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1. Introduction 

Many important problems in communications research 
can be posed as a problem of system identification. That 
is, given an input signal record and an output signal 
record, find an equivalent system that fits these data. An 
important example occurs in the following communica- 
tion problem where it is desired to study the effects of 
the atmosphere on signal transmission. A transmitter 
transmits directly to a tracking station via cables or a 
microwave link, and to a spacecraft which retransmits to 
the tracking station. The signal, as it passes through, for 
example, the Solar Corona to and from the spacecraft, 
undergoes distortion. One method of studying the distor- 
tion is to characterize it as a finite memory linear system. 
The identification could be derived from the input (the 
directly transmitted component) with the proper time 
delay, and the output, which is the retransmitted, dis- 
torted signal. Naturally, noise would, in general, corrupt 
both the input and output signal measurements. 

This article, then, considers the basic problem of iden- 
tifying linear systems from noisy input-output measure- 
ments. Related work is listed in Refs. 15. 

Let N denote the set of natural numbers and let n be 
in N .  Denote by dr, (P) the class of linear, finite memory, 
time invariant, time discrete systems. Then, for systems 
s (a ) ,  we can relate the input and output random 
sequences by 

I-1 

on= 2 + j u n - j 7  P <  co (1) 
j = O  

The vector 9 = (+o, . . . defines the system when 
it is in the class dL(J). Further, we assume that the 
observable sequences u', and u', are defined as uk = u, + 8, 
and u; = u, + E,, where and 8, are mutually and in- 
dividually independent noise sequences with zero means 
and respective variances U: and U& Also, U, is assumed to 
be independent of E ,  and 6,. This article, then, is con- 
cerned with the following problem: From the noise- 
corrupted input and output measurements, estimate the 
unknown system (i.e., 9) via nonparametric methods. 
See Fig. 1 for a block diagram. 
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Fig. 1. Block diagram of available measurements ub 
and vb and conceptual location of identifier system 

2. Development of the First Algorithm 

Let the estimator of the sequence v, (9) be 

where m = Pn and the row vector z E E'. Now, we shall 
derive a specific sequential estimate of cp denoted by xm. 
Define an error measure in the following way: 

The procedure to be used to estimate cp will be to re- 
cursively determine z in such a manner that M ( z )  is a 
minimum. Specifically, we consider a Kiefer-Wolfowitz 
stochastic approximation method. 

and define 

Dp = pm (x" + c, e%) - pm (x" - ern ei) , 
i=o,  * , 8 -  1 

where c, satisfies 

C,&O and lim c, = 0 
m+ m 

and the ei are the orthonormal unit vectors E E', viz., 

e, = ( l , O ,  . * . ,0) and = (O,O, . . . ,1) 

Then, recursively define xm by 

(3)  
D" 
c m  

xm+' = xm - %---form = P,2&,3P, . * . 

and a, satisfies 

and lim a, = 0 
m+m 

By using the definition of D" and p,, one obtains the 
following scalar algorithm for each component of the 
estimate : 

x y  = xy - 4 h U L - i  xy ub-j - d, , 

i = o , .  . . ,4  - 1 
[ X  1 

or in vector form, designating (uL)' as the transpose of 
&, we have 

which is independent of c,, and where 

3. The Estimate Error 

Based sn  minimizing the mean square error between 
the sequence v, (9) and w, (x"), where Xm is defined by 
Eq. (3), we show that xm does not converge to cp unless 
the input noise sequence E ,  is identically zero. More 
precisely, we have our first result. 

Theorem 1. If the conditions 

(d) The random sequence u, and both noise sequences 
6, and E, are time-statibnary. 
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E [Sm] = E [E,] = 0, E an1 
= ~3 a,,, and E [ E ,  E,] = uz Smn. 

E [S,E,] = E [urnsn] = E [S,E,] = O .  

Unknown system s E dL ( a ) .  

are met, then the sequence xm, defined by Eq. (3 ) ,  con- 
verges in mean square to the vector 

Proof. Equation (4) may be expanded to 

,m+r = xm - 4&&u:,(u:,)*xm + 4u, [S,,U:, + d ( l h ) ' q ]  

(5)  

where in Eq. (5) and throughout the rest of this proof 
xm, uL, urn, and 9 are now defined as column vectors 
instead of row vectors. Using E [( . )]  = EE [( . ) Ix"] on 
bcth sides of Eq. (5 )  results in 

Clearly, a solution to Eq. ( 6 )  is given by 

We shall now show that 

Subtracting 8 from both sides of Eq. (5) and rearranging 
yields 

Forming the norm squares of both sides and averaging, 
we obtain 

b,, = b, - 8a, E (P - e, 6 (~GJ* (P - e)) 
+ [ I l d ( d ) ' ( x m  - e)llzl 
+ i 6 a k ~  [p,d + G ~ J J  - d ( U : , ) * q q  

- 32ag, E (UL (u:,)* (xm - e), s, UL 

+ &uf q - u:, (dJ* e) 

+ 8a, E (x" - 0, S , U ~  + U;,u;Cp - u:, (I&)* 0) 

(8) 

where we have let 

b, = E [lip - ellz] 

By Condition (b) we have for the second term in Eq. (8) 

uZ, b,, < AI b, 4 (x"' - 8, [ R  + uz I] ( x ' ~  - e)) (9) 

where A, is the minimum eigenvalue of [R]. The third 
term can be bounded, using the Schwartz inequality, by 

16a% b, k, (10)  

where k,  <co by Condition (c). The fourth term can be 
bounded by the following quantity 

32&E [ ~ ~ ~ m u & ~ ~ z l  + 32&E [ ~ ~ d n u ~ , 9 ~ ~ z l  
+ 3 k f E  [IluL(~~,)*e1)~1 

All these terms are similarly bounded by 

k, (11)  

where k, < KI. Now, the fifth term can be reduced to 

8% E@" - 0,Rq - [ R  + uzI] e) = O  

since 8 = [ R  + uf I]-, Rq. The last term is bounded by 

where IIAll, with A a square matrix, is the usual euclidean 
P, norm; Le., 

Equation (12) can be shown to be bounded by 

IlAll = ( 2 . 3  z a w  3 2 ~ g  (b,  kz)$b  4 C L ~  ( 1  + b m )  k,  (13) 
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for k, < 00. Hence, Eq. (8) yields 

for m suf6ciently large and k, and k 6  finite. By applying 
an interesting application of Kronecker's theorem (e.g., 
Ref. 5) or Lemma I of Ref. (3), we have that b,+ 0. The 
theorem follows directly. 

To conclude the statement made in the first paragraph 
of this subsection, we have: 

Lemma 1. If the conditions of Theorem 1 are satisfied 
and if tp # 0, then xm is a consistent estimator of tp if and 
only if U; = 0. 

Proof. The Lemma follows from Theorem 1 and the 
fact that [ R  + 0," I ] - l  Rtp is equal to tp if and only if 
4 = 0, since by Condition (b) R is positive definite. 

The fact that xm converges to 8 # tp, based on minimiz- 
ing M (x"), is not so surprising since Eq. (2) can be 
written as 

which reduces to 

Since R is positive definite, we have that the minimum 
occurs at z = 8. Hence, we canrwt exactly identify an 
unknown system, when the input noise variance is non- 
zero, without additional knowledge of the input noise 
statistics. 

4. Second Algorithm 

A modification of the original algorithm, defining a new 
sequence y", has the property that if U: is known then the 
modified algorithm leads to the result that ynz+ 9 in 
mean square. 

Theorem 2. If the conditions of Theorem 1 are fulfilled 
and if y" is defined recursively by 

Y"+' = y" - 4% Lu'm (UL) - u: I] y, + 4% & u:, 

(17) 

then ym converges in mean square to tp. 

Proof. The proof follows the lines of Theorem 1 and 
will not be indicated here. 

5. Convergence to a Subspace 

Up to this point, the condition that R be positive 
definite was required when < = 0 to prove convergence 
(in mean square) to a unique point. It is to be noted that 
if > 0 then it is not necessary to assume that R is 
positive definite. However, if it turns out that R is of 
rank r < P, then it can be proven that xn converges to a 
subspace of E'. Obviously, this is a very weak form of 
convergence. However, looking at it philosophically, we 
cannot hope to do any better since if xn E 7, the null space 
of R, M (z)  will be minimum and that is the best we can 
do using the mean square error criterion. This then leads 
us to the statement of Theorem 3. 

Theorem 3. If the Conditions (a), (c)-(g), 0 < rank 
R = r < 1, and U; = 0 are satisfied, then R (x" - tp) con- 
verges in mean square to zero. 

Proof. Starting with Eq. (5), setting E, equal to zero, 
subtracting 9 from both sides of the equation, and pre- 
multiplying by R yields 

R(x,+, - tp) = R (x"8 - 9) - 4a, Ru, u; (x" - tp) 

+ 4Gi 6, R%& 

Forming the norm square of both sides and averaging, 
we obtain 

where we have let 
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Now, even though it is no longer true that 

E (x” - Cp, R (fl- 9)) A XI E [ llxn - QII’I 

it is true that 

E ( R  (x“ - 91, RR (x” - 9))  
2 Ap E [llR (x” - Cp)llzI Ap dm 

where A,, is the least nonzero eigenvalue of R. 

The third term can be bounded by 

16G dm K ,  

where K ,  < co by Condition (c). The fourth term can 
be bounded by 

16K8 ah (21) 

The fifth and sixth terms are zero since E [S,] = 0. 

Hence, we have that 

d,,, 4 d, [ 1 - 8a, (Ap - K ,  a,)] + 16K8 a& 

or 

d,, I d,  (1 - 4a, hp)  + 16K, G (22) 

for m sdciently large and K ,  and K8 finite. As before, 
by application of Kronecker’s theorem to Eq. (22), we 
have that d,+ 0. The theorem follows directly. It is 
not hard to show from Eq. (15) that M ( z )  is minimized 
for any z E 7. 

6. An Example 

A simple example was devised to compare the first 
with the second algorithm. The “unknown system” was 
programmed to be of the form 

and the identifier system was programmed to be of the 
form 

The relative mean square error was used to measure 
the performance of the algorithm and, for our example, 

is defined by 
9 z (Xi - 

i = O  rmse = s 4: 
i = O  

where the true system values are given “y 44 and the 
estimate of the system by xi. 

The respective elements of the correlation matrix were 
simulated to satisfy 

where ua and E, were programmed to simulate inde- 
pendent gaussian random sequences. In Eq. (25), a,, is 
the Kronecker delta and K was chosen to be either 
(a) K = 1 or (b) K = 34, corresponding to an observa- 
tional signal-to-noise ratio ( &/o:) of 0 and 6 dB, respec- 
tively. Forty thousand samples were used to obtain the 
system estimates. 

Figure 2 illustrates the plot of the rmse as a function 
of the time index m. As can be seen from Fig. 2, the first 
algorithm, for both signal-to-noise ratios, approached 
the theoretical limit defined by the result of Theorem 1 
and Eq. (24). Furthermore, the second algorithm con- 
tinued to decrease, on the average, as m increased, as 
claimed by Theorem 2. 

7. Conclusions 

Two sequential identification procedures were pre- 
sented for the identification of a time invariant, linear 
system in which no knowledge of the dynamics of the 
system were known prior to the ideiltification, with the 
exception that the memory of the system was required 
to be finite. 

The first algorithm for identification required only a 
mild condition on the covariance function of the input 
random process and no knowledge of the input or output 
measurement noise statistics other than that they have 
finite variances. It was shown that the estimate of the 
system converged in mean square; however, a bias devel- 
oped that was due to the input noise and consequently 
prevented the estimate from being consistent. This error 
or lack of complete identification, without further knowl- 
edge of the statistics of the noises, is an example of what 
has been called the ‘‘structural regression paradox” in the 
statistical literature. 
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Fig. 2. Relative mean square error a s  a function of number of samples m and 
theoretical limit of error for first algorithm 

The second algorithm was derived based on the addi- 
tional assumption that the input measurement noise vari- 
ance was known. With this additional knowledge, it was 
shown that the estimate of the unknown system con- 
verged in mean square to the unknown system. Hence, 
if the input noise variance is known, this algorithm can 
be used to obtain a consistent estimate of the unknown 
system. 

Theorem 3 showed that as long as r = rank R was 
greater than zero the first algorithm would reduce M (z) 
to a minimum; however, there could be an uncountable 
number of values of z that achieved this minimum. 

The computer simulations agreed very well with the 
theory, indicating that the algorithms are useful and prac- 
tical methods for identification of linear systems. 
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