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A. Estimating the Proportions in a Mixture of Two

Normal Distributions Using Quantiles, Part 11,
I. Eisenberger

1. Introduction

The density function, g (x), of a mixture of two normal
distributions ‘with proportions p and 1 — p, is given by

P 1 /x— w2
gx) = oy (2m)% expl: —§< o1 > ]
1—p 1 /x— p2\2
oo -2 (5 ]
The problem of estimating p using a small number of
sample quantiles, when the parameters of the normal
distributions are known and the sample sizes are large,
was considered in SPS 37-32, Vol. 1V, pp. 263-268, where
an estimator of p using four sample quantiles was pro-
posed. Further study indicates, however, that it is pos-
sible to construct estimators for p which, in general, will
be more efficient than that proposed previously. In par-
ticular, when p, = u., we will give one estimator based
on a single quantile and another based on a linear com-

bination of six quantiles. It will also be shown that, in
some cases, combining the two estimators gives the best
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results. For the special case p; = p,, estimators using two
symmetric quantiles give results comparable to that
achieved using the four quantile estimators.

For p; p., an investigation was made of 28 cases
involving four sets of the parameters p,, p., o1, and o3,
with values of p ranging from 0.05 to 0.95. Columns 2-6
of Table 1 give the parameter values of each case. For
p1 = ma, 14 cases were considered. These values are given
in columns 2-6 of Table 2.

Since estimation by means of sample quantiles is usable
for on-board data compression in deep-space probes, the
analysis will be given for each of the following conditions:

(1) The orders of the quantiles must be fixed in advance.

(2) The orders can be changed by signals from earth.

2. Review of Quantiles

To define a quantile, consider n independent sample
values, x,,%., + - * ,%,, taken from a distribution of a
continuous type with distribution function H (x) and
density function h(x). The sth quantile, or the quantile
of order s of the distribution or population, denoted by
L (s), is defined as the root of the equation H({) =s.
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Table 2. Variances of several estimators of the proportions in a
mixture of two normal distributions for p; = p»

" Using opt s
Case p ™ e o1 02 Using opt s of p = 0.5 n Var (B2} n V:_L( "

opt s n Var (B4 n Var (52 n Var (8) n Var (32 P
29 0.05 1] 0 1 0.5 0.0063 {0.9937) 1.050 0.5218 3.470 1.542 2.158 0.3688
30 0.10 0 (o] 1 0.5 0.0155 (0.9845) 1.607 0.7906 3.468 1.541 2.101 0.5796
31 0.30 0 0 1 0.5 0.0574 (0.9426) 3.207 1.506 3.680 1.635 1.956 1.171
32 0.50 0 0 1 0.5 0.1003 {0.8997) 4,438 1.972 4.438 1.972 1.999 1.563
33 0.70 0 0 1 0.5 0.1425 {0.8575) 5.473 2.281 5.990 2.661 2.251 1.812
34 0.90 0 0 1 0.5 0.1839 (0.8161) 6.361 2.464 8.436 3.748 2,702 1.937
35 0.95 o] [v] 1 0.5 0.1941 (0.8059) 6.563 2.491 9.185 4,081 2.846 1.949
36 0.05 0 o] 1 3 0.2624 (0.7376} 3.407 1.097 5.858 2.474 2.133 0.8724
37 0.10 0 0 1 3 0.2485 (0.7515) 3.305 1.106 5.280 2.229 1.966 0.8923
38 0.30 0 0 1 3 0.1918 (0.8082) 2.830 1.079 3.361 1.419 1.438 0.9045
39 0.50 4] 0 1 3 0.1346 (0.8654) 2.247 0.9488 2.247 0.9488 1.096 0.8094
40 0.70 0 [¢] 1 3 0.0773 (0.9227) 1.538 0.7043 1.988 0.8394 0.9432 0.6034
41 0.90 (o] 0 1 3 0.0223 (0.9777) 0.6453 0.3153 2.187 0.9233 1.048 0.2672
42 0.95 o] 0 1 3 0.0099 {0.9901) 0.3677 0.1820 2.273 0.9596 1.100 0.1532

That is, Throughout the remainder of this article, F(x) and

5= / “ 4l (x) = / “ ) da

0 <]

The corresponding sample quantile, z(s), is defined as
follows: If the sample values are arranged in non-
decreasing order of magnitudes

X EXo) = 0 =X

then x;, is called the ith order statistic, and
Z(s) = X(ms1sn)
where [ns] denotes the greatest integer = ns.

Reference 1 shows that if h (x) is differentiable in some
neighborhood of each quantile value considered, the
joint distribution of any number of quantiles is asymp-
totically normal as n—> « and that, asymptotically,

E(z(s)) = £(s)
_s(1—s)

Var (z(s)) = m

=11

where p,, is the correlation between z(s;) and z(s.),
§1 < 8se
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f(x) = F’ (x) will denote the distribution function and
density function, respectively, of the standard distribu-
tion. That is,

=t
where
f(x) = (zi)% exp(— x_22>

Thus, the density function of a mixture of two normal
distributions can be written as

g =Li(A2) R (Fe)

o2 a2

and the population quantile ¢ (s) can be defined as

= e

T2

Since we are assuming a large sample size, the asymptotic
distribution of the sample quantiles will be assumed.

3. Estimators of p Using Quantiles for u, 7% p.

In Eq. (2), £ (s) is defined uniquely for a fixed value of s.
This relationship provides a simple estimator for p using

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. Hi



one quantile. Replacing ¢ (s) in Eq. (2) by the correspond-
ing sample quantile z(s) and solving for p, one obtains

_ gl 26w
ﬁ:[?£~u% TMJ—#] 3)
pl 28 | pl2E) —

which is easy to compute from a table of the standard
normal distribution.

The estimator , is asymptotically unbiased and its
asymptotic variance is given by

Var (p,) = |: 8?’2;) ] “Var (z ()

where 9p,/0Z (s) denotes the partial derivative 8p,/9z (s)
evaluated at z(s) = E (z2(s)) = {(s). Since Var(p,) de-
pends upon the value of p as well as upon the parameters
of both the normal distributions, the optimum value of s
li.e., the value of s that minimizes Var (p;)] cannot be
determined if one has no knowledge of p,. However, the
optimum s can be determined with little difficulty once
p is known. Column 7 of Table 1 gives this optimum value
for all cases considered. Column 8 of Table 1 gives
Var (p*) when this value is used.

If the order of the single quantile to be used in esti-
mating p must be specified in advance, a reasonable
choice is to set s = 0.5. Column 9 of Table 1 gives the
variances of the estimator P, for this choice of s. If, how-
ever, one can choose s after the parameters are known,
a generally better procedure is to use the value of s that
gives optimum results for p = 0.5. Column 10 of Table 1
gives Var (P;) when this procedure is adopted.

The mean of a mixture of two normal distributions is
given by

p=E(@) =pup + (1 —p)p (4)
Solving for p in Eq. {4), one has

o

p_lh_ﬂz

If one now estimates p using quantiles (obtaining 7i), an
estimator for p using quantiles is given by

A iAL— M2
p= (5)
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Optimum unbiased quantile estimators of the mean and
standard deviations of a normal distribution are derived
under various conditions in Ref. 2. The estimators of the
mean, which are linear combinations of pairs of sym-
metric quantiles, are relatively insensitive to deviations
from normality in the sense that they are unbiased when
used to estimate the mean of any distribution whatever
with a density function symmetric about its mean, In fact,
for asymmetric distributions with the type of density
function given by g(x), the bias is small if at least several
pairs of quantiles are used. In particular, a suboptimum
estimator of the mean using six quantiles is derived in
Ref. 2 where the orders of the quantiles are chosen for
the purpose of estimating the mean and standard devi-
ation using the same quantiles. This estimator is given by

s = 0.0497 [z (0.0231) + 2 (0.9769)]
+ 0.1550 [z (0.1180) + z (0.8820)]
+ 0.2953 [z (0.3369) + z (0.8631)]

Using % in Eq. (4) gives the estimator fs. The expected
variances and values of Ps, given by

Var (&
Var ) = 5
E () —
() =S

were computed for all cases and are shown in columns 11
and 12, respectively, of Table 1. It can be seen from
column 12 that, except for case 9, the bias is not exces-
sive. From column 11, it can also be seen that, in most
cases, the variance of P, is less than those of the two
previous one-quantile estimators.

In some cases, a better estimate can be obtained by
averaging the one- and six-quantile estimates obtaining
either

Pr="%(P: + Do)
or

57 = ]/2(51 + ’?‘7’6)

The asymptotic variances of P, and P, were computed
and are given in columns 13 and 14 of Table 1, respec-
tively. It can be seen that, in almost all cases, either the
six- or seven-quantile estimator, has a smaller variance
than the corresponding one-quantile estimator. Thus, it
remains to be decided when to use a seven- rather than
a six-quantile estimator. If one divides the 28 cases into
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four blocks, as shown in Table 1, it is readily seen that,
for fixed values of ¢, and o, if u; — p, is sufficiently small,
the seven-quantile estimator should be used. On the
other hand, if u, — p, is sufficiently large, the six-quantile
estimator should be used. It is then reasonable to infer
that, for some range of values of u, — p., it makes very
little difference, practically speaking, which estimator
is used.

An estimator using m quantiles can be constructed as a
linear combination of one-quantile estimators as follows:

Pn=3 b (6)

i=1

where
m
D=1
i=1

and p; denotes the one-quantile estimator using the
quantile of order s;. For a given value of p, one can
determine, theoretically, the «; and s; that will minimize
Var (P). Increasing m will decrease this minimum vari-
ance. However, in practical situations where one can, at
best, optimize with respect to only one value of p, say P,
and then use the resulting estimator no matter what p is,
the results for values of p other than p may be very poor.
In the event that the order of the quantiles must be speci-
fied in advance, the probability of getting poor estimates
increases sharply. Moreover, in this case, increasing the
number of quantiles almost ensures one of getting poor
results. The estimator proposed in SPS 37-32, Vol. IV is
of the type given in Eq. (6) with m =4 and «; = 1/4
(1=1,2,3,4). The variances of these estimators were
computed for all cases and are shown in column 15 of
Table 1.

The asymptotic variance of the maximum-likelihood
(ML) estimator, denoted by p*, is given by

1
El Zmg(x)
n. P ng(x

In order to show how “good” the quantile estimators are
compared to the best possible asymptotically-unbiased
estimator using all the sample values, the Var (p*) were
computed for all cases and are given in column 16 of
Table 1. It is interesting to note that some of the biased

Var (p*) = —
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quantile estimators have smaller variances than the cor-
responding ML estimators (but larger square errors).

4. Estimators of p Using Quantiles for p, = y»
If pi = p, = p, it can be seen from Eq. (1) that

glp+x)=g(p—2x

so that g(x) is symmetric about x =y, and E(x) = p,
independent of p. Moreover, in the estimator using one
quantile given by Eq. (3); namely,

S~F|:Z(8) —M2:|
A 02

P F[Z(S) —#1] _ F[Z(S) “Mz:l

s = 0.5 cannot be used since £ (0.5) = u. However, due to
symmetry, if for a given value of p, s, is optimum, then
1 — s is also optimum. Column 7 of Table 2 gives the
two values of opts for all cases, column 8 gives the vari-
ances of the estimators using one of the optimum values
of s, and column 9 gives the variances when each is used
and the results averaged. Columns 10 and 11 give the
variances of the one- and two-quantile estimators, respec-
tively, if one uses for each case the optimum values of s
for p = 0.5. The same procedure holds that was suggested
in the case u; =% u, if the orders of the quantiles can be
chosen after one knows the values of the parameters.

In order to assist in making a decision as to the specifi-
cation of the orders of the quantiles when this decision
must be made in advance, a study was made of the be-
havior of the optimum values of s for p = 0.5 as the ratio
of the standard deviation varies, since these optimum
values, and the variance of the estimators based on them,
depend only on this ratio. Figure 1 is a plot of the larger
of the two values of opts as o2/0;(0:/0,) increases from

unity.

Column 12 of Table 2 gives the variances of the four-
quantile estimators proposed in SPS 37-32, Vol IV; col-
umn 13 gives the variances of the ML estimators. It
should be observed that, no matter which estimator is
used, if the computed estimate of p is negative or greater
than one, the estimate should be taken as zero or one,
respectively. These end effects were not taken into
account in the above analysis since, for large sample
sizes, they would be significant only for values of p close
to zero or one (the estimators would be biased but have
smaller variances).

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. Il
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Fig. 1. Larger of two values of opt s for p = 0.5, i, =

5. Estimating p From Real Data Using Quantiles (3) For case 18 with p = 0.5:

A table of random digits can be used to obtain a sample ﬁl = 0.5068 ’1}6 = (.4974
quantile z (s) of order s from a sample of size n drawn . N
from a population with distribution function G (x). A set P, = 0.5172 pr = 0.4671
of n k-digit numbers is drawn from the table and the %, = 02733 ¥, = 04723

sample ‘quantile (v/s) of order s is determined from the
sample. The desired sample quantile z(s) of G(x) is

obtained by solving for z(s) in the equation (4) For case 26 with p = 0.7:

P = 0.6988 Ps = 0.7317
v(s) +05]10% =G lz(s
o) = P = 0.7309 P = 07153
This procedure was adopted with n =256 in order to P. = 07827 P = 0.7313

obtain sample quantiles necessary for estimating p for
cases 2, 10, 18, 26, 31, and 40. The results for each case

are as follows:

(1) For case 2 with p = 0.1:

P = 0.0137 B = 0.1178

P, = 0.1022 pr = 0.0658

P. = 02391 P = 0.1100
(2) For case 10 with p = 0.3:

P, = 0.3275 s = 0.2765

7, = 03271 p. = 0.3020

Pu = 0.3269 # = 03013

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. Il

(5) For case 31 with p = 0.3 and u; = p, = Ot

P. = 0.2315 . = 0.2868

(6) For case 40 with p = 0.7 and p, = p, = 0:

7. = 0.7678 e = 07368
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B. Epsilon Entropy of Gaussian Processes,
E. C. Posner, E. R. Rodemich, and H. Rumsey, Jr.

1. Introduction

This article shows that the epsilon entropy of any
mean-continuous gaussian process on L,[0,1] is finite
for all positive €. The epsilon entropy of such a process
is defined as the infimum of the entropies of all partitions
of L,[0,1] by measurable sets of diameter at most ¢,
where the probability measure on L, is the one induced
by the process. Fairly tight upper and lower bounds are
found for the epsilon entropy as €—> 0 in terms of the
eigenvalues of the process. The full article on this subject
has been submitted to the Annals of Mathematical Sta-
tistics; proofs are omitted in this summary.

Let x(t) be a mean-continuous gaussian process with
mean zero on the unit interval. Its covariance function
R{s,?) is then a continuous function on the unit square
and its eigenfunction expansion

R(s,) = 3 Angha(s)hn(2)

n=1

converges uniformly (Ref. 1, p. 478). The eigenvalues
A, = o2 are non-negative numbers with X\, < . The
eigenfunctions {¢, ()} are continuous and form an ortho-
normal system in L, [0, 1].

If 'we assume the process is measurable (Ref. 1, p. 502),
then the paths are functions in L, [0, 1] and we can take
L, [0,1] as the probability space. This gives a measure
on the Borel sets of L,[0,1], which is uniquely deter-
mined by the covariance function.

One way of determining this measure is to take our
process to be the sum of the Karhiinen-Loéve series

x(t) = 2 X 6a (1),

where the {x,} are independent gaussian random wvari-
ables, with

If we take Q, to be the product space of the x,, this
series converges in

L, {[0,1] X Q,}.

234

The subset Q of Q,, on which 3 x2 < oo, has probability 1
and is a Hilbert space under the norm

[{xn} || = = 3.

The map {x,}— x(f) is an isometry of Q onto the sub-
space Q* of L, [0, 1] generated by the eigenfunctions. This
mapping induces a measure in L, that is concentrated on
the subspace 0%

For € >0, we define an e-partition of X = L,[0,1]
(with the given probability measure) to be a finite or
denumerable collection of disjoint e-sets (Borel sets of
diameter == €) that cover a subset of L, of measure 1.
More generally, an €;8-partition is such a collection
of sets that omits a subset of L, with measure no
greater than 8. Let such a partition U consist of sets U;
of measures

pi = w(Us), ipi=1.

Then the entropy of U is defined as the entropy of the
discrete distribution py,ps, -+ - - ¢

1
H(U) = E i logF.

(We use logarithms to the base e for convenience.)

The e-entropy of X, H.(X), is the infimum of H(U)
over all e-partitions U of X. The ¢; 8-entropy He 5 (X) is
defined similarly as the infimum over all e; §-partitions.
If U = {U,} is an €; 8-partition with

w(Us) =pi, Ep=m=1-3,
then
- pi, m
H(U) = mbgpi'

These concepts were introduced in a more general setting
in Ref. 2. Tt was shown there that H.,;(X) is finite for
§ > 0.

Note that any partition U can be restricted to the sub-
space O* of L,[0,1] on which the measure is concen-
trated. This subspace can be identified with the Hilbert
space Q of ‘sequences {x,} where the coordinates are
independent gaussian random variables, Thus, the e
entropy of the process depends only on the measure

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. Il



on 0, and not on how Q is embedded in L, [0,1]. That
is, the e-entropy is a function only of the eigenvalues {A,}.

The purpose of these definitions is to make precise the
notion of data compression. Thus, H(X) is the channel
capacity needed to describe sample functions of X to
within € in L,-norm with probability 1.! Reference 2
showed that for mean-continuous, but not necessarily

gaussian, processes X on the unit interval, the following
holds:

(1) He(X) is finite for every € > 0,provided the eigen-
values A, of X (written, as usual, in non-increasing
order) satisfy

2 nr, < .

(2) If, on the other hand,
S A, = 0,

then there exists a mean-continuous process X on
the unit interval such that, for every € >0 no
matter how large, H. (X) is infinite.

One of the principal results of this article is that, if
X is a gaussian process, He(X) is finite for every posi-
tive € no matter how small and no matter how slowly
the eigenvalues A, approach 0 (as long, of course, as
3 An < o). Another is that H¢(X) is a continuous func-
tion of € for a fixed mean-continuous gaussian process X
on the unit interval. We also find upper and lower bounds
for H. (X) that are reasonably tight as € - 0. These bounds
are given in terms of the eigenvalues of the process.

If the only partitions of L, [0, 1] allowed are products
of partitions of each eigenfunction axis, the resulting
entropy, called product e-entropy, need not be finite.?
In fact, a necessary and sufficient condition that product
e-entropy be finite for one (or all) positive epsilon is that
the “entropy of the eigenvalues”

1
pI . log T

Posner, E. C., and Rodemich, E. R., “Epsilon Entropy and Data
Compression” (in preparation).

*Posner, E. C., Rodemich, E. R., and Rumsey, H, Jr., “Product
Entropy of Gaussian Distributions,” (submitted to Ann. Math.
Statist.).

JPL SPACE PROGRAMS SUMMARY 37-53, VOL. lil

be finite. The reason that H(X) is always finite for a
gaussian process when € > 0 is that the partitions used
to show finiteness of H(X) involve finite-dimensional
subspaces of L, [0,1] generated by an arbitrarily large
finite number of eigenfunctions. As we shall see, the
partitions used on these subspaces differ essentially from
products of one-dimensional partitions.

2. Continuity of H.(X)

In this subsection, it will be shown that if X is a mean-
continuous gaussian process and € > 0, then H.(X) is
continuous in €; we shall assume the result, to be proved
later in the article, that H. (X) is finite for every positive .
Since the continuity of H. in € is not used subsequently,
there is no loss in the assumption.

Reference 2 shows that if the measure x on X has no
atoms, then

He(X)—> wase—> 0.

Since X has at least one positive eigenvalue (because we
assumed that R (s, £) is not identically 0), u is non-atomic.
Thus, if H, (X) is interpreted as + oo, Hc (X) is continuous
even at 0.

Continuity from above in € was proved in Ref. 2. Thus,
the only thing that remains to be shown here is that H (X)
is continuous from below (for € > 0). This is proved in
Theorem 1 in a more general context: the e; §-entropy
He;5(X) is continuous from below in € for § =0. The
following required lemma is of interest in its own right.

Lemma 1. If X is the Hilbert space of a mean-
continuous gaussian process on the unit interval, the set
of extreme points of any convex set in X has measure
zero.

We can now state Theorem 1.

Theorem 1. The €; 8-entropy of a gaussian process on
L,[0,1] is continuous from below in € for fixed 3.

3. Lower Bounds for H. (X)

In this subsection, we derive some lower bounds for
the e-entropy of a mean-continuous gaussian process on
the unit interval.
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First note that for any e-partition U = {U;} of X, if
U (x) denotes the set U; containing x, we have

H(U) = Elog {i— [U ()] } 1

This expression is decreased if we replace U (x) by the
sphere of radius € about x. It follows that

He(X)éEylog[%{xld(x,y)ée}], @)

where d denotes the metric in X and E, indicates that
the expectation is to be taken with respect to y. The first
lower bound to be derived is a lower bound for the right
side of Ineq. (2). '

w(xld wg) <) < ik

exp (be?)

First, we need the upper bound for

p{x|d(x,y) =€}
obtained from Lemma 2.

Lemma 2. If Z is a non-negative random variable with
characteristic function f, then for @ and b=,

Pr {Z =a} < exp (ba) f (iD).

The next lemma gives an upper bound for the probability
of the e-sphere about a fixed point y.

Lemma 3. Let a mean-continuous gaussian process X
have eigenvalues {\,}. Then, in the L;normd, for any
fixed ye X, we have

[T (T + 25,1 e"p[_

by},
1+ 2bA,,,:|'

Using the estimate of Lemma 3 in Eq. (2), we arrive at the lower bound

He (X)>

The disadvantage of this estimate is that a set of diam-
eter € containing y has been replaced by a sphere of
diameter 2¢. Another lower bound will be derived that
does not have this disadvantage. We first prove that the
sphere of radius €¢/2 about the origin has at least as much
probability as any set of diameter € in X, a result of
independent interest. Actually, strict inequality can be
proved but is not needed.

Lemma 4. Let X be the Hilbert space of a gaussian
process, and V any measurable set in X of diameter at
most €. Then

p(V)=pn[Se,2(0)],

where S, (0) is the sphere of radius €/2 about the origin.

Applying Lemma 4 to Eq. (1), we get

H. (X) = log 1% [Se/z (O)]} . (4)
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byz
E b?——E 'log (1 + 2b,) E } @)
”ig{ ¢ og( 1+ 9bA,

The following theorem presents two lower bounds: L (X),
derived from Eq. (3), and M.(X), derived from Eq. (4).
Note that Le (X) is always weaker. It is of interest mainly
because of Theorem 4 (Subsection 4),which bounds H. (X)
from above in terms of L.(X).

Theorem 2. Let X be a mean-continuous gaussian
process with eigenvalues {A,}. Define b =b(e)=0 by

An

T Sh>€ 5
b=o, 3 A= €
Put
Le(X) =5 log [1+ Anb (9] ©)
and
1 €
.00 =53 g 1405($)] - Sen(5),
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Then
H. (X)= M. (X)= L, (X).

Next, we give an improvement on the lower bound
M (X) that is difficult to use in general, but will be
evaluated for special processes in Subsection 4. This is
based on the following lemma.

Lemma 5. Let x,, - - -
random variables with

,%, be independent gaussian

E?C,'ZO,‘ Ex§=/\,~>0, 7'=1,-'-,n.
Consider the n-dimensional probability space X of
%, * * * ,%, under the euclidian metric d. Let

az(ab tT ;an)

be a fixed point of X with d (@, 0) > € and Sc(a) be
the set of points x with d(x,a) =e. There is a translation

x=>x=x+b

such that, for any x in S. (@), the probability density p (x)
satisfies the inequality

k=1

p()
px)

where g is the unique positive solution of

n al%
Z(e gy ®)

The improvement to the lower bound M. (X) can now
be given.

Theorem 3. Let X be the Hilbert space of a mean-
continuous gaussian process on [0,1]. Define the non-
negative random variable g = g (x) by

g=0,  |x]=e

and,for ||x|| > €, by

X7 .
P sl a0
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where {A¢} are the eigenvalues of the process. Then

1 AXE g

He(X)=Me(X) + 5 PRSI (11)

A result of A. N. Kolmogorov’s [Ref. 3, Eq. (12)] im-
plies that the e-entropy has a lower bound

v
1 }: An
He(X)EYE(X) =~“§ logF,
n=1

where N and 6 are defined (for €2 = = A,) by the equation

€ =min (0% 1,)=Ng2+ 3 1,.

n=F+1

A simple, but lengthy, variational argument shows that
L (X)=Y(X)

with equality only in the case where My = A, = + -+ = A,
and A, = 0 for n > N. (Kolmogorov’s bound is actually
a bound for the problem of communicating X holding
the expected square error to within €2.) In the finite-
dimensional case, a result in Footnote 1 gives an even
more precise lower bound for H.(X). Hence, we do not
have to use Kolmogorov’s bound.

4. An Upper Bound for H. (X)

In Theorem 4, we bound the e-entropy of a gaussian
process from above asymptotically in terms of the quan-
tity Le (X) introduced in Theorem 2. The method of proof
uses a special partition of X. To estimate its entropy, we
need some preliminary lemmas which give bounds on
the entropy of a finite dimensional gaussian distribution.
The first of these lemmas bounds the probability of being
outside a spherical shell centered on the sphere of
radius n* for the joint distribution of n independent unit
normal variables.

Lemma 6. Let X be the n-dimensional euclidian space
of n independent normal random variables of mean zero
and variance 1. Let S be the spherical shell

|n% — (z23)%| < d,
where 0 < d < n*%, and

v(n,d)=1**,u(S).
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Then there is a universal constant C, such that

v(md) < 2RI,

The next lemma bounds the e-entropy of the unit
(n — 1)-sphere with the uniform probability distribution.

Lemma 7. Let X be the unit sphere in n-dimensional
euclidian space with a uniform probability distribution.
If B and y are positive numbers, then for € > 0,

24y
€

He(X) < (1 + @)nlogt + Ca(Bov)s

where C, depends only on 8 and y.

The next lemma bounds the e-entropy of euclidian
n-space under the joint distribution of n independent
gaussian random variables.

Lemma 8. Let X be the n-dimensional euclidian space
of n independent normal random variables of mean zero
and variances Ay, * * * , A, Let a be a number between
0 and 1, and for

0<(1—ae<2(nr)
set
v =v{n, (1~ a)e/[2(1)%]},

where A is the maximum of X, * * - , A, Then, there is

a universal constant C, such that

@)

€

He(X) < (1 + B)nlog nv log

L (nA)%
€
+ C4 (B, 'y) + C2 (]. + nV)

if B,y are any positive numbers and C, (8, ) is the con-
stant of Lemma 7.

An alternate upper bound is obtained in Lemma 9. The
bounds of both Lemmas 8 and 9 are needed in Theorem 4.

Lemma 9. Let X be the n-dimensional euclidian space
of n independent normal random variables of mean zero
with variances Ay, * * - ,An and A =max{);, - ,An).
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There is a universal constant C; such that, if € > 2 (n\)%,

1_ 2 n
H.(X) <Csn3/2[gexp< 2g >:| R

where g = €/[2 (nA)*#].

Now we are ready to state the upper bound of
Theorem 4.

Theorem 4. Let m be any positive number less than 1.
Then

He(X) = Lne(X) [1 +0(1)]

as €— 0. In particular, Hc(X) is finite for X a mean-
continuous gaussian process on the unit interval and
€>0.

The idea of the proof is as follows: For any § >0, X
will be broken up as the product of a sequence of finite-
dimensional spaces {X;} in a way that depends on 8§ as
well as on e, so that, for the optimum product partition U,

H(U)= (1 + 8) Le (X) [1 + 0 (1)].

The meshes {€} of the component partitions are sug-
gested by Definition (5). The most natural product par-
titions to try are one-dimensional product partitions,
where we take

A? )y

= Tibn 42
for the partition of the kth coordinate. It turns out that
this does not always work. In fact, if the eigenvalues
decrease slowly enough, there are no one-dimensional
product e-partitions with finite entropy (Footnote 2) even
if = )y is finite. However, for small €, this is the best way
to handle the large eigenvalues, and there is a first range
of k in which one-dimensional subspaces are used. Be-
yond this point, the dimensions of the subspaces are
consecutive integers beginning with 1. This sequence of
subspaces is also split up into two ranges; up to a certain
point, the entropy of the subspace is estimated by
Lemma 8. Beyond this point, Lemma 9 is applied.

5. Entropy of Special Processes—the Wiener Process
By the Wiener process, we mean that gaussian process

on [0,1] that has covariance function R (s, ) = min (s, ),
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and

__——_1——2’ n:1927 B (13)
#(n-3)
This can be treated as a special case of a more general

process, such as the solutions of finite-order stochastic
differential equations; in such cases, we have
n = An7?, p>1. (14)

First, we estimate L¢(X) and M.(X) for such processes
to get the upper and lower bounds of Theorems 2 and 4.
Then, we use the lower bound of Theorem 3 to obtain
the best known bounds for this class of processes.

We need to find the asymptotic behavior of b as a
function of €, given Ineq. (14) and

An

T+ bn. = €. (15)

Note that b—> « as €— 0. If A, is any number greater
than A,)\,=An? except for a finite number of values
of n. Hence,

An?
€< z :1+bAm-”

It is easily shown that, as b— oo,

©  Atrdt
~J, 1T+ DbAe

= Awr b/

O(b).

An’?
1+ bAn?
=1

psin (=/p)

Hence,
2 s hyma T
e < AVD Py g [1+o(1)].

Similarly, if A, < A, the reverse inequality holds. It fol-
lows that

& ~ Avrpum-1—— T
psin (7/p)

or

b(e) ~ AV - <_.___7'__._>p/<p—1> /1] |
(€ psin (x/p)
(16)
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The same type of reasoning applies to the series for
Le(X). We have by Eq. (6)

L(X) = %Elog(l + ba,,)
1 ©
~L / log (1 + bAt?) dt
2 0
T
= (b4) 2.sin ('n'/p)
Using Ineq. (16),
L (X) ~ B, etz/@-11 |

where

B, = épAl/w-n ( = )>p/(p_1) (17)

psin (/p

In applying Theorem 4, the growth rate of L. (X) is suf-
ficiently small that we can put m = 1/2. Thus, Theorem 4
gives us

H. (X) < 92/(0-1) B, e[2/(0-1)], (18)

Now M. (X) can be quickly evaluated. From Egs. (6)
and (7) and Ineq. (18),

Mc(X) = Lz (X) _%esz)

~ L (X) — %22/@—1) B, et/ e-01

and

1

Ho(X) =M (X) = E—=gvow g ewom . (19)

In examining the lower bound of Theorem 3, we first
state a general lemma that applies to any gaussian
process for which the eigenvalues do not decrease too
rapidly. It states that, in some sense, the random variable
q behaves like the deterministic function r = r (€), which
is the positive solution of

An
Z CESW (20)

when € << 3 A,. This can be made precise when the
eigenvalues satisfy Ineq. (14).

Lemma 10. Let the eigenvalues {A,} (in non-increasing
order) of a mean-continuous gaussian process X have the
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following property: There is a sequence n, <n, << - - -
such that

Ngex — Mg

log k —> o0 (21)
and

A”k+1

-T;k_ -1 (22)

as k— «. Let 8§ be given with 0 < 8§ < 1. Then for €
sufficiently small, and g as defined in Theorem 3 (Eq. 10),

we have
Z E‘*‘Mcq
Z(e—}-)\kq

<3 (23)

H(X)>Aven| "
&z (psm )

Proof. First, we use Lemma 10 to estimate the last term
of Ineq. (11). On a set of measure 1 — §, we have, for €
sufficiently small

A .
D e <

This sum is asymptotically equal to an integral as
q/e—> w0

Ax ©  Atrdt
(e + Arq)? o (e+ Agtry
ki
— ALB gG/D 1 (/BT
Avrqtmne p*sin (=/p)

Hence,

q> Ave-n ["_(1_:__8%] P e L)/ (11 |

p*sin (w/p

Also, we have

1k = Alqrtrdt  (Aq\VP (p— L)«
(€+xq)™ )y (e+Aqe?)* \ € ) prsin(n/p)

2 [AQ=§)Jven (p—1)

T 1 e
% [w sin (ﬂp-)] <
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a |
2

and
)M
(e + A q)2
2T
(e + e q)

except on a set of x of probability less than §.

—1l<s (24)

Now we shall apply this lemma and Theorem 3 to
processes satisfying Ineq. (14).

Theorem 5. If a mean-continuous gaussian process X
has eigenvalues

A'n"""An'_p> p>17

then

(22/0-) - pl/ =D} L2/ (-1, (25)

off the exceptional set. Then by Ineq. (24),

M g _ _ME
2 gy >0 ) gy
> (1 — 8)»/ -0 B, gl2/ -1,

where

= A1 (g — T e,
B = 40— )| ey |

This asymptotic inequality holds uniformly on a set of
measure at least 1 — 8. Hence,

§ : At q® 8\ (-1 ] /o0l
E e+)\q)2”(l 2 Bie

and letting § - 0,

1 M atq
EZ(e"‘/\kq B
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Using this estimate for the last term of Imeg. (11),
together with the asymptotic form (Ineq. 19) of M.(X),

we obtain Ineq. (25) and prove Theorem 5.

Corollary. For the Wiener process,

17 1
Be sHXs

Proof. The lower bound results from putting p = 2,
A = 7% in Ineq. (25). The upper bound is Ineq. (18) for

this special case. This proves the corollary.
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There is no gaussian process X for which we know
that L. (X) is not asymptotic to He(X) as €-> 0. Reso-
lution of this question would be extremely interesting.
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