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1 .  Introduction 

Square waves are to be used in the JPL sequential 
ranging system for locating distant spacecraft such as 
Mariner Mars 1969 (SPS 37-53, Vol. 11, Chapter 111-A). 
The system operates by transmitting and receiving, in 
succession, square-wave components whose frequencies 
are successively halved. The first, or highest-frequency, 
component provides the most precise range estimate 
within an unknown integer multiple of the component 
wavelength or period. However, each succeeding compo- 
nent removes half of the ambiguity left by its predeces- 
sors. The process terminates when the balance of the 
range ambiguity becomes discerrible from other con- 
siderations. 

Range measurements are obtained by estimating the 
phase or time delay of the received noise-corrupted tar- 
get return relative to a locally generated noiseless replica 
of the square wave. Specifically, the received signal is 
correlated with two square-wave replicas spaced one- 
quarter period apart, with analogy to the optimum esti- 
mator for the phase of a sine wave (Ref. 1). The two 

correlator outputs are then combined (in a nonlinear man- 
ner) to give the required phase estimate. This is the 
optimum method for determining the range through 
tracking. 

The purpose here is to determine the functional form 
of the optimum (maximum-likelihood) processing of the 
outputs of the two correlators and the accuracy of the 
resulting estimate. One measure of accuracy is given by 
the signaI-to-noise ratio (SNR) out of the correlators. The 
sum of the output SNRs is a function of the unknown 
phase of the received signal, ranging from a high equal 
to the theoreticaf maximum to a low of one half of the 
theoretically maximum SNR, or -3 dB. This amounts 
to an average SNR which is 1.8 dB below the theoretical 
maximum, where the average is taken with respect to a 
uniform a priori phase distribution between 0 and 2 ~ .  
Such an a priori distribution is justifiable when there is 
no a priori phase information, as would be the case dur- 
ing acquisition. This raises the question of whether there 
may not be a better choice of the two correlator functions. 

A general two-correlator estimation scheme is, there- 
fore, considered from the point of view of maximizing 
the average SNR during acquisition. It is found that the 
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best two correlators for this purpose are the sine and 
cosine waves, even though the received signal is not sinus- 
oidal. The sum of the SNRs is then phase-independent 
and is only 1.0 dB below the theoretical maximum when 
the received signal is a square wave. Moreover, the 
processing of the above correlator outputs to give the 
maximum-likelihood phase estimate is also independent 
of the structure of the ranging signal, being of the same 
form for all signals that it is for the sine-wave phase 
estimator. 

2. Formulation 

Let s (t - T )  denote a square wave of unit amplitude 
and period T that has been delayed by an amount 
I ,  - T/2  < T L T/2 ,  and observed in the presence of addi- 
tive gaussian white noise n ( t )  of one-sided spectral den- 
sity N o ,  in watts/hertz, as 

where MT is the length of the observation time which, 
for convenience, is taken to be an integral number of 
periods. It is assumed that s ( t  - T )  is present during the 
entire observation time, starting on or before t = 0 and 
extending to t = MT or beyond. It is also assumed that 
the a priori probability density p ( ~ )  is uniform on 
( - T / 2 , T / 2 ]  and that the amplitude of the signal or, 
equivalently, the value of No is known exactly. 

3. Estimation of T Using the Outputs of Two 
Square-Wave Correlators Separated by 
One-Quarter Period 

When z ( t )  is correlated with the locally generated 
square waves s (t) and s [t + ( T / 4 ) ] ,  the correlator out- 
puts will be 

(3) 

where, as shown in the following sketch, Z ( T )  = R ( T ) ,  
and y' ( T )  = R [ T  - ( T / 4 ) ] ,  with R (T) being the autocor- 
relation function of s ( t )  defined by 

R ( T )  = +iT s (t) s (t + 7 )  dt 

Also, 

are zero-mean gaussian random variables of variance 
E [n;] = E [n;]  = 2 = No/2MT, where E is the expecta- 
tion or averaging operator. They are statistically inde- 
pendent because they have zero cross covariance, 
E [nsnv] = 0. 

In vector notation, we have z = col (x ,  y), Z ( T )  = 
col [ X ( T ) ,  Y ( T ) ] ,  and n = col (ns, nu), where E [nn'] = 2 I 
is the covariance matrix of the noise, I is the two- 
dimensional identity matrix, and the superscript T de- 
notes transpose. Now, z is conditionally normal with 
conditional mean E [ Z I T ]  = Z ( T )  and covariance matrix 
E { [z - Z ( T ) ]  [z - Z ( T ) ] '  I T }  = 2 I. Consequently, the 
conditional probability density p ( Z I T )  = p [ z ] z ( T ]  is 

or 

Substitution of Eq. (1) into Eqs. (2) and (3) imme.diately 
shows that p ( x ,  y 17) = (2rn2)-' exp 

x = ?(.) + n, (4) (9) 

Y = r l ( T ) + n u  (5) where 11 - 1 1  denotes the Euclidian norm. 
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The a posteriori probability density, as given by Bayes' 
rule, is 

where p ( T )  = 1/T is the assumed a priori density. It is 
obvious from Eq. (10) that the most probable a posteriori 
estimate $ that maximizes p ( T ~ z )  over -T/2 < T 4 T/2 
also maximizes p ( z  I T )  and is, therefore, identical to the 
maximum-likelihood estimate, given z. However, from 
Eq. (8) or (9) it is clear that p ( z I  T )  is greatest when 
llz - Z(7) /I = { [ x  - ;(.)I2 + [y - G ( T ) ] ' } %  is least. 

Geometrically, this implies that ? must be selected 
such that 8= Z($) is the closest point, from the set of 
possible points Z = z ( T ) ,  T E ( - T/2, T/2] , to the observed 
point z. To determine 6 analytically would be dBcult, 
since it would be necessary to minimize I (  z - Z I( over 
Z E Z ,  where Z is the locus of points described para- 
metrically by 

- 

which can be combined into the simpler, but not analytic, 
constraint equation 

1.1 + l q=  1 ( 13) 

Equation (13) describes the two-dimensional square of 
side 2% shown below: 

The following geometry results when the axes are 
rotated 45 deg using the transformation u = 2-lh(x - y), 
v = 2-4(J(x + y): 

In vector notation, we have w = U z ,  where 

is the orthogonal matrix defining the rotation, and 
w = col(u, v) denotes a vector in the new coordinates. 
ReferriFg to the above sketch, it is easy to see that the 
point w = W(?) that is nearest to the received point w 
is given by 

where satu = u for 1.1 < 1, satu = sgnu for lu lh l ,  
sgnu= 1 for u L 0 ,  and sgnu = -1 for u<O. 

The region lu lZlv l  corresponds to the region 
sgn x = - sgn y; similarly, I u I < I v I corresponds to the 
region sgnx = sgn y. Therefore, 

A x = 2-%(&+G) 
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becomes The distribution of the true value of the delay T about 
the maximum-likelihood estimate ? is given by the 
a postmiori probability density p (T I IC), which is related 
to the conditional probability density ~ ( 9 1 ~ )  through 
Bayes' formula: 

% [sgn (x - y) + sat (x + y)] , 
55 [ s g n ( x  + y) + sat(x - y)] , 

s g n x  = -sgny 

sgn x = sgn y 

= % [ I +  s a t ( ( x I - ~ y ~ ) ] s g n x  t 15) 

Next, from Eq. (11) we have = (1 - $) T/4 ,  and from 
Eq. (12) it is evident that sgn ~ = ~ g n  y .̂ Also, sgn $=sgn y. 
Therefore, 

c 
- = % { 1  - M [ 1  +sat(1x1--Iy1)]sgnx)sgny T 

= Ys[2sgny - sgnxsgny - sat(xsgny - ysgnx)] 

(17) 

The last expression for $' can be implemented easily 
in either digital or analog fashion. The pieces of analog 
equipment required) in addition to the correlators, are 
three multipliers, three adders, two hard limiters, and 
one soft limiter. The complete mechanization is shown 
in Fig. 1. 

since p ( T )  = 1/T. The conditional probability density 
p (C1 T ) ,  on the other hand, determines the distribution of 
the maximum-likelihood estimate pabout the true value T .  

It is clear from Bayes' formula that the plot of p (7 19 
versus T is of the same shape as that of p ($1.) versus T 

[but not the same shape as that of p ($1 T )  versus $1. 

It is a straightforward matter to determine p ( ? I T )  ana- 
lytically. Thus, the probability of obtaining ? = 0 is equal 
t," the probability of decoding w = col (u, v )  as the corner 
w = (2-'4 2-M). This happens if, and only if, u > 2-W 

Fig. 1 .  Range estimator mechanization 
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and v > 245; hence, 

] du dv 
(u - Z ) Z  + (v + Z ) Z  

= c Le- [- 20.2 

where 

Q (a)  = ( 2 ~ ~ ) - % l "  exp ( -b2/2a2) db  (20) 

and Pr{ - } denotes probability (as opposed to proba- 
bility density). In the present context, p (2 = 0 I T )  = 
8 (t) Pr {.̂  = o ~ T } ,  

Similarly, 

Next, wz determine p (F IT)  for - ( T / 4 )  < T < 0. In this 
region, u = 2-% and 161 < 2-'h with 6' = 2-% [ 1 + (8?/T)] .  
Therefore, 

A However, u = 2-% and 6 = v if, and only i f ,  u> I v I = 16'1 ; 
hence, 

and 

1 1 - (8?/T) - 2% V 
x exp[ - 402 

A similar procedure is used for the remaining regions. 
The end result is 
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The conditional probability density p (PIT)  is plotted 
in Fig. 2 for several values of u and T E [0, T/8]. The 
plots for T E  [T/8, T/4] are then obtained by reflecting 
the original set of graphs about the axis $= T/8. Sim- 
ilarly, p (PIT)  for T E [T/4,3T/8] is a reflection about 
T - T/4 of the plot of p (91 T) for T E  [T/8, T/4], etc. A- 

The a posteriori probability density p ( T I  e) is plotted 
in Fig. 3 and satisfies the same conditions of symmetry 
as p (PI T ) .  However, it should be observed that p (T I ?) has 
no delta functions even though p ($1 T )  does. Since p (?) 
has delta functions at the same places as p (?I T ) ,  the delta 
functions cancel in p ( T  I ?) = p (.*I T ) / T ~  (9). 

4. The General Two-Correlator Problem 

The preceding discussion was concerned with making 
the best estimate, given the outputs x and y of the two 
orthogonal square-wave correlators. It is logical to inquire 
now whether there may not exist a better choice of cor- 
relators (assuming, of course, that the correlator outputs 
can always be processed in an optimum manner). 

One measure of the performance of a correlator is the 
SNR: 

The sum of the two SNRs is then 

For the square-wave correlators, Z ( T )  is on the square of 
side 2% and p Z ( . )  varies from a maximum of l/u2 to a 
minimum of 1/22 with periodicity T/4. The average 
value of pZ ( T )  when T is uniform on (-T/2, T/2] is, 
therefore, 

2/32 (28) 

This average value would be obtained during acquisi- 
tion, when there is no knowledge of T other than that it 
is equi-probable on (- T/2, T/2]. However, once an esti- 
mate ? has been obtained, the receiver can readjust the 
local zero reference to C and obtain p X ( r  -9) with an 

a posteriori average of 

The continual updating of the local zero reference to 
the latest estimate ? is known as tracking and can be 
implemented with a phase-locked loop. As the estimate 
9 improves, p (T [ c)  approaches 6 (T - ?) and 

which is the theoretical maximum. Therefore, the use of 
square-wave correlators is optimum during tracking. 
However, it is still necessary to determine the best two 
correlators for acquisition purposes. 

5. Optimum Correlators for Acquisition 

Suppose that r ( t )  is correlated with some pair of 
periodic, orthonormal, but otherwise arbitrary, time func- 
tions f ( t )  and h(t). Then, the correlator outputs are 

or 

f = b f S  (4  + nf 

and 

where + f s  ( T )  and +hs ( T )  are cross-correlation functions, 
while nf and n h  are independent zero-mean gaussian ran- 
dom variables of variance u2. Consequently, 

- 
= P f  +El (34) 

205 JPL SPACE PROGRAMS SUMMARY 37-53, VOL. 111 



2.5 

2.0 

1 .5  

- 
b - 

% a 

1.c 

0.5 

C 

206 

1 I I 10 I 
u =  1/4 

20 

16 

12 

a 

4 

C 

u = 1/8 

I. - 1/4 1/4 1, 
?/T 

Fig. 2. Conditional probability density p (PI TI vs $11 for various values of u 

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. 111 



<T - 
c 
Q 
v 

-1/4 1 

- 1/2 - 1/4 0 1/4 1 

8 

6 

- 
<Ir 
v c 4  
Q 

2 

0 

I I I 

u =  1 

I I I 

cr = 1/2 

A 

- 1/4 0 1 

./T 

16 

12 

8 

4 

C 

I I I 

u = 1/4 

? = O  

T/32 

3T/32 

T/8 

T/16 

0 1/4 -1/2 -1/4 

32 7 
cr = 1/8 

2 4 ~  

64 

42 

3; 

1( 

( 

I 

Fig. 3. A posteriori probability density p 1~)1\7) vs ?/T for various values of (I 

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. 111 207 



Now, 

Similarly, with equality if, and only if, 

- ph = $ (&) lMT lNT h (t) R (t - u) h (u) dt du 

(36) 

2am 2 ~ m  
T T f ( t )  =usin-t+bcos-t 

where m i s  the subscript of smm. Consequently, the opti- 
mum choices for f ( t )  and h(t) are 

However, R(t) is an even periodic function of period T 
with a positive spectrum: 

(37) 
27rk R ( t  - u) = 2 sicos (t - u) 

k 

Also, f (t) and h (t) are periodic functions of the general 
form 

f ( t )  = ~ ( u k s i n - ? ; t + d k c o s - t  2ak 2xk T ) (38) 
k = 1  

with 

k=1 

k = i  

Therefore, 

f ( t )  = 2ucos(Tt  2 ~ m  + e )  

2 ~ m  h(t)  = 2usin (T t + 8 )  

(43) 

(44) 

where e is arbitrary and p =  s&/u2. In addition, pf (T) is 
now independent of T ;  hence, 

In the case of a square wave, s& =s: = 8/2, and we 
obtain 

p (T) =7= 8/7r2a2 (46) 

which shows that the theoretical maximum of l/u2 is 
unachievable in the square-wave case. 

For this choice of correlators, the maximum likelihood- 
estimate is well-known to be (Ref. 1) 

(41) 

(47) 
A -  T T 
T - - arctan (y/x) + - (1 - sgn x )  27r 2 

where 

u) dt du 1 dlT 

x = r (t) cos (2&/T) dt 

Y = &lMT r (t) sin 

(42) are the correlator outputs. 

(27rt/T) dt 
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6. Mean-Square Error 

The probability densities p (T I?) and p (el 7 )  contain all 
of the statistical information about the performance of 
the estimator. Of particular interest, however, is the 
a posteriori mean-square error 

1 
2 
- 1 

Table 1. A posteriori mean-square errors 

I I A porferiori mean-sauare error for indicated u I 
1 - 1 1 

4 8 16 
- - 

since it gives the scatter of the true value of the delay 7 
about the maximum-likelihood estimate k It is easy to 
show that this a posteriori mean-square error approaches 
a2/32 as u2 goes to zero, provided ?# +-kT/4, k = 0, I, 2,3. 
This is because p ( ~ l $ )  tends to a gaussian density of 
mean $/T and variance 2/32. At $ = +kT/4, however, 
 TI?) is proportional to Q ( 4 * 2 % 1 ~  - 3 1 / T ) .  Thus, if 
u2 + 0 and x = (T --?)/T, we can write 

lrn x2 Q (402% x) dx 

LrnQ(4-2sx )dx  
- - 

Integrating by parts and noting that 

Q' (4 * 2% x )  = (2m2)-% exp (-32 x2/d) 

we obtain 

0.865 0.703 0.667 0.667 
1.300 1.250 1.050 0.905 0.910 
1.430 0.910 0.910 0.995 

3/32 1.560 2.300 0.900 0.995 0.995 
1.390 3.700 2.000 1 .WO 1 .WO 

8. Analysis of Narrow-Band Signals Through 
the Band-Pass Soft Limiter, R. C. Tausworthe 

1. Introduction 

Several authors (Refs. 13) have examined the output 
SNR characteristics of the so-called "soft" limiter, giving 
several approximations for the output signal and noise 
terms as functions of the input parameters, The ensuing 
article illustrates that, under a widely accepted model 
of the soft limiter, the output signal power and signal 
suppression can be found exactly in terms of the hard- 
limiter signal-suppression function. The output noise is 
correspondingly then well approximated. 

2. limiter Suppression Factor 

In the discussion below, we shall assume that the fol- 
lowing device input 

= u2/48 

The above analytical results have also been verified 
numerically on a general-purpose digital computer. Nu- 
merical values of the a posteriori mean-square error in 
units of 2/32 are tabulated in Table 1 for 3 = kT/32, 
k=0, * ,4, and u=2-IC, k=0, * * * ,4. 

Reference 

1. Viterbi, A. J., Principla of Coherent Communication, pp. 129. 
McGraw Hill Book Company, Inc., New York, 1988. 

is a narrow-band waveform consisting of a signal im- 
mersed in gaussian noise of variance &: 

x (t) = V (t) sin [ m o t  + e ( t ) ]  + n ( t )  

= Vsin4 + n ( t )  (1) 
where 

v = V(t) 

(b = m o t  + 8 ( t )  

It has been shown (SPS 37-44, Vol. IV, pp. 303307) that 
the portion of the limiter output due to input signal is 

G(Vsin+) = E [y(x)lVsin+] 

= c,sin+ f c2sin2+ + . * . (2) 
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in which the coefficient Suppression is probably computed with least didiculty 
in this case through the approximation given in Eq. (6). 

3. Soft limiter Model 

We shall take as the model of the soft limiter the 

(3) 

represents the amplitude of the signal in the kth har- 
monic zone. For the hard limiter, the ck have been 
evaluated as 

function plotted in Fig. 4: 

y =  L e r f [ ( g ) x ]  = Lerf(Bx) (8) 

where erf ( x )  is the well-known error function (Ref. 4) 

ck = L ( t )  M v  (G)l:cos+cosk+exp 

(4) 
(9) 

and B = K&/2L. for odd k, in terms of the parameter v = V( t ) /uN and 
the modified Bessel functions of the first kind (Ref. 4). 

Our model is thus seen to possess the following char- 
acteristics: For values of x much less than 2L/Kig, the 
device acts as a linear amplifier with voltage gain K. For 
inputs x much larger than 2L/KrM, signal limiting occurs, 
with the limit level L. Further, as K +  00 for fixed L, the 
device becomes a hard limiter, and as L -+ 00 for fixed K, 

With an input SNR of p the hard-limiter suppression 
factor a2(p) is defined as the ratio of the fundamental 
signal output power to what it would be if noise were 
absent. When V ( t )  is a constant amplitude, 

1 
p = - V 2 ,  2 

the device becomes a linear amplifier. The soft limiter 
model we have chosen thus degenerates to previously 
analyzed devices in limiting cases. 

so 
Evaluation of the limiter performance thus now de- 

pends only upon finding G (V sin +) and its Fourier co- 
&cients for the assumed characteristic. In the present 
case G(Vsin$) takes the form 

( P )  = ' 4 pe-" [ 10 (i) + 11 (i)] 
An excellent approximation for a* (Ref. 5) is 

(5)  

G(Vsin+) = Jim erf B(Vsin+ + n) 
V N ( 2 T ) %  -m 

X exp {*} dn (10) 
(6) 

0.7854 p + 0.4768 p2 

= 1 + 1.024 p + 0.4768 p2 
2ui 

If, however, V ( t )  is time varying, then the input SNR is 
Although the results to follow are quite general, we shall 
evaluate only the behavior in the fundamental output 

p = E ( $ v 2 )  zone: 

1 
and 

a2 ( p )  = E [ (+ v ~ ) ]  (7) sin+ erf [B (Vsin+ + n)]  d+ (11) 
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The inner integral can be integrated by parts to give 

F = FlI cos2 + exp { - B2 (V sin + + n)2} d+ (12) 

which, when inserted back into the expression for C, pro- 
duces the relation 

c1 = 2%BLV/T cos2+ exp { - [( B2 +- 1 )  
m?x2 -T -W 205 n2 

+ 2B2V n sin + + B2V2 sin2 ( 13) 

The inner integral is tabulated (Ref. 4): 

exp { - (at2 + 2bt + e ) }  dt = 

(14) 

Mere substitution thus provides 

(15) 

in terms of the parameter ratio 

But the form of c1 is now recognized to involve the same 
integral as that of the hard limiter, except with a differ- 
ent v. As a consequence, the results for a soft limiter are 
expressible in terms of the hard limiter suppression fac- 
tor 2. For example, the device output power P,, con- 
sidering V ( t )  = V as a constant, is 

and, if V ( t )  is time varying, P, is 

Here again we can define a signal suppression factor .I: 
as the ratio of signal output powers with and without 
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noise. Because of the last equation above, we see this 
can be written as 

in the simpler, constant-V case. This function appears 
plotted in Fig. 5 for various values of VK/L. 
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Fig. 5. Suppression factor a; and normalized output signal power PJL2 as functions of input SNR 
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that which can be integrated by parts to produce 

a:+ a2 

as it should, and as 

(approaching a linear amplifier) x [ Io (Bp) - 4- Zl(T)] (28) 

This expression is the same as c1 for the signal output 
portion only, except for the substitution u = 2% BV,,. The 
total limiter output power is 

for a fixed K, that 

1 
Ps+n = E (a?) 

(21) 
K2V2 ( t )  Ps+ E [T] = K2PSi, 

as it should. 

4. Noise Output Power 
(29) 

8 
TZ 

= -E [az (B2V&)] 

P S +  P (linear region) 

whereas, when severe clipping is taking place, 

8 
7r2 

P,,, -L2a2 [B’E (VZ,)] 

(limitingregion) (23) cy2 ( P I  
1 - CY2 (P> Thus an asymptotically correct approximate expression 

for the output SNR of the device is 

p s - )  pt = 

(considering now only the constant-V case). The cross- 

when the input begins to saturate. 
over between these two conditions begins at the point P 

. i [ l + ( l l - ) ‘ P ]  (31) 
P 

pl = Considering that the noise may be decomposed into 
independent in-phase and quadrature-phase terms 

7rs VK 7rs VK 

Finally, of interest is the ratio rs of the input and 
output signal-to-noise densities at the fundamental fre- 
quency; this function is needed when the limiter output 
filter is considerably narrower than the bandwidth of the 
input process. It is clear that in the linear region, the 
SNR is preserved so that 

n( t )  = n,cos+ + n,sin+ (24) 

= ug, then it is immediate that (t) takes in w&c-, c2, = 
the form 

(25) x (t) = Veq (t) sin +e, 

with the amplitude function 
(linear region) (32) 

Nt No 
P s  Psig 

-=- 

V&(t) = (V + n,)2 + n2, (26) 
i.e., r, = 1. At the other extreme, it has been shown 
(Ref. 5) that The amplitude of d e  output fundamental term is 

-_- (27) N o  Ps - (‘1 Psi, N o  (limitingregion) (a) a, =;~*erf(BVeqsin+)sin+d+ 1 
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where r (p) is approximately 5. Conclusions 

Depending on the parameter VK/L, the soft limiter 
performs in varying degrees between the characteristics 
of a linear ampBer and a hard limiter. The performance 
parameters are furthermore expressible in terms of the 
hard-limiter suppression function under a change of vari- 
ables. Such parameters include the output signal and 
noise powers, signal suppression factor, output SNR, and 
output signal-noise-density ratio. 

I f f  
(’) = 0.862 + p 

In the transition region, r, lies somewhere between 
1 and r. Thus a simple asymptotic approximation to the 
true behavior can be expressed in the form 

1 + aPi,  r 
1 + aPi,  r, = (35) 

in which the parameter a can be chosen to make a good 
fit in the transition region. To match the same type of 
crossover that we notice between P, and P,,,, we can take 

to provide 
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