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A. Performance of a low-Rate Command 
Data link, S. Farber 

1. Introduction 

This article gives the performance of an orthogonal 
signal frequency-shift-keyed command link. This ground- 
to-spacecraft link will code low-rate binary information 
into one of two frequency-modulated tones modulated 
onto the carrier. The purpose of this article is to examine 

the error performance capabilities of such a scheme under 
the assumptions (1) that the phase error out of the space- 
craft tracking loop does not vary significantly over a bit 
time and (2) that the phase error out of the spacecraft 
tracking loop does vary significantly over a bit time. 

2. System Model 

The transmitted signal is assumed to be of the form 

s (t)  = (2P)w cos [ w e t  + k sin (ut + e) + *I, O = Wg,6J1 

where 
represents a one being transmitted. The angles 
on the interval -'IT, T radians. 

is the carrier frequency, k the index of modulation, and = wo represents a zero being transmitted while o = O, 

and 6 are assumed to be uniformly distributed random variables defined 

The signal s ( t )  can be expanded in a Fourier series about we to yield 

s (t) = ( 2 P ) W J o  ( k )  COS (met + *) 
- ( ~ P ) M J ,  (k) {cos 
+ ( ~ P ) W J ,  ( k )  {COS Eoct - 2 (@t + e)  + *I + COS IOct + 2 

- ( 2 ~ ) s ~ ~  (k) {cos 

- 

+ e)  + *.I> 
- 3 (Ot + e )  + *I - COS 10ct + 3 (wt + e) + SI} 

+ e )  + *I - COS LOet + (,t + e) + *I> 

+ ( 2 P ~ ~ J J , ( k ) { ~ ~ ~ [ o , t - 4 ( ( o t + ~ )  +*]  COS[^,$+^(^^+^)+*]} 
_ .  . . 
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where ] I ,  is the Bessel function of order k. An indication 
of the behavior of J i  (k), i = 0,1,2, can be seen in Fig. 1 
for values of k satisfying 0 6 k 4 2. 

If the tracking loop works on the fundamental com- 
ponent, it will form an estimate !$ (t) of k (t) 2 that the 
received signal mixed with (2)*; sin [met + k ( t ) ]  and 
filtered will yield 

r l ( t )  = (P)ssin[ksin(ot + e )  + + ( t ) ]  +n,( t )  

while the received signal mixed with (2)scos [ w e t  + $ (t)] 
and filtered will yield 

r z ( t )  =(P)Mcos[ksin(Ot+O) + + ( t ) ]  +nz( t )  

where + (t) = $ (t) - and n1 (t)  and n, (t) represent inde- 
pendent white gaussian noise of single-sided spectral den- 
sity N o  (Ref. 1). 

If the tracking loop is a phase-locked loop preceded by 
a bandpass limiter, then the distribution on + as given 
by Lindsey (Ref. 2) using DSN parameters is 

where * 

3x 1 + 0 . 3 4 5 ~ ~  r =  0.862 + 0.690 xy 
"=  ++:)' 

and yo = 4. (It should be noted that the usual DSN pa- 
rameters are y = 1/400 and yo = 2.) 1% is the modified 
Bessel function of order k. P, represents the power in the 
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Fig. 1. Plot of JZ, 2Jf, and 2Jf, showing division of 
power between fundamental and 

other components 

carrier, bLO the loop design bandwidth, and N o  the single- 
sided spectral density of the noise. For the above signal, 
we find P, = PI: (k). 

3. Error Rates for Various Detectors 

For convenience, let us define the random variables 

k, = $lTb cos + (t) dt  

where T b  is the time per bit. 

If the data is extracted using only the component of r, (t) at frequency 0, namely, 

(P)" cos + (t) 21, (k) sin (ut + e)  + 721 (t), 0 < t L Tb; o = wo, 01 
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then the problem is essentially to decide which of two signals is present. Hence, an incoherent phase receiver using 
orthogonal signals can be used to obtain a bit probability of error (Ref. 3) of 

1 P i  = E { f exp [ - 2 k$ R ] }  

where E is the expectation operation, R = STb/No, and S = 21: (k)  P is the power in the data. 

If the data is extracted from the fundamental components of both rl (t) and r, (t), namely, 

(P)%cos+(t)2J1{k)sin(wt + 0) + n,(t), O < t < T b  

and 

(PI% sin 4 (t)  2Jl (k) sin ( w t  + 0) + n, (t), 0 = iJJo,w1 

then by using the doubly incoherent receiver discussed in Subsection 8, it is possible to obtain a probability of error of 

Pg= min E { M c ( / 3 ) e x p [ - ? h ( k $ + A $ ) R l }  
0 ~ 5 ~ 1  

where 

1 - p ”  

and p is an arbitrary gain factor, 0 4 /3 4 1. 

We note that when p = 0, the doubly incoherent re- 
ceiver degenerates to the incoherent receiver so that we 
always have Pg L PL for a given index of modulation k. 
Since, as the index of modulation increases from zero, the 
amount of power in the data will increase, causing R to 
increase, while the amount of power in the carrier will 
decrease, causing p L  to decrease, there will be an opti- 
mum value of k, corresponding to an optimum division of 
power. In particular, p L  depends on 

where 

R = - = - .  STb PTb 2J4(k) 
No No 

By letting 8 = 1/2bLoTb and &? = PTi,/No, we can write 

z = 2 & 8 J f ( k )  

[It should be noted that Lindsey (Ref. 2) uses 
8 l / b ~ o T b . ]  

4. Extremely low Data Rates 

When the data rate is extremely low, corresponding 
to 8 << 1, it is appropriate (Ref. 1) to use the approxi- 
mations 

k+ = $ - ~ T ‘ ’ ~ ~ ~  + (t) d t  E {cos +} 

and 

A+ = ks.’” sin+ (t) dt N E {sin +} 

Using Lindsey’s model for the density on 9 as given 
above, we find 

A + ”  0 
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The optimum value of p for the doubly incoherent receiver 
then occurs at /3 = 0 so that the doubly incoherent receiver 
reduces to the incoherent receiver with probability of 
error given by 

P," = Pi = Mexp(--Mq2R) 

The resulting minimum value of the probability of error 
is plotted in Fig. 2a versus W for several values of 6, while 
the optimum values of k are plotted in Fig. 2b and the 
resulting values of pL are plotted in Fig. 2c. In order that 
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the tracking loop acquire frequency lock, it is necessary 
to require that p L  1 6 .  

5. Moderate Data Rates 

Moderate data rates occur when the phase does not 
1 and the vary significantly over a bit time so that 6 

approximations 

k@ = $lTb cos 4 (t) dt g cos 4 
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Fig. 2. Plots of behavior of incoherent receiver under the assumption of non-constant phase, showing 
(a) probability of error, Ibl optimal value of modulation index k, and (cl resulting value of p L  
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and 

A$ = +JTb sin 4 ( t )  dt sin + 

are valid. 

Under these circumstances, we find the probability of error for the incoherent receiver is 

The minimum value of Pi is plotted in Fig. 3a, the optimum value of k to give this value of Pk is plotted in Fig. 3b, 
and the resulting value of pL is plotted in Fig. 3c. 

The probability of error for the doubly incoherent receiver is 

where 

We note that, when p -+ 1, we can evaluate c ( p )  by L’Hospital’s rule to find 

R 
8 c(1) = 1 + - 

which is independent of 4. Combining this with the fact that the performance of the doubly incoherent detector can- 
not be better than the performance of the incoherent detector with + = 0, we find 

2 1 exp (- R )  A P ; L + ( l +  t) exp (- -j- 1 R )  

so that P,” must be exponentially asymptotic to the optimum receiver performance for the given signaling scheme. 

The minimum value of P,” is plotted in Fig. 4a, the 
optimum value of k to give this value of P i  is plotted in 
Fig. 4b, the resulting value of pL is plotted in Fig. 4c, 
and the optimum value of p is plotted in Fig. 4d. 

6. In Between Rates 

For rates between those discussed in Subsections 3, 4, 
and 5, we expect the probabilities of error to fall some- 
where in between the probabilities of error obtained 
above. 

This would imply that as the rate increases from ex- 
tremely low to moderate, the probability of error for the 
incoherent detector would increase from the values in 
Fig. 2a to the much larger values in Fig. 3a. The proba- 
bility of error for the doubly incoherent detector, how- 
ever, would decrease from the values in Fig. 2a to the 
slightly lower values in Fig. 4a. The desirability of using 
a doubly incoherent receiver, which is somewhat more 
complicated to implement as opposed to the simpler inco- 
herent receiver, would, of course, depend on the exact 
probability of error for the rate under consideration. 
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Fig. 3. Plots of behavior of incoherent receiver under the assumption of constant phase, showing la1 probability of 
error, (b) optimal value of modulation index k, and (cl resulting value of pL 

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. 111 181 



1 oo 

1 o-2 

I o - ~  

nu  
L 

1 o-6 

1 o-8 

lo-]( 

0 40 

I 

\ 

1.0 

0.8 

9 0.6 

0.4 

0.2 
) 1 

Fig. 4. Plots of behavior of doubly incoherent receiver under the assumption of constant phase, showing (a) probability 
of error, (bl optimal value of modulation under k,  (cl resulting value of pL, and (d) optimal value of ,8 
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7. Using the Second Harmonic 

The doubly incoherent detector may also be used to extract information about the data from the first harmonic of 
r, (t) and the second harmonic of r, (t); namely, 

and 

( P ) s  cos + (t) ZJ, (k) sin (ut + e) t n, (t), 

( ~ 1 %  COS + (t) I ,  (k) COS 2 + e )  + % (t), 

0 = 6JO,W1 

O < t L T b  

This would yield a probability of error of 

P: = min E {W c (p) exp [ - % k$ (R, + R,)] } 
O L f 3 6 1  

where 

and 

R, = 2.E (k) a 

This yields an improvement in signal-to-noise ratio of about I;(k)/J:(k) over the incoherent receiver. An indica- 
tion of this ratio can be obtained from Fig. 1. For values of k near 1, the improvement is about 10%. 

8. Description and Analysis of the Doubly Incoherent Receiver 

We assume two signals of the form 

and 

r l ( t )  = (P)]hsin[ksin(~t + e,) ++]  +n,(t)  

T ,  ( t )  = (P)scos [ksin(Wt + e,) + +] + n, (t) ,  0 < t L  T ; o  coo, o1 

where the angles 
one-sided spectral density N o .  

and 8, are arbitrary and n, (t) and n, ( t )  are the independent white gaussian noise process of the 

The doubly incoherent receiver then consists of two sections of the form shown in Fig. 5, one with 0 = Wo and one 
with w = w ~ .  The variable p is an arbitrary gain factor which is to be chosen to minimize the probability of error. If we 
define the random variables 

and 

then the output of the Wo section when sin& was transmitted is 
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Fig. 5. Diagram of one  section of the doubly incoherent receiver 

where 

u1 = ( z ) " k @ c o s O ,  + %, 

u3 = ($)Ih A+ cos e2 + n3, 

u2 = ( z ) " k ,  sin 8, + n2 

u4 = (E)" sin e, + n, 

and the output of the m1 section when sinwot was transmitted is 

where 

Q1 = v: + v.: + p(v;  + 0:) 

v1 = ml, u2 = m,, 0 3  = m3, v4 = m4 

The noises ni and mi, i = 1 to 4, are mutually independent gaussian random variables of unit variance. Similar vari- 
ables are defined in a symmetrical way when s h a l t  was transmitted. 

The estimate of which value of o was sent is taken to correspond to the section with the largest output. Thus, the 
probability of error is given by 

P$= min Pc(Qo<Qllo=oo) 
O r p L l  

assuming that prob (0 = w0) = prob (O  = wl). 
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By first conditioning on Qo, we readily find 

But we have that 

P i  = min E {PT (Qo < 91 I" @07 S,  he7 Qo)) 
ofg'l 

where the expectation is taken over the variables n,, %, n3, and n4 and the functionals k+ and A+, A straightforward 
integration yields 

1 [ - (& h $ , + L k $ , ) z ]  2 
P g =  min - E  

OGfiL12 1-p" 

where the expectation is now only over kq and A+. This is the expression used in Subsection 3. 

9. Conclusion 

For the schemes discussed, it can be seen that the 
optimum value of the index of modulation k for low rates 
is almost always given by the constraint p L  = 6. 

Also, for certain rates the doubly incoherent receiver 
gives considerably better error performance than the 
incoherent receiver. Just how much better for a given 
rate, however, remains an open question which can per- 
haps best be answered by simulation. 
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2. 
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B. Analysis of a Serial Orthogonal Decoder, 
R.  R.  Green 

1. Introduction 

This article presents a more straightforward mathe- 
matical analysis of the decoder discussed in SPS 37-39, 
Vol. IV, pp. 247-252. As before, the problem is to perform 
the matrix vector product y = H,x, where x is a real 

vector with 2" components. H, is the code matrix, or 
dictionary, defined inductively by H, = H,-i @ H,, with 

Hi=[' 1 -1 '1 
and @ denotes the Kronecker product. 

2. Notation 

Subscripts are used to denote the size of matrices in 
the following way: A, implies that A, is a 2" by 2" 
square matrix. I, denotes the 2" by 2" identity matrix. 

The Kronecker product of two matrices, say A and B, 
is defined by A@ B = (aij B ) .  This product is associ- 
ative, i.e., 

( A @ B ) @ C  = A @ ( B @ C )  

and, if the dimensions are correct for the necessary ordi- 
nary matrix products to be defined, we have (Ref. 1) 

(A @ B )  (C @ D) = AC @ BD 
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3. Motivation 

The difEculty in evaluating H,r directly, on a term- 
by-term basis, is the size of H,. Since every element in 
H ,  is either 1 or -1, direct evaluation would involve 
2" (2" - 1) additions or subtractions. This difficulty can 
be relieved by factoring H ,  into the matrix product of n 
different 2" by 2" matrices, which will be denoted 
M F ) , M t 2 )  n 7  - . ,Alp). Each matrix M:) has only two 
non-zero elements per row, thus only n2" additions or 
subtractions are involved. 

Furthermore, the structure of each matrix M:) is such 
that it can be easily implemented with special-purpose 
digital equipment. Thus, we can construct a set of 

decoder stages, the first realizing M t ) ,  the second 
M F ) ,  etc. If these stages are then connected together 
serially, the input to stage 1 being IC, the output of stage 1 
being the input to stage 2, etc., the output of stage n 
will be y. Due to this serial structure of the decoder, 
n additions or subtractions are being done simultane- 
ously. Thus, the digital equipment need only be fast 
enough to perform 2" additions or subtractions per code 
word time, or one addition or subtraction per symbol 
time. 

It is an interesting and somewhat surprising result that 
the stages of the decoder may be connected in an arbi- 
trary order and the output of the last stage will still be 
the desired vector y. 

4. Analysis 

The following analysis is a special case of a more general result involving a code matrix which is the Kronecker 
product of n arbitrary matrices. Since the general case provides no particular additional insight into the decoder 
under consideration, the results have been particularized to this special case. It should be noted, however, that in 
the general case the factor matrices have the same form, the same commutivity result holds, and a somewhat more 
general product theorem can be proved. 

Proof. Assume i > i (if i = i, the result is trivial) then 

Thus, Theorem 1 shows that the order of any two successive stages may be interchanged, and thus any possible permu- 
tation of the stages may be realized, without changing the final output. Also, the commutivity shown implies that we 
need not keep track of order when discussing matrix products of the M:) . 

Theorem 2 
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Proof. For m = 1, we have 

Assume the result is true for m, then prove for m + 1: 

Thus, by induction, the result is true for any m between 
1 and n. 

In particular, we see from Theorem 2, letting m = n, 
that 

Also, as in the previous article on this decoder, it can 
be shown that 

where ,P,  and R, are defined inductively for n l 1  by 

and 

with P, = I ,  and P ,  = ( P i i ) .  Here 

P11 = P,, = P,, = P,, = 1 

and otherwise Pi j  = 0; R, = H,. Thus, we see that con- 
necting the n decoder stages M g )  through M Z )  in any 
order whatever performs the operation H, x. Further- 
more, if the stages are connected in numerical order, 
MF) first, MP) second, etc., the output at any inter- 
mediate stage, say the jth stage, provides a decoder for 
Hi. Thus, the algorithm has multiple-mission capability. 
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C. Optimal Codes and a Strong Converse for 
Transmission Over Very Noisy Memoryless 
Channels, A. J. Viterbil 

1. Introduction 

Wyner (Ref. 1) has obtained the following lower 
bounds on the asymptotic performance of the optimal 
codes for the additive white gaussian channel, where T 
is the message duration, R is the rate in nats/s, and C is 
the channel capacity: 

PE > exp { --T [ E  (R)  + o ( T ) ] }  

where 

C O L R 4 -  
4 

C 
2 E ( R )  =-- R ,  

(1) 
C ---AR<C 4 = [(e)% - (R)%]’, 

and 

1 - PE < exp { -T [E* ( R )  + o ( T ) ] }  

where 

E* ( R )  = [ (R)% - (C)’h] ’, R > C  (2)  

The second bound on the probability of correct decision 
for rates above capacity is generally referred to as a 
“strong converse.” 

It is well known (Ref. 2) that equal-energy orthogonal 
signals are asymptotically optimum because they achieve 
the error probability 

‘Consultant, University of California at Los Angeles. 
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where E (R) is given by Eq. (1). We begin by showing, 
through an application of extreme value theory (Ref. 3), 
that for rates above capacity orthogonal signals yield 

where {zm} are independent normalized gaussian vari- 
ables, since the covariance matrix for orthogonal signals 
is the identity matrix. 

1 - PE > exp{-T[ E*(R) + 0 In- Equation (6) can be rewritten as ( ;)]}. R > C  

(4) l - P E = e x p [ - T ( C  + R)] 

which proves their asymptotic optimality2 above as well 
as below capacity. 

d 
X l I e x p  [(2CT)%x] [F(x)IeRTdx 

We extend these results by showing the essential 

channels to the white gaussian channel and thus extend 
equivalence of all memoryless input-discrete very noisy 

the strong converse to this wider class of channels. 

exp [(2CT)%x] [F(x)]""'-ld [F(x)] 

(7) 

where 2. The Additive White Gaussian Channel 

Balakrishnan (Ref. 4) has shown that for any equal- 
energy, a priori equiprobable set of M signals used on 
the white gaussian channel, the probability of correct 
decision using the optimum (maximum likelihood) deci- 
sion rule is is the (cumulative) gaussian distribution. 

1 - Pa = M-le-h E (exp [(2h)% max zm]} (5) 

where A = CT, C = S/N,, the ratio of received signal 
power to one-sided noise spectral density, while {z,} is 

variables with a covariance matrix whose elements are 
the normalized integral inner products among signals. 

We proceed to evaluate Eq. (7) by applying a tech- 
nique from extreme value theory due to Cram& (Ref. 3). 
Consider the transformation 

1 L m L d l  

a set of M zero-mean, unit-variance, gaussian random 1 - f = F ( x )  (8) 

which has the inverse (Ref. 3) 

Let R = In M/T and restrict to orthogonal signals; 
= F-l (1 - e R T )  Eq. (5) becomes 

1 - P , = e x p [ - T ( C +  R)] 

1 G m L e R T  '-1) (6) Substituting Eqs. (8) and (9) into Eq. (7), we obtain 

*It has long been conjectured that regular simplex signals are globally optimum for alI rates on the white gaussian channel, and this obvi- 
ously implies the asymptotic optimality of orthogonal signals. However, only the local first- and second-order conditions of optimality of 
regular simplex signals have been shown (Ref. 4) and all attempts at proving global optimality at all rates have met with failure. 
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The last integral is bounded from below by 

{+- ~ ) " I }  
q (y) corresponding to the likelihood function for a zero- 
signal hypothesis reduces Eq. (14) to Eq. (5) (cf Helstrom, 
Ref. 5). 

For memoryless time-discrete channels, 
for R > C. Thus, it follows that for orthogonal signals 
on the white gaussian channel N 

P ( Y I x ' ~ ) )  = IT p ( ~ n l ~ ~ m ) )  
n = 1  

1 - PE > exp (- T { [ ( R Y ~  - (c)%I~ + o - (InyT)D> and specializing to the independent output measure, 
R > C  (11) 

N 

which proves Inequality (4). 4tY) = rI (Yh) 
n=1 

3. Input-Discrete Very Noisy Memoryless Channels 

The error probability expression for the white gaus- 
sian channel, Eq. (5),  can be generalized to any memory- 
less finite-dimensional (or time-discrete) channel. For any 
set of M equally likely messages and a maximum likeli- 
hood decision rule, for any set of N-dimensional channel 
input sequences {x(i); i = 1,2, . . * , M } ,  and for y, an 
N-dimensional output sequence, we have 

where 

Then, since 

Y 
u Df=Y, 

the N-dimensional output space, we can rewrite Eq. (12) 
as 

j=1 

where q(y) is an arbitrary probability measure on the 
output space and E ,  is the expectation with respect to 
this measure. Substitution of the appropriate likelihood 
functions for the white gaussian channel and for the 

Eq. (14) becomes 

where 

Such channel is said to be very no@ if 

where E (x, y) + 0 uniformly in x and y, and q (yn) is an 
arbitrary probability density or distribution. It follows 
that for any n and m 

We now restrict attention to a discrete input alphabet 
of K symbols, so that each xLm) is taken from the set 
{x1,x2, . . , xK}. For this class of channels, we need only 
consider the class of fixed composition codes, which are 
characterized by the property that each code word is 
some permutation of the same sequence of N symbols, 
since Shannon, Gallager, and Berlekamp (Ref. 6) have 
shown that the asymptotic performance of the best code 
in the restricted subclass is the same as for the best code 
in the unrestricted class. Thus, given that the relative 
frequency of the symbol x k  in each code word of the 
fixed composition code is 

A number of occurrences of xk 
2 k =  1,2, * . . ,K N pk 
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we have that the means of the random variables zm(y )  
relative to the output measure 

are all equal to 

where we have used Eq. (18) and also Condition (17) to 
neglect .all terms above quadratic in E. 

Similarly, since the channel is memoryless, 

vary [x, ( y ) ]  = N 
z = 1  

But again neglecting terms above quadratic in E, 

Also, the capacity of a very noisy input-discrete mem- 
oryless channel is given by 

X y) - dy II 

Thus, choosing the relative frequencies {pk} correspond- 
ing to the maximizing distribution for capacity, we have 
from Eqs. (19), (20), and (21) 

Furthermore, since x, ( y )  is the sum of N independent 
random variables, by the central limit theorem it must 
be asymptotically gaussian. In fact, if we normalize by 
letting 

it follows from Eqs. (23) and (24) that v m ( y )  is a zero- 
mean, unit-variance, random variable and by the Berry- 
Esseen theorem (cf LoBve, Ref. 7) we have that Pu(x) ,  
the distribution function of the normalized variable v,, 
differs from the normalized gaussian distribution F (x) 
by no more than 

when we neglect all terms in E of order higher than 
quadratic. 

Thus, all the variables v,  are asymptotically gaussian 
with zero means and unit variances. Applying Eq. (25) to 
Eq. (15) and letting R’ = (In M ) / N  nats/symbol, 

1 - PE = exp [ - N  (R’ + C)] 

This formula is identical to the form of Eq. (6) for 
orthogonal signals on white gaussian channels, except 
that the variables om are not necessarily independent. 
However, for rates below capacity it is well known 
(Ref. 6) that the error probability for the best code on 
memoryless very noisy input-discrete channels behaves 
asymptotically exactly as that for orthogonal signals in 
the white gaussian channel [i.e., Expressions (1) and (3) 
hold with T replaced by N and R replaced by R’]. For 
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this to be the case, the best code on memoryless very 
noisy input-discrete memoryless channels must asymp- 
totically lead to independent 0, (y) in Eq. (26), since any 
other covariance matrix would lead asymptotically to 
a greater PE below capacity. Thus, Eq. (26) reduces to 
Eq. (6), and the asymptotic behavior above capacity 
given by Expressions (2) and (4) must hold also for the 
best code on this class of channels. 
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