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Study of Elastic and Thermodynamic Continuous
Media in General Relativity
Jean-Francois Bennoun
O nstitut Henri Poincare)

ABSTRACT: This work is devoted the formulation of a relativistic
theory of continuous media, due consideration being taken of the
fact that, within the general theory of relativity, only the var-
iation of physical quantities is operationally accessible. 	 In the
first part the structure of elastic media is dealt with:, linking
equations are established which describe the variation of states;
the problem of elasticity in general relativity is then fully des-
cribed. The study is then extended to relativistic thermodynamics,
on the basis of a tensorial interpretation of the second principle;
a continuity hypothesis related to the rate of change of the entropy
density permits of study of characteristic varieties and derivation.
of the general form of the relativistic equation for thermodynamic
wave fronts. The^'work concludes with an application of the theory

to the isotropic use.

Introduction

The problem of representing the gravitational field sources in general

relativity is fundamentally linked to the solution of a difficulty of a

conceptual nature: General relativity, based rigorously.on the principle of

slight equivalence, assumes the validity of the laws of special relativity

within a local inertial frame of reference on condition that the value of the

local measurement standards at each space-time point is modified. The con-

sequence of this situation, from the point of view of the description of the

material media which create the field, is that the definition of a natural

reference state of the medium, which is necessary to establish an absolute

scale to measure the conditions of state, loses all physical significance and,

therefore, that the total representation of the media with the aid of equations

of state can no longer be considered.

This difficulty may, however, be overcome on condition that the c ssical

description of the states of a material medium is abandoned in favor of the

description of the variation of the states of the medium in the course of its

changes. Thi.; point of view cunstitutes the central idea of this work, the

object of which is to study a representation of the continuous media compatible

with the theory of general relativity.
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In Chapter I of this work I shall endeavor to show from an analysis of

the basic principles of general relativity the need to introduce the point of%
view of the variation of states in the formulation of a relativistic theory

of continuous media.

In Chapter II, T consider a precise physical situation related to adiabatic

elastic media, and I r<.rmulate the group of correlating equations describing

the variation of states of these media. 1 then present the problem of linking

the gravitational field to its sources according to a diagram adapted to the

point of view of the variations of states.

I then extend this representation to the thermodynamic continuous media

stating the fundamental postulates of relativistic thermodynamics; this study

is the object of Chapter III.

During the investigation of the characteristic variations of the problem

of thermodynamic continuous media, developed in Chapter IV, I established the.

general equation of thermodynamic wave fronts.

As an illustration of this general study, in Chapter V, I apply the pre-

ceding results to the specific case of isotropic media. After proposing a

definition of these media adapted to general relativity, I set forth certain

properties of the thermodynamic wave fronts propagating in isotropic media;

in closing I :studied by means of an example the structure of the gravitational

field created by a particular class of isotropic thermodynamic continuous media.

Chapter I . . The Problem of Representing ContinuoJs Media in General Relativity

1. Basic Principles of the Theory of General Relativity.

The problem of the representation of the gravitational field sources is

closely linked to the significance of the principles of the general theory of

relativity; for the purpose of presenting this problem in all its generality,

we propose briefly to retrace the road which leads from the classical Newtonian

mechanics to Einstein's gravitation theory.

The Newtonian mechanics assume essentiallyl:

(i). The equivalence of reference systems in repose in relation to one

another, thus ensuring the existance of inertial systems.-

(ii). The equivalence of the inertial systems in the determination of

space and time.

'Cf. S. Kichenassamy (1964)
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(iii). The principle of action at a distance.

From these postulates we deduce the following consequences:

(a) To each reference system S is associa •,,ed a three-dimensional space

which may be provided with an Euclidian structure, and a single time valid

throughout this space. Clocks have been synchronized by means of a signal

travelling at infinite velocity.

(b) At a point of such a Newtonian frame of reference S, measurement of

the gravitational field as described by Newton's gravitational theory (1679)

becomes identified with the measurement of the acceleration of a test body

placed at this same point, this field having the remarkable empirical charac-

teristic of being independent of the nature of the test body (Eotvds (1889),

Dicke (1962)). This is the fact which is at the source of the purely con-

tingent result of the proportionality between the passive gravitational mass,

a concept of theoretical origin, and the inertial mass of a body; from the

postulate of the identity between these two masses, and by virtue of the active

and passive identity between the gravitational masses, a rigorous consequence

of the principles of mechanics, the process of unification of the concept of

mass is achieved, just as it appears in the statement of the fundamental law

of dy1•iamics .

(c) When the space associated with S is not the source of a gravitational

effect on the bodies in the presence of each other, every free material point

assumes, in regard to S, a uniform motion of translation, this fact constituting

the background of the principle of inertia; the inertial systems S are defined

t in an absolute manner.

The invariance of the Newtonian mechanics in the Galileo group therefore

asserts that it is impossible to show the uniform translation movement of a

reference system S exclusively through mechanical experiments conducted in the

interior of S; this is the situation described by the Newtonian principle of

relativity.

We know that Einstein (1905) was led by a critical analysis of the notion

of remote control simultaneity to extend this principle to all experiments,

both mechanical and optical, conducted in the interior of S; such a special

principle of relativity led to the adoption of the Lorentz group to be adopted

as the invariance group of the laws of physics.

k
f	 .
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The special theory of relativity assumes2:

(i) Like classical mechanics, the equivalence of frames of reference in

relative repose for the determination of space and time; this postulate

maintains for space-time the properties attributed to the Newtonian

space and time, and in the same manner introduces the existence of

inertial frames of reference.

(ii) The propagation of isotropic light, at a constant speed in relation

to the entire inertial system.

This theory led us to abondon Newton's absolute space and time; the possi-

bility of bringing into evidence the accelerated motion of a reference system

S in relation to an inertial system, by means of physical experiments inside

and causing fictitious inertial forces to participate, does however remain.

However, Einstein's principle of equivalence (1916), founded on the

identity between gravitational mass (passive) and inertial mass, does not permit

the inertial field and the homogeneous gravitational field to be distinguished

locally; this situation means that in a sufficiently small space-time region

in which it is impossible to detect the gravitational field source, the reference

system S may be compared to an inertial system. In return, if we consider an

expanded space-time region, S no longer constitutes an inertial system, so that'

in this case we can actually describe the gravitational field. ' This means that'

at each point of the reference system S there are two events which are no longer-

characterized by the same intervals of length and duration. The effect of the

presence of a gravitational field is therefore to modify the geometrical space -k

time structure at each point; the reference system S is constituted by an

'infinity of inertial systems, and space-time is represented by a line graph.

Thus, the representation of space-time by a line graph expresses the

situation created by the local equivalence between the inertial field and the

homogeneous gravitational field. Does it follow that this equivalence is

substantial, i.e., that the laws of the special theory of relativity, their

numerical content included, are valid in an inertial frame of reference in-

dependently of the position of said frame of reference in space-time? Actually

that is not so, because S is not a true inertial frame of reference; the

271ese two postulates suffice to substantiate the entire special theory of
relativity, the c1haracter of reciprocity of t: ►e reference syste,us in uniform
relative translation being rigorously deduced; cf. S. Kichenemassy (1964).•

4 -
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measurement standards do not coinciae with those of the special theory of relativity

except in extremely small areas. The equivalence between inertial field and

gravitational field is slight and this situation resembles the only one described

by the Eotvbs experiment3.

2. The Postulates of the General Theory of Relativity.

The presence of a gravitational field leads to the repvQsentation of space-

time by a line graph. Einstein stated this concept providing this V 4 variation

with a Riemann structure defined by the normal hyperbolic type metric equation

(signature: -2), which is assumed to be regular:

d3 2 = gas (xy)dxadxs (a and all Greek sub- and superscripts =
0, 1, 2, 3).	 2.1

The local coordinates (xy ) have only a purely topological meaning; the

geometrical characteristics of V4 and the definition of the local measurement

standards can only be obtained through the metric equation (2.1).

According to the interpretation of the theory, the g as are indentified

with the gravitational potentials. The local determination of these potentials

is obtained by assuming that:

(i) In the domains of V4 vacuums of non-gravitational energy, the metric

equation is regular and meets Einstein's external equat^pns:

	

Oca 0	 \	 2.2

or:

s ddt USO	 i

	

_'	 \ 2.3

and Gas designates Einstein's tensor V4:

GSA = ^ xa -- 1/2J^'g^^,	 2.4

Ras being'Ricci's tensor, and R the scalar curvature of V4.

(ii) In . the V4 domain provided with an energy distribution with which the

pulse-rate-energy Ta$ is^associated,, the g as •which are assumed.to_

--3 Cfo S. Kichenassamy (1964).

`'The choice of units adopted in this work is su ch that c = 1, c-designating.
the speed of , light.in a vacuum and X = 1, or X = 81TGn/c2 is Einstein's constant,

and Gn Newton''s gravitational constant.



Cf. A. Lichnerowiczs (19S$).
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be regular # meet Einstein's internal equations`'.

`i 	^. n^ a^ cs a3• 2. 5a

(iii) At the boundary hypersurfaces which limit the energy distributions,

the gravitational potentials gas and their first derivatives are

continuous, according to the conditions of Schwarzschild's line.

These postulates are compatible with an hypothesis of differentiability

Of V4 which we assume to be of the c 2 - c4 class by bits5.

The arbitrariness of the choice of coordinates is ensured by the existence

of £our identities:

0 3G:3 0, 2.6

where 7 designates the operator of covariant derivation relating to the metric

go$ ; these identities, a consequence of the Bianchi identities, as a result of

(2.4) introduce the four equations of conservation of the pulse-energy density:

•	 v AT_- 0. _	
2.7

These equations play the role of conditions of compatibility during the

search for accurate solutions for the field equations; at the time of the cal-

culation of approximate solutions, their integration over the domain of V4

represciLi.^.jg the variation of the material medium furnished the total conservation

of energy and the motion of the field sources.

3. The Problem of Representation of Gravitational Field Sources.

The description of the gravitational field sources is ensured by the known

quantity of the pulse-energy density T ao which appears in the second member

of Einstein's internal equations. The formulation of a relativis°tic " theory of

matter cont,, ists in the characterization of the structure T o$ with the aid of

hypotheses of phenomenologic origin adapted to the properties of the material

medium under consideration. The precise adjustment of such a problem requires

that we revert to the significance of the principles of general relativity.

I.



We have seen that this theory is rigorously based on the principle of slight

equivalence, which leads us to assume that if the laws of special relativity

remain valid within a local inertial frame of reference, the effect of the

presence of a gravitational field is, however, to modify either the local

measurement standards, or if these standards remain identical to those of

special relativity, the value of the physical quantities. Needless to say that

these two interpretations are rigorously equivalent from the point of view of

numerical content of the laws of general relativity, but the choice of one of

them is profoundly linked to the comprehension of Einstein's theory of gravitation.

We know that S. .,chenassamy (1964) was led to assume that the presence of

the gravitational field changes the value of the local measurement standards, to

the extent that the phenomena of a small space-time region are described by the

Same numbers attributed to them in a true inertial frame of references 7.

Such an interpretation is based on the point of view adopted for the study

of the problem of representing continuous media in genera' relativity. In order

to properly understand this point, it is necessary to revert to the manner in

which a similar problem is presented in classical mechanics: In this case we

revert to the determination of the equations of state of the material medium

which link the conditions of state characteristic of the physical properties

of the medium to the characteristic values of the configuration of said medium.

The conditions of state have an absolute significance, to the extent that they

characterize the state of the material medium in relation to a reference state

defined a priori in an absolute manner, i.e., prior to any influence external

to the medium. The hypothesis which might define such a natural reference state

is quite fundamental in the classical theory of continuous media, even though

it is not always formulated explicitly.'

Now, the definition of a natural reference state ceases to be possible

in general relativity when the medium considered is itself the source of a

gravitational field which contributes to alter the value of the measurement

standards intended to characterize such a state. It follows that it is im-

possible to attribute absolute values to the conditions of state characteristic

of the medium, and therefore that the representation of material media in

6The link between the proper time associated to a reference system S linked to
a test particle and the acceleration of S in relation to an inertial system
Sa linked to the laboratory could be expressed in the case of a uniformly
super-accelerated movement of S in relation to Sp ; cf. S. Kichenassamy (1965).
This ilterpretation makes it especially possible to provide a satisfactory
explank.tion of the phenomenon of drift towards red which, in total effect
distinguishes the classical Doppler effect from the purely gravitational effect.
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general relativity car. no longer be made with the aid of the equations of state

of the medium. This conceptual difficulty which was first brought to light

by Synge (1959) must lead to a radical change ' the classical ideas concerning

the problem of the representation of continuous media.

If representation of a material medium in the classical sense escapes us,

wo can always describe the latter from the knoim characteristics of an extremely

close prior state which acts as a reference state; in other words, it is possible

to at ,;ribute an intrinsic ihysical significance to the variation of states of

a material medium in the course of the variation of said medium, i.e., indepen-

dent of a natural reference state s . The pulse-energy density Tas ceases to

have an absolute physical significance, and only the variation of this quantity

remains operationally accessible. The problem of the representation of material

media therefore concerns the problem of the determination of the variation of

states of the medium under consideration compatible with the assumed inte^pre-

tation of general relativity.

This point of view, initially suggested by Synge (1959), is the one we are

adopting here, and we systematically exploit its consequences so as to evolve

a relativistic theory of continuous media.

Chapter 11. Representati"on of Elastic Cont"nuous Media.

4. Introduction

Our goal is the formulation of a relativistic theory of elasticity according

to the point of view of the variation of states.

The problem of elasticity already appears to be of great importance in the

special theory of relativity as a result of the great peculiarity , of the class

of rigid motions within the scope of a Minkowski space-time, since said movements

have only three degrees of freedom 9 ; particularly as shown by Herglotz (1910) and

NoUther (1910), the rigid non-irrotational , motions always constitute and isometry

of M4

The situation appears to be less restrictive in general relativity, where

the rigid motions in the Born Meaning" do have the required six degrees of

freedom; however, it has been shown" that the rigid motions of the material

This point of view is also comtemli^,_ted in the classical mechanics in a different
sense, especially by C. Truesdell (1955), W. Noll (1955, 1958), B. Bernstein
and J. L. Ericksen (1958) ; cf. B. Bernstein (1960) . 	 J
M. Born (1909), G. Herglotz (1910), F. Nodther (1910); cf. W. Pauli (1958) Par. 45.
:^. Posen (1947) , G. Salzman and A. H. Taub (1954) ; cf. Pi rrani and Williams (1962) .

31 C. B. Rayner (1959), F. A. E. Pirani and G. Williams (1962), R. H. Boyer (1965).

- 8 -
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media represented with aid of a normal type pulse-energy density are always

produced with a constant angular velocity. Consideration,of given physical

situations makes it therefore necessary to study more genera types of motions.

The problem of elasticity in general relativity was initially presented by

Synge 12 (1959). In order to eliminate the difficulties connected with the

action of the gravitational field, this author introduces a group of correlating

equations intended to describe the variations of state of elastic media; these

equations, however, do not appear to be entirely satisfactory due to the non-

equivalence between the definition of the rate of change of the constraints

and that of the rate of change of deformations which this author adopts13.

The theory proposed shortly afterwards by Rayner (1963) reintroduces the diffi-

culties connected with the .i. , finition of a natural reference state of the

elastic medium in the presence of a gravitational field, and . this author is

being forced to introduce an auxiliary metric of space which is completely alien

to the general theory of relativity 12 in order to characterize such a state; by

changing the Rayner equations it is however possible to deduce a group_gf...correlating

equations which no longer present the difficulties of the Synge equations13.

In any event, said theories have an arbitrary character in the sense that they

do not specify the hypotheses of the structure of the medium subjacent to the

proposed equations.

In the course of the following work, we propose to formulate a theory of

elasticity which is compatible with the general theory of relativity according

to the ideas developed above. We shall first set forth the-structure of the

pulse-energy density describing the elastic character of the medium under con-

sideration it order to deduce, by a process of variation, the correlated equations
of the medium linking the rates of change of the constraints with the rate of

change: of the deformations. We are confining this study to the case of adiabatic

elas:_'w media, without interaction with an external field other than the gravi-

tational field, so as to clearly disengage the characteristic properties of

these media; subsequently we shall extend this representation to a larger class

of continuous media.

1 2 he problem of elasticity in general relativity has been remarkably dealt with
by J..L. Synge (1959) and C. B. Rayner (1963); we are also citing the works of
J. M. Souriau (1958), A. Bressan ( 1963), B. de Witt (1963), who adopt a
rigorously classical point of view.

13Cf.-J. F. Bennoun (1963).
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A. Determination of the Structure of 7'a^.

In this section we propose to show that, under a sample hypothesis making

the transpositirn in relativity of the Cauchy-Green hypothesis of elastic media,

the pulse-energy density revealing this structure is of the normal type, with

a density of constraints described by a group of six equations of state which

we shall determine.

S. Geometric Representation of a Material Medium in V4.

Let us consider, in the Rieman variation V 4 of general relativity, a class

of point transformations, assumed to be correct and of the C 2 classl`'.

~ Xa x°t(Y")̀
,. 

dot (x°`, µ) 9E 0,	 , x01.. a c^	 ^►,	
5.1

the trajectories of which form a three-parameter family (y) (a and all Latin

sub- and superscripts = 1 0 2, 3) of lines oriented in time, and parametrized'
0

by (y ), this scalar being by hypothesis a rigorously increasing function of the

proper times; the Lagrangian variables (yu ) behaving like scalars of V 4 ; the

foi=,r vectors (xa . u) define a frame of reference at each point (x) of the n

domain of V4 filled by world lines; if we choose s as the variable parameter

along these world lines, they may be considered as trajectories of the field of

velocity vectors:

U2 : Z^x-X/	 (Z S "Y0)-1'x. °.	 l" s^i x'  	 S.2

unitary, and oriented in time:

5.3 -

Let E be the triplanar field of orthogonal space directions in a 1C; P

designates the space projection operator which enables us to associate to the,

total value U of V4 , its space component P(U) over E; for example, the space

component g 	 P(gas) of the metric V4 is defined by the expression:

P-YPA'gYa o g4 uaua,	 ga; iF^ Q^
	
o S^ — u,^u3.	

SA4

1 `'Cf . ' Pham Mau Quan (1054)
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1

Let us consider an infinitesimal displacement at E:
5

dx%- x"•µdy"► 	 x°`.µ = P(^".v)^	 5.5

Noting that V. depends only on the differentials dya , since:

Xa .o X4 .0 — UAU1'X .o = 0.	 5.6

The relations (5.5) define a type of point transformations of S1, which depend

on the parameter (y 0 )', by L,pplying the points (ya ) of the natural reference

state of a material medium to the points of the triplanar field E associated with
the variation of the states of the medium under consideration. Let us state

certain characteristics of these types of transformations.

(i) Let Zrr-5 be the elem,^.«ary length interval of E, defined by:

ds' = ga^dxadxp = y,,,,dy^`dy"^
	 5.7

where the Pfaff forms dx z P(dx') are not exact differentials except when E is
integrable, and where yu^ designates the Lagrangian metric:

The six Yah quantities define the deformation of the material medium; it is

immediately evident that such a concept depends on the definition of the natural

reference state of the medium.

In turn, the deformation variation may be characterized in the absence of

the natural reference medium with the aid,of the deformation variation rate

tensorl0 15:

introduced by the expression:

a	 dxadx^.	 5.10
a/^sds = 2Ea-,,

15.0 designates the Lie derivative operator for the vector field u; cf..A.
Lichnerowicz (1958).

11
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This situation constitutes a first illustration of the fact that only the

variations of state quantities have an intrinsic physical significance, i.e.,

that they do not depend on the definition of a natural reference state.

(ii) Let us now consiler the volume element defined by E: _ -''^^~

	

d'x = N/--g1/3 1 caAYatrdxAdxYdx-8 _ V--gdet (x-,IJd'y,	 5.11

where eaSY6 designates the Kronecker indicator, and :

	

cct (x".^•^ = 1/3 1 
E YSECeoua%d

. oxY . .o = (^s/,S^o)-: dct (x-".v) • 	5.12

The deformation of this .olume element, or dilation, is characterized by

the quantity:

dot(.". µ) I	 7 = dot ^Yµ^a,	 5.13

where by virtue of the original hypothesis (5.1) and of the fact that the world

lines are assumed rigorously oriented in time, we have:

ddt (7e. .") 0 09
	 5.14

I

.

which ensures the regularity of the point transformation (5.5); the three vectors

xa . 0 form a space frame of reference which characterize , the principle directions

of deformation of the medium.

This concept of dilation depends on the definition of the natural state of

reference of the medium; but in the absence of the existence of such a state we

can, as heretofore, define the dilation variation rate 6:

Q('1^-8u''x) = 6 gd'x,	 8 = g°^3E^^ ='Vaua. '	 5.15

We have just determined the characteristics of the geometrical representation

of a continuous medium in V4 ; in the following paragraphs we are going to tet

forth the properties of the dynamic representation of such a medium.

= 12
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6. A Lemma on the Conditions of State Quantities.

Let us establish a preliminary result related to the behavior of the conditions

of state; we assume that these quantities depend only on the configuration of the

continuous medium under consideration, i.e., that they are entirely determined

by the known quantity of the variations of state (,^a^," ►
 xa•`)•.

Let U be such a quantity; U is referred to the following hypotheses, which

suffice for the purpose of our work:

(i) U is a contravariant tensor density of space of the nth order:

• ,a,...a j...a^uat 	 0, 	 6.1

(ii) The Lagrangian components of U, which may be considered either as

tensor densities U of the same type as U in the group of parameter
0

transformations (y a) or as an ensemble of n1 scalar densities of`

V4 defined'by:

x"" " d6r, 	
6.2

depending only on the Lagrangian metric ypv:

U ° U(YI&Y)•	 6.3

(a) Let us take the Lie derivative through the two-member vector field

u of Eq. (6.2) bearing in mind the identity:

.a = 0 ?	 6.4

arising from the fact that L does not change the numerical values of the coordinates

(xa ) and commutates with a/aya since the (ya) values are constants all along the

.length of each world line; we thus obtain:

P(CU^,...""^ 	 ^^;+►,.»,.",	 •x"	 det-1 (x°`	 '	 --6.5
o	 i	 .µ► 	 . K" a .	 ^-

(b) Let us bear in mind the second hypothesis (ii) concerning U, taking the

- 13 -



two-member variational derivative of Eq. (6.2) in relation to the metric 9016
we arrive at:

s/soa^V7i...Y
^ 	 S/SY^v(Uk ... p,

)XY ... ,YY^	 X4 d^t^i k^.o.	 .p .µ .v	 ,,,)•	 6.6

where we have introduced this notation:

	

s/ob'^3(j1Y.-.r") = P(8/Sgap(LJn...Y^))• 	 6.7

(c) Finally, by virtue of the hypotheses (i) and (ii), we have identically:

^/7 iY«•Ye^
	 SISYµ^( 

^,r,».Y")^Yµ^•	 6.8

Bringing together the three results, (a, b, c) set forth we obtain the final

result sought:

p(£Urw•7°) ^ Slsb
a9(UY.•»Y^)^^ap^ , ^	 6.9

bearing in mind:

6.10

U is therefore equivalent,
0

the hypothesis that U depends

The initial structure hypothesis concerning

from the point of view of the variation of U, to

only on the dynamic variables goff

f

k++

U U(8^p)•	
6.11

Let us summarize these results in the following lemma, which will be very

useful:

LEMMA. Let Ube a countervariant tensor density of space (weight + . 1) and

of the arbitrary order n, and let U be the Lagrangian component of U:
0

J
ar•'0^e _ uK."µ

^.Y01 M ... xa^ µ^ CT^t-1 ^X^.plr	 U41~ 7"u,,, 0.

16Cf. Appendix I.
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The two following hypotheses are equivalent from the variational point of

view:

1. U depends only on the Langrangian metric:
O

•	 2. U is a function of the space component of the metric gas.

U = U(gaa)

which means, likewise, that the variation rate of U along a world line is char-

acterized by the relation:

P(CU) = wa aaCoa3•

7. Dynamic Representation of a Material Medium in V 	 \P	 4
In this paragraph we are going to set forth the characteristics of`the

representation of the state of a continuous medium. 	 1

We propose the hypothesis, which is fundamental later on in this study,

that the structural properties of the medium are entirely deductible from the

known quantity of the energy density L attached to the unit-volume of this medium;

it is assumed that this quantity meets the following conditions:

(i) L is a scalar density

(ii) L is a function of the C 0-C2 class of the variables of the state of

the medium.

For subsequent developments it will suffice to consider functions of the

type:.

•.

(a) Having presented this, let us apply to the total Lagrangian of'general

relativity, field + matter, a variation principle:

S^(R -E- 2L)d4x'= 0 ;	 7.2

is -



we arrive at:

(a) `Einstein's gravitational field equations:

T.A.	 2.5

(S) The equations of state of the medium, by definition of the pulse-energy

density Tas:

7.3

(y) The equations of conservation of T ao as condequences of the invariance

of L in the group of general transformations of coordinates:

(b) The postulated structure (7.1) of L ensures, by virtue of the invariance

of this quantity under the group of transformations of coordinates, the validity

of the identities:

SL/Sg^:^(^)0^3 ^- SL/Sx^`.µC()x°^.µ aa(L;^) = 00 .^ 7.4

where is a field of arbitrary vectors of V 4 ; from this arbitrary characteristic

it follows that the terms of the first member of (7.4) which are factors of

and the terms which are the first derivatives of said vector can be cancelled

separately; we are thus led to the group of identities17:

p-rL = 0.	 7.5-a

. ?4
7.5-b.

Syr o) .0SL/Sxy. A = 0,	
7.5-c

17E.""N6ether {I9l8) ; Cf. A. Trautman (1963)
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where the marks ( ) and ( ] designate the symmetrization and antispr.metrizarion

of the sub- and superscripts; Tas designates the pulse-energy density (2.7),

and t" the canonical pulse energy density:

In conclusion, the dynamic representation of a continuous medium in relativity,

which is deduced from the known quantity of the energy density of the medium L,

, is obtained from the 10 equations of state (7.3); the invariance properties of L

are set forth, bearing , , in mind, the hypothesis of the particular structure (7.1),

from the group of NoUther's identities (7.5).

These results will be applied to the specific study of the characterization

of'the structure of elastic-type media.

Remarks. In the Contemplated formalism, the quantity which is naturally
attached to the description of pulse-energy of the contemplated continuous medium

is the pulse-energy density T o$ , i.e. ; a symmetric countervariant tensorial density

of the second order, to which the pulse tensor-energy Taal , corresponds.

8. Structure of Elastic Continuous Media.

As in every theory of phenomenological origin, we must distinguish between

the different types of energy associated with the properties of the material

medium under consideration.

An elastic-continuous medium is characterized by the energy density:

La=m+B.
	 8.1

were the scalar density m designates the density of the mass of conservation,

and the scalar density E the elastic energy density which characterizes the action

of constraint forces, and identical in the case under consideration to the internal

energy density of the medium. Densities m and E are each supposed to satisfy the

hypotheses (i) and (ii) of paragraph 7.

(a-a). Let us designate with m the Lagrangisn component of m; the conser-
0

vation quality of m is ensured by the relation.

WZ'Y*m a 0,
	 8.2

O
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which means, by integration, and by referring to a natural frame of reference of

local coordinates (cf. 6.2):

(S) By virtue of (6.5) the initial Eq. (8.2) is written in this frame of

reference.

ZlI: a 0.	
8.4

(Y) The canonical pulse-energy density (7.6) associated with m is written

(18)

«(m) = mu ,uk	 8.5

This is the pulse-energy density associated with a free particle.

(b-a);Let us propose a structural hypothesis on E adapted to the elastic

character of the medium under consideration, expanding in the relativistic case

the Cauchy-Green hypothesis of the classical theory of elasticity:

Definition. The internal energy density associated with an adiabatic

elastic medium in general relativity is of the type:

From the study of the Noether identities (7.5) we shall determine the form

of the function E (8.6'). Let us say first that these identities are met indepen-

dently by m as a result of Eq. (8.5) 18 , so that we merely require that they also

be independently met by E; this will actually be so if the follo^ing relations

are also met1^:

SE/axy.vxt^•ag°jY = 0.	 8.7—a

^sYSEJSxY ,µ = 0.

28V.1894 = bilj.µSE/Szr. '+' F-941

18Cf. Appendix I.
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ICE 8.12

T4 (m ; E)ual"a + 28E/80-4.

-'19 -

bearing in mind:

	

1 °(E) _ ^,Y,a3 . ^, SE=/SxY. w + ESQ.
	 8.8

A sufficient condition for these conditions (8.7) to be likewise is that

the Lagrangian component E of E be of the typele:
O

E E(YNv)•
	

8.9

By accepting this condition, we can express it with the following equivalent

form (cf. par. 6):

Proposition. The elastic density energy associated with an isothermal and

.adiabatic elastic medium in general relativity is of the type:

'^ E(8w'^)• 8.10

(^) Bearing in mind (6.2, 6.6) the hypothesis (8.9) means that the canonical

density (8.8) associated with E is written . under the form of18:

	

t°3(E) = 2SEjSg^g + Euaup.
	 8.11	 r

(y) Energy density E of the type (8.10) duly meets all the conditions for

the application of the lemma of paragraph 6; we thus obtain directly, with the

aid of Eq. (6.9), the equation which expresses the value of the variation rate

of the elastic energy density at the time of the variation of the medium:

(c). Let us bring together the results (8.5, 8.11), bearing in mind the

identity between pulse-energy and canonical density; we thus obtain the equations

of state which express the form of pulse-energy associated with an elastic con-

tinuous medium:



(a) 
Taa is of the normal type; the constraint density associated with the

medium is defined with the aid of six equations of state:

8.14

in which the integrability conditions are written:

SjSSYa6a5	 S j Sga^eYa.	 8.15

O. The density of mass p is identical to the energy density associated with

the medium.

8.16

(y) The eigen vector, oriented in time, of T 0 is identical to the world

velocity vector associated with the elastic medium:

• ,	 it Mz zxa/ j. 8.17

Let us summarize the results:

Proposition. The structure of an elastic medium, which is assumed to be

isothermal and adiabatic, is represented in general relativity by a pulse-energy

density Tus which meets the following conditions:

(i). T° 8 ' is of the normal type:

T4 puaO — 623,	 uaua 1,	 64US = 0.	 8.18

(ii). Its eigen vector, oriented in time, is ii rtical to the world velocity

vector of the medium.

(iii). The associated eigen value, i.e., the density of mass is identical

to the energy density of the medium.

(iv). The space component of T 	 identified with the constraint densities

0as of the elastic medium; 6a8 is determined from the elastic energy density E

with the aid of six equations of state:



1

F

and must satisfy the integrability conditions of these equations:

glazya©•3 
S/SzoOYa.

B. Representation of the Variation of States of Elastic Media.

Taking as a base the representation of states of an elastic medium established

in the preceding section, we propose to set forth the representation of the vari-

ation of states of the medium in accordance with the assumed principles of

general relativity; we shall make a special effort:

(i). To introduce the concept of internal energy in a form adapted to the

point of view of the variation of states, which will not introduce the mass of

conservation of the medium, but which reintroduces the Newtonian concept of mass

already abandoned by the special theory of relativity;

(ii). To establish the form of linking equations of the medium which des-

cribing the variation of states of said medium and are compatible with the

known quant.ty of the internal energy density.

9. The Concept of Rate of Change of Internal Energy.

Let us consider the equations of conservation (2.7) of the pulse-energy

density (8.18) attached to a medium of the elastic type under consideration;

these equations are equivalent to the group:

j' Zp -- 1/2©ts	 9.1-a

^pu« == P(V6Go)#	
9.1-b

where it a designates the acceleration vector attached to the medium:

` ua Cu. = u3 V pus'	 0.	 9.2

These equations express locally the conservation of total energy and pulses

of the elastic medium.
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9.3

Let us refer now to certain results established in the preceding paragraph;

first of all, by virtue of (8.4, 8.16) we have:

CE = CP

furthermore, according to C8. 12, 8.14) the rate of change of E is characterized by

the equation:

CE = - 1/204:7Z,3.	 \	 9.4

One of the three equations (9.1-a), (9.3) or (9.4) is rigorously deduced from

the other tt,°o; we can therefore equally define the rate of change of the elastic

energy E by Eqs. (9.3) or (9.4). The expression (9.3), which links the variations

of two quantities, appears to us to be the only way of introducing the concept

of internal energy in relativity under a form accessible to physical measurements;

this definition does not introduce the theoretical concept of a mass of conser-

vation of the medium directly; it concerns continuous media of any type whatso-

ever and expresses the relativistic principle^of the unification of mass and

energy according to the point of view of the variations of state.

These arguments lead us to define the concept of rate of change of the

internal energy in general relativity as follows:

Definition.' The rate of change of the internal energy density associated

with a medium in general relativity is identical to the rate of change of the

mass density of said medium:

ti CE 
rp.

10. Determination of the Correlating Equations of the Elastic Medium.

According to the ideas developed above we propose to deduce from the

representation of states of an elastic ,,edium the representation of the variation

of states of the medium compatible with general relativity.

The correlating equations which provides the description of the variation

of states will be obtained by direct application of the lemma of paragraph 6 to

-the constraint density equations (&.14), as this quantity duly meets the conditions

of application of this lemma. By changing two members of Eq. (8.14) we thus obtain

the equations:
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p(CO ^)	 1^2C°^Yar„	 10.1a	
o Yd^

where we have made:

Ca3Ya = 2S /8g'00%3	 483E/S9'(38ba3•	 10.2

The contravariant density with four superscripts 
a$Y6 

characterizes the

structural properties of the elastic medium; by analogy with the classical theory

of elasticity, we give this quantity the name of density of modulus of elasticity

CaSY6 is subject, by definition, to the following conditions:

(i). It is a space tensor density.

(ii). It depends on the state variables has:	 ^_...—

;. C4Ya = C«3Ya(8w^)•	 10.3

(iii). It is subject to the conditions of symmetry derived, on the one hand,

from its definition (10.2) and, on the other, from the integrability conditions

(8.15) of the equations of state (8.14) :

__..._ . _.... 	
10.4 14

COW C( xys)v

Ca3Y$ = CYa4,
10.4-b

(iv). Finally, it meets all the requirements of the differential conditions:

	

S/8g„Ca^Ya = 8I8SYdL'a3oo _

	
10.5

ensuring the integrability of (10.1).

By virtue of i and(iii) C aSYa has N N + 1)/2 21 independent components

of the type (N = n(n + 1)/2, n = 3), which agrees with the results of the classical

theory of elasticity; but 
CaSYB 

also agrees with the (N - 1) 3 + 3^'N - 1))/2 = 70

differential conditions (iv) which leaves 56 supplementary conditio n s of the -same
aSY6

type of phenomenological. origin which must be imposed on C	 in ord r to \deter-

mine this quantity ;perfectly.
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Let us bring together these results in the following proposition:

Proposition,. The correlating equations of elastic media in general relativity

assume the form:

p(CO^3) .— 1/2Ca^Ya^gYa

where tliu density of the modulus of elasticity
. C"aY6

 meets the following conditions:

(i). It is a space tensor density.

(ii). It is a C - C 2 p.m. type function of the variations of state g S.

(iii). It has the symmetries compatible with the existence of an elastic

energy density:

Ca0Ya C(QUYa)f 	, C43Ya s CYa013.

(iv). It meets the conditions which ensure the integrability of the

correlating equations:
i	 K

.. S^gg^CapYa = s/sb'1raCa9Do.

C. The Problem of ElAsticity in General Relativity

We now propose to outline the problem of linking the gravitational field

to its sources according to the point of view of the variation of states adopted,

in this work.

11. Equations of the Variation of States

We are primarily interested in the field equations; ?., giving assumed that only

the variations of the conditions of state have physical significance, we must

assume that the Einstein equations.play the role of initial conditions, and the

determination of the field itself must introduce the variation'of these equations.

To this end let us take the Lie derivative in the two-member vector field u

of the field equations (2.5) taking into account the normal character of Tas;

let us immediately express the variation of constraints from the second member of

the correlating equations (10.1); we thus obtain the sought form of the equation

of variation of states:

- 24 -



^C^/ nGa3, c ^^uail3 -t- Zi!(a^DY)uT _ CaTSa.
'	 •;	 11.1

We shall not express here the form of the first member of (11.1).

12. Various Equations of Conservation.

The'second member of the correlating equations (10.1) of the elastic media

must meet the requirements of a group of three conditions which we now propose

to establish.

For this purpose, we start with the following identities 19 , applied to

the constraint density gas:

V AC64 — C V G04 — O3TLI ,,	 12.1

where the Ta designate the Christoffel symbols.

Due to the spatial character of gas , only the components p (CI'aT)and : (ua r T)

of Cr-T  intervene in the calculation of (12.1); we shall calculate these two
quantities as a function of the acceleration vector u  (9.2), of the tensor

representing the rats of change of deformations E a$ (5.9) and of the tensor
representing the rate of change of the vortices.

f2a,3 = u^^ca\u^) ) = PM-UP),	 12.2

where the explicit components are given by the identity:

O auG = Egip + C1,4 + uaua . '	 12.3
_..	 -

Z.t == plat) andpt = P(Vt)iesignate the operations of partial and covariant space
derivative acting on t.he.geometric quantities t eV 4.

From the well known identity:

tI`a = 1/2s«a(V pC^aT +	 12.4

we arrive at the results:

.19Cf. A. Lichnerowicz (1958), Chapter II.
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P (CI' 3) ' 0=El.+ p 3Ea — p YE„ a + 2u(.QA)r + uYE.3•	 12.5 - a

P(uYCI`a ) _ — tE,3 --uQu3 + 0(au3) •
12.5-b

By inserting these expressions in the second member of (12.1) we obtain a

group of three identities equivalent to (12.1); we now have to'express in the

first member of these new identities the term ?(CO P) from its value deduced

from the correlating equations (10.1) in order to arrive at the group of three

desired conditions of compatibility of (10.1); these various equations of con-

servation are expressed as:

	

...	 _	
12.6

P(G3(C°aYa ra)) P(^Op^a3 — 03Y da(E3gr + cYg3 ”' EYab'^a))

where, by definition:

Op^a3 
PCsaY^a^ir)^ etc.

13. Equations of Variation of the Tensors Representing the Rate of Change

of Deformations and Vortices.	 \

We propose to establish a last group of equations describing the variation

of the change of deformations and vorticeF of the continuous media under on-

sideration which are necessary for the complete formulation of the proble of

elasticity in general relativity.

To this end we start from the group of identities:

,

ZE4 = V6&113) -- uau3 +. (El + M (F—AY + naY)' + u'rusR^Y3a,...

	
13.1- a

	

t^^ = O cauaJ•	13,1-b

When the density of constraints B as is known through integration of the

correlating equations (10.1) it is possible to deduce from the equations of
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conservation (9.1) the value of the acceleration vector u  as a function of the

density of mass, of the metric and of its principal derivatives; when this value

of u is inserted in the second members of the identities (13.1) we obtain the
a

desired equations deducing the variation of deformations and vortices of the

continuous medium under consideration20 21

14. The Problems of Elasticity in General Relativity

The combination of results obtained causes us to present the problem of the

determination of the gravitational field created by continuous elastic medium of

the type under consideration in the following manner21.

Proposition:

The 10 equations of the variation of fields,

The 4 equations of conservation of the pulse-energy density (9.1),

The 6 correlating equations (10.1),

The 3 equations of variations of conservation (12.6),

--The 9 equations of variation of the tensors representing the rates of

change of deformations and vortices,

form a group of 32 equations which should allow us to determine the 32 quantities

consisting of:

The 10 gravitational potentials,

The 3 independent components of the world velocity vector, bearing in mind

the unitary character of this vector,

The density of mass,

The 6 components of the constraint density,

The 3 components of the acceleration vector,

The 9 independent components of the tensors representing the rate of change

of deformations and vortices.

20The equations of variation of the vortices (J.-F. Bennoun (1964) constitute the
rr^.s lativistic extension of Helmholtz's equations in classical hydrodynamics;
t'r^ase equations especially comprise, as specific cases, the analogous equations
established by Y. Bruhat (1958) in the case of perfect fluids and of perfect
fluids interacting with a Maxwell electromagnetic field, and by A. Lichnerowicz
(1964-1965) in the case of perfect adiabatic fluids.

21C-c. J.-F. Bennoun (1964); we must approach the point of view considered here
from-the one adopted by A. Lichnerowicz (1964-1965) when he established the
theorems of the existence of equations of perfect adiabatic fluids.
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Chapter 111. Representation of Thermodynamic Continuous Media

15. Introduction

The p..enomenological macroscopic thermodynamics established on a purely

axiomatic basis may be developed coherently and autonomously, even if its profound

significance can be attained only by a statistical interpretation of the basic

concepts.

This theory assumes22:

(i) The conservation of the total energy of the system.

(ii) The strictly non-decreasing character of total entropy at the time of

variation of the system under consideration.

It is this axiomatic character of the theory which enables it to be success-

fully absorbed by the special theory of relativity and, as we shall see, to be

integrated into the general theory of relativity, this synthesis being at the

origin of a mutual enrichment of the two theories.

We shall attempt to set a basis for the study of relativistic thermodynamics

through an anlysis of the ideas presented in prior works carried out in this

field23.

a. I* is necessary at first to determine the structure of the pulse-energy

density associated with a thermodynamic continuous medium; such a quantity must

include:

(i) A purely temporal term associated with the mass, i.e., to the energy

of the system under consideration.

22We are not considering here the zero principle, which introduces the concept
of temperature by means of the postulate of its identity among the different
parts of a system in thermodynamic equilibrium (Fowler (1931), cited by
A. Sommerfeld (1956)), or the third principle (Nernst's Law (1906)), which
defined an absolute scale for measuring entropy, since these postulates do not
have an immediate significance in the assumed interpretation of the theory of
general relativity.

23The early studies related to the formulation of relativistic thermodynamics
(Planck (1907, 1908), Einstein (1907)) concern the study of the variance of
certain thermodynamic quantities in the Lorentz group. Investigation of an
axiomatic formulation of the theory appears with Tolman who became interested
in the study of the second principle but limited himself to the study of
stationary world models in thermodynamic equilibrium. A clear formulation of
the two principles is due to Eckert (1940), within the special theory of vela
tivity. The later works of Pham Mau Quan (1954), then Stuelckelberg (1962) and
'Ehlers (1961), tending to find a thermodynamics within the framework theory of
general relativity, are based on the principles initially postulated by Eckert.
r1lore recently, Lichnerowicz (1964-1965) established a series of existence theorems
'or the equations describing the perfect adiabatic fluids originally studied by
Van Dantzig (1939-1940) then by A. H. Taub (1948).
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r- 	 heat, f low
a^ <',+	 ".oral r"; atTt typ e r 

^ ..°r; E: C+ t•3

within the medium .

U11) A 
purely spatial term describing; the action of tine Gerstrair^ts cf

the continuous medium ujkder con^,idvration.

Those .—cquiremonts lead to they adoption of the Eckart-type (19 40) of l ul s^^ _

energy density.

..	 _	 .	 .__.....	 .

Ta
^ ._.. 

pu'u -- 2u(Mg3) — 0 23,	 ua l = J,	 0a3ua 0. ,	 `\	 15.1

Contrary to the extremely clear physical situation presented by the, , initial

study of elastic media, the pulse-energy density T"is no longer of the ni-mal

type; this situation involves the following consequence: Tai is formed b" 13

quantities constituted by the three independent components of the world velocity

vector ua , the density of mass (energy) p, the 3 components of the density o^

heat flow q  and the 6 independent components of the constraint density 0"

now Tai contains only 10 independent components; it follows that these 13

quantities must necessarily be linked by a group of . 3 relations. The investigation

of these 3 equations constitutes one of the . important problems of relativistic

thermodynamics, closely linked to the relativistic formulation of the second

principle.

b. From the fact of the unification of the concepts of pule and energy in

relativity we must think that the most normal relativistic expansion of the first

principle of thermodynamics must consist of 4 equations of the total conservation

of pulse-energy; we know that said equations are the immediate consequence of

the field equations in general relativity; in this respect, we can say that theq	 g	 Y^	 P	 ^	 Y

first principle of the relativistic thermodynamics is contained in the basic

hypotheses of Einstein's theory of gravitation.

Let us-consider the temporal portion of these equations:P	 P	 q
0

Zp = Raga — gaua .... 6^3Ea3	15.2

which describe the total conservation of energy during the variation of the con- 	 I

inuous medium, and which is therefore the analogue, in a rigorous sense, of the

first principle of classical thermodynamics; the second member of this equation,

in Its contribution to the rate of change of the heat energy, reveals the
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existence of a term linked to the acceleration of the medium, term which does

not ($isappear unless the heat flow vector is orthogonal to the accelerating

field. The existence of this term, with a purely relativistic origin, is of

particular importance as we shall see in a moment.

e. Let T be the scalar field of the material system under consideration,

and S the entropy density associated therewith. The second principle of the

relativistic thermodynamics of Eckart et al assumes that:

(i) A vector density is with the total entropy of the system:

S« = SO — T-10.	 15.3

(ii) The flux of the total entropy density along the edge of the system

under consideration is rigorously non-decreasing during the variation of said

system; this condition is expressed locally by the inequality:

V"S" = CS — V"(T-'q") a 0.
	

15.4

A glance at (15.4) brings to light an essential difficulty overcome by this

interpretation of the second principle: The first member of the inequality

Eq. (15.4), which is characteristic of the rate of change of total entropy does
6

	

	
not contain a term Uaked to the contribution of the acceleration of the medium

in the variation of the heat flux; now, we must logically rely on the existence

of such a term, by virtue of the interpretation of the first principle. A con-

tradiction thus appears at the very level of the formation of the basic concepts

of relativistic thermodynamics which should compel us to reflect anew on the

subject of the interpretation of the second principle in relativity.

The statement of Fourier's relativistic law obtained, under convenient

hypotheses, as a consequence of the two principles, sheds light on one of the

aspects of this difficulty: When we adopt the formulation Eq. (15.4) of the

second principle, we are led to a phenomenological law of heat conduction of the

type (Eckart, Stuelckelberg, Ehlers):

1S.S
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where Xa^ is a tensor densit y, of the second order. svmnetrical and defined a-

positive; this law is distinguished from Fourier's classical law by the appearance

of a supplementary term linked to the acceleration of the medium, a term whose:

form leads to the following difficulty: During the study of Cauchy's problem

the postulated continuity of q O , while a condition of state, involves the dis-

appearance of transverse wave fronts, leaving only the longitudinal waves which

is in disagreement with the results of the theory of continuous media.

d. The investigation of the equations of state of the medium was undertaken

by Pham Mau Quan (1554) in the particular case of perfect fluids. In addition

to an equation of state among mass, pressure and temperature, this author proposes

equation of heat conduction, the examination of which calls for certain observations:

W Like the statement Eq. (15.4) of the second principle, this law does

not take into account the contributioni to the rate of change of the heat energy

made by the term linked to the acceleration of matter.

(ii) The thermodynamic quantities are defined therein in relation to the

:Hass unit of the mediuR'e, and the volume changes are represented with the aid of

mass changes; now, these definitions which are admissible in the classical

thermodynamics as a result of the direct link,between mass and volume resulting

from the,character of conservation of the mass:

V	 -

' Cp=O, 15.5

must be abandoned in relativity as a result of the principle of unification of

energy, since all forms of energy c-antribute to the variation mass:

	

tp#0.	 15.7

In this respect, let us say that a number of authors define the thermodynamic

quantities relative tothe unit of conservation of mass of the medium; now,'this

procedure introduces an artificial complication into the theory, since such a

concept, a survival from Newtonian mechanics, has no further definite significance

within the relativistic mechanics; as previously shown, only the variation of the

mass (energy) has meaning.

This brief analysis of the present state of thermodynamics in relativity

dicta`.es the road to follow. After we made an effort to establish a statement of
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the two principles of thermodynamics rigorously compatible with relativistic

ideas, we shall approach the problem of the representation of states of a

thermodynamic continuous medium to deduce therefrom a description of the variation

of states of said medium adapted to the accepted interpretation of the general

theory of relativity.

A. The Two Principles of Relativistic Thermodynamics

In this secion we propose to establish a special formulation of the two

principles of thermodynamics compatible with relativity, introducing, on the

one hand,' a general postulate of unification of mass and energy and, on the

other, appealing to a suitable definition of the concept of total entropy of a

thermodynamic system.

16. The First Principle of a Relativistic Thermodynamics

Ile always consider a n domain of the V  graph of general relativity subjected

to specified conditions of differentiability, a domain created by a family of

world lined oriented in time, and trajectories of the field of world velocity

vectors:

u' = dxa f ds,	 g43uau`^ 1 •	
16.1

The geometrical structure of n is determined with the aid of the syst.;m of

internal field equations:

V--gG-0 = Tai, r	 2.5

where, for reasons which have been analyzed in the preceding paragraph, the

pulse-energy density 
Taa 

is of the type24:

T'4 Fuau^ — 2ucy) — G a.	 uxga = 0,	
ua®aa = 0,	 15. 1

where p designates the density of mass (energy) of the system under consideration

qa the heat flow density and b as the constraint density. Contrary to the results

of the dynamic study of elastic media made in the preceding paragraph, the form

24IVe recall that thq.- quantities (p, q=, ©-5, s) which characterize respectively mass
(energy) per unit of volume medium, the heat flow, the coiistraints operating on
the surface of a unit of volume element, and the specific entropy of the medium
attached to the unit ^of volume of said mF^^.15um are of weight tensor densities + 1.
In return, the quantities (F.3, 7) which characteri,,, ,,, the deformation and the
temperature of the medium are tensors.
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of T t71 constitutes a postulate which is independent of the theory of thermodynamic

continuous media.

Let us clarify the form of these equations of conservation of Tas:

ua0 3.r,3 
Cp — V,qa + $°ua -E- I/2Ga3^Sa3 :.^ 0.

	 16.2-a

P( 0 3T:) = Pua — eq. T 2q3 a;, 	 0.
16.2-b

These equations describe the total conservation of pulse - energy associated

with the medium during its variation; the characterization of each of the terms

which intervene is immediate; their examination, however, calls for certain comments:

(i) The heat flow density 4 behaves like a momentum density; this is

especially clear in the examination of the 3 equations of the total conservation

of pulse (16.2-b), where this quantity intervenes, on the one hand, due to its

variation and, on the other, through a term with a purely relativistic origin,

a term linked to the rotation of the medium and formally analogous to a Coriolis

acceleration.

(ii) In the equation of conservation of energy Eq. (16.2-a) the contribution

to the rate of change of the heat energy introduces, in addition to a divergence

linked to the variation of the heat flux and rigorously analogous to the corres-

ponding term in the classical theory, a term which is purely relativistic in

origin linked to the acceleration of matter u 
These 4 equations of conservation of pulse rate-energy appear'to us to be

the foundation of the first principle of relativistic thermodynamics\which thus

becomes the rigorous consequence of the field equations; the tensorial form of

this principle, which had not been set by the classical thermodynamics Imes

from the unification of the concept of energy in relativity.

For reasons which will soon be clear, we shall not, hcwever, make us of the

scalar equation of conservation of energy Eq. (16.2-a) which constitutes the

interpretation in the strict sense of the first principle in relativity. Let us

introduce the concept of internal energy associated with the continuous medium

considered with the aid of the general definition established following the con-

siderations in paragraph 9:
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CE a= Ep.

Thus presented, with:

16.3

—the; postulate Eq. (16.3) of unification of mass and energy,

the equation of conservation of total energy Fq. (16.2-a),

we justify the introduction of the following proposition, which constitutes the

special formulation of the first principle of relativistic thermodynamics.

Proposition. The rate of change of the internal energy density associated

with a thermodynamic continuous medium is equal to the sum of the contributions

of the rate of change of the heat energy, and of the rate of change of the energy

of constraint forces acting within the medium under consideration:

CE page	 1/284C8ao• 16:4

17. The Second Principle of Relativistic Thermodynamics.

In the introduction to this chapter we were lead to assume that the.formulation

of the second Eckart-Pharr Mau Quan principle is not adapted to relativistic con-

c;pts because it does no' take into account the term linked to the acceleration

of the medium, a term whose existence is nevertheless strongly suggested by the

relativistic interpretation of the ..first principle, in the expression of the rate

of change of total entropy.

Furthermore, we have seen that the univoqual definition of pulse rate-energy,

which is no ,Longer of the normal type, requires the introduction of 3 unknown

supplementary relations.

We have been led to believe that the solution of the indicated difficulties

may be found in a tensorial formulation of the-second principle, substituting

for the initial vector formulation; such a formulation must include, in addition

to an inequality of the scalar type which explicitly introduces the missing term

in the initial formulation of the second principle, three new relations which

must be in the origin of the 3 equations missing from the complete statement of

the p-.lblem of the determination of the structure of the thermodynamic—continuous

mQdia. The investigation of a tensorial formulation of the second principle may

be greatly aided by using an analogy with the formulation of the first principle,

e,v^n though it is evident that we cannot provide immediate justification for such

art analogy.-
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The dynamics of the continuous media in general relativity is deduced from

the following hypotheses:

(i) The pulse-energy associated with a material medium is represented by

a symmetric contravariant tensor density of the second order Tas.

(ii) The divergence of T as described the rate of change of pulse-total

energy; this quantity of conservation by virtue of the field equations.

In the same manner, we assume that:

(i) A sy►Mmetric contravariant tensor density of the second order S-- is

associated with the characteristic total entropy of a material system.

(ii) The divergence of the total entropy density S as describes the rate of

change of the total entropy during the variation of the medium under consideration.

We can,	 set forth the structure of Sa$ in the case of thermodynamic

continuous mciia; such a quantity must, in effect, include in said case:

(i) A rarely temporal term which characterizes the entropy density S

associated with the system under consideration; S is a scalar density, assumed

to be rigorously non-negative24.

(ii) A momentum type of term which characterizes-the appearance of the

entropy flow density T',at, due to the existence of the heat density qa ; the

temperature field T of the medium is a field of rigorously non-negative scalars.

It follows from these requirements, that the total entropy density Saa

characteristic of the thermodynamic continuous medium necessarily assumes the form:

S0o = SUMUO -- 2'i; Ida'O.	 17.1'

The rage of change of the total entropy density is a vector quantity whose

• time and space components are explicitly set forth by the relations:

17.2-a

ua V 4SaA = CS — pa(T-1q.) + T-,vua

17.2-b

P(VOS'D = Sua — C(T-'qa)
 i- 2T-'q5C'1-



It is very encouraging to notice that the relation Eq. (17.2-a) leads to the
appearance of the term missing from the initial interpretation Eq. (15.4) of the

second principle, a term characteristic of a contribution to the total entropy

variation due to the acceleration of the medium. The hypothesis adopted thus

causes the disappearance of the difficulty present in the second principle of

Eckart et al; the complete tensor formulation of the second principle requires

the prior interpretation of three new quantities Eq. (17.2-b).

We are therefore limiting ourselves at present to a formulation of the second

principle in the strict sense, i.e., introducing only the scalar density (17.2-a)

which we postulate to be rigorously non-negative:

u.V AS4 CS — V.(T-'ga) + T-tgaua a 0.	 \	 17.3

Summarizing, we have assumed the following fundamental hypotheses:

Proposition. (i) The total entropy associated with a thermodynamic continuous

medium is characterized by the total entropy density:

Sa3 = StOU3 — 2T-'U('%q5).

(ii) The rate of change of the total entropy density during the variation

of the medium is defined by the divergence of Sas:

, fa V ASS e CS — V a(T-1qa) + 2T-1q2 11

.

P(0 3S3) = Sua — C(T-lq.) + 2T-igpf2a.

These hypotheses have led us to the special formulation of the second principle

of relativistic thermodynamics:

Proposition. The temporal portion of the rate of change of the total entropy

associated with a thermodynamic continuous medium is rigorously non-negative_:

CS — V xr- le) 	 > 0.

B. Determination of the Structure of Ta$.

The object of the developments of this section is the deduction of equations

of state of a thermodynamic continuous medium which generalize the equations

A
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established previously for the elastic media by means of a hypothesis of simple

structure re garding the free energy dei.sity of the medium.

18. Structure of Thermodynamic Continuous Media

. From the special formulation of the two principles of thermodynamics which

we have just established, and of a suitable hypothesis of the structure of the

continuous medium under consideration, we shall deduce a representation of the

thermodynamic stateL of such a medium.

The fundamental hypothesis is that the structure properties of thermodynamic

continuous media are entirely deducible from the known quantity of the free energy

density (in the Helmholtz sense) associated with such a medium. Let us introduce

this concept in a manner adapted to general relativity: If E designates the

internal energy density associated with the medium, the rate of ' change of the

free energy density F is defined by the ,relation:

CF = C(E -- TS). 	 18.1

a. By extension of the hypotheses concerning the elastic media, we assume

that:

(i) The conditions of state 	 are tensor densities of thr-Co--'-C2

p.m. class.

(ii) These quantities are functions of the independent state variables

According to the initial hypothesis, the ensemble of structure properties

of the medium is deduced from the known quantity of the function F which satisfies

(i) and (ii) .

F(94; 7)-	 18.2

b. From Eq. (16.4) and Eq. (18.1) let us write th,& special formulation of

the first principle:

18.3
Y

1

CF Val — vas —1/20-11CS"3 -' C(TS).
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The second principle under the special form Eq. (17.3) affirms, bearing in

mind Eq. (18.3) that:

-- CF — ST — 1j20 a3Cga5 + q4T- i5j > 0.	 18.4

c. By virtue of the above hypotheses (i) and (ii), and of the known quantify

of the function F Eq. (18.2), the preceding relation (18.4) is written:

(3F/BT S)T — (81F"18ga3 1/20 .3)Cg.3 qaT- Ib7 j > 0.	 18.5

First, let us consider the case of an adiabatic system in thermodynamic

equilibrium; the postulated independence of the state variables 	 means

that the following relations must also be confirmed:

S = — VAT.	 18.6-a

6a^ ^ — 28Fj8ga^.	 18.6-b

They are the equations of state of the thermodynamic continuous medium; these

equations are integrable on condition that:

80418T = 2ESj8g	 18.7-a

S/8gYa0a3 = 8/8g o6Ya,	 18.7-b

Sous not to renounce to a-description of the thermodynamic system when it

undergoes irriversible . variation, we must offer the hyposthesis that this variation

does not depart too far from a reversible-type variation, so that the equations

(18.6) always describe the state of the system under consideration.

Under this condition, according to Eq. (18.6), the second principle Eq. (18.S)

required that:

q&T-IaST a 0.
18.8-

-39-



Remarks. The preceding inequality is particularly satisfied by the equation:

	

qa= X° cZ3T T ^,	
118.9

where the syr:lmetric space tensor density and its definition as positive Xas

characterize the thermal conductivity of the medium; this equation is the^,exact

transposition in relativity of Fourier's classical law (1888) of heat conduction.

Said result, according to the opinion of Pham Mau Quan causes the form Eq. (15.5)

of said law (Eckart, Stuelkelberg, Ehlers) deduced from the formulation of Eckart's

second principle to be abandoned, since it led to the difficulties which have been

pointed out.

d. Bearing in #nd Eq. (18.3) the equations of'state Eq. (18.6) we arrive

at the equation 25.

! US — V,qa + qa1% 0.	 18.10

Let us include this result in the equation of conservation of energy Eq.

(16.2-a); we arrive at:

Z? — T£S 1/20a5c7z4 = 0
	

18.11

from this equation, and bearing in mind the hypotheses of stru,.ture (i) and (ii)

of conditions of state, we deduce the relations:

	

8?/ST =,TSS/ST. ' 	 18.12-a

S?/S3 = TSS/Sga^' — 1/20^^, _	 18.12-b

The group of equations (18.12) is quite integrable by virtue of the.conditions

of integrability Eq. (18.7) of the equations of state Eq. (18.6) thus ensuring

the coherence of the postulates . of relativistic thermodynamics.

We can summarize the ensemble of results obtained.

25The adiabatic fluids (q 	 0) have been studied in the isotropic case, especially
by 'Van Dantzig (1940) , Taub(1948) and Lichnerowicz (1964-196S).
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Propo3ition. The representation of the states of a thermodynamic continuous

medium in general relativity, close to thermodynamic equilibrium, is ensured by

the ensemble of the following relations:

(i) The equations of state of the medium, linking the densities of constraints

and entropy of the medium to the free density energy:

	

S	 &FAT,	 8«^ = — 2SF/8g«^ r

and the conditions of integrability of these equations:

, EO«^jST = 28S/Sg,;;,, 	 ` S/SgYdO'^ = S/Sa«30Y$.

(ii) The equations of state linking the density of mass (energy) of the

medium to the densities of entropy and constraints associated with said medium:

s	 as	 s^ = T as _ 1 4
?=T—	 d .
ST	 ST	 sS«^ 2

(iii) The fundamental inequality , governing the phenomenon of heat conduction

within the medium:

~q«SaT T-1 > 0. .

C. Representation of the Variation of States of the Thermodynamic Continuous

Media.

In this section we propose to deduce the linking equations which ensure the

description of the variation of states of the medium, rigorously compatible with

the principles of general relativity from the preceding purely theoretical des-

cription of the states of a thermodynamic continuous media.

19. Linking Equations of the Thermodynamic Continuous Media

The deduction of the equations ensuring the representation of the variation

of states of a thermodynamic continuous medium from equations of state ^q. (18.6)

is immediate if we note that the conditions for applications of the lemm` in

 6 are properly combined insofar as the entr opy dens ity S and I constraintsparagraph	 P P Y	 PY	 Y



(i) The quantities; CO
k.

the structure properties of

(ii) These quantities

state variables ^^ga^, ^•Y

(iii) By formulation,

^Ya► L

the

are

the

donsity e a$ attached to said medium are concerned, bearing in mind the hypotheses

of the structure of the conditions of state (i) and (ii) set forth in paragraph 18.

Through variation of equations of state Eq. (18.6) we thus arrive at the

group26:

VS 1/2L'a3zi-3 + CT-^ T.	
19.1-a

PP4) 1/2C°IYKgYo + Logo. A -& To
19.1-b

•	 r

K
where, by definition,

C r-='T18S/8T.

L'ap ^ 2TSS/Sga^•.

W4 =s TS/ST04.

C4Ya 2SjSgYS6a3• .

19.2-a

19.2 -b

19.2-;

19.2-d

143, L'a3 t are space tensor densities characterizing

thermodynamic continuous medium.

Co - C p.m. type functions of the independent

densities' 04*0, L14 et L' Wsatisfy the symmetry con-

ditions.

' 26Cf. J. F. Rennoun (1964).
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19.3-a

	

L^•3 = L"(a3),	 19.3-b

	

(ra3Y5 .. C(a3)(YS)•	 19.3-C

(iv) Moreover, they satisfy the following supplementary conditions deduced

from the conditions of integrability Eq. (18.7) of the equations of state Eq. (18.6):

_.

	

L'4 = LA4	
19.4 -a

C4Y3 = CYSa3.	 19.4-b

It follows that the structure properties of the thermodynamic continuous

media are characterized by a group of 28 quantities constituted by the specific
Y

heat density under conditions of rigidity T -1 C, the N = 6 components of the

density of heat deformation L a
 
 Eq. (19.4-a) and the N(N + 1)/2 = 21 components

of the density of modulus of elasticity CaSYd.

(v) Said 28 quantities satis`•y the requirements of a group of differential

conditions which ensure the integrability of the linking equations Eq. (19.10

which are expressed:

T^SJS(T-iLa3) = 2SC/SS^^.
	 19.5-a

TS/STC4y$ = 2sr S^,rSY-°` •
	

19.5-b
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g/^^^oCaaYS ^ S^88YSC4ava,

19.5-c

Those conditions number (N + N(N +1)/2 + (N - 1) 3/2 ± 3(,y -1)/2 = 97, which

ratans that there are still 99 conditions of the same type to be established by

a phenomenological process so that the structure of the continuous medium under

consideration may be perfectly determined.

The representation' of the variation of states of a.thermodynamic continuous

medium is thus completed. We shall now assemble the necessary elements for such

a description under the form of the following statement.

Proposition. The linking equations of the thermodynamic continuous media

in general relativity, which link the rates of change of the entropy and constraints

densities to the rates of change of temperature and deformation of the medium

under consideration close to thermodynamic equilibrium, assume the form:

i
TCS — 1/2L413C7za 3 + CT-' T,	 P(CO23) = 1 /2';^aaYaCgys + LaAT-, T''

where the structure coefficients of the medium, constituted by the specific heat

density under conditions of rigidi`v T-1 C, the deformation heat density Lai,

and the density of modulus of elasticity C aaYa , are subjected to the follov.,ing

conditions:

	

They	
O	 2

(i) They are,space tensor densities, C - C p.m, functions of the state^

	

_ 	
\variables (gs3,

(ii) These quantities confirm the symmetry properties which ensure the

existence of a free energy density:

Lai L(49),	 C4,18 a C45)(YO	 013YS = CY54.

(iii) They meet the conditions which ensure the integrability of the

linking equations.

T-1S/8TU"LO) = 23C/8g. 3 ,	 TS/aTCapys = 2S/SgoL'X',

_._	
. _ _ s/Sg^Ca3Y8 — S/SgYSCa'^Pa,

	 _ , ~^

Chapter IV. Study of the Characteristic Variations

The following developments concern the study of the characteristic variations

of the equations of a thermodynamic continuous medium. By means of a general

continuity hypothesis related to the variation of total entropy of the medium,
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u4 V ATa3 

	 + q°1!a T 1120a3rg.3 = 0.

r(V AT.)	 zq,, + 2qA C,1 — P(v Aoa) a 0.
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a h)q)othesis which clarifies one of the aspects of the second principle, we propose

to set forth the types of characteristic variations of the rroblem, which will

lead to a study of the phenomenon of propagation of thermodynamic wave fronts.

20. Position of the Problem.

We have just established an ensemble of equations adapted to the description

of thermodynamic continuous media in general relativity; however, by reason of

the present lack of interpretation of three of the four quantities which must

intervene in the tensorial for=mulation of the second principle, we do not know

the form of the four relations which must complete the proposed group of equations.

It is not therefore possible to deal here with Cauchy's problem, i.e., to approach

the problem of the search of an effective local solution to these equations.

In return, however, we shall be ab:e fully to characterize the characteristic

variations of these equations; this situation becomes possible with the aid of a

hypothesis of continuity related to the entropy variation in the course of the

variation of the medium under consideration, a hypothesis which interprets in the

rain one of the aspects of the second principle.

We thus consider the following ensemble of relations as they have been set

forth through out the study of the thermodynamic continuous media in relativity,

i.e.:

where

(i) The gravitational field equations:

^Ga3 Ta3#

TO _aleO — WY) — 0.3	 SlaCja '_' Q► 21a0a3 = 0 ' u tta xs 1.•	 a

2.S

1S.1

(ii) The 4 pulse rate-energy conservation equations:



(iii) The 7 linking equations, which ensure the descripti.i of the variation

of states of the thermodynamic continuous media:

19.1-a
TCS — 1/2LOC9.33 + CT- 1 T.

.

P(COa3), = 1/2013YSC47 Ya L415T-1	
19.1-b

(iv) 4 rel.7tions, unknown at present, which must come from the second

principle of thermodynamics and introduce the rate of change of total entropy

density:

u^ V aso CS — V S(T- lqa) + T-IVUS. 	 17.2-a

P(V 4Sa) = SLO ` C -iqa) + 21`'gA CII.	 17.2-b

We present the following differentiability conditions relating to the

ensemble of quantities involved in the problem-presented:

(i) The gravitation potentials gas are of the C 1 - C2 p.m. type.

(ii) The condi ,6Aons of state constituted by the pulse rate-energy Tas,

the total entropy dens., ty Sas , and the structure coefficients of the continuous

medium under consideration CasY6, LYS and C, are assumed to be of the C o -,C2

P.M. type.

(iii) The rate of change of the total entropy density VAS"3, is assumed to

be of the C0 type.

Hypotheses (i) and (ii), to which we refer, have their origin 4.n an analogy

with the Newtonian theory of gravitation and classical dynamics.

Hypothesis (iii) is fundamental; it is the hypothesis which enables us com-

pletely to solve the problem of the search for the characteristic variations of

the equations of the thermodynamic continuous media. We believe that this hypothesis

must in the main be a direct consequence of the second principle of relativistic



thczmodynamics; in the absence of a complete formulation of the second principle,

we	 it as an independent postulate of the theory under consideration.

^1L ensemble of these hypotheses leads us to present the pro';em in the

following mannor 2 7 29.

(i) To the initial hypersurfa,ce (S) we ascribe the value of the set of

values constituted by:

The 10 gravitational potentials g aa and their I n derivatives normal to (S),

;The 15 conditions of state (p, 	 023, T) S),

The 28 structure coefficients of the medium (C°'' YS, L"31 C),^

which satisfy the conditions of integrability Eq. (19.5) of the linking equations.

(ii) Having presented this, we seek to determine the behavior of the

ensemble of the 25 quantities	 P. qa, 0z3, S, T) in the vicinity of the initial

hypers!irface (S) with the aid of the 25 relations (i) to (iv) which describe the

thermodynamic continuous media.

We are going to show that the problem thus presented ena!)les us to establish

the general form of the characteristic hypersurface equations related to the

thermodynamic continuous media by means of suitable differentiability hypotheses.
.

21. Nature of the Wave Fronts.

Let us designate with:

AX4) — 0

the hypersurface ecruation (S) which includes the initial date, and let:

l^ ^ as f .,

21.1

21.2

be a vector normal to S.

Let 0 be a geometrical quantity of V4 which constitutes one of the initial

data of the problem; the quantity 0, which is assumed to be of the C o type, is

therefore continuous over S, but it is not with respect to its derivative . 30,

27Cf. ,7. 1fadamard (1903) , T. Levi-Civit,a (1931) .
2 8 When we have a satisfactory formulation of the second principle, we must seek

to deal with the problem of the gravitational field link created by a thereto-
dynamic continuous rmadium in accordance with the p lnt of view of the variation
of states, in the same mariner that it was possible to deal with this problem in
respect 'to the elastic media (cf. Chapter II, Section Q.
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continuous by bits in V 4 and which is therefore liable to be discontinuous when

it traverses the initial hypersurface S; we will always indicate such a discon-

tinuity in
Ile note first of all that by virtue of the assumed continuity of the metric

and its first derivatives we also have:

Ea q = [Vol. 	
21.3

S are known siLce this quantity is

lesis that these derivatives assume

,^, i.e., that they are continuous

discontinuities of vO when they

this quantity along L,he normal to

The components of the t derivatives in

given over S; we submit the essential hypot]

the same conditions of differenti^sbility as

over (S); it follows that the only possible

traverse (S) are those of the derivative of

(S), which leads us to present:

i	

Coal a Qla^ .

	

21.4

The discontinuities Eq. (21.4) are said to be of the Hadamard type 27 . If

one or several discontinuities of this type are 00, (S) is a characteristic

variation of the problem presented; by reason of the arbitrary nature of the

discontinuities of 0D, Cauchy's problem does not admit a physically single

solution in this case: it is undetermined. Let us assume that (S) is such a

characteristic variation; let r = S i i be the two-dimensional plane of the space

directions orthogonal to the normal , to (S), and let A be the unit space vector

which characterizes thts,, direction of said normal:

n^..l .C! !A 7
A) —all T. to = P(1,), naua -= 0, n,#1 __ —1. `	 21.5

(7r) is termed the wive front associated w--ch the characteristic variation

(S) in relation to the ±:i:^e direction u and n the wave vector which characterizes'
the direction of propagation of the wave .. front.

The existence of the characteristic variations of a given Cauchy problem thus

leads to the setting of the phenomenon of wave propagation transporting discon-

tinuities of the material quantities of the field quantities. We now propose to

set forth certain general characteristics-of these wave fronts.

47r	 —

.... _.,.	 ...	 ..._ ,.. _ 	,.	 . -	 .. ...	 _	 ..._ ...,._	 ....... 	 , .n	 m,	 n 7^,ik"lklA"c.'""'c^er!
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Let us use.p — P(9)to  designate the space component of the discontinuity ¢

(21.4); T may be singularly decomposed locally over (n) and the r ,.)rmal direction

to (7,) with the aid of a projector:

Pa"orya7nan^r Pali" =0, P5u• =0. 	 21.6

Specifically, the component :4 = p(Y) of T in (7r) is called the transverse
component of ¢, and its component along the normal to (7) its longitudinal com-

ponent. Let it be, for example, a vector discontinuity T a; it may be locally

decomposed into a transverse discontinuity a and a longitudinal discontinuity

' a, defined by:

?	 L	 .-

21.7

or manifestly 4 	 nan3)4a et G^ _ — nanap•.	 These ideas will be useful when
we study the independent propagation of longitudinal and transverse gave fronts.

Following one of A. Lichnerowicz's' 9 results, we introduce the ideas of the

velocity 9.) cf propagation of the wave front (Tr) by the relation:

z
	

21.8

o

According to relativistic ideas, such a velocity cannot be greater than the

unit (speed of light in a void) :

vs 
l•	 21.9

This requirement may be expressed e quivalently with the aid of the following

p^stul.pre:

ProposiV-1,6;&. Every characteristic hypersurface of a Cauchy problem in

general relativity is rigorously non-oriented in space:

161" ? 0.

29Cf. A. Lichne:rowicz (1955),'Chapter II.

21.10

1

r
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uaba = 0,

uaCa '= 0,

t/ata3 = 0

22.2-a

22.2-b

22.2-c

The introduction of these ideas will enable us directly to undertake the study

of the phenomenon of propagation of wave fronts in thermodynamic continuous media.

22. Study of the Characteristic Variations and Determination of the

Equation of Propagation of Thermodynamic Nave Fronts.

The-study of the characteristic variations of a thermodynamic continuous

medium introduces, on the one hand, the conditions of geometrical compatibility

of the Eq. (21.4) type of the quantity discontinuities involved, and, on the other,

the co;iditions.of dynamic compatibility imposed upon these discontinuities by

the ensemble of equations governing the medium under consideration; when the

linear and homogeneous system of equations related to the ensemble of these , dis-

continuities is regular, they are also null, and the.initial hypersurface is not

characteristic; therefore, we now propose explicitly to write such a system in

the case of the thermodynamic continuous media under consideration.

a. First of all, let us write the conditions of geometrical compatibility

of the quantity discontinuities which intervene in this problem:

•	 l" Ysb'a3^ = aa^1 rls,	 10aP^ _ all.

a _ a	 ^^Y ._ t aYl 	 i	
f	 22.1

t^'(^(a)^I )1 — C la, (P(o (u) )j---	 a, ^ Da^-^ tlar l0a$^ =Sla

where every sub- and superscript In parentheses is withdrawn from the action of

the space projection operator P. By'virtue of the unitary nature of ua , and, on

the other hand, as a result of the spatial character of qa and bas , the discon-

tinuities (ba, e
(I
, ta$) are space quantities:
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4 

[Q'.gaJ = (CO — gYbYU )la 22.3-a

and we have manifestly:

[V 4,63YI	 (JAY — 2u(56Y)8b3)1I- 	
22.3-b

B. By reasun of the developments of paragraph 20, we assume that the ensemble

of compatibility conditions which the preceding discontinuities must satisfy are

derived from the following hypotheses:

(i) The continuity of Einstein's tensor G ao , a-consequence of the postulated

continuity of Ta$ and of the field equations Eq. (2.5) means:

[G°`^^ = 0.	 22.4

- (ii)	 The continuity of the first member of the conservation equations Eq.

a consequence of the structure of the field equations requires, on the

other hand:

p T1	 (C? -- O aqa + q 	 + 1/20YCg^Y)u^

-,- pua -- Eq,, + 2g3^x _ p(p ^6a^^ = 0. \'	 22.5'

(iii)	 The postulated continuity of the rate of change of the total entropy

density Eq.	 (17.2), assumed as a consequence of the second principle o.Ĉ thermo-

dynamics, imposes, moreover:

[p 4Sa^ _[(CS — O Cr-p 3 ga) -}- T-'q^ua)ua

+ Sua — C :"i	 2T-i	 f2I'^ = 0.C"	 q^ -^-	 qG ,r1 -'
\ 22.6
,

(iv)	 Finally, the linking equations Eq.	 (19.1) of the thermodynamic con-

tinuous medium requires that the following conditions be confirmed:.

[PP"') — 1/20aY'r9ya,- L«AT-171 = 0. 22.7-a

k [TCS — 1 12LOCoa, — CT'' Tj = 0.
_ 22.7-b

...



The 25 discontinuities Eq. (22.1) must therefore satisfy the entir> 'S con-

ditions Eq. (22.4-7).

c. The discontinuities 
aa^ 

of the gravitational field satisfy the entire

10 conditions Eq. (22.4) independently of the conditions imposed upon the other

discontinuities; these 10 conditions are not independent since, as a result of

the identities:

S la(Ray&J = 0,
say	 22.8

o

satisfied by the discontinuities of the curvature tensor, the discontinuities of

Einstein's tensor likewise satisfy the 4 relations:

la[Gaa^ = 0.
22.9

The investigation of the initial data on (S) compatible with Eq. (22.5,)

constitute the problem of initial conditions; these conditions show only 6 of the

conditions Eq. (22.4) as independent, those which introduce only the discontinuity

Wr.'Tonents of the gravitational field on the initial hypersurface (S); only these

components thus appear able to have a physical significance; they are:

[Gaa] =	 /2IYIY (a'aa — 1/2g'aaa's^, Soala = 0, aaala = 0,	 22.10

where 
g'a$ 

and a'aa designate respectively the components of ga$ and aas in

(S). The conditions Eq. (22.4) are likewise confirmed if w' a$ = 0, i.e., if

the gravitational field is not discontinued on traversing the hypersurface (S).

If in return, one of the discontinuities a *
aa 

is 0 0, S is the characteristic

variation of the problem presented, and the conditi•ons Eq. (22.4), in that event,

impose the condition:

lala = 0;
	

22.11-a

the vector field 1 having been assumed ^o be of the integrable type Eq. (21.2),

it is easy to show that the trajectories of S are isotropic geodesic lines of V4:
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M
£(1)la = 0. 22.11-b

The wave fronts associated with the characteristic variations Eq, (22.11)

tangent to the elementary cone d8 2 = 0 are the gravitational wave fronts; we
have seen that the characteristics of these fronts do not appear to depend, on the

structure of the material media which constitute the field sources.

d. Let us now ass=o that S is not such a variation, i.e., it does not

carry the discontinuities of the gravitational field:

jaja#0.	 22.12

We are then led to consider the special ensemble of_15 conditions Eq. (22.5-7).

which must be satisfied by the 15 discontinuities (a, ba, capt ta 'v t, s),	 where
b , ea, and taQ are space quantities, by virtue of Eq. (22.2).

Vi e are goi .̂,g to show that such a study is reduced to the consideration of

a system of 5 conditions related to the behavior of the S discontinuities a, ba,

and t.

The contemplated 15 discontinuities are in effect subjected to the ensemble

of the following 15 conditions which are rigorously equivalent to the initial

conditions Eq. (22.5-7)30:

ao'ua + Mab^ -}- vNa1= 0,	
22.13-a

Paba =- Oct = 0,	 22.13-b

v1a3 = jj43ranyba + via5t, .	
22.13-c

"These' relations are obtained by carrying out the following successive operations:
(i) Eliminating in Eq. (22.S) the [Vag`] !,pith the aid of Eq. (22.6) . (ii) Then-
eliminating the ^VaS] in Eq. (22.5-6) with the aid of (22.7-b). (iii) Eliminating
[vaga] and [are a ] in the new relation's (22.5'-6 1 ) with the aid of Eq. (22.7-a)
and of the spatial portion of Eq. (22.61).
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via 
V a63 ° Lgxt 22.13-d

vTS = W"ba LCt 	 22.13-e

v designates the velocity of propagation Eq. (21.8) of the viav , front associated

with (S), and n the unitary space vector Eq. (21.5) which characterizes the

direction of propagation of said wave front, and we have noted:

3	
3Y	 p3Y — 3Y	 ,-3©^ \ (Y	 \	 22.14-a

Ma = vnY(g +	 L )ua T U1((L TS)ga
Ca3anyn6 — 6Y3nYna9w

NTM . = — (VC + g311g)ua — (vqa T	 22.14-b

Fa .= vn3(La3 -- TSga3) + 2nAg3n,' + 2v'q",
.,	 -	 22.14-c

va^YS Ca3•^S Za4iYQs)a — QY3gYa^ .	
22.14-d

V. = Mj 3̂  — gxn3 — gynYgx,	 22.14-e

n3(L	 TSS )•
	 22.14-f
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The 5 conditions Eq. (22.13-a,b) govern the behavior of the S discontinuities

(a, t, 
a

b ) independently of the value of the remaining discontinuities; it follows

that if said 5 discontinuities are null, the 10 discontinuities (tas, ca, 8) are

also annulled by virtue of Eq. (22.13-c, d, e) and thus the Cauchy problem may be

presented in rospect to (S).

If, on the other hand, one of the discontinuities (a, t, b a ) is 0 0, the initial

hypersurface (S) is a characteristic variation; we are thus led to the conclusion

that the investigation of the characteristic variations of 15-condition system

Eq. (22.5-7) linking the 15 discontinuities under consideration reverts to the

investigation of the situations for which the 5-conditions system Eq. (22.13-a,b)

is noted. By explicitly setting forth the spat 41 characteristics of the dis-

continuities ba with the:aid of condition Eq. (22.2ia), we write this system in

the form:

E'4o = 0	 (A, ... = 0, It 2, ...., S), 	 22.15

or

_ 4«=b«'_.	 .' `?. = a, _ 4s=t,	 22.16-a

• E; = uA, E: = 0, 0.	 22.16-b

System Eq. (22.15) is singular if:

det (E4a) = 1161 S"Nn" E;E^EDEaE^ = 0. 	 22.17

By virtue of Eq. (22.16-b) this condition becomes explicit in the form:

v(VC aet (Y ,11) — (min 9)416N; P-) 0,	 22.18

wheredot (;^^^) and''K -"7 	respectively designate the space determinant and the
space minor of the matrix 4 x 4 formed by the components of the symmetric space

tensor M	 31.

31 Cf. Appendix II

a
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dct (\Y.3) = 113 t vµ^ u^u^Y':VIYV1a, 	 22.19-a

(min M); ^ 1/2 Z S^^^ou ,;u"vi r
ig•	 22 .19-b

';':us, only the space quantities appear in the material wave front equation

(22.18) :

S^	 v^((p -- TS)s^ `i' Oa} -- C,Y,^sn^nb ^.-'®7an,^	 22.20

N„	 (v2a -1- 	 22.21

TSg°A) -I- 2n; gln°l + 209"0	 22.14- c

e. The equation (22.18) is annulled in particular for v	 0, i.e., when:

' !,mug= 0.`	.22.22-a

Since we have assumoi I to be of the integrable type, we deduce that the
trajectories of this ahypersurface Eq. (22.22-a) are equation curves:

Zl^ — 0..

	
22.22-b

The 'conditions Eq. (22.22) characterize the seccnd type of characteristic

variations of the Cauchy problem related to thermodynamic continuous media equations,

which are the hypersurfaces tangential to the flow lines or generated by them; the

associa.tO wave fronts carry the discontnuities linked to the material medium.
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f. Let us suppose that (S) is not such a hypersurface:

I

141:00.

Equation (22.18) means that we must also confirm . ,he condition:

r
vC det (v1;^ — (miaM)4,'°' = 0.

22.23

22.24

This equation describes the propagation of the thermodynamic wave fronts; it

is of the seventh degree in v; we must anticipate what it reveals:

The propagation of 6 elastic wave fronts, the .unfolding of the 3 known

wave fronts of the classical theory being due 'to the existence within the medium

under consideration of the privileged direction of the heat flow q.

The propagation of a thermal wave front linked to the existence of the heat

flow within the medium.

These remarks will be clarified during the particular study of the isotropic

media. Let us now bring together the entirely general results established in the

course of this paragraph:

Proposition. The characteristic variations of the thermodynamic continuous

media equations in general relativity involve:

(i) The hypersurfaces tangential to the elementary cone, propagating at

'the unit velocity along the isotropic'geodesic lines of V 4 , which characterize

the propagation of the discontinuities of the gravitational field:

1°14 = 01	C(1)1a = 0.

(ii) The hypersurfaces tangential to the world lines, or generated by them,

which charactorize the propagation of discontinuities linked to the continuous

medium under consideration,

14:0 0.
	 0.

(iii)(iii) The hypersurfaces which characterize the 7 thermodynamic wave fronts,

having the equation:

CU det (Ma) — (mia N:)a,P x = 0,
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where:
a`:a ^ v • ((a — T$)a^ '^" ^^1 

'_ Cd^^t^s " QY3nYnS^►
r

(vq= + naLd),

P' vn;,(L°'^ — TSgaa) Zn;,q^nd =, 2v,gr.

Chapter V. Application: The Isotropic Thermodynamic Continuous Media

A. Characterization of the Isotropic Media.

In this chapter, we propose to apply the formulism developed with the study

of thermodynamic continuous media in general relativity to the particular case of

isotropic media.

In this first section we shall introduce the concept of the iso-`ropy of a

continuous medium from a particular property of the material wave fonts.

23. Introduction of the Concept of Isotropy

The phenomenon of independent propagation of longitudinal and transverse

wave fronts is characteristic of the isotropic media in the classical theory of

elasticity; we propose to show that this property suffices to define the isotropic

character of an elastic continuous medium in general relativity.

Le i, us therefore consider an elastic-type medium, i.e., described by the

linking equations Eq. (10.1), , and let us study the propagation of elastic waves

in said media; by restricting the results Eq. (22.13) of the preceding paragraph

to the case under consideration, the phenomenon of propagation of\elastic waves

is governed by the three equations:

Ivi'at- = 0,	 M' . '= v 1 (^gl ^3 -" CY3an,ns _ S"an,rnaSa•

By definition, we say that there is independent propagation of longitudinal

and transverse water fronts if the three conditions Eq. (23.1) 	 -la • d to the

discontinuities b  arc separable inte
rr
, a group of two conditions which introduce

the only transverse discontinuities 6a , and one condit,'on relaV., to the longi-

tudinal discontinuity ^ a , where, by virtue of the de£i	 .s in paragraph 21

these quantities are characterized by the relations:
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+	 0,	 nc bal = 0.	 23.2

The three equations (23.1) are equivalent to the group:

	

n°M'',b + n%IV'3b	 0.	 23.3-a

nM' Yb-►- nM ' 4 Y b	 0.	 23.3-b(a G3 Y 	 Y ^.

The postulate of,the independent propagation of wave fronts requires that the

system be reduced to:

•	

, n"M ►

b;

	

23.4 -a

nlaM'A by` 0 8 ''	 23.4-•b

i.e., by virtue of the arbitrary nature of the discontinuities ba and of the

symmetry of the space tensor M'a, that the following conditions be also confirmed:•

n^M'pl nY 0-	 23.5

We are thus led to investigate the structure of the tensors M'a of the Eq.

(23.5) type which satisfy Eq. (23.5), i.e., such as:

nc,(03i nYV1 -- C51 a`nYnsn,) = 0.	 23.6

As these conditions ;nust also be confirmed by each of the velocities v of

wave fronts propagation it is also required that the two types of conditions be

carried out simultaneously:

	

0.	
23.7-a

..._., ..	 _..	 .,	 ..	 .,....	 .,	 y	 x+.	 ;i	 dam'+'xLar "".a'!•iY"



ncaC91Yacnb^'s = 0.	
23.7-b

(i) The conditions Eq. (23.7-a) mean that n is the eigenvector of the con-

straint density Bas , i.e., it is one of the three principal constraint vectors

e defined by:

CO c YjIJpG"°ct'D^	
8aaeae^ a ^u,ilj	 I 

We are therefore led to present:

.J1a = Ca•

U^ — Sy.	 23.8

23.9-a

(ii) That being the case, the density of modulus of elasticity 
CaSY6 

must

satisfy the two conditions Eq. (23.7-b); bearing in mind tre symmetry conditions

Eq. (10.4-a) of this quantity, a purely algebraic study shows that the most general

structure of 
CaRys 

which satisfy such conditions becomes explicit in the form32:

L../ 	 k k k k k	 k t I J	 J J 1
k	

23.9-b

	

? ^(,;{a^3)^(Y^^)) ^( ^g3?^(Y^s) L ^(a^3)^(Y^>)	 e(0*030(Ye8) -}- e(^eP>CYes) }.

k t I! J	 k k l k J	 k J Ag !	 k k k t J	 1 J k k

The algebraic expressions Eq. (23.9) are such that the conditions Eq. (23.7)

of independent wave front propagation are likewise satisfied; however, the

struc..ure of the media studied are not entirely determined; in effect, by virtue

of the integrability conditions Eq. (10.5) of the linking equations, the 15

scalar densities (a, b, e, d, e) are not independent; the conditions imply that
a SY^ 2 Z •i Z

the densities C	 which belong to the Eq. (23.9-b) are not necessarily of the

type:

CaaYa — aga5jY3 — 2^'ba(Yspa'	 23.10-a

where:

284ag'3 i	 S^`(SS'a«^SY$ S^^SoYpo' 23.10-b

In the case of more general types of continuous media, the two necessary and
sufficient conditions Eq. (23.9) . to have independent propagation of longitudinal
and transverse wave fronts involve • the remarkable peculiarity that each of the
transverse,wave propagates at a different velocity; cf. J.-F. Bennoun (1964). 	

g
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By virtue of the Eq. (23.10-b) the structure coefficients can be expressed

from a single independent variable, for example, the density of mass p; if we

use the consequence of the conservation of energy equation:

I+S°^ ^`	 28A/SS^^	 23.11

the desired link is written:

^► = — µ -^- (P +	 23.12

where:^

^µ/^'P s^µl^/s^P/'1^--8^•	 23.13

The medium described is a perfect fluid33. 	 \

pa3	 r^b'0 ^•	 ^\ 23.14

It follows that the tensor M'a Eq. (23.1) assumes the form:

( +	 23.15

which, from Eq. (23.4), immediately involves the well known result that there is

propagation of a single longitudinal wave in the elastic medium under consideration,

with the velocity:

vo = (^t^f aP) •	 23.16

Thus, the•mere postulate of the independent propagation of longitudinal and

transverse wave fronts suffices fully to define the isotropic character of f

a medium:

Proposition. Given an adiabatic elastic medium in general relativity, there

is a rigorous equivalence between the two hypotheses:

In
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^ga^ rs — 2$^tI SSa3.
24.2-a

(i) The longitudinal and transverse wave fronts propagate independently:

ntaQ33YnY c 0,	 ntaC3)YahtYnt^	 0.

(ii) The medium is isotropic:

	

Cam : (p l^ -^. p)^PI^P)Sa^BYa — 2pbacYga33,	 6°a ^ PBaa•

24. Structure of the Isotropic Thermodynamic Continuous Media.

a. Expanding the preceding result, we define the isotropic character of the

thermodynamic continuous media with the aid of the conditions:

COO	 24.1- a

., 
L^^ ^ Lga^.^

24.1-b

By virtue of the equations Eq. (19.2) and Eq. (19.5), consequences`of +the

linking equations and their integrability conditions, the four structure co-

efficients of the medium under consideration are linked by the ensemble of

relations:

Ia ^ T8u/^rTa _. . .
	

24.2-b

Le = 2TSSf SSa^•

24.2-c

E'

I

s

73 Eernstein (1960) established the following extremely restrictive result in
classical theory: The'only elastic media which, can be described by variation
of state equations, and compatible with the known quantity of^an elastic energy
density, are the isotropic media; such a result cannot however be retained, since

it is based on an unsuitable choice of Truesdell's (1955) equations of the`.
varintiniv-,, r,	 ;` ry l ). s tic media.

,



+C
	

24.2-d

i

24.2-e

24.2-f

Sa/Sgaps ►̂YS = Sa/S ►̂Ya3°p•	24.2-g

Moreover, the equations (18.12) derived from the conservation of energy

equation enables us to link the density of mass to these coefficients:

`	 24.3-a
Sp/8T = T8S/8T.

SP/b'ap = TdS/Sg,p -- 1/2µS°`p. 	 24.3-b

By integration of the linking equations, we deduce that the medium thus des-

cribed is a perfect fluid:

24.4-a

where the scalar pressure density p is defined by the relation:

24.4-b

which justified a posteriori the adopted definition of the isotropy of the thermo-

dynamic continuous media.
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24.6

b. The isotropic thermodynamic continuous media are thus described with the

aid of two independent parameters of state; here we choose as parameters the
j

temperature T, and the scalar V defined by the relation:

V cxp jOds	 24.5

where the integral is extended all along a world line, in such a way that we have:

That	 r,g the case, the structure coefficients of the medium are expressed

from the scalar pressurQ density p by the relations:

µa=P ,
	 24.7-a

^ • ate _Z
Cpl/DV	

24.7-b

I; TZp/Z•T
24.7-c

C ° V'' jTAZ4p/^TW	
24.7-d

and the densities of mass * (energy) and entropy of said medium are deduced from p

with the aid of the integrals:



x	 +

c. +Jc deduce that the free enthalpy density attached to the isot-ropac medium

under consideration assumes the expression:

P +P — TS — V-'
J V

zp/SVdV	 24.9

and that the dilat.on heat density is written:

L— TS — TZ/ZTCV- 1 f Vap/3Vd	 24.10

where, by definition:

'cc 'Pl^vdv	 — b f Valz 'V(P/	 )ay;

When the conditions of state are not dependent, on V, the second members of

these last two expressions are also annulled, and we can then say that the system

under consideration varies reversibly according to a succession of states extremely

close to thermodynamic equilibrium. This , 	nsituatio occurs, particularly, in the

case of rigid motions of the medium under consideration.

In the following paragraph we shall set forth the structure of the two classes

of insotropic media of this type.

25. Two Particular Classes of Isotropic Thermodynamic ' Continuous Media

a. Let us propose to set forth the characteristics of the isotropic media,

since these can be described with the aid of a single independent variable; the

examination of the results of the preceding paragraph immediately reveals that

the state of such a medium depends only on its temperature T.

(i) The structure coefficients of the isotropic medium under consideration,

expressed, for instance, from the pressure p, are writ'wn:

t+ ^`P	 25.1-a

-p_ '	 \ 25.1-b
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A single relations of phenomenological origin suffices perfectly to determine

the structure of these media; we shall immediately give two examples of this

situation.
i

(b-i)	 Let us first of all assume that the densities of pressure and mass

are linked by the relation:

cte, n = ct	 n	 1. 25.4 f

According to Eq.	 (25.1-2), in this case the equations of state of the medium

assume the form:
i

_
25.5-a

i

{
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PWI -	 _W

L -- Tap/aT
25.1-c

25.1-d	 0

(ii) The solution to the linking equations is written:

P T'af aT(T- z p),
	

25.2-a

g °^ Spl a .

• . ,•	 25.2-b

As we have just seen, the five conditions of state (?* P. T► S. L) are linked

by the relations:

L—TS' — p+p—TS 0.	 25.3



25,.5-b

jaTI
25.7-c

25.5-c

where a is an integration constant whose meaning is linked to tha physical inter.-,

pretation of the solution.

(ii) Let us study separately the particular case n = 1 which is not included

in the preceding study, i.e., we present:

P = m p p	 m — cte.	 25.6

By the same procedure we obtain the equacions of state,:

Pl1i — z aV +AIM)
	

25.7-a

P/V — 8 maTX'+On)
	

25.7-b

This second type of solutions to the isotropic thermodynamic continuous media

equations will subsequently serve us as an example of application of the formalism

developed in this work to the study of link between the gravitational field and

its sources.

B. Propagation of the Thermodyn p..^.r-ic Waves in Isotropic Media.

By means of a particular study of the phenomenon of thermodynamic waves pro-

pagation in the case of isotropic continuous media, we propose to set forth certain

of the peculiarities of these wave fronts where we had been able to offer,only a

qualitative aspect in the general case.
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26.1-b

26. Propagation of the Thermodynamic Waves in Isotropic Continuous ;Media.

	

We rifer to the thermodynamic wave equation:
	

1

	

VC dct (M) — (n« a M 3, ,p3 0.	 22.24

where, by virtue of Eq. (24,1) the quant: ties Eq. (22:20), Eq. (22.21) ::nd Eq.

(22.14-c) assume the particular expressionb:

(p +,p — 	 + voIJQ73a}.
	 26.1-a

Pa ' v(L — TS)n" + 2n;,g3na + 20ga,

bearing in mind the relation drawn from Eq. (24.2,3):

a	 p + (P + p '- LPp/? p,

and where we have noted:

vo (P +p — L)/(P + p — TS)'lp/Dp•

26.1-c

26.2

26.3

i

We immediately see that when the medium varies according to a succession of

states of thermodynamic equilibrium, the wave equation (22.24) is also confirmed,

which means that in said case there Is no more thermodynamic wave propagation.

If we discard this situation, we can write the thermodynamic wave equation

with the following form, after eliminating the superfluous factor (p + p - 'rs)v434:

C(p -4:. p — TS)v(v' — uo) — L(L — TS)v + 2Lnaq49(v 2 — 1)	 26.4

+ (L — TS)r,,,4,-xv2 -.. 2q,,q'v (v ' — vn) 2(naga) aa(1 — vo^ = 0.

3 "'Wf . Appendix II
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t	 ^	 .

This equation is of the third degree in v, where as the general equation is

of the seventh degree; we immediately interpret this fact'by saying that the

isotropy causes the disappearance of the transverse wave fronts, a known result

in the hydrodynamic theory of perfect fluids. The equation Eq. (26.4) must

thei.:ore enable us to set forth two elastic wave propagation velocities, the

difference between these two waves being due to the existence of the privileged

direction of the heat flow vector q within the medium, and a thermal wave pro-

pagation velocity.

.In order to set forth these characteristics and to give an order of magnitude

of the propagation velocities of these different types of waves, let us place

ourselves in a position close to the thermodynamic equilibrium, whereby we are

justified in disregarding the quadratic terms in JqJ in Eq. (26.4). Bearing this

hypothesis in mind, we readily obtain the desired values of the three velocities

of thermodynamic wave propagation in the isotropic media in the first order of

approximation (which we indicate with the symbol ~):

(L(3 — 21uo) — TS)/2C(p +,p — TS)	 26.5-a

v ^► -- (2L/vo)1C(p +P — TS).n%	 25.5-b

where.

v^ = vo + L(L — TS)IC(p +p - TS)	 26.6

Eq. (26.5-a) actually shows the separation of the elastic wave front into two

distinct wave fronts, due -Lo the existence of the heat flow, and indicates the

correction to be made in the velocity L00 _ ,i (ip/ap) 1 1 2 of the hydrodynamic theor

of perfect fluids; let us rem?.rk that this separation does not take place, at

least in the order of approximation adopted', when the heat flow propagates trans-

versally, i.e., according to a direction situated in the two-plane orthogonal

,space to the direction of wave propagation n Eq. (26.5-b) indicates the value of

the thermal wave front propagation velocity; this type of wave disappears during

a transverse propagation of the heat flow within the medium.

•
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Rom=,,k: This result eliminates one of the great difficulties presented by

i'h m Mlau Quan's theory, a difficulty which is probably due to the fact that this

author had been constrained, during the study of the Cauchy problem, to introduce

a :superfluous variable Z = T; this author, in effect, revealed the existence of

a st,.,ond type of thermal waves propagating at extremely high velocity inversely

proportional to anaga , this velocity becoming notably infinite in the case of

adiabatic motions of the medium under consideration; such a result is in absolute

contradiction with relativistic ideas, and it is therefore gratifying to note

that, according to the hypotheses adopted in this work, this type of thermal

waves does not exist.

C. The Stefan-Boltzmann World

In closing this work we shall seek to characterize the structure of the

gravitational field created by a continuous medium which forms part of a particular.

class of isotropic thermodynamic continuoi.m,, media defined above.

27. Position of the Problem.

Let us consider, the particular class of isotropic thermodynamic media des-

cribed with M'e aid of equations (2,5.7); applying the preceding general consider-

ations, we propose to study the structure of the gravitational field created by

such a source.

'We are limiting the scope of this study by presenting the following hypotheses:

(i) The state of the medium is adiabatic: It is therefore described with

' ll-_, aid of the pulse rate-energy:

Taa	 11(n —	 27.1

By reason of the finite character of the hydrodynamic wave propagation Velocity

the only admissible values of n are found in the domain:

n^2.	 27.2

(ii) The world lines forma congruence normal to the triplanar field of

space directions:

szap = 0.	
27.3
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(iii) This congruence is without distortion:

Ca3 E,,A I/3 j'A = 0	 (a. a 0),	 ^^
	

27.4

a. The writing of the gravitational field equations related to\,such a source

calls for the decomposition of the curvature tensor of V 4 in terms of space and

time:

	

nf2	 2^2 rl 2,	 E& 1'.	 \ 27.5-a
P\Rasta) "a3YS 2^ar Ya — aIY SA	 'aj^

P(uaRa3Ya) 20 ts(Ea3Y ^^tY) — 2uYf2,ts.	 27.5-b

Y	 -.. — O u	 u^ u " CEag — (Ea + Ca)(E3Y + QsY),u uaFcaYr	 Ca ^) ^'	 ^	 27.5-c

where RaSYS is a tensor generalizing the space curvature tensor, the latter being

defined only-in -she case of integrable space sections35.

The desired.equations are written:

27.6-4

R-21381 — —2aT11,	 27.6-b

35k 	 has the following properties:	 1.	 It is a space tensor.	 2.	 It has the
symmetry properties of a Riemann variation of curvature tensor. 	 3.	 When E is
an integrable space section (SQa =0), it is reduced to the curvature tensor E.

Finally, when the motion of E is rigid (X9a5 = 0), Raayd is invariant during
f	 the motion of E	 (XRaay6 =t 0) .

t	 Note added to theag lley proof: The tensor R(xaY6 has also been set forth by
G. FERRARESE, Rend. Mat. (1,2), 24	 (1965), p.	 57.
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^.e o.
27.6-c

V

,vp 4iN ua u01 0 — 1/30 1 _ (ri + 2)/2(n — I)aT",	 27.6-d

the Mark [ ]+ designating the traceli.,ss portion of the expression situated in

brackets, and the mark ' the operato 4 (uaVa).

b. The field equations Eq. (27.6) must be compatible with the four equations

of conservation of Tas:

0 1— — (n — I)':/T,	 27.7-a

uai
27.7-b

c. Let us consider the decomposition of the metric of V4 into a sum of

squares:

fhlt CS -- 2ms (00)1 -- ds1 '^ (u,,"^ )',. 	 27.8

The equations Eq. (27.3) and Eq. (27.7) are the necessary and sufficient

conditions of integrability of the Pfaff form 6° = uadxa ; it follows that the

3 planes E are of the integrable type and may be provided with a Riemann variation

structure defined by the metric ds 2 , whose curvature tnesor is the tensor RaSY6

introduced above 36 . The form of the conservation equations (27.7) enables us to

determine the choice of the metric Eq. (27.8) of the type36:

dss .- T-1(n-i)13dj2 +T-1d11.
27.9

28. Structure of the Gravitational Field. 	 \

We propose to show that the structure of the field equations intro uce the

following consequences:

C£. M. Tramper (1962).	 .



A. The space Z provided with the metric 
362 is isotropic.

B. The Riemann variation V 4 is in agreement with Euclidian theory.

C. The world lines describe geodesic 'lines of V41.

That being the case, we shall show that the group of field equations is

reduced to a single differential equation which we shall study in a particular case.

a. In order to establish !,A) it is necessary to separate two preliminary

results.

(i) From the general formula:

^V au3 p^„ti^ — u,Cu3 +:7 tea(rzy + n3'uY -' L.P(cry,)	 28.1

and by virtue of the hypotheses Eq. (27.3-4), of Eq. (27.7) and of Eq. (12.5-a)

we obtair, first of all:

.	 Z(O("ua) — uauG) = 1/(n ^ 1^CÎ c=u^> — uau^)-l-2Cn-4)1(n
"'j)Ouau3

28.2

(ii) Moreover, the variation of the space curvature tensor:

RaGYa - (BaYRGa + BGY	 -' s^R3Y — sGY) 'f' BatYSS13R	
28.3

is written in the particular case under consideration 376 :\
Zna3YS = 1/30R^AYa — 1/3s& cYS'SjGe(— 2R + 4130' + 4130	 `•^	 28.4.

— (n —• 2)/(n —1)aT").,•

We deduce:

j^30'z^^ .i„ 2f9^aG0(0 a +26 31(n — 1)aT").	
28.5

371n the general case, the variationtt aBYa is written:

aiYS `^IY^ Sls3	 _^ lY.f. ^(a M S 	 . ,

+ ^IS Q G)$aY '^" 1^(YDu)E53 0(S va)EAY '^ 0(Y04)Eaa

+ 20tG^"ajlSUY^ + 20IY(ESJ(^ ►uGj)

. • 	 •'}' 20 IG(Eajt3)uYj '^' 20tY(ESjI^uGj

.	 + 4uIaE.^jtSUY) + Z ISEYjt na3 ?
F'AI^EaI(S^YI •
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(iii) With the aids of the results Eq. (28,2-5) we obtain by variation of

the first five field equations Eq. (27.6-a):

I4(n — 4)1(n — 1)uau3 (n 2)13lt aaj+ '= 0.	 28.6

By once again changing Eq. (28.6), and by comparison with the initial

equation, we obtain the group:

	

(n + 2)(n + 5)(Rj+ = 0,	
28.7-a

aa 

(n '- 4) (n + S)Iuau3J+ 0.. 28,7-b

Bearing  in mind the fundamental hypothesis Eq. (27.2), the equations 5q.

(28.7-a) bring in:

^•^aaJ+ 0.
	 28.8

which proves that space E is isotropic.

b. The Euclidian character of V 4 is a result equivalent to the preceding.

result Eq. (28.8), since according to the adopted hypotheses the Weyl tensor of

V4 assumes the form:

C" Y's"- (garlRas)+ + ga&(Rur1+ — oaslRarl+ — garbs)+) 	
28.9

+ 4u:a lRau8l+uYj _. 0.

We deduce that the curvature tensor of V 4 is of the type:

•^oc^rb = 213aT"(9,-;, "spa — (!3 + 2)/(n — 1 )ulaS;sliruol)•	 28.10

c. Let us introduce explicitly the space metric d8 2 according to 'Z8 2 , defined

by Eq. (27.9); by virtue of Eq. (27.7-a) the structure of space E provided with

the metric d8 2 is invariant due to the infinitesimal transformation generated by

the vector field u: 	 -
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0.	 28.11

and we therefore have:

w

	

CRa3 — 0•	 28.12

By virtue of a general conformity formula, Ricci's tensor R ,y ,, of E assumes
M

the expression:

33 — (n — 1)/3	 (n — 1) 219uau3

ga3((n -- 1)/3 D YuY =- (n — 1)'/9uYUY).	 28.13

Bearing in mind the equations (27.6-a) and (28.7), it appears from Eq. (28.13)

that E is isotropic:

0.	
28.14

Let us take the tracer ,line of the two members of Eq. (28.13); we arrive at:

28.15
—7zc"-Y^;'R= r. —4/3(n —1)(pau° — u^,u°) —2/9(n —1)(n -i- 5)uu° f• `.

l

Let us consider the variation of-(28.15), bearing in mind Eq. (28.12) and

using Eq. (28.2); the equation obtained is not compatible with the field equations

(27.6-b,d) unless:	 \^

28.16

i.e., bearing in mind the fundamental hypothesis Eq. (27.2) and the fact that

ua is rigorously oriented in space, on condition that:

28.17u's	 p.

ir.	 .

n

w	 ..
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which actually proves that the world lines aro geodesic lines of V 4 ; this result

could have boon im^iediately attained by using the Bianchi identities related to

Ra^Y6, bt-aring in mind Eq. (28.8) and the field equation (27.6-b), but said

process wo',ild have concealed the significance of Eq. (28.17) which is, in effect,

the compatibility condution of the equations (27.6-b) and (27.6-d); Eq. (27.6-b)

is therefore a first integral of Eq. (27.6-b), and the determination of the

gravitational field is reduced to the integration of the single field equation

Eq. (27.6-b) .

From Eq. (28.17) we deduce:

Z aT p,
,.	 28.18

which is absolutely compatible with the initial hypothesis of the adiabatic state

of the medium, bearing in mind the form Eq. (18.9) of the relativistic equation

of heat conduction.

d. In relation to the metric Eq. (27.9), the only remaining field equation

is written:

T201-0131k + 2/3(n -- 1) ,(dTJdt)3 == 2aT
28.19

where R is a constant, by virtue of Eq. (28.12) and the Bianchi identities related

to Ras . The solution of Eq. (28.19),•ensured under the conditions:

»..

R < 2aT(n+ 2)/3 	 28.20

introduces an ellyptical-type integral.

In the particular case of n = 4, the medium under consideration is analogous

to a black body described by the famous Stefan-Boltzmann radiation law---(1884) and

the V4 variation agrees with a V' 4 variation homeomorphous to the.product V' 4 x R

of a three-dimensional isotropic spaceduct the real straight line:

43 T-'(- 12 + dta); 28.21

the temperature field T of the medium is characterized, according to the symbol

R by the functions:
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0

T	 -V3-1a -t, ^R/6 Sla" I V Rj6 (I — to)	 R > 0	 28.22-a

T	 V'3—/a	 k6 Sh- I 	< 0	 22.22-b

T	 V31a (t — 14
-1

•	 R M O	 22.22-c

Let us summarize these results:

Proposition. Let us consider a material distribution described with the

aid of the particular class of isotropic thermodynamic media:

 f— gaTs	 (n'> 2).

a distribution assumed to be adiabatic, generated by a congruence of world lines

normal to the Z space sections, and without distortion.

The gravitational field created by such a source is characterized by the

following properties:

(i) The space sections Z are isotropic.

(ii) The temperature field is homogeneous in each section of space.

(iii) The world lines are geodesic lines of V4.

(iv) V4
 
is of the Euclidian • conformity type.

The metric revealing this structure is of the:

dia	 T-2(n-I)AZI +-T-IJI-a .

where d.-3 2 designates the metricof an invariant structure isotropic space through*

infinitesimal transformation generated by the vector field U, and T is determined

by the integral:'

-q2q)-112dT 11(n 1)(3a)'Aldt.
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Conclusion

The object of this work is to establish a study formalism of continuous media

in general relativity; it is totally inspired by the need to substitute the classi-

cal description of the states of a material medium the description of the variation

of states of the medium. This conception enables us effectively to overcome the

difficulty linked to the fact that the definition of an absolute scale for the

measurement of conditions of state is not compatible with the principles of

general relativity.

In an approach to the problem presented, I have first considered the case of

the elastic continuous media. After showing that th ,:. structurt. . , f such media is

represented by a normal type pulse rate-energy, I formulated tho group of six

linking equations describing the variations of state of the medium; the seconi

member of these equations must satisfy three equations of variation of c^nser,-

vation, the general form of which I have established; by joining with tl'&':ae nine

equations the ten equations of variations of field, the four equations of conser-

vation of the pulse rate-energy, and the nine equations of variations of defor-

mations and vortices of the medium, I have been able to set forth a group of

32 equations which should enable us to present ,the problem of elasticity in gen-

eral relativity in a manner adapted to the point of view of the variation of

states.

I then made an effort to expand this diagram to a thermodynamic framework.

A preliminary analysis of the postulates of relativistic thermodynamics has en-

abled me to forward sound arguments in support of a tensorial interpretation of

the concept to total entropy of a material system, the previously assumed vector

definition not being adapted to relativistic ideas. This concept necessarily

leads to a formulation of the second principle which must introduce four relations

describing the behavior of the rate of change vector of the total entropy density,

by analogy with the formulation of the first principle, consti^uted by the four

pulse-energy density conservation equations, but which is the rigorous consequence

of the field equations. Such a formulation, which must enable us to define the

pulse-energy density unequivocally, is linked to the interpretation of the spatial

portion of the total entropy rate of change vector, and at this time it remains

an open problem. I have therefore limited myself in this work to a special for-

mi',lation of the two principles, bringing into play, on the one hand, a general



•

postulate; of unification of mass and energy, and, on the other, the postulate of

the rigorously non-negative character of ' ,e time portion of the total entropy

rates of change. Within the framework of this axiom, I have formulated the

linking equations of the thermodynamics continuous media, generalizing the linking

equations of the elastic media; this study has .incidentally enabled us to supply

r, justification of Fourier's relativistic law, as an exact transposition of the

,lassical law.

Ilith the aid of a continuity hypothesis related to the rate of change of

total entropy, a hypothesis which clarifies one of the aspects of the second prin-

ciple, I have set forth the classes of characteristic variations of the problem

presented, and this has enabled me to set forth the general form of the thermo-

dynam.ic wave front equation; the latter shows the existence of seven wave fronts

constituted, on the one hand, by the six elastic wave fronts derived from the

unfolding of each of the three known wave fronts, separation due to the existence

of the privileged direction of the heat flow, and, on the other, by the thermal

wave front, the appearance of which is directly linked to the heat flow propagation.

eying this formalism, I have made a special study of the isotropic

thermodynamic continuous media after 4,ntroducing the concept of isotropy from a

peculiar property of wave propagation, I have set forth the structure properties

of these media. I have illustrated the preceding general study with a study of the

problem of linking the gravitation field with its sources, when the latter are

described by a special class of solutions to the linking equations proposed in

the isotropic case.

A preliminary classification of the linking equations of the thermodynamic

continuous media, in relation with each of the physical situations under consid-

eration, is still necessary before we deal with the fundamental problem of linking

the gravitational field to its sources; the solution of this program is linked to*

the establishment of a satisfactory formulation of the aecond principle of rela-

tivistic thermodynamics, the foundations of which we have been able to outline

here.	 '

This work owes its origin to Mr. S. Kichenassamy, whose friendly assistance,

and whose advice and critic^.., inspired by a serious demand for the understanding;

of the physical phenomena, have been a basic contribution to its development; I

express my profound appreciation to him.

I am also happy to express my appreciation to 64r. A. Lichnerowicz, for the

interest he has constantly shown in this work and for the sugges ,^ions which have

been of great profit to me.
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APPENDIX

CONCERNING THE DETERMINATION OF THE STRUCTURE OF Tao (Chap. 11)

A. lie use the successive identities:

	

a/sra,(as/ay°) ^. 1/2asl^y^u° 1u3.	 A.1

S/Sg„guY -- 112u'u 3MT. 	 A.2

	

u^ut°rY)	 A.3.+

+	 S1SS^3rYS -^ rc,^ss^• A.4

to establish:
a/Sg°t3xY ^ _ uYU^^^^i ^

	 ,

•µ	 A.5

	

818ga3 ddt (.ti•µ) +.. — 1/2u°`u3 ddt ^.tiA` M^ •	 A.6

B. From the group of he two identities:

	

+X^.,.s/Sx°`. u^as^ay°) - aslay°uzu°.	 B.1

x3.vS/S^"•^,uY •^ gau3,	 B.2

we first deduce:
... 

Y ,
	

Yz4	
asxa 

uYU4. ,

	

x3 ;,.SIs^ , µz , 0 8u ., — s	 .Q B.3

	

xp y^S/S `.
w dct l' •^^ ° ga dot ^'Ya•w^•	 B.4

then:	
_	 -.-• -	 --

	

X3 .,s/8x•°`. o lvv r 20"c, Zx— (^xa.y)• 	 $. 5

x3 • oa/SX°t .DY s gaY• B.6

1

a
4

•

t	 , 7()

Mr
i

i
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APPENDIX 11

CONCERNING THE EQUATION OF
THERMODYNAMIC WAVE FRONTS (Chap. IV)

A. The calculation of the dcterninant and of the space minor of a space

tonsor Ma introduces the identities:
a

1/41 41171	 o oYS^^
W y O A.1

113 1 01vauauµ `= p'vy pso '	 A.2
^r

1/218 yYSU` '<µ .:	
A.4

which introduce:

-}- 1/3-4715-12,15—My.  A S

(v iii .v:}^ ••	 Y — Yy + 112W2Y)' —.MYMs)ga•

B. In the isotropic case, the calculation of the wave equation introduces

the identities:

1/218`5 '16U ul'n,n* 	Vgp^,	 go .+ go + nonp.	 B.1

µyDOusut+n l^^ "' d'r• B.2

BIBLIOGRAPHY

Bennoun, J. F., BoZ. Univ. Parana, Theoretical Physics, No. 6, Brazil, 1963.

Bennoun, J. F., Comptes Rendus, Vol. 258, p. 94, 1964.

Bennoun, J. F., A S,udy of the Representation of Continuous Media in GeneraZ
ReZativity, (mimeographed) , Pari:o, 1964.

Bennoun, J. F., Corrrptes Rendus, Vol. 259, p. 3705, 1964.

Boyer, R. H., Proe. Roy. Soc., Vol. 283 A, p. 343, 1965.

Bernstein, B., Arch. Rat. Mech. AnaZ., Vol. 6, No. 2, p. 89, 1960.

Bruhay, Y., BUZZ. So;.-Math. Fr., Vol 86, p. 155 1 19S8.	 .

Eckart C., Ph. Rev., Vol. 58 1 p..919, 1940.

.

r 80 '.



Ehlers, J., Akad. Wiss. (Mainz), Vol. 11, p. 3, 1961.

Hadam.ard, J., Lesson on Wave Propagation, Hermann, 1903.

Kichenassamy, S., Ann. Inst. Poincare; Vol. 1, No. 2, p. 129, 1964.

hichonassamy, S., Comptes Rendus, Vol. 259, p. 4521, 1964,•

Kichenassamy, S., Compte,; Rendus, Vol. 260, p. 3865, 1965.

Levi-Civita, T., Characteristics of the Differential Systems and Wave Propagation,
Zanichclli, Bologna.

Lichnerowicz, A., ReZativistic Theories of Gravitation and EZeetromagnetism,
Masson, Paris,'1955.

Lichnerowicz, A., TotaZ Theory of Connections and HoZonomg, Cremonese, Rome, 1962.

Lichnerowicz, A., Course at the College de France, 1964-1965.

Pauli, W., Theory of'ReZativity, Pergamon Press, 1958.

Pham Mau Quan, Math. Sc. Thesis, Paris, 1955.

Pirani, F. A. E. and G. Williams, Seminar on Anal. Mech. . Cel. Mech., Paris, Nos.
8-9 0 1961-1962.

Rayner, C. B., Proe. Roy. Soc., Vol, 272, p. 44, 1963.

Sommerfeld, A., Thermodynamics and Statistical Mechanics, Lectures in TheoretieaZ

Physics, Vol. 5, New York, Academic Press, 1956.

Stuelckelberg, E. C. G., HeZvetia Physiea Acta, Vol. 35, p. 568, Nos. 7-8, 1962.

Synge, J. L., Math Zeitschr, Vol. 72, p. 82, 1959.

Tolman, R. C., ReZativit;;, Thermodynamics and CosmoZogy,'Oxford, 1934.

Trautman, A., Gravitation, (edited by L. , itten), Wiley, New York, Chap. S. 1963.

Trautman, A., Lectures at the College de France (mimeographed), 1963.

Trumper, M., Ph. Zeitschr., Vol. 168, p. 55, 1962.

DeWitt, B. S., Gravitation (edited by L. Witten), Wiley, New Yo r Chap. 8, 1963.

81 -
^,, t	 ..r

j


	GeneralDisclaimer.pdf
	1969006225.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002C01.pdf
	0002C02.pdf




