
II. Computation and Analysis 
SYSTEMS DIVISION 

A. The Direct Summation of Series Involving 
Higher Transcendental Functions,l E .  W. Ng 

In many problems of physics there is often the need to 
evaluate or compute a series of the form 

where fn ( x )  is a higher transcendental function and an ( x )  
are given co&cients. Well-known examples of such are 
truncated series involving Chebychev polynomials, Bessel 
functions, and Legendre functions. In most applications 
we have i = 0 or 1. Many higher transcendental functions 
satisfy a three-term recurrence relation of the form 

fn+l ( x )  = Bn ( x )  fn ( x )  + Cn ( x )  fm-1 ( x )  , n = 0 , 1 , .  . - 
(2) 

For the orthogonal polynomials, we define f-l (x) = 0. 

It is well known that recurrence relations form a basic 
mathematical tool for the computation of many functions. 
We have, for example, Miller’s algorithm for computing 
Bessel functions. For a recent detailed survey and anal- 
ysis of such algorithms, the reader is referred to Ref. 1. 
Whereas these relations are simple to use, one must attend 
to the problem of numerical stability. For example, 

‘A more detailed version of this article will appear in a future issue 
of J .  Comp. Phys., Vol. 111. 

Gautschi shows that given the Bessel functions J o  (1) and 
J, (1) accurate to 10 significant figures and generating the 
next values of Jn (1) by forward recursion, one loses all 
significance for n I- 7. Abramowitz (Ref. 2) summarizes 
the caution one must take in using such recurrence rela- 
tions. In particular, the direction of recurrence is impor- 
tant. For example, the Bessel functions Jn and In are 
stable only in backward recurrence, whereas Yn and K ,  
are stable only in forward recurrences. 

Clenshaw (Ref. 3) recommends an algorithm to sum a 
Chebychev series directly. Here we shall generalize the 
algorithm to other special functions satisfying Eq. (2). 

Consider the recurrence formula (with the functional 
dependence on x understood) 

Multiply Eq. (3) by fk and form a “system of equations” 
as follows: 
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Adding all equations of Expression (4) and using Eq. (2), 
we obtain 

Notice that Eq. (3) is a backward recurrence, but not as 
the nonhomogeneous counterpart of Eq. (2), because the 
role of CI, is displaced. Obviously one can also derive a 
recurrence scheme expressing S N  in terms of f N  and f N - l .  
Notice that for j = 0, SN = bo for the orthogonal poly- 
nomials. Thus Eq. (3) represents a formalism for comput- 
ing the series S N .  It is mainly useful for the case j = 0 
or 1, because here f o  and fl are readily obtainable. But 
the applicability will, of course, depend on the stability 
of Eq. (3), which in turn depends on the function in ques- 
tion. In the following, we shall describe some numerical 
experiments with this algorithm by applying it to the 
following simple series (Ref. 4): 

- 1 L X L 1  (6) 
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N =20,30,4O, 0-L An L 100 (11) 

N = 20,30,4O, O4A,L100 (12) 

All computations were performed on an IBM 7094 com- 
puter using double precision (16-decimal digit) arith- 
metic. For Eqs. (6) to (lo), we terminate the series when 
the co&cient is less than le1?. For each series we gen- 
erate 1000 uniformly distributed pseudorandom numbers 
for the variables x and 2 in the indicated range, which 
does not necessarily cover the whole range of theoretical 
convergence. The choice of range is obviously for prac- 
ticality. For example, for Eq. (8), at I z I = 0.6 one needs 
about 100 terms to satisfy our criterion. In Eqs. (11) and 
(12) the U s  are a set of pseudorandom numbers uni- 
formly distributed in the indicated range. In all of the 
above series, we also compute the sum by generating the 
special functions by forward recurrence and then sum- 
ming. Thus we have three different results for Eqs. (6) 
to (10) and two for Eqs. (11) and (12). In all cases we 
compute the relative differences among the two or three 
different methods. These differences, of course, depend 
on the values of x,  2, A,, S N ,  and N .  They range from 
1 X to 1 X l e T 4 ,  but are in no case greater than 
the last number. 
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- 1 l X L l  
B. Integrals of Confluent Hypergeometric 

2 l z L 1 0  
Functions, Part 11,' E. w. Ng 

This article is a direct continuation of Part I in 
SPS 37-46, Vol. IV, p. 34. A closely related set of integrals 
appear in Ref. 1. 

'A condensed version of Parts I and I1 will appear in a future issue 

(9) 

P % ( X )  = e""J0 [ x ( l  - x y 1 ,  
h:O 

-1 I x l l ,  121'4 (10) of J .  Res. NBS,  Sec. B .  
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1. Reduction Formulas for On (a, b, a, zl and T (a, b, a, zl 

As before, four different cases of the parameters a and b 
will be considered. 

a. Case1 

a # integer, b # integer 

In this case two formulas equivalent to Eqs. (34) and 
(35) of Part I can be derived. However, the results will 
not be too useful, because the right-hand side will have 
a term with subscript n, due to the derivative of (zn eaz). 
Instead, the equivalent of Eqs. (38) and (39) of Part I 
is written as 

O, (a, b, a, Z )  = ( b  - 1 )  (a, b - 1, a, X) 
- ( b -  l ) o n - l ( a  - l , b  - l , a , z )  

( 1 )  

+ T n-1 (a - 1, b - 1, X) 

b. Case2 

a # integer, b = integer 

With the help of Eqs. (12) and (14) of 

(2) 

Part I, 
o ~ - ~  (a, b - 1,  a, z )  can be expressed in terms of 
On-l (U + 1, b, a, x), thereby obtaining 

c. Case 3 

a = integer, b # integer 

In this case, Eqs. (1) and (2)  can be used again to 
reduce O, and T to Oo and T and On (0, /3, a, X) and 
rn(0,/3,a,z), where the last two are just elementary 
integrals. Kummer’s first theorem (Ref. 2, p. 6) can also 
be used to transform an, in this case to that of case 1, as 
follows : 

O, (a, b, a, z )  = J” zn e(@+1)* M ( b  - a, b, - z )  dz 

= ( - l ) n + l ~ n ( b - a , b , a +  l , - ~ )  (5) 
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d. Case4 

a = integer, b = integer 

For a > b, a reduction formula equivalent to Eq. (42) 
can be used: 

Again, successive application will reduce the right-hand 
side of the equation to elementary integrals. For b > u > 0, 
Eqs. ( 1 )  and (2) can be conveniently applied. for u < 0, 
Eqs. (30) and (31) of Part I can again be used, but with 
a replaced by (a + 1) and “recur upward in n. How- 
ever, for all integer values of u and b, Eqs. (3)  and (4) 
are applicable. 

Therefore, it can be seen that 0, and T n  can be re- 
duced to a finite combination of A, M ,  a, U ,  or elementary 
integrals. Properties of A and 0 will be discussed in sub- 
sequent investigations. 
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C. Survey of Computer Methods for Fitting Curves 
to Discrete Data or Approximating Continuous 
Functions, C. L. Lawson 

1. Introduction 

In preparation for this survey, a classified bibliography 
of recent publications3 was compiled that includes 394 
references. As is clear from this bibliography, approxima- 
tion theory has wide application in the mathematics of 
computation; e.g., approximation of functions or data; 
quadrature; solution of ordinary differential equations, 
partial differential equations, and integral equations; and 
graphical displays. On the other hand, approximation 
algorithms often depend upon more general computa- 
tional techniques, such as the solution of linear or non- 
linear systems of equations and/or inequalities and 
general minimization methods. A selection of references 
on these latter topics is included in the bibliography. 

‘Lawson, C. L., “Bibliography of Recent Publications in Approxi- 
mation Theory With Emphasis on Computer Applications,” 
Comput. Rev., Vol. 9 (to be published). 
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This survey treats primarily the problems of fitting 
curves to discrete data and approximating continuous 
functions. The point of view is that of practical scientific 
computation. 

The choice of a mathematical model in an approxima- 
tion problem can often be conveniently described as the 
choice of form and norm, i.e., the choice of approximat- 
ing form such as polynomial, rational, or spline, and the 
choice of norm such as P 2 ,  lm, or 8, .  There are, of course, 
other considerations such as constraints and transforma- 
tion of variables. 

Often the problem objectives are such that there is 
some freedom in the choice of form or norm. Then the 
choice should be made on the basis of properties such 
as numerical stability and economy of computation. These 
properties are discussed in Subsections 2 and 3. Most of 
Subsections 2 and 3 generalizes to fitting functions of 
two or more real variables or complex variables; how- 
ever, from the practical point of view, such fits are often 
limited to applications requiring only moderate accuracy 
(e.g., lP4) because of the very large number of param- 
eters needed for higher accuracy. 

2. Choice of Form 

a. Polynomial forms. Polynomial forms are, in a sense, 
the simplest, and a variety of parameterizations is pos- 
sible. If a polynomial is expressed as 2 ai xi, which will 
be called the monomial basis parameterization, it can be 
evaluated in n multiplications and n additions. The matrix 
of basis function values is typically very poorly condi- 
tioned. This conditioning is generally significantly im- 
proved by translating the domain of the independent 
variable to be centered at zero. Exponent overflow is 
avoided by scaling to, e.g., [ - 1,1]. Even with these pre- 
cautions, polynomials of degree higher than about 7 in 
monomial basis form are essentially useless in 8-decimal 
digit arithmetic. 

Other bases for parameterization, such as Chebyshev 
polynomials, typically provide remarkable stability. For 
example, polynomials of degrees 533 through 223 have 
been computed to represent the positions of the five outer 
planets, Jupiter through Pluto, over a period of 200 yr. 
This work used 16-decimal digits and preserved at least 
5-digit accuracy. A polynomial of degree n represented 
as a linear combination of Chebyshev polynomials can be 
evaluated in n multiplications and 2n additions. In gen- 
eral, the Chebyshev basis is preferable to the monomial 

basis, independent of other factors such as the method 
for determining coefficients or the choice of norm. 

Other polynomial parameterizations include the 
Forsythe parameterization for polynomials determined to 
be orthogonal over a specific point set, the product-of- 
roots form, and streamlined forms. The product-of-roots 
form is very stable if the roots are in the x-interval of 
interest, but the determination of parameters may be 
inconvenient. The streamlined forms reduce the number 
of multiplications needed in evaluation but are often very 
unstable. The Forsythe parameterization is redundant, 
requiring about 3n parameters to specify an nth-degree 
polynomial. It exhibits very good numerical stability, and 
the algorithm for determining the parameters is very 
&cient, since the execution time depends upon mn, 
rather than mn2, where m is the number of data points. 

b. Rational forms. Various special properties (such as 
remaining bounded at infinity, having poles, and having 
abrupt changes of curvature) make rational forms more 
useful than polynomial forms in some cases. Since the 
parameters occur nonlinearly, their determination re- 
quires iterative procedures which entail various practical 
difficulties: (1) the absence of zeros from the denominator 
must always be verified. (2) Best rational approximations 
on discrete sets do not always exist. The use of rational 
functions for fitting discrete data can probably be largely 
supplanted by the use of spline polynomials. 

Rational functions have been very successfully used as 
approximating forms for many analytic functions such as 
the exponential and arctangent. The effective design of 
such approximations depends more upon a thorough 
understanding of the function being approximated (lead- 
ing to the use of special identities and changes of vari- 
ables) than upon the actual method of computation of the 
approximation. 

All polynomial parameterizations can be used for ra- 
tional function parameterization. There is also the possi- 
bility of using continued fraction forms; however, these 
are frequently unstable and must be tested for growth of 
rounding error in each case. 

c. Spline forms. A spline function s, defined on an inter- 
val [a,b] partitioned into k segments, is a polynomial of 
degree n on each segment with continuous derivatives 
through order m (m < n) throughout [a, b]. A spline will 
generally have discontinuities in its ( m  + 1)st derivative 
at the partition points. The splines which have received 
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the most study are those for which m = n - 1 and, more 
particularly, cubic splines with second-order continuity. 
Such splines, having k segments, can be parameterized 
by k - 1 + 4k parameters, giving the abscissas of the 
k - 1 partition points and 4 coefficients for each of the 
k cubic polynomial segments. The discussion given pre- 
viously for the parameterization. of polynomials is then 
applicable to each segment. 

This parameterization, though convenient for evalua- 
tion, is redundant. Other parameterizations having less 
redundancy have been given in the literature. Some, 
such as 

3 IC-1 

i = o  i = 1  
ci xi  + Z: ai {max [0, ( x  - b i ) ] }3  

are of theoretical use only and are definitely not recom- 
mended for computational use. 

If the partition points are fixed, 4k parameters remain, 
and these occur linearly. The second-order continuity 
requirement constitutes 3 (k - 1) linear equality con- 
straints, reducing the number of degrees of freedom to 
k + 3. One basis consisting of k + 3 linearly independent 
splines, which has been recommended as having favor- 
able properties in practical use, can be defined as follows: 

By introducing 3 auxiliary segments to the left and 3 to 
the right of the interval [a,  b] ,  k + 6 segments are defined. 
For each set of four contiguous segments, a spline func- 
tion is constructed that is nonzero on that set and is zero 
elsewhere. This defines k + 3 basis functions (each 
uniquely determined to within an arbitrary scalar multi- 
ple). The associated matrix in curve fitting has a block 
diagonal structure that can be used to conserve computer 
time and storage. 

Although spline forms have received intensive study in 
recent years, the best strategies for parameterizing and 
manipulating splines and treating the problem with vari- 
able breakpoints have yet to be evolved. With their 
extreme flexibility in changing curvature, stability of low- 
degree polynomials, and linearity of coefficients (for fixed 
partition points), spline forms provide a very attractive 
approach to general data fitting. 

The second derivative of a cubic spline with second- 
order continuity is a linear spline with zero-order conti- 
nuity. Thus, the sign of the second derivative can be 
constrained throughout [a,  b]  by constraining it only at 
the partition points. This fact has been used to obtain 

some very satisfactory data fits where oscillations were 
to be avoided. 

3. Choice of Norm 

For fitting data subject to random errors, it can be 
argued that the P, norm is most appropriate if the error 
is normally distributed; P, is most appropriate if the error 
distribution has broad tails; and P, is most appropriate 
if the error distribution has narrow or no tails, e.g., a 
uniform distribution over a finite interval. 

In practice, the P, approximation is probably very rarely 
used, since the broad tail problem is usually treated by 
some ad hoc wild-point exclusion logic. Discrete P, ap- 
proximations can be nonunique even with the Haar con- 
dition, and characterization of a best P, approximation 
is complex. The discrete linear P, problem is a linear pro- 
gramming problem; however, a linear programming code 
should have a full capability to treat degenerate cases if 
it is to be trusted for P, fitting. 

Discrete P, (least-squares) approximation is, of course, 
widely used. With linear parameters it is a linear prob- 
lem, i.e., no iteration is needed. Orthonormal methods 
such as Householder transformations or moditied Gram- 
Schmidt orthogonalization (numerically superior to Gram- 
Schmidt orthogonalization) can be used to avoid the 
squaring of the condition number associated with the for- 
mation of normal equations. The number of multiplica- 
tions and additions is approximately doubled with the 
orthonormal methods, and thus these methods must be 
compared with the use of normal equations in double- 
length arithmetic to determine which is more efficient 
and reliable in a given application. 

Discrete linear 12, approximations can be treated as the 
linear programming problem it is or by specially adapted 
equivalent algorithms such as the exchange algorithm. 
Two other distinct methods for the discrete 9, problem, 
although probably not competitive with the exchange 
algorithm for the linear Haar P, problem, appear to gen- 
eralize to the nonlinear or non-Haar cases in a more 
natural way. These are: (1) the Polya algorithm, which 
relies on the P, solution being the limit of 1, solutions 
as p - +  00;  and (2) the Lawson algorithm, which adjusts 
weights in a weighted P, approximation so that the P, 
approximation is approached via a sequence of weighted 
P, approximations. 

For the approximation of continuous functions by curve 
fitting, primary interest has been with the P, approxima- 
tion. Exchange-type algorithms have been used very 
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effectively and dciently for both polynomial and rational 
approximations. 

of special properties of the function being approximated 
and machine-dependent considerations. For some func- 
tions, particularly functions of more than one variable, 
d c i e n t  constructive representations have been derived 
entirely from mathematical analysis of the functions with- 
out the use of fitting. 

Such approximations are commonly produced for use 
in function subprograms. The construction of an &cient 
function subprogram also depends strongly upon the use 
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