obtair first of all:

c(V(cu.S) - ua“b) = x/(” - 1) (V(a“:») - uau5)+2(" "4)/(”"’1)0“5“5
T e = 1/35'&“:“3- 28.2

(ii) Moreover, the variation of the space curvature tensor:

Rupre = — (urRps + ZpvRas — gy = SovRat) + Baty8o0R | 28.3

is written in the partlcular case under cons1derat1on37:

ﬁRc:ws = IIJGR«M - 1/38’ax~:8'sx:se(- 2R+ 4/30‘ +4/38 '\"\ 28.4
N - (n - 2)/(n - l)aT") .

We deduce:

Ry = — 1/30Rus + 2/6756(6 + 20 -+ 3/(n = DaT"). ’a s

37In the general case, the variation ﬁ;Byé is written: . -

cR«a‘(G = EA[YT{ sja3 E‘AtaR Blrs oo
+ VeVpEer + VeV~ V(choEw - V(rV:s)Eaa
| 2V ety 1) + Zva(Esxxa"az) |
-+ 2Vlb(E¢}(3)“ﬂ + 2‘7(-:(581(«)"51 -
+ Qg By + ZExxsEﬂ:a“d + 2"1:35«:(&‘%1 .

‘s
[ ] rd




(iii) With the aids of the results Eq. (28.2-5) we obtain by variation of
the first five field equations Eq. (27.6-3):

[4(n - 4)/(n - l)u,u; (n - 2)/312“;1+ = 0 . 28.6

By once again changing Eq. (28.6), and by comparison with the initial

equation, we obtain the group:

v — i — r———

. R,

! (n + 2)(n + 5)}&9]" =0, | 28.7-a
(n - 4)(” + ;jtu“ugi;“: ’O’“

e 28.7-b

Bearing in mind the fundamental hypothesis Eq. (27.2), the equations Zq.
(28.7-a) bring in:

Rl =o, | 28.8

which proves that space I is isotropic.
b. The Euclidian character of V4 is a result equivalent to the preceding
result Eq. (28.8), since according to the adopted hypotheses the Weyl tensor of

V4 assumes the form:

C«SYG = - (3¢?[R33]+ + 85 va[R« rl+ - :«s[R3?]+ -8 OYIRM]"')'

+ Rl =0 - 28.9
We deduce that the curvature tensor of V4 is of the type:
Rasrs = 2/3aTgurygars — (1 4 2)/(n = Ditgu Byt 28.10

——

~

c. Let us introduce explicitly the space metric ds? according to 332, defined
by Eq. (27.9); by virtue of Eq. (27.7-a) the structure of space T provided with

the metric ds? is invariant due to the infinitesimal transformation generated by
the vector field u: : . -
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28.11

and we therefore have:
£Rap = 0. 28.12

By virtue of a general conformity formula, Ricci's tensor R _.» Of T assumes
oW

the expression:

’ﬁ.;g = R.g — (Il - 1)/3 6(;125) —:' (n — 1)'/9;151.(3
— Buslln — 3T + (3 — 1)%9uagi) 28.13
Bcarlng in mind the equations (27.6-a) and (28. 7), it appears from Eq. (28 13)
" that 2 is isotropic:

i
[Ras) 28.14

Let us take the tracer line of the two members of Eq. (28.13); we arrive at:

o5 T e 1T e 28.15
= THA=R = R —4/3(n — 1)V oi® = 1,14%) = 2/9(n = 1)(r +- S)iaai, A |
. .

Let us consider the variation off(28 15), bearing in mind Eq. (28. 12) and
using Eq. (28.2); the equation obtained is not compatible with the fle%d equatlons
(27.6-b,d) unless:

H(n = 1)(n + S)uus = 0,

L

\ 28.16

. i.e., bearing in mind the fundamental hypothesis Eq. (27.2) and the fact that

U, is rigorously oriented in space, on condition that:

=0, | . 28.17

i

[
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which actually proves that the world lines arc geodesic lines of Vys this result
could have been immediately attained by using the Bianchi identities related to
ﬁ#aya’ bearing in mind Eq. (28.8) and the field equation (27.6-b), but said
process would have conccaled the significance of Eq. (28.17) which is, in effect,
the compatibility cond.tion of the equations (27.6-b) and (27.6-d); Eq. (27.6-b)
is therefore a first integral of Eq. (27.6-b), and the determination of the
gravitational field is reduced to the integration of the single field equation
Eq. (27.6-b).

From Eq. (28.17) we deduce:

3T =
T =0, 28.18
which is absolutely compatible with the initial hypothesis of the adiabatic state
of the medium, bearing in mind the form Eq. (18.9) of the relativistic equation
of heat conduction.

d. In relation to the metric Eq. (27.9), the only remaining field equation
is written: :

Tola=00R - 2/3(n — 1)¥(dT/de)? ==y2a_'f'“‘- ‘ 28.19

where R is a constant, by virtue of Eq. (28.12) and the Bianchi identities related
to Eas. The solution of Eq. (28.19), .ensured under the conditions:
R < 2aT0+90s. | 28.20

introducés an ellyptical-type integral.

In the particular case of n = 4, the medium under consideration is analogous
to a black body described by the famous Stefan-Boltzmann radiation law-(1884) and
the V4 variation agrees with a V'4 variation homeomorphous to the product V', x R

4
of a three-dimensional isotropic spaceduct the real straight line:

ds? = T-a(_ 2:: -+ dt‘); 28.21
the temperature field T of the medium is characterized, according to the symbol
R by the functions:
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Ta-\/a/a\/ﬁﬁsm--x\/ﬁ(x-:.) R>0 28.22-2

A

-

CT= \/3/(:'\/— R/6 Sh=ta/ = R/6(t = £) R <0 22.22-b
T=  A/3a(t— 1), . R=0 22.22-¢

- " -

Let us summarize these results:
Proposition. Let us consider a material distribution described with the

aid of the particular class of isotropic tnermodynamic media:

P=V=gdl,  p=lfn—Dv=gTr (1>2),
a distribution assumed to be adiabatic, geﬂefated by a congruence of world lines
normal to the I space sections, and without distortion.

The gravitational field created by such a source is characterized by the
following properties: '

(i) The space sections I are isotropic.

(ii) The temperature field is homogeneous in each section of space.

(iii) The world lines are geodesic lines of V4.

(iv) V4 is of the Euclidian, conformity type.

The metric revealing this structure is of the:

| dst = — Tesin=1 ot T30

el

~ [ ]
where ds® designates the metric of an invariant structure isotropic space through

-
infinitesimal transformation generated by the vector field u, and T is determined
by the integral:

J' T=(r=0)/3(T(+3)3 om R/26)=3dT = 1/(n — 1)(3a)/* f dt,

-— ‘. P B - -
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Conclusion

The object of this work is to establish a study formalism of continuous media
in general relativity; it is totally inspired by the need to substitute the classi-
cal description of the states of a material medium the description of the variation
of states of the medium., This conception enables us effectively to overcome the
difficulty linked to the fact that the definition of an absolute scale for the
measurcment of conditions of state is not compatible with the principles of
general relativity.

In an approach to the problem presented, I have first considered the case of
the elastic continuous media. After showing that thc structurce f such media is
represented by a normal type pulse rate-energy, I formulated the group of six
linking equations describing the variations of state.of the mediun; the second
member of these equations must satisfy three equations of variation of é&ﬁser-
vation, the genoral form of which I have'established; by joining with thcse nine
equations the ten equations of variations of field, the four equations of conser-
vation of the pulse rate-energy, and the nine equations of variations of defor-
mations and vortices of the medium, I have been able to set forth a group of
32 equations which should enable us to preseni_fhe problem of elasticity in gen-
eral relativity in a manner adapted to the point of view of the variation of
states.

I then made an effort to expand this diagram to a thermodynamic framework.

A preliminary analysis of the postulates of relativistic thermodynamics has en-
abled me to forward sound arguments in support of a tensorial interpretation of
the concept to total entropy of a material system, the previously assumed vector
definition not being adapted to relativistic ideas. This concept necessarily
leads to a formulation of the second principle which must introduce four relations
describing the behavior of the rate of change vector of the total entropy density,
by analogy with the formulation of the first principle, constituted by the four
pulse-energy density conservation equations, but which is the rigorous consequence
of the field equations. Such a formulation, which must enable us to define the
pulse-energy density unequivocally, is linked to the interpretation of the spatial
portion of the total entropy rate of change vector, and at this time it remains

. | an open problem. I have therefore limited myself in this work to a special for-

mvlation of the two principles, bringing into play, on the one hand, a geaeral
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postulate of unification of mass and energy, and, on the other, the postulate of
the rigorously non-negative character of ' .e time portion of the total entropy
rates of change. Within the framework of this axiom, I have formulated the
linking cquations of the thermodynamics continuous media, generalizing the linking
cquations of the clastic media; this study has incidentally enabled us to supply

¢ justification of Fourier's relativistic law, as an exact transposition of the
tlassical law.

With the aid of a continuity hypothesis related to the rate of change of
total entropy, a hypothesis which clarifies one of the aspects of the second prinJ
ciple, I have set forth the classes of characteristic variations of the problem
presented, and this has enabled me to set forth the general form of the thermo-
dynamic wave front equation; the latter shows the existence of seven wave fronts
constituted, on the one hand, by the six elastic wave fronts derived from the
unfolding of each of the three known wave fronts, separation due to the existence
of the privileged direction of the heat flow, and, on the other, by the thermal
wave front, the appearanée of which is directly linked to the heat flow ﬁfdpagation.

iying this formalism, I have made a special study of the isotropic
thermodynamic continuous media after introducing the concept of isotropy from a
pcculiar property of wave propagation, I have set forth the structure properties
of these media. I have illustrated the preceding general study with a study of the
problem of linking the gravitation field with its sources, when the latter are
described by a special class of solutions to the linking equations proposed in
the isotropic case. ,

A preliminary classification‘of the linking equations of the thermodynamic
continuous media, in relation with each of the physical situations under consid-
eration, is still necessary before we deal with the fundamental problem of linking
the gravitational field to its sources; the solution of this program is linked to’
the establishment of a satisfactory formulation of the uecond principle of rela-
tivistic thermodynamics, the foundations of which we have been able to outline
here. T

This work owes its origin to Mr. S. Kichenassamy, whose friendly assistance,
and whose advice and criticliam inépired by a serious demand for the understanding
of the physical phenomena, have been a basic contribution to its development; I
express my prorfound appreciation to him.

I am also happy to express my appreciation to Mr. A. Lichnerowicz, for the
interest he has conStantly shown in this work and for the suggestions which have

been of great profit to me.
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APPENDIX |
CONCERNING THE DETERMINATION OF THE STRUCTURE OF To8 (Chap. 1)

A. We use the successive identities:

s/sg.,(as/a,°> = 11205354, A.1
8/8;:.3:4" -—1/2u “5u, . A.2

8/8.,.3. - — u‘u“‘g:.? T ' A.3

8/8:.'“5378 =758, A.4

to establish:

8 3 aﬁx - — UYU(’ 34
s’ o A.5

8/0{.’«3 dét (A‘ “) - — l/..u u"‘ dé} (:‘. “). ' A.6

B. From the groun of he two 1dent1t1es

x“ L8/8x%, (bs/by“) - Z}slby"u;u“ | B.1
xa'“Son“. “u" - gzus, N B.2
we first deduce:

_ x° 5o XY m IR, ‘ ‘,&8 u'fub. ' o

W, s/w dét (x“ ) =75 d& (=, ) - )
R ' : B.4

then: e D e e el

8/8&‘ OY“' - 2 “.{xY “xa.v). B . 5
; xa.OS/ox".’y - 5’2‘{- B. 6




APPENDIX 11 \ .

CONCERNING THE EQUATION OF
THERMODYNAMIC WAVE FRONTS (Chap. V)

A. The calculation of the deterininant and of the space minor of a space

Vi

tensor Ma introduces the identities: ' .

1/41%(zs = 3500070,

P -

! | A.l
[ 1/3 ! “i’;?;u“u“ = ryn’ n?ggl A‘ 2
121 Samaut = gha A.3
1" 1/2 ! 8“3"5 = gv, C ' A.4
which introduce:
R (VB w= 1/6(NE2)? = x/zm“mgw, + 13MEMVE . ALS
(aitia MZ = MM~ MV 4 12( (M)} — MEM )g,. A6

E. In the isotropic case, the calculation of the wave equation introduces

the identities:

RS = s'”?l’o BmBbnst ’ B.1
Sascuabng® = = 5, T B.2
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