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1.  Eisenberger 

1. Introduction 

The density function, g (x) ,  of a mixture of two normal 
distributions with proportions p and 1 - p ,  is given by 

+-exp[ 1 - P  --5(+)’] 1 x -  
0 2  

The problem of estimating p using a small number of 
sample quantiles, when the parameters of the normal 
distributions are known and the sample sizes are large, 
was considered in SPS 37-32, Vol. IV, pp. 263-268, where 
an estimator of p using four sample quantiles was pro- 
posed. Further study indicates, however, that it is pos- 
sible to construct estimators for p which, in general, will 
be more efficient than that proposed previously. In par- 
ticular, when p1#p2, we will give one estimator based 
on a single quantile and another based on a linear com- 
bination of six quantiles. It will also be shown that, in 
some cases, combining the two estimators gives the best 

results. For the special case p1 = p2, estimators using two 
symmetric quantiles give results comparable to that 
achieved using the four quantile estimators. 

For p1#p2, an investigation was made of 28 cases 
involving four sets of the parameters pl, p p ,  ul, and up, 
with values of p ranging from 0.05 to 0.95. Columns 2-6 
of Table 1 give the parameter values of each case. For 
pL1 = pa, 14 cases were considered. These values are given 
in columns 2-6 of Table 2. 

Since estimation by means of sample quantiles is usable 
for on-board data compression in deep-space probes, the 
analysis will be given for each of the following conditions: 

(1) The orders of the quantiles must be fixed in advance. 

(2) The orders can be changed by signals from earth. 

2. Review of Quantiles 

To define a quantile, consider n independent sample 
values, x l , x p ,  . . ,xn, taken from a distribution of a 
continuous type with distribution function H ( x )  and 
density function h(x).  The sth quantile, or the quantile 
of order s of the distribution or population, denoted by 
[ (s), is defined as the root of the equation H ([) = s. 
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Table 2. Variances of several estimators of the proportions in a 
mixture of two normal distributions for p1 = p2  
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2.158 0.3688 
2.101 0.5796 
1.956 1.171 
1.999 1.563 
2.251 1.812 
2.702 1.937 
2.846 1.949 

2.133 0.8724 
1.966 0.8923 
1.438 0.9045 
1.096 0.8094 
0.9432 0.6034 
1.048 0.2672 
1.100 0.1532 
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0.05 0 
0.10 0 
0.30 0 
0.50 0 
0.70 0 
0.90 0 
0.95 0 

0.05 0 
0.10 0 
0.30 0 
0.50 0 
0.70 0 
0.90 0 
0.95 0 

That is, 
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s = f:’ dH (x)  = 1:’) h ( x )  dx 

u2 

0.s 
0.5 
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1 3  
1 3  
1 3  
1 3  
1 3  
1 3  
1 3  

The corresponding sample quantile, z(s), is defined as 
follows: If the sample values are arranged in non- 
decreasing order of magnitudes 

0.0063 (0.9937) 1.050 0.521 8 3.470 
0.0155 (0.9845) 1.607 0.7906 3.468 
0.0574 (0.9426) 3.207 1.506 3.680 
0.1003 (0.8997) 4.438 1.972 4.438 
0.1425 (0.8575) 5.473 2.281 5.990 
0.1839 (0.8161) 6.361 2.464 8.436 
0.1 941 (0.8059) 6.563 2.491 9.185 

0.2624 (0.7376) 3.407 1.097 5.858 
0.2485 (0.7515) 3.305 1.106 5.280 
0.1918 (0.8082) 2.830 1.079 3.361 
0.1346 (0.8654) 2.247 0.9488 2.247 ’ 0.0773 (0.9227) 1.538 0.7043 1.988 
0.0223 (0.9777) 0.6453 0.3 1 53 2.187 
0.0099 (0.9901) 0.3677 0.1 820 2.273 

then x ( i )  is called the ith order statistic, and 

where [as] denotes the greatest integer gas. 

Reference 1 shows that if h ( x )  is differentiable in some 
neighborhood of each quantile value considered, the 
joint distribution of any number of quantiles is asymp- 
totically normal as n+ co and that, asymptotically, 

where plz is the correlation between x(sJ and x(s2) ,  
81 < sz. 

Throughout the remainder of this article, F ( x )  and 
f (xf = F’ (x) will denote the distribution function and 
density function, respectively, of the standard distribu- 
tion. That is, 

where 

Thus, the density function of a mixture of two normal 
distributions can be written as 

and the population quantile [(s) can be defined as 

Since we are assuming a large sample size, the asymptotic 
distribution of the sample quantiles will be assumed. 

3. Estimators of p Using Quantiles for pl # p2  

In Eq. (2), 5 (s) is defined uniquely for a fixed value of s. 
This relationship provides a simple estimator for p using 
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one quantile. Replacing 5 (s) in Eq. (2) by the correspond- 
ing sample quantile z(s)  and solving for p, one obtains 

which is easy to compute from a table of the standard 
normal distribution. 

The estimator Gl is asymptotically unbiased and its 
asymptotic variance is given by 

where a&/ag (s) denotes the partial derivative a&/az (s) 
evaluated at x (s) = E ( z  (s)) = < (s). Since Var (&) de- 
pends upon the value of p as well as upon the parameters 
of both the normal distributions, the optimum value of s 
[i.e., the value of s that minimizes Var(&)] cannot be 
determined if one has no knowledge of pl. However, the 
optimum s can be determined with little d8culty once 
p is known. Column 7 of Table 1 gives this optimum value 
for all cases considered. Column 8 of Table 1 gives 
Var(p:) when this value is used. 

If the order of the single quantile to be used in esti- 
mating p must be specified in advance, a reasonable 
choice is to set s = 0.5. Column 9 of Table 1 gives the 
variances of the estimator Cl for this choice of s. If, how- 
ever, one can choose s after the parameters are known, 
a generally better procedure is to use the value of s that 
gives optimum results for p = 0.5. Column 10 of Table 1 
gives Var (Fl) when this procedure is adopted. 

The mean of a mixture of two normal distributions is 
given by 

P = E (4 = Pp1 + (1 - p )  p2 

Solving for p in Eq. (4), one has 

P - P2 

p = z = z  

If one now estimates p using quam iles ,(ob 

(4) 

_ _  aining c), an 
estimator for p using quantiles is given by 

A 
A P - P 2  

p=FG 

Optimum unbiased quantile estimators of the mean and 
standard deviations of a normal distribution are derived 
under various conditions in Ref. 2. The estimators of the 
mean, which are linear combinations of pairs of sym- 
metric quantiles, are relatively insensitive to deviations 
from normality in the sense that they are unbiased when 
used to estimate the mean of any distribution whatever 
with a density function symmetric about its mean. In fact, 
for asymmetric distributions with the type of density 
function given by g (x), the bias is small if at least several 
pairs of quantiles are used. In particular, a suboptimum 
estimator of the mean using six quantiles is derived in 
Ref. 2 where the orders of the quantiles are chosen for 
the purpose of estimating the mean and standard devi- 
ation using the same quantiles. This estimator is given by 

A -  
p6 - 0.0497 [ X  (0.0231) + X (0.9769)] 

+ 0.1550 [ z  (0.1180) + z (0.8820)] 

+ 0.2953 I: z (0.3369) + x (0.6631)] 

Using 
variances and values of $6, given by 

in Eq. (4) gives the estimator $6. The expected 

were computed for all cases and are shown in columns 11 
and 12, respectively, of Table 1. It can be seen from 
column 12 that, except for case 9, the bias is not exces- 
sive. From column 11, it can also be seen that, in most 
cases, the variance of & is less than those of the two 
previous one-quantile estimators. 

In some cases, a better estimate can be obtained by 
averaging the one- and six-quantile estimates obtaining 
either 

or 

p 7  = s(Fl + F G )  

The asymptotic variances of G7 and F7 were computed 
and are given in columns 13 and 14 of Table 1, respec- 
tively. It can be seen that, in almost all cases, either the 
six- or seven-quantile estimator. has a smaller variance 
than the corresponding one-quantile estimator. Thus, it 
remains to be decided when to use a seven- rather than 
a six-quantile estimator. If one divides the 28 cases into 
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four blocks, as shown in Table 1, it is readily seen that, 
for fixed values of u1 and uZ, if pl - p2 is su5ciently small, 
the seven-quantile estimator should be used. On the 

quantile estimators have smaller variances than the cor- 
responding ML estimators (but larger square errors). 

other hand,-if pl - p2 is sufficiently large, the six-quantile 
estimator should be used, It is then reasonable to infer 
that, for some range of values of p1 - pz, it makes very 

4. Estimators of p Using Quantiles for pl = pz 

If p1 = pz = p, it can be seen from Eq. (1) that 

little difference, practically speaking, which estimator 
is used. 

so that g (x) is symmetric about x = p, and E (x) = p, 

independent of p. Moreover, in the estimator using one 
quantile given by Eq. (3); namely, 

An estimator using m Wantiles can be constructed as a 
linear combination of one-quantile estimators as follows: 

where 

A and p i  denotes the one-quantile estimator using the 
quantile of order si. For a given value of p ,  one can 
determine, theoretically, the 0 1 ~  and si that will minimize 
Var(Fm). Increasing m will decrease this minimum vari- 
ance. However, in practical situations where one can, at 
best, optimize with respect to only one value of p, say p, 
aqd then use the resulting estimator no matter what p is, 
the results for values of p other than i j  may be very poor. 
In the event that the order of the quantiles must be speci- 
fied in advance, the probability of getting poor estimates 
increases sharply. Moreover, in this case, increasing the 
number of quantiles almost ensures one of getting poor 
results. The estimator proposed in SPS 37-32, Vol. IV is 
of the type given in Eq. (6) with m = 4 and ai = 1/4 
(i = 1,2,3,4). The variances of these estimators were 
computed for all cases and are shown in column 15 of 
Table 1. 

The asymptotic variance of the maximum-likelihood 
(ML) estimator, denoted by p*, is given by 

1 
Var(p*) = - 1 

In order to show how “good” the quantile estimators are 
compared to the best possible asymptotically-unbiased 
estimator using all the sample values, the Var(p*) were 
computed for all cases and are given in column 16 of 
Table 1. It is interesting to note that some of the biased 

s = 0.5 cannot be used since < (0.5) = p. However, due to 
symmetry, if for a given value of p ,  so is optimum, then 
1 -so  is also optimum. Column 7 of Table 2 gives the 
two values of opts for all cases, column 8 gives the vari- 
ances of the estimators using one of the optimum values 
of s, and column 9 gives the variances when each is used 
and the results averaged. Columns 10 and 11 give the 
variances of the one- and two-quantile estimators, respec- 
tively, if one uses for each case the optimum values of s 
for p = 0.5. The same procedure holds that was suggested 
in the case pl =# pz if the orders of the quantiles can be 
chosen after one knows the values of the parameters. 

In order to assist in making a decision as to the specifi- 
cation of the orders of the quantiles when this decision 
must be made in advance, a study was made of the be- 
havior of the optimum values of s for p = 0.5 as the ratio 
of the standard deviation varies, since these optimum 
values, and the variance of the estimators based on them, 
depend only on this ratio. Figure 1 is a plot of the larger 
of the two values of opts as u2/al (ul/uz) increases from 
unity. 

Column 12 of Table 2 gives the variances of the four- 
quantile estimators proposed in SPS 37-32, Vol IV; col- 
umn 13 gives the variances of the ML estimators. It 
should be observed that, no matter which estimator is 
used, if the computed estimate of p is negative or greater 
than one, the estimate should be taken as zero or one, 
respectively. These end effects were not taken into 
account in the above analysis since, for large sample 
sizes, they would be significant only for values of p close 
to zero or one (the estimators would be biased but have 
smaller variances). 
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Fig. 1. larger of two values of opt s for p = 0.5, pL1 = p2 

5. Estimating p From Real Data Using Quantiles 

A table of random digits can be used to obtain a sample 
quantile z(s) of order s from a sample of size n drawn 
from a population with distribution function G (x). A set 
of n k-digit numbers is drawn from the table and the 
sample*quantile (v/s) of order s is determined from the 
sample. The desired sample quantile Z(S) of G(x) is 
obtained by solving for ~ ( s )  in the equation 

[ u  (s) + 0.51 = G CZ (s)l 

This procedure was adopted with n = 256 in order to 
obtain sample quantiles necessary for estimating p for 
cases 2, 10, 18, 26, 31, and 40. The results for each case 
are as follows: 

(1) For case 2 with p = 0.1: 

$1 = 0.0137 b 6  = 0.1178 

j% = 0.1022 f i r  = 0.0658 

F4 = 0.2391 c7 = 0.1100 
(2) For case 10 with p = 0.3: 

Fl = 0.3275 = 0.2765 

= 0.3271 b7 = 0.3020 
.# T4 = 0.3269 pr = 0.3013 

(3) For case 18 with p = 0.5: 
A = 0.5068 p 6  = 0.4274 

j& = 0.4671 

jY7 = 0.4723 

cl = 0.5172 

F4 = 0.2733 

(4) For case 26 with p = 0.7: 

= 0.6988 0 6  = 0.7317 

= 0.7309 & = 0.7153 

g7 = 0.7313 T4 = 0.7827 

(5) For case 31 with p = 0.3 and pl = p z  = 0: 

z2 = 0.2315 F4 = 0.2868 

(6) For case 40 with p = 0.7 and 

Fz = 0.7678 

= p 2  = 0: 

F4 = 0.7368 
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B. Epsilon Entropy of Gaussian Processes, 
E. C. Posner, E. R .  Rodemich, and H .  Rumsey, Jr. 

1. Introduction 

This article shows that the epsilon entropy of any 
mean-continuous gaussian process on L, [0,1] is finite 
for all positive E. The epsilon entropy of such a process 
is defined as the infimum of the entropies of all partitions 
of L, [0,1] by measurable sets of diameter at most E, 
where the probability measure on L, is the one induced 
by the process. Fairly tight upper and lower bounds are 
found for the epsilon entropy as E + 0 in terms of the 
eigenvalues of the process. The full article on this subject 
has been submitted to the Annals of Mathemtical Sta- 
tistics; proofs are omitted in this summary. 

Let x (t)  be a mean-continuous gaussian process with 
mean zero on the unit interval. Its covariance function 
R (s, t) is then a continuous function on the unit square 
and its eigenfunction expansion 

converges uniformly (Ref. 1, p. 478). The eigenvalues 
A, = uk are non-negative numbers with z A, < to. The 
eigenfunctions {& (t)} are continuous and form an ortho- 
normal system in L, [0,1]. 

If we assume the process is measurable (Ref. 1, p. 502), 
then the paths are functions in L, [0,1] and we can take 
L, [0,1] as the probability space. This gives a measure 
on the Borel sets of L, [0,1], which is uniquely deter- 
mined by the covariance function. 

One way of determining this measure is to take our 
process to be the sum of the Karhunen-Lokve series 

where the {x,} are independent gaussian random vari- 
ables, with 

E x ,  = 0,  E G = A n .  

If we take a, to be the product space of the x,, this 
series converges in 

L, {LO, 11 x no}. 

The subset Q of a,, on which 2 x i  < to, has probability 1 
and is a Hilbert space under the norm 

The map {x,} + x (t) is an isometry of Q onto the sub- 
space Q* of L, [0, 11 generated by the eigenfunctions. This 
mapping induces a measure in L, that is concentrated on 
the subspace a*. 

For E > 0, we define an E-partition of X = L, [0,1] 
(with the given probability measure) to be a finite or 
denumerable collection of disjoint €-sets (Borel sets of 
diameter&€) that cover a subset of L, of measure 1. 
More generally, an ~;S-partition is such a collection 
of sets that omits a subset of L, with measure no 
greater than 6. Let such a partition U consist of sets Ui 
of measures 

p i  = P p J i ) ,  z p i  = 1. 

Then the entropy of U is defined as the entropy of the 
discrete distribution p l ,  p,, . . : 

H ( U )  = E p i l o g - .  1 
P i  

(We use logarithms to the base e for convenience.) 

The €-entropy of X ,  HE(X), is the infimum of H ( U )  
over all €-partitions U of X .  The E; 6-entropy HE;8 ( X )  is 
defined similarly as the infimum over all E ;  6-partitions. 
If U = {Vi} is an E ; &partition with 

z pi = m 2 1 -  6, P ( U i )  = pi 7 

then 

m 

These concepts were introduced in a more general setting 
in Ref. 2. It was shown there that HE;& (X) is finite for 
6 >o. 

Note that any partition U can be restricted to the sub- 
space Q" of L, [0,1] on which the measure is concen- 
trated. This subspace can be identified with the Hilbert 
space Q of 'sequences {x,} where the coordinates are 
independent gaussian random variables. Thus, the E- 

entropy of the process depends only on the measure 
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on n, and not on how is embedded in L, [0,1]. That 
is, the E-entropy is a function only of the eigenvalues {An}. 

The purpose of these definitions is to make precise the 
notion of data compression. Thus, H,(X) is the channel 
capacity needed to describe sample functions of X to 
within E in L,-norm with probability 1.l Reference 2 
showed that for mean-continuous, but not necessarily 
gaussian, processes X on the unit interval, the following 
holds : 

be finite. The reason that H ,  (X) is always finite for a 
gaussian process when E > 0 is that the partitions used 
to show finiteness of HE (X) involve finite-dimensional 
subspaces of L, [0,1] generated by an arbitrarily large 
finite number of eigenfunctions. As we shall see, the 
partitions used on these subspaces differ essentially from 
products of one-dimensional partitions. 

2. Continuity of HE (XI 

(1) H ,  (X) is finite for every E > 0,provided the eigen- 
values h, of X (written, as usual, in non-increasing 
order) satisfy 

ZnX, < 00. 

(2) If, on the other hand, 

ZnA, = 00, 

then there exists a mean-continuous process X on 
the unit interval such that, for every E >  0 no 
matter how large, H , ( X )  is infinite. 

One of the principal results of this article is that, if 
X is a gaussian process, H,(X) is finite for every posi- 
tive E nb matter how small and no matter how slowly 
the eigenvalues h, approach 0 (as long, of course, as 
2 h, < 00) .  Another is that H, (X) is a continuous func- 
tion of E for a fixed mean-continuous gaussian process X 
on the unit interval. We also find upper and lower bounds 
for H, ( X )  that are reasonably tight as E + 0. These bounds 
are given in terms of the eigenvalues of the process. 

In this subsection, it will be shown that if X is a mean- 
continuous gaussian process and E > 0, then H ,  (X) is 
continuous in e; we shall assume the result, to be proved 
later in the article, that H ,  ( X )  is finite for every positive E. 

Since the continuity of H, in E is not used subsequently, 
there is no loss in the assumption. 

Reference 2 shows that if the measure p on X has no 
atoms, then 

H,(X)+ ooasE-+O. 

Since X has at least one positive eigenvalue (because we 
assumed that R (s, t) is not identically 0),  p is non-atomic. 
Thus, if H ,  (X) is interpreted as + 00, H ,  (X) is continuous 
even at 0. 

Continuity from above in E was proved in Ref. 2. Thus, 
the only thing that remains to be shown here is that H, (X) 
is continuous from below (for E > 0). This is proved in 
Theorem 1 in a more general context: the E ;  &entropy 
H E ; 6  (X) is continuous from below in E for 8 ’0. The 
following required lemma is of interest in its own right. 

Lemma 1.  If X is the Hilbert space of a mean- 
If the Only Partitions of Lz 1’7 ‘1 

of Partitions Of each eigenfunction 
are Products 
the resulting 

continuous gaussian process on the unit interval, the set 
of extreme points of any convex set in X has measure 

entropy, called product E-entropy, need not be finite., 
In fact, a necessary and sufFicient condition that product 
€-entropy be finite for one (or all) positive epsilon is that 
the “entropy of the eigenvalues” 

zero. 

We can now state Theorem 1. 

1 
A n  

z A, log - 
Theorem 1. The E ;  %entropy of a gaussian process on 

L, [0,1] is continuous from below in E for fixed 6. 

‘Posner, E. C., and Rodemich, E. R., “Epsilon Entropy and Data 
Compression” (in preparation). 

‘Posner, E. C., Rodemich, E. R., and Rumsey, H, Jr., “Product 
Entropy of Gaussian Distributions,” (submitted to Ann. Math. 
Statist. ) . 

3. Lower Bounds for HE (XI 

In this subsection, we derive some lower bounds for 
the E-entropy of a mean-continporn gaussian process on 
the unit interval. 
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First note that for any €-partition U = {Vi} of X ,  if 
U ( x )  denotes the set Ui containing x,  we have 

H ( U )  =Elog{k[U(x)l). 

This expression is decreased if we replace U ( x )  by the 
sphere of radius E about x. It follows that 

where d denotes the metric in X and E,  indicates that 
the expectation is to be taken with respect to y. The first 
lower bound to be derived is a lower bound for the right 
side of Ineq. (2). 

First, we need the upper bound for 

P { x  I d (x, Y) A €1 
obtained from Lemma 2. 

Lemma 2. If Z is a non-negative random variable with 
characteristic function f, then for a and b L 0, 

Pr { 2 L a}  L exp (bu) f (ib) . 
The next lemma gives an upper bound for the probability 
of the E-sphere about a fixed point y. 

Lemma 3. Let a mean-continuous gaussian process X 
have eigenvalues {A,}. Then, in the L, norm d, for any 
fixed YEX, we have 

exp (bez) 
[JJ (1 + 2bA,)jG p { X I  d ( x ,  y) "e} L inf 

b k 0  
n 

Using the estimate of Lemma 3 in Eq. (2), we arrive at the lower bound 

H ,  (x)  1 E ,  SUP { - be2 - c log (1 + + 
b%O 

The disadvantage of this estimate is that a set of diam- 
eter E containing y has been replaced by a sphere of 
diameter 26. Another lower bound will be derived that 
does not have this disadvantage. We first prove that the 
sphere of radius ~ / 2  about the origin has at least as much 
probability as any set of diameter E in X ,  a result of 
independent interest. Actually, strict inequality can be 
proved but is not needed. 

Lemma 4. Let X be the Hilbert space of a gaussian 
process, and V any measurable set in X of diameter at 
most E. Then 

where SE,, (0) is the sphere af radius ~ / 2  about the origin. 

(3) 

The following theorem presents two lower bounds: L, ( X ) ,  
derived from Eq. (3), and M , ( X ) ,  derived from Eq. (4). 
Note that L, (X) is always weaker, It is of interest mainly 
because of Theorem 4 (Subsection 4),which bounds H ,  (X) 
from above in terms of L, (X) .  

Theorem 2. Let X be a mean-continuous gaussian 
process with eigenvalues {A,}. Define b = b (E) 1 0  by 

Put 

and 
Applying Lemma 4 to Eq. (l), we get 

H ,  ( X )  log { [SE/, (0) I} - (4) 

1 
L, ( X )  = z z log [l + A, b (E)] 

(7) 
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Then where {A,} are the eigenvalues of the process. Then 

HE ( X )  1 M, ( X )  22 L, (X) .  

Next, we give an improvement on the lower bound 
M , ( X )  that is difficult to use in general, but will be 
evaluated for special processes in Subsection 4. This is 
based on the following lemma. 

Lemma 5. Let xl, . . . , x ,  be independent gaussian 
random variables with 

Exj = O ,  E x j = & > O ,  j = 1 , .  > 9%. 

Consider the n-dimensional probability space X of 
x1, . . * , x, under the euclidian metric d. Let 

a = (ax, . . . ,a,) 

be a fixed point of X with d (a, 0) > E and S, (a) be 
the set of points x with di (x, a) I E .  There is a translation 

x + x ’ = x + b  

such that, for any x in S, (a), the probability density p ( x )  
satisfies the inequality 

where q is 

n = 1  

the unique positive solution of 

The improvement to the lower bound M , ( X )  
be given. 

Theorem 3. Let X be the Hilbert space of 
continuous gaussian process on [0,1]. Define 
negative random variable q = q ( x )  by 

(8) 

(9) 

can now 

a mean- 
the non- 

( 10) 

A result of A. N. Kolmogorov’s [Ref. 3, Eq. (12)] im- 
plies that the e-entropy has a lower bound 

where N and 0 are defined (for 6 z A,) by the equation 

A simple, but lengthy, variational argument shows that 

with equality only in the case where AI = A, = * * * = An 
and A, = 0 for n > N .  (Kolmogorov’s bound is actually 
a bound for the problem of communicating X holding 
the expected square error to within E ~ . )  In the finite- 
dimensional case, a result in Footnote 1 gives an even 
more precise lower bound for H , ( X ) .  Hence, we do not 
have to use Kolmogorov’s bound. 

4. An Upper Bound for HE IX) 

In Theorem 4, we bound the e-entropy of a gaussian 
process from above asymptotically in terms of the quan- 
tity L, ( X )  introduced in Theorem 2. The method of proof 
uses a special partition of X .  To estimate its entropy, we 
need some preliminary lemmas which give bounds on 
the entropy of a finite dimensional gaussian distribution. 
The first of these lemmas bounds the probability of being 
outside a spherical shell centered on the sphere of 
radius nM for the joint distribution of n independent unit 
normal variables. 

Lemma 6. Let X be the n-dimensional euclidian space 
of n independent normal random variables of mean zero 
and variance 1. Let S be the spherical shell 

where 0 < d < nu, and 

v (n, d)  = 1 - p (S). 
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Then there is a universal constant C, such that There is a universal constant C, such that, if E > 2(n~)U, 

The next lemma bounds the €-entropy of the unit 
(n  - 1)-sphere with the uniform probability distribution. 

Lemma 7. Let X be the unit sphere in n-dimensional 
euclidian space with a uniform probability distribution. 
If P and y are positive numbers, then for E > 0, 

where C, depends only on P and y. 

The next lemma bounds the €-entropy of euclidian 
n-space under the joint distribution of n independent 
gaussian random variables. 

Lemma 8. Let X be the n-dimensional euclidian space 
of n independent normal random variables of mean zero 
and variances AI, . . . ,A,. Let 01 be a number between 
0 and 1, and for 

0 < (1  - CY)€ < 2(nA)M 

where A is the maximum of AI, - . * ,A,, Then, there is 
a universal constant C, such that 

if P, y are any positive numbers and C, (p, y )  is the con- 
stant of Lemma 7. 

An alternate upper bound is obtained in Lemma 9. The 
bounds of both Lemmas 8 and 9 are needed in Theorem 4. 

Lemma 9. Let X be the n-dimensional euclidian space 
of n independent normal random variables of mean zero 
with variances A,, * ,An). , A,, and A = max (Al, . 

H, (X) < C, n3I2 [ gexp ('zg2'>]: - 

where g = E/ [ 2 ( n ~ ) % ] .  

Now we are ready to state the upper bound of 
Theorem 4. 

Theorem 4. Let m be any positive number less than $5. 
Then 

He(X)ILrnc(X)[1+0(1) ]  

as E +  0. In particular, H ,  (X) is finite for X a mean- 
continuous gaussian process on the unit interval and 
E > 0. 

The idea of the proof is as follows: For any 6 > 0, X 
will be broken up as the product of a sequence of finite- 
dimensional spaces {.&} in a way that depends on 6 as 
well as on E, so that, for the optimum product partition U,  

H ( U ) I ( 1 +  6 ) L , € ( X )  [l + O(l)] .  

The meshes {~k} of the component partitions are sug- 
gested by Definition (5). The most natural product par- 
titions to try are one-dimensional product partitions, 
where we take 

for the partition of the kth coordinate. It turns out that 
this does not always work. In fact, if the eigenvalues 
decrease slowly enough, there are no one-dimensional 
product €-partitions with finite entropy (Footnote 2) even 
if Z hk is finite. However, for small E, this is the best way 
to handle the large eigenvalues, and there is a first range 
of k in which one-dimensional subspaces are used. Be- 
yond this point, the dimensions of the subspaces are 
consecutive integers beginning with 1. This sequence of 
subspaces is also split up into two ranges; up to a certain 
point, the entropy of the subspace is estimated by 
Lemma 8. Beyond this point, Lemma 9 is applied. 

5. Entropy of Special Processes-the Wiener Process 

By the Wiener process, we mean that gaussian process 
on [0,1] that has covariance function R (s, t )  = min (s, t) ,  
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and 
The same type of reasoning applies to the series for 

n = 1,2, . . . . (13) L, (X). We have by Eq. (6) 1 
A,  = 

7 r z ( n - + ) 2 7  1 

L ( X )  =--Zlog(l + bh,) 2 This can be treated as a special case of a more general 
process, such as the solutions of finite-order stochastic 
differential equations; in such cases, we have 

+ +la log (1 + bAt-p) dt  

A ,  5 An' , p > 1. 

First, we estimate L,(X) and ME(X) for such processes 
to get the upper and lower bounds of Theorems 2 and 4. 
Then, we use the lower bound of Theorem 3 to obtain 
the best known bounds for this class of processes. 

Using Ineq. (16), 

L, (X) z B,  E - w ( p - 1 ) 1  , 

where 

We need to b d  the asymptotic behavior of b as a 
function of E, given Ineq. (14) and 

Note that b + co as E + 0. If A, is any number greater 
than A, h, 4 Aln-p except for a finite number of values 
of n. Hence, 

m 

E2 < El + 0 (b-,)  . 
n = l  

It  is easily shown that, as b -+ 00,  

m 
A1n-P * A,t-pdt 

1 + bA,n-p 1 + b A p  
n = l  

Hence, 

Similarly, if A, < A, the reverse inequality holds. It fol- 
lows that 

or 

In applying Theorem 4, the growth rate of L,(X) is suf- 
ficiently small that we can put m = 1/2. Thus, Theorem 4 
gives us 

(18) HE (X) < 22/(P-1) B ,  ~ - [ 2 / ( P - l ) l .  - 
Now M,(X) can be quickly evaluated. From Eqs. (6) 

and (7) and Ineq. (16), 

and 

In examining the lower bound of Theorem 3, we first 
state a general lemma that applies to any gaussian 
process for which the eigenvalues do not decrease too 
rapidly. It states that, in some sense, the random variable 
q behaves like the deterministic function T = T ( E ) ,  which 
is the positive solution of 

when e2 < 
eigenvalues satisfy Ineq. (14). 

h,. This can be made precise when the 

Lemma IO. Let the eigenvalues { A , }  (in non-increasing 
order) of a mean-continuous gaussian process X have the 
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and following property: There is a sequence nl < n2 < 
such that 

* . 

nk+l - n k  
+ c o  log k 

and 

+ 1  (22) 
hnk.cl 

as k+ a. Let 6 be given with 0 < 6 < 1. Then for E 

sufficiently small, and q as defined in Theorem 3 (Eq. lo), 
we have 

I 

(24) 

except on a set of x of probability less than 6. 

Now we shall apply this lemma and Theorem 3 to 
processes satisfying Ineq. (14). 

Theorem 5. If a mean-continuous gaussian process X 
has eigenvalues 

A, z An-p , P > 1 ,  

then 

Proof. First, we use Lemma 10 to estimate the last term 
of Ineq. (11). On a set of measure 1 - 6, we have, for E 

su$iciently small 

< (1 - 6)-1. 
( E  t i k  4)' 

This sum is asymptotically equal to an integral as 
q / E +  00: 

At-pdt 
(E 4)' zl ( E  + Aqt-P)" 

Also, we have 

off the exceptional set. Then by Ineq. (24), 

This asymptotic inequality holds uniformly on a set of 
measure at least 1 - 6. Hence, 

and letting 6 -+ 0, 
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Using this estimate for the last term of Ineq. (ll), 
together with the asymptotic form (Ineq. 19) of M E ( X ) ,  
we obtain Ineq. (25) and prove Theorem 5. 

Corollary. For the Wiener process, 

1 <HE(X)N< -g. 17 
32e2 - 

Proof. The lower bound results from putting p = 2, 
A = T - ~  in Ineq. (25). The upper bound is Ineq. (18) for 
this special case. This proves the corollary. 
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There is no gaussian process X for which we know 
that LEIZ ( X )  is not asymptotic to H ,  ( X )  as E-+ 0. Reso- 
lution of this question would be extremely interesting. 
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