$$
\begin{aligned}
& \mathrm{N}^{\mathrm{s}} \mathrm{G}^{-5 \gamma} \\
& \mathrm{M} \cdot \mathrm{Md}^{-5}
\end{aligned}
$$

Reprodoseed by NATIONAL TECHNICAL INFORMATION SERVICE 5 Department of Commerce
Springfindu VA. 22151

$$
\mathrm{N} O \quad \mathrm{~T} \quad \mathrm{I} \quad \mathrm{C} \quad \mathrm{E}
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIOŃS ARE ILLEGIBLE, IT IS BEING RE'LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
Chapter $\because \cdot$Arvarb Observetory, Arman, Hotisern Irelend
and
Departmert of Phroicis and AEtumomy. Miversiby os
Maxyland. Collece park imoriand
 p.
Tntrochetion
I. The Alphonsur Event and Fluorescuce on the Lunar Sureare
2. Cratering XeletionsiosA. Degtructive Impact and Vo:sanism
B. Destructive Tmpert Menmicel Theary :ofo
C. Ejection Velocity, Heatink and Creter Rllipticity
D. SEm-Lestructive Impect
13. Inoect of Bigid Projectile inte Granuler ferget o
F. Kinetio ferictency and Th owout
III. Elanetayy Gncounters
TV. The Ori gin of the hoon
A. Th yoretical and Obsemation el Basis;The AiternetivesB. Hais Accumiation fron Oxbibr Debris

* Supported by malional Aejoneutios and Space AdmimintrationFund insGoisos0.
C. Cepture Eypothesis of the Origin of the Boon
D. Acerecton of an Earthmorbi"ing poon Fom Intem phanetary Lactial
E. Certure into a Retrocrede Orbjt
F. Oxigh throwh Fistion or fromering insje Rochers.
Ling
Go Therne Hibtory and oxigin
H. Cxater Btatitics and Origir.
T. Meltine of a loxe
K. The Date of Closest Appooch encianten's Modal of Lumer Capture

V. Strengthor Iumar rmptal Fock

A. Creter Propinge
B. Orugraphic Reliet and Strenth of the Primitive
Lumer Crust. 1.
Co Rar Craters and Stuength of the Ejected Blocks
D. The Inner Surface as an Imo zet Conotex
F. Alvhonsus and its Pesk
VI. The To: Inyex
Ao Dust and Rubble: optical, jelectricmanfochentral;
Q paracteristios
Po Themel Prozerties
C. Taemel Anomilice
VII．Exosion
P。 P。
A．＇Surfece Moditication ProcessesB．Sputtering by Solar Vinc，Loss and Gain frombicroneteorites
C．Overiay Depth
D．Overlay Particle Size Distaibution$=$
VII．Hechenical Propertejes of unger Top soil
TX O The Bellistic Environment
A．Electrostatic versus Bellistic Iransport ．．．．．．
B．Impact Fluxes and Cratering in OverlayC．The Astroneutical Hazaxa
D．Observability of shallow Craters and kicocheitno
E：Overlaping and Survival of Craters．．．．．．．．．．．．．．．
F．Wixing of overlay
。
X．Brosion Lifetimes of Suxtace EeaturesA．Pransport and Sputtering；Lifetime of Boulders ．B．Downill Mieration of pust
C．Filing by Ricocheting Jverley Injection
D．Erosion Ljectme of Sofb－kimed Craters
E．Erosion Jifetime of Heratimed Craters
ij，Ovexlay Accretion：Second Approxination
XI．Summary．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Ferex neesTable of Notations

Introanction*

\%
Thts monograpinte ghapter has grom out of a planned much leas expanded revien axticle on the moon's surxaces solictted for the end of 1866. Instead, a complete mechenical and statistical enalysis of the Inax surnace hes Deen orawalong nev quantitutive limes, withour however ebtempting eng thang like \neq completa review of the existing liternture. Alsc. during the bwo years which have passed since the abowementioned provisional deadine, murim new factual materidel hat been provided by the Anexiean Itnger, Survoyor and Orbitetw, as well as by Eusstan spacecxafts; fomo of these data have bren incorporeted into the framowork of this analysis incompletely however. The materiel is too voluminous and still Increasing? awating exhaustive trenment at a later date 'Yot, as things stona now, the selected date used here appeas to bo sufxicient in charecterizing the mechanical mat other properines of the lumex soil and surgace; so thet not much substantial chenge exocpt in some detans can bu expected irom a comprebensive discussion of the entire maseriel. The suceess in predicting statistically from firet principlos the observed distributicn of crater numbers over a wide range of sizes from 3 can to 5 km , lends support to the reliebility of the theoretical bosis of eratering and axcston which foms the backbone of this chapter:

[^0]The plienomear groyth of lunar literature, while gontributing to the knomledge of our sutellite, has not removed the occurrence of contradictory intexpretations even in such basic questions as the origin of Iusar craters. In. this respect "an old tendency manisests jitselps to make hypotheses about astronomical objects which are based on only one aspect of the problea, while overiooking or innoring contradictory evidence. Hence an Inpression is createa that astronomers always disagree bebreen themselvess an impression that transpires evon by reacing the best reviev articles on the moon (Baldwin, 196Aa)*。

Unobultedyy, aificulty on a diecet proos and impossibility of experimontation were conducive to such a stete of affairst sumprisingly even in the case of the nearest or all celestial bodies. Also, lunax physicel study has for too long been neglected ly professional astronone:s and lett in the inands of amateuxs....those mexits, however, are by no means to he underestimeted.

At present space research bas trought the moon somtom -speak within an arm's lengthy and many theories cen be prored
*Symbolically in this context, trexe exists a purely fommal -ambiguity in defining selenographie airections. In this artiole the diractions are reckoned "astronomically" as sor the terrestrial telescopic observer. When South is above, West is to the lext, so that Ware Crisium is in the western hemis sphere. In "he "astronautical" reckoning, the directions are inverted as for an observer standing on the moon.
or disproved as in a Laborotory; and the woon is increastraty becoming the object of professional study. Yet a new souree of misintemprebations is becoming thoublesome. In the old days, the astronomer had tino for the study of all the relevme Ilterature and for a eriticel assessment of the avallable eviaence. Joracays, whth the enoruons supply of scientione publications, it becomes progressivaly more difeicult to mastox the eatire literature, or evan the deteils or one narrou branch of zelence, this hes led to an ever inereasing habit of trusting authority, second" mad even third-hend. Statew ments are sepeated which mever would have been made upon exiticet atudy of the evidence. Erring is in haman nature, but too muk reliance on unchecked authority may lead to un* warmanted perpetuation of erros, as has happened with the much publicized so-amiled geseous exuption from the exater Alphonous. The spectrogram was not stuated propezay or $\begin{aligned} & \text { th }\end{aligned}$ would have becorae obvious thet no gas was emtteds but that luminescence of the solic peal of the oreter wes responsible for the phenomenon. As a clasteal case or repeated misw interpretevion, the Alphonsus "exurtion" is specially aeat with in Section x.

When this, and similar unfounced or one-sided interpretetions axe discaraed, the pleture or the lunar surface becomes mon less controversial. As a poweriul instrument of interpatation, too little used until novg the quantitetive theoxy (arj experiment) on solid-bcdy impact (hypervelocity
and low-velocity) helps to resolve the most relevant problems of crater formation and exozion, dust foriotion and tronspors, bearing on the strength of lunar soil and rook and the mechenical structure of the upper few kiloneters of the luner crust. The quantibaive approximation is of the order of l0-40 per cent in abolute Iinear measure, thas far bettex than an orcer-of-magnitude approach. With another litile usea instrumens, the theory of planctary encounters as developed by the authors it is possible to rerove much (is not all) of the aibiguity relacing to the origit and internal structure of the moon, which is also directly related to the present structure and properties of the luner sursace.

I. The Alphonsus Event end Finerescence on the lunar sipface

Instigated by some observations of Dinsmore Alter in Californio, the Russian astronomer kozyrev kept under observation the crater Alphonsus in OctoDen and November, 1958. As stated in his report (Kozyrev, 1959a), he was intentionally in search $0:$ volcanic phenomena on tie moon. In the early morning of Hovember 3, 1958, he notised an unusual brighteairg on the peak of the crater and, while the brightening lasted, a spectrogram teken with the 50 -inch Crimean reflector (Inear scale 1.0 seconds of are or 18.4 km tr the mm , dispersion $23 \AA / \mathrm{mm}$ at Fr , exposure 30 min) shored strong banded emissio 2 over the peck. The emission no longer was visiole on the next
spectragern, nor we의 it visible in previously teken spectra. The moon whs one day before last quarter, the altitude of the sun ov ar Alphonsus wes 1.8°; and ebout 31° over the flluminatel slope of the peak. Reproductions of the spectrogrens, witi photographs of the cratex itselt: were publishec. repeatedly (Kozyrev, 1959b, 1962) kut no essential poincs were added to the fimst discussion (rozyrev, 1959a) which when appeared uncer the challenging title of "Volcanic Activity on the Shoo 1^{17}. Bssentially Kozyrevwanc others...-identiried the band smucture of the observed emission with that of the conotery radical C_{2} as fluorescent in sumlight.

Yet tize details or the spectrum along the slit, or at rigtt anglus to the dispersion, show without the least trace or douth that the luminescence was strictly confined to the illuminated portion of the peck, and that therefore no eruption of gas dat ever take place. This hos been pointed gut by Opil: (1952a, p. 252 ana b, p. 218; 1963b) but somehory overlooked. Distinguished authors, brusting Kozyrev's amouncement and without toking a critical look at the published spectrograns, have been led to discissions of the "gaseous exuption" (e.g. Belawin, 1953, pp. 415-413). Actually; Kozyrev did measure the distribution of monshromacicel brightness of the spectrum along the slit and his measurements did show indeed--wnet was also obvious from : direct inspection of the spectrograms...-that the increase in lirightnese did not affect
the shadow of the peak (Kozyper, 1962, Fig. 2; obviously the Inear scale there should be kilometers, not seconds or are, and the orientation $1 s$ inverted relative to the spectrogram), However, he did not see the consequences of this fact; everyy. body else (accepted then) Eozyrev's interpretation on his authority.

Tozyrev's announcenent was hailed as the firet definite pronf of gaseous phenomena on the mono After some doubts and questioning; chiefly concemed with the band structure of tho spectrums the asticonomicel commity seems to have aceeptea this intergretation. Wobody seens ti have worried about the second aimension of the spectrogrom whion reproduced the surfece Betures and showed a purgling detail.the emission was spatially restricted to the bright feak ebout $4--5 \mathrm{~km}$ wide, vithout trespossing into the chodow of about the same width. The transition was abiupt at the border of the shacows and took place sver a dstance on about I kn which corresponds to the resolving power of the photograph. The neutral ch gas could not heve been restricted by a negnetic field and, with a moleculer velocity in excess of $0.5 \mathrm{~km} / \mathrm{sec}$, the ges would have spread ever a radius of some 900 km during the exposure, covering boin the peak and Its shadono Gases cmitted from a roint source (the peek) would have formed something similar to a comet's hearl (comb), with a strong eratral condensation and an intensitr decreesing inversely as the first power of distence. the average intenstity over the shadow would then have been ecual to about one-hale the average intenstity over
the peak. Mothing of this sort ras shown in the spectrogran.
There nevertheless appears to be some sirailexity between the emission from Alphonsus" peak and the comecary or Swan bands of C_{2}, In this respect Kozy:ev (1059a, p.87) points out a stremge cetail (translation from Russion): "the Swais bands shauld be completely sharp on the Eongwove side, ye; they tured out to be weshed out rever about $5 R^{*}$. Here seans to be the clue to the interpretation: bands originating in a solid lattice must be washed out, on aceomt or perturbetion by nearby other atoms. Kozyrev proposes another interpretation, thitt into his concept of a gas; naxaly thet
 froin its jarent molecules. However, this would meen that each C_{2} molecule was radiating only once, not being repeatealy isolo times pex seend) fruorescent in sunlight (what couid have prevented it from doing sof) and the brigh: ness could then never have been inot tims as intense as in conets" (nozysè's estimate).

Clearlys Kozyrev's phenomenon can be interpreted only as emission, probably fluorescent, from a solld surface, anc not from an expanding gas. Fost that has been written about this event is, therefore, not valid; also, the fantilication of the emi'ting molecules can hardly be made with ony degree of rellabi"ity, althoug there may ibve been blurred emissios from C_{2} sonehorr present in the solid latice.

Fxpermentalyskit has been shom thet meteoritic enstaw tite ($\mathrm{H}_{\mathrm{G}} \mathrm{SiC} 3, \mathrm{FESiO}$, , as distinct from the more usual olivinos,
 proton bombardment (40 Kev), and also that ofrecin rogtons on the moons around Aristerchns and Kepler in particuler, nay become guvarescentsaparently in response to bursts of corpuscular radiation fron solar eleres (Kopal, 1866e). Thore is a grave sifficulty hin degeribing the nousce of the observed yunas fluorusconce in terms of the energy of the proton strean whic: falls shoxt by many oxters of magntudes as Pollous Prot the observed intenstites of solar wind. Focusing efrects of the earth's magnctosphere have been suggested. which would howdy work. It seems thete the only explanation is to ascrile the firoreacemt radiabion to atrect sumlight (as for C_{2} in conets), wheress the role of the corpuscular bursta would be to roise the molecule to a metastable state copoble on fluorescence. The ground state of the C_{2}, molecule is a singlet, wine the lowest level of the Swon bonds is a triplet state, only about 0.03 ev above the ground state. The transition from triplet to singlet is forbiden and can be exficientiy achieved only by collusions. A similex situation may obtain in the ease of Imay luminescence? the emission frow the metestable state would then derive from direct sumlight, which is amply sufficient as it is in comots, and not from ine inadequate energy of the corpuscular strenm acting only al a trisgex.

II. Cratering Eeintionships

A. Lestructive 1 moact and Voleanism

There are no signs. of cominuing volcanjsm on the moon. Extensive lava flows as witnessed by the marja; flooded craters and small "domes" must horre happened early in the history of the moon, duxing the finge one million, even the rixst 20, (100 years of iths existence. On earth , volcenism is related to mourtain builaing and this in turn is the consequence of powerfll erosion cycles leading to recurrent imblance in the earth's crust. On the moon, exosion froal interplane;ary aust is anovt 2000 times Iess eficiemt then in termestial deserts (Opik, io62a); is on afelth the mojor orogenic cycleis rollowed at intervals of the oreder of 2×10^{8} years on the toon the intexval shpuld be of the order of 1012 yeers: it never could hoppen.

The l mor surface markings; from craters down to the compacted hust layer, are undoubtedly produced or evolved under the jombardaent of intexplanebary bodies and particles, es well as of the secondery ejecte From the surface itselti. The quantimtive study of cratering contains therefore the most impoxtant olue to the structure and history of the Iunaz sumpice.

Usually, the term "hypervelocity" is applied to craterige impacts. Tris refers either to the ase when the inttial velocity of the projectile exceeds the relocity of sound in
the taxgetgendor when the frontal pressumes et. penetretion exceed the strength of both the projectile and the tamet. so that the projectile itseln is dertroyed and flatiseneci while entering the target.

Acturdits cratering is not a prely mpemelocity pheno. menon when tre mole of the crater volume is considered. Mypervelocity phenomena may ocour ong in she heartio the crater. Dentruction end ejection of the teraet mamint metexiol tures plece over most of the cretex volume when the chocic rront velociby is less thon the velocity on somn yet when the shook pressure still ecceeds the strength of tha motriet, or when the energy deneit, of vibration is more than can be bome out by the elsetis fowees in the torect. Prow this stuandpoint, a uniform quantitative theory of desimotive erateming appliceble ahso to low-velocity inpract, hes been wh cked out by Opir (193is, i958a, 1061a) , The theory, bosed on the consideration on averese pressure and monentum transfer over shock fronts, from finst principles enä vithout, experimentel adiustment of the parenetera gives an approximation to experiment within 10 wo per cent in lineor dinenticns and cen efectively substitute for the huge amount on experimental moterial accumblated and not yet propery syotametised. B. Destructive Imoact: Eqechonicratheory

Full on mutually destructive impact is the cormon "hypexvelocityit ease when both the target and the projectile are
destroyed turing the penetration Formulae for direct.aplication to lunar se similar cases are given below; they are partly new developments, as a sequel to the latest published paper (OBis, 1961a).

In Fi.jo I a schematic halfosection of a cratering even, is represented. The relative dimensions are party kept, to scale of the "Teapot" nuclear crater in the desert allmiun of Nevada (Shoemaker, 1963). A meteorite of "equent shape" (whose linear dimensions in different directions do not differ more than in a ratio or about 2 to \bar{l}), mass μ. density \hat{C} ana initial velocity wo normal to the target surface res penetrates into. target and, while Itself fattened and de.. formed or broken up, stops; ot I_{1} with its front surface reaching a. depth x_{0} below the surface. If the velocity was sufficient iv high, the meteorite with a "central funnel.". Q (20-25 ;ines the mass or the returite) may be completely or partly vaporized and backfired. the forward passage of the meteorite combined with the backfiring create a destructive shock wave which stops at A, at a depth x_{p} in the frontal direction and propagates laterally as a nadia momentum (Rad.) either with the shock velocity u, or the sound velocity, whichever is greater. In the crater bowl the material is crushed; pulverized, or even melted (near a) end, after stopped at a bedrock surface AN as conditioned by a limiting "crushing" value or $u=u_{g}$, is party ejected praxis (velocity vector v inside, $v o$ at the surface under an angle f to the
normal). The bedrock sumer ARt is itself displaced out

 Part of the debris falls back into the crater, part is thrown out over the lip, forming the apparent crater and surroundtime sutace Bot with the rim at C and an apparent devon $x^{\text {i }}$ (as distinct from x_{0} and x). The whine of the crater bowl, AALTo, below the bedrock rim level, L, ; is close to

$$
\begin{equation*}
V=0.363 x_{p} B_{0}{ }^{2}, \tag{1}
\end{equation*}
$$

where H_{0} is the rim to rim diane ter of the orator.
The "mass affected" is assumed equal to
whore if is the original target density, it depends on the watusi momentum.

$$
\begin{equation*}
\mathrm{N}=\mathrm{k} \mu \mathrm{v}_{0} / \mathrm{u}_{\mathrm{s}} .9 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{v}_{3}^{2}=5 / \hat{Q} \tag{4}
\end{equation*}
$$

Here $s\left(d y n e / \mathrm{cm}^{2}\right)$ is the lateral crushing strength of the target ard k a cocfincient of rail momentum varying between 2 and 5 as depending on the cere of vaporization and backiminy, defined by the quadratic equation (Conk, 106le)

$$
\begin{equation*}
3=129_{0}^{2}\left(1 ; 0.04 k^{2}\right)^{\frac{2}{2}} 2 \tag{5}
\end{equation*}
$$

where $a=3_{0} 5$ in 10^{-13}, for iron inyozt into stones and

Pron numerical integrations (Epis, 1936) an interpole. ton form ala for the relative depth of penetration can be
set up:

$$
\begin{equation*}
p=x_{p} / \mathrm{c}=1.785(\% / p)^{\frac{1}{2}}\left(w_{0} 2 / s_{p}\right)^{1 / 30} \cos \gamma \tag{6}
\end{equation*}
$$

and from equations (1), (2); (3): and (4) the relative erebor diameter results as

$$
\begin{equation*}
D=B_{0} / d=I_{0} 20\left[\left(\operatorname{mog}_{0}\right) / p\right] /(\rho s)^{2} \tag{7}
\end{equation*}
$$

- Feme the non-dimensional mumenicat factor, 1.20 , allows for the fumel-shaped crater promise and differs from the factor of unity formerly used(Opis, 1961a). Equation (6) tentatively allows for oblique inciownce, γ being the angle of incidence relative to the norman to SS , and sp is the compressive strength or frontal resistance (dyne/cmin) or. the targe f; material (usually an order of magnitude greater than s). the reduced spherical equivalent dimeter of the projectile is

$$
\begin{equation*}
a=(6 / 4 / \pi \delta)^{1 / 3}=1.241(\mu / 6)^{1 / 3} \tag{8}
\end{equation*}
$$

and p and D are the depth and diameter or the crater in waits of is.

The ratio of depth to diameter: becomes

$$
\begin{equation*}
x_{p} / B_{0}=p / D=1.99(\cos y)^{1.5}(s \delta)^{\frac{1}{3}} /\left[(x p)^{\frac{1}{2} w_{0}} 0 . s_{s_{p}} 0.05\right] \tag{9}
\end{equation*}
$$

the numerical coefficients in (6) and (9) are dimension aIlyadeptod to cugos 莫 whits [in (a) the dimension of the coefficient is $\mathrm{cm}^{0.15} \mathrm{~g}-0.05$, and F_{n} (6) it is $\left.\mathrm{cm}^{0.1} \mathrm{~g}^{-1 / 30}\right]$.

- Typical parameters can be assumed silicate stone of a planetary upper crust, $\hat{p}=2.6, s=1$ y $1.0^{8}, s_{p}=2 \times 10^{\circ} ;$ nickel irc, $\delta=7.8 ; \mathrm{s}_{\mathrm{p}}=2 \times 10^{10}$. 'able I contains some rely dive rater dimensions calculated with these constants.

R
TADEXI
Relative Crets Dimensions Son Verdea, Impoct into Sotid
Foct $\gamma=0^{\circ}$
$W_{0130} / \sec 3 \quad 1 \quad 30 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \quad 50 . \quad 75$ Stone inpaet into stone, $\delta / \rho=1$

$\begin{array}{llllllllllllllllll}\mathrm{p} & 2.03 & 2.12 & 2.20 & 2.26 & 2.30 & 2.33 & 2.87 & 2.39 & 2.41 & 2.45 & 2.51\end{array}$
D $4.826 .36 \quad 9.12 \quad 12.0 \quad 14.9 \quad 17.8 \quad 20.3 \quad 23.4 \quad 23.9 \quad 26.5 \quad 32.1$ Iron impect into stone

p $3.253 .09 \quad 3.82 \quad 3.93$ 4.00 4.03 4. 11 4.15 4. 19 4.26-4.37
D $6.639 .1712: 5 \quad 16.7 \quad 20.9 \quad 24.6 \quad 28.2 \quad 30.4$ 32.4 $35.9 \quad 43.4$
TABLE TI

The equations re supposed to be valid when the aerodynamic pressure, $k_{Q} p_{0}{ }^{2}$ with the drag coencictent $K_{0} v_{0} 5_{0}$ greatly exceeds sp, the compressive strength of both the target ard. the projectile for a sixfold safety margin,
 for a hard stone projectile impact; into stone. In such a esse. aside free backfiring, a radial momentura actual to f ow is generated both in the target and the projectile, adding up in k as z component equal to 2 ; hackiring due to expsive vaporization increases the value or 35 as the velocity inn creases [cr. equation (5)].

Only the aerodyname component ar frontal pressure generates radial momentum whereas the "dad resistance", σ_{p}, does not participate. Hence ot smaller velocities k (5) further decreases being no longer valid, in proportion to the maths of aerodynamic to total resistance, and down to a value cir unity and even lesa. Trass is reached at the Lover velocity limit vs_{m} for the applicability of the medal when the projectile is no longer subject to lateral expension, or when

$$
\begin{equation*}
\frac{2}{a} p w_{m}^{2}=s_{p} \text { (projectile). } \tag{10}
\end{equation*}
$$

For hard stone impact into stone, $\mathrm{w}_{\mathrm{m}}=0.39 \mathrm{~km} / \mathrm{sec}$; for iron import into stone, $\mathrm{m}_{\mathrm{m}}=1.24 \mathrm{~km} / \mathrm{sec}$.

In Iarge-scale phenomena friction generates an addietional ochponent of lateral rests bonce depending on the weight of the orextying mass and he coefficient of frictions,
I_{S}

$$
\begin{equation*}
s=\varepsilon_{c}+E_{B} \varepsilon^{x} \mathrm{c} \tag{11}
\end{equation*}
$$

Here ${ }^{c}$ is the component of lateral strength due to cohesion, g the acceleration of gevitiy once x the helfodepth of radial momentum which approximately cen be set equal to

$$
\begin{equation*}
x_{c}=0,610 x_{0} \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
x_{0}=0.900 x_{p}^{\prime}, \tag{13}
\end{equation*}
$$

these vel les representing more or less overall averages for destructive impact (c. Fig. I).

In sum e cases sc itself may depend on depth; on effective depth corresponding to y_{c} is then to be adopted.

To empore the preceding formulae with experiment would require laborifís study on account of the mount and complexity of the experimental material accumulated. It is also wneressary at this stage because it tums out that the formulae describe the experiments with an accuracy that is not inferior to that of the parameters involved when they are known such as the strength characteristics of the meteriz1; and in many cases the parameters ere unknown and only cen $\} e$ derived best from the very domaine as given above. This especially applies to the moon.

A couple of examples may illutitate the approximation to experiment obtained by the application or equations (3), (4) ((6) and (7): the latter paint forewing to the behavior
 (Opiks 105.30s po se). Mine diecreperncy is f shown to be attaint-

Table IT summaxizes experiments vith alumima sphericel pellets, accelereted in vacuo ath a light-gas gam and sized
 detemined in the leporatozy (Rolswer, Fopkins and Eumt 2966).
 eno much of the mass arfected wing stick to the craters making its diameter mallew than, jredicted by equstion (7). This expactation 15 borne out by Ghe last tine of the bable, alhough the systemetic differeaci: is but slight. fhe obsexved penetrations taclude the hejpht of the Iip, and to meize the dota compareble the calonated penetrations, x_{p}, were increased by an average factor of 1.16 . With this. . there is a perfect-ond rether unupected-agrecment betwear theory and observetion.

In enother set of experiments (results fere compased mith Opitis theory with concinsion thet "theosy and experiment egree reasonebly well for hritul meterials, but there is only partiol agreament when theory is compered with'measurements on cuctile moteriels'. The latber point, referming to the behavior of ductile natertsts has also been anticipated theoreticaliy (Opiz; 1958a. p. 32). The discrepanoy is shom to ho ntributable

Whe to tre abillty of ductile materials to defom plestically without frectumen (Comercord, 1066).'Planetary ernotal or surfece motorisls are predominanty of the brittle type and the breoxy should vell apply here.

Not all of the mass affected is demolished part of it is plastivally displeced into the rim or 1 ip (cf. Fiten, Into ${ }_{5}$). The ervene volume of debries as contained betreen
 equals $0.66{ }^{\circ}$ of the total volume arfected, for the typical crater cortur. Fence the mass emshed can be assumer equel to

$$
\begin{equation*}
. \mathrm{R}_{\mathrm{c}}=0.660 \mathrm{k} \mu \mathrm{u}_{0} / \mathrm{u}_{\mathrm{s}} \mathrm{~g} \tag{16}
\end{equation*}
$$

and the vilume crushed

$$
\begin{equation*}
Y_{e}^{\prime}=0.2 A 4 Y_{p} B_{0}^{2} \tag{15}
\end{equation*}
$$

Part of th Salls back into, or stays in the erater ("fallback, Fo, Fifol), part is ejected over the rim ("throwou";"Mho, Fig. I).

Cofbection Veloctiy, heating onc Crater aniuticity
The 100 ditication of the target in aratering events is besicelly of two types (apaxt from the hyperyalocity phenomena in and excund the central funnel, (0), with possible trenstitions: the destruction of the target over the volume of the erater both (MLAA, Figol); and the plastio compression and deformation, of the bedrock surface (milifo) . Wost of the debxes of the bowl are taming out into en expanding voluras, being erushed as in onewsided compression In "nomal" fragmenta tion, for fragments of "finite" dimensions, only moderate
heating tuko plans beamse excessive shoct sequired for

 around the censral fumel, may been lowed in all-aided comprastion wath, at presures of $10^{6}=10^{6}$ atmosphersos, mey be subject to preasure modititetion of ith erystal atruoture (coestita) and to mor interse henting without howerer andmine constarabie efection velochies. The mont of such materats subject to inperpresures without
 Ing we will concem ourselves onty winh the machive debris and ejecti of the crater hovl which are the prownct or coush-
 tions (ephtrel funcl, vaporization) the formane of thas section apply cleo to gemberatructive dmpact (cizent Eection).
 velocity u, the mase cnelosed in it benng yhe so thet y is the "hactional mass affected". The Ghock veloctity at β is then

$$
\begin{equation*}
u=120 \% / y=u_{0} / y \tag{16}
\end{equation*}
$$

valld outstat the central funel i) at wheh appoximatel.
where

$$
\begin{align*}
& y_{0}=25 \mathrm{~m} / \mathrm{N} \tag{17}\\
& y_{\mathrm{Q}}=0.04 \mathrm{kmo} \tag{18}
\end{align*}
$$

The kinotic cnorey at p is re ocased and converted
meinly into beet, party into the kinetic energy of ejectiono If λ_{x} in the finetic enticiency of the shoek at depth x, the tramversal velocity at the shock from is

$$
\begin{equation*}
v=\lambda_{x^{n}} \tag{19}
\end{equation*}
$$

and the heab release in exg per gren or the cretex matcrial becones (Opils 1958s)

$$
\begin{equation*}
q=\frac{1}{2} u^{2}\left(1-\lambda^{2}\right) \tag{20}
\end{equation*}
$$

In the centrol fumel turbulent miytng is supposed to lead to a iniform heating and impulse ejection velocity 0.2 e wo , so that the heat releese becomes (Opik; 1058a, 1061a)

$$
\begin{equation*}
q_{c}=0 \lim _{0}^{2}\left(1-0.022^{2}\right)\left(1-\lambda_{0}^{2}\right) \tag{21}
\end{equation*}
$$

If Leadint to veporizabion, th incueases the velocity of ejection som the central fropel orex the velue or $0.2 \lambda_{c}$ and increuses the recoil momentary this ghas been baken inte accomt in equetion (5). Tre : "action vaporized in the centrel funnel is then (Opiks 1961a)

$$
\begin{equation*}
x_{e}=3.3 \times 10^{-13}\left[\left(1-0.02 k^{6}\right) m_{0}^{2}-10^{12}\right] \leqslant 1 \tag{22}
\end{equation*}
$$

 iupact int, shone) $x_{g}^{2}=1$ is reached at ma $=24 \mathrm{~km} / \mathrm{sec}$ $\left(x^{2}=10\right)$. Tor higher velocities, shret vaporization at the expense of released heat (q) bewones possible outride the centrat fumel. Vaponization con talre place only when $y_{0}>10.4 \mathrm{~km} / \mathrm{see}$; according to this equation.

An element of mass dy between two shook surfaces P and P1 (Fig. D) is streaming out in a memer analogous to
nyorostatic how of a liguta Prom the bothom opening of
 Pund leatel of the voasck. For a yessol of constant miath
 or v^{2} to $\mathrm{v}^{2}+\mathrm{at}^{2}$ is proportional to an or to $\mathrm{d}\left(\mathrm{v}^{2}\right)$: the

$$
\begin{equation*}
f\left(v^{2}\right) d\left(v^{2}\right)=d\left(v^{3}\right) x \text { const. } \tag{23}
\end{equation*}
$$

 dy, the ejection verocity decreasting linemiy with cepth m. conventhonazy, me asbura all dy alements to reach to the some depth x_{0}, so that

$$
\begin{equation*}
v^{2}=v_{0}^{2}\left(1-x / x_{0}\right), \tag{20}
\end{equation*}
$$

also

$$
\begin{equation*}
v_{0}=\lambda u \quad, \tag{25}
\end{equation*}
$$

and the :elptive (normalised) irequency or v^{2} or the sraction of v^{2} between v^{2} and $\mathrm{v}^{2}+\mathrm{dv}^{2}$ to be

- man le mete, the aceepted velocity distribution accourbs, quattetwely at least, pos loss of kinetic enersy in colustions and wrolent frictson while a mass alement metro its way outvaris. 60
 The assurptions are justiflea by the appication to Iunar and terrestrial cratez profiles (ut. Soctions II, and V. A) anc, probably, are not far fom reality even quanctise. tively.

A sjumhar rough assumption is to bo mede ros the
oistribution of the exit ongles, β, of the ejecte (tig. 1). The condition of continuity and nerwincompescritity of the tarect matextal over the relevant major fraction of the mass afected requires that the ejection vectors mast bo all in "momaian" planes direced uxtwerds, and that the ext anzes form a contimous sequace fron 0° at the center to β o at the rim, at $y=1$, where the directon is tangent to the sater Jip at I. An interpolation romula,

$$
\begin{equation*}
\sin \beta=y \sin \beta \tag{27}
\end{equation*}
$$

is here proposed without further fustification; to represens the fomingout of the sjection engles at the orginal taxget surfeee.

Equation (7) defines an aver ge creter aiemeter mich, in the case of ellipticity, can ba assumed to be the nean of the maxima and mindum diametras. In a homgenouns target the crater ellipticity, $\delta=(a-b) / a_{8}$ in the direction of motion of the projectiles shou: d depend on the angle on inctacnee, γ s as rollowe (Opil; 1961a) :

$$
\begin{equation*}
\varepsilon=2[\sec \gamma+(p \tan \gamma) / 3-1] /(30) \tag{23}
\end{equation*}
$$ in former notations. The formola sboulc be valia for angles Iess then $f=60^{\circ}$, and rousity up to 75°

D. Semionestructive Imoact

This is the case of a hard projectile entering a softer target with a velocity below wr [.equation (10)]. The projectily essentially retains tits shape and, to some extent, als; its aspect relative to the direction of motion,

While the target yields, being erushed and forced into hydrodyamic flare The equetion of motion (for $\gamma=0^{\circ}$) is mody $d t=-\left(K_{d} \rho \sigma^{2}+s_{p}\right)$
In former nototions, with the mass lood per cue cross section besng defined as

$$
m=\left(1 . / \operatorname{Si}^{2}\right)
$$

where in is the equivalent radus of the cross secton (σ) contour at right angles to the ariection or uothon, $6=5 h^{2}$

The drag coefricient depencs on the shepe of the projectile. Frow e flattish angulan front surfsee $K=0.75$ con be assumen as an overall mean chorectemistic velue (Wile a value or 0.5 betuer sults anemisphericel front; as well as the case of full bestruetuve mpactinith a hyorostatically deforaing projectile).

シith

$$
: \quad d w / a t=m a / d x
$$

equation (29) cen be integrated for the spection case os $s_{p}=$ const $_{2}$.

$$
\begin{equation*}
w^{2}=\left(w_{1}^{2}+w\right) \exp (-P x)-\hat{w} \tag{30}
\end{equation*}
$$

where wis the initial entry. wis velocity and 2

$$
\Pi=s_{p} /\left(\hat{p} F_{\mathrm{e}}\right), p=2 \lambda_{a} p / m
$$

For $w=0$, the depth of penetration x_{0} is detemminea by

$$
\begin{equation*}
P x_{0}=\ln \left(1+x_{1}^{2} / m\right) \tag{32}
\end{equation*}
$$

Eque"ion 7 rearins valle, as well os othera equations of sections $I I$. B and C xeep (5); (6), (0),
(13) , (17), matronema (20), Inctoad of (17) and (10)

At firist contrect of the projectile aith the target, there is a shook forcing a hycrodyamic fhov potern on the
 valid. Fow an incompessible model with a bunt front the shoct monstum tranmitted to the terget is close to we
 by the projectile, ($w_{0}-W_{1}$) mow, where wo the initisl velocity iefore contact. Hence the shock ratio of velocities becores

$$
\begin{equation*}
\psi_{0}=w_{1} / w_{0}=\left(1+\frac{1}{2} p B / m\right)^{-1} \tag{32}
\end{equation*}
$$

The coarticient of radial momentum is less then unity and is obtained by integrating the firse (hydrodymanie) tem of (\% c),

$$
m_{I}=\int x_{a, p} w^{2} d t /\left(2 x_{a} x r_{1}\right)
$$

(σ_{a} not cencelised with puxpose),

$$
\begin{equation*}
k=(1-\Psi) / 2 \pi_{a}+\dot{\psi} k_{z} \tag{33}
\end{equation*}
$$

The momentintegral is rather inconventent for oujek use. Iustead, the wric integral ficlads the rraction of
 substituter] to totaz work as

$$
\begin{equation*}
\gamma_{1}=1-\left(\mathrm{N} / \mathrm{w}_{1}^{8}\right) \ln \left(1+\mu_{2}^{2} / \mathrm{IV}\right) \tag{34}
\end{equation*}
$$

For very varied conditiona and paranters an empirical reletion hes been established by nunvical integration,

$$
K_{1}=x_{1}\left(0,65+0.35 x_{-1}^{6}\right), K_{a,}
$$

which remesents the monentum trensfar kithin a few per cent.

Also, instead of equation (13) (which refers to the mutually destructive inpact), the effective depth of oisturbed material in the taxget en be assamed equal to

$$
\begin{equation*}
x_{p}=x_{0}+\frac{1}{2} p \tag{32}
\end{equation*}
$$

The above equations are for an idealized case or a flat evenly loaded front surface or the projectille parallel. to the taxget suxface and $y=0^{\circ}$. The actual shaps of the projectile and orientation of the front surface woulu introduce complica;ions, including rotetional couples which aere are disregarled. pos obllque impact mier maderate angles, a symbolical improyement would cons...st in replacing x by usech it. the preceding equations and in taking the encounter, cross section at right angles to the dizection of motior.

Fo: Impact of Figid Proiectile into Granular jerget
In the preceding the fronkal resistance from target cohesion, s_{p}, was assumed to be constant. On gramular surfaces, wast, senc, gravel, including partly consolidatec material, the resistance is variable, increasing with the depth of venetraition; this is obvious from the experience that a heiryy load sinks deeper intr sand than a light one. Fxperiment, as reported below have shown that for an upper

be well represented by a small constent tem plus a main quadratic term of the depth x,

$$
\begin{equation*}
s_{p}=s_{p}\left(x^{2}-a^{2}\right) \tag{.37}
\end{equation*}
$$

Wotural send or gravel contzining an unsifted variety of grain siges, and naturel sy projectiles with a platwish botton were prefered to artificially nomalized laboratory condtions. Lxpeximents on a naturel beach (Amardear; Spain, October 1966 an(1967), though showing considerable local differences, Eenexelly were conrorming to (37). There were no bbrious differences betwean the static values or s_{p} (pure pressure without potion) and the dynamic values computed fron cratering impact experiments, according to the modisied exatering formulae as given below. It was surprising to find that similerly conducted experiments by Surveyor spececract yielned even cuantitetiyely similar mechanicel characteristics or the foplunary soil.

Wher (37) is substituted intc (29), integration yields, for thin particular case of variakle resistances

$$
\begin{equation*}
v^{2} / Q=\left(\operatorname{tr}_{3}^{2} / 2+2+a^{2} p^{2}\right) \exp (-\xi)-\left(2-2 \xi+\xi^{2}+a^{2} p^{2}\right) \tag{38}
\end{equation*}
$$

with $\bar{\xi}=\mathrm{Fx}, \mathrm{P}$ being the same as in (30), and with.
$Q=S_{p} m^{2} /\left(4 \mathrm{~K}_{a}^{3} \rho^{3}\right) \quad(\mathrm{cm} / \mathrm{sec})^{2}$
The ultimate depth of penetration, $x_{0}=\xi_{0} j P$, is obtained from (38) with w $=0$, or from

$$
\begin{equation*}
\left(2-2 \xi_{0}+\xi_{0}^{2}+a^{2} 1^{2}\right) \exp \xi_{0}(m, 2 / 0)+2+a^{2} p^{2} \tag{40}
\end{equation*}
$$

fquations (32), (33) and (35) further determine wis, the entry velucity, and k, coetficient of radial monentum transfer, but instead of (34) the iynamical work ratio now
becones

$$
x_{4}=1-0\left(a^{2} p^{2} g_{3}+\frac{2}{3} s_{0}\right) / m_{2}^{2}
$$

with the totme racint momentum aesined as

$$
\varepsilon_{z^{2}}=x p w_{0}
$$

and on the provisional assumption that cretici volum in
 (2) 3 (3) and (a), an tepparent" areage yoteral strength "a is delined as
rinis is an apparezt velue ana a lowea lint becauzo, at the tor veloatties and energies tmolved, the static wozk of benerration (agaznst colesive strengta) aso apprectany participates in produting a crater bu shom by experimenta in eraye.

A sutwactory repreasentaion of the experimonts by a lav of chbesive sesistance in the form of equation (57) has been arrived at by brial and exwo: Surprisinglys no depenoence on the statie or dynanic resistance (bearing strength) on the linear dimension could be detected oreept the inevifeote shock Interection (32). Shape of the conter: surface (projectile or slug) is, we pourse, on cecigive imporrance in the dymmie tnteraction or it determines x_{2} and k; the ves of fiattish aunfates throurhout has given a degree os homogenetty to the expeminants whith also shound correspons to Iow-velocity impaets of throfwout bonnexs on the mono

The constant component in (37) was too smenl and varit eble for exact determination, but its form as a Ein $_{p}$, thus proportional to the etrengtin at greater depth and not an absolute constrant, was praferable, with an overall value of the parameter $a^{2}=2 \pm 0.5$ cut 2, (The same constant worked well also in interpreting the Surveyor experiments on the roon. The constint terebis, of courses, of importanee only at small loods and penetretions'。

Static tests of cratering interpreted acerding to a certain rational model gave the clue to the ratio $\mathrm{s} / \mathrm{s} \mathrm{a}$, of the trie "o' apparent average lateral strength. If it is the staine mans load, g the aecelerotion of gravity, of the frontal cross section (or stone, slug, or rod), to the equilibriun depth attained by gradual loading so that the velocity :s kept neari zero, the maximu reststance equals $s_{p}(n a x)=\mu \mathrm{g} / \mathrm{r}_{\mathrm{p}}$, ma the resistance parameter of equation (37), with $a^{2}=2$ and coguso unitis becomes

$$
F_{p} \neq y_{p}\left(x_{0} y^{2}+2\right) . \quad s_{p}=u g / 0\left(x_{0}{ }^{2}+2\right)(\text { dyne/cm })
$$

The resisiance averaged evew x_{0}, the entire depth of penetration, is then

$$
\bar{s}_{p}=s_{p}\left(\frac{1}{3} x_{0}^{2}+2\right)
$$

A "pressume craber" is formed, of dinneter B_{0} and depin $x^{\prime} \ll x_{0}$ (unlike the impace craters in sand or gravel where $x^{\prime}=x_{0}$ = invariably reaching the bottom contact sume face). Thu volume displacea by sluy and crater then equala of Equ. 1

$$
V_{p}=\left(0.363 x^{\prime} B_{0}^{2}-0 x!\right)+0 x_{0}=V_{1}+V_{2}
$$

The total work of "staticnpenetration evidently ts

$$
\mathrm{m}_{\mathrm{p}}=5 \mathrm{~s}_{\mathrm{p}} x_{0}(\operatorname{erg})
$$

e Eraction F of mich is assumed to be trensmitted. et Hght angles on lateral work of cretering as measured by the procuct of leteral strength ard volume displacea,

$$
P R_{p}=s v_{p}
$$

In an incompressible mediun the velume displacea is oltineveIy liotec up, the average Iinting height being $\frac{t}{e}\left(x^{\prime}+h\right)$ row V_{y} end $\frac{t}{2}\left(x_{0}{ }^{*}\right.$ h) for V_{2}, h denoting the min elevetion of the craber mis involves a worir against gravitation,

$$
\mathrm{E}_{\mathrm{g}}=\mathrm{g} \rho\left[\mathrm{~V}_{2} \frac{1}{2}\left(x^{i}+n\right)+\mathrm{F}_{2} \frac{1}{2}\left(x_{0}+h\right)\right.
$$

Fhe work of uplipt ogainst gravitetion is trensmithed at right ancles from latexal expanatco: in the same momer as the lateral work orisctated Eron the downare woxk on penetration. tt is senstale then to assume (and the numeri rat applications amply support the assumption) that
whence a walue for the average latered strength in stati penetration results as

$$
\begin{equation*}
s=\operatorname{HE}_{\mathrm{p}} / V_{\mathrm{p}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{~F}_{\mathrm{p}}\right)^{\frac{3}{2}} / V_{\mathrm{p}} \tag{43}
\end{equation*}
$$

:As example, in the "statien Txperiment 2 of proble in: Port a, with a round rod of $\sigma=3.63 \mathrm{~cm}^{2}$ and a finel leed of
 Hence $V_{1}=114.0 \mathrm{~cm}^{3}, V_{2}=53.7 \mathrm{~cm}^{3}, s_{p}(\operatorname{mex})=1.07$ y 10^{7} dyne/ $\mathrm{cm}^{2}, s_{p}=8.65 \times 10^{4}$ dyne/ $\mathrm{cm}^{4}, \bar{s}{ }_{p}=6.66 \times 10^{6} \mathrm{dyne} / \mathrm{cm}^{2} ;$ $\mathrm{E}_{\mathrm{p}}=3.62 \therefore 10^{8} \mathrm{exg} \mathrm{F}_{\mathrm{F}}=9.73 \mathrm{x} 10^{5} \mathrm{exg} \mathrm{E}=0.0513 \mathrm{and}$

Gind $s=1.12 \times 10^{5}$. With $r_{s}=0.63$ (Getempined from angle of repose) $\mathrm{g}=930$ (em/sec, the contributionfrom friction beconas [equations (12) and (13)] $640 \mathrm{~m}_{0}$ dyne/ cm^{2}, and the lateral streagth, ecording to (11) , is then $s_{c}=1012 \times 10^{5}$ $=0600=1.02 \times 10^{5}$ dyne $/ \mathrm{cm}^{2}$. Untum a_{p}, this is an average on crective value, to be compared with the average bearing strengthe: $\bar{s}_{p} / s_{c}=65.3$ (an unusualiy high ratio). Athough variable, there did not seen' to be a sustematic dopenome of chis retto on penetration, whenne (37), properly nodi. fied, ean also be adapted to repiencnt the average lateral strength,

$$
\begin{equation*}
s_{c}=s_{c}\left(\frac{1}{2} x_{0}{ }^{2}+{ }^{2}\right) \tag{37a}
\end{equation*}
$$

the value of $a^{2}=2 \mathrm{~cm}^{2}$ being used throughout.
In irterpreting the dynomic (impact) experiments, it was assume thet the incerendently calculated dyamic (q_{d}) and static (V_{p}) cratering volunes are acditive, wet $V=V_{d}+V_{p}$, denote the totol crater volume, proportional to $x_{p} B_{0}^{2}$ of equetion (42). According to thits equation, evidently

$$
s^{\prime} / s_{a}=\left(V / V_{d}\right)^{2}=V^{2} /\left(V-V_{p}\right)^{2}=\left(1-\frac{R E_{D}}{s V}\right)^{-2}
$$

A quadratic equetion with respect wo s is obtained which ultimetely yields.

Where

$$
\begin{equation*}
s_{a} / s=A\left(1+\frac{1}{2} A\right)-\left(A+\frac{x^{2}}{2}\right)^{\frac{1}{2}} \tag{84}
\end{equation*}
$$

$$
A=s_{a} V / W s_{p} \because
$$

An averagt: vatuo of $F=0.11 \mathrm{n}$, obtained froat the first six static tes"s Tanje IITa, was used. Table TII contains a sumary of the experiments. No two axperinents (static with

Ereduth loading) wewe made on the sane spot; ony the Ultimete load and penetration are recoroded.

- Pecause of the large dispersion, logarithmic mean values are quoted as being (Signixicent. The "probanl deviation ratio' of a singite expertmen; conesponảing to 0.845 of the absolute devintion in the togexithm, $2|A| /[n(n-1)]^{2}$, vonla indicate that 50 or the deviations if Goussizn axe expected to be withir this ratio on the logerathmic mean and its reciprocal. Fxperiment (25) was mode at 0,7 ique incidence, $\gamma=24_{0}^{\circ} 6$ from the vertical, and is
 anc ustog $s_{p} c^{2} \xi^{2}$ instead of S_{p} in trouetion(3); while Se remains matepectea mxperinems (3)) (31) (32) yield momelously high mrontel resistance while the se values are normal. desptte high s / s_{a} getios. mhese were the only experiments where a longish alug mas made to impact on its nezrow enc.; and every time tt tulted over and was found Iying overtumed on \dot{z} its long stae after impoet; possibly, in this twisting movement the area of resistance wes increased which could account for the abormel. velves calculeted on the assumption of the small area of encounter. the lateral resigtance was not aifected, depencing on totel momentum; actual volume or creter and penetretions without direct intervention of aspect or area of contact.

Although measurements of x_{0} ant B_{0} on sanderaters cannot be fery accurates the dispersion in the inferred s_{n}

感 TABLT: III

Mecharical Surength end Cre exing in Naturel Beach Gravel
Site I. II. III IV V
Average grein stze, mo $5 \quad 3.5 \quad 4 \quad 1.5 \quad 1.8$
Stete of misture dry dry dry net. moist
Assumed denstbyg $/ \mathrm{cm}^{3} \quad 1.7 \quad 1.7 \quad 1.7 \quad 2.0 \quad 1.7$
Prictions P_{S}. $0.630 .630 .630 .40 \quad 0.63$
(a) Static Experiments with Caters heasured $\left(x^{\prime}=0.15 x\right.$ guerage)

(1) I $5.511 .53 .630 .1171 .15 \times 10^{6} 4.33 \times 10^{5} 1.35 \times 10^{4} 35800 \quad 1620 \quad 22.1$
(2) I $15.012 .53 .630 .0521 .97 \times 10^{7} 6.66 .20^{6} 1.02 \times 10^{5} 86500 \quad 1330 \quad 65.3$
(3) I $1.7523 .51980 .0943 .69 \times 10^{5} 2.20 .10^{5} 1.75 \times 10^{4} 72300 \quad 5300 \quad 12.6$
(A) I $8.522 .520 .30 .1052 .42 \times 10^{6} 3.51 \times 10^{5} 3.32 \times 10^{4} 32600 \quad 1.160 \quad 22.3$
(5) I. $5.210 .53 .25 \% .1766 .27 \times 10^{5} \quad 2.38 \times 10^{5} \quad 3.9 \times 10^{3} 21600 \quad 1310 \quad 26.8$
(6) I $6.50 .93 .250 .1619 .02 \times 10^{5} 3.28 \times 10^{5} 1.28 \times 10^{4} 20400 \quad 300 \quad 25.6$ ean 0.118 . Logarithmic mean \quad.e. 26.5
(2a) The rod of mxperiment (2) was excarated in situ an the samo loed on $s_{r}=1.97 \times 10^{7}$. applied. Ths additional penetration was $x^{\prime} \mathrm{o}=5.0 \mathrm{~cm}($ thus reaching a total rit $15.035 .0=20.0$ cu below the undisturbed surface)
(o) Other State isyperiments

(7) i $0.9 \quad 3.63 \quad 2.82 \times 10^{5} 100000$
(8) I $1.253 .634 .31 \times 10^{5} 1.21 .000$
(9) $\quad \pm 2.823 .63 \quad 5.16 \times 10^{5} \quad 61900$
(10) I $4.9 \quad 3.63 \quad 1.15 \times 10^{6}$ 44 200
(11) $\quad 17.3 \quad 3.63 \quad 1.96 \times 10^{7} \quad 61600$ |
$\begin{array}{llllllll}\text { (12) } & I & 0.28 & 29.3 & 1.65 \times 10^{5} & 79 & 300 & 1\end{array}$

(13)	I	1.7	3.25	2.46×10^{5}	50	400

(1.fi) IT $2.51454 .76 \times 10^{5} \quad 5,800$
(1i) IT $4.0461 .50 \times 10^{2} \quad 8: 300$
(1i) IIII. $4404.80 \times 10^{5} \quad 120000$
(18) IV $0.90146 .5 \times 10^{\frac{1}{2}} \quad 2032002$
(11) IV $2.251004 .8 \times 10^{5} 60000$ (1) mean of Freer. 'robable devietion ratio 51.000

气 Mosi Tix, Contimued
 (c) Dynamic (Tmont) Ixperimencs

 (20) I $5.8 \quad 54 \quad 84.5 \quad 525 \quad 577.0 .759 \quad 0.2531 .89 \quad 31500 \quad 3250 \quad 9.7$ (21) I $2.6 \quad 21 \quad 18.4 \quad 108 \quad 221 \quad 0.7830 .2111 .82 \quad 10900 \quad 2520 \quad 7.9$ $\begin{array}{lllllllllllllllllllllll}\text { (22) } T & 3.9 & 26 & 18.4 & 108 & 470 & 0.788 & 0.250 & 1.98 & 32000 & 2980 & 10.7\end{array}$ (23) TI $2.3 \quad 8.88 .05 \quad 15.8$ 272 $0.8030 .2601 .70 \quad 26200 \quad 4232 \quad 6.2$

(25)II 2.3 13.08.05 15.3 579* $0.3030 .2718 .41 \quad 60300 \quad 3380 \quad 17.9$

(30) V $\quad 3.2 \quad 13.310 .5 \quad 9.01206 \quad 0.880 \quad 0.9324 .31 .280000 \quad 5210 \quad 42.80$
(31) V $2.5 \quad 12.5 \quad 10.5 \quad 9.0 \quad 525 \quad 0.8300 .2054 .60 \quad 73400 \quad 1533 \quad 40.048$
(32) V $1.8 \quad 0.310 .5 \quad 9.0 \quad 372 \quad 0.580 \quad 0.1693 .87 \quad 77200 \quad 3030 \quad 25.14$
(33) V 2.6 . $12.1 \cdot 4.87$ 19.4 $1256 \quad 0.6770 .3971 .47 \quad 63300 \quad 0060 \quad 6.4$
(34) V 2.1. $10.3 \quad 4.37 \quad 19.4525 \quad 0.6770 .3531 .43 \quad 20300 \quad 3340 \quad 6.2$
(35) V $1.7 \quad 10.4 \quad 1.87 \quad 19.4$ 372 $0.6770 .3391 .53 \quad 17700 \quad 2610 \quad 6.8$
(36) V 3.7 16.1. 7.55 22.1 $1266 \quad 0.7700 .3442 .00 \quad 60700 \quad 3370.15 .7 \ldots$
(37) V $2.6512 .0 \quad 7.55 \quad 22.1 .525 \quad 0.7700 .3041 .78 .29300 \quad 3580 \quad 8.1$
 Logarithmic meta, Exper. (20)-(38) $\ldots \ldots 436004380 \quad 10.9$ Probable deviation ratio... $\begin{array}{ll}1.65 \quad 1.54 & 1.61\end{array}$

* Experimont ; 25) at oblique incidence.

Tho inoresse of strongth whin deph doonch on tho feotomst hine tighter paohnt of the deep layers ond the
 In Fxperinent (2 a) , when theme taynm in limpeximent (2) wese removedy the surface lato bexe in suoh a manmer wes
 it whinswod unden tho weight of the formem layer of 15 ch.

 G. 4 timos lamen than the former watuen onaracteristio of the intrincie fightening of the gramuler matrix vith deytho

 3.23×10^{7} tyme/an ${ }^{3}$. 4.77 times tae valve when the Layer was rempyrat this indicates the deraee of aratrioney xehmorcoment begow the depth of 15 cm due to the weicht of the ovimytng 15 centimeters.

All Ghose totails are brought out becruse of their dese quolitative and quantitative analogy with simular experi-
ments made on the lunor surface by Surveyor spacecratis, so that the results of these terresurial experiments can be applied with some conftaence, by way of extrapolation; to the nechenticel properties of tie lunar soil.

Although of grood working valie, it would be wrong to extrapolate equations (37) and (37a) to greater depths thith out limiontion. The guadratic lay of increasing sixength can be valid only in a top layer; at greater deptin i.t should merge inso a constant value corresponding to compacted gronulaz material. For the "papot muclear crater in desert alluvinu (ct. Shoemaker: 1203), at $x_{0}=3150 \mathrm{em}$, $s_{e}=4.0: 10^{7}$ dyma/ cu^{2} (cr. Sectivn II.F) ; a valus or $S_{c}=4 \times 10^{3}$ which is about the mean in Table $\operatorname{III}(c)$ for gravel wuld reach the observed value at $x_{0} .100$ cia, and this sholl nor be surpassed in a gromular matris except at very much greater depth when plastic compaction into solia rock telks place. The same rust be true of the frontal sirength; with $s_{p}<2 \times 10^{8}$ as for sandstone and $S_{p}=5 \times 10^{2}$ as a mean value in Toble IIX (c) the limiting depth for the quadratio term is only about $x_{0} \approx 33$ cri. Thus, $i t$ can be assumea provisionally that (37) and (37a) are probably valld to a depth of about $50-100 \mathrm{~cm}$, beyond which s_{c} and s_{p} assum: constant "compacted" values.

The logarithmic mean of the retio of frontal to lateat cohesive resistance at impact [revle III(c)] is 12. This
is about the same as the ratio of compressive to erushing strength of britite meterials.

All expeximents vere conducted at vertical incidence except one on October 12 with $\gamma=z=25^{\circ} ; w_{0}=57.8 \mathrm{~cm} / \mathrm{sec}$; it gave the exater elinpticity as $\bar{\varepsilon}=0.039 \pm 0.008$ (measured), to compare vith a theoretical value of 0.046 according to equation (28).
: For some of the impact experlnents of Table ITI (c), on fites II, ITI, and v, the tyinal crater characteristics mostly areraged in the form as they occur in equation (7), are collucced in trable TV. The second half of the table cortrins the relative diameter limits to willich throwout of the qualitatively described intensity wes reaching.

Fe Finetic Erficiency and throwout

In low relocity collisions of stone or other bxitile substances, part of the kinetie energy is lost into heating, destruction or rotation, so that the reflected trans lational kinetic energy is a fraction λ^{2} of the original (see ecuetions (19) and (25); Ir the proposed cratering model (Fig. 1) the fraction is assumed to vary unfformly from $O\left(\right.$ at $\left.x=x_{0}\right)$ to $\lambda^{2}(a t x=0)$ at constant u, so that the average translational kinetic energy per gram of the ejecta at $y=$ const is $\frac{1}{4} \lambda^{2} u^{2}$.

Experiments with stony projectiles falling on a massive stony surface from a height oi $0.5-2$ meters and reflected from it gave $\lambda^{2}=0.23$ as an average. In an equal

TABLE TV
Tyoiosl Gravel Cratering perameters
Hxperinents (23)(34)(36)(37) weighted
 a $\quad \mathrm{A} / \mathrm{B}_{0} \quad \mathrm{X}_{\mathrm{p}} / \mathrm{B}_{0}$ Avexase 11.7 $12.0 \quad 2.07 \times 10^{4} 25.7$ 660 2.35 0.326. $0.66 \quad 0.0560 .286$

Whrowot Litimeted Characteristice, jn Units of Bo
Rxperiment (26) only; $\operatorname{Fo}_{0}=1 / 4.7 \mathrm{~cm}$
Outer Cratex massive Considerable Extreme notice-
Wall throwout throwout able throwout s k wo $\begin{array}{lllllllll}B / B & 1.355 & 1.36 & 3.9 & 6.37 \times 10^{2} & 0.317 & 1266\end{array}$

TABLE V
"heapot" Nuclear Crater Ejecta (E allecek Throvout) Distribotion
(Ballistic distarce)

$$
\begin{aligned}
& 30.0 .3460 .400 \quad 0.4560 .463 \quad 0.517 \quad 0.531 \cdot 3.000 \\
& \text { obseryed, Fig. I volume ix arean } 6.53
\end{aligned}
$$

PABLE VI
Veriation of Mass Retio of two hocretine fuelet

mount was stored in rotation, the coefricient or efastic realectivity would be 0.45 . mhe experiments consished in measuring the length of elight [equation (45)]; on the essumption of $z=45^{\circ}$, the apparext values of λ^{2} renged from $0 .(8$ to 0.43 ($n=26$) with ars epperent average of 0, wios allowing foz a dispergion in $\%$, ocomection fector or $4 / 5$ was then applied,

The greater fintemal frictim durdns catexing is Hikely to leac to a smaler velue of F than in the simple twowody collision. From Table Il it can be seen that the ejecta spraad over an extreme dimeter of 6.8 Bo [Txperinumt (20)], or over a borizontal aistmee of $\mathrm{J} \sim 47$ cm the elifht distanes is given by

$$
\begin{equation*}
l_{i}=(v / g) \cdot 2 \sin z \cos z \tag{45}
\end{equation*}
$$

where $z=\beta$ (Fig. $)$ is the zentith angle of ejection. From $\underset{\text { equation. (a) }}{\substack{\text { end } \\ s}}=4.87 \times 10^{4}, \quad \eta=1.7$ and $w_{0}=1256 \mathrm{~cm} / \mathrm{sen}$ es tor $4 x p e r$ ment, $u_{s}=169 \mathrm{~cm} / \mathrm{sec}$. with the condition $u<w_{0}$: instead of equation (17: (16) yields y $>y_{0}=$ $v_{\mathrm{s}} / w_{0}:=0.133$ in the presem care. Taking $y=2 y_{0}=0.266$ as a micide value for top ejection, $2=635$ cinsecs $\sin p=10.8$ and $\sin \beta=0.213, \cos \beta=0.977$ according to (27) ; the top velocity of ejection accorang to (45) becomes v $=333$ $\mathrm{cm} /$ see, Hence $\lambda=333 / 635=0.527, \lambda^{2}=0.275$ with a considerable nargin of ixeedom, however. It is perheps an overestimate; as; for constant λ, u increases with de. coeasine y and the rarthest throrout will come from the
innermost portions, from $y=y_{Q}$. Takins how $y=0.15$, $u=1126 \mathrm{~cm} / \mathrm{sec}, \sin =0.12, v=440 \mathrm{~cm} / \mathrm{sec}$ is obtained whence $\lambda=0.391, \lambda^{2}=0.153$. The grain size $\left(0.4 \mathrm{~cm}, \mathrm{~m}=0.7 \mathrm{~g} / \mathrm{cm}^{2}\right)$ -wes such that over the flight length of 47 cra or through an air mass of about $0.07 \mathrm{~g} / \mathrm{cm}^{2}$, bboct 5 per cent of the velocity would heve been lost at the endpoint through air drag. Aa increase of λ by 2.5 per cent would be required, making it 0.401 anc $\lambda^{2}=0.16$. This latter value is probably the besi, guess thet can be mada.

With the adopled cratering medel [equations (4), (16). $(24),(25),(26)$ and (27)]; the fraction f_{p} (fallback) or ejecta felling insiöe a ractus $\begin{gathered}\text { B } \\ \text { from } \\ \text { the center of impac* }\end{gathered}$ ond origineting along shock surface p of $u=$ const. (Fis. y) ow $y=$ const. equals

$$
\begin{equation*}
\hat{x}_{1}=\left[2 b y^{2}+b y\left(13 / i_{0}-y^{2}\right) /\left(1-y^{2} \sin ^{2} \rho_{0}\right)^{2}\right] /\left(1+2 y^{2}\right\} \tag{46}
\end{equation*}
$$

The term $f^{\frac{1}{2}}$ represents conventionally the distance IE of the ejection point (Fig. S) in units of \dot{B}_{0}. Then $\dot{I}_{b}>1$ is obtained, $\hat{X}_{b}=1$ ls to be taken. Here

$$
\begin{equation*}
a=8 x_{0} \sin p_{0} / B_{0} \tag{47}
\end{equation*}
$$

so that as accounts. for the work on gravity in lifuing the ejecta from the depth of the crater to its surface, and

$$
\begin{equation*}
b=g x_{0} p /\left(4 \lambda^{2} \cdot \sin f_{0}\right) \tag{48}
\end{equation*}
$$

takes care of the harizontal length of the trajectory.
The ,otal deposition of ejectix inside $\frac{1}{2}$ is obtained by numerinal integration.

$$
\begin{equation*}
F_{B}=\int_{0}^{1} x_{b} d y=y_{0} \cdot e_{Q} \cdot \cdot \int_{y_{Q}}^{l} e_{b} d y \tag{49}
\end{equation*}
$$

We tre two paxanerss, b is by far the more important one. Hig. E represeats the function log $\left(J-F_{B}\right)$ as depending an log b, for four selected values of a and for $\sin f=0.30$. the insert, fise $2 a$, valid for a 90.97 , represents loz $\left(1-\mathrm{I}_{\mathrm{B}}\right)$ as depending on log (ab)。

It ney be noted that the dectruchive and ejection phenomens depend primarily:on the properties of the pook
 the distuibution of the ejecta mill be prectically the some, whoterex the velocity of the projactile, or whetever the origin of the crater-meteorite inoect, high explosive or nuclear hast if the charge is properiy placed (not 200 deap ond not too near the surface) so that a not too abnomal crater profille results. The diference ia tine origin of tina blast, veloctity and trpacting mes; etco, would reveal itm self chiefly in the central funnel, Q while over most of the crater valume this is irrelevant, once the craber size is given (tie stize, of course, is cememmed by the condition around the center of impact).
: He chose the "heapot" nuclear croter (Hhoemsiner, 1353^{4} lowdye, 1061) whose profile is reproduced in Fig. I. The ditmensions are : $2(I) I_{3}=B_{0}=10500 \mathrm{~cm} ;$ of the groundi-level bowl, 2IJ $=3100 \mathrm{~cm} ; x_{0}=0.8 x_{p}=3160$ cm; $x_{0}=0.61 x_{0}=1920$ crto The tarces is "a loose sanh-gravei mix vith a density of 1.5-1.7 and a water content (at cupth) of about 10 per cent.". We assume $p=1.7$ in situ and $p=3.5$ for the ejecta deposit
whose volume is thus to be muliplied by a factor of I. $5 / 4.7=0.883$ to rechee it to thet of the paremt metrax. In similax grounds the "Soovtert map explosion inöicated a radial stress of 600 psi at a 0 istunce of 200 feet (puxphey, 195I) which, at the crater bowI (150 5t) and an invexsembob law for the stress, would correspond to lateral strencth $s=9.8 \times 10^{7}$. dyne/cmiz with a depth $x_{0}=1800 \mathrm{~cm}$,
 make litite difference, $s^{c}=8.6$ x 10^{7} dyne/cmi aceorîng to equation (h). Within +100 to -50 per cent. this should hold also for the "Ifeepot:

Intugrations ecording to (42) ana (40) with $9=1.02$, $b=0.80$, sinforis.800 geve the distribution of the ejecto os shown in Toble V. The value $\operatorname{con}^{2} / B_{0} \leqslant 1.000$ is the true fallback (F3, Fig, Wh. Thera is a systematic difference between the observed and calculated values mich camot be removed by a diferent set of pajameters. Wmelys onty the choige of b is to some extent free, whily a and β are prescribed by the cuater prorile. Fith a change in b, all the calculated. velnes on ${ }^{\text {Fi }}$ move in the seme directiong so thet an improvement at one end of the teble will be countered by deteriometion at the other. Some of the ditference moy be attributed to air frog winch forced the ejecta to deviote from the purely beltistic trajectories and descend at Gistances smallex than those of ecuation (45) . The alr dreq: on these massive ejecta does not cepend on grain sige but
on the total mas get the streen, sin in m_{2} is the traversed eir mosss the loss in velocity is

$$
\Delta v / v=-m_{g} / m=\Delta l_{s} / I_{3}
$$

The relative loss in the distance is tuen equal to the averege loss $\Delta \psi^{2} / v^{2}$ cver the ontire trajectory, on to one. hale the final Joss, $\frac{3}{2} \Delta v^{2} / v^{2}$, which is $\Delta v / v$ as indieatedo With this, and detexmined, Srom the thickness of the deposit (Irom 4 to 1 meters), the ballistide distances ame decreased to $\mathrm{B}^{t} / \mathrm{B}_{0}$ as given in the botton part of the table. Irne last two lines contain the compaxison tetween observation and ochenatine with this reqinement. The discreponcy is ainunished but still persists. Nevertheless, for an a prioni approach, the results are quite setisfectory.
with $b=0.80$ and the obher peraneters. equationa (47) and (4) y: eld:

$$
\lambda^{2} s=6.8 \times 10^{6}
$$

for the desert alluvium. with $s=5$ to 20×10^{7} as for " 3 cooteren, one would obtain $\lambda^{2}=0.14$ to 0.034 . Taking $\lambda^{2}=0.16$ as tox the grevel craters, $s_{c}=4.2 \pi 30^{7}$ dyne/ cm^{2} can be con ventionally regarded as the best ertimate for the "Ieapot" alluviurs, We gravity friction comection amomtino to o mere 2.5×10^{6} gyne/ cm^{2}.

III. Planetary Encounters

The surface progerites of the moon comot be well interpreted without its past history, beginning with its
origin and followed by Purtiver exposure to collisions with interplanetary stray bodies. This purpose is basicelly served by the theory of interplanjtary encounters vhich in its original "1inear" form (Gpik, 1951, 1963a) is concaroe with very small collistion oross spetions as compered to the orbital dmensions. Supplemented by the consideration of accelextwion in repeated grevitationel "elastic" encountert (Opik, 7066a), it requimes essentiel modificatione when dealing with rings of "planetesimale" orbiting in tighthy packed notriy eixeular orbits. Th? melative velocities are then stan, the cross sections lerge and the linear epprorimation (foe. treoting the orbitel are segments near the points on encountex \therefore as straight lines) is no longen worte able. Appropriete fomulae ror those cases are for the tirgt time given further below.

The Linear approximation fomalae for plenetary enm counters are as follows. In a Jacobian frame of the restrictc a three-body problem, a smeller body (plenets moon to be called further "satellite") of reletive mass frem volves axound a central body (sun, earth to be called
 circular ombit of radius 1 and period 2 , so that its orbital velocity is taken as wits and the gravitational constant is also 1. A strey body (to be called "particle") when at aistance 1 hos a velocity u relative to the circular velocity of f, in the writs chosen,

$$
\begin{equation*}
U^{2}=3-2\left[A\left(1-e^{2}\right)\right]^{\frac{t}{2}} \cos 1=1 / A \tag{50}
\end{equation*}
$$

and a radial component U_{r}

$$
\begin{equation*}
v_{r}^{2}=2-A\left(1-e^{2}\right)-1 / A \tag{50}
\end{equation*}
$$

where $A=$ semi-major axis, $e=$ ecentricity, ond $i=$ inclination of the orbit of the particle relative to that of the sotellite.

A particle whith can pass a; distence 1 "crosses the oxbit, of the satellite withou; aecessarily intersecting. Due to soculer perturbetions, precession of the node and gavence of the periastron of the atallite's orbit, rem sulcing an a secular motion of the argunent of periastron (perihelron, perigee) ω; a particle crossing the crivi of the satellite will be intersecinge it twice during the pexiod of $\omega, t(\omega)$. For the earth in heliocentric orbit the repetition interval is 安 ($\omega=32000$ years. The "prow babilityit ${ }^{\circ} \mathrm{P}$ (mathenotical expectaiton) of encounter per one revoluticin of the particle is then

$$
\begin{equation*}
P_{e}=\left(\omega_{0}^{2} / \pi \sin i\right)\left(v^{2}+0.44 e_{0}^{2}\right)^{2} /\left(\mathrm{v}_{r}^{2}+0.44 e_{0}^{2}\right)^{2} \tag{52}
\end{equation*}
$$

where eo: eccentricity of the satulitits orbit, $\sigma_{e}=$ target madus 03^{2} encounter (collision) parameter in units of the orbital radus of the satellite. Fras the inclination the average rector sum

$$
\begin{equation*}
\sin 1=\left(\sin ^{2} i_{0}+\ln ^{2} i_{0}\right)^{\frac{1}{2}} \tag{53}
\end{equation*}
$$

must be taken, where i_{p} and i_{0} aro the average orbital inclinations of particle and satelute to the invaximble plane of the systen. However, when the encounter lifetime [equation (59) belor] is shorter then one-bale the
"synodic" periodes orbital precescion, the "inetenteneous" value of tho inclination nustioe taken ta similax yen striction holas loz the term $0.460_{0}{ }^{2}$ in equation (52) with respect to the synodic period of the longituae or pexisstrons.

Tor paysicol collision with the satellite of redius. μ_{p} (in tite sande relative units)s,

$$
\begin{equation*}
\left.\sigma_{e}^{2}=\sigma_{0}^{2}=R_{p}^{2}[]+2 \mu /\left(\pi_{p} v^{2}\right)\right] \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
2 \mu / \mathrm{R}_{\mathrm{p}}=\mathrm{v}_{\infty}^{2} \tag{5E}
\end{equation*}
$$

is the shuare or the escape velocity from the surface or the sate ifte For a completo gravitational "elastio collision": yielding a mean angular aexlection of 90°, the crate: section madus is dofinis through
-1女h

$$
\begin{equation*}
\sigma_{0}^{2}=\sigma_{a}^{2}=\operatorname{Tn}\left[\left(a_{a}^{2}+T_{0}\right) /\left(\sigma_{0}^{2}+2\right)\right] \tag{5ii}
\end{equation*}
$$

where

$$
x_{a}=16 \mu^{2} /\left(x^{2} v^{2}\right)
$$

$$
\begin{equation*}
R_{a}=\left(\frac{2}{2} \mu\right)^{1 / 3} \tag{58}
\end{equation*}
$$

is the radius of the "sphere of action" upon the paritele of the safelutte grainst the main body. This is not a cleareut limit of action, but its use ln logarithoic form renders unimpertant this uncertairty. The average perturbetion vector of the main body on the radisl ecceleration of the particle relative to the satelltte is zero, so that there is 7 oo virtual limit of actions only a disamonement.
by the perturbation.
The lifetine or the particle with respect to a given type of erscounter with prohability P_{e} is

$$
\begin{equation*}
t\left(\sigma^{\prime}\right)=2 \pi A^{1.5} / \mathrm{pe} \tag{59}
\end{equation*}
$$

and the true probability of enownter curine a time interval it is

$$
\begin{equation*}
\eta_{t}=1 \cdot \exp [t / t(\sigma)] \tag{60}
\end{equation*}
$$

The raliotity of the linear pporoximation Pe is restricted to the case when the curvature of the are of encounter is less than the target radius or, which for σ_{r} as for the earta and near-cisflar orbits of the pertieles requires ($\ddot{U}_{\text {pik, 1351) }}$)

$$
\epsilon \leadsto 0.0063, \text { s.ni }>0.0064, u>0.00100=0.27 \mathrm{~km} / \mathrm{sec}, \quad(61)
$$

Purther: provided that sini ma e exceed σ, the target redius, the lifetime must exceed one-half the period of the argumen ar periastron (not the sylodie period in this cese),

$$
\begin{equation*}
t(v)>\operatorname{sit}(c) \tag{62}
\end{equation*}
$$

If this is not fulrilled,

$$
\begin{equation*}
t(\sigma) \cong \bar{q} t(\omega) \tag{63}
\end{equation*}
$$

must be taken, unless a shorter lis'etime not depending on the secular adivance of ω is indicaied [cr. equations (69)... $-(73)]$.

The breakdown of the linear anploximation leads to unw reasonebly high values of p_{e} in ($5 c$). In suck a case an upper limit P_{m} t) Fe_{e} is set (Opik, 1966a), still depending on the secular va:iation of cu yet indepencert of the orbital elemerits e and i

$$
\begin{equation*}
\dot{p}_{e} \leqslant p_{m}=20_{e} /(3 \pi U) \tag{64}
\end{equation*}
$$

When this condtion is not euritited, $P_{e}=P_{m}$ must be teken instead of P_{e} (unless superseded by anothes limt).

Fox small values of U, when $\sigma_{2}^{\prime}>\sigma$, repeated elastic encounters bring the variable sini and U_{r} values often neax zero, so that partay (6 s) Das to step in instead. The statistical mean probabiltty P_{6} is then

$$
\begin{equation*}
\left(P_{e} \text { aver. }=p_{0}=k_{p^{2}} / \mathrm{U}\right. \tag{65}
\end{equation*}
$$

where $K_{p} \approx 3$ for heliocentric enccunters with the earth, and $K_{p} \approx 2$ cor those with rupiter (Opik, 1066a). Rpplying equetion (64) to $P_{e}=P_{0}$ with $K_{p}=3$ the condition of validity of (65) becomes

$$
\begin{equation*}
\sigma<2 / 97=0.0707 \text { or } 0^{2}<0.00 \mathrm{E} \tag{66}
\end{equation*}
$$

Othemise $?_{m}$ as in (64) must be used.
On the other hond, the tenget radij should not exceed the sphere of action,

$$
\begin{equation*}
\sigma_{e} \leqslant n_{2} \tag{67}
\end{equation*}
$$

When equatioms(54); (56) ox (66) exceec this limitore $=\mathrm{R}_{\mathrm{e}}$ shall be conventionelly tekens although action is not limited to this distance, it camot bo treated by the simple statisticel model of two-body encountexs; alassicel porm turbationsl methods must then be used inscead.

The oreceaing equotions of encounter apoly when the orbital range of the particle comes within the reach of that of the sacellites, augnented by the target radius. The range of applicmbility is defined by the two conditions of full crossing to be fulfilled simultanemsly; when $e>$ eo thes: conditiont are

$$
\left.\begin{array}{l}
A(1 \cdots e) \epsilon_{1}-e_{0}-\sigma_{0} \tag{68}\\
A(1+e)=1+e_{0}+\sigma_{e} .
\end{array}\right\}
$$

and when $e<e_{0}$, the roles of perticle ane satellite are In interchenger.

A hactioncl sactor may sometimes be apjiled to the P-Values 3llowing for partial oroming (Opizs 1951, 1963a),

For very smoll yal nes of U_{3} as those whicia would oceu: in premplanetary rings of olanetesimals, an overall upper Limit to the probebility of encourtex evidently is $B_{e}<1$. Fowever, two nermoner Iimits exis: which canot we sumpessud; the avergge Itectine for an encounter, whatevex its texget sadus. must be longer then the eborter one of two seithex oncmate the symodic period of revolution, ig , of the perticle, or the time of unperturited fell from a distence of $\sqrt{2}$ (midde of circuiar orbit) uncer the attraction of the setel:fte. Thuss

$$
\begin{equation*}
t(\sigma) \omega_{0}=t^{1.5} /\left[A^{2.5} \cdot 1 \mid\right. \tag{69}
\end{equation*}
$$

03

$$
\begin{equation*}
t(\sigma)>+\omega_{\mathrm{H}} \pi /(2.83+L)^{2} \tag{70}
\end{equation*}
$$

when 2 if is the orbital period on the satellito around the centrol body.

These cases occur only when tie arbital seminajor axis of the perticle is close to urity,

$$
\begin{equation*}
A: \therefore 1 \pm A \tag{71}
\end{equation*}
$$

so that a Linear approximation to (69) cen be useo,

$$
\begin{equation*}
t_{5}=\Delta \pi / 3|\Delta| \tag{72}
\end{equation*}
$$

黄t，is shorter then the equation（70），when

$$
\begin{equation*}
-\Delta^{2}>1.861^{2} \tag{773}
\end{equation*}
$$

and wen $\frac{7}{2}$ t，is the lower limit to t (∞) ．When（73）is not fulfilled；t_{F} is the limit．When the Itrotine as calculated from（59）comes out shower than the limit，克要 or that be substituted for th；the equivalent probability P_{e} can turn be calculated from（59）
is den be seen，complications arise when u is small． A．＂Fermi－type＂acceleration of the encounter velocity for a
 1966a）could increase it sufficiently before a collision takes place，sw that equations（65）on（64）pula apply．the accele－ ration is given by

$$
\begin{equation*}
a\left(u^{2}\right) / d=1.23 F\left(\omega^{2}\right)\left(0.625 e_{0}^{2}+\sin ^{2} x_{0}\right) / t\left(\sigma_{a}\right) \tag{74}
\end{equation*}
$$

in former notations，where $1.23=\pi^{2} /$ ana $F(\omega)=1$ when $t\left(\sigma_{s}\right)>2 \mathrm{c} t(\infty)$ ．When the deflection lifetime is shore： then $t(\omega)$ ，

$$
\begin{equation*}
f(\omega)=4\left[t\left(\sigma_{\mathrm{a}}\right) / t(\infty)\right]^{2} \tag{77}
\end{equation*}
$$

Thill e being deflected one accelerated in the elastic gravitational encounters，the particles axe removed by physical collisions，so，that they virtually disappear before a certain average value of U is reached．The fraction sur n wiving is

$$
\begin{equation*}
y^{3}(J)_{2} \sim \exp \left[-\int_{0}^{i}\left(\omega / \sigma_{a}\right)^{2} d t / t\left(\sigma_{2}\right)\right. \tag{76}
\end{equation*}
$$

when T is accelerated from U_{1} at $t=0$ to U_{2} at，t ．In this equation $:(\omega)$ does not appear and there is no restriction
dopencing on lixetime which eaterns howevery tmplicithy through (7-9) from mich the interval, t is to be atermined.

When exceeds the arition ralue of $\sqrt{2}-1=0,414$. adational depletion of the perticle population begins, brough ajpetion out of the systen by way on hyperbolie chits: row particles encountering the easth with low initial encounter velocities, $\mathrm{U}_{1}=0.1(3 \mathrm{~m} / \mathrm{sec})$, rapid depletion by physinel collistons prevents 90.t pex eem of the paxtizles from reaching $u>0.3$ ($9 \mathrm{~km} / \mathrm{sec}$). The average encounter velocity of such perticles. when septured by the earth or the moon, is then $\mathrm{U}=0.178(5.3 \mathrm{~km} / \mathrm{sec})(\mathrm{Opik}, 1905 \mathrm{ag}$ 39660). Of course, gravitational ection whl increase this value to a colimion velocity of about $12 \mathrm{~km} / \mathrm{sec}$ for the earta and $5.8 \mathrm{~m} / \mathrm{sec}$ fon the mon The fraction accelerated above $\Psi=0.44$ ie less then 10^{-13}, so that ejection is negligidie, the entise population being removed in collisions. For Jupiber, however, the conditiona are very diferemb, end so are thos for the moon with respart to earthbound oribiting pazticlers.

Whe precoding equations apply to tree oxpiting particles. In a prepplanetary ring mutual collisione and drog will reduce U to very smoll vislues and will also prevent the acceleresion mechanism rom working (Opix, 1966a), condtions which must have prevailed during the origin of the moon. Also, when the "particle" is no longer me ineinitesinal dimonsions
as compred to the "satellite", the redius $\mathrm{P}_{\mathrm{p}}=\mathrm{R}_{1}+\mathrm{R}_{2}$,
 values for the two colliding or interacting bocies, the \therefore satellite and the paricle.

IV The Origin on bhe Woon
A. Heoreticel ana Observational Basis; the Alternatives

The svents which shaped the present surface of the mocn must be traced to the very oxigin ar our setellite as an indiviaul body. rhree principal modes of oxigin have been envisagea.
(o) Whe fiskion theory propos á by six ieorge Tamrin. which at present has faller into disrepute though without convinoiner reason;
(b) The theory ox formation fom, swerm ox plenetesimels orbiting the earth, simultaneously yith the foxmation of our planet (Sehmidt, 1950: Opik, 1562e:.
(c) The theory of capture, suscested by an extension of Dawnin's celculations backwaras by Gexstenkorn (1955) (Opik, 19E5, 1962a) and recentiyrsronsored by Urey (1508e) and Alever (1963, 1965).

As will be seen, there may be more variants of these typicel hypotheses.

Hypotiesis (b), oxisinatec by J.J. Schmidt (1950), has been strongly supported by Russian astroonysicists-nusicol, Levirs and sthers; hevin (1966a) provides a feair survey not
only of the work of $0 . \pi$. Scimidt's sthool in this atreotion, hut atso on woxk one alsewhete on hypothesis (e), while (a) we rejects owtright becniase us the tmpossibility "of the smoth sepaxation of a rotating muid masi. The objection holds oniy the aradymode noon is supposed to be tre enü product, Fowevers, the products or fission, broken up into numberioes fragments inside Foche's Inmitn could letex on gathex ma recede, leading thus no a variant of hyothesia (b) ('Opik, 1956).

Observetionel data, based on we sbatisties on ellipiscities of lunar craters mad the seometry of tidal detromaw , tions (Cpikg 19610)s point whth g good (though not overwhelming), probobility to the eraters in the lumam continentes heving formed at a distence from 5 to 3 eamb radiiasupporting thus inpotbests (b) es outhined by
 the statistical exor of sempling the lowew limit is welt
 the hightends have not been fomec. rit a distence closer than 4 cexth redis.

After Genstenkom, rexrospective celcuations of the evolution or the moon's orbit heve been meae by macinnald, silcher, Sorobtn; with very airferent results as depenaing on the esmuned perameners (heving 1066a). All these potrt, to a minnum distance somehere near or inaide the present

Woches s limit, $2=5 \times 10^{9}$ yeans zgo. Yet the history or the moon preceding this minimum distonce on "zero hour" cennot be decided methematically becsuse not only the todel friction prometers but aven the masses of the interactirg. bodies themselves could heve boen variable and their identitios unknom there could have existed several moons, ory which only one survived; bud the moon may hever bave gone throusta this etege et all (Opik, 1955)). Is is reasoneble to ascume thot zem hour was some time near the begimning of the solent system, t. 5×10^{9} years ago. At tivat time the mass of the eaten was accumbating, and captura of the moon could heve thaen plece at close approach into any neex-parobolic orbit, and not necessarily into a retrogrsde ones by nonmtidal thapoing torough increase of the carth ${ }^{1} s$ mass and loss of momentum in collistons during the passege.

It nust be emphasized that drect condensetion of the moon fion a gaseous state is a rather incredible proposition. Foven if the required extremely loy temperature and high density of the ges prevailed, the earth woula have profiterl from it first, turning into a giert planct like dupiters Accretion of pariculete matter is reasonably the only way the moon could have cone into being. The impact relocities must not lave exceeded $11 \mathrm{~km} / \mathrm{sec}$, otherwise loss of mass instead on accretion would heve resulted (Opik, 1961a) for the preseit Iuner mass; a lower Iinit down to $2 \mathrm{~km} / \mathrm{sec}$ and

Less must be set for a growing smellen mass co equation (22)]. It is therepore imparatre that accretjon must have telen plece from some grind of a fong of solid paxtioles in whicn the relotive velocities werc snell.
E. Inass Accumuletion from Orbiting Debzis

Byer in the captuxe hypothesis of the moong it must have entexed the sphere of action of the earth on a near -perobolic felative orbits on U O. According to equstion (50), this requires $A=1$, $e=0$, i:0. The moon must have fomed on the same circular orbit mith the earth inside tho prewplanedary ming and from the seme material. diny hope to lund on tie mon cosmie material of different origin then that of termestrial meterial is thas not justreded. Also, the time scale of the major accumblation, ox depletion or the prempanetary ring, was detembed by the earh os the mejor bodr:

In the prewplanetary ring, a zament of the solar nebula the origir al cosmic distribution or the elements with the predominaree of hydrogen must have prevailed. Jupitex and the outex planets opparently have incorporated nydrogen, heliun and other volatiles in cosmie proportion, while the texrestrial planets consist to 99.9 per cent of the non -rolatile silicotes and inon If in cosmic proportion, the earbl woul have coptured about 100 times its mass in hydrocen, enebling to keep gravitetionelly this and othex voletiles at
any imaginable tefernture therefore: the gaseous constituents of the nebula must have been swept away somehow from terrestrial space before being sucked into the berth, whin the reflectory materials gathered into a comron plane, into a thin stect similar to Baturn's rings. For a ring spread from 0.9 to 1.1 a. u_{0}, over a widit of 0.2 a.v. , the totel moss of the earth-woon systen wo did correspond to a mass load of $\mathrm{a}_{\mathrm{c}}=2.2 \mathrm{~L}, \mathrm{~g} / \mathrm{cm}^{2}$ over the orbital plene: is siberical plenetesimal of density $\delta=1.3$ (cometary nuetevs without tie ices land radius Fi_{c} (cm) has a mas; Ioad

$$
m_{c}=4 \pi \delta / 3
$$

or $1.735 \mathrm{c} \mathrm{g} / \mathrm{cm}^{2}$. The damping lifotime of the relative velocitiy it at orbital inclinetion i of a particle which has to pass through the rine thice curing $25 T^{5}$ Jacobian mits ou tine or one orbital revolution (a year) is, in the relative mits chosen
and the duped yglue of of arter a time intervel t is

$$
\begin{equation*}
U_{2}=U_{1} \exp \left(-t / t_{i_{2}}\right) \tag{78}
\end{equation*}
$$

The bionts of the plenetesimols when penturbed will rapidy become cijocles again while the Jacobian velocity decers on a tiva scale of

$$
\mathrm{t}_{\mathrm{z}} / 2 \pi=0.02 \mathrm{c} / \mathrm{c} /(\mathrm{m} \text { (yeers) }
$$

for a typical case of sini/ $4=0.5$. IEere $\%_{m}$ is the fraction of the totel moss in the ring whicl has not yet benn acerett α
by the planet The To por a typicel projectile produaing a
 years, thas shows ty commogonie stenderode。

Drmpins is even vexy much greater for $i=0$, when the UVector is fin the plene of the ming. In thet case; insteaci of the eross sections the limear f noomter dimeter watis is tho swemphentt (Po is assurag to be greater then the thitchess of the rings end slightiy displeced from its plane); the lineer load of the planeteadmil is then

$$
m_{c}^{\prime}=\pi n_{e}{ }^{2} f^{\prime}
$$

or $4.1 \mathrm{R}_{\mathrm{c}} \mathrm{E} / \mathrm{cm}$. Over a peth di it eveeps a mass Ming 0 ,
 recial daphong leneth then becones
or, with i,ypically $\mid U_{4}^{3} / \mathrm{U}_{0}=0.5, \mathrm{~m}_{0}=21.3$,

$$
\begin{equation*}
\dot{x}_{n}=d \% .1 R_{c} \sum_{1} / \eta_{n} \quad(\mathrm{~cm}) \tag{83}
\end{equation*}
$$

end the dumping time is (independent on the ratio. Ur iv)
 (vears).

The Gomping is highly ofticient and, unless disturoed by the greming earth or other cembers of condensation, the particles of the ring witl whl mov in co-piener circular orbits anc mutual coapulation wouls stop when they are touciing side $\}$ f side, en envisoged by , Tefireys for Gaturn's ring
(Jefreys, 194rb). With suall portickes, an amost continucus disir is thus formed which, from ontitol friction and gravitational instability, is then breaking up into lareet planetestmels though coagulation on neighboring regions then their size anà daping tio are surtictenty large, they on be collectec gravitationally by the growing planetary nucleus when platetary perturbations divert then into its pathe Alsos perturoations will change the orbital elements e and it of the earin's nueleug, thus increasting its renge of heliocentric distance and sweeping ability. Encountars with other massive molei will also lead to chenges in the orbital ajements.

Disragarding damoing at first, the earth oan collect the paxticles from the ring only then thetr aroular orbits are perturbed so that they can cross the orbit of the earth. An exception are those which 1 ie within a range from $I_{i} e_{0}$ to I - e_{0} heliocentric distonce; where ϵ_{0} is the ecentricity of the esmise orbit. From eguation (50) it cen be shom that, for $A=1+\Delta A, i=0, \operatorname{tad} A(1-E)=1$ just supisicient for orbital cossimg, the encounter veloctiy becomes (to teroms of second oxder)

$$
\begin{equation*}
V^{2} \cdot(\Delta A)^{2} \quad \text { ox } V=|\Delta \Lambda| \tag{.35}
\end{equation*}
$$

Hence, wher perturbetiong or collinions induce the perticlen rion orbit. A to cross and thus subect then to chances of collision, 在 the U-parameter will ke elose to that of equation (35). For the envisaged ring, v velues up to 0.05
ane thus expected, with an average about 0.095 (ma. 0.75 $1 \mathrm{~m} / \mathrm{sec}$. In. such a case, for bodies even mach smeller than the eacths with an escape velocity vas $>1.5 \mathrm{~km} / \mathrm{sec}$, the unity term in equation (54) con be droppeds and the collision eross section of the growing eaxth then becones as from (51),
and

$$
\begin{align*}
& \pi r_{0}^{2}=2.6 .63 \times 10^{-10}\left(1-7(\mathrm{~m})^{1 / 8 / 0^{2}}\right. \text {, } \tag{36a}\\
& \sigma_{6}=1.62 \times 10^{-6}\left(1-\hat{1}_{\mathrm{m}}\right)^{2 / 3} / \mathrm{m} . \tag{860}
\end{align*}
$$

With the colliston probability from equation (65) which holds; the corresponaing collision lifetime from (59) results as

$$
\begin{equation*}
t\left(0^{\infty}\right) / 2 \pi=1.27 \times 10^{813} /\left(1-h_{m}\right)^{1 / 3}(\text { yeare }) \tag{87}
\end{equation*}
$$

For $U=0.025$. corresponding to $A=1.05$ or 0.95 as the median for the ring, and $t_{m}=0.5$, the lifetime is 50,000 years ; at the outskirts this mey attain 400,000 yeers. The period of ω nay set, Imit of 30,000 years;

Provided parturbations are arailable soon enough-mint may not he the case at all-a minmum time scale of accretion of the earth may be set at 50,000 years. The efrective time may be several. times longer.

One source of the perturbations is the earth itself which passes the particles at the close remge or ΔA duringt a symodie period

$$
\begin{equation*}
t_{s} / 2 \pi=(1.6 \Delta a)^{-1}(\text { jeens }) \tag{88}
\end{equation*}
$$

to fixst-order approximation. Duxing this period the eccentricity is excited by earth's periodic perturbations
to a value of about

$$
\begin{equation*}
e^{2} \cong 2 \mu\left(1-\eta_{m}\right) \ln (\Delta A)^{2} \tag{89}
\end{equation*}
$$

the peribezion or the dirction of the e^{\prime} vector revolving with the smodic pexioa. To reach the earth's orkit, " $s^{\prime}=|\triangle A|$ is required, which yields

$$
\begin{equation*}
|\Delta A|^{1}=\left[2 \mu\left(1-\eta_{\mathrm{m}} \mathrm{i}^{1 / \mathrm{T}}\right]^{1 / 3}=0,0184\left(i-\eta_{\mathrm{m}}\right)^{1 / 3},\right. \tag{90}
\end{equation*}
$$

or practically the radius of the sphere or action of the sccumulate α moleus [equation (58)]

$$
R_{a}=0.0215\left(1-\eta_{m}\right)^{1 / 3}
$$

A secular increase of the sem:-major axis of the parcicle's oxthe with a time scale of
gives $t_{h}=3200$ years at $\Delta A=0.02,1.3 \times 10^{5}$ yrs at $\Delta \hat{A}=0.05$; 2×10^{6} yrs at $\Delta A=0.10$. This has the effect or moving away the cutter portion of the ring and bringing neerew the imer porition.
of ccurse, with the distribution of masses in the sola. system already settlea, perturbations by the other plenots will add to the effect. The tims s.eale of secular perturbations here is of the order of 50,000 years (hahe period, guite surficient except for theix small amplitude, only 0.0 .5 in the eccentricity.

To meke perturbations (including accelenation) work, damping mest be overcome. Por the periodic perturbations,
 (83) we thus obtain, for $\mathrm{U}=0.025, \eta=0.5, \Delta A=0.05$:
 will be needcd to counteract demping provided the perturbetions incluce inclination. The case of $i=O$ (with the sheet, of particulate matter thinuer than the diemeter of the planetesimal) is too extrene, and the clumping inmit too high to be consioered: there will be .2lwars some deviation at right angjes to the plane, ito.

For long-period perturbstions, "noluaing those in i; to be efiective, for tyy $\gg 50,000$ years wtind $\mathrm{K}_{\mathrm{c}}>12.5 \mathrm{~km}$. Below this the particles of the ring must respond to the perturbations somehom in a cooperative way.

It seems that, with af secular emplitude in the eccertri. city of the arth of about 0.05 , a sjmilar value of frow the lamer partioles above the damping limit os ceused by perturbotions of the mejor planets, end with adidtional pexturbations Dr the eaxth in close passases, the particles may be acereted inceed at an average encounter velocity on $u=0.0$. 0.5 and a time suale of 50,000 years,

$$
\begin{equation*}
\tau_{m}=\exp (-6 / 5 C, 000 \tag{93}
\end{equation*}
$$

being the unsecreted fraction left in the ring after the lapse of tyuars.
C. Copture Hypotheses of the Origin of the rom
a. Woon formed indepencently and coptured by non-tisded.
process

The increment of mass or tro bodies placed in the same nedium is proportional to their colli;ional cepture cross
section, Thre For the Jow velocities of encounter the unity tem in equation (54) con be cisregardod; the rote of accration of tro independent motei of equal density for the sate of simulicity) is then proportional to the $4 / 3$ power of masc. The differential equation of growth of two ino dependent corters of accretion cen be intagroted and the result represented as a veriable retion of the messes,

$$
H_{1}\left(H_{2}=\left(1+c i^{1 / 3}\right)^{3} \cdot \mu_{2},\right.
$$

With the adjustable parametem gy
Is obtaned as for the present mass ratio of earth to moon. Teble VI then represencs the rarietion of the mass ratio as depenting on the value of $\frac{1}{i}$ wine vaxiable mass of the earta in the course ox accretion.

Thus atoinc backwerds in time curing the process of accietion, the mass ratio decreases. at $h=10^{-3}$, when we reaius of the earth was onertenth its present velues the meas reuto wes 2,37 only. The inttial difference in the size of the nuelet sould xave been very smell, just a mattex on chonce. Alsc, in the-begiming thexe could nove beco mexy compoling nale of comperable size.

- If t_{m} is the mass accretion per unit of swatae arsa and time, " the impect velocity, T_{0} the orjginel temperature of the gecresing material in spoce, it the surface radiation temperature, ${ }^{*}$ the averege speciric heat of the solid, $k_{s}=5.67 \times y^{-5}$ stern's redietion constant: the subsurfece
temperetura I_{s} of the acheting moteriel will more or less $\stackrel{r}{2}$
setisfy the equation

$$
\begin{equation*}
J_{a}\left[\mathrm{~A}^{2}-\stackrel{\rightharpoonup}{e}_{1}\left(\mathrm{I}_{\mathrm{s}}-T_{0}\right)\right]=\dot{k}_{0}\left(e^{1}-\mathrm{m}^{4}\right) \tag{i}
\end{equation*}
$$

Bor sillegte maberial, $c_{2}=9 \times 10^{6}$ exg/g deging also $\mathrm{T}_{\mathrm{o}}=300$
 concurtivity of the solid.

$$
r_{\mathrm{E}}>\mathrm{T}_{\mathrm{e}}>\mathrm{T}_{0}
$$

 above $T_{\text {m }} 1800{ }^{2}$, the temperature of fusion, equetion (95) does not apply. Then the lower limit, $\mathrm{m}_{\mathrm{s}}{ }^{\prime}$, js below the fusion
 at complete sbielding, mat the wper limit is when

$$
\begin{equation*}
T_{2}{ }^{14}=\mathrm{T}_{0}+\mathrm{y}^{2} / 20_{\mathrm{L}} \tag{57}
\end{equation*}
$$

Wher \Rightarrow fe, in the case of cxtrem shielaing pastial fusion must take place. Let Q be the meltoa fraction, bnc let the same fraction of the surfoce be unshielded liquid (lara) xadiating with the intensity

$$
Q_{0}=k_{s}\left(3^{4}-5_{0}^{4}\right)=6 \times 10^{6} \mathrm{emg} / \mathrm{cm}^{6} \mathrm{sec}
$$

the rest of the sumace being competely shielded (e.g. by
 (on the surfece as well as in the subsuresec) is then

$$
\begin{equation*}
\left.\theta_{0} \theta_{(\text {nex }}\right)=J_{\operatorname{m}}\left(\frac{1}{2} w^{2}-H_{0}\right) /\left(Q_{0}+H_{2}\right) \leqslant 1 \tag{95}
\end{equation*}
$$

Where $T_{0}=1.35 \mathrm{x} 10^{10} \mathrm{erg} / \mathrm{g}$ is the heat required to. raise

the heat of fuston,
Then 0 exceeds I, comprewe fuston dekes place The licuad

 by the squation

Whare of te the gyeatiac haph of the maute.
Oves the short thae seale of sccretiong concuarave exchange of heat with the interioy will not groctyy chonge the tesult tis.

welectry wa small role of the imopendemty accretine

 the moon or y Gow the earth's xabs (ci. Table WI) the scerebiors per untionea at constant $u, \sim \sigma_{0}^{2} / R 2$ $[$ equethors (54) and (65)], is $1 / 14$ that for the earth ax
 the woon at that epoch (ness $=0.6$ of presemt moon) and $U=0.025=0.75 \mathrm{kn} / \mathrm{sec} \mathrm{F}^{2}-4.6 \times 10^{10}(\mathrm{~cm} / \mathrm{sec})^{2} \mathrm{gnc} w-2.1$ km/sec is the welocity of falu.

Witi these dabay for the indr pendepy moon at epoch $\eta_{\text {t }}=0.5$
of secretion and a tine scele of 50,000 yeacs; equation (95) yielos $T_{s}>T_{s}^{\prime}=404^{\circ} \mathrm{K}_{2}$ thus z Low minimun value of the temperatures, athough heating is not ncgligible. The tube temperature would be near this velue for continuous accretion of finely givided metertal which dees not penetrate deep imo the surface.

The cther extreme, e.e condibioned by en insulating dust layer ox low themal conductivity covering every bit of a solid area, mould allow heating re the butk of the mess to nearly $1800^{\circ} \mathrm{F}$. According to equetion (99), the fraction melted as well as the eraetion of cxposea molten silicates would ther be

$$
\theta_{(\max)}=1.6 \times 10^{-3}
$$

only, A rot solid body with some Java enclosures and exposyros, just sufficient to radiate oway the extra heat, could be envisaged the lava exposixes act as a thermostat; keeping tre mean temperature neax the melting point witwout complete meIting.

The craters in the lunar continentes comrespond to the accretion of the top fraction of alout 3×10^{-5} of the Iunos radius or 9×10^{-5} of the mess (0pjk, 1961b). At thet stage, the collision cross sections of earth and moon wexe in a ratio of 280 to $][$ as they ere now: cis eqwation (54) with $U=0.025]$: so that there was left over unaccreted in the
aine e traction
2

$$
\eta_{\mathrm{n}}=8 \times 10^{-5} \times 281 /(81.5+1)=3.1 \times 10^{-4}
$$

According 30 (93), this would require e time interval of about 400 (900 yoers for the begimang of the fommtion of eroters which have survived. and 60,000 years for the practical, vemanetion of this omimeval crater-toming epoch, as reckron frot the epoch of helf-accretion ($7^{2}-0.5$). Accretion must have been slown in the begiming; berore wizeable anclea mere fomed, mathe totel length of acm cretion into the earthmoon system my heve lasted about ons milion years [20 times $t(\omega)$; actording to a certoin mode: (Öpit; 19610) .

A ner-tidal cepture of the moon into a direct oxbit could nave taken place most probabiy when becretion was intmse, thus not et the very last stege. Frie creters mould then heve been formed on a moon in onbit aromd the earth. hatever its origiral distance of closest aproach wes, in $25000-$ $-100,000$ jears it must hay receder tidally to $12-15$ earth facti. The majority of the craters could not heve been formed ot 5--8 eatit rodits and their tidal distortions (in. versely proportienel to the cube of the distence) would have been 10 temes smaller than meesured (Opit, 1Batb), or entiraly negisible.

A swonger objection conos fram creter stotistics. Bonefr ant ficluer have shown thet the cratens are more or
less evenly atsimibuted over the mon's sumfece (continentes and maria taken separately). Contrary to expectationg the westem hemisphere which is troling behind even carries sbout 10 per cent rore craters per unit srea than the esstern which is preceaing in the orbital muion (pielder, 1965 , 1965). In viev of the great differences in crater densitios over the mon's surface, the fratl sescs is not very relevant and may be caused by unequal maria flooding. Kow, with the craters imprinted when the moon was at ebout 10 eaxth reatis at an orbital velocity (full earth mase being atteinea) of $2.5 \mathrm{~km} / \mathrm{sac}$ and isotropically disimibuted hyperbolic velocity of the infalling fregnents of $3.5 \mathrm{~km} / \mathrm{sec}$, strong aberabion znd bias toward the eastem hemisphere should have resultea.onser these circumstances; an approximatá calculation basea on encounter equations ard which considers the crater mumbrs to increase inversely as tha square of the liniting dimeter or, for fixed erater diameter, as the velocity [eouation (?)], indicates thet an excess of 74 percent is expectod for the entire eastem over the entire westerm hemisphere ut the moong instead of a deticiency of 10 per cent as obsurvec. rine crater statistics are therefore incompatible with this model of formation of the moon.

For the earth equetions (95) ani (99), with t(0) $=$ 50,000 years and a, helfomass or $\eta_{m}=0.5$, yield

$$
T_{s}>T_{s}=1410^{\circ} K_{5} \theta_{(\operatorname{tax})}=0.573
$$

The two extreyes are in this case not very dircereat, A partially molten each is inhicated, with oceans of lava that must have considerably influanced the tidal history of the moon (in it was neas the eanta at that time). Otherwise these figures stench. irrespective of the history of the moons they cepend only on the time scale af evcounters.

I. Accuction of an barth-Oroicing joon from Interplanetary ynterial

On this model, the overall frame of accretion of the earthmoon mass is the same as in sections N. B and C, but the moon is now supposec to have started from a molens alreaby pleced in oroit around the earth. The moon is now the "sarellite", the earth the "miln body" of our model, but the partialen are now entexing in hyperbolic orbits with respect to the earthming system and the equations of encountex probability per revolutior of the particle are no longer valid. Instead the followirg obvious equation, an exact equivalent of those for elliptic orbits applies. The total acc:etion rate : on a moving "satellite" equals

$$
\begin{equation*}
A_{p}=\pi k_{p}^{2} f v\left(1+w_{\infty}^{2} / v^{2} k\right) ; \tag{102}
\end{equation*}
$$

where p lu' the space density of the particles and v their (average) velocity relative to the satcllite (Opiks 1956) Also

$$
\begin{equation*}
J_{n}=A_{p} / 4 \pi u_{p}^{2}=d \rho v\left(1+w_{p}^{2} / v^{2}\right) \tag{103}
\end{equation*}
$$

For eccretion by the hele-mas.j earth $(\eta=0.5), p=p_{0}$
is the average agnsity of mater in the ring, $v=0=0.75$的
 moon at $i 0$ earth racii, with v as the vector quadratic sum a the moon's orbital velocity ($2.5 \mathrm{im} / \mathrm{sec}$) and the velocitur
 $Q=P\left[1+\left(x_{\infty}\right)^{2} / y^{2}\right](O p i k, 19651)$, the new volue for
aceretion on the noon as "hplped" by the earth now becomes 6.8 times rxeoter then for the "independent" moon,

With these muericet asta, for the "earth monitoreat moon at loearth radit and $t(6)=50,000$ years;

$$
F_{S}>I_{S}^{t}=350{ }^{\prime} C_{X} \text { and } E(m a x)=0.046
$$

is obteinet. The minimum temperature turas out to be outte high and, if jts solid sumface is well insuletea (on thick enough), 4.6 per cent of melting should occur on the moon kept "thernostaticsily" close to the temperature of fuston.

Othemise the two obections rointea out in the preceding section and besed on tidel desometions of the creters GRatriss an especienly on crater counts, gpply here, too, readering ole model highly tmprobable.

Fo Coptuxe inta a Fetrograce Orbit
Retronpective calculations of the tidal evolution of of the lunas orvit, on the essumptitn or invariable masses of moon, easth, end sun, and at obstnce of other releynt
interactimg bodies, all zead to a minmurastence dowe to,

$$
\begin{equation*}
\cdot D_{x}=3 \times 10 \pi_{0}\left(0_{0}^{2} / D_{p}\right)^{1 / 3} \tag{104}
\end{equation*}
$$

where Eo and δ_{0} are redius and dentity or central body (eorth) and $\hat{\delta}_{p}$ is the wensity of the satelite (mon). row the moon end tha prasent ratio ar the densities ($5.53 / 3.34$), $\mathrm{y}_{2}=2.85$ eswh madit: Hith the efrect of sowat tides, Gerstemkom (1955) obtains. 2.85 s Machooald (1964) 2.75, wnd Soroktn (1865) 2.40 earth radit for the mininum distanse of the moon as depending on the asevmptions. On the assumption of an unoroken moon, the calculetions extended rurther backyards (Gexstenkome 1.555) inaicate capture into a retregrede nearly porabolic orbit at a pertigee of 26 earth radit, which then decreases, the oxbitel eccentricity decreasing am the inelination tuming Pron retrograde ovex: 90° to direct (Opik, 1950, 1950a). We thus can distinguish on incoming phase, with the moon approeching; and the present outgoint phase, with the moon receding。

It segms now that, if the minimum distence was insioe Foche's limit, the moon cemot heve extsted as an integer bodys and thet the calculations beyond that polnt eamot strictiy apply. Yet, when a finite number of Tragnents was formeat fis (see belov); onbital ovolution mus: heve been slowed com without the geometry heing essentilly diferent. Thiungh collisionel damplng, the fragments were forced to stry on
the same oboth and wive celculotions me therefore fowolly valid excert for the time sosie: Assume therefore that an incepencioniy accreted body of lunex mass was tidally captured $\hat{c} y$ the finally accrebed earth into a retrogrede orbit ana weat trongh Gerstentosthe incoming piase until it broke up minge in a circuler direct orbit (as the caloulon tions indieate) at this moment ticat evolution wes greatly slowed low (by a fector of Mf, where ind is the fumber. of regemencs) yot did not stop congletely. The reason for tris is the strevth of the solid lmen boay which must have lea to frogrenos or finite size to be tomed in the broaku, as visuajised by deffreys (1947a) . The upper 1imit of the reaius H_{2} ut the fragments, when formed at a cistence $D_{2} \sigma_{2} D_{2}$ indiae Fohers timit, is given by (Upik; Ioses)

$$
\cdots \quad x_{\rho} \leqslant\left[D_{e}^{3} /\left(\operatorname{lig}_{0} \delta_{0} F_{0}^{3}\right)\right]^{\frac{1}{3}}
$$

where G th the gravitotionel constent and s the "laterol" crushing sirength os used in equation (7), practicaly equel

 a dinactex of 572 km for the surviving frogergents ghout ons-sixth that of the moon. She numpen of fragments it of equal size would then be $\mathrm{H}_{\mathrm{f}}=224$ A"; the strength of eranite, $s=9 \times 10^{3}$, Rp$=6.07 \times 10^{7}$ ca, $\mathrm{N}_{\mathrm{s}}=23$. Ve will further consider oniy the first case. It relescod in syruohonous
rotation firon a circuler orbit, the fregments will enter elliptical orbits $w^{\text {mith }}$, he encounter velocity ranging from
 to the cisnance from the center of the parent bouy. (There is no signficant tiad ceformetion of the brittle solid body before it yielcs to the ultimete stress.) Fratrents released from the efriowera side would roach a perigeo disbance of lat earth radii we the atraction of the roon mass on the relsesed fragents is neglected, but actually farther. out and brok up to somewhet smallen sizes; similarly those from the f in side will have their perigeas there and go out in elliptisel oxbits to apogees of consterably less than 5.9 eartb adin, being bent invards by the attraction of the restoual lumar mess.

For free orbiting framents at 2.5 earth radii, in notetions and mits of Section III, ane for collisions of two equel partioles, $R_{p}=2 R_{\mathrm{p}}=0.0560$. arbital circular velocity 1 (4.93 kn'sec), orbital period 0.23 days: $W_{0}=0.079$ (0.392 $\mathrm{zm} / \mathrm{sec}$) equal to average $\mathrm{U}=0.079$, the collision crass section is

$$
\pi \sigma_{0}^{2}=2.6 \times 10^{-3 \pi}, \sigma_{0}=0.0510<0.0707
$$

thoxefore quation (65) applies wito $\mathrm{r}_{\mathrm{p}}=3$, yielding

$$
P_{0}=0.066, t\left(\sigma^{\infty}\right) / 2 \pi=15 \text { orbital rewolutions }
$$

or. 3.5 days. As to $t(t)$, the sola' perturbation is insignificant and the only important frect stems from the
oblateness of the earth which yielas (8 ptk, 19590), et a. distance of $3 / R_{0}$ earth radii and sos an orbtt of smeli eccentrictiy and inclination,
in deys: i" equals one hate the pewiod of precemetion or the nodes. with s. 3 hours as the pertod of rotation of the
 coltision lifetime of an tsolated phir of fregments would
 of houx motual colisisions would copletely destroy the fragments which orisinally sumpiven tidel dismution.

Originally, the fragments coulc be imagined to be inw jectea jnto an ximg about 4000 km wice or thick and $10^{5} \mathrm{~km}$ circumerence. With $\mathrm{I}_{6}=224$, this yields a number densith of $\mathrm{M}=1.8 \times 10^{-10} \mathrm{~km}-3$. The collision cross section, The is $2.1 \mathrm{~K} 10^{13} \mathrm{~km}^{2}$. Hence a collisional mean free path results as (w. $\left.T 3_{0}^{2}\right)^{-1}=2600 \mathrm{~km}$ 'This is o: the orcen of the dieneter of the moon and, therefores collibions are not rew stricted to particles of netehboring origing the full vaciety of encounter velocities and full graxitational interection will be realized as hes been assumed.

Win $w-5 \times 10^{4} \mathrm{~cm} / \mathrm{sec}, s=2 \times 10^{8}, \quad \hat{y}=3.3, \quad \mathrm{~B}=1 ;$ eoustions (4) ond (14) yield

$$
m_{c} / f=8
$$

for the relasive mass of secondary fragents when the taraet
 are outhaing they will be destroyed completely in the asest collision, and shbsequentreollisions will roduce the antre mass to zoble and outy, collectec in a rimg whose sections are ondithageparotely. Eet the equatorial veloctijy or synohronous rotation of the parent bout ($0.538 \mathrm{~km} / 500$) be ${ }^{\frac{1}{4}}$; then the ultimata heating of the mass cen be assumed to coryes pond to the averase kinetic energy of rotationy $\frac{y_{5}}{5} \frac{2}{2}$ em/it which ot $c_{1}=9 \times 10^{6}$ exg/g yieacs only about $60^{\circ} \mathrm{C}$.
fith the propertions aporoxtmetely as of satumis imex
 surnace or $3.18 \times 10^{3} \mathrm{mb}^{2}$, the ave ege mass load per maty". surtace of the ring is $2.31 \times 10^{7} \mathrm{z} / \mathrm{cm}^{2}$; at averace denaty $\delta=3$ for the ruble, the arerage theknete is 115 kmo Wow, even with the low cohestor es of sand, biwns of Gimenstons sweller than $\mu_{f}[$ [equatiun (105) $]$ wily be formed agein. At incidemal comacta, triosion st the intofaces of of the indepencentiy oroithem sections moy force the riump to rotate in a retrograde direction, with en aneular veloctoy vo to

$$
\begin{equation*}
\omega_{f}=\frac{1}{2} \omega_{0} \tag{107}
\end{equation*}
$$

there G_{0} :s the orbital angular velocity,

$$
\begin{equation*}
\omega_{0}^{2}=\frac{4}{3} \operatorname{SO}_{0} \delta_{0}\left(R_{0} \mid O_{1}\right)^{3} \tag{108}
\end{equation*}
$$

The average centrifugel stres;" in a rotating sphere of roatus E_{f} is (opit, 1066c)
and, after substituting R_{g} and Co_{g} fron (105), (107) and (1.0.3),

$$
\begin{equation*}
s_{t}=s / d z \tag{11.0}
\end{equation*}
$$

is cotained. The ratio is of the werer or the tolarace or most :Mittlematerias, whence no separate consideration of the survival of the clumps from the standpoint of teasile ntresses is needed.

The wing is to stay for several hundred yeare at laats berore i; is pulled outwards by tie weak tidal acecleretion [cre equations (115) - (213)]. Ths separately rotsting parts will provably possess the mechanical properites in vacuo similar to, or silighly herder than desert alfuxium from Section II. I we may sti $s=6 \times 10^{7}$ dyne/ cm^{2} and $p=2 \mathrm{~g} / \mathrm{cu}^{3}$ fon these "orbicine sand dures". Equation (:05) yields in lizis case for the nemly formed elumps,

$$
\ldots r_{1} \wedge\left(s / \delta_{0}\right)^{\frac{1}{2}} \text { or } \mathrm{x}_{\mathrm{x}} \leq: 386 \mathrm{~km} \times(0.3 / 0.6)^{\frac{2}{2}}=202 \mathrm{~mm}
$$ If spherfeal, the averige thicknens is ($4 / 3$) m or 280 km 。 This is nore than the eatimated thickness of the ring and would lecd to loss of perinnent cuntect between its parts, a frecticn of $115 / 269=0.427$ of the ring area being occupied. by the projections of the fragmens. This corresponde to an average specing between the frigments $\left(\Delta / a_{f}\right)=(\pi / 0.427)^{\frac{1}{2}}=$ 2.71 or 547 km . The total number uf fragments or nini--seteluties in the midale ring is then $\mathrm{a}_{\mathrm{r}}=10^{5} / 54 \%=180 \mathrm{an}$,

over the width of $0.5 x_{0}=600$ kn tiane will be 6 full wings, the total number of fecquents being $H_{\mathrm{I}}=1030$ in thia symmetricslly arranged medol. Fach of the ath rings is orbiting independenty, small perturbations of individual wembers, beirg dempea in mila collisions inside a ring.

Fach of the 1030-odd nembers or moonlets raises on the rotating anm its own tidal hulge; the instantaneous tidal. bulge is the vector sum of the component bulges and, for a precisely symmetrical arrangenent of the moonlets, the resulbent tidal vector would be zerb. hovever, within each or the six rings there is some freedom of motion for its members theiry grouplag will be ruled by the lav of chence ond the x andums average absolute value of the yesultant rendom vectox. will be proporitional to the square root of their numoer. For a Poisson distribution of equal mass.. points this would be exactly true; for finite size members the freedrm of remarrangent is limited, but a bispersion in the masses and radii of individuel members would add additional variance. It can therefore be assuned that the tidal acceleration, or the rate of tidally-incuced orbital chonge in one of the six rings is

$$
\begin{equation*}
(d a / d t)_{\mathrm{f}}=(d a / d t)_{0} W_{\mathrm{r}}^{\frac{a}{2}} / \mathrm{T}_{\mathrm{P}} \tag{1211}
\end{equation*}
$$

or

$$
(d a / d t)_{f} /(d a / d t)_{0}=0.0124=1 / 30
$$

where ($d a$, ' C$)_{0}$ denotes the rate of rbital evolution ruled
by m invegex lumar mass. the time scale is twus increased 80 then and instead of some soms sobum inside hoche's limit, this would take about 400 reas.

Weighboming ring will not ald to this acceleration (their tidal bulpea inouced on the earth camot swey in pesonarce) except through a peaiodie temon accidentaly flucturetng amplitude of zero expoctation ower the sfnodic period (wue to "restouping" on the mombers of a ring) These terns woxk in proportion to the square root of time and their cortribution is small or neciligible (a calculation has been made in this respect). It cen be assumed thet the contributions from other rinss casel out orer one syoodic perioo (6 days or less), and thet the residug tidal effect upon one of the six rings is fully accounted for k by the . wendora wererings of members within the seme ring as expressed by equation (211).

Fror the rate of tiad orbital evolution in the outgoirg phese an interpolation formule can be written satisfactoriIy representing Gerstenkorn's (1955) celculations at geocentric distances smaller than 12 三arth radii, giving the tine of daitt in years for an integer lunar mass as

$$
\begin{equation*}
t_{a}=0.025\left(a_{2}^{5.5}-a_{1}^{5.5}\right) \tag{122}
\end{equation*}
$$

where a_{2} enal a_{1} are the distances: in earth radii. (Between 12 end 60 earth radii the average vover is 7.1, as comosrer to sn "ideal" value of 6.5 for constent inclination and
fraction, and the time scale should be adjusted to 4.5×10^{9} years.)

Fech of the six rings drifts ontward at its own recte, expectea. to be given by (111) with

$$
(d a / a t)_{0}=d a_{2} / d t_{a}
$$

as defined by (12a). Tn the case or overtaking by meribers insioue the same ring, collisional damping vill acjust the pece. The outer and inner edges of the ring at $a_{1}=2.75$ and 2.25 , respectively, according to (111) will reach Poche's Iimit at a 2×2.86 wionin 80 times the time given by (112), or mithin 210 and 560 wtars , respectivelys the interval between the extreme ringe is thus 350 years, and between two successive rings 70 years.

As soon as a ring energes frea Roche's lirnit, its 180 -odd components will be drawn togs ther and accrete into a moonlet of one-sixth lunar mass, with a radius of 960 ka . (censity 3.34 assumec. Por the compressed and heated materinl), and a velocity of escape of wow $=3.31 \mathrm{~km} / \mathrm{sec}$. The ring will collepse in "free fall", the time scale being given by equation (70),

$$
t_{F} / 2 \pi=6.6 \text { orbital periods or } 1.6 \times 10^{\circ} \text { seconde. }
$$ The sverepe potential. energy $(3 / 5) \cdot \frac{10}{2} 0^{2}=5.07 \times 10^{9}$ erg/g does not suffice for melting. At midalo aceretion or $\eta_{m}=0.5$, the rate of acoretion as yiven by equation (101) is $500 \mathrm{~g} / \mathrm{cm}^{2}$. sec. The accretion is so jntense that radi.

ation losses are negligible. The mininum and maximum temperetures from equetions (85) and (97) are identical and. with $T_{0}=300$ ox, yield cox the averoge temperature of the accreted moonlet

$$
W_{S} z_{S} I_{S}=T_{S}=8330 \%
$$

As condtitioned by tidal interaction, the moonlets emelge thus at intervals of $350 / 5=70$ jeane, and with incinations to the earth's equator decreasing from about fac for the first to. 27° for the sixth moonlet. The compacted moonlets arift outwards on a time scale lat thes taster then the rings [equation (III) with $J_{r}=1, w_{2}=6$ conventioneluy] ye; still six times that of equation (112), so that then one reaches Roche's limit, the preceding one with its fasten rate of recession has gone fer, enough to escape direct coni, act with the newcomer. The orbits axe neariy circular thousth of considareble inclination (specifically for the capbure monel), an interaction betreen two consecutive monlets begins only when they approach within the gravitational thet radus N_{a} without theix orbits intersecting or eroseng. This is mode possible by the lam of tidal evolubion as expressed in (112) wich brings the two moonlets (efperated y a time interval $A t=70$ years the closen togetner the forther tiey so (da/dt $\sim a^{-4.5}$, thus mepidy decreesing with aistance) When interaction begins; Roche's Imit (mutuel for the tho monlets) is alwoys reaned berome physical collision can take place, because

$$
D_{D}>R_{p}
$$

Therefore, the two monlets first break up into a lease number of fragments which then, while mutually colliding, accrete into a moonlet of double mass which begins drifting outwards at double speed.

Tho time sole of this second accretion is me-belf the sypuctic period of revolution the two approaching mon lets and runs into a few days the relative orbital inclination may have any value ?rom $i_{1}-i_{2}$ to $i_{1}+i^{2}$ according to the position of the referring nodes, and will not chemise much axing the process of accretion, the period o: precession being (Öpik; 1968b)

$$
t(1)=35.8 \text { sect. a } 3.5\left(\text { north Rot. } / 24^{h}\right)^{2}
$$

the period of the advancing perigee

$$
\begin{equation*}
t(\overline{T E})=35.3 a^{3.5}\left(\text { Tenth Rot. } 12 A^{h}\right)^{2} \cdot\left(1.5 \cos ^{2} i=0.5\right), \tag{115.}
\end{equation*}
$$

and the seato or the argument of the perigee

$$
\begin{equation*}
t(1, \nu)=\left[1 / t_{i}+1 / t(\pi)\right]^{-1} \tag{i.le}
\end{equation*}
$$

For nearly circular orbits the motion or the perigee is irmelurant and only precession of the nodes maters. The relative inclination of two orbit; varies with their synodic period of precession which runs into tens of years in the present case.
For a pars of interacting monletry each one-sixth the lunar mans, the sum of the, radii it $956+956$ kn $=0.300$ earth radii, and Roche's limit is about 0.40 earth radii, each of tire monlets breaking up into $\int_{f}=120$ fragments of 104
 the orcer of magntude of how closely interection begins. The appropriate distance is reached appoximately 140 years after the emergence of the precedin and 70 years after the folleming montet. In Tanie VTY the histoxy of eccretion cf the aron according to this scheme is ahown. At $t=140$ yrs
 at 420 yrs- $-V+V I$. These pelis tren mey further combine at 400 yrs and after, Jeading to a complete meraer somennere near $a=5$ earth radii. On account of the high power of. distance in equation (112) this laet result is quite stobie for widely differing initial assumptions.

The heating of the mon, firelly accretea at 5 earth radii, pertly depende on the time scele which, for the combination of all the considerec. phasas of accretion, can he set at 350 years, yielding $J_{m}:=0.0174 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{sec}$ as en overch average [equation (101] ${ }^{\text {a }}$ it chiefly deponds on the overage encounter velocity T_{a} which, from equation (b0) for $\varepsilon=0$ and $A=1$, conveniently is reauced to

$$
\mathrm{U}_{\mathrm{m}}^{2}=\dot{2}\left(1-\cos j_{e}\right) \text { or } \mathrm{u}_{\mathrm{m}}=2 \sin \left(\frac{2}{2} i_{6}\right)
$$

where i_{ϵ} is the average inclinetion of the combining orbits to the final resultant orftic. Thus, with an averrare of the component inclinations of $36^{\circ}, \mathrm{V}_{\mathrm{m}}=0.62$ is an upper. limit wen the resultent arbit cancides with the equator:al planes end will be less for a final inclination differen:

MABETH VII

Bypothetical Histoxy of hccretion of the Moon rrom

 Six romilets with figh Irclingtions| Time: | | | | | 140 | 210 | 280 | 350 | 420 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $190 \quad 560$ Distance e, Earte Redit

from zero at depending oz the phase of preacaston The probable value of $\mathrm{U}_{\mathrm{a}}^{2}$, calculated as the deviation mom a

 formation. of one moonlet, the minim average internal taupe

 These are probable values; with an improbebio combination of the phase n ox precession at the times of interaction of the xix monlats End then menultams both st and $\theta_{\text {mow }}$ may he lower, the resultant incinembion remaining large in bach a case 。 This however, is not supported by the nojonity

 git 5 earth rani, ${ }^{2}$ distance to which the retrospective
 heating ane for zero relative inclination at encounter and are identical with those celchases in section It G; they hardly ap, 1 y to the ease of tidal capture in winch cora* ponemb intimations of the order ot 30°, at encounter must have been reduced to some 12^{0} father ovapleted accretion and mast love led thus to intenge monverbion op kinetic energy bat heating o the byergge mounter velocity in our
model creeds $\sqrt{2}-1$, end ejection of some frustmente to jnteritanetary space becomes possible (owing, 1963a). The fraction ejected is
$\hat{x}_{\infty}=\left[0_{a}^{2} /\left(\hat{v}_{2}^{2}+0_{0}^{2}\right)\right] \cdot\left[\left(u^{2}+20-1\right) / 40\right]$.
Conciuler the make peix of monlets III + IV (Table VIT) whose merger is supposed te take place at $=280$ yours a.2d $\mathrm{a}=3.52$ (average of 3.37 ono 3.66). The orbital periods of revolution of the two before the merger are 0.363 and 0.411 days, respectively, the synodic period 3.11 days; onemaif of the latter is the true scale, t(G)。 The orbital precession periods are ..I. 0 and 14.6 years, respectively, and the synodic period during which the relative inclination fluctuates between $.3^{\circ}$ and 72° is 45 years. After merger the combined double mess settles into en impernediary orbit with inclination i_{m}. Neglecting the small aiffercnce between the two original inclinations, we set $i=j_{1}=i_{c}=35^{\circ}$. Prom spherical geometry we have

$$
\begin{align*}
& \sin i_{e}=\sin i \cdot \sin (\tan) \tag{119}\\
& \tan i_{m}=\tan i \cdot \cos \left(\frac{t}{6} f\right) \tag{120}
\end{align*}
$$

while the relative inclination of the two original orbits is $2 i_{e}$ Here dis the difference in longitude of the two nodes on the equatorial plane. With the assumed inclination, $\alpha=90^{\circ}$ or 270° divides the equator into two equal parts, one w. th $U>\sqrt{2}-1$, the other with smaller U. In the 11 met mentioned high velocity pert, 0 av $\cong 0.52,0_{0}^{2}=2.49 \times 10^{-3}$, $\sigma_{0}^{2}=1.92 \times 10^{-4}$ and $E_{0}=0.0090$. completely negligible is els, the acceleration, accosting to equations (74), (75), (76), there $t(i)$ is to stand $f(r y t(\omega)$. The total colviang mess is one-third oi the mess if the moon and, thus, in the encounter of only one pair of moonlets in this orbital configuration, 0.003 of the luxe mass is expected to 'ie
cjected to interplenetaxy spece. From there it returns as considexed in Section IV. D and, over a period of over 50,000 years, is captured by earth and moon, the shere of the earth -orbiting moon being 60.7 times less then that of the carth. Hence, from the ejected nass the moon will rebeivo a final contribution equal to $0.003 / 63.7$ or 5×10^{-5} of its mass. The creters on which crater statistics vere based, of an averge diancter of less than 20 bn and a depth (x_{p}) about 3.2 km covering about 50 per cent of the continertes area, correspond to a depth of erossion of 2.6 km , involing 9×10^{-4} of the luneis radius or 2.7×10^{-3} of the Inner rass. Lt $w_{0}=3 \mathrm{~km} / \mathrm{sec}, s=2 \times 10^{8}, p: 2.6, \mathrm{k}=1$, one obteins $H_{0} / \mu=34[$ equations (3) and (14)]. The impinging mess thet mas mainly responsible for shaping the present relief or the cortinentes mould thus eguel

$$
2.7 \times 10^{-3} / 34=3 \times 10^{-5}
$$

of the lunax mass. the contritution of 5×10^{-5} or 60 per cent oil it vould surfice to influence the crater stetis.ics in a moner different from that observed the lete inte... planetray projectiles would not contribute to a systemedically arranged ellipticity of the eraters. Fience 20 per zent of interplanetary tragments issperhaps, the upper limit adniss:ble for shaping the present suriace of the continentes. The rest, of all, must be of ecrth-orbiting oxigin. There are, in the scheme as of fable YII, altosether
four mexger everts, each of which mould euritice to oblite rate the untomity of crater numbers and the tidal dem formations of the craters (imprinted 50,000 years later at a distence where the deformations are negligible) it they hapened in the high-velocity contiguration. In each case the probability of the configuxation is one-half; the probability that it did not teike place and that, in the case of the tidal cepture theoxys no ejecticn or frogrents to interplanetary space did ocoux, is thus

$$
\left(\frac{1}{2}\right)^{4}=1 / 16
$$

a low tnough not a forbidaing vilue. With suck a probabilit: the crater statistios can be resonciled with tidal capture of the noon and an ensuang high inolination of its orbit when at mininum distance from etarth.
F. Origin through pission gr from Eing inside Moche's Limit

The two possibilities are indistinguishable as far es the uIt:meto consequences are concerned and will be treated togethe:'.
the fission theory has been doubted, even rejected (Levin, Lg66a), beceuse it is inonceivable thet a mass separating from the earth insidf. Roche's limit and in violent upheaval could have preserved integrity. This, how ever, is not needed end, with the finite conesion and clumping meclenism, the ring of debr: s could showly recede and emerge :rom Roche'g linit, to form the moon in a manner destration
 the inclination of the xing to the tomestrial equator would have been near zero in such a case. As compared with the precedirs model, the sequence or events pould be essentielIy cimilew, but bhe sinetio chersy in acoretion would be smaller tho enoomer velocity of the debrim and with b, the moorlets, being near zero. Ejection of fragmente to interplenetary space could not then take plece, end the lest fragments cepturea from the serthorbiting cloud would be co-moving with the orbiting moon, descendine on it more or Less ientropically from 211 directions. A smell prefererce of imparte from the rear, as revealed by cretex counts (Fielden, 1965, 1966), could be expected it the lest fres ments, rece accelerated in enconters with the moon end removed into elliptio oxbibs with large semi-mejor axes, so that they wexe overtaking the moon mhile inairoct motion near their perigees. A similar axcess of directly movim; meteorites, periodic comets and Ayollo-type asteroids is obserred in the present terrestinal space of the soler aystem.

Another objection- that the backwara calculation 0 ? the tidel evolution, based on tho present masses and su gum lax morente of the eexth-noon-san system does not lead to a solution much closex then focre's Itmit-mis only of "paper". value in this case, becunse ne ${ }^{\text {ithex }}$ the identity nox the mass and momentur distribution of the bodies on
agelomeztions oanazi: considered komi during this primine stage.

The parent ring is assume to be in the exthis equatorriel planes, and so will be the component six moonless of our idealized node. Table VIII shows their ocleulated hypothetical history es ending in the formation of the moon. Because of the small relative velocity, as conditioned be the smell i relative inclinations, they combine sooner then in the prem-
 after 350 years, but before this lepyens, at $t=280$ yrs the first two pairs combine into one containing two -thirds of II the lunar mess. This body (I (TIT+IV), brice the ness of the remaining pair ($V+V I$), drifts out twice as fast and camot be easily overtaken by the smaller companion although their separation. still decreases at first (compare ara and fth lines from the bottom of the table). Instead the collision target rectus, 0_{0} [last line of the table, from equation (54)], rapidly increases and when it exceeds the separation between the moonlets, final merger occurset $t=420$ or 490 years, at $a=1.5-5$ earth radii. before this happens, a passage trough Roche's limit of the larger body destroys the smaller body (Y+VI). The radius of the larger body is then $R_{p}=1 \leq 19$ km =0. 243 earth x acis and

$$
\tilde{\sigma}_{0}=\bar{C} \cdot 243\left(I+\sigma_{\infty}{ }^{2} / 0^{2} i^{1}\right.
$$

in earth radii is celculated with y w $=2.08 \mathrm{~km} / \mathrm{sec}$ for the
-97"•

tine
yeane
70
140230 280 $350 \quad 430$ $\$ 0$

Gcocontat pistegen ge Exty jadt
moontet

Larger boays mintif is.taken as the atefencnce of the oxbibil relocitiea of the two oincuar oxpits (scond line from the botton of the teblej.

To caloulate the hoabing Iimits [equations (95) and
 cf 350 yeers, $T_{0}=853^{\circ}{ }_{\mathrm{K}}$, and tede ${ }^{2}=1.19 \times 10^{10}$ exg/gs this is equen to three-fith of the kinetic energy at escape velocity of the present roon (2.33 $\mathrm{lm} /$ sec) Less 5.07 x 1.0^{9} exty/s as the potembial Energy of acciotion of the component noonlets. The minimum averege intemal tempo-
 upper Inmit of the metting mection $G_{\text {mex }}=0.301$. The minetio energy of U, or the tron oxbital energy is aegloctua it is nearly compenseted by the overestimete in the potential enexgy.

G. Themel fistory end origin

Paile IX contains a sumarir of the preceaing subsections. Although besed on numsrical dats which are in evitsoly rether rough, the conctusions in cech case are compere tively steble and rey serve as a basis for judgnent winch is better than a mere qualitative approerh. The following summary can be maje.

Fypotheses 1 , 2 s and 3 disegree with creter statistios ard tidel defomation trexds, whle 4 and 5 do egrue. In Fypothesis 3. the surface during eretering is too

hot and too much melted to acount for the regular and dense erater coverage in the continentes (Junar bright regions or highlands). Hypothesis 4 reguires an unusuel combination o: the nodes of the component orbits (the probability is 0.06 , or less if there were moxe than six component bodies) : also most xetrospectire calculations indicate 3 small inclination at 5 earth redili, contrary to the requirements of this hypothesis.

Only Hypothesis 5 is free from obvious objections and will be considered as the most probable worling besis. As to the consecuences for the structure of the lunar surface, Fiypothesis 4, although much less probable, is olmost ty identical with Hypothesis 5 .

The termal history of the noon has been treated br ditererent authors, mostly on the assumption of an orig:nal... Iy cold accreted body heated by radioactive sources. A.s deasring on the assumed amount and rediel distribution of the heat sources, opposiag conclusions heve been resched; either that the melting was essentially complete (ruiper, 1954): or thet there was no substantial relting except in the arep interion (Urey, 1960k; 1966). Host comprehensive calouletions have been made by fiajeve (1964) and Levir (19663, containing a review on. her, work and that of others); radiative trensfer as a component of themal conductivity and diffexent abundances of the redioactive elements

Were teken into acount, as well as differentiotion on a lighter siztic onvet Erom the hearien simatic melti for verious initial parametens the nein conclusion je thet at present the moon "is solid ot least to e depth of 500--700 lm . But the centren pert, oubrocing $20-10$ per cent ct ite mass, must have been in a moiten state un till the present time".

The estimates of initial berting: as originetine from grevitationel enexgy and as for Hypothesis 5, vould enhance these conclusions. Initial meltirg coutd have occughed on a large voule as the conseouence of bombariment, although for the gresent themal state the diffexence in the initial conditions would be essentially cbliteretea. This is perty due to the neture of the themal decay by coolings partly to the s:alio dirserentiation mhich transports most of the redioactive elementa into the gronitio-basaltio oxust wh whence the beat easily escapes to spece wile further heating si the melted interiox stope. Thus, nelting is e pogalsegz: reguletox of internal heeting thet autometically limits itself as. soon as it starts. In a solia body of sufficiens size radjoptive sources sooner or leter lead to meltings this causes sielic diferentiationg removes the heat sources from the interior, so that a cooling phase staris Accordine to Levin (1956a), Erter a cool start the lunar interior would have roached maximum hoating and melting
"l - 2 billion years after ita accumulation". Jerin's assumptions correspond to our Fiypothesis 2, yet on a vexy much longer time sceles with the shorter time soale as follows from the low U-values, the initial average internal tempereture of the moon shorid have exoceded 850 or anc with sufficient shielding by a protective crust, may hexe reached $1800{ }^{\circ} \mathrm{K}$ with about 5 per cent melting on the sursace. finis no longex is a cold moon ior a staxty and in Hypothesis 5 an avenage interior temperature betheen 1260 and $1800^{\circ} \mathrm{K}$ is indicebed with up to 30 per cent surface melting. In sucli a case the melting of cratex bottome and the jage Ilows whjeh covered the naxie need not be relegated to some Later epoch awatting xadicactive heatings wht moet probebily vere contemporaneous with the accretion itsete and the last oxatering. On the continentes, a solid orust of unspecified depth, $10-20$ lum at leasts must hevo exifted, while the mexja vere overilom by leva.

On a leve sea which is anle to form a solid exusts eithex because of difterentiation of lighter minerals, on because the cmust is not cracked by impactrs the "bott.eneck" of heat trensfer is the conductivity of the solis, radianion from the surface coping with the heet flow at a verc mall excess of tempereture over the equilioriun tempereture, $T_{0} \sim 300^{\circ} \mathrm{K}$. With the liquid at melting temperature, conventionally $1800{ }^{\circ}{ }^{\circ}$, an assumed epecilic heat $p c=2.7 \times 10^{7} \mathrm{exg} / \mathrm{cm}^{3}$. deg and heat conductivi'y
$K_{t}=3.2 \times 10^{5}$ exatem, secodeg (alsoming low the radiative component, the thickess ah of the crust increases witt time (in years) 0logely as

$$
\begin{equation*}
\Delta n=0.018 t^{\frac{1}{2}} \quad(12 m) \tag{122}
\end{equation*}
$$

Maxing an uppen limit of time for creter formation on the continentes, $t=? 100$ years dating which the moon reetided Erom 5 to 8 earth redii $\left[\right.$ equetion (112)]. $\Delta p_{1}=0.82$ kn oxily. The arust would be too thin for the craters, fhe mocesn camot be advocated for the fomabion of a baste zot cratering.

Howevers as pointed out by Urey (1966), the omat rill be bettered and cracked by impacts at the outset; the sulid . Fagmens, being heaviex than the liquid, ere sinking to the botom, leaving the open liguid surfece radioting to space at a rate of 6×10^{8} erg/ cm^{2} sec. At 7.3×10^{9} ere/ cm^{3} as the heat of solidificetion, the soliditied leyen at the bottom now increases liyearly with time,

$$
\begin{equation*}
\Delta h / \Delta t=26 \quad \mathrm{~lm} / \mathrm{Jecs} \tag{123}
\end{equation*}
$$

The rate is high enough to overfule ell ow time scales of acoretion. A pressure-depondent melting point will not essentially influence the process, except by providine a "botibon" to e superticial pool. $k s$ a result, durine accretion thet is too mipid to be influenced by radioective energy release, a solid almost inothemal lody is refialy fomed throughout, at a tempexature near the
melting point, while the exces enexgt in nadiatod away from the surcace of the ligutd, This is exacty the corm dition on which equetion (99) vas besed. Thie mekes (5.0.301 an noper lint thet is olose to the real, wat velue; il dirfeas from it onay in so fer as the remoinias 70 pex cont on the surferce, being solid, does partiatrate in redietion to spaoe; the partiolpation mast be maju inceec. Tence fimey represent, in fect, fre instantaneous sumpece Eraotion of transient liquid pools, fomed Dy bombarcmom snd repidy soluajytus at the bottom. The quoted valua conzeponds; of couree, to the midale phese of intense bombanatant; at the epooh of crater fommation, pitust lewa been rear mero, incidental mething ocourring trom the cratexing impacts into the hot substrotun

Fith the repidity of solitisicetion from the botbum no laxge combined lave pools ovuld beve been formed, ead the melting must have been confined embirely to the suatece of the moon. A consolideted, dense and hot body wes Somer in such a manner. No lava extruston, ceused by rupture of an juasinery cruet, could have teren plece at this stere. the marie must have been producea superfictalIy anc locelly, by impects of s fev lexge planetesimal; soon urtea the intense bomberoment ended tut not very moh leter. from the numbex of post-mare oraters on then, their age ommot dixier much from tre 4,500 million years of

Th the process of surecee melting and botton solinditicstion in mall locel pools, not moch diferentiotion could have talsen place, any differenee oreated in the pool being locally frozen in, without exchange between different depths. Iron phese conle have coporated into ancll pockets but prevefted from concentrating in the core. (There may be nov a few per cent metalic ixon the cores)

Arter a hat solid moon hac. accreted, isothemal at the surface melting temperature but ebout $200{ }^{\circ}{ }^{\text {Wh }}$ below melting point at the central paessure, redioactive heeting or the interiox and conductive cooling of the outermost Lew huadred kilometers must here started. Irom curves on radioabive heating and cooling, of an initially cold man, Levin (1966b)concludee thet widerncead melting, from a depth of the oxder of 500 km . An to the center, rast bave occurred ebout $2.0 \mathrm{x} 10^{9}$ years from the start. This conresponds to a zise of central temperatrese by ebout 1600°. With the jnitienly hot moons, the required heating is 8 times less; allowing for expon mitizl decay of the radicactive sources, the melting shmald heve ocurred 10 tires canlicr. Thus, some 200 millioz years ester accretion, a. second stage in the internal evolution of the moon must have teen reached; in the molten intexiox, sielic diffur-- entietion must heve occurrea, foming a lighter inter. mediaie layex adjecent to the outex crust. The crust
itself, hovever, must not have been affected, retaining; its originel composition and cooled by radiation. The hasis of the creters-the highlands or continentes-must hava been preserved as it was formex. So also mast heve romeined the mexia. At the epoch of radioactive melting, the crust was too thich for lava extrusions or for being piercea by an impactiag body; the oxiginal plenetesimols must have been swept absolutely clean from the surrounding space by that time [ox. equation (93)], while stray objects of the raquired size fan other parts of the solar systam are too rare to produce one mare-generating collision (not to menticn reveral) on the moon (Opiz; 19580, 1960) with a xeasonable probebility. There can be located 8 mare jrpact areas on the earthward hemis here of the mon exceeding 500 km Ecross or reguiring projectiles "laxger then a 5 lm in dianeter. for the whole eexth, one such impert is expected oncen x 10^{9} years (Opily, 1958e), and for one furar hemisphere the tine coale is 6×10^{10} years, yielding an expectation of 0.075 ixterpleaetary impets during 4.5×20^{9} years. The Poisson formula yjelds a probability oi 2.3×10^{-14} for heving 8 such impacts. Clearly, it is reasonable to assume that the rexia were gencrated es an mandiate sequel of the eventes and from the scme sounce, which finally built the moon.

An idea of how much an jatiel hot stage could heve
intuenced the prosent thomel atabe of the mon can be obtained from the celoulations by Allen and Jecobs' (2956) who somohow vexied their radiotetivity paraneters more or Less as they mond be influencec by melting and diferentm iation Fox a luncr size body. Table z shows the chenge in average thmperature over an sintexval of to 5×10^{9} yeena, Fox bree seleoted eases: A_{5} a cold staxt. Whth strong radioactive sources throughout the body, the conoentrations of uraniun, potessium end thorium being those for an aotuzal chondritic neteorites I, a cold stentu but with about tr timos less radioactivity, a concentration assumed to hola For the earth es a whote; and G, e hot stert, but with still less madioeotivity, nearly one-half of that in 5 ond eguel to thet in dunite, believse to be the mein constituent rock of the earth's mantle.
bach of these assumbtions hes something in its favos. Case A might appear the most prohable ono, yet moteontio concontration of redioectivity thich ney heve preveiled at the stoxt mast heve jed to melting even from a cold Etart, to aifferentiation and defletion or the internal heet sou:ces; Gise G nay then rerresert the contimastion (the absolute ralues of tompereture are not relevent; the starting temperature could be that of melting) e cese E shoms thet, with an ererage concentration of the radiom ective molides os in the earth, in initially cold moon

PABEL

Fample Colouletions (A1In end Jecobs, 1956) of Thermel

- Conditions in a Body of hunar siace

A

0	300	300	3.24
4.5×10^{9}	5300	3750	0.70

1

0	-300	300	0.74
4.5×10^{9}	1400	1100	0.13

G

0	1600	1600	0.35
4.5×10^{9}	1670	1260	0.10

nay not yet have rowed the melting point; hovevezs es show above, gravitational heating during rapid accretion would have overruled this restriction, too, and with the higher radioactivity es compared to Case A, a molten interior would have bean preserved until our time.

A possibility that the marie were formed ace the result of cinclucaitp:164
radioactive heating during the 200 million yeas following accretion, by
 inwards, mat bo rejected for other reason, besides objections fro u the stondanint of thermal balance. The nondipfexemiated base of the continentes would have collapsed also and hove become nom-extistont. Also, deep melting on the marta tula have led to dinpexentiation and function of a fiche rialto. crust in their place, while the ontinertes, if somehow preserved, would be supported by a heavier base. Isostatic equilibrium would have sunk ti en deeper, lifting the maria surpass into talents, when is the very opposite of the actual state of thins. The marta are definitely apmessions as shown by Batchints (1005) contour nape', 5.52 ± 0.15 ka below the avorene
 layer of the continentes may be battered mo mable ma way be tighter Belting at frapact of the relatively hot substance (of. below) would favor cumpotion, but a ratio of about 0.8 of tho density of the ramble in the highlands to the solidified rok on the maria nay be a sain estimate. The thickness of the wonsolidabod material in the continomes as required Dy the postulated isostatic equilibrium, would then be 12.5 ha or eight times the artiwhed themes of the layer eroded during the formation of the paegentis survivilus oretexs.

As to isostatic adjustment, tit mast have worked on the primeval hot lunar maters al as dos, now on earth. With cooling oi the outer man, le,
 about $h=1.16 \mathrm{~km}$ in excess of the equilimiun tidal configuration (opts

 causes a compressive stress E_{m} in the mantlo, without participation of the Miguia core,

With 500 ma as the thickness of the mantle at the thre of the last adjusiment of the buige (not necessamily nov), $=2.0, \mathrm{R}_{\mathrm{i}} / \mathrm{A}_{\mathrm{e}} \sim 0.7$, $s_{c}=S_{n}=4.0 \% 10^{7}$ dye/om (4s atrosoheres messure) must have been the average cotpressive simagth of the hanar mantle, The oxcess bulge, rot really a "fossil" widol bulgo but wher a legsing beinind wement of it, would indicate also the dieferones in lunar level which can be supgonted on a large soale tithout isostatic adjustmert.

H. Grater Statistics end origin

If the welative equality of the crater densitics on the eastem and western hatishatos ("astronomical" bexamolosy of orientation) on tuntr continenter, maten a slight ercess in the restem cen be waerstood, in temas of the thduly dirocted accretion tistory of the won and the co-orvting swarm (cr. Section IV P)), a stmilar distribution on the maria nay apsar nore of a pussle. Unlike the mpohntion primitue projectiles minh vere bonberding the continentes, those on the naxia must have belonged to the knom classes or interolwetary stray bocies - oonet nuclei, hoollo grip "astoroids" (extinct const moled) ma true asteroids derleoted oy lars pariwhaticas. Fath respect to this external medum, whatever the dis tribution of volocitios, the preceding hemisphere of the moon is subjected to a greater meguency of frpacts than thet trailing rehind, and an encoss, instoad of a
denicienoy of croters on the eastom homsphore should have been expocted. Honevor, the oxibital velocity of the moon is so smand as compered to tion interplanetay veloaities that only a s:an effect cen bo ernected; this could be ezsily reasked by sampley errors, in howogencitios in the counts
 one mille is diameter, against 40 counted by shomaker and llacman), on aven by systematio differences in the neohenisal properties of luner rocks in the two hemispres which took so differont. Also, a distinction betreen
 although, or arobers axceecing 1.6 ka (me mile) in dianetor, the mumer of seconday oraters in Imox moria is only a per cont accorimg to Shromater (1065).

Mrom data by Shomaker and Hocman (1063) as adjusted by Baldain (1205), the momber denstity on primaxy craters in Iunar mania in the wo he ispueres is as reparsonted in table $\bar{n} T$

TABIE XI

The purely statistical probeble ereor of sompling is indicoted. For the eastem hembshere, hine Inbrium, fubinu, Funorun and Gpiaemiarum, for the westems, who Sorentetis, Poowndtakis, Tranquilitatis, Botaris and Grisiun we:e comined. The largost and eastomnost erea of Oemas Procellamu is not represented. The areage number density in the earem hemisohore, 30 th at the 1.6 kn and 3.2 ka crater dinmeter linit, is fond to be morludy smaller than in the westem.

For a lunar body orbiting in the erliptical plane with a circula. velocity $v_{\text {w }}$ and necting a stream on paricles of velocity 4 relative so the eorth of whitrary direction, integration on the accetion rlw, for the Jinear cass of $\mathrm{v}_{\mathrm{c}} / \mathrm{U}$ being sman, yields a hemispheric zatio
Fastern
prasicalle independent of the incination of the U vector to the luar oxjot; at aero inclination, the coerdicient is $10 / 3 \cdot \pi^{2}=1.80$, and at 30° it is $6 / \%=1.9 .$. The concentrating factor eiss represented by the second tum in broukets of (54) is not token into account; it is of the onder of
 lumar orbit 2.25×10^{9} years ago as the ridale interval of bonbaxdecnt: $a=53$ earth radii and $v_{c}=1.03 \mathrm{kn} / \mathrm{sec}$ can be assured. For Ajpollo group oojects, $U=0.660=19.7 \mathrm{~km} / \mathrm{sec}$ 家 an ouscrved average ("Opik, 1935a) whereas for inotropicnly oxbiting objects at heliocentric velocity v_{h} the arcrage weighted by the squarc of oncount er velocity (strean velocity times cumbative muber wroportionol to D^{2} w wo aconding to equation (7)), or the aveage imact volooity square for craters of a fixed size limit, is

$$
v^{2}=1+v_{h}^{2}+2 v_{h}^{2} / 3\left(1 \div v_{h}^{2}\right)
$$

For parabolic comets, $v_{h}=\sqrt{2}, 4,=2.350=55.3 \mathrm{~km} / \mathrm{sec}$.
The two extrome typos of objocts yheld acooding to equation (12i)
 respoctively Por craters of tho size inat th question, tho arerage of the tro grougs may be rencesentative (6 (hasis, 1953e), on a ratio of 1.07. A dircerence from the coserved values (rable XT) appeors to be well estar hished, but it woula be rathex farmetched to acm onaclusions as to the oxtitix or.
 1955, 1906)

Heve it raty be pointed out thab coret nuctoi, carxying a substantial proportion of volatile toes and of higher velocities, witl fox equal wess produce woxe violont explosions than the extinot nuoles or asteroidal. objects. The eftect of volatiles was not conatiered in concection with the origirs on the moon beanase it nay be assured inat, in the terrestrint pro-planetary x ing, these volatiles wont not be contomanle and, aposembly, ware not masbively rewesented juaging from the omponition of the corth The ienstity of crevers in the continentes is cotimated to be 19 thes that in an arexase mare \rightarrow fin Imorina (ineldex; 1905) - or 15 times (Bendma, 1985) 。 Tt is therefore capected that 5-7 per cens of the catars in the continentes are of postmane origin. These may be difincut to distinguish except for the mar craters which are apparently the ressit of moze violett impacts, periaps by the hathovolocity conot nuclen, of the
 the margin), 20 on mavia, whin more or hoss comesponds to the ratio of areas

continontes (nore in the lib areas which, rrom pojection, represent a smollen apparom sraction of the visiole hemsphere than ocouptea by thrir
 Bebmen the hemispheres, 20 rug creters mue th the western, 24 in the exsem;

 comblering the mathess of the manexical manje.

Revemting to the general cxater densities in the tro hemispheres, the craber muncxs seen to be much more smilunced by throwout from a sery luge onatering erents thon th would appear fron Shoomber's (103今) entuatea. Ia a specially investigated erea of festern kave mbrium, covexing $465,00 \mathrm{~km}^{2}$, a dertate increase in crater numers is yevellod in tho sombera poutan of

 norblem han shors a crater derstuy that is uniform within tho sampar emor, 13.5 ± 0.0 araters por $10^{2} \mathrm{~km}{ }^{2}$. Fron the midale of the exea the densifies
 orer 152,500 ks^{2} ypela a density or 25.6 ± 0.0, Assumity 15.5 to pe ma donsity of prinery oxters (a maxinum watu- some secondaries may be present in the nortam nols, too), the excoss denzty in the eothom hate is to be athributed t) 105 neonearies - 22.3 per cent of araters in tho entire mire;
 loreover, about the same 20 lavive exoess parststs also in Southen reve toriun

southmard as Copernicus is approsched, from 52 ± 6 per cent; in the nor hom
 souttern thra of the sowtem hato of the mere (6isit, 1800),

As slown by the Rancer photograpis, the roys appear to consist on tithtly disinjbuted secondaxy craters (Bhomaker, 1963). Crater chains belong to the same phenomenon, produced by a selvo or projectiles, or ay a
 sends out ragronts with diperent veloctios at diperent locations a.ong a line.

A dipherent kind of exceptional object axe the Invarinlea on funced areters. 42 of then are in the highlends or continentes, wat 20 on tie merginal sogions of the marias, rlooded ber tho lattery (Beldan 15A9); whey belong thus all to the premare stane. fans is in hax mon with the pioture of acretion of the noon as drave ebove; the continentes base, still inot after intense accretion had swogided, wot them receptive to impoct meitinso In the post-maxe perion, the crust hed owoled ond impact melting beonm: much less promil enti.

T. Helting of a Mase

ixtrusion or lava from an inner moiten core to the lwair sumace is as difticult to visunlize as it is frex the caxth's core. On earth, law Fornation an extrusion is connecta witl mountoin builaing, foldang, subsequart erosion and isostatic dopression which leads to the rodioacitye sources besne burjed deep and insuleted. The sooks axe heabod beyond melting point in suburipee lava foci. If saturated witil water wapor and othr gases
(water drotting tom thom the surnace), whomoes are fomed. Howerex, moxe jownivi lewa extrumions are the ploteau basalts, coung through oxubel. cxats
 diowetres.

On the foon the mowtain oullang procosses are absent, erotion is two slon and surface storcs on water are 10 atrailable. The lave pools of the period of taterse acorethon mast have conpletely soltaticd.et jts conclusiony, At that tits, perazps some 2000 years anter the start of finel aconeticn, the suosuriace rocks most have been hot, from a depth below soze 0,5 km furing equation (132) fox a rough estimotel. Ab a tomperature near melting roint,

 as som melting of a solld atready heated to the nelting point, tho shock velocity at the fringe of complete melting beoones $u 31.04 \mathrm{~km} / \mathrm{sec}$. Equation (16) with -

 the low velvolty prinevol impact into roos sotwened by heat Choosing a

 the dieneter on the mojectile Further, fron (11) wth $s_{j}=0.78, s_{c}: 1.0 \mathrm{X} 10^{8}$
 sriotion. Equations (7), (4) ard (14) tien ylela a orater on mave diateter of $B_{0}=424 \mathrm{ka}, u_{s}=0.205 \mathrm{~km} / \mathrm{sec}_{2} H / x=21.0$ (mass anfected), $\mathrm{H}_{\mathrm{d}} / \mathrm{h}=14.1$ (mass oxusht \dot{d} or melted), $J_{1}=5.77 / 21.0=0.375$ (completely melved inantion).

The projectile itself is not here incluace ; its weterial way be mostly moltect, white vaporization, miving and a cistinat "central fumel" do not occur. The wolune s. the projectile is $V=7.8 \times 10^{\circ}{ }^{5}$ wa , and the woine of completely
 crater area of $1042 \times 10^{5} \mathrm{ka}^{2}$ with a layor of it kno The sprared licquid and thefrock delris, ejected with velocities or $0.2 \ldots 0.5 \mathrm{kn} / \mathrm{sec}$, are falline bask into the crater, little being throm over the rin.

Outside the completely tinited frection, y_{i}, partina melting in proportion to the heat release or to $\left(y_{i} / y\right)^{2}$ will oo wor [equations (10) and (20) Tre total melter exaction of the mass affectel is then

$$
\begin{equation*}
x_{13}=y_{i}^{2} \int_{y_{i}}^{2} d y / y^{2}+y_{i}=2 y_{i}-y_{i}^{2} \tag{127}
\end{equation*}
$$

or $n_{\text {in }}=0.630$. The unolten rock debris will settie dom, leaving en Suva sea of $3.65 \times 10^{6} \mathrm{~km}^{3}$; in spread unirortly over the crater aroe, a tir uid laver 26 im decp mouid result. Acconains to (123), wher bomberdment the sollasication of this leva nare prona take only about a yoer. On the other hand, tif the mare vas rormed vilen intense boulardment had suosided the formation of an unbroken solid crust would have become possible; on the lincar soale conterplated, this could have happened only through aifferentation of the Ifghter sialic scoks which would Illoat on the simatic melt.

A cheractexistic trait of the descaibed mare-genoratins nechamisn is the deep penetation of the iuparting body, so about onequarter of the dix.weter of the max. The deptia of penetretion cto oblique inciacnce (100 km) is here less than the dienetor of the projectile (114 km). For liare Imariwn, 施 $B_{0}=1050:$ m, the other Jincer dimension: must be increased somothat nore than
in proporion to the crater dimeter. Eivec the lateral strongh is in this cane olosely proportional to orater deptr. (12), from (9) we hate

$$
\begin{equation*}
x_{o^{i v}} z_{p}, B_{o}^{4 / 5} \tag{123}
\end{equation*}
$$

whence, Sow Sare Mbritur, at $\gamma=45^{\circ}$, we sind $x_{0}=555$ kn fom the panetration
 The arerege depth of the wolten layer vould be obout of has. All this is on the assumption thet a single event was repoasible xom the croction of the. mexe, an as maption that is difficult to nerute in viem of the regulor, neenly ofrculax oxtino or its bordex. A sabolite which poduced Sims Txam may have impotec nearly at the sare tive,

Wathenatical attengts to retrace backwas in thmo the history of the eath-moon cystem apend, in the first plece, on the assumad lax on tidel friction, eithex as it did, of dia not vary in the course of tive the
 minimun distmoc and, aspectelly, the the scele, degend mainly on the assumed
 years obtana for the thae of closest dismace are manotedy due to a: overestimate on friction which so Amamonselly depends on the distrioution of the ceens, and continentes, as Fell as ypon the total amowh os waber in the hydrosphre of the earth. The oldest asto minerals, sudas the Zithons in the gneisses of limenota, show an U-Fy age of 3.5×10^{9} years, equal to the oldest representatives from the Central. Dovine and the Congo, and secimentacy yochs reah iom to 3 y 10^{9} years (0loud, 1303). The clesest apmonch of the
moon could rat have hapened later then these dates; ocean tites of up to

 tidal bulge of the rotating earth, of Section \bar{y} B), and tiald friction ineatint of the oroer of 3×10^{9} esg per erom of tho entire oar th would have evarorated the oobns and melted the wpor crust intc a lave sea of wioh no movicus eytrustye on sedinentary rocks cond have swrired. Indeca, the heet os tidal mriction mast hare concentreted in the wher portion of the earth's mantle, yieluing there well. over 1.6×10^{10} exg/g reguired ror waising the
 earth's prescrit crust nust have berun whe a completely wollen state,

 all the weertainty as to the absoluto time scale, it in nost netural to adjust it to a more zerintte event - the origin on the earth itselts $4.5 \times 10^{\circ}$ jears ago. Brom the theory on planctary enocunters (Section Tri); a lunear boty orbitint sone fhere near the earth's oritt could not hove esceped close approaches to earth for longer than $10^{5}-10^{6}$ years and, in tian capture ever did tave placn, it must hrwe followed the Sormation of the eartin with not more than such a lity in time Bor this reason 2lone, any conjecture as to a late canture of the mon must be rejected as so improbable that it can be terma practionty tupossible, whathex, the geolygions and geocimonological revora rendexs absolitoly uncoceptoble theories winch would put the date on Imon' copture at less then 20° years ago (Alrven, 1965); on would ascribe the "Cambrian-Precunxim noximonrontity" in bir logical-geolocicel soquences about

700 million years ago to the events of lumar capture (Olson, 1966) (inttead. of repeated wonldmide ioe ares as testrico by bounder beds ab this ad earlier epoons). The medicino is too strong; Fostead of boulder bods and intercupted organic ovolution (with algae dating 2700 aillion years agc), a globol lava sea several hunared hilonetres deep would heve engulpod all twaces of previous history, and not simply produced a problenatic "monwconfonity". Thater suoh vircumstances, the critical appraisol of olson's suggostion by
 relating thes wooniongity to a unque evat in the Rexthmon history might hove reoeived a symphetic reception. Jomehor tice problen is less uryent now, In may places the geologic record is patched across the ErecanbianCawrion interval, end tho unconfoxmity is not so rexy ditexent fuom o thens in the geolegic reoord. Witin regerd oo the explosive biological ewlution tre have suoceoded only boo well, by destroying all existing forns of ine and insisting thet life start anew. The biotogist; mon't have itt.

If the Alven-0lson tien on a zecent (Iate Precambian) catastroplic. event of such a magritude is not only reruted by geologicel evidence, but is . also contrax, to the concepts of probability of planetery encomters (te probability or a primitive moon delaying its fatal encounter with the etrth for $5 \times 10^{\circ}$,reaxs is less than 10^{-1000}), the mechantical variant of the copture theory propo sed by Alrven (1985, 1968) aprears highly attractive, as th seens to reconcile the fev critical data relatirg to crater ellipticitios and the tine of theis formation (Opik, 29610) with the aesthetic merits of Gerstentornts natheratical model of twal canture and cyolutions

According to Alfven, it the printitive moon was non-homogeneous, with the outer layms besms of lesser density thon tho average, wile pessing close to Rochs's linit as herstenman's oalahations wold imply it coula have lont its lightor manto mile mreserving the donsew coro which mas still outside its owa Roche's linit and able to koep togethor by gramitation. In synohronow rotation, the fragronts of tine tionaly astonted elongated mantle releast earthard would have been divected intouds in elliptical oritiss posstirly evon Palling on the earth, wile those from the pposite
 outwards in elongeted ellipticol orbits. in a two wody approsiration, neglecting the gravitational action of the aoon's ness, from the tips of a tidally deforred bodys extended to dowle the moon's dianctox and in symohronoue rctation at a mean distance of ath darth radit, the extrene
 (porigee) earth madit, thus colliang win the eath; wathe cxtrems ownow fragments woula bo throm into elfiptical onoits botween 3.25 (periges) as a 24.0 (apogee) 3exth raciti. 2.71 earth rafit is moche's Itwit at dencity 4.14 [equation (104) ; in hals the oxiginal hmex wass was in a coro of this asnsity,
 the mean denstig of the mon) could be throln out by tidal action, leaving the cone behina, A second apxoximation, on tre basis ot the restricted thre body proslen w. the earth and woon as the prircipel partnors, would lead to wore omplicated orites, the Jecobi integral howe rex permitting more or less the same range of feocentric atistances, mings ace more complicated by the
prosence of onstiderable difuns massesg aind by the acceleccition of the

 bend to coogulate into moonlets, collidurs and breaking up again end ultanatoly collected by bhe monn. The outward alout, oxiginatiy suinging on an avcrage orbit betreens sey 5 am ha earth radij, $a_{c}=8,0=0.625$, mill colject into moonlets and a coherent choud of miner deunis thale wore ox less conserving the oricinsl anguler monentum, noytig in max onoulor orbats ewh thes the
 the distane where the cretexis 0^{2} the continentes mpear to hove beon rowned,
 ouber fromperts most have. been rapldy oolseoted by we thalhy savarant; moon. Lis to the imer smanents, phatove of then wos presemved irom inding. on the eorth may have oollected into a moollet. fris inmer moonlet, too suall to overuare lidally the main body of the mon, wan perturbea ama aceelexited. by the latter in apoge aproowhes until, "n apogees a coluision (racedua byi
 Lexge nogmer ts led thus to tho somation of the lmar moxia.

Thus, cxoept for the time sonle, hintenis model of thal capture ard subsequent merginol olose passage is able, io account not only for the erribexs in the continontes and thoir systemetic cltuticities, but also for the bater somation of the Iunon mexia on the earthasd hemisphere of the moore Qumbitative. y, howevers in this gase one amot put mubh relianoe on procise celoulations of tian evolution near, and receatug the siage of tixe noots
clocest ayproch because the assumptions, nothor of tho constancy of the Iunar mass, nor of the limited nuber of interacting bodies, cunot be upheld even aproximately.

The cily dipriculty with this most attractive model remans in the heat ownated.ty the impacting bodies axing the last stage of orater pomation on the conthentes. the expected heatime wald be somewhere between that of
 too hot, mat with too moh melting, for tho tive wen the highland outers wore Pomed Wevertheloss, with all the other circumstaces taken into accumt, Aliten's model of lunar captuxe fprears to bave a good degree on' probobility in its favor - ghout as muh es Model No. 5, the host tavored one of Table TY.

A. Gater Rofiles

The depth to dineter ratio on lnax oxaters is hom bo decrease with crater size (Galdujn, 1549, 1063) . mis is obviously explaned by greritation inmencing fallock. The average velocity of the ejecta is manty corditioned by the stometh of the matertal and the hinetic elesticity; for given veloctofy the altibule and distance of alight is limited by gravibetion, so that e mollex parontage on the arater volume ca: be ejeoted over the rim of a laye orater than prex a small one.

The insory outlined in Section Itor an be aplied to the study of lumar caner profiles. in notritions of this an the preceding sections, the aparent depth of a c.ober, x^{4}, as reasured arou th: undisturbed gromd level to the suraco of the debris at on near the center of the crater (atsmandint t
central peas if present), can be assured equal to

$$
\begin{equation*}
\lambda^{\prime} \quad x=x_{p}\left(1-T_{5}\right) \tag{129}
\end{equation*}
$$

The throw' function $h-F_{B}$ is remesented in Fife 2 , the fallback aration being given by equation (49) , This is the froction on crushed material falling bac: into the cnater, but it moy also be asmacia to coven greviteciona inbibition in raising a lip ond in displecing the uncrushed rook of the crater bowl. (Naty in fig. 1); this justintes the applacotion of the fallowis factor to x_{p}, the 'rotal depth.

Feabuck meinly depends on parmeter b (equation (is); which approches zero for small cxaters when fallback also tends to yero. In this cese the gravitetionu. friction component in lateral strength [equation (11) mat also becone unimportant, and the oneter proijle, or the ratio of depth bo diameter wisl be determined by (9) (except for erostoa for very suall onters). Os the paraneters in this equation, the lateral strenghs it s_{0} or the product s_{i} : is most moextain. Nevertheless this, as well as velocith ond density can be pairly well guessed fon a given cosmogonic stase.

For the largex craters, when parame ber b is increasing witis the Inear scole, gravitationel friction in (11) becnes important and even donimat. Fallback then depends prinarily on

$$
\begin{equation*}
\lambda^{2} u_{s}^{2}=X^{2} s / p \sim V^{2}:=\text { const. } \tag{130}
\end{equation*}
$$

or on the product or kinetic elasticity and friction, and on the maxgind exit angle, \because_{0} (Fig. 1) Setting $f_{s}=0.73, \sin \hat{p}_{0}=0.8$, the dexth to dianeter curve for the largo craters can ic met by a proper cholce of λ^{2}. which, thus, is mother paremetor that culbe empirically dotemined aluosit independendy of s_{C} (within the nargin of uncertainty or the other, worc.
cortain par meters).
The masurea orater profiles as used bere are from 3aldwin's (19e9, 1085) work wero the derth is rectonea from the crest of the xim. Averofe rin heights wore thorofora adaed to the selculated x volues; to ronder thein comporable with the observed depths: the alcolated values of $x_{1}^{\prime 3} \mathrm{C}$ as roncred to grown level were multiplied by an erxirical ractor on l. © for Boldwints Class 1 craters, and by 1.30 fer those or Classess 2,5 , mit $\%$ the ratios do not seem to depend on crate size.

Boldrin's crater classes are meant to remesent relative age, 0l:ss 1 being the yougest, shoming the least aing of later impacts or the least Anoact erosion The classitication is mposed to be uninfuenced by the depth to daneter ratio. The later or olcer classes are mace matlow, which is pexthy the result of erosion bu: mey also tholude sme subjec;ive bias. Thje is brovght out by the distrention of crater classes as dependins on size, takon from 3 oldwin's tatermorls (1935) and represented in Table III.

TABLE XII
Distrioution of Crator Olasses br Size in Bojorin's Iist

Class	1	2	3	4	- 5	A11	Ter cent Class 1
Dimmetes					,		
$>40 \mathrm{mls}$	55	24	20	3	50	112	5.
20-40 31 ls	66	18	7	0	23	120	5
10-201m15	44	4	0	0	4	52	8
$<10 \mathrm{mls}$	59	0	0	0	0	50	100

The smallex crabers are registered predoninently as of Cless l, tiale among the largest choters this class is in a minority. It seens that the swail croberis, beive less shealow for fallback reasons, tend to impess as betne loss eroucd. Anotier explanation wey be that; in an incomplete tist, small craters are more often sclerted when they ace shary and neat, wioh wakes for a meference ia fovor of Class 1 without olossification itsen...' being systematiceilly at fault, In both reses only the largest creters Fould comestly tepresent the relative population of the classes. Hex.ce we moy conchude that the Olass 1 craters, accordirif to moble atr, are y of all of post nare age, boing produced as the last $25-50$ per cont of the total population of cators; they could rell belong to a lator stoge cit prewave bo dordnert when the lumar crust had sonothat cooled axd hardened. Craters of (1asses 2-4 are shatlover (Balsrin, yo49, 1905) and can be
 earlien stajes of the final bombardment.

It thas apears thet the oraten procile data are not a homogoneors selection. Fox thomout theory to be momingrully applied, a closcr study. of the statiatical material is required.

Wable xtr wepresents the distribution of the craters in Beldwin's Iist (13SB) pocorate to thein surface bacheround. The solectivity is here very norked, mall cuaters ocing chosen of jorly wen or class 1 end on the maxio; apparenty boceuse they rere easter to measure whinout interserence from other craters. of course, all port-mare oraters cxeept those of liass aro expectec to be practically unathected yy hatex impacts, hence the y xtual

TABLE XIII

bosence of Classes 2, 5 nat 4 from the moria as rovorled by the table; these classes undoutedly represent pre-mare objects.

In Glass I, all oxatons on the name we, of counse, of post-mare ociging with ages ranging from 4.5 y 10° years to zero. With the explusion of the predominartiy "continental" limb areas, the maxis mepresent obout 50 pon cont of the area of selection, so that the condinentes stould carry a numbr of post-mare oreters eguel to that on the maria. Assuming this, the percmiages on postmarr craters on the continontes were estinated. It appears that, in Olass 7 , the lergest craters (>40 mis) we predominenty of puemiace uge and, being less affected by later impacts, wust correspond to the last otage of primitive oratering, soy, wt a dintance of sone 9 eardin xadiu and 2000
 Ghass 3 . th the $20-40 \mathrm{mls}$ group are also pecominantly of memare age, albough some 22 rex cent may be of postware origin, but craters less than 10 inis in dianeter must all belong to the post-mare stage, fincluating those on the continemtes, Whis heterogeneity of class I. must be taken into account in . the interpretation of catox moriles, wrom the corcelations of diamter with deyth as piblished by balkin (1949, 1903) it ray appeax that hoteromencily is insimiribants, the curves muning snoobl over a diamoter range of 10° to 1 , fron the smallest fexrestrial to the laxgest lunar cxiters, yet the impression is deceptive Systomatio drememes ancuming to a factor of 2 or 5 in the depth to dianter ratio bccome inconspicuo, over the wide auge wen Irg onsolute deptin is comelatod with los diampter, instead of the ratio, ard an apparently sfooth run of the curves for he berogeneous material (dependit on diameter) cat be achicved whe actually there are discontinuities in tie rat:

As to Beldrin's (1065) Glass 5, the lava 2 illed on glooded orobers, it actually contang two afforeg kind of fomations, Those on the continentes om be oxplanod by local impot molting of the not primitire crust whon the crater was formed, while those in the waxia apeer to be thooded fron outside by lava from the wore

In Rames XIV and XV, in notations or, and from the equations of iection T. are collectod some therrethcelly calozabed deptin (rin to bottom) to dinetor ratios, conemponding to a priond assumal jrobable paraneters of ingast. A median anite or incidence; $n=45^{\circ}$, as for inotropic bowaxdment, ani a confociont of friction $f_{s}=0.70$ are assumed throughont, in Thole XTy, $W_{0}=3 \mathrm{~km} / \mathrm{sco}$ as for accretion during the late prembre oratering phase
 planotestimat are fucther assumed, Alsc, vith the essumed constants, onct the Iunar gecelcration of gravity ($162 \mathrm{~cm} / \mathrm{sec}^{5}$), from (11, (12) and (15) we have

$$
\begin{equation*}
s=s_{c}+160 z_{1} \tag{161}
\end{equation*}
$$

in eogose writs, In lodels $A, B_{3} D_{3} H_{2} H_{\text {, }}$, and G, the compressive streigth
 (ct. Sectior V.B); this, according to (3), yeelds

$$
p=\pi_{p} / \alpha_{1}=1.093,
$$

a vel we that is insensitive to the octual value of s_{p}. In frodels A and B, a constant value of the latexal strench, about onemble on sp_{p} is assur 9 . In hodel 0 a high onustal strength as for bexrestrial rocks is assured; this improbable assumption is derinitely refute by the observational data, as cen be scen from Fige 3 in which Salamis dat: for the memaxe caters of classes 2,3 and 4 are plotted. on the to other models withconstant s,

TASII XIV

Calcugatad Crater Depth to Dianeter Batios (s/D
Sox Inger Gravity Fetiction $x^{2}=0.78$, Average Ancle of Inoidence, $Y=45^{\circ}$, and Pre-lare Conditions.

$\operatorname{mazE} \operatorname{xij}\left(\right.$ Contan $\left._{0}\right)$

TABLE XV
Quloulated Crater Deptl to Mancter Ratios (in/Bo)

$\mathrm{X}_{\mathrm{p}}, \mathrm{km}$	0.125	0.25	0.5	1.25	2.5	5.0	12.5	25.0
s, 10^{3} dyne/ $/ \mathrm{mi}^{2}$	9.02	0.04	9.08	9.2	9.1	9.8	11.0	13.0
D	14.9	14.9	14.3	14.3	2.4.7	14.6	14.2	13.6
$3^{3}{ }^{3}$, kan	1.14	2.88	4.57	17. 5	28.6	14.6	109	208
$\pi / B_{0}=1.3 x^{2} / 30$	0.170	0.169	0.161	0.143	0.120	0.0381	C.0331	0.02
D	26.6	26.6	26.5	23.4	23.3	26.0	25.5	\cdots
$\mathrm{B}_{\mathrm{O}}, \mathrm{km}$	2.21	4.45	8, 83	22.0	43.3	83.7	211	\cdots
$H / B_{O}=1.6 \mathrm{~m}^{1} / \mathrm{B}_{0}$	0,0339	0.0381	0.0828	0.0740	0.0004	0.0560	0.0123	-*

B is completoly out on account on the assumed high elasticity, waile A with $A^{2}=0.35$ Ieads to a better fit when is still bad enough as can bo sem from
 choice of λ^{2}, the smoller craters requine art increase in s.

It is natural to assune that, on acconit on cooling, the outermost cmut of the moon acquived somewnet greater strencting Lentotively, at an age cat 2000 yours frcm the begimity of accetion, wher the mesently surviving craters in the continentes were fonmed, the temperature dintribution in the crust may have been about as follows [cis. equation (Ifiz)]

depth, km (x_{c})	0	0.4	0.80	3.8	2.0	5.2	00
temperature, 0	300	900	1250	1470	1030	1770	1800

Thus, at the depth of penetration or tive maller craters, noticeable cooling and herdening of the rocks raw have taven place. In hodols D anc E this has been assumed, a triple value of $s_{c}=3 x 10^{\circ}$ (stinl ouly one-thind that for cool terrestrial rocks) at $x_{p}=I_{0}\left(i \ln\right.$ or $z_{c} \geqslant 0.3 \mathrm{ka}$ being prope sed, with a corresponding sortening of the material invacas. The representation of the Class 2-4 crater profiles (Fig. 3) is now good, the vest fif being ootraned at $\lambda^{2}=0.28$, and intermediated velue betwoen thetro nodels.

Hodels F and G are similer to E ond D but with more hadening of the crust, meant to represent a Late stage ofpre mare cratering, perhaps 20,000 yoars anter the start of accretion, when the ityoungest" craters in the continentes - those of Class 1-mere Poxmen. As has been pointed out atove (cn. Table XTIT), only the large Class laters or Deldan's list are of pre-more age. In Fig. 4, the Class 1 ciator profities are plottod with
background (mare or cominens) indicated, and it can be seen that model ur represents reasonably well the observations for the pre-tare craters larger than 10 jas, wile model. G is "too strong".

The sratlex orator or Class i, as well as the larger craters in the maria and all ray craters are on post-naxe origin. They must have been produced by high-velocity impacts of astoxoidal and cometary bodies, stich as calculated in Thine X, hotels P and Q. At on average age of about $2 X 10^{9}$ yea the lunar cuter crust gust hare cooled and hardened completely, therefore a high strength, equal to that of terrestrial granite or basalt, has been assumed. The assumption has proved a success; in rigi 4 , the observed plat run of tie depth-tombiameter ratio for postmare objects (all ray craters, all craters in the marta, and all Class 1 craters smaller firn 32 kn on the e continenter; is well matched by the P on l Q models, the average correlation falling be ween the two. From statistics of interplanetary stray bodies (Opik, 1953:) it can be estimated that cometary impacts should account for about 40 per cen; cratering events at the 5 kr crater diameter level, for 60 per cent 4; at the than and 70.75 per cent at the 40.50 lm level. Accordingly, the average correlation for a mixed impacting population of asteroizal and conetarif bodies should lie between ifodels P and Q, nearer to P for small crater diameters, and to Q for the large ones, an expectation that is in surprisingly good second with the observations as plotted in Fig. 4. 'Thus, despite the hetercgenctity In age and background of the Class 1 crater selection, the data can be well represented 3 as a combination of large pie-mare craters formed at low impact velcoities ($5 \mathrm{~km} / \mathrm{sec}$) and of post-mare steroidal (20 kn/sec) and conk cary ($40 \mathrm{~km} / \mathrm{sec}$) impacts. Together with the older pre-mare craters (Fig. 5), the
suocessful represontaticn on the crater warizes lends sone strong indyendent support to ow oorcopts on luaer origin isection TV), as well as to the
 kincorie elasticity, $)^{2}=0.22-0.23$, coresponding to 17 -14 per cont arerage kinetic (fimowout) efricioncy of the orearing shock, hicher then for yand cxaters and dilurium but about equal to that of hord rock at Iom vejocithes of impact (cr, Scetions If. $\mathrm{C} . \mathrm{p}$).

The tirpersion of hementh to digmot zatios for a given crator dianeter is conside:oble, shoming variation winil an extreme rense of about 5 to 1 (cr. 3ntigs. 3 ond A). Yet this con be acoounted sow entirely by the di soersion in the angle of incidence ractor, (cos in (equation (9), Veny serimbaby,
 porareters - velocity, density and strensth of the naterial. This is espociall true of thy pre-mere craters (pig. 5 and Class 1 onaters on continentes larger than 0 km in fig. 4), and for an unders andable reason - their iwpact velocitio mast here been close to the moon's veloctty on escape, thas practically constant

Unli"x the case of the experimental "Tecpot" cater (Section IIo "), for tho lund woters the densty of the talbook matextal js assumed here to be the sane ay that of the original "bedroen" matexiais For tho premars craters this assumbtion natwaly tollows frow the sact that the "eatroch for how craters coiststs on the throwt and farbock material of their erased predecesso 's; so that the meterial must ive identical in all respects incuaing density. Besides, any sigmpicant derfurence in deneity would inorease the fallback volune of large craters so moch that, instead of depressions, their flocx levers would apperer as elovations wove the criging ground leve which,
as a mule, is not the case (with one notajle exception, the lacge memare crater forgentinus, wose flon is 400 meters above groma level). For the

 the large depth oferosion (xp inom 5 to 12 lu) mona encume pressuro ocmpaction of the partiany meltad ruble Howver, for the smader postmane oraters, i ${ }^{2}$ camot serve to balance a change in voluae; instear, an increase in s_{c} would be requared wich does sot appar to be plaustble, the lexgest pastible value (8×10^{8} dyne/cm 2) as for hard rochs betne alneady used, It secrs that, partin by "watering" through the mitea spray, party through swaidence helped by leter irpoots, the fallocos rust hove nearly acquiced the censity of the orticinal bedrooks.

Interpetted as the result of oblicue impact. the jremare craters in the lwan righlands without regard to cless are found to sinom a wiss. sendom cllipticity of $0.070(n=53)$ in certral regions, and $0.093(n=125)$ in 7 inim
 based on a greater number of crabors, The velues aro corrected for orservatio exror dispersion and ace supposer to rownenst the true cosmic avexaze on crate: ellipticities; a meistated mean observed value of $5=0.030$ can be accopted, fom a nedien dimeter of aoout 27 km . hith $p=1.005: r=45^{\circ}$, equation (23) yielos

$$
\begin{equation*}
\text { . } \hat{U}=20310 / D, \tag{132}
\end{equation*}
$$

 values are oloser to the observed elliptisity tran could be cxpected for these
a priori colculations based solely on fixst grysicol princioles, Ta value mainly appends on the relative mater dianter, $D[$ cquation (7)].

 creters, nust bare been fomed buring wod inodiately after the accertion phase mon the orxt mas hot and sont, and whout staricent chages afteryams. Frow the standoont of supporting strengt? with its smajer gravity tic mon should be aile to support six times greator disferentes in level. than the earth. Achally, the assoluto differonces in level on the noon are ofnsiderah). swanew than on carth which points to a lomer stroneth on its orust wh the time
 (Section V. A). The nean diterence betwen contincits and ocana levens on carth is 4 . 3 fan or, with the isostatic cocrection for the weight of sen water,
 conrespond to 1.9 .3 km while the actual nem dinfexeice botween the warta and the continettes is only 2.5 ka or oight times less (Baluwin, 1965; 0pil, 19320),

On course, the differences in level ocumang on a large scale are isostatically belanced, and the slones axa alvers swaller ther the any ef repose, exthan f_{s}. Yets when the unbalarsed pressure (weignt minus buyancy) exceeds the plastic limit (compessive stemgth, s_{p}), ixtction is unboe to prevant subsidenoe. Dinierences of level in ovor suoxt strefohes on continuo slopes thus set a lomer himit to s_{p} which the ortrene casce amonches the value itsel?

$$
\begin{equation*}
s_{p}-\lambda g_{j} .1 h \tag{.33}
\end{equation*}
$$

The stress is greetrit at the "foot of the mountin", i.e. ou the loves"
 on accomt ci isostasy, begiming from a sursurfece level where the heowter
 zero at tre bottow of the lighter romaticn (sial on earth, bottercd xom on the moon, of a depth of about $5 \Delta \mathrm{~h}$ as dereding on the ratio of the demstities.
 compation wht decreasing ineouse of highn temperatre, so that there is a
 that on the mon the inselating dust haye is retuer thin and that soli i rock of thigh thenal conduthtiby bogins syon though belor the surface (at leas
 therefore not lerge, and the lomer limit of sy would bevofore consespond to the near sumpurace lagexs, of the ordor of th, where the stress is greatesto The strengtir mould decrease dommards as he temperatwre xises, but this snould not hecome mignimiont berore a depta of : $0-20 \mathrm{~lm}$ is reabed.

In lable xur typical estinates of we compensive strents of terrostrial and lunor mots are collected. Tho wost wownent siopes hawe been camen for the mool fron Belaminis contote mep (1063) and from the lunax line profile
 is usod: it from the average limp profile crex 10° position argle (060 kn) and all libeations (opix, 1964), in which the differerces in level are perty smoothed out as it actualy tares place vith the highest sumaits and decpest troubs wo se load is shared by noang less exteene features; (b) ithe fron extreme difforonces in level over continu uas slopes twulated over 2°, osition (i963).
angle tor zaro libration and gublichod by Baldris-with the contom map. For.
terwestial features, in constacration of isostatic compensation by nater, 63 per cent of ocean depths is tamen as the oficotive componeat or dil reckoned from the sea botton plys the effective alovethon orory dry land swoothed so as to eliminate extrene mowhain surats. In (1.35) $p=2.3$ for hoon and earth alike, and the full vitue of th, or 0,8 on 4 he hes been used, to allow for sharing of load.

The largest of tho limiting values of s_{p} shonid appoch the true averege. Tence, fox the earth, $s_{D}=2 x 10^{9}$ dyne/cr. seems to be indicated, a value verf close to that for granite of basalt and a check on the reliability of the method. For the primitive moon, the compessive strentit is foma to be ten thes snazler, $s_{D}=2 \times 10^{3}$ dyre/ cm^{2}.

O. Ray Graters and Stanoth or tine ijected Blocks

In Boldainss (1903) Iist of 50 ray oratexs, bo are on continentes and 20 on maris. This is also approcinately the ratio on the respective areers ocoupied by contantes and ravia on the earthead hemisphere of the moza (continenton, however, prevailing in the lindevees. Thene is no indication of greater density of these objects on the continentos, contraxy to other types of craters. (tearly, no contribution to ray craters has cone from the pro-mare stage to which Qe per cent of "ordinemy" Lunar oraters, cromed 20 then more denscly on the continontes than on the merta, belong. This is not so much a question of relative on abolute age, as that os the violonce of the xplosions caused by the impoct of asteroids or conejary muclei; these, at a velozity of some $15-60 \mathrm{Jn} / \mathrm{sec}$, mary load to high-veloctoy ejocta travollinz huncreas on thousonds LElometers over the moon's sunf we, which the primeval impact; of planetestimens at $3 \mathrm{~km} / \mathrm{sec}$ could not match. The harger secondery craters

PABE ANI
Lower Limit of gomaressive Surengh (s, 10^{3} zyofon ${ }^{2}$) from Orogranhic Toatmes,
Mons and Berta

ISoon Tinb
Position Angle $95^{\circ} \quad 103^{\circ} \quad 114^{\circ} \quad 125^{\circ} \quad 120^{\circ} \quad 145^{\circ} \quad 161^{\circ} \quad 169^{\circ} \quad 266^{\circ} \quad 276^{\circ} \quad 235^{\circ} \quad 525^{\circ}$

(a) $\mathrm{s}_{0} ; \geqslant \quad \ldots \quad 1.3 \quad 1,0 \quad \ldots \quad 1.1 \quad 0.9 \quad 1.1 \quad \ldots \quad 1.4 \quad \ldots 0 \quad \ldots \quad 1.3$
(b) jh_{e}, im
$2.6 \quad 2.5 \quad 5.9 \quad 3.0$
$2.6 \quad 4.1 \quad 4.3 \quad 3$.
$.2 \quad 6.9 \quad 4.2 \quad 3.0$
.6
(3) $s_{p} \geqslant$
$0.3 \quad 0.8 \quad 1$.
1.0
0.9

Lengeh of Slope, lm

$4 \mathrm{c} \mathrm{e}^{\text {ba }}$	6.1	5.2	5.2	6.9	6. 1
$3_{p}, \geq$	2.1	I. 7	I. 7.	2.3	$\because 2$

Feature	Andes $50^{\circ} \mathrm{S}$ and the Pacisic	Vi kerican Coast 17015 and the Eacific	Karakorup and the Trdian Plain	Philippinss Deep 10 O4	tuscarora Deep of Japen 430 II	Per Guin Deep I. $\begin{aligned} \\ \text { nadee }\end{aligned}$ Trough 3003
Lin, Im	8.8	7.7	5.2	7.5	5.7	5.3
s_{p}, \geqslant	23	20	14	20	15	14

(over 300m diameter) in the rays (Bnomalis. 1906) ace of such a size that they should not be eroded by nicnonetemme bombardment even during all the 4.5 $\times 10^{9}$ yeas of expose, while the smaller craters could lest fer serenely hundred million yours ($\mathrm{C}=$. Sections NoD, Hic And, even when the craters are eroded, the ray substance should last and maintain its lighter coloration. It is most lively that the moon has not existed lone enough for the first post-rare rays on nay craters to be erased and that the difference between ray craters and the rest lies in the original event, not in absolute age. The ages 0^{2} the nay craters are expected to range uniformly oven the span of 4.5×1.0^{9}, tears, with an average of $2.25 \times 10^{9} \mathrm{yrs}$, the same as for thy rest of post-ware craters, Besides, altos; all large craters on the maria ore ray cxete:ns this supports the view that tile ray craters are not exopotionally young; they are not formed during the recent one hundred minion yeats or so... their hypothetical forerunners whose rays ere supposed to bu: obliterated by age are not there,

The secondary craters in the rays, kncim before but brought north the fore by the Ranger pictures (Shooter, 1903), provide a means for ewtheting the strength of the post-mere lunar crustal materials. The ejected block 3 which caused tue secondary craters have withstood high accelerations winch taxed their stirengin to a degree that can be approximately calculated on firs principles from the cratering formulae"

On course: under very particular circuntstences all-sided compassion mas increase the strength of some blocks, instead: on shatterinis them. These, however, must te exceptional cases; in general, the ejected blocks mill be representative of the strength of the parent bedrock. Clumping of pulverized
 Whatand figh acoelexations; they will not reah to great distances from wo crater:

Eost of the throwout leaves a catarin with reletively Jov relookt.es on a short thajectoxy. Brom the eentral regions the ejection velocities are higher, but most of the matexial is pulvazed ow broten wo by the ahot, In a high-relonity impot, leading to explosive developnent of gas, so re blooks may be considecably scoelerated and pred like missiles fron a gum; the accelenation depends on favorable cincunstamoes oporition in the nrater and timing of the first shook that break w the becrock into lerse onmis. If the ges strean from the cantrel Sumel overtatos a bloot at the xigtt tine, it 1 ney sens it out on the crater whe a tolocity that greatly exceods the ordinary ejection velocity of the inelatic shoct, wo (fig. 1) o The relative nass of such high-speed ejocta ney be smell, yet sufficjemt to couse tho ray phenomenon arourd lerge craters.

Whthout entering into details of the ejection trocess, the velccity ${ }^{\text {Wo}}$ (lorer Iinit) of the ejected block can be determined fron the distance of ${ }^{\text {. }}$ Plight; its size $\left(d_{1}\right)$ is then related to the dianoter (N_{1}) of the socomary crater though equation (7). If $\underset{y}{ }$ is the acocheration durina ejection, the crushing ctress (lateral strengtio of the material inside the prinary onater) Y s_{2} experienced by the projoctile curing ejection is thon close to

$$
\begin{equation*}
s_{1}=\overleftarrow{i} \dot{\xi}_{i} a_{1}, \tag{154}
\end{equation*}
$$

where ${ }^{r}$ is its density.
The lengty of peth during acceleration is of the order on the depth of the

can be sstat

$$
\begin{equation*}
\dot{5}=5 \mathrm{w}_{0}^{2} / B_{0} \tag{135}
\end{equation*}
$$

(using tho equation for constemt ancelartion).
We assume atso $y_{y}=45^{\circ}$ as a watar and most probable angle of ejection

 projectile in its ellipticel orbit iss given by

$$
\begin{equation*}
w_{0}^{2}=2 \operatorname{si}^{2} \sin y /(\sin y \dot{\gamma} \cos y)=\sin /(\sin y+\cos \psi) \tag{130}
\end{equation*}
$$

 is to be texen insteach of cos \dot{j}),

The relooties ave such thet at immot formetion of the seconder, exater the stresses greathy exceed the atrengh of any rock, $m_{0}>V_{n}$ (10), wherefore (6) and (7: with $k=2$ should be valid. The compessive strength whin jnfiluences the result but shighty con be: sot egool to

$$
\begin{equation*}
s_{p}=2.2 s_{c} \text { with } s_{c}=s=\tilde{t}_{s} \tag{137}
\end{equation*}
$$

gravitational friction being relatively najuprtant, while r_{s} denotes the lateral. strugth for the secondary croten' The oratering oquations for the secondary urater then yjula

$$
\begin{equation*}
D_{1}=B_{1} / d_{1}=\therefore 51\left(w_{0}^{2} / r_{s}\right)^{0.253} \underbrace{\frac{1}{k}} \tag{138}
\end{equation*}
$$

while the rensity \hat{f} of the bedrock cance. s out.

For $!=2.0$ the numericol coseficient becomes

$$
1.51_{c} \frac{1}{3}=1.9 \mathrm{I} .
$$

Uning this volus for the density on the projeville, and settins;

$$
\begin{equation*}
\sigma_{s}=m s_{1}, \tag{138}
\end{equation*}
$$

 of the ejected block, as depending on the dintetocs of the secondary and parem oraters and the velocity of ejection (106):

$$
\begin{equation*}
s_{1}=12 . I w_{0}^{2}{ }^{0} 0^{0.3}\left(B_{1} / B_{0}\right)^{2.3} \tag{110}
\end{equation*}
$$

anc

$$
\begin{equation*}
a_{1}=0.94 B_{1}\left(n B_{1} / E_{0}\right) 8: 0_{0}^{*} \tag{14}
\end{equation*}
$$

The secontaxy oraters which are cunsidered bclow are all on the nexitro the deptry on penetration is or tho order of 100 neters ana more. Recent
 cxator south-west on the mpaceorst't, ferty concisting of mouded bouncers (Pizs. 5 mad 6) remmincent of a stone wail. Atrost leyel with the genemil temain, this wall can be compared to a raisua lip with ton eroded. In Wige 1 , It can be comprea to the inp I, bont upwath and reised from level in whose. originel position is $0,03-0,04$ crater dibmetrs belon the whisturbed surize. The oreter diateter is about 420 meters (estmated, distanoo from spacecraft is 140 meters for the noar side of the rim, 560 meters for the tax side; cf. fige 0). Hence the onithnal dopth of the rocin strata rrom whin the lip was raisec is 15-17 noterg. The larex of loose waterial in a bare must be less then this. It follows tha; the secondary orators which re hen discussed nust be the result of ingat into a bard rocky substatu not into geandatcd nateriel; the strenth must be of the order of that for the parent crater, so that the
coefficient ${ }^{2}$ (259) should not differ much from whity and even way exceed its considering that s_{I} is the actual stress which the block survived and which must be smaller then the ultimate strength on the parent crater interior, will (${ }^{\text {ts }}$ the ultimate strength or the upper crust at the point of impact.
A. few topical cases of secondary craters to well prion ray craters are considered below Although be srvalues so calculated are inferior inuits, by choosing the largest objects at a given distance, or the largest distances for a given secondary crater size, these inferior limits sinoulo come close to the actual values.
(a) If lane Cognitur, there is a -conspicuous group ore secondly craters along a ray tron mullialdus as show by Ranger VII photographs in 103, 156,176 ,
 of A 170 , there are three large craters in a line, wo of which appears to bo double on clover inspection, while the mine one is single. Allowing for overlapping tad scale, from a study of hash photograph A 176 the following dimensions o: the five craters have been derived:
 expected direction. It is, however, too meertain for quantitative application according to equation (23). lion the large st of the group, the middle singe one, $B_{j}=2.83 \mathrm{~km}$ is the average diameter. The distance from Bullialdu; (south of the a romp) is $I=256 \mathrm{~km}, 2 Y=\left(0^{\circ} 98\right.$ (one selenocentric doge $3=30.5 \mathrm{~km}$)
 (100) bind (141) are transformed imbo

$$
\begin{aligned}
& s_{1}=6.0 \times 10^{8} \cdot q^{0.5}\left(d y m e_{m} \mathrm{~cm}^{2}\right) \\
& g_{1}=0.78 \cdot 0.3(\mathrm{kn})
\end{aligned}
$$

 himity end as reserving to a block shattored by the blest, sy is found to be close to and compatale mith a value of $s_{c}=9 \times 10^{8}$, as for grante or baselt, walta for the post-mare lunar rocks (in a mare) at 5 ... 6 km below tre surface.
she volum of the ejected blect is anout $0.25 \mathrm{~km}^{3}$, that of the Bulliallus crater frolute omshea, equation (15) whout soon km", so that were is no shortage of naterial for these exceptional ejecta.

 fom northrext to sorbeast and not-in the direction of Bullialdus. They are 10 m .15 km lonss a few huaded neters high ade are olso well visible on thy earthobased : ick Oosexvatory photographs; they appear as bright at fun noom as the conthentes, in contrast to the dax: fare becksround. They aro similer in appearence to the isolated peaks in northern Hare Imoriun (Fioo, Pitm, and others) and cre dinsicult to explain as ejecta srom impots. The centrin poak of Alphonsus (see belov) bolongs to the sare kine they have something to do with the neliting oi the mare and may bo surviving relics of the memare pertod. ©'Kecte (190.) suggests a volconic orighn for the wiges as well as for : blach
 (Hick Obsexvetory ard othex photomaphs), xeminiscont on the black swots in

Alphonsus and elsembere and camot be muct ox an elevation. Glearly, thesc forsw features cumot be of direct jnpact origju. Secondory volconic phenomsan axd
 adrocated; ye't there is litule gromd to assume "recenti volconisni (of a feu hundred minlion years ago) as some authors would hove it.
(b) Tycho's ray(latitude $10^{\circ} 64$ Sowth, longitoude 20.72 East) on Ronger VIT - A 196 (H4SA, 296A) is sumbet with secondeses (Shoemaker, L903). For the laryest in the group just below the miadne of the srave, $B_{1}=1.02 \mathrm{~km}$,

 The blocks zjected from tycho and origineting from a continens of postomave age may be somembet beater than those froa Bulialum although, as a Inger Iimit, the sizure is not bindinge

A cratex juet somth of the conspicums grow but nitsice the rayiname A 105) has cxactly the appeacance of the nombers of the group; if consinaced
 mokes the sbrength prectically equal to that of the neve backround of matalus.

The miterial is not vell suited for the study of oreter proriles beoouse of ambigutt in the interpatation of shaloms. Also, the theory of falloack for isolatel craters is not simply aplicule because, in these cromed conations craters of m oxtended area monaly contrioute to each other, compensating thas for the ojeste; a considerable contribution may have come fronturt ani ruble of the ray jot which accompanicd the secondeny block tan flight,

- The sycondary crabors shom max' ed exipticity, the study of wini homever is complicesed for reasons similer to tho se listed above Thus, on me 193 ,
the largest water shows unasul elongation on rexoductions (Sroenker, 1906) but on the photographic original (1 7ASA, loSt) it clearly consists of two oven lapping craters, each measuring about 0.5 ha in diameter. Also, it may be assured that all the impact angles in a limited area of the raf ute the same, systematically differing from the istropis average of 45° and thus consiceronly influmoing Equation (23), Nevertheless, local differences con be noted chen at inspection. Thus, the large ellipuictios of a gal group of socondacios in From 199 (TANA, 1934) are not repeated in other groups; either is the grown
 shape and splitting of the projectiles responsible for the deviation

On Prime 190, secondaries as small 3 s 60 metres are sain risible though eroded - pethops pilled to onchate their original depth if a diameter of 300 Doters is roughly the limit of erosion over $4.5 \times 10^{\circ}$ yours (Spiky, 1900 c , 1966e, d), the age of a hatr-eroded crater mewfith this size trued be ono-tcoth or $\leq 5 \times 10^{3}$ years. Ten times yomajer tan tho remit, this is still ton times greater than 50 million years proposed by shoemaker (1263).

The i-querior of tycho shots on Gulper's tAblas (Super et a lo 106) trio craters above the limit on 2.0 km , ono measuring 2.1 la on the in er easter, the other 0.3 .6 in diameter on the inner western wall. For the area pe $6000 \mathrm{~km}^{2}$, hare Thorium caries 4.5 craters to this lint (Obit, 1800). The age or tyro could then be some (2土I) $\times 10^{9}$ years. Althowit mountain, this supports the longer of the two estimates.
(c) Between Copernicus and Irathos;enes, there are magnificent cater chains modred by a salvo from the Comaricus event. A secondary of $\xi_{1}=6.0 \mathrm{~km}$,

(a) The anowalows irequenoy or onners in southesterm Howe fnomiun
 produced by ejecte fron Copearicus to a distance on $4=590 \mathrm{~km}$. Here

 taken heve too high, but firenains thit the expectod nonge.

From the evidenoo presembed heme and in the proceding section tha; fron an vaspeaifasd depin (20) 100 meters) dom to some 10 km the strengith of post-mose Iunar rocks is ebput equal to terrestamal igroons rocis.

 and interpreted by Shoomaker: he provoses to oonsiber thew "sibsidence foriablons, yoscibly trimered on oy woonsquxes", boemee the intezpretation as secondacy
 of the ejectid, Erom Shoenctor"s (1933) orater cound in anourade the rays

 Son the layex of ojesta acoramis to Kopat, the total volure of the ojeo jed boulders buxs out to be $230 \mathrm{~km}^{5}$ wion is rot all excescive for a total natex volume of $600 \mathrm{~km}^{5}$. Hopel amives at a mon largen fistre by taking a saxgex area of coverato, and also by overestinatits to a foctor of 2 the carcer ored

con? elation 1 hals to a projectile mesh of 3.4×10^{13} gran to nome a crater 1.04 km in diameter, wile our estimate based on first principles, especially on
 $\left(d_{2}=0.25 \mathrm{~km}, \underline{S}=2.6\right)$ or 00 par cent of Kopel 's empanel extrapolation.
 Further, the navy crater distribution is extremely patchy, and Ranger vIl Frames A 195 .. 199 (TASA, 1034) on which Shocmavex's statistics mainly depend contain on exceptionally dense cluster of secondaries which does not seen to de representative. The average coverage nay be very much less All in all, instead of opals $5-9 \times 10^{3} \mathrm{~km}^{3}$, the actin secondary ray ejecta from Ty oho world amount to a total volume of less than. $75 \mathrm{kr}^{5}$, sone $I_{2} 2$ per cent of the c crushed oreber volume subsidence craters of a regular row id or elliptical shane, densely populating the area with lithe mol interference, and wi th
 From the combined evidence, haw dy any dour remains concerning the senor day impact origin of the craters on Tycho's ray.

D. The Lunar Surface is an Impact Counter

On earth, the atmosphere prevents the smaller meteoritic bodies from reaching the ground; they are not only decelerated, but also destroyed ty ablation (evaporation, melting) anis in tho denser atmospheric layers, trough crushing and fragmentation. Irons can withstand the aerodynamical pressure to ground lev esl up to a velocity of $55-60^{1} \mathrm{~km} / \mathrm{sec}$, but stones, and especially the loosely bond comet nuclei (apis, 19S6) will be crushed at a considerable altitude and arrive as a diverging cluster of frasmexits. Nevertheless, wine the tort mass is lame enough, and because the linear spread in passing the

 be tue to the nom-retedtic bodios.

 be sone 50 thes more freguent on the moon es teponding on the traction wf tron

 on the assmomion of a coastan n tux or the stray bodios (0pik, 2S00) as shom

 madel the Anollo group "asteroids" can alyo be only exinct conetay nuelen.

creter courts, especially on the agsumed hagh strength of the post-inge lunax crust. The agreecent is good and within the limits of uncertainty of the calculation; it is Enother link in the remarkwile sequence of conoordant results based on cratering theosy.

TABLE YVIT
Curutative Guber of Crateming Tmpots on Yestern Mare
Inioniun ($455,000 \mathrm{man}^{2}$) (0pth, 1960)

Crater diometer; inn \geqslant	1.25	2.43	5.60	12.7	34.9	50.6
Observed nupex unorrected.	73 楽	$20^{\text {M }}$		10(1)	g2)	j 30
Osserved number, owrected for secontaries	.560:	120:	35	10,	$5(t)$	1(0)
Gelculated rumer $\left(\therefore .5 \times 10^{6} \text { years }\right)$	1050	202	85	5.0	0.44	0.10

 of Class 5 and diameter or 70.6 km ; it should bo excluded from the count wis"ts (ch: bracketed zewn in the toble). In the third line or the teinle, the mumers as tontatively corrected for Copmican and Bratosthenim secomsries
 observed numseri for tho smallest craters could be due to inoomplenoss of the count, although it was considered conplete by the author (Opik, 1980). The constoncy on the straymody flum over so:ong an interval of time is recdily explained by theix trensient character; theix elianation life-time is short, of the onder of 10^{8} years, and they are steadily injected irom two pain somees which have sxfeved yet litulc depletion sincethe beghming - chefly fon

Oom's splere of comts (Spik, 1366a), and some rew trom the estepoidel belt (nseroids crossing the ornit of mers).

Teble XVITI contains a similar compamison for suposed Iy urimasy chetexs counted by choemaker and Hackmn (1053) es adapted by Beldun (1964) over a nuch mider area of combined mario. The observed mobexs are actin smaller then the calculated ones fox small erebers, and definitely lamer for the large craters $(>10 \mathrm{~km})$, contiming thus the trenc shom by Leble XVI based on a smellex sampie. the very persistence se the deviations ror the two differently selected samples points toward their xeality, as mell as to an extexnel cause; and not an intemal Iunsx factor governing the dietribution.

The obvious conclusion is that sll merie have been exposed to bombaroment of interplanetary buates for the same length of time, about 4,500 milion yoars and thet, when their surfack solidified, no significant numbers of the oxiginal swam of plenetesimets orbiting the espth had survived.

Other comprehensive crater comts ana discussions (nodis Salisbury and Smelley, 1963; Martmenn; 1965), especially tae review by fertman (1906) which inc ludes statisties of smell erabers from fonger VIT and VIT, support these conclusions.

Fieldrx (1963) etrempted to estimate the absolute age ef neria anci sontinentes by assuming it to be proportionel to the muber of traters per unit prea. Ir such a maner, assuming the contin.tntes to be 4.5 billion jears old, he ascribes to
the maxta an ace of the ordex of lyo milion yaars. This kind of reasondig is completely unfondsdy eten in the lisht of his "intemal origin" hypothosis. Itomever, relative ages en be infermd fron the crater aensities. The seorcity of eretess on the movis righty fuduetes that thetr surface golidipied aftex the and of intense bombardmint, but the time lag may be only s rev rhousana years. Dusiap the sibsequent 9.5 billion yearsy ebout twenty times \hat{x} ever araters per unt area were imprinted on thedr surpece than in the preceding thoushomodd Years on the continentes and on thrix om sumface before it wes rloodea:

Crater coums by Beldrin (198:b) on the flooded floors of the Cless 5 cratera.Ptolemaens and Flanmoxion (in the centrel highlenas) show intermediate croter densities betresn meris and continentes, ebout six tines those in an averoge
 and Polemgeus a density of about 80 times thet in an averare mere (fection y. N). Apperently, bese rloors solidiled at a pre-ingre stage when the remonts of the eambound cloud of plenetesimpla were gtill there.

On ths contrary, two mejor ilo aded craters around bare Thorina do not show excessive mumen or ereterlets. On the some Fithisson photograph of septemper is, 1915, mich wes used. 6eo $f x$ the here lmbrium count: (Opik, 1960), there are 8 cretere on the flooded floor of Arohimeden ($2560 \mathrm{~km}^{2}$) and
six on the floor on Ploto (2340 kne); comm to the effective 'a
 km^{2} of $31-2$ rom frehimedess end 14 ± 4 for Platos es compored to 13,5 Tor northem, anc 25.6 for southom were Imbuina
 Ifmits of the probeble erxor of sengling (Arcimedes being on the bordexine betwean the two helves, the creter dencity in its strip being $20 \pm$ L. 5) these fimpes soen to indicete tha's the fhoors of Pleto and Archamedes were nowe or less combemprary with, oi following soon, tho her, Imbriun event, i.e. tha: no pre-mare, impects have left thei. traces on thom.

The Gxcessive number of cretews in prolemaens anc premmerion suggestec to Beldmin ($1804 b$) the pussibility that some of the night be of interizl origin, blowholes on these "heve extru. sions". This surgestion is not onlv unnecessary; a sufticient
 them a tew hundred years fint the premare period; the "normain ${ }^{\text {phata }}$ crater numpers in juth and fromine des meigh geginst the olevhole nypothesis-my should these ke present in some, ebsent in other inva covered oretexs on ecmperoble dimensions? As to Isva "extmusions", epparently nore dici take plece, the melting besmg cansea in st tin by impsot heatirg of the shready hot chastaj. material. Sone himited volcomic events may heve indeci takrn place on the moon, on the backrround of collicional meltinc, but such formations seem to be few and smatl. like the fimous bleok spots in Alpasnsus which wey (1966),
on the evidence of pengex TX photographs conetdexs as caused by eruptions; they can heraly distort the cretering statistios \therefore Submered "rhost craters", in which the outifnes ere feebly visible, whout any sumete relief; may have a cuel. oxjgins efther they ere traceg of 1.0 mal craters canmt and cestroyed by the flood; or are they the result of impsets white the hava had not solidified. 5 list of 42 more congrtupus ghost chaters in the morta is pivay by Fieldex (10e2), ment. objects are visibie because on moterial with diferent re3ectivity os coloration beins admixed to the lava melt. tre semtuestroyed flooded craters ohefly on the borcas of the maxia, represent e trensition prom nomel to gnost cratere; typical exemples are: Eracestorius (o7 km) on the southem bonder of baxe Jectaxis, Leriomiex $(53 \mathrm{~km})$ fon the westem border of Nare Serenitatis, Kies (AS kn) neer to, thes and
 Ixicum is perhaps the most strixing exemple of thits tvoe of object.

Fo the same cetegery belons the extended, sharply womed color provinces in the merias detectec through muluicolon photogreph, (hhtokex, 1866), by supertmposing an inerored positive (1300 A) on an ultraviolet negetive (3800 A) As pointer ous by Euiper (ig66), they zre fnaicetions of Lsva flows of affexeit composition; however, be camot agree vitu bis comment that "the lunas mexia are not covered with even 1 m of cosuic, inst, which would have obliterated the color diferences
(10c.cit.; p. 21) . There may be up to " 20 con cosmic dust meteriel accumbated over the eqes (cf. Secticn VII B), but this is mived mith e much preater amovit of ranulan meteriel from the locaz EGorock wich detarmines the coloretion.

From Bragos photorraphs exaten whatisties heve been extanded dom to meter size objects by shoemaker (1966) and
 a very remarbable debail in the frequency curve of dimeters is reve, Ied: down from ahout 1.5 km (iieneter there is su mo vara surge in the croter frequencies (rate of logenitimic ianrease), waich then is checked at about 300 r aiemeter where the rate of increase arops. tho surge must be due to the appearanee of secondaxy croters eutmmbering the prinaries, while the decline in the increwent con be ascribed to eroeion which limios the infetime os the crefers din thus their numbes roushiy in proporion to the dirmete. itsele (Opik, 13550 , 1966(, d). ine lifetime of a 300 meten crater can be seu at 4.5 milion years, comesponding to melevstion (rial of the ordex of 15 neters being carimed awar sne en equivalent coto pression lijated mhis more or less artees with tneorebical estimetes of erosion by micrometeoriie impact bections ilio. , $_{\text {, }}$ $\mathrm{C} ; \mathrm{Xe} \mathrm{E}$; Dg Ji)。

Un the Ranger IX piotos, the delsity of cxateres an the flooded flocy of Alphonsus is shout the triple ox thot in ajacent Mare tubium, Dut below 500 nit dimeter the numbers in Alphonsus ard in the mare becone approximately equal end more

50 a
ox lese the satae as in the frager VIL and vITI mare semoles (implicetion is again thet the smallen premane dotex hove berome roded, end ony post-mere cortevs survive.

One of the reanimememts of the fmpact theory of luner
 Gefined as the unpredictamility of place and tine of an event the atstabution of Iunaz exatens uncubtedyy confoms to this derinition.
mecently piselder (1060), a pronineme groponent of the volcenic theory, tried to prove tat the ereters are not dis.. tributed at rancom, yet he only denonstrated that the ajstrin bution is not of the elementexy Poisson type-..a corctuston which is ocvious even from a cestrel inspection of tive luner map. the foisson formule requires thet all pojnts fereter centere) axs placed on the surfece individually, independentw Ly; and ritnout mutual intexterence. This by no means is fut rilled by lise ergtering phenomens; e. lerse ereter wipes out
 wheh wold appesw extremely lmprobeble or even precticolly troposible th random distribution on points. overiopping mey not be sign ficent in the marias but secondary throwout erotera are there very numerous ; these beve a tendeney tomera grouping (Copermican crater chains or selves, who rays), rendering futile the lse or the Toisson formua.

Thegint that 2500 cretertet centera ere thrown at rankom
over an area divided into 100 squares without mutual interference, so that the average number per square is 25 ; now let a subsequent large crater erase all the craterlebs in ane square, and let a cluster of 25 secondary craters be added to another square; so that the total number we mans whinged. According to the elementary poisson formula, the mathematical. expectation or, practically, the probability of having one empty square is $100 \times \exp (-25)=1.4 \times 1 c^{-9}$, and the probability of having so objects in another is ($100 \times 4550 / 50 \%$ exp (25) $=$ $: 3.6 \times 10^{-4}$. The Poisson probability of both these unusual squares equals then their product or 5×10^{-13}, a practical impossibility. Yet both abnormal squares are the result of rencom ever ts which are not unusual at all.

Clearly, probabilities of crater distributions calculated from the Poisson formula are meaningless as pointed out by Opik (1966e) and Marcus (1066a). Refined mathematical stucies of the distribution of impact craters according to axe density and diameter have been made by marcus (1964, 1966a), by toking into accurt the formation of primary and secondary craters; overlap, destruction by obliteration and filling, with some of the relevant parameters based on observation or experiment. The spatial distribution of the lune r craters conforms to 2 purely random patterns but the observed numbers of craters less than 1 km (from Ranger VIT) are muck greater (10 times at 106 m diameter ; 20 times at 10 m) than those predicted from experiments with terrestrial explosion res craters. Bforcus con-
eludes that "Li the observed excess is real, then either some primary craters produce an unusually large number of secondentes, or else neny of the smaller lunar craters ers of internal origins. An internal origin of the small craters is the least likely thing to assume -whose which originated soon after the melting stooge hove been obliterated now by erosion, and recent voleande formations are no more provable then ghosts. On the other hand, terrestrial cratering

experiments heve bech performed on weakly cohesive media ($\mathrm{S}_{\mathrm{c}}=6,5 \times 10^{\circ}$; desert alluvitm) while the post-mare lunar cxust is perhaps 15 times stronger and, according to (140), vould produce 8 times large secondery creters (B_{l}) for a given prinary (B_{0}). Clearly, the results of terrestrial expriments camot be directly adapted to the lunax craters vithout using proper scaling proceduses in which all the panam metexs including the strengin of the bedrock should be takch into consideration.

E. Alphonsus and its Peak

The Class 5 crater Alphonsus (Figo7) is one of the most remexhable: yet still typical premare fomations. Dospite the negative conclusm ion regeraing the sugested recent "rolcanic eruption" from its pear, the fact of fluorescent luminescence is important in itself, and there are many features in the crater which point to sone binc of platomic activity (Ures, 1965,1966), not iecent but Cating beor to the pre-mare strge. The kroad features of the crater, hovever, can be interpreted on the collisjonal theory of cratering, where also the original cause of melting exi of the tronsient plutonic activity is to be songht. The crater is pisected by a broad bend in the N-S direction, a very low unewen xide of lighter color; this is not an indicenous feoture of the creter but a "scar", a splash from the Imbrian collis. ion which came on top of the completely fomed creter.

The simultaneous presence of a comer of Hare Nubium and Alphonsus on Fanger IX Trame A36 (NASA, 1965a) (Fig.'7) lends itseli readily to comparicon. Table XIX cortains results of crater counts by the author.

Thepredicted number or interplanetary impacts is calculated on the same basis (Opils, 1958a,1960) as in the preceding section. Coxtriary to the ubserved deficiency of sirall craters as revealed in febles XVII and XVIII, the number of creters in this part of Hare Nubiun is 1,7 times the predicted numer; the excess must be caused by secondaries, the reaion being within the reach of tycho rajs.

The interiox of Aljhonsus contairs $\sigma_{2} 4$ times moxe craters then Here Nubium; thus, the density of creters in alphonsus mey ccrrespond to 15-20 tire; that in an sverege mert. The frequency of the se small premere cratars (yet well above the arosion limit) thus excerds the
 Q. 27 zon.

Aree. $\mathrm{mm}{ }^{2}$	Alphonsus, Strips P-T		Alrhensue			
	Southemaroet south oftaidale				\qquad a11 Ent-uce	
	1230	1940.	1420	1400	5990	
Fumber	47	61	82	- 86	276	**
mumber pex	382 ± 39	314 ± 28	$577{ }^{+2} 45$	614447	$460-20$	12
$10^{2} \mathrm{~km}^{2}$	Southers	Mere Mupima, 5 tr	ajos			
	trienculex	nidate	Northern bovaced by		$\frac{\text { Mare mub }}{211}$	
			G6ticle			
			merks			
Area, mm^{2}	1300	2470	2740		6510	$\cdots \cdots$
Number	9	12	26		47	\cdots
Nrmber per 104 mm 2	69 ± 16	$49^{ \pm} 20$	$94 * 13$		72^{+7}	42

maxe oreber density about in the eane netio as thet for jarge creteres in the highlank suxroundings. This indicetes thet the cator floox solidified, reqialy ci equetion (123) and et an eanly stage; to become a reciftent of the premare bonverdment. A supmaticiel compexison, with Pbolemevs (also of Class 5) on Fangex TX Trome B17 (NASAs 1965e) indicatod thet its ereter density, to diameter limit 1.1 km , is epproximately the same as in hlphonsus. the moors of these tho eretexs must have solidified ebout the geme time, es fox shming reasons has Deen suggested by Baldwin (1964b) for Fboleraeus and Hommation, although he fets a systemeticelly smallex number of small creters.

The Tuothations of cretex densities over diferent regions in meble 覀X are also much ereter then theix sempling exrors, eppenently the result of mequal ocourrexce of seconderies.

It has besn pointed out by o'Keeje (1966e) thet the absenc: of creters on the illuminated slope of the peak of Alphonsus meust leve e very particulax cignilicance; he suggests e rolanic ortgin of the peak. Tndead, in a search by the cuth m: on tangex TXTame A63;
 trace of cratem could be found on the mein slope; there ere homper
two at the southern fringe of the sacpe, one juat at the foot where the rise begras. frow or fivo smell shadwos ould be seen cr suspocted, but on the wroag siae, indicteng mounds, not cevities, thes contrests drusticelly with the plentitude of creterlete on Alphonsus floox, though the brighter bend of the Imbxian splesh egein conteins fever. Counts in sanple reatengles of $4.16 \times 5.76=24.0 \mathrm{~km}^{2}$, eoval to the inluminsied area of the peek are sumeriged in moble 空 In the

ThBIE 8
Gratex Counts to Liriting Dianeter 0.270 km in Centrel Hesion (45 xa 2 ma)
of Alphomsus

It is cleor that the peak mut be suacertible to intexplonetary bianvelocity collisicas, but thet the otier rind of inpecte which account for the high oreter density on the whon of Alphonsus did not impress the peck. These are socondary inpents of low velocity the most mobsble explanation is thet the pea; meterial is hexdex then the throwout blooks, so thut they are cx ased at jopact without leaving a crater mark on the peck.

Whe Eltitude of the sum over the photogrephed reston of Fig. 8 ves $10^{\circ} .8$, end the slope of the peak tumed toweres the suri was risine enother $10^{\circ} .8$ from the maizon (the steepest slope wes $19^{\circ} .7$), so thet the sunreys mede an engle of $22^{\circ} .6$ with the slope. Shadows were shorter then on level ground which mist have made moxe diffi ault the recognition of shellow craters. finis, homerer, camot explain the complete absence of creterss especially because on the sides of the peat sunceye mene falling more obliguely; not more then 20-30 per cent of the craters could have been lost on this accont. Tndeed. counts in Jare Cognitum on Renger VII photogrephs (WASA, 196s, 19653) where the sun's altitude wes $22^{\circ} .1$ (.1) and $22^{\circ} .0$ (P), respectively. showed an akunamace of craters:

On Ranger VII, Frame A 193, in the upper IEt central quarengle between the reticle mares covering $6 \frac{1}{4} 0 \mathrm{~km}^{2}$, 46 craters down to an efiective diameter limit of 0.24 lim vere counted. Reduced to a limit of 0.270 km as in table $\overline{X X}$ (with the inverse squere ox the diametex es correction factox), this yields $5700^{t} 590$ oreters per $10^{4} \mathrm{sm}^{2}$.

On Peneer Yll, Frame P_{3} 128, in the upper hali of the square free from clustering and probebly not affected by Tychc:s rey, 55 craters domy to a limit of 0.260 km nexe counted in an axca of 77.4 km^{2}. Reduced to the diameter limit on 0.270 . kra and $10^{4} \mathrm{~km}^{2}$, this yields a dersiby of 6500 ± 620.

The dersities of mall craters in the chosen regions of ware Cognitum art. comparable to, thongh smaller than, those in Alphonsus (thole Wi); even allowing fox less favoceble illumination and the chojce of Icss crowded regions (outsice conspicuous clusters), the dersities pobobly sre still lower $: ~$ it should be for post-rexe cruters if some premaxe criters abive the exosion limit ha"e
survived in Alphonsus. At the same time it is obvious thet illumintion is not ferponsible. fox bbo absence of crebers an Alphonsus peak.

The"absence or scarcity of creters on the peak is resi. With an avexage of 38 ereters found on sa equal exee on Alphonsus floor, and if 20 is teken by allowing for lese tavoureble illuminetion, the Poisson probiaility of tinding one on rome in such an area is axion,

The ascmption of a recent volcanio-origin oit the feck, some 10. yeers ego, may seer an easy wey out, the vainsturbed suriace
 turbed by the extaption of an sotive rolomo of this sige, does not Savor the sursestion. The shape is not that of a voleanic cone. Othex peaks of similax chaxacter, lile the group of angulad blocise in Copornicus (shown on the much robicized picture taten on Noverber 23. 1966 , by Lunar orbiter II, all confined to neex-central regions of the respertive onetexs, indicate ciose relationship to the entive buildup of the crater during impoct. And, further, the essumpion does not hely machs the crater walls of Alphonsus are also ounspicuovely prox, almost devoid of oreterlets, while a little ploteau In bebween the Alphonsuc wall resembing a dry leke bed, eccorang to Drey (J96t), is studaed with crators (fig. 3). whe creter way cannot be exnleined away as being of recent oxigin. As righty pointed out hy. Urey, the phenomenon could be expleined by a harder matexisel, even possibly niokel-ixon, which is not atieoted by low relocity impects.

Another possibility suggested by Urey (1965) is thet the mejoxity of craterlets on the floor of Alphonsus ere collapse features, not secondery imrect creters at all. Howevers as shown by counts reponted above, the densities of these smell craters (not the lirge ones) In Alphonsus sxe not exceptionel, but ade closely the same as found in Mexe Cognitum. Fquelity of the rumber of coliapse feetures in such ridely cistant areas (and of different ege end origin) is extremely imrobable. Also, the creters et this size init $: 0.2 \mathrm{~km}$) are still esrentislly round as a culr, a etranes, nay inoredible regulamity. There may be some collipse featumes (none yet proved): but their stristion imporbance is iradoubtedly necligible.

The crevasses or rills on the floor of Alphonsus (Figs. 7, 8,9), as elsewhere, are apparently exachs oaused by sclioditication and cooling. The with of the strugest rill in rigs 9 is 500 to 1000 meters and its average depth about 7 , meters, with a slope of 11° fot so very steep as it looks. An.impression is partly fomed that the crevesces wre uust, chains of crators and thet these are just collajse feetures, but thas is hardly true, Thexc ere so many craters on the floor that any dram line nay attreet the cratcre like "beads" on a string, with but smell detiations - end the wigsles ere actucily there. hajurops on a cur windor cen also be seen rumine on alnost streisht linas, collecting previous drops thet are aistributed at ranom, A arater inpacting near an existing crevesse will expand assymetrically towerd the void as the direction of leest resistance and will thus be attracted by it. 1 . pre-existing crater rill tend to collapse end join tan crevasse on its nerest sioe.

There ramains the only plausible exilanation thet tae Al:honsus pear, and to a slichtiv lesser degret its valls, consist of a hard material unaffected by the secondary impacts. The number of seconw dary creters on this herd rock must be reduced at least lo-ac times; if not to nil. Accorain to shomeler (1966)s the corulative freguenco of seconcary cretcra, both in terrestrien ex.exinerts
 nearly as the inverse fourth power o: dianeter. If for diven rom jectile size the aiameters are reducud to onemalf on hara rccis. tee crater zumbers will be degawsoc 26 bines, which would suffice to
 sble ilyumination.
 meters, the following sample calculation illustrates the poizt.

The uneverness of the sec⿻n丿.ery crater distribution on the lloor of Alphonsue points to nearby scuxces of the eiecta, either :nside, or neer outside the crater. A distence of 100 km , and a velocity of
 ("eerodynmic") comsonen of rescurs at encounter, with ${ }^{2}=\therefore \sigma$, $\mathrm{Ka}=0.75$, is then ebout 3×10^{9} dyne'on ${ }^{2}$ and the totsl pressure higher b; yine of p, the mencre of the two (29). This ..s more than can be resisted oy a stony mimbating, so theit equitions '6) and
(7) would apply. With $k=2$ for both causes, $\Delta_{p}=2 \times 10^{9}, A_{c}=9 \times 10^{8}$ as for
 $\hat{c}_{C}=6 \times 1$) as desert alluvion for Alphonsus floor (upper 20-30 meters only), $D_{a} D_{f}=0.447,\left(D_{a} / D_{g}\right)^{4}=0.04$ results, a ratio that is able to explain the virtual absence of craters on the peak, and their scencoty on the wall of Alphonsus, without recourse to exceptionally hard substances (iron).

So far wa exc mainly on a theoretical basis. If the explanation is correct, the peals should carry e great number of smaller craters, say 20 to a limit of $6.27 \times 0.447=0.12 \mathrm{~mm}$. Unfortunately, there acre no observations to confirm this, the last; close view of the complete pears being obtained on Ranger IX tram A65; at diameter limit 0.20 km there are, inced, seen 3 craters.

Better direct evidence is provided by the Alphonsus wall (Fief) which also exhibits a scarcity of craters, probably due to the same cause. On Finger IX Frame B77, which contains a closer view of the wall, on an area of 112.7 knt 2 the author counted 98 craters to exsectfive diameter limit 0.141 km ; this gives a density per $10^{4} \mathrm{~km}^{2}$ of $8700^{\text {se }}$ 620.

For comparison, down to 0.27 hn the density on the floor ce. Alphonsus is $16000 \pm 550^{\circ}$ (Table XX). Another count by the author on the same Frame 163 down to diameter 1-mit 0.54 km gave $1440 \$ 120$ per $10^{4} \mathrm{~km}^{2}$ (six equal massed quadrangles, excluding the two containing the pes, $88.3 \mathrm{~m}^{2}$ each, gave $17,18,11,11,9$ and 10 craters each). The two counts correspond to a "population index" of 3.5 for the neactive power law of cumulative crater numbers as depending on limiting diameter. Logarithmic interpolation then yields a diameter limit of 0.3 ckm at a density of 8700 . Assuming that et equal density, equal projectile populations were at work, the counts onus indicate that a pro: motile which produced a crater of if $=0.322 \mathrm{kn}$ on Alphonsus floor, con ld only produce one of $\mathscr{D}_{4}=0.141$ in on the wal. Fence $D_{a} / b_{4}=0.438$ as derived from the cater statistics, in unexpe:tediy close agreement wi the the value predicted from plausible assumptions as to the mechanic e 1 proparties of the surface materials, The empirical crater density ratio is then $(0.438)^{3.5}=0.056$, essentially the same as the preaticied ratio. Combining this with crater profiles and other evidence fur the.
mechanical properties of lunar rocks，it is evident tact not only is there hard rock on the mon mater a layer of more loose material（10－30 meters thinks in the maria），but that crater vols and certreal peaks contain，or consist of，outcrops of these solid rocks，covered perhaps by a very thin insulating dust layer．

It remains to be seer how such an immense solid blow cor ld have arrived in the midst of Alphonsus（and．other craters with pocks）．Frow the shadow（His，8），the summit， 970 meters，is asymmetrically placed over the south wester sector of the lase measuring 7.7 km from north to south and 6.5 m from east to post．The steepest slope is between southeast over south toward southwest，inclined 20° to the horizon，whit： the illuminated eastern slope is inclined 13° ，and the northeastern on d 10°（direction from amity to foot of the mountain）（Bast and hest are reckoned astronomically）．It could be comped to more ow less rectangular ahab of butter on not porridge．undoubtedly，below the visible top there must be a broader extension underneath．

A tempting and most probable hypothesis is to consider the peak a direct remnant＇s of the planetesimal which produced the orator．In the rear portion of the impacting body the pressure is smaller then at the shock front in proportion to the thickness of the layer，and a certain layer may eurrive when the pressure is less then the plastic limit，op A loose aggregate（comet nucleus）may even be compressed into a dense mineral，pert of which may be destroyed by shearing，yet a part may survive．By analogy with Equations（134）and（135），労 sec substitm outing for 0.1 Bo，the average thickness h_{p} of a surviving hare kernel may be set equal to

$$
\begin{equation*}
h_{p}=2 s_{i} x_{0} \sec t /\left(y_{0} 2_{0}\right), \tag{148}
\end{equation*}
$$

in former notations or，for $W_{0}=3 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ as for the premiere collisions， s $_{F}=2 \times 10^{9} \mathrm{dyne} / \mathrm{cmi}^{2}, \gamma=45^{\circ}, S=2.6 \% / \mathrm{cm}^{3}$ ．
$F_{p}=0.024 X_{0}$
 $X_{f}=25 \mathrm{~km}, X_{0}=20 \mathrm{~km}$ ，and hence $h_{p}=480$ meters．This may be close to the average thickness of Alphonsus peat（one－thira of a cone chum high plus 160 underground）：
cement is the possible to explain the peak as the hardened surviving of the rear portion of the planetesimals remected back：to the
 moon easily melting at taper, the plantuetmal was cold mod its rear portion suffering It the compressional heating was not melted,

The excess weight of a block of the ebovementioned dimensions, 320 motors average height above group and I60.r halx-balanced by bucyency amounts to 1.7 [10^{7} dyne/ cnn^{2} which ie much 2 ese then cen be sumorbed. by a material of the assumed strength, $P=1.3 \times 10^{8}$, the Jitter estimate, which successfully accounts fox the scaling of cratering ont the tor and thole of Alphonsus. refers to the mixed pre-mere end postmeme oxabex population, with prevelence of the poet-bare stage (as rollow from the comparison with here Cogntrum) when the materiel had cooled and hemened. The Alphonsus event, however, belongs to the premare stage when the materiel was bot and soft A minimum bearing strength or 1.7×10^{7} in thus required for this siege, too. Clearly, the materiel could not have been liquid lever, at least not to any consider dole depth, otherwise the peak would her sunk in. Also, Inguid lave mould have solidified to herd rocks equal in strength to the peat and wells while the cratering atetistics inlioste a mon inferior strength For the floor. It follows that the materiel was not completely melted
 A mechanism similar to ash flows as suzasted by ofsecte (19660) appears to have been at wort.

As shown in Section TT. The considerable reaction of the material must have become completely melted at impact. Where did it go? Ton
 convect crater size of lao km the parameters ere the same as uso a in

 0.125 as for the crushed solid granule flection with high interned friction. The diameter of the projectile $(S=1.3)$ is $25 / 1.093=22.9 \mathrm{~m}$: its penetration $25 x 0.8=20$ mot, because of flattening, the rear porbion(xasumel ty compressed prom $S=2.3$ to $\delta=2.6$) will Tallow deep into the crater and must be reflected bi ok to the surface to make the peek. The mel ed traction is $H_{i}=0.375$, ejected with a velocity

then 190 m , starting frem a reltinc fringe about 24 ma jaside the prasent rim. All the liguid wold beve been spreyed aroud, fon beyond the raparts of a freter even of alphoneus ejze, this is an intrinsic groperty of the rechanics of shock reltings depencing only on the Itacex dinensjon of the crater, surfece seavity, and steite of pre-hoating, and not on the velotity o: impact or the starcheth of the materiai. A cold surfece would regutere a strongex mhock for nelting cad would spray the smellex liquid fration to a greater disternce. goal. Ieva flowe from meteorite impacts can thus be caused on the mocr only de a scele of a mexe. The clase 5 flooded craters camo; be regarded as lave, covered, but rather an filled with the mobile "Porridece of partially molten debris, remaning in the oratcr becouse or lowex elasticity and shocls velocity.

VI THE TOP LAYER

A. Dust end Fubble pptical, Dielectre end jochonicel cherecoecistios

The upperiost reflating and insuliting layer on the moon's surface has been usumlly referred to as uhast". There teve been objections to the term for various reatsons, pertly because proyonents of the dust concept have sometimes escabod to it extreme propurties great mobility, excessive depth - which did not apper realist..c.

The maill depth to diametex ratio [taiation(p)] of the oreters on Ranger VII, TIUI, IX, Lune XX and Surviyor I pictures definite:: y hom thet the surfece is grenuier and finel.t divjded, not puriceminise or continuous solid. A very convincing study in this respect by Gexit stel. (1966) is based on cratering expminente in fregrental mudia at velocities of 0.6 and 6.5 f / eec and end angless of incidence of 0° and 60°. The same follows from a consideration of the scope of hipervelocity cratering experiments (Wolker,1967). In 0'Keefe's (1966b) vords, it is "a network of space with erains in it, rether then a network of rock with space in it." "Dust" is still the best term to
 cohesive properties, the dust pirticles being cernented together terough contect in vicpo, or by deposition of faporized substences (from meteorite impact sid solar wind sputterinc). The dust poseesses potential nobility, when, by impact ahock, the proticles axe sent flyins; around in small or lare cretering events.

The origin of the dust iss to be seen in the bettering ch the surface by irtarplate ry attaches, swell as by be secondary the rout debra of cratering tents. Direct conation or prom meteoritic material is tut a minor source of the dust most of it is the product rif destruction of lunar rock by impact [ex. equations (3), (4) End (14)]. For this reason the coloration of the dust must reflect the poperies of the substratum from which most of the duet material is derived, whence the airecrences in shade not only between the in: ria and the continents, but also between minor local phations such us ghost craters and color contrasts in the mere. torigentes transport of dust on level ground is induced by micrometeorite impact; it \because g gravity dependent and, theoretically, limited to a fem
 Ines, such is the southern border of the easter demy spot in Alphonsus (fig. 7; well visible on this mad original roger IT Frames a $34-36$ which moor a broad dar bend across the crater north of the pear, foxing the eastern with a wester ajar spot), would
 electrostatic mighation as fixed proposed by Gold (1955) any important role, as has been already pointer out on theoretical grounds by Singer and Finer (1962): theinegrive conclusion is even more valid if, instead of 30 volts, the photoelectric potential o: the lunar surface is lees then 10 volts : Opus, 2962b), the electroctetio forcbon a particle varying as the square of the potential. electrostatic mopping" of the aust would provide a means of transport almost unlimited. by distance and would obliterate all sharp coloration differences on the I mar surface (expert the ridge of crater walls end other elevations), which certainly is contract to the most obionus observational. facts.

A clever experiment by Gold and Haply (1966) lea to a sxpertio tally close fititution of the main lestraes of the lunar surf ice niorox structure daw to about the lam scale. By repeatedly throwing come erciel cement powder (average grain about one micron) at a layer of similar power "until the statistical mature of the surface is no longer chan, fed by such further tree mont", a close replica it the tina 15 or surveyor I pictures of the small-scele loner sur ace news a spacecraft was obtained, including apparent "boulders" of up to 8 cm diameter. Powdered dyes were added, to imitate the
aotual glbedo and photometric propertios of the luman surfece. the

 blmori veritical xidges mexe fomod, in defiance of eny angle of repose. "Pebtles" wers also procuceci, but all these fonmetons hed litile strongth and collepsed when fouchad by bond.
rhe expexment djefers from lunex conditions in thet tha reteriel is taken from outgide ma throm at the sumbee with a rejetively iow velootbr. On the moon, the meteriel is ejected nuon exeteming impacts mhjen destroy the previous structure mo the oraten aree, and whoh also carily blow ur the ralac "pebbles", "oouldere", or miniature mabes of Low óohesion, Othervise thexe is consicereble eimilexity, ant it apesers thet finc dust would sbick cver to verticel surieces (whtue boulders), sonemat protecting then from fuxther exosion until it is sheken oxit by new impacto.

The density of the duct is expectod to inchease with depth. Ixperiments by fexpe (1964) on the conjusssivity of tine powdere suggest a density-aepth rele tonchip for dunits powder on the moon (pantiole size lece ther, 10 microns), if gently pleced and left uncistuxhed under its own weight, as in leble xyt phe deta are slighty shoothed.

MABLE $\overline{X X I}$

 $\begin{array}{llllllllll}\text { Depth, cm } & 0.16 & 1.0 & 5 & 10 & 100 & 1000 & 104 & \text { (00) } \\ \text { Density, } g / \mathrm{cm}^{3} & 0.40 & 0.43 & 0.50 & 0.53 & 0.71 & 1.0 & 1.3 & (3.3\end{array}$

On the micon, in the absonce of ari atmosphene, the coneaion betreen greins and resistance to compression may be greeter and the deisity smallex. On the obhex hend, continuoas battering by metcoritus (micsoneteorites) sould lead to tighter packing and tend to incresse the density of the dust. The ligures of Teble FXI are true probsibly minimun values, especially near the surface. Jnnite is beliered to be charactexistid: of the eilicates in the earth's mantle and more similan to undifferenimated cosmic meterial then gronite or baealt. Towevex, the mechenica: properties of othex rind of rock powder such as bacalt (now believed to represent best the composition of the lunas orrface) should be similam.

Eeder remeetivity provides en oilservetionel means for ectireting the Eansiby of the reflecting layer us well as of slopes whith
extend over a linear seche erocter thar the wevelmath (ivene end Pettengill, 1963: Requors, 1966), aithoukh not vithout a oertein arbiguty. In the wiveleneth region from 3 om to 8 m the lung surm foce is escertially a speculea rectitox which indicstes thet the effective ruogness ie less then 1 ch. From the distributicn of eohc remes it je found thet neerly 90 per cent of the echo porer coms from a centril region about one-tanth of the luns raius, explaned by spuler neflection from a gentiy malutand surface, with the reflectine elenents ony slightly inclined to the horizon. The rem maining 10 pex ceat of the releotion is dirfuse, contimuins to the very limb, and can bo aserited to "boulders" or blocks of the onder of 1 meter. This descxiption, origenelly moposed tse aypthesia,
 photozrathss (yigs. 5,6).
 scuexe of the retrective index and is detemined through fresnel's formilia,

$$
\begin{equation*}
\sqrt{\dot{B}_{1}}=\left(1+\sqrt{A_{x}}\right) /\left(1-\sqrt{A_{x}}\right) \tag{1.43}
\end{equation*}
$$

where A_{r} is the reflectivity at normel incideace -. which elweys is the case with radar. From the reflected jover, A_{γ}, cennot be deteminod wambiguousiy; an esermption regorung the distivbution of the reo flecting elements has to be made.

The curcent model, confirmed by the closewp yictures, assumes reflecting elenente which are snall is compered to the lunex redius, with inclinetions distributed at rentom. This leads to $E_{i}=2.6 . \overline{3} 3.6$ to compare pith 2.6 Ecr ary and, 4.3 tor quarty or sandstont, 5 to 6 for most sislic rocks, 17 for olivins baselts 20 for meteorio materiel

The inlerpretation in terms of bulk aensity (or porositr) is also sonemheit antighous. A plausible formie by mifersky (1962) leads to

$$
p / p_{0}=\left(\varepsilon_{i}-1\right)\left(\varepsilon_{0}+2\right) /\left(\varepsilon_{i}+2\right)\left(\varepsilon_{0}-1\right), \quad(144)
$$ where po; E_{0} are density and dieleotric bonstent of the coripoted parent rock pand E_{j} those for its granulen on porous dexivitive. For guarte iand the 10 mula yields $j=1.62$, ciose to the us zel velue. for the luns surfece, with $\varepsilon_{i}=206$, the bulk donsity for querte as parent wouli also be 1.6 , endior typical silicate rock satenial, $\hat{p}_{0}=6, P_{0}=2.6$, the density resulte es $\rho=1.44$ vith 44 per cent

$$
\varepsilon_{i}=8 . \sigma_{9}
$$

focus unfilled vane. If olivine basalt is the parent, $p=1.36$ with 59% porous volume would obtain. the depth to which this inform nation pertinins is of the order of wavelength, thus from a few centometers to 10 meters.

Another formula, by krotikod and trotsky (1962),

$$
\begin{equation*}
p\left(\beta_{0}=3\left(\varepsilon_{1}-1\right) \varepsilon_{0} /\left(2 \varepsilon_{0}+\varepsilon_{1}\right)\left(\varepsilon_{0}-1\right)\right. \tag{145}
\end{equation*}
$$

yields for $\operatorname{san} p=1.30$, a vine that is too low, and for the lunar
 percent rook.

On this model, the surface is a random combination of relatively smooth elements, extending perhaps for low 1000 meters and with an average inclination of $5-8^{\circ}$ (Evans and Pettengill, j963). According to dens (3562), "the average gradient of points spaced 68 can arrears to
 the radio albedo is 7.4 per cent at meter wavelength. According to Hasfors (1966), on the scale of a meter the mean slope is JI-jrco or I in 5 , and at 3.6 cm wevelengtil it jas about 15° 。

A aifsereat model of radar relleobiong proposed by Senior end Siege (1960), by Senior (1962), and favored by Russian porters, assmes rethections from large elements cmparche to the lunar medius, with corresponding radii of curvature It requires a larger reflection
 order of 0.14 (I A4) are obtained. It is difficult to see how reflecting surfaces evald retain a significant radius of curvature, or complete smoothness, on such a scale; close-rap pictures of the moon aery a reality to this model win also leads to unacceptably low vales of the density.

Other models are possible, too, and there is as yet no formal way of deciding between them on the evidence of radar clone, The detailed law of the distribution of the reflecting elements leaves some freedom of i adjustment. With this reservation, the Evans-Pettengin model is to be regarded as the best approach to reality. conventicneliy, the density of the upper layer at decimeter to mater depth will be assumed in curter calculations as $f=2.3$, this is also the probable density of comet nuclei and their dustralls after the evaporation of the ices (OXpik, 1963a, 1966a,c).

The byerise inohinction of the rembecting elements inoweases vith
 decrevging linest gocle. this ontinute whil in the visiole recion of the electromegnetio spectinm an extreme degres of rouehnese is atbeined, when there are but opeque refleoting zrains or zow albedo, much lemgex thon the wevelength so thet affrectionel beckecettec is wixtuejly ron-Gristent, nor axe secondery redections juportambe ane graine axe seproabed by onvities into vion light enc shedows desply penetrate, thes "fatry castle" ctmeture explaths the onersotecistio
 incident and re:leoted xay), shedows are not visible and reflection is obscrued rrom the derpeet intcratices, nhich leuds to the ohere cbexistio upsurge of brightaess. With increasing these engle shedow becme visible, while Ellumincted portions become coreched and the bigatness axops waxiday.

The most athended photographic measuremente (on orthochrometio pletes whout filter) by ifecurets (1952) on 172 jnoividucl luas. points show whout exception the ecminence of the phese angle in the lieht curves; the mate of incidence, which in Lembort's photomernio iew in of exclusive rieajgicence, je of econdery inportence, so thet mumum brightness is rit reeched whon the sun ia bighest, but when the phese angle ts nean zexo. the uniform brighthess of the full noon is thus

 of luner photometry hes been given by 位maext (1961). Three-criox Thotoelectric meesuremonts on 25 lwan feptures ovex a close rembe of phase ancle of $t 28^{\circ}$ wexe made recently by vildey and Pom (1964; end neticulous stuties of iuner polerization heve been pextomed end dis-m cussed by lyot end by Dolltus (1966):

The princixel aim of photometrio and polsximetric stwaies wes the description or the surfece structure and tentificetion of the metriels. Until recently the second task proved extremely disappointiag whon compaxisome were nedc win berrentmal mineste. While the geonetubol. buila-up of the lumar surface, as a "foi sy-castle" struoture of "paque grains with lersemocle surfece uadalabion euporimposed on it, did account qualitedvely for ite photonetric fropertios, the detaila
variation with phase ingle and other ilivaination primeteres the
 until it was shom that ixaadiation by a proton bem chanses almost all mincrel powders into substences on low alvedo with luner photometric characteristios elnost independent oa the chemical composition or levice structure (hepre, 1965e). The hope Ior of omicel
 motric eno yolarimetric methods the vanished. It becene clecx insteca thest wht we obsempe is the result of "redittion darase through contiauous irredietjon by sclar vind and cosmic reys, $c \in$ modified by Grosion and mixing. Despite tho equalizing elfect of irradiction, ditiexencea due to the parent noterial remain. The anbiguity is to chemicel compositicn hes been now removed br scattering experiments on Surveyor F (Here Tranquillitatis), FI (sinus feaji), ciad TIX (continens mar Tyobo) which all shoved a. bescitio composition (Turkevich ete: 1967 , 1968; end Nish Reporbs)

Expericentel and theoreticel work, especielly by Hapte (Hapke, 1966, b; Hopke and Ven Hom, 2963: Oetming, 1066; Ralejim and ash Spegnolos. 1966; Gehrels etal., 196\%; Cofteen 1965 ; Tgen and South, 1965) hes led to setisfectory representation orimiterich of Iumar photonetric and poleximetric wroperties on the besis' of the "Aainy castle" model. As a result ut integretion of a veriety of elements, egreement of the final outcome is not necescarily a proof that all the assumed $\overline{\text { a etails }}$ are correct. Fevertheless, the broco outlines of the photoretric beharion of the lunax surface ece un dowbtedy explained in such e mennex. Dunte powder (grein< 7×70^{-4} on), aittor 65 conlomb/cnin proton ircadiations equivelent to 10^{5} years oi solar wind as encountexed by hariner II, closely reproduces luma photometric and polerimetric propexties (hake, 2966 hapke's impoved theorctical photonctric fonction, with e cuxface covered to 90 per cent by little steep feetuxes (about os cver 45° inclinetion) represents lunax bxiglthess to the voxy limb. These features aj a subcenth metex scale, "ere pobably primary snd secm ondary metroxite craters and ejecte debris ..." (Hepke, 1966).

Host nemarkable is the blecherine of materiais uncex torpus-
 $\frac{105}{17 t}$

Fikge, 2965). 1 in eccompanied by sputtering anc denosition of ective silicate conftuas dericient in oxyten on the rcar sides of the ixrcaiated getins. The dexanine increases with decressing grein size; coerse powders darten the lesst, and roven roof sux faces rore than emooth surfaces (Haple, 1966a). These are affiexences due to composition, but it mould be difficult to extricete them itron tacse due to ratin size.

The darmening of lunax mberials is afin to thet of interm planetary dast wose elbeao is equel or lose then thet of scot end hee elso be en explained by radiation damage/ (0pik, 1956).

Sputtening by corpuscular rodietion and deposition of the sputtered ajoms, as well as sublination of vaporised substonces from neteoxte inpact offers a mem: of cementition of the custgreins. the dust will loose its moblity and becone a weak, porm ous motix", as whipple hos rut it it an ewnly dete (2959). In Veoue, unimbeded by interposed eich nolecules, the freins may beome slightly wciced together by direct contect; when the contect com hesion ercerds the weight of the grain, the granulay substence acquires the mechauical moperties of a solid and will maintein slopes of auy steepness. Cleaxly, the finer the grain, and the smallex the grevity, the more like a solid will the powder behave. This is the case of the experinent by (fold and Hapke (1966), and of
 Jatife, 1966\%).

Acciading to Smoluchowski (1966), conesion forces betwoen neighboring grains of the oxder of 0.5 drne or more will be present, sufficient :o counterbelance on the mon the weight of a silicate grain 0.13ca in diameter. At an arersge grain stze of 0.033 cm (sec below), cohesion between luax dustreins mould excecd 60 times their weight. In ultrehigh vacuun, Ryen (1965) alsoo found for silicetes more or less constont edhosion foroes of 0.3 to I.s.agne at loads be on 5×10^{4} dynes. For higher loads, the sdhesica repialy incereased, reaching 100 dymis and more at a locd of 10^{6} dynes; "whum this type of eahesion was obeervea, extensive suxfece danege was : Iso noted". At luax bravity ard $f=1.3$, the second. type of consion froule set in at a iepth of 1000 natest for a grain

 type of cohesion souta be zotive. Govever, this rereas io spocielly
 erive joxces.

In vien cf this wye of conesion, it would be wong to treet the mall elevaricns on oreters of the dust leyer from the otendgont of the engle of repose. the dust possesses no spontrneous fluibity, ent the inclinaticns of the xadcu refleoting eleneats exe not condationed by triction. ryon the mechanios oi cxutering in a wetk medimn [small s, equation (9)], shallow eraters and low inclinetions axe expected es e rule. The dust is ther inouced to arigt acminh, whet evex the slope, by micmoteorite inpects (Opik, 1962a), so thit even
 hes been pointed out by dhinple (1959) and the author (Opix, 1962). there is.no lose dust lemer on the mon finchexplains also the absence otast on sur veyor I extemal. surfeces end the finiture to recona any great atstambence ow wising of aust by a nitrogen jet 15 m fnom the ewne ce (Jarie; 1966a), on the Lack of a corexing at hust on
 of the spece wrobes on hunan soll hes led even to suggestions thet the ground wes no; dust (t966). This Fiompoint is chown to be erroneous
 1966) Which drove e rod into the lunar soils proving that "the mechonical mopertien of the mon's suxince \therefore aycr 20 to 30 contimeters deep ere ciose to whe properties omeajm-nenciby terreetrial coil" (vetts; R.T., 1967). The denstby of the lune: soil is estimated to be ebout $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ (Jenfe; 1966a). In bhe folioning we still will call this the dinst leyew", with moper reservetione.

The colog of the moon is reddish, its omicirectionel all ado in the ontical ringe incressing from 0.07 in the viclet to 0.073 in the Thsual (sreen-yellow) vend of the sportrum Tafrsped photoe ectric
 Dentelson, 1955) shomed thot the increase oortinues in the derp in'fremod, the xemectivity increevinge bout throe tines betreen I and

en ixrchiatior: by e 2-kev proton betm ecuivelont to some 10^{5} yours of soLen wind wore or IE"s arocuced the cesirsble offect (hetteon and Hictore, 1966), except thet the inixerec reflecuriby of the powers remained still somownet high as compred to the moon. The poxders whion reaponded to the treatment were from semples of beselt, boktite, and dunte Contrery to these terrectrial samples, a powderea chondxite (though its altedo decreased in all wevelengths. ghis may meen thot the lumer max neteriel is mone of the composition of the eerta's oruct wad rot meteoxitic. Othen recent grouncobsed xesults point in f the seme airection (Bindex. etal. 1965) End decisive evidence beo
 1968)。

B. Ihermel Properties

Peanurements of the termel enission hely to disclose some pro… perties of the lagers just belor the curiece. Intrexed thermin emission (anound $19, \mu$) and redio emission ere used for this purposes as it varies mith, the lumar day, ox durirg an eclipse, stabied looelly es alloned by the resolving power of tre instrument, or integrated over the mhole disix. The exfeotive depth fox themel omission, I_{e} incream sec with the yovelengrhs λ_{e}; by usine afierent wevelengths: the themal paramoters can be studied at iffiexent deptho, rualitobively ab Ieasts while absolute quantitative coxclusions srentess relioble in view of the ment uncertainties involved in the construction of themel modelse AQajting a fomule proposed by Troitshy (1962), the lepth of emission from a layer of silicate rocl: ox granulated material of bulk donsity $p\left(\mathrm{~g}_{\mathrm{cm}}{ }^{3}\right)$ can be set roushly (to e fcotor of 2) equel to

$$
\begin{equation*}
I_{e}=18 \lambda_{e} / p_{0} \tag{146}
\end{equation*}
$$

provided the wrin is small as comperid to wavelengbh.
Bor $\rho^{2}=3.3$ this becomes

$$
\begin{equation*}
I_{e}=14 l_{e} \tag{146a}
\end{equation*}
$$

to be used fon the lumer surfece. Tie depth in moh greater then for rader reficotion where it is of the onder of $\frac{3}{2} h_{e}$.
me rapju variation of lunoz suryce temperature during eclipse led Fecselink (1948) to a calculation of the heat concuctivity of
 vity as depen ifing on grein size. it.thrmed out to be by en orcer of
nedejtwde lowex then fox atmosphotio aix and to correspond to minered dust in vacuo tt a grein sige of ebour $10^{-2} \mathrm{~cm}$. Since then a weath or obstrvationin metcrisil regurding bhermal eniscion from the moon hog eccumbleted. Despite eleborate modes produced to eccount for the
 in tems of realistic ingicel pamememes hes Eavanced very lithie siace woseeinats work. One-layex and tro-layex models with fixed pacumeters os n be mede to egree with one set of deta, while trey may teil in another. In the words of cne of the authore conclueine a set of critiouly conducted adeptetions, of verious medels solely for tho Tycho regions "In the light of our presen't incibility to decide viniquely which of several pleusibut models epplies o..e any cetailed descriptan of smell-scehe lunex surfece structurey moriticaliy based upon any one rind of model yed devjsel, mey be physically meeringlees" (Insmao, etal., i966)。
the"mee" in the themel emission curve during eclipes. cr the sucden charge in the rete of coolings has been interpated through the prescree of a leyen of gxeatex conducivity at a depth of e $\hat{t} \in \boldsymbol{f}$ centimeterss leediag theis to the concept or e twompyou rocele It eems
 such as segn on the closemp pictures (ijg. 5, 6) (Nevell, 2c6e: Jate.
 (Wvans and Pettengill, 2963; Higfons: 1966), are to a oonsincmeble aesxee responaliole for the choracteristic changes in the cooling retes atiter the cutofif or reappearence ot insoletion focording to Dreve (1966), "thexemust be e second component, not in devth, but on the surface".

This surfece component which principelly muet berreoponsjble for the anomalies, thgergh greater themes. inertie es well as tircugh its non-horizontal protije, has not yet buen treated theoreticsing, except Sor Gear and Bestin (1962; Bestin, 1055) who consudered the sfect of macriscopio roughress-steep cevities and elevetionswon the themel and rediative belence of the lumor nurfece, as distinct from the flat surfice fighating in all the nsusi modrls.

The surtioe component, due to stany bloclss, aftects certi in dew teils, yet the general mun of the the man emission curve depeins on
the dust layer with smal inclinotions, eatisfectorily epproxmetod by a horizontiol ouper surface. Its themel puramoters are expected to bs a function primoily of depth, to some exteat aleo of temperiture which again is mainiy a function ot depth. Ey applying the equetions of the one-Jeger model to observations relatingto different depths, the effective porsmeters so obtined (conductivity grain size) may yield an aparoximte desuription of their variation with aepth independert of fine rigid prescriptions of a two-leytr model, and perhaps more reelieticelly. In eny cuse, the errore of such an epprcxinate rodel ellowing for continueverastion of the parancters may be smaller than those of 2 "rigorows" procedure based on unproved cosumptions. Besides, fext of the reriation of the conductivity with cepth, due to mechanical compression and railative transfer, cen be estimeted from first principles. so thet only the grein size remains es the omly depth-dewindent percio meter.

For thermel fluctuations of period $t_{t}(s e c)$, a cheracteristje parameter

$$
\begin{equation*}
\gamma_{t}=\left(K_{t}^{K} K_{t}\right)^{-\frac{1}{2}} \tag{147}
\end{equation*}
$$

can be debeminad, to a factor on the order of unity, amost fres of hypotheser. Hero x_{t} is the thermel conductivity (cel/crasecocerg),

$$
\begin{equation*}
\gamma_{t}=G_{2} \tau_{t}^{\frac{1}{2}} / Q_{2} x \text { const } \tag{148}
\end{equation*}
$$

where θ_{2} is the amplitude of temperature of the radiating surfenc layer, Qa the amplitude of heat content (cal por cm colum), obteined from the obeerved fuctaetion of radiation (inso:.ation minus radiation lossss). For an inside (rado) layer at erfective depth x_{5} the amplitude θ_{x} is given by the observitions, while the heat content 0_{x} is itself a function or y_{t} or γ_{t} 。

The amplitude decreases exponentially with depth x,

$$
\begin{equation*}
\theta_{x}=\theta_{a} \exp \left(-\frac{x}{x} / y_{i}\right) \tag{149}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{t}=\gamma_{t} \hat{K}_{t}^{k} \tau_{t}^{\frac{1}{2}} \tag{150}
\end{equation*}
$$

is the effective depth of panetration of the thermal wave, to be idembified with the cepth to which the mean themal parameters apply.

With $c_{1}=0.2$ cal $/ \mathrm{g}$ as a close watue for all kinn of milinate rock,

 obthined, indiosting manly an incresse of the oncuetrity with depth

 smaller velues heve been tume, pewell as in the infrated for the lunes ronthily oycle ($\tau_{1}=2.5 \times 10^{6}$ sec). Fuscian whthors here there

 कuctivity with depth。

 tact ricy by contuctivity betwech greins fressed efainst each other. The reletive esee of contect per ore cross section at depth x yill be assumed equal to

$$
\begin{equation*}
5 \delta_{p}=\varepsilon_{p^{x}} / s p \tag{151}
\end{equation*}
$$

in fomer notutione. Setting the onprecsive strength op=2×10
 or herd silicete graing we bltela

$$
\begin{equation*}
G_{p}=10^{-7} x \tag{1512}
\end{equation*}
$$

IS ΔT_{1} is ; ine anfterence of tempereture along the grein, ΔT_{2} the contact aiplemence, $\Delta T=\Delta T T_{i}^{T}+\Delta T_{2}$ benus the totel dirference cver aepth a_{g} the efrec ive contact greajent can be essumed equal to $\Delta T_{c} /\left(6_{f}^{2} d_{g}\right)$. hith the, the How of heat through the grim being equal to the contect flom plus rediative transtex, as well as oqual to the total inow, the double equetim of heat tlow can be withten es
which, after eliminetion ot the temer, ture differences can be roduced th
 sbant, For our explexbory model, constint valuos of $d y$, k_{0}, and T are to be used, fhich then con be considerad an mean effective vaiues, more or less vaikd at the partiomlar Repth L_{t} to which the observatione - refex.
wth $T=240^{\circ} \pi, x_{0}^{K}=0.005 \mathrm{~cm} / \mathrm{me}$. secodeco and eavation (3510), this xaduces to

$$
\begin{equation*}
M_{\mathrm{t}}^{\mathrm{K}_{\mathrm{b}}}=200+10^{5} /\left(7 \mathrm{~s} \mathrm{a}_{\mathrm{g}}+0.16 \mathrm{~m}^{\frac{2}{2}}\right) \tag{1520}
\end{equation*}
$$

for a_{f} and x in on,

$$
\begin{align*}
& \text { Thth } p=1.3, c_{1}=0.2 \text { in }(147) \text {, } \\
& K_{i}=3.8 \pi_{i}{ }^{-2} \quad x \tag{153}
\end{align*}
$$

 cen be calculated. . Table ZXII contoins some typicel resulje.
mabili EXII

Gefective Jem Themal Cnaracteristion of the Junar soil 1 Thermal Infrared, 1010
 The effective value of Y for the lunar cyele is bease on the observetions of (hurray and wildey (1964) when on the ollouletions by Ingreo etal, (1966) tor "temperetrom-indoyondent" models.

How insted of two or more disurete larers, a coritunors inereasi in the conductivity ckused by comprestion, at a more or leas onstant efsective grain size,

$$
\begin{equation*}
\mathrm{d}_{\mathrm{g}} \cong 0.033 \mathrm{~cm} \tag{154}
\end{equation*}
$$

is indicate3. The effective grain size depends, of course, on the distribution of grain diemeters; iks constency may jadicebe iopenca distribution at diferent depth, thes essentially ε one-layer structo ure.

The low sureace conductivity requires a large thermal gradient, to delivor the internal flow of heat. Eiga acocrang to

$$
\begin{equation*}
a \eta / a \hat{y}=x_{1} \tag{155}
\end{equation*}
$$

Win (152a) and (154), this cen be tntegrated. For very ajfrement initial consitions and dufexent eor tent of redioactive isotopes. Jevin (1965., b) cites calculations ly Hajera (2964) wich give for the presont inom values of the therral flum within a renge of (2.3 4.6) $\times 10^{-7} \mathrm{cal} / \mathrm{cm}^{2}$. sec. tering 4.3×10^{-7}, which is the serthis velue decreised in pronortion to the redius, indegretion yiends, wh for the meal temperat?re 7 at depth

$$
T-T_{0}^{0}=8.6 \times 10^{0.5} \times+0.532 x^{\frac{2}{2}} \cdots 0.3363\left(1.56+x^{\frac{3}{2}}\right)+0.37
$$

where T_{0} is the men temproture of the surface. Only the girett two terms are siemiricanto.

For ${ }^{2}=10^{4} \mathrm{~cm}$ es an upper limit of velidity of the model, $T-T_{0}=49^{\circ}$. This jis inaifniticanty incombly a solio woky structure begins even as a micher acth whem the conductivity willbe much higher. Thè prescureminomed fncrows in conductivity is wipio enough, so that the issulatiag cepecity of the outermost dust layer hee Inthle efrect on the themel stite of the noon's interion.

As comprica to the prassure afiect, the increase of the juatative conductivity with depth, aueto the increese of the mean terpenature is insignificantin the granulax layer. In the outer layers, hourever: where rajative conductivity pleye ar important role, a curic 2 effect arises. The diumbl thatuabionco tempereture, affecting räastive concuctivity, ceuse the daytine conductivity, when metemperature is higher, to by higher, too: even in the absence of a net outrexd flux of heat from the mocn's intorion, the daytime intere of polex hewt by the soil recuire therefore a meller inwerd negative theman aradien". then the positive nocturnal gradient needed to restore thermel balane. at the surfice. The net everage themel groaient will be peltive, the temperamure ristag invara without procucing a net leakag of het. mis effect bas been investigeted ja detajl by hinsky (I966); when redictive coniuctivity is tokeri into account, the thermal pradint dexivod from redio ateta leade to a thermal hax of the orien of 3.4% 10^{-7} con $\left(\mathrm{cm}^{2} \mathrm{sec}\right)$, in agrememt with theoreticel Haitaticas (Levin, 1966e), whie a conductivity independent of the fluctuating tempcrei. wre yielas men times leregr a.thux, unacceptenle for varicus reuror
mins explains also the excessive values of the Iunex thermal flux, derived by Krotikov and Troitsky (196.3) from the invara increase of temperature as shown by redio dete.

As to temperature variztion, for the eubsolax point a vilue of $371^{\circ} \mathrm{K}\left(\right.$ Pettit; 1961) mad forn theantiscijex point, $104^{\circ} \mathrm{K}^{\prime}($ Saexj, 1964) cen be ascumet for the tryicul wafeco. Cn secount of low themel inertio, the sxtrene eftemoon maximul axd, the pre-dewn minimum mould airyer little from these figures. These are bleck-body values; a smell correction for emisivity could jeise there velues by I-c pex cent. The nean equetorial nearmsurface temperature as detomined from shoriwive redio (3m), js nean $206^{\circ} \mathrm{K}$ (Drgke, 1966) though the scetter of individual detemninations is lexge, In any case, the value chould lie between 200 and $220^{\circ} \mathrm{K}$

If T_{1} and T_{2} arethe temporetures of the subsolex and enitsoler points, the meen aritumeticel equator tomperature is close to

$$
\begin{equation*}
T_{\mathrm{m}}=\frac{1}{2}\left(T_{1}+T_{2}\right)-0.110\left(T_{1} \therefore T_{2}\right) \tag{157}
\end{equation*}
$$

This esumtion is empirically adjusted to the shew radio kriehtm ness temperuture et $\lambda=3 \mathrm{~mm}$ (Dreke, $196 i$). For the themal infrexed it yields $T_{m}=208^{\circ}$, which is close to and less aftected by oostrve bionel exion than, thercalo velue.

Tenle XXII tentetively represents the veriation of the meen subsurfuce tempereture with acpth. It is bascd on reaio brightress temperctures as listed by Krotikoz and Proitslry (1963), properly 1:0dified by Linsly (Ic66), with a systemetic ourrection of - 12° applier to meke the zero poixt coincide vith the gurfice value for the infrurrd.

Depth. $\quad \begin{array}{cccccc} \\ \mathrm{cm} & 0 & 25 & 50 & 100 & 200 \\ 400 & 700\end{array}$
Temper twer, ${ }^{0} 6$
The Gepth $\bar{\sim} s$ colculetod from the wavelength according to (146a).

C. Thermal Anomities

The lunn might-time temperatures ere too low for securste observ, tions in the iow window. Using the $20-\beta$ etwosharis mindow, LOW (1965) frund a moen tempertore of $90^{\circ} \mathrm{K}$ for the cold lirb (ame neax-moler or prewaem). cold spots of $70^{\circ} \mathrm{K}$ and lorex vere found, tentatively trpleined as those of lour conductivity (Y_{t} about $2300 \mathrm{on}^{2}$ deg sech/cal; and a hot spot of $150^{\circ} \mathrm{K}$ was recorded neax the south eastern limb.

Hot spofs, wion sure wemer thex the nomal surface during an eclipse but coolex in deytirie, heve karn systemetiofly obsexved and listed by Shcthill and Sama (1965:1566). Tmong 330 such cbjocte, 84.5 per cent sre rey creters, craters with bright interior of bright rime et full moon, 8.7 per cert sue riteht arees of various qualitiostions, 0.6 pex cent ere creters not leight at full moon, the sest being unicontiried. They cocur oves the entixe luns surte $c=$, but somewhet mordensely over the nat ria, being expecially croyded in Here Tranquilitatis. on a recent map (caeri and Shoxthill, 196b) made from the obstritions of the luner eclipse of December 19, 1954, 271 or 58.0 ± 1.7 per cent of the hot spots axe on the meria, 196 or 42.0 T1.7 per cent on the continentes. strons anomalies are even slightiy more concentrited on the mexia (125 out of $\dot{5}$ totel of 201 , or 62.2 ± 2.5 psr cent). There may be some uaverse selectivity for the limb anoes whero continentes jredominate, so that the representetive areas of peria and continentes rey be about equal, or slightly in feyor of continentes. The excess it the mexia seens thus to be reals although the actributio is cuite pathy, so thet the randos faxpling error is not representetive of the artucl stitistical uncertinty. In any cese, the anomalies
ere clesnly post-maxe reetures. . The moet prominent ones are Tyoho End Ocermicus.

Duxing eclipees the interion of Tycho (djameter ghnm) retined a temporature around -70 to $-60^{\circ} \mathrm{C}$, with maxine of -51 and $-48^{\circ} \mathrm{I}$, while in the "normes" sumroundings it dropped to -106 and $-112^{\circ} \mathrm{C}$. Just outeide the creteriks wall it was $-82^{\circ} \mathrm{O}$, at double ridius around the creter $-97^{\circ} 0$, at 2.5 redit $-101^{\circ} \mathrm{O}$, at $3.5 \mathrm{radi} \mathrm{m} / 06^{\circ} \mathrm{O}$. phe resolvine power of the apparypers was of are, lomm or 0.22 of the orutax dimeter, sufficient to. Whe greduel dechine in the infxs red redistion aromathe crebex. th tull moong the oxeter is by a fen degres coolex bhan its surroundines $\left(+77^{\circ} \mathrm{C}\right)$, but this hey be partiy due to its grestec elboro. 0themise the snomely is madoubedly accombed for by gretter themel inertie, i.e gmaller γt, or sreator conduotivity and density of the matericl.

In adaitron to the spote, extended anews, chiely in the mirie
 Noxblex Nare Imbrium, continens eround Mycho, tod others), ate wemer by eoout $10^{\circ} \mathrm{C}$ amping an eolipse (shortrill end seari, 1965e, 1965).

From thesr distribution, the anomelies arowd cretere are mdoubtealy due to exsten ejectes, similex to the rays but more oncentro. ated in the vicinity of the creten. The median aigtance to wioh messive ejecta aje flying can be calculeted from equetions (45), (27), (16), (A) and (19) with $\lambda_{c}=9 \times 10^{8}, p=2.6, \lambda_{x}^{2}=\frac{1}{2} \lambda^{2}=0.14$ (Tble XV, hodel Q, $y=0.5, \sin p_{0}=0.8$, this $y i \in 1 d \mathrm{~V}_{\mathrm{x}}=3.39 \times 10^{4} \mathrm{~cm} / \mathrm{sez}$ $L_{f}=8.8 \mathrm{~km}$. the redius of thecircle over which most of the ejocte ene spreyod mey bu teken twice this value or 17 km, almost equal to the xesolution of the xadiometer veed by chorthill and Sacri. This xediun is independent of oreter diameter. Fine eftective diameter of the anomaly ie thon $B_{0}+34 \mathrm{~km}$, where B_{o} is the creter aiameter. The area canot be less then the 34 odd km tcross and alweys well recolvable by the xedioneter. Wherefore it is cxpected thet the mecsured thermal excess wisl not depend on the sjef of the crettr even when ite diemeter is smaller than the resolvins powers except for the thickness of the overia when it drope below certetn limit.

This is exectly what shorthill and seani (1965b) had row d but they geve it a different interpretation. By ascuming thet the

Whermel excese is restricted to the cretex iteclf, for crutexs bolow the repalution limit they reduced the excess to the crater seea and obtwined o stringe incrcase for the sumprex cratexs. Their "comected aiknel dirferences" hive no physical meanjag; even when the metcoric thecry is (igecrded (which no longer is poseible wimh the meesent etitb of knowlecese), a volcanic eruytion on the moon would elso spread the ejecte to distencs iraependent of creter sise.
the uncorrected obsorved anometies (bhcrebill chà Sami: 29650) yichi for cll craters within the dieneter renge from 4 to 90 lm consistently the sene value of the themal parmetor $\gamma_{t}=600$ from the eclipse obsrvations. In temes of cur preseure-edjusted therned rodel. frora (153): (150): (152a) aith $\tau_{t}=1.8 \times 10^{4} \mathrm{sec} \mathrm{K}_{\mathrm{t}}=1.0 \mathrm{x}$ $10^{-5}, L_{t}=0.81 \mathrm{~cm}$, and $\alpha_{g}=0.115 \mathrm{~cm}$ are coteined. The therial enomezy of the hot spot is readily exflained by e coerser grin near the surface, juet of the order of orinary terreatriel send. The upper layer is contintally grown and owertumed by metecrito irfect and supplenented by the smokelike products ois sublimetion; jt js expected the ts, whout fresh overley, it will become focre ans more finc-grained with age. Also, smell meteorites end espectiliy the numorous secondary ejecta which do not pencticte the dust end rublate layer, but which are recponsitle for rost of the overlay outide the reach of the lerge post-mare cratering evente, will oject end spread arcund m torial of a cmeller grain size then large metcorites which penetrate the top leyer (creters over 0.5 km in diameter) an cruan the fresh bedrock vnderneath. The difference in the theman properti es of the ervirons of lexge primusy post-mere criters, as compcred to the sutsee at large, can thus be urdcrstocd without postulating for theni juprob:bly short ages. All ages from 45×10^{9} years to zero would ào.

In adaition, there may be blocks of solid rock on the surfece which, even when in e small proportion, will contribute to the anomely; iy; such a c..se the calculeted effective grein size is an upper limit.

On the other hand, an exposed solid rocky surfece of this size, es it fidgurs in come interpretitions, is physicslly inconceiveble except when the eges of ell these objects are assumed unbelievebly

C_{29}

short, some $10^{6}-10^{7}$ yetrs. Nox woula smell corruz tions on a an scale (Geer and Bestin, 1962; Betton, 1965) help in the interpretationm theee would bo levelled out by exoeion and substituted by the naturally unduleting sna small-scele roughness identical with the reet of the surfece, so thet no anomely could exise on this accomitelene.

The jount ray oretexs, like lycho and Copernicus, in adoition to theix cuelity 3 n noctumal hot epots. hewe proved to be strong beckin coettercre of redax (Gold, 1960). As first noted by Pettergill and Henry (1962), the intensity of redar keskscatter from tycho ie some
 due to greaton roughness. The ditfuse, non-specular genemil component of becisocatter from the moon (Evans and Pettengill, 1963; Hagiore, $2966!$ is most pleusibly expleined by reflections fror compeot rocky "oouldens", similex to thosesshom on lune Fx end curvejor I pictures (Fige. 5, 6), with amenoions lexger then λ_{e} / π. Similex blocks in grecter munbers must be we ent on the sursece and burised among the ejecta of the ray craters. A ecrrection for generalroughness; $i . e$. the more frequent ocurrence of lergelinclinetions zextotem
 undulation hes bech attempted by momeson and Dyoe (1966). In this way they sepercted thecomponent due to the increcee in xethectivity (h_{r}) from theri ceused by rouchness. In such a maner, for creters Iarger then the resolution limity cospected velues of the dielectric constant are sugaested as follows: Aristillus, 4.5 ; fyoho, 5. 2 ; conerucus, 65. Of the 25 cretexs which showed rader refelction enhencenent. 23 nowld suggest dielectic constints within thje range. or less, Gmons them 7 rej craters, 11 non-xeyed crebers of oless 1 , and 3 non-ruy a_{a} Cless 5 creters (Athes, Fosidcaius, and Vitrurius, with lesser enhancement, all within or neer the borners of fere" Sereaitatis aid More Mrenquiliitetis). Tro cbjects, Diomantur and Plinius, both of Class I non-reyed, Fiela extredionery velues of the aielectric constant, 15 and 35, respertively; hesvy meteoritac material nay be suspected in these ceses.

The rest aptex to heve beckscatber charectexistios of bare rock. However, it is not necescray to postulate a solid rock surfece, nej ther exposea; or luried under a thin layer of loose meteriel. Rocis of
mone then $\lambda_{e^{\prime}} \pi=23$ om in diabetras, bucted in the uprex 5-10 mevers

 sex cent of volume or the moulder bsd". Survoror I picturer sugecat this possibility minh, in a mon wenkex degrees existor even in this ErTC landectpe of Ocecrus Erocellarua (Fjef. 5, 6).

7 F B OSION

A. Surtice loditjoctacn Erocesses

 frebors js afreloped. The bebis for it is the treory of erebcring eno encounters, as well es observational deta refexring to faturos on the lunes surfince end the metemiel contents ofinterplancesty spece. As alresdy could be sen from the maceding sections, indeperdemt Lires of evience converge in cheming end coniming the frodictions. Althouch not prebse, these predictions sre supposed to be ciose epprozimeticne, to $20-30$ per cent in some ceses, mithin a ector of.
 the cencity of interplenetary metten. It turms out the the present state of the lumin surface cen te completely uncerstood in trame of externel rectors coting alone for ell the 4,5 bjliticn yers uf poct mare cxisterce, eny eigns of encosenicurolomic or levemetirity belonging to the initiol short juremare bind mare stage.

Conclusions in the oposito sense are either besed on impobibe escumptions, on disxegerd Tor phyeicol remlities, on oucliterive jude ment by teraestrial anslosy not alicable to the moon.

As an example of the letter, tix, very interesting ajticle by OKeefe etel. (1967), "Luner Ring Dikes from Junar Ombiter In may be cited. The argument hinges on the contention thet "the slopes axe Lese than tre angle of ropose of dry rock; bence en explenation in terme of mess watage is herd to wuyport". Hov, in luner procesces exozion, the angle of repoee is ixrelevant. It could be desisive whe the exoded unps of rocl were left "ying in eitus to roll domall whe the slope in stecp enowgh. The oniy process on the moon were thie could ve orscetripe is the destruction of rock by the extreme veristic: or teraperiture yet, in the ebsence at waters it cen mons oni to to
very minor extant; otherwise the obsurvod preconce of stony blocks
 motooritic inpuct (inderment of velocity) will disperse the rock

 debrie will aispere into the Engulfing plane without any relution to the slopes oit the ring. Grimater material setting on the wing will be patis swept out $3 y$ the inpects in a stimler mamer, and watly it
 ment at benculeble rate (Scetion X. B) profortional to the tragent or the slope snine, hovever sman the axgle is, indevendent of friction and without chy relation to the angle of repose. Besiaes, the notion of ancle of sapose is inepplicoble tr the fine lunar dust when the cohesion betreen the grans exeecas whir veight (grain uiame ter less
 ebel. 1967) little cretcrlete, witnasses of conthruince exomon, ure seen though in much smaller mumbers gen on the surroundiog geins the anelocy with the peat and well of Alphonas is complete tor.
 although interpretotion as the remant of a reised impett eriter lip is much more plansible (ct. Higs: 5, 5 end Tig. I); homvors, the sagument abot the angle of repose is not only treelevent, but micloocing. The wehanicel processes at work on the luns surface hive been realicticaliy described by wipple (1959) and Otik (196ca). These wre sputterang by corpusolar rediation, accretion from wicrometeomio meterians desthrotion and trensport by wheny ond secondexy impacts. Host o. the destroyed mass, much erecter then the mess of the fupecting bodies, retorns to the luxs suxfece, though not yeosestril: in the inmeliate ricinity of the imact. Breept for the fellbacic frection, it settles on the groval whtate the crator covering prerions chell features with an "overluy". The oventay is sulnceruenthy
 leave eleptions and collect tato amreesions. An equilib.inm stete between now smell oreters and theis leveline out by erosial estebl-. ishes jtect, the cxeter promlea lecoming flatter with age. Thas luste until a laxge ercten ernes he traces or previous farmetione.

Using an ingenious method, desteg(1965, 1966ag b) atcmpted to in-

 of leboretory arater protiles se depenting on the saded scna layen was conperd with the moniles of small cretexs (5 to 10^{4} metrexe) on

 lumar oreter frotiles vere simelax. In such a memnex it mac tound

 by hishland ates, bubequent to the formation of host os the cresems

 thet, aestite objections to the valiai fy ot the method, Jeffets figute ocmes close to the ectimate of 34 meters nede below rox post-mene ovemm lays calculeted a prioxi from estronomoch deta and creterint theory: Weimer (1966) ruised some objections to the method, and others are potintad out here. the profiles of luyst eraters chenge more 1 mom erosion (whon may oaryy awey an elevaticn or fint a deprernior of
 The veshove of experimental creters depends on friction end rolling of Scndaraje (sige bbout 0.03 cm) which in air anc moh moremobilo thent In the lumer vownm, and for which the ongle of ropore is decisite when there exe no percuscions or collisions. The luner loosemetorivite forced comnill by meteorite lmpects ast well as by the seoondsy ermay of debris whon ecoounta for the overiey whd which et the seme time aisturbe the grains and sends them downill. Apparently the sere role was playea by bhe leboratory sendegeins falliag on the fritifiotel cretere and atoturbing by theim impactr thetr curface even wher the elope was less then the ingle of xepose. The agresment betrocn the empirjes andithe theoretiond cstimeten of overlay is thas not duite es Lowtatbous as th seons, a certein anount of injocted overiay causing a corwesponding elunping of the oreter partile. It seens thet s eiver overley of terrestubl sand at termestribl grewity sprindod fiom a small altitude hes the seme eafeot agen eoutl mount of dust ald xubble on the mocn thrown with mach hignex relocity on the inn m
compered dust plus cinect excsion br e cmeller mess ox interplanetary moteorio msterigh. $A s$ to the porent increcse of the estincted orex lay aboth with omber dianeter sugetated by Jaffer experimonts, it cen be escribed to inowonse in ace, omoters below 300 motern heving
 heving thus recesvode smeller sprincling. At a disintex of 300 meters, Jeffe's tiguxes ae plotted br helrer (1966) point to an orerm ley of 7 meters, at 5 mp diemetex whe overley is ebout 0.07 mg . While in proportion to diemetex or age it is rapeeted to be 0. $2 \mathrm{~m} / \mathrm{f}$; The orber-of-magntwde egreament ie setisiscto.sy.
B. Snottorine by Solar Wind: Loss und Gein Fron Mionometconiteay

Soler wind bombardnent ceuses the sputtexing of atoms fori the silicate Lettice. Pron a semi-empirion theory oz rattexing and with a pure proton solst wind thux of 2×10^{8} ions/cm ${ }^{2}$ see (brinen TX
 g/cm ${ }^{2}$. yeci. From thocough expeningntal invertigntions of youtering of rixione materials, Fehner etal. (1963b) arrive at a much betbex founded sputtering reve for a stony rough surfece of 0.4 the about $1.5 \times 10^{-8} \mathrm{~g} / \mathrm{cm}^{2}$. yeer, tor 2×10^{8} protone and $3 \mathrm{x} 10^{7}$ heliun ione per cn^{2} and sec with energies above the aputtering thershold in the normal solsw wind, with allowance for soler stoms the fisure mill be tuxbhex sdopbed. Fox a pure proton flux hehnex's stgure mould be 4. $\times 10^{-9} \mathrm{~g} / \mathrm{cm}^{2}$. yesr, or one-hele the author's eetimate.

About fwombirds of the sputbered ators are cjected wita vilocities greeter then the velocity of exoope from the moon. The emual Iose to space from sputering thus can be set at $1.0 \times 10^{-8} \mathrm{~g} / \mathrm{cm}^{2}$ at a constent soles wind, this mould emount to a loss in 4.5×10^{9} yeers of $45 \mathrm{~g} / \mathrm{cm}^{2}$, equivelent to a dust leyer ($\%$. 3) of 35 cm or to 37 cm on solid rock. About on ecusl amount is gpubtered tnward end contribu utes to cementstion of the duet; the continued stimmas end turnover by micrometurite impeot (10^{4} yeare rixing time for the top lon layer: Opils 1962 : cnsuxes mixing of the jxadiated layex with the deepor luner soil.

Woteoxito influx may lead to grin or loss of mess, coomatat to volocity (cf. Section TVL), end to mushing and redietribution of the debris which ere wjected from the croters and spreed es "overley"
over the surroundings or felling beck unto the crater floor: At cosmic velocities cf impact, the mass of overlay may be $2-3$ orders of magnitude greater than that of the meeting bodies. While secondary ejecta may add to the overlay and it redistribution, the not, balance of mass over the entire loner surface depends of course only oo the impacting extraneous mess and its velocity.

From the consideration of energy transfer and vaporization in the central portion ("central fumed") of a meteor ore ter ("jav, 1961a, Table 23), the author estimated that below a velocity ci $10.7 \mathrm{~km} / \mathrm{sec}$, ell the impacting mess will remain on the noon at its present gravity; at $20 \mathrm{~km} / \mathrm{sec}_{3}$ a stony meteorite mill cause a loss to space 17 tines its own races, end at $40 \mathrm{~km} / \mathrm{sec}$ a 44 -fold loss occurs.

The first case is that of the micrometcors of the zodiacal cloud (particle radix $2 s^{(}(40.035 \mathrm{~cm})$ which thus, at a space density of 2×10^{-21} g/ on and relative velocity $\mathrm{J}=0.187=3.6 \mathrm{~km} / \mathrm{sec}$ (Oping, 1956) 1 ead to a. gin of 0.01 g in one million years(eqik, 1962 a) or 45 g in 4.5×10^{9}. yecre per on ${ }^{2}$ of the lunar surface. The sain tums out to be equal to the lose from sputtering buts with factors of uncertainty of the order of $2 m$ in the assumed rates, the balance is uncertain even as to sign.

Fischer velocities are those of meteors and meteorites whin thus cause a net loss of mass. They consist of diferent populations, wits different distributions of particle sizes. The ordinary "cuetbellu" meteors faking off from comet mullet, wat with nesses in the rance of 10^{-3} to about 10 grams leveiueted front theoretical luminous efficiency cmpixiceily ontimed (omits, 1963c), repidy decrease in moneys with increasing size so that little mass is contained in the larger caterories. The main mass (bout 86 par cent) of these "visual" meteors is contained in En "E-component" with as;eroidal orbits (obis, 1956), and the total influx is estimated at $d \mu_{0} / \mathrm{ct}=80 \times 10^{-11} \mathrm{~g} / \mathrm{cm}^{2} . y e a r$, leading to a loss about 20 time this cmormt or to 7 gram per cmi^{2} in 4.5 x 10^{9} years.

A more important component of the mess influx represent the "asteroids" of the Apollo group whose frequency exponent, a -io porer of the radius, appears to join them into che continuous group from meteorites of 25 to 400 cm radius up to bodies in the siloncter range.

From combined observitonsl data (Gym, 1958a) the nasa accretion from this grove in spans per cain end yea end within the rime or wail from n_{2} to $R_{2}^{[t a n t}$ estimated at

$$
\begin{equation*}
a_{2} / d t=1.11 \times 10^{-11}\left(E_{2}^{0.3}-R_{1}^{0.3}\right) \tag{158}
\end{equation*}
$$

at a density ci $3.5 \mathrm{~g}_{\mathrm{c}} \mathrm{ca}^{3}$.

- Comet moles. :cocitins to the sane source contribute (at density $\left.2.0 \mathrm{~g} / \mathrm{cm}^{3}\right)$

$$
\begin{equation*}
d \mu_{2} / d t=1.55 \times 10^{-14}\left(R_{2}^{0.8}-R_{1}^{0.8}\right) \tag{159}
\end{equation*}
$$

and hers steroids deflected by perturbations, at density $3.5 \mathrm{~g} / \mathrm{cma}^{3}$, give

$$
\begin{equation*}
d_{\mu} / d t=1.27 \times 10^{-18}\left(R_{2}^{1.4}-1 n_{1}^{1.4}\right) \tag{160}
\end{equation*}
$$

These accretions correspond to differential member fluxes at the lunar surface per cm^{2} and year and interval ar according to

$$
\begin{equation*}
d \mathrm{IV} / \mathrm{ct}=\mathrm{CR}^{-\mathrm{n}_{\mathrm{dr}}} \mathrm{dr}, \tag{161}
\end{equation*}
$$

with $C_{1}=2.26 \times 10^{-13}, n_{1}=3.7 ; \quad c_{2}=1.48 \times 10^{-15}, n_{2}=3.2 ;$
$c_{3}=1.22 \times 16^{-19}, n_{3}=2.6$. AII the tuxes and accretions are
 the $n_{1}=0$ cen be assumed, For an upper limit of crater diameter of about $200 \mathrm{~km}, \mathrm{E}_{2}=5 \times 10^{5} \mathrm{~cm}$, equations (158), (159), and (160) yield comparable values,

$$
d / 1 / d=5.6 \times 10^{-10}, d \mu_{2} / d t=5.6 \times 10^{-10}, d \mu_{3} / d t=1.2 \times 10^{-10}
$$ and with the 'visual" dustball meteors contributions 8×10.11, the

 Ices ratio as the mean for impact velocities of 20 and $40 \mathrm{~km} / \mathrm{sec}$, the te loss to space from these components would amount to $178 \mathrm{~g} / \mathrm{cm}^{2}$ in 45% 10^{9} years. semis appears to be the dapinatit component; within the uncertainty on our estine tee this represents also the net mess loss to
 lune x surface, accretion from micrometeorites and spattering fy solar wind mutually canceling out.

Most of the loss is accounted xor by large cratering coverts and. thus, affects crater interiors without directly influencing those poxtrons of the surface betray the craters. The loos from the average surface, undisturbed by the localized large cratering events, must be calculated to a cater dimeter of 30 . meters on $R_{2}=7.5 \times I 0^{2} \mathrm{~cm}$ which is the limit of erosion or lave. line out of the oxeters during
the totel age oi the mocn. This rields nom
$d \mu_{1} / d t=8 \times 10^{-11}, d \mu_{2} / d t=3 \times 10^{-12}, d \mu / d t=1.4 \times 10^{-14}$, plus $a / \rho / \mathrm{at}=8 \times 10^{-11}$ froin the visual duetbenis.

for a total less irom the surf ce proistrumed by lexge sumivizg craters (f) $>300 \mathrm{~m})$ becmes $5.0 \times 10^{-0} \mathrm{~g} / \mathrm{cm}^{2}$ per yecr ox $23 \mathrm{~g} / \mathrm{cm}^{2}$ in 4.5×10^{9} years. Whats is precticaiy the evective loss troat meterite impot, for en outready "Ievel" surftuce ontsice the bowdmies of laxay oxflers in eputbexing by solax wind is ascumed to be balenced by tho gein fom microneteorites. Hhatever unoemtainty is involved in this figur?, it shows the order of magoitwde of the vory onell chenges in the mass loed of the luner surfece as cansed by extermel tectors. Whase are very moch smallen then those are to reastribution of mass throuch cyeterins.

The most importent combonent in the externcl mass erohenfe is the influx from micrometcorites, 45 度/ cm^{2}. AIthough an at least equivelent cromet of nese, $45 \mathrm{~d} / \mathrm{cm}^{2}$ from sctur wind me $23 \mathrm{~g} / \mathrm{cm}^{2}$ tron metcorite juract, is sputtered beck to spece, this does not moon that the mienchetroric meterial is imedietely lost agein. Before beine subjected to syuttering, it becones mixel with 10-30 times its mess of orerlay àbris, ejectea rrom the bedronk by metcomite impocte (see next subsection), and the material srattered to spece woula contan only some 3-10 per cent of mierometravic material. hith the tigures of extemal mass exchenge as estrmatad above, over 4.5×10^{9} years there is o gein of $45 \mathrm{~g} / \mathrm{cm}^{2}$ from miccometeore, and a loss of $45 \div 23=$ $68 \mathrm{~g} / \mathrm{cra}^{2}$; of which only $2-7 \mathrm{~g} / \mathrm{cm}^{2}$ would belong to microneteorttes. In such a case the present luner surtwoe should contain some $40 \mathrm{~g} / \mathrm{cm}^{2}$ $(\stackrel{+}{4})$ of miorcmoteomie origin, admixed tos and diluted in, the overlay debris or tye "Qubt" leyer.

c. Overlay Depth

Wuch matringortent then jutrinsic gen on loss is the materiel cruched and thrown about by cratering ixpects; this may oxeced severol homored times the imelling mas. Fron the extber bowl excerate by the impent it is ejected to distuces of teas or more miloneters from the oretex, wheret settles as "ovemiay", a mixiure of unst, wuble, ant bouiders which is subject to fuxther modificction by
 Iunar soil or "dust" leyex. The everege distences of ejection depend esseutislly on the strength of the meterial [equstions (4), (16): (19), (27): (45)] cna exe thus grectest for impet into bearocs, while insiz-
 When the distarce of ejection is of the oxcer of the creter pedue, most of the debris falls beck into the oxteter boul where overity mey attath thickess of seversl kilometers. . Row the postmexe onetening impects as represented by table Xy, the thickess of orertay (as due to the single inpect) in contrel pertions of the crater is

$$
47=B_{0}\left(\mathrm{~g} / \mathrm{D}-0.625 \mathrm{I} / \mathrm{B}_{\mathrm{c}}\right)
$$

Teble XXV shons the thiomess on ovemay in postmare creters. TABIREX

Undonbtedly, pressure competion bikes place when thetricmess of the layer is freat; except its tomost layer, it canot be xegraed os just loose rubble ox dust.

Outside the crater rim, mescive tyeote may be xeaching over a
 the thindnese of ejecte can be rought estrabea to be one-enth of AG which les de to thick orexley in the vicintty of lerge oneters end a
 bution oroverlay muet be extremely opotty, following the pethim of the distribution of excters larger than 10 km in datueter, wni with e more ox less unitoma "backgrounal" of arec not diaturbed by the vicimity of lerge exatexs (the exews betug renoved by more then $15-30$ bre from the nearest cim of exctcr 20-100 ine in demeter).

Thece considerabions apply chicely to the maris whexe. \& prew existing mocky (leva) bese hes been zubjected to destruction by tur pacts. Th the continentes the exus's bppears to be completery fomea by accretior. of overley during the prewnexe stege, any exti m maxia surfices of the ecereting moon beinc buried uracr the tinel shower of overlay.

The fombion of overiey hes been in frimojyle described by
 cesses at work: (1) all impeotiog bocien end fubstione combijbube to mocinication (grinding, cementation), mixing enc ajepliwcoment of. the existing brexley ox "dust" leyer; (z) oniy thoce netcoxites larbe enough to penetrete the layer contimbute to exosion of the bedrock tha ere inctrumentel in adane now moterich to, enc incroesing the bhicmesefe the seytu. Herce the growh of the laycr pith time beoones slowar as ite thiomess and trae interior size linit ot the active meteorite pozuletion increcses.

In adation to primexy inpeots, secondery end hishex oxdex comtribube to oreclay. At first we will consider only post-mexe prinexy tmpacts on ar initielly hera eurtece, mpposed to be solidified leva, of e strength about that of terreetrial igneous rocks (of section 7.0).

Let X (om) be the thichness of cuexlays $[$ (equation (6) $]$ the reIative genetmbion in e layer of intinite thiokness abz $=2=45^{\circ}$ (as an everegel; n the arains of the proacotile. Athough the velocity of the projectile decresses et penetretion, its hathening ar; myexvelocity events increases the cross vection ares. so thet loss of momentum cen be assumed roughy proportionsl to depth os jenstertion. flence the frection of momertum retizi ned efter penetreticn of the dust Layex is

$$
\begin{gather*}
q=A-x /\left(2 Q^{R}\right) \tag{162}\\
n \geqslant 0 \text { yields a } n i z
\end{gather*}
$$

The ondition $\geqslant 0$ yields a minmum radus for penetretion thet reaches the bearook

$$
\begin{equation*}
R_{0}=X / 2 p \tag{163}
\end{equation*}
$$

only projectiles with RrR are cupelte of eroding the bedrock. An infriling mzss apat redius R froduces a mass of overtey

$$
\begin{equation*}
\Delta H=\mu\left(\gamma_{0} / \mu\right) \cdot \eta \tag{164}
\end{equation*}
$$

where $\quad \mathrm{o} / \mathrm{t}$ is given by equations (6), (3), (7).
Miccometeomites end visual metroxs exe too manl to penetxete the dust leyer and do not contribute significently to orerlivi (exuopt at the verf begiming, when inciaent on a bire rocky euriec,) Fort the remaining three somponedts, Δ 人 is to be subatituted by $\mathrm{d} \mathrm{R}(\mathrm{d} / \mathrm{d} / \mathrm{dt}) \cdot \mathrm{dR}$ with $\mathrm{R}=\mathrm{R}_{2}, \mathrm{R}_{1}=$ const.
as Given in（158），（139），（160），th d envision（168）integrated from $\mathrm{B}_{1} \Rightarrow \mathrm{R}_{0}$［equation（163）］to an upper Limit H_{2} ．For the meth berk－ ground，uncticoted by the vicinity of late erebere，we assume an upper
 for which the mean spacing in mere Imkriune is $\left(4.65 \times 10^{5} / 207\right)^{\frac{1}{2}=47 \mathrm{~lm}}$ about the double of the extreme flight distance of massive ejecta from hama bedrock．Ejecta from craters uh to this Imit w will have by now produced a more or leos uniform ovemity X_{0} ，with little spottiness The ejecta from larger craters from $B_{0}=2.48 \mathrm{~km}$ to $\mathrm{B}_{0}=44 \mathrm{kn}, \mathrm{or}$ ．
 cause locally much deeper overlay which，swed uniformly over the ext ire area，would mont to an average beyer x_{j}^{2} however，for these larger projectiles，loss of momentum in equation（162）is to te call culated with $\mathrm{I}=\mathrm{X}_{0}$ ，not $\mathrm{X}_{0}+\mathrm{X}_{\mathrm{I}}$ ，because of the spottiness and 100 probability of coincidence on the major thesots．Actually，jor these letters H is so large that $\eta=1$ can be assumed for the presort and past state of the lunar sur tace．The viper limit $B_{0}=44 \mathrm{kn}$ for major craters is that for which throwout is about 50 per cent of the total detritus．Tor still larger craters，most of the cuerlidy re－ mains in the crater，forming an average layer $1 / 5-1 / 3$ of $\Delta 2$ as given in Table XXXY；it must be treated as purely local cahancerient，mad there is no point in calculating its contribution to the average depth of overlay elsewhere．

For the three components of meteorite infix，the following nom－ exicel constants have been assumed：
for Apollo group［equation（158）］and dare asteroids（160），$\delta=3.5$

 with these data of equation（164），separately from R_{0} to $R_{\text {现 }}$ end from
 as med density 2.3 ，and omitting sill irrelevant terms，tho a priory calculated rate of growth of background overlay from primary meteorite impact（craters smaller than 2.5 km ）in a lunar mare（solidified lever as the bedrock），in om／yeac（䂒density $1.3 \mathrm{~g} / \mathrm{cm}^{3}$ ），as listed separately＂or the three components．becomes
$\mathrm{dx}_{0} / \mathrm{d} t=$

$$
\begin{align*}
& =2.97 \times 10^{-6}-1.67 \times 10^{-9} \times \times_{0}^{0.3} \text { (apollo group) } \tag{165}\\
& +6.55 \times 10^{-9}-8.96 \times 10^{-12 \dot{x}_{0}^{0} 0.8} \text { (Comet nuclei) } \\
& +7.0 \times 10^{-11} \quad \text { (Mems asteroids) }
\end{align*}
$$

and the annul rate of smoothed out growth tron major impacts (craters from 2.5 to 44 km dianotex) equals
$a X_{1} / \alpha t=$

$$
\left.\begin{array}{ll}
=4.10 \times 10^{-8} & (\text { Apollo group) } \tag{166}\\
+6.57 \times 10^{-8} & \text { (Comet nuclei) } \\
+3.94 \times 10^{-9} & \text { (nus asteroids) }
\end{array}\right\}
$$

Integration of (165) (in which the negative terms are not very significents reducing the outcome by only 10 per cent) yiclas, for $t=4.5 \times 10^{9}$ years, a background overlay of $X_{0}=147 \mathrm{~cm}$ from primary impacts alone; to this is to be added a spotty overlay from the larger craters ($2.5-44 \mathrm{~km}$) of average thickness $X_{h}=468 \mathrm{~cm}(284 \mathrm{~cm}$ from Apollo group, 266 cm from comet nuclei, 18 cm from hers asteroids\%. The total average overlay from nonary impacts, calculated a priori from cratering theory and astronomical dates is $X_{0}+X_{I}=615 \mathrm{~cm}$ or 800 g/ cm^{2} (at density 1.3); because of the spottiness, the figure has not a very definite meaning.

Secondary impacts probably contribute very little to creamers oven 2.5 km in diameter, and the value of X_{A} should not need any correction in this respect. As to X_{0}, the contribution from secondary impacts by large ejecta from the larger craters must be considerable.

There exists a direct empirical method of evaluation the thickness of overlay, based on the volume actually excavated by observed craters in a mare. While the crater diameters are directly measured; for the depth: to diameter ratio, $p / D=x_{p} / B_{0}$, the average the metical values (diameter range $2.5-44 \mathrm{~km}$) of 0.1105 (Apollo group) and 0.0569 (comet nuclei) will be assumed, according to fable $\overline{X V}$, weights in a trio of I tr 3 , so as to give a volume ratio proportional to the calculated values of overlay $X_{1}, 184 / 266=1 / 1,45$; ${ }^{\prime}$ in other words, it is assumed the, within the chosen diameter rance, there are tore cometary craters to one of the Apollo group. This gives an average ratio $x_{p} / B_{0}=0.0703$. Fustier, doubling the volume as for surface ejecta of de asity 1.3 origination from bedrock of density 2.6 (however
for thick overiay on fellocok, the doubling is not justitied, was the materiel is compressed under its own weight), equetion (15) yiejde the volumeor ejecta as

$$
\begin{equation*}
V_{\mathrm{e}}=0.0344 \mathrm{~B}_{0}^{3} \tag{267}
\end{equation*}
$$

The thichness of overlay averged over area S is then

$$
x=\sum V_{e} / 5
$$

 "obecrved "viluesof overlay as representec in heule XXi.

All critere of the area except Archimedes are included; Archimedes as a premerecreter $\left(B_{0}=70.6 \mathrm{~mm}\right)$ is pacitted. The cumalative number of cxeters in the third colum is from largest (o) dan to the given limit, while the cumuletive thickness of overloy in the ifith colum is counted in the opposite direction from $2.48 \mathrm{~km} u p$. in the lest colum, the average sepirition of the craters at given cumuletive number; N, calculeted from $(S / N)^{\frac{1}{2}}$, is given. This cherectorizes the spottiness of overlay; littie will spreeo bejond a redius of $\frac{1}{2} \beta_{0}+20 \mathrm{~m}$ from the cen*er of the creter of roughly, bew yond an sverage seperetion of $B_{0}+$ iOkm. ine large contributions to
 $=0.065$ or the area and axe not chandetexistic of the becleground but largely depend on single mejor impeots. $A s$ the figures stind, for the diemeter limite $2.5-44 \mathrm{~m}$, the everesed observed overlay is $X_{A}=1489 \mathrm{~cm}$, to be compared with the velue of $X_{A}=468 \mathrm{~cm}$ as celculam ted Ghove thexdeticelly for primery impecte cnly. The dificxence mey be partly aue to someseconoary creters larger than 2.5 m in the Gopernicus snd Exatosthenes rays, but mainly it is the nenifestation of the excess in the true number of lerge cxabers ebove thet celculeted from the present populetion of interplenctary strey bodies, as persistently revealed also in crate: stetistios (Table XVII). Al-. though due to a few individuals, the excess is always there, and essextially in the same proportion, such as in more extender counts on an 8 times lexger area (Thble XVII); thece courta as presented by Beldwin (1964 b) agree so closel:r with those in festem iexe. Imbrium thet no revision or rable XIT is necessary.

 30exatec 0rex $3=405,000 \mathrm{xm}^{2}$

x_{y} Cencontite (cm)

metoxy Im	Ay0110 NxCum	Conct nuelos.	May asterojes	431	(on)
2.45 m \% 5.40	. 37	27	2.6	65	46
2.48 m 22.4	324	240	6.6	271	209
2.48-43.0	184	206	18	468	14t9
2304-3.0	60	226	11.	197	1260

人

 the detw of watc XAT

 creters in whose vicinity the thencse of the laycr mate by oxtere ch magature cxeeed thet of the averere beckuomad.

 cround the cretex center and by distributhe wiformy the ofected

$$
\begin{align*}
& I_{m}=15+0.3 \mathrm{~B}_{\mathrm{m}}(\mathrm{~km}) . \tag{169}
\end{align*}
$$

With this and the dato of table $\overline{x y}$, the frequency distribution of overlay thickness in a nome has been calculated es chou in Table XTH. The values ere based on the actual cater statistics in mete. Inbriun rat for en average basic overlay of B ($a s$ explained below) being aided, due to craters less then 2.48 mm in diameter. Figaro 10 roprocertw this very uneven distribution graphically. The ohicmess values ane A\&BLE XXIII
Distribution of Overlay, Trijelness in Inner feria
as based on Volume and henge of Ejecta
 have beck expected to be equal to $X_{0}=147 \mathrm{~cm}$ as calculated above for craters below 2.5kn. However, ejecta from secondary craters ire newline a very much lexgex contribution in the smell diameter tenge, increasing the thickness of the overlay and, by its protective action, decreasing the role of the very small primary impacts.

Te shall use as typical the actual counts cis snell crater in mare Cognitum, as (derived from hanger YII Photographs by shometer '.1956); from lis curve: on Fig. 2-42, loc.cit., cumulative crater man es at various dianerens were token (dots on full line). The curve, efter a marked twist upwards below $B_{0}=1.2 \mathrm{~km}$, interpreted as ane to secondaries bends sharply down below $B_{0}=B_{I}=285$ meters. This ton be plausibly attributed to erosion, B_{j} being the diameter eroded in 4.5 y 1$)^{9}$ years and the lifetime, as well as the number of smaller craters presently surviving being proportioned to B_{0} / B_{1}. The counted numbers for $B_{0}<B_{1}$ moet thus be multiplied by the erosion factor

$$
\begin{equation*}
E_{i}=B_{I} / B_{0} \tag{170}
\end{equation*}
$$

to allow for eroded craters which are no longer there but whose ejecta nay have contabutea to the overlay.

The cumulative number of print ry infects ger $10^{6} \mathrm{~km}^{2}$ and IC ${ }^{9}$ yean
is encumed zocoringe to (161), after integration and with tho roper constants, with R in cm

$$
\begin{equation*}
\log \mathrm{A}_{\mathrm{a}}=11.921-2.7 \log \mathrm{R}_{\mathrm{a}} \tag{171}
\end{equation*}
$$

for Apollo group on meteorites

$$
\begin{equation*}
\log N_{c}=9.828-2.2 \log R_{c} \tag{272}
\end{equation*}
$$

for tho comet nuclei, whilefthe contribution from Moan asteroids is
 and $\mathrm{ma}_{\mathrm{c}}=\mathrm{B}_{0} / 26.6$ as fox interplanetary stray bodies impacting on herd rock.

The adopted exeter statistics are collected in mable XXTII.

 Sa uniform incidence into hie streichtiormard counts. If the total. age is more o. less correct the effective age is/ahorter on count of erosion, a' 'least cox the smaller ureters (che treble XXX), His figures ans fatally counted numbers

From the equations of section IJ, the geometric parameters of cratering in two characteristic media - the herd bedrock, and the mable of overlay, are determined as Follows.

It will oe found the, in the rex e below 2.5 m , seconding craters arethe main contribute to overlay f iso, in the smallest coles of craters, the fpollometeorjte group prevails among mimexies, while in the langer classes the cometmolei group is more prominent (rf Table XVITI) A simplification is therefore admissible, in assuming an equal proportion of the two groups among primaries e This gives on average of $X_{p} / B_{o}=0.0837$ end, instead of (167), a volume of ejecta From unprotected hard rock (of. Equation (15)]

$$
\begin{equation*}
V_{e}^{!F}=0.0204 B_{0}^{3} \tag{173a}
\end{equation*}
$$

for the primaries. On the other hen k, overlying rubble will prevent, partially or totally, the projectile striking the underlying jedrock: this condition is most critical for the smallest projectiles mong which the Apollo group prevails. For this group, with ${ }_{0}=20 \mathrm{~km} / \mathrm{sec}$, $\gamma=45^{\circ}, \delta / p=2$ and $\mu_{c}=6 \times 10^{7}, p_{p}=2 \times 10^{8}$ bouts as Act

cumate tive oxetern hambers per $2.22 \geq 10^{5} \operatorname{kn}^{2}$: IT obeerven,
 on hord grownd, calculated; B_{0}, Iower Iimjt of crater dimmeter $\log \mathrm{E}_{0}$
(meters) $1.2471 .6361 .947 \quad 2.2702 .5122 .716 \quad 2.935 \quad 3.0713 .282 \quad 3.336$ Jogt obe. 7.332 6. 590 6.000 $5.4144 .7584 .071 \quad 3.4022 .873 \quad 2.437$ 1.798

 $\begin{array}{lllllllllll}\mathbb{N}_{\mathrm{a}} / \mathbb{N}_{\mathrm{C}} & 4.40 & 2.86 & 2.01 & 1.39 & 1.05 & 0.83 & 0.64 & 0.55 & 0.43 & 0.29\end{array}$ * :hemerex gives his crater densities "per $10^{6} \mathrm{~km}^{2}$ and 10^{9} yecren: introducint the bypothsticel element of ax age of 4.5×3.0^{9} years and a uniform incidence into bie streaightfoxmari counts. It the total age is more or less correct, tho efrective age is scorter on account of exosion, at least is for tho smaller craters (cf. Table JXIX). Fise figures ere actualy countec rumbers per $16^{6} / 4,5 \mathrm{~km}^{2}$.

TABLH. XXX
 Cratere zmeller then 2. 5 m
(Superion numbers inaicate decinul porver Rectors, thus $3.62^{5}=3.62 \times 10^{5}$) $\begin{array}{llllllllllll}B_{0} \text { sav, meters } & 2190 & 1500 & 1010 & 759 & 590 & 462 & 366 & 283 & 214\end{array}$ nobsexved (per $2.22 x$
 $n e^{c o r r e c t e d i c e} 10^{6} \mathrm{ma}^{2}$. $10^{3} \mathrm{yys}$.
$107 \quad 4721770 \quad 2920 \quad 64001.41^{4} \quad 3.1 .4^{4} 6.8^{4} \quad 1.82^{5}$ Part (A) Uper Iimit of overlay: all impacts on unprotected hera rocis $n_{p \text { primery, calcalated }} \quad .69 \quad 310.508 \quad 8061480 \quad 2520 \quad 4470 \quad 1.02^{4} \quad 2.02^{4}$ $n_{s}=n_{c}-n_{1}$, secondary $\quad 38162126221145920.1 .16^{4} \quad 2.69^{4} \quad 5.8^{4} \quad 1.62^{5}$ $B_{p^{9}}\left(4.5 x i 0^{9} \mathrm{yx}_{\mathrm{s}}\right) \mathrm{cm}$ $\mathrm{HK}_{\mathrm{K}} \mathrm{g}^{9}\left(4.5 \times 10^{9} \mathrm{yr} \mathrm{B}_{0}\right) \mathrm{cm}$ $x=\Sigma \Delta x$

13	19	10	6	6	5	4	4	4

Purbie penetro in
 Fubble penctr. HI_{s} secondaries (m) $\begin{array}{llllllllll}790 & 540 & 370 & 270 & 210 & 170 & 133 & 102 & 78\end{array}$
Part (B) Assuma; Fresent overlay thiokness $=12$ meters end uriform accreion with time

$$
\begin{array}{llllllllll}
4.5 \times 109 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.48 & 0.38
\end{array}
$$

Aver. overlay x in
$\begin{array}{lllllllll}6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.2 & 7.4\end{array}$
x_{p} primery calcul,
$\begin{array}{lllllllll}70 & 319 & 540 & 907 & 1750 & 3280 & 6250 & 1.85^{4} & 4.76^{4 .} \\ 37 & 153 & 1230 & 2010 & 4650 & 1.08^{4} & 2.49^{4} & 4.95^{4} & 1.34 \\ .00 & 1.00 & 0.99 & 0.808 & 0.98 & 0.97 & 0.95 & 0.93 & 0.87 \\ .00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.99\end{array}$
Hov Overlay

$\Delta \mathrm{X}_{\mathrm{p}} \mathrm{cm}$ (pximer*es)	13	20	10	7.	7	6	6	7	8
$\Delta X_{s, 0 m}$ (seconduries)	37	48	122	85	92	102	117	109	125
$X=\sum \Delta X \rightarrow$, '揾	50	118	250	342	4 41	549	672	788	921
Total Present late of Ejecta, om per 40, xio ${ }^{9}$ yrs. (from overlay + bedrock)									

$\alpha / \alpha t \Delta x_{p,}$ cm ${ }^{\prime \prime}$	13	20	10	7	7	6	7	8	9
	37	43	122	85	92	102	117	109	127
$\alpha / a t x$, cm	50	118	250	342	4.4	549	672	78.9	927

${ }_{6}^{6}, 8$

 Gxaters emaller then 2.5 km

(Gumexiox numbers indicate aecimal power factors; thue $3.6 ?^{5}=3.62 \times 10^{5}$) $\begin{array}{llllllllll}B_{0} \text {, av.metexs } & 164 & 129 & 100 & 79 & 62 & 49 & 37 & 28 & 20\end{array}$ n_{0} observed $($ pe: 2.22π
$\left.10^{5} \mathrm{~mm}^{2}\right)$

$$
\begin{array}{llllllll}
1.47^{5} & 2.32^{5} & 3.62^{5} & 5.7^{5} & 9.0^{5} 1.41^{6} 2.98^{6} & 5.4^{6} & 9.44^{6} \\
1.73 & 2.22 & 2.85 & 3.63 & 4.50 & 6.56 & 7.64 & 10.3 \\
13.9
\end{array}
$$

$3_{n_{c}}$ corrected (pex $10^{6} \mathrm{kma}^{2}$; Pert (i) upper limit of overiays enl jupectis on mprotected herd rock n_{p} primacy, celculeted $\quad 3.88^{4} 7.7^{4} 1.48^{5} \quad 2.28^{5} 3.99^{5} 7.0^{5} 1.91^{6} 4.15^{6} 9.0^{6}$ $n_{s}=x_{c}-x_{p}$, secondaxy $\quad 2.15^{5} 4.38^{5} 8.82^{5} 1.84^{6} 3.74^{5} 8.56^{6} 2.07^{7} 5.14^{7} 1.22^{8}$
 pubble ponetr.t $\begin{array}{llllllllll}\text { primaries } & \text { (m) } & 12.7 & 10.0 & 7.8 & 6.1 & 4.8 & 3.8 & 2.9 & 2.2\end{array} 1.5$ $\begin{array}{rllllllllll}\text { Pubble penetr.4. } \\ \text { secndaries }(m) & 60 & 47 & 35 & 29 & 22 & 18 & 13.4 & 10.1 & 7.3\end{array}$ Pont (B) Assuma; Present cyerlay thiomess= 12 meters and uniform sccretion viath tine
Aver, age $t_{\text {foin }}$, in unts of
$4.5 \times 109 \quad 0.29 \quad 0.23 \quad 0.20 \quad 0.14 \quad 0.1210 .080 .070 .050 .04$

n_{p} prinexy celoul. $n_{s}=n_{c}-n_{p}$, secondary $\quad 1.05^{5} 1.38^{5} 2.1 .6^{5} 8.2^{5} \quad 1.95^{6} \frac{5}{2} 41^{6} 1.23^{7} 3.28^{7} .8 .1^{7}$ $\begin{array}{llllllllll}n_{p} & \text { efficiency primexiesjo.78 } & 0.62 & 0.4 i 3 & 0.38 & 0.30 & 0.24 & 0.18 & 0.14 & 0.09\end{array}$
 New Overlan

ΔX_{p} cmin (pximaxies)	9	9	7	4	3	2	2	1	1
$\Delta X_{\text {s }}$, an (secondsries)	44	29	2)	37	42	55	48		9
$\bar{T}=$ SAX \longrightarrow, cm	974	1012	103)		1125		1232		
Totel Present Rete of Ejecta, on per $4.15 \mathrm{Xl} 0^{9} \mathrm{yse}$. (from overley + bedrack)									
	12	15	15	1.1	10	8	10	9	7
$d / d t \Delta X_{s}$ com	45	30	21		45 1170	61	60 1309	138	62

desert alluvium, $1=2.17, D=28.0, D / P=22.9$, the penetretion into an unlimibed layer be mbble in a prisar jupect becomes

$$
\begin{equation*}
x_{p}=B_{0} / 12,9 \tag{274c}
\end{equation*}
$$

Fox the seconderies, only those of high velocity ae in tre xays of ray craters being important (the penemsting low volocity ejecte exe wable to cmah the bedrock; they as vell as the non-penetreting ones are cnly cible to proance eratere in the overleys er. teble XXY D beloy we ascumo $\operatorname{ta}_{0}=0.75 \mathrm{~km} / \mathrm{sec}, 7=45^{\circ}, \bar{y}=2.6$. At impect of eecondnries upon bearock,
$x^{n} / B_{0}=0.439$,
and from (15) the volume ofe
end from (15) the volume ofejecte fron whrotected herd rock becones

$$
\begin{equation*}
7_{e}^{\prime \prime}=0.1070 B_{0}^{3}= \tag{175}
\end{equation*}
$$

The relabive penetration of secordaries into robble is then

$$
\begin{equation*}
\mathrm{x}^{\mathrm{tr}} \mathrm{P}=0.352 \mathrm{~B}_{0^{\circ}} \tag{174b}
\end{equation*}
$$

With 1.3 as the density of ovexley on onemble thet of the bedreok, and n_{i} the number of impacts per 10^{9} jeare upon an eree of $\mathrm{S}=10^{6} \mathrm{~km}^{2}=$ $10^{12} \mathrm{~m}^{2}$, the vontribution to oveclay thicmess in 4.5 billion yeers frow E gixen eroup of craters (B_{0}) equels

$$
\begin{equation*}
\Delta X=2 V_{0} \cdot 4 n_{i} / S \tag{176}
\end{equation*}
$$

For the mimexy areters this becomes
$\Delta X_{p}=1.84 \times 10^{-11} \mathrm{mp}^{B_{0}}{ }^{3}$.
end for the secnderies

$$
\begin{equation*}
\Delta x_{S}=9.63 \times 10^{-11} n_{S_{0}} B_{0}^{3} \tag{177a}
\end{equation*}
$$

in cm per 4.5×10^{9} yeers when B_{0} is eiven in metere; both equations are peovicionaly disxegarding the protective leyer of the overlay itser De and repressmt thus upper Iimite.

In the four upper liness (eff teble XXTX, the basio cumul tive crater numbers of teble XXVIII are broken up into discrete detis, intexpoleted for moxe ar less corperable (not puite constent) logarithaic intervals of I_{o}; the median values of crater diameter axe given in the finet line, t? eobserved dinferentiel numbers in the second, the erocion factor Bf in ine third, and the retes of impacts per $10^{6} \mathrm{kn}^{2}$ and 10^{9} years as corrotea for erosion in the fourtin line.

In the fullowing part (A) of Teble XxIX the date are intarpreted
conventionally by aisceguding the braking action of the ovrixay. While the total cratering rete D_{c} in the 4 th line may be considered independent of this action of overlay, being based on purely critical. dater the number np of primary impacts (6 th line) does depend on our conventional assumption, as the determines the ratio of projectile to crates diancter, thees the size and the number of projectiles. with the rubble lager, smaller projectiles will produce craters of a given size sind, thus, there will be more primary impacts and, after substroctinf their number, the difference yields fewer secondaries. As these latter chiefly contribute to the overlay (limes 8 and 9 of the table), the overlay in section A represents an overestimate. Even as the figures stead. few overlay cannot be produced when its thickness exceeds the imaginary "depth or penetration"., jato rubble (lines 11 and 12 of the table) or the cater depth in rubble of infinate thickness at crater diameter \bar{B}_{0}. The penetrations ere given by $\sqrt{6}$

$$
\begin{equation*}
H_{1}=13 / 12.9 \tag{1788}
\end{equation*}
$$

for the primeries, and

$$
\begin{equation*}
\mathrm{H}_{\mathrm{s}}=0.352 \mathrm{~B}_{0} \tag{178b}
\end{equation*}
$$

for the secondaries. These grentities are independent of the radius of the projectile and depend on crater diameter only. In part A this takes place at $3_{0}\langle 49$ meters, whence e rough upper limit for overlay thickness of about 16 meters rolls. This compares favorably with the estimate of 13-3.7 meters at a particular spot in Oceanus Proesliarum, mede in Section $\bar{V} .0$ from Surveyor I pictures of an eroded boulder wall of an ancient crater (Figs. 5,6).

Part (B) of table represent; a more sophisticated celluletron for an assumed overlay thickness of 22 m at present. The thickness is assumed to grow unitomily with time, average values instead of differential equations being used henceforth. In Pert (B), the first line gives the average age, in white of 4.5 billion years, of the presently surviving craters, calculated from

$$
t_{t_{Q}}=4 / 2 h_{s}
$$

and the second line contemn the average overlay thickness at the tine of impart:

$$
\begin{equation*}
X_{a}=12\left(1-t_{c}\right) \tag{IBO}
\end{equation*}
$$

in meters.

Wen overlay thinness cyectas "ruble penetration".

$$
\begin{equation*}
X \geqslant \mathrm{H} p \mathrm{~s}, \tag{181}
\end{equation*}
$$

the bedrock is munched and mo incraseox overlay takes place. Yow the primaries in this case $D=28.0,2 R_{P}=B_{0} / 280$, For unprotected bedrock or $X=0$ the figures are $D=14.9,22_{p}=B_{0} / 14.9$, which also is the case of Part (A) of the mole. For e given crater diameter, the radius, end thus the predicted number of impacting projectiles is ditaterent according to the kind of target. With the logarithmic intervals fox B_{0} or H in fable $\overline{X I X}$, the frequency index is the same as for cumulative numbers, $n-1$ according to integration of (151). For Apollo group the index is thu y 2.? and the ratio of primary incidence in the two cases is

$$
(28.0 / 14.9)^{2.7}=5.50
$$

Thus, when (181) is valid, or for $3 \xi_{0} \leqslant 120$ in in Part (B) on the table, the primary incidence will be 5.5 times that given in Jat (A), The incident teas, however, contains in aditionel factor of E^{3}, amd thus decreases with the 0.3 power, in e, ratio of

$$
(14.9 / 28.0)^{0.3}=0.83 .
$$

When (18\%) is not fulfilled, tro-jayar cratering takes place. Instead or a complicated analysis, we simply use an interpolation formula between the two extremes for $B_{0} \rightarrow 120$ meters in Part (B):
 value of mp in fart (A). The calculated values of average innidence
 incidence rate of projectiles of the same average size that have prom cued the observed craters, although in the pact the craters in each class - and not the projectiles - may have been sampler because of less overlay and more herd bedrock involved..

Equations (177a) and (177B) require certain additional efficiency factors, η, to allow for the average faction of bedrock crushed as depending on orexlaty thickness and on the tine to during which ponetrathon to bedrock level was possible. Two cases present themselves.
for a given overlay thickens X end potential penetration f of the

We assume thus the individual csicieroy in the second ease ah

$$
\begin{equation*}
\eta=1-(\pi / \mathrm{D})^{2} \tag{1.83}
\end{equation*}
$$

and the average over the entire tine of existence of the mare ($4.5 \times 10^{9} \mathrm{yrss}_{0}$), tor which $\mathrm{Z}_{\mathrm{a}}=6$ webers,

$$
\begin{equation*}
\eta_{1}=I-(6 / p)^{2} \tag{1836}
\end{equation*}
$$

In the first cause, when the layer is thicker than average pence tration, penetration stops after e relative the interval

$$
\begin{equation*}
t_{p}=m_{p} / 1.2 \tag{184}
\end{equation*}
$$

 into (183) and multiplying by to, the efficiency of Pate -(3), as e com-
 (For secondaries, the $=H / 16$ 。 (For secondaries, use H_{s} Fox $\mathrm{H}^{\frac{9}{5}}$).

These efficiencies and the comerponding differential ore:ilay accretions, ere given in the 5 th to eth. lines of Part (B) of Mable WTX.

The g th line of Part (B) of the table contains the combative accretion of r ow overlay, in centimeters at density 3.3 for the total time span of $4.5 \times 10^{\circ}$.years until present. Extrapolation torexd smaller crater diameters (B o 20 meters) will not yield much on account of the rapid decrease of Hp, th, and A total extrapolated overlay thickness for Part (B) must be close to $X=14$ meters, while tile starting assumption was $X=12$ meters. The solution is pachicallit self consistent. $\quad X=23$ meters can be assumed as an average thickness of overlay (density 1.3) in the maria on regions removed from the vicinity of large craters, consistent with the observed volume and number of craters and not critically depending on theory and interpretation. this agrees remarkably well with theestinste from the surveyor I picture (H ic. G) (of. Section W. © and is not in contradiction with more crude estimates by Jefe ($1965,1966,1967$) which point to an overlay thickness of $5-10$ meters. :Besides the accretion of new overlay from an environmental standpoint of interest may be the total incilur rate of overlay material, new from the bedrock and old stirred up from the existing layer of overlay. ie. the accretion rates then setting $y=$
 XYIX (B). Ertrapoistion to smaller rater sizes (45m) would fyi eld about 2000 cm per $4.5 \times 10^{9} \mathrm{yrs}$, but the addition consists of "soft spray": which is not xelevent from mos; standpoints.

The preceding results refex to the iaxio surfece, originelly molten and soliditied into hard rocir end subsequontily bettored by the interplanctary population of strey bodies, assuned to be the eaine as presently observed.

For the junsr continentes the conditions were aiferent. We ao not know what was undemeati, but the exposed top layer is battred to a great depth by a saturation coverege of cruters. The great grom tective aepth of overlay leaves only the lerger crater: to contribute to it.

Let us arsume thet the bese of the contirentes consisted x a rock surface, possibly prontly melted and soliditied but still not and soft. The inpact parameters which suit best the redevant crater renge from 16 to 64 ku axe those of lfodels D and E of Teble $\overline{Y I L}$ (Fig. 3), We may thus $\operatorname{sot} \mathrm{X}_{\mathrm{p}} / \mathrm{B}_{0_{2}}=p / D=5.0 / 28.1=0.178, \mathrm{w}_{0}=3 \mathrm{ma} / \mathrm{sec},{ }^{2}=0.25$, $s=2.8 \times 10^{8}$ dyne/ cm^{2}. From (25) the volume exceveted is

$$
\begin{equation*}
V_{e}=0.0435 \mathrm{~B}_{0}^{3} \tag{184}
\end{equation*}
$$

The filight renge of the ejecte, froportional to the produst sh h^{2}
 mare craters. On the other hands the creters of relevent sizo on continentes are ebout 25 tirnes more mumetrus then on maxie (Baldwin, 1964b)s or their spacing is cbout 5 times closer: the overlepping of ejecte of neizhouring cratere is thus similer on the continentes end marie.

In Teble $\overline{X X X}$, Balavin's (1964b) crater counts on the continentes as conterined .n his wable XI axe nsed to ectimate the thickness of ultimate over. ey, i.e. the layer or ejecte of density $p=1.3$, prom duced from a sock layer of $\delta=2.6$ by the counted visible creters of the highlands. The rubble layer thickness so obtained is a lowex limit, the oxiginal surface was xubble itself end not herd bedrock. However, trom the model of origin of this surface eo depicted in Section IV.G, it is probeble that the bearocir preeting the final bombardment wis parrily melte and essentially compacten, as also is supported by The evidence of crater proxiles (table, xIV and Fig. 3). The estimated overlay thickness distribution as arrived at in Pable XXX is therefore linely to be e close aproximation.

[^1]

 Luge Conbmanses.

In the teble; the 3 rd colum givee the axcter areat $\mathrm{K}_{0}=0.75 \mathrm{~m}_{\mathrm{B}}{ }^{2}{ }^{2}$ the tth colum, the frootionel oretar coveroge $n_{i} S_{0} / 10^{5}$; the 5 wh colvan, the eree within a 5 han fringe over the cretor rim, $S_{5}:=0.75 \pi$ $\left(B_{0}+10\right)^{2}$, on the aftective frea covered hy the ejecta, inchudiae the creter intericx; the 6 th oolum; $\bar{u}=n_{i} S_{f} / 10^{5}$; the tractionel bowerege
 exceed anity fhioh means ovenkpuine); the cotuel coversge on fract-
 tekes exclusite precedence over a challower one, the distribution of overlay in orcer of thichess is that of the atstribution of tie fringe ereas in the crder of decreacing oreter size. the percentage area in
 the average thichness of overnay as given in the 9 th colwm is thet
 (mint econuing to (184), the fector of 2 ellowing tor the nmiler dencity on the ejecte. Fig. 11 repreaente this distribution ofoverney thakness in the contincntes. The loth or last colum of Teble XXX contains the afrerentiel overley, A, x as avere eed over the entire area, the total cumaletive thickoss excecas 10w, but this levelledmout everege convegs an jmeocurete impression of the aetwal non-minform distribibion featured in thegth colum end Fig. In.

D. Gexlay Peqticle Size Dictribution

From surveyor and Fonger pictures, as well as fron en vaderotendm ing of the process of fregmentetion in cretering impetit, it follow thet the overiay rubble contains 311 jexticle sizes from mieroccopic dimensions up to meter size bouldere. Let us ettempt to prediet the perticle size distribution from the plysios of cratering as outlined int Section II.

It is a 'ell knom fact thet the strength of meteriais jroreeses with decreasirg linear dimencions. The effect is caused mainly by impertect chasional coufting botwen the molecules of the lattices only a shell fraction of them being in full contact vith cach other. Gne of its conscouences is the layered moxhhojogy ot meteor eceter "dobries in the imer portione of thi crater bovis the greater shoct
pressure padres fine－sreined rock－flour，while on the cutekite the rock is fractured into sizable boulders．

Let y be the fractional crater mass as in Section．II and Mig．I． The shock pressure is proportional to y^{-2} and this can be set equal to the destruction strength s．

$$
\begin{equation*}
s_{y}=s_{c} y \tag{185}
\end{equation*}
$$

whichiresults in fragments of average size R ，guck that

$$
s_{B} \cong s_{y}
$$

We assume a power lav for the strength dependence on size，

$$
\begin{equation*}
s_{R}=0 R^{-y} \tag{186}
\end{equation*}
$$

The exponent y can be roughly estimated as follows：For fran：te，at dimensions of the order of 20 cr as in building industry， $\mathrm{s}_{\mathrm{c}}=\ldots 2 \times 10^{\mathrm{f}}$ dyne／cm ${ }^{2}$ ．Its typical molecule， $\mathcal{G i O}$ ，has a lattice energy $0: 2.3$ vv or 4.5×10^{-12} er f and occupies a volume of $3.7 \times 10^{-23} \mathrm{~cm}^{3}$ comes pending to e mean distance between lattice nolecinges of $3.4 \times 10^{-8} \mathrm{~cm}$ ． For a bond of two molecules the energy equals one－third of the lattice energy or 1.5×10^{-12} erg，and the force of cohesion，with an ：inverse fifth－poper low of interaction，equals

$$
1.5 \times 10^{-12} /\left(0.2 \times 3.4 \times 10^{-8}\right)=2.2 \times 10^{-4} \text { dynes. }
$$

Distributed over an effective contact 3 area of $\left(3.4 \times 10^{-8}\right)^{2} \mathrm{~cm}^{\text {？}}$ ，this corresponds to a cohesive（tensile）strength $s=1.9 \times 10^{11}$ ayile／mi ${ }^{2}$ ， at Effective dimension $B\left(s t a n d s\right.$ here for diameter）of $3.4 \times 10^{-8} \mathrm{x}^{2} 2^{\frac{3}{3}}=$ $40,3 \times 10^{* 8}$ on．Appipring equation（185）to the two extreme venues of s ，we find $\psi=0.254$ as an average exponent over a relative range of 5×10^{8} to 1 ia the sneer scale．

For a check，consider the Arizona crater with boulders up to 20 meters，supposedLy from the periphery $(y=1)$ and rock flour of $1: 210^{-3}$ on et an effective value of $\bar{y}=y_{f}$ ．With the value of ${ }^{2}$ 严 as sugges：ed above the ratio s_{y} / s_{c} becomes then $\left(2000 / 10^{-3}\right)^{0.25}=38$ whence，accoriting to equation（185），$y=0.16$ is found to be the fractional mass $2 ;$ ，which rock flour of the specified grain size is expected to be produced，a not unreasonable result．

$$
\begin{align*}
& \text { Substituting } s_{R}=s_{y} \text { from (186) into (185), we have } \tag{187a}\\
& R=y^{-N} x \text { cost. } \tag{187}
\end{align*}
$$

$$
\begin{aligned}
& \ln =R^{\frac{1}{2} \dot{x}-1} \cdot i d .
\end{aligned}
$$

51.

 $d y / a^{3}$ or, with ($187 a$), the frequency of fragnentsamong orater debris ranging in size froun R to $\mathrm{R}+\mathrm{dR}$ becomes

$$
\begin{equation*}
T(R) O R \sim R^{2 y-A} \quad \partial R=R^{-n} d R \tag{188}
\end{equation*}
$$

where

$$
\begin{equation*}
n=4-\frac{1}{2} \eta \tag{189}
\end{equation*}
$$

is the "frequency"index" in the power lew of particle dieneters as in equation (161). With $\vec{v}=0.254$ s be find $n=3.87$ for the predicted frequency law of cratering fregmente as counted in a volume. For comparison, 3.G. Smith (1967) finds :Or the surface distribution of fragments with $R=2-20$ ch on the Ruscian Tune pictures $n-1=2.9 \pm$ 0.2 or $n=39$. A similer value of $n=3.77$ is found by Hapke (1968) from the Surreyor pictures. It may be relevant to note that for volcanic ejesta in Hawail which procnced impect oreters in the surroundings, Hartmen (1967) finds an empirical velue of $n=3.64 \pm$ O.I, close bat not quite equal to the exponent for lunar overlay.
the agreement between the predicted and observed frequency functions of lunar suxface debris is remarkable and quite, surtarts the cratering theory as presented in Section II. Of course, erosion by micrometerites and repeated turnser of the overlay by new imm pacts will tond to increase the number of smell Pragments at the expens of the jarger ones, increasing thus also the value of n above thet padicted.' Apperently, none of these effects has been rery efficicnti the first, probebly, becuuse the suriace fragments axe are buried and protected from exosion sooner than they are eroded; the second because the mass frection of old overlay in cratering ejecta is small as compared to the contribution from new crushed bedrock.

The derendence of strength on size would apparently invite sone revision of the cratering formalae of section II. The size of the largeet blocks, as rormed at the crater 2 im , is about $1 / 40$ to $1 / 60$ of the crater ciameter for the Arizona crater, and $4 / 450 \mathrm{~m} / 110$ for the lexgest block seen on the far side of the stone-wall lunar c:ater of Survejor I (rig.6). The surveyor I bedrock seems to heve ben shattered brfore the formation of this crater, and the blocks may be too small. It appears plausible to assume that geometric mimilarity
20...
holds, and thes the charecterjatic value of the marginel erushing strm ength (s_{c}) detemining the volume and dianeter of the crater corresm ponds to a paricle diameter equal to $1 / 60 B_{0}$, so that for typicel granitic or besaltic bedrock, the effective lateral strensth, according to (186) w.th $V=4$, becomes

$$
\begin{equation*}
s_{c}=4.0 \times 10^{8} B_{0}^{-4} \tag{190}
\end{equation*}
$$

ayne/cm ${ }^{2}$, wibth B_{0}^{c} tin lim. 4ccoraing to equation (7), when $s=s_{c}$ with out a gravity : Yrictional component the crater dianeter then variee as the 1.06 pover of projectile diemeter, instecd of strict proportionelity

The effect on penetretion, anounting to the $-1 / 120$ th power of linear dimencion according to (6), is negligible, Thus, leaving the penetration paramer p unchanged, the cratering parameters in the first half of teble : Wive somewhat chenged ohrough the apolication of (190) and are now as given in Table XYa. Fre newfigures for creter dianetex B_{3}, in the fouth line of the telle, are now inarkedy larger tren the f8mer values , 5 th line), but the ratin of the two does not increase monotuncusly with orater size, the deccease in the cohesicnal lateral strength, ${ }_{c}$, beine belanced by the inversing friction component. For this xeasol the effect remains sually the decreese of strength with increasing dimensions, altiough fivoring greater numbers of incidenco of laxger creters, is utterly inatequate to account for the obscrm ved excess in the numbers of big creters (Tables XII, XITIT).

WIT: Mechanical Propertiescof Lunar Top Soil /

Surveyor spacecreft fictures and experinerts as televised to earth have shown thet the Junar foil is grandex, with a very broad isistribution of grain size from meter size boulders to summilinetex jurticles (Nowell, 1966,1967; Jafre Etgl. 1966, 2,6 , MASA, 1967; Christensen etel 1967; Hspke, 1968). Hard pebbles are present, ass well es chums of coegulated firer material. Impects of the Surveyor footpads (Figs. 12, 13) as monitored by strain gage force recopd data and supplemerted by static penetretion tests (suxveyor III), yielded experimental hata similer to these described in-section II. From which the streagh paremeters of luners soll could be derived. The paraneters car be
defined in disterent ways, depending on the mechanical model uncd. Although the lata are soarce, they ary sufficient to show considexable qualitative aj quentitative similarioy with temrestrial naturel

M ABEX XVa
Oxttering Parametere for Post-Tare conditione with Eize-Dependent 366

TA BLE XXXI

Surveyor I, Footped 2: reconstruction of rotion druing penetration
(e) Strein gege data

Averege veloutty:
$\overline{\mathrm{w}}, \mathrm{cm} / \mathrm{sec} \quad 284 \quad 9.6 \quad 12.9$

$\begin{array}{lllllllll}\mathrm{W}, \mathrm{cm} / \mathrm{sec} & 345 & 331 & 304 & 275 & 130.108 & 10 & 13\end{array}$
The NASA tem (Jaffe etal. 19660 p. 69) gives $3.6 \pm \mathrm{m} / \mathrm{sec}$ 。
beech gravel: especially in that the cohesive strength rapidly increase with depth Equations (37) oui (37a) appeared to be appropriate piso for the frontal and lateral resistance of las soil. Some compressliability of the lunar soil was observe e, though insignificatn e rough to justify the application of the penetration and cratering equations oi Section T. Table XIX antoine the results.
 fila") for an inner crater slope of about 14°; exeter about 230 meters in ammeter, in ocean as Procellemam, $y=2^{\circ} \cdot 9$ south, $A=23^{\circ} \cdot 3^{\circ}$ east (astronomical) ox west (astronautical)] are listed ind interfered with equation (37) and three assumed values of a^{2}; test No. 6 is drejsive and would require $a^{2}=2.4 \pm 0.8 \mathrm{~cm}^{2}$, while other te ste axe inatrerent in this respect. It was decided to assume $a^{2}=2 \mathrm{~cm}^{2}$, the meme as for terrestrial sand (Section II. i). There ie not much uncerteinivy in Sp as depending on the particular value of e^{2}, and for the value coven the logarithmic ween is

$$
s_{p}=3.21 \times 10^{4} \text { acme } / \mathrm{cm}^{4}(123 \cdot \text { to }-29 \%)
$$

to be comped with a value of 5.55 y 10^{4} for similar experiments with texrestrin sand [treble MI (a) 5]:

Tent Wo. 4 s made on a trench motion, yielded 9.15/3.21 = ci. 85 times a higher value at a depth of 6 on after removal of the overlying material; this compares favorably with Experiment (aa) in Pablo TM (a) where an 8.twrid increase in the bearing strength parameter was obteincd at an excavated depth of 15 cm .

The dynamo beets are based on the impact of surveyor footpad. The footpad has a circular top 30.5 m in diameter (Fig. 12) er d a total height o: 12.8 cm the circular bottom is narrower, 20.3 cm in diameter and widens upwards over a con cal section of 45° angle, 5.1 cm thick. The footpad is not rigidly comected with the very much more massive main body but it is linked to it by a system of chook absorbears with strewn gases. At the first contact, the footpad acts almost as an ináevendont projectile, but as soon as it decelerates, the shock absorber yields and increases its pressure on the footpad which no longer moves freckly by its own inertia The equetione of motion of Sections II. Dit which refer to a right projectile do not amply therefore in this case. On the other hand, th strain gage data provide a

I \& BE E XXI

62.
 and the amownt of rediel momentm trensmitted during penetrobion.

Theory of impect oruturing reguires that the terget material parte latergliy whth a relocity aetermined by the proceding history of penetration, higher then the instantaneous penetration velocity. A cone of 45° as in the footped will not therefore, in its forwand motion, be ebi.e to overtede and contact the netexisl perbing eideway. It has becn mace assumed therefore (contraxy to some humben by the masa tean thet, during inperts contect mas mainteined only with the bottom area of $324 \mathrm{cn}^{2}$ of the footpad.

The shocl: absorber records give the fine vertation of the force Pa along the foborbex azism making en englef with the drrection of imper from abut 61° at no $10 a d$ to 70° at full loed. The decelerating Loree is then $\mathrm{F}_{\mathrm{z}}={ }^{\prime} \mathrm{F}_{\mathrm{a}}$ coso. Prom erephicel and tebulax deta desm cribing the inpect events (loc.cita) a plausible approximation, cond $=$ $0.487-0.147 \mathrm{~m} / 0$ with $0=7,5 \times 10^{8}$ cynes, wes introducede The maximun load whioh is reached at groatect penetration, x_{0}, yields then s; $(\max)=\mathrm{F}_{\mathrm{a}}(\max) / 6$
and, from $\left(37!\right.$ with $a^{2}=2 \mathrm{~cm}^{2}$
$\mathrm{S} ;=s_{p}(\max) /\left(\mathrm{s}_{\mathrm{o}}^{2}+2\right)$
is obtained directiy.
 gage when entered into (37) yicld a fev discrete values of x and the averege specd of penctration between them for successive intervels of time. The iolitial speed at impact, vo and the shock entry fpeed, w, as well as the initial deceleretion dry/at at entry (mintuereed yet b; the shock absorber) being estimated, thistory of the forward notion ont footpad botbon suxfece cen be reconstinctod (graphically), to fit the averege velocities and the boundaxy ondition. In such mamex, fox Footped 2 of surveyon $\underset{\underline{E},}{ }$, a reconstrue; on has been obtained a; describe in Table zxyI.

The time vanietion of velocity a' shom in Table XXXIT (3) is more or-less empricel. It can be interpeted in the following visy: during the tiret 0.002 see the deceleation is balanced through incream ging conpling by wey of the shock atoorber, with the mein mess of the spacecraft; beween $t=0.002$ and 0.009 seo the coupling accelorater
the footpa to viriwaly the velooity, of the speoecraft: feftom thet,
 the footped is brought elnost to rest within the neat 0.007 seconds by increasing resistance and acts now as an effective breire on the mein body during $t=0.016$ to 0.114 sec , while its own penctretion iss slon and the kinetic encrey of the speenett is cissipated in the threo shock-aboorber lege:

The radial homentum released in the lumen soil by tho impact consists of two components - the shock monentum imperted to the target at Pirst contact, and the hydrodyomic pressure integral

$$
\begin{equation*}
J=\left[\left(w_{0}-w_{2}\right) \sin p+K_{0} p^{s} \int_{0}^{t} w^{2} d t\right] / 2 K_{a} \tag{19i}
\end{equation*}
$$

to be used with (42). The lateral strength paraneter is then dexived ultimately from equetion (44), using tine terrestriel beach ave:ege of $F=0.118$ as the only awalable guess.

The data for Footpad No. 2 of Survayor I Thich lended on a practically rorizontal surfece in Oceanus Procellerum, at $y=2^{\circ} .5$ somth, $A=$ $43^{\circ} \cdot 3$ east (astron。) are the best of those quoted in Table $\overline{X x T I}$ (b). The penetration, 5.8 ch, was derived from the shadow of the top surface (2 f $=30.5 \mathrm{~cm}$) at lov soler altituae; the surface was tilted. 9 cm above undisturbed ground level et one nd, 5 cm at the othex, ar a mean of 7 cm ebove grourid level. Substracting 12.8 cm as the thicknees of the fcotpad, we obtain $-x_{0}=7-12.8=-5.8$ om frox the bottom suxface, with 4.5 cm at one end and 7.1 cm at the other end of the bottom (2 $2=0.3 \mathrm{~cm}$). The difficulty of estimatee by mere jaspection of the photographs is illustreted by the fact that in preiminary reporte (Newell, 1966; Jarfe, etal. 1965a) the depth of penctration, X_{0}, was estinated to be only 2.5 cm . The cratex rim-tomin diameter, $\mathrm{B}_{0}{ }^{2}$ was more easy to estimate, although the darker materiel ejectod beyond the rim may he, ve produced the impression of a somewhet broader crator then the ecturl size (cf. Fige 14 which shows more contrest than Fig. I2). Besides, because of the motion of the legs as controlled by tre shock absorbex, the footpad come to rest abcut 5 cm inwards (toward the spacecreft) farm the original conter (f the cratex, and assumed thus an asymetric position (Wis. 12).

Ir the other Loux neses of reble JoxI (b) the parane tor were mare diffieult to astimate. the publeations Jafece dtan

 Fhe penetretions are probabyy moed to $\therefore 0.5$ ont the orater diw amerors to t2 2 , while the veloctties mad velocity histories were considered in parmalet or in homology with the abe or Table xuxt as of better queltby the very low welocities sor Eurvejor ITI are not in accoro with some stemanams in the ingh regortss but follow dixectly from tae gtratn gere time recoscs (Iess rellable then those of sumyeyor I) anc are sum porter by the concurcant values or c so obtaned.

The merk ejecta sumponchin the inpeot dretera (Figo :2) sepm to inciabe that xadiathon amore blackening is not p onewry procese and. that the very surpacs, exposed to immentate ractation, becomes stighty blesehed ory rether, that the motepial wen buried and protected from airect rodtation be -
 Hapke (1953): the direrence then jedo woy be due to difterent greaminest and porosity, and nat to physieo-chemicen changes in the grains. Footped fo. 2 of sumbegoz til was ejected from tis original onster at thinct touchiown and came to rest at a
 crater (pigo 13) (used in abie xKix) is lata open and appencs to beve a higher athedo then the undisturbed surface or the ejectanmen resutt on compression. II is seems to support the geomenicrl intorpretation of the cufeorenoes in atbedo.

$$
12
$$

 an average outer margin at 34 cm fin sone pectors reaching to

 che the extiene not-boumasuk dight distance of the ejecta from the eque of the footpad can be set equat to $L=47-10=3$?
 a amell contribution srom eriction, $130 x_{0}[$ Equations (11) and (12)] or 750 dyne/ mn^{2}, is to be adcode mating $\varepsilon=4.33 \times 10^{4}$,
 (4) Fronlowhe the line of reasonirg of Section il. F; end itith $w_{0}: 364$ omsee, sxom equation (16) we find $y_{Q}=v_{2} / w_{0}=0.5$.
 $\beta=i, \sin 2=0.28 ; \cos =0.38[\operatorname{crom}(27)]: 8=162 \operatorname{cr} / 2 \mathrm{coc}^{2}$, equetion (45) yiejds the ejection veleathy to $L=37 \mathrm{~m}$ as .

 $\cos \underset{\sim}{n}=0.92, y=100$ cm/sec and $\lambda=106 / 364=0.20 ; \lambda^{2}=0.080:$ the sene velue the lunor ast seers to possese nigher intemal friction and lower timethe efficterey es compared to temesurial grovel.

The two Surveyor experimentw yielred vesy sinilow mechmieal parametens despite the diference in terretr, Suxveyor I bering honded procticaldy on level erromds surveyex ITT on the inmor slove on a crater wall inclined abcut 1 fto the horizon (harma 1067; Pert II, po20). Although Doth are on a maxe surfece on Ocemus procellacum; mear the lunar equetore but sepmated b;

70 ${ }^{\circ}$ in longitude oz by 600 km , the mechenton properties are pronaly representetive of the tppor leyer of Iunar soil in Senead ad to a depth of $50-300$ m to whon extrapolation of equations (37), (37) anc (37b) is permisaible. The parametera are chierly Getemined by ble thenrmaned matrox. of the oraex of $0.001-40.00 \mathrm{~cm}$ es shom by the xetemtion of the fmprinte of the footpad pattem of a netwoy of aboit 1 on mest with ridges 0.006 om high on Surveyor 11 I Footpad No. 2 czeter or the thime tonchdom (hovevex not fisthe in the raprowneion of (is 13). Lumps on coasulated greins were presemt fron O. 1 to 5 cm , bbout 1 m averame size; they apporenty consist or loosely hound aroller graine and ire easily emphed. These Jumps as well as admined occabionnl hara pebblea or rock sptintex; by virtue of the cooprative action ot the construtumt greans at, inner contects, are proyably responstble for in. creasing the thembl conductivity and yielatng a lerren efocibue "thermal" grain size of the oxder of 0.03 cm (frinte Axir).

Tabie twatI contanc a summary of the mecnentod chascotosistict of Lunar soij (from Table juxI) as compared with those of teruestrat naturel gravel (from thble III).
 eights colums are given the suresoe bearing strength, $s_{p o}$: and the surface lateral strentith or "eohestion" s_{0}, bother mo responains to zero penetration, $x=0$ or $x_{0}=0$. with $s_{o p}=6$ x10 cyne/ cm^{2}; an obtroneut with heovy equipmemt totalling 1.50 kp but weoghing only zof $x 10^{7}$ aynes on the moon will be supprod

:TABE KXXITI

 Semestrial Gravel.
 to be used in perticuler with equetione (37), (37a) ena
 $$
a^{2}=2 c \pi
$$

CoERE Avonge. Probable Suxface Average Frobable Surtece Finetio
of Exic. (i) Eange Strength Renge Etrength eftiaience
(i) $10^{4} 4^{4} \mathrm{~cm}^{4} 10^{4} \mathrm{~d} / \mathrm{cm}^{4} 10^{4} \mathrm{a} / \mathrm{cm}^{2} 1 \mathrm{C}^{4} \mathrm{a} / \mathrm{cn}^{4} 10^{4} \mathrm{~d} / \mathrm{cm}^{4} 10^{4} \mathrm{~d} / \mathrm{cm}^{2}$ Dynamic Iynamic

Eunar
soil,$\ldots \quad 2.5 .0 .22 .2-3.0 \quad 5.0 \quad 0.140 .020 .10-0.20 \quad 0.23 \quad$ 1.0.0. 0.0

S Statio. Static
Sunar
5012 (1) $3.2 \div 0.32 .6-3.9 \quad 6.4$

Without sinking a centimeter into the lunar surface by 400 c^{2} contact surfece-just bout whet may be provided by his two rect.

The minimum lateral strength of lunar soil. or its sumface value of $s_{0}=2900$ dye/cne cen be compared with the mint mu cohesion of grans in wacko, about 0.5 dynes (Sraolahowsk,
 gratins in contact per cm^{2}, or an average spacing (diomptex). of about 0.023 cr to account for the cohesion of the matrix. This does not differ so: very much from 0.033 ch as the average
 dustballs; or the gratis y skeletons of cometary material which remain atop lees have evaporated, have a crushing strength so of about 10^{4} dyne/cni , at average grain dienater from 0.01 to
 soil at $x_{0}=2 \mathrm{~cm}$, thus at an average depth on about 1 cm , although the density is less. The two kind of material seem to have inch in common.

Fxtiopolation of equation (37a) with $S_{c}=1400$ ayne/cu ${ }^{4}$ would yield the strength of terrestrial alluvium $s_{c}=420.0$ in dyne/cmíy (a probable upper limit for granular material) at a depth of penetration of $x_{0}=170 \mathrm{~cm}$. The overlay is much thicker then this (Section XT G. C), sind a constant value (f cohesive strength of this order can be assumed to bold fo: most of the thickness of the overlay. The corresponding upper Limit for the compressive strength is $s_{p}=7 \times 108$ dyne/ em?

DX. The Beyystice Fryimoment

6. Electrostatic versus Ballistic remspomt

It has been pointed out in
 Gold (1SE5), does ant work on the Infer wurece-mbecto because it would have obliterated sharp transitions of contrass whin are actually observed, and de jump because its effect ir the actual environment a the moon cannot be sigmaficent (singer enc walker, 1968) , me ratio of elechertatic. repulsion to gravity of a small particle on a planetary surface equals

$$
\mathrm{F}_{\mathrm{g}}=2.60 \times 10^{-6} \mathrm{I}^{2} /\left(\mathrm{E}_{\mathrm{K}}^{2} \mathrm{~T}_{\mathrm{d}} \delta\right)
$$

where I is the common electrostatic potential of the surfare end the particle in volts, g the acceleration of gravity, li the spinestral radius and of the density of the particles If is the elect. .static plasma screening leofth (similar to Debra Jength for a planetary surface charge. For the moon, $g=$ wis $\mathrm{cm} / \mathrm{sec}^{2}, \delta=2 \mathrm{E} / \mathrm{cm}$ for individual. irregular particles, $1=46$.

The effect would be noticeskle for $\mathrm{F}_{\mathrm{L}}<10^{-4} \mathrm{~cm}$ $\mathrm{Fe}_{\mathrm{e}} / \mathrm{F}_{\mathrm{g}}>0.3$ and of decisive importance for $\mathrm{P} \leq 5.8 \times 10^{-5} \mathrm{~cm}$,
 impact, these small particles may float in sunlight within the screening length avenges tout 100 cm tron the suit ce,
theit chatge subtained by the photolectrio eftect moth entering a bhedov when they become reviritized and foul bactro The virtuad absence of any trace of devall blaritne (which should be caused by particles of so himh a moblitity indiectes that thess amell partictes camot play ony cimaiteant polf on the Iunar sumise. The thermal conductivity and the cohesion of lunax soin also incticate that the relevant avorase particie stae of lunax dust is at least 100 thas mreoter then thet at whion elecrostatie transport exficiently bagins.

Therepoze only the ballistic:l transport of dust on the Iunax surtace, coused by meterito thasec, is on redevance.

B. Tmpnct fiuses and deatering in overiay

As cistinct from accretion and loss, tho main sources are cousing the noblity of the duat direct mebcorte impact into the cuat layer, and the impact of debris from secondery ejpera broken of? the bedrock end accumbating as overlay. nltough the latter source bignifies also a kind of tronsport, from
 plain uncisturbed by largemsele wrotering its eftect amouts to virturl accretion, wile the "abomel" orea of a new crates from which the material is taken begins a new histo y and is etypical. Or course, the sactors of dust transpori begin ge once to work on the surence of the newly formed croters, tut some of the starting eonditions, such as the trickness or cuerlay, axe different.
 stivrins the dast ean be provistongly membuba by the watal momentum imparted to overlay by fon-penstorting moneectuss

 chatery belonging to thempormponent amd whidh are aly non -pene\% To 20 . fror the $k 0110$ mereoxtte groupg $\mathrm{E}_{2}=200$ on (non mpereroting, the lamer membars lean to bacic erotertna and prochee sew oventay srom the becrock) ; som equation (153) $f=0.25, W_{0}=20 \mathrm{~km} / \mathrm{sec}($ Opik; 15550$) ; \mathrm{k}=3.3, \mathrm{H}_{1}=16 \mathrm{moz}$

 or wterly neglistblea As to seoondryy ejeotr, only bhe hernd sproy conponent ts here of importance, which onkinates riom the bedrock and thus is representative of the new ovemay: its rate at prosent may be oloee to 42 matera $i k=3000 \mathrm{~g} / \mathrm{cn}^{2}$ in

 the parent becrock, at $y=0.5$ as we median mose and $x / x_{0}=0.5 y_{9}$ equation (4) (16) , (24) and (2ij) sugest an avemure ojention os neconcery impact velocity or $\because 0=0.10 \mathrm{~km} / \mathrm{sec} \mathrm{k}=0.53 \mathrm{ma}$

 tains as miven in Table Rxuv.
 ejecta depend solety on the mechanicel properties of the tareth the staues of the table ravi sppoximetay reprosert the weletive mixing efficienoy of the aeporate sources whin respect to the fine gremular comphent of ovenay rhere is, nowevars
 of the diferent populations. Componts $J_{\text {I }}$ end Jo are corw centraters in sumll particle sizes mad sweep the surfoce withwht mak penetsetion and mith shallon craterinc: whe fi prevela in lame projectile simes wich are ponevmang ard owterint brough the entire themess of overlay. yo den pite prefalenoe of laxge biges, prosesses a lou velocity and does not penetrate dep onough to stix the entire layer fhus, deopite the lesser machanical swearing power, J_{2} and J_{e} are moinly wspongible sor cratering in the surfece layer, wa J_{0} in adilition provides sitable boulars: the role of fis tad J_{0} then wonsisis in levelling out he crotera and crateriots, end in colating (grindine) the bouldexs or in "polushingt - smoothing out the suriace rourtness contmunly procucen by the two other components and themselves. the actual st the of the aurece is then detominec by an equilibrium betwern the tro opposing processes. The yole of components dia and for
with rospret, to tho overiay hayer is negligible and need not, be further considered it this context.
 supported flux sha cratarine, date in overlay are given for the
 level mars surface. The strpee semple is suphosed to be remote from lans" ceaters; it shoult correspond to a "nommi" overlay thichess of 13 metors which, eceomine to able XXVI, moy be represemblive of about 62 per cert of the total nare sumface

 velocities ore based on astronomical deta in the author's interm
 which he believes gives a well belenced eccout of the observetions and which he is reluctant to exchange for data from other soures; "he cratering parmetens, equations and coletions are those of Sections II. In C, Tr, wile n is the Crequency index of radii according to equation (IGI); the cohesive strength abta for the overlay are those of section VIT. a is the equivelent "sphewical" madus of the jmpocting meteoroids B_{0} the rim to rim crater diveters x_{0} the penctrations. x^{1} the apparent creter depth below the undisturbed surface (essumod, to heve been flat) as corrected ror fallback.

Prit D of fable XXV, contains the flux end cratering dyta for the ejecta ribich are confibuti fe to the overlay. The to-0. mass influs is assumed to correspond to a present accretion

$$
\begin{aligned}
& { }^{5} 10 \\
& \text { Tambex zxiv }
\end{aligned}
$$

delative Swecping ou Stirring ifomentum, Per Cont

J_{15}	J_{0}	J_{1}	J_{2}	J_{3}	J_{e}

Source Bitcro- Dustball heteorites fomet Hars Secondary Total Stimang, meteomten Freters Apollo Group juclei Asteroids Bjecta

Pover, $\%$	79.5	2.8	2.3	0.2	0.0	15.2	100.0

TPABLE XKXVI.

 Hezaxa

Inagnesium sheet thick-

ness, nim	0.4	1.2	1.04		14	42
Steel sheet, thickress,mm	0.14	0.42	0.5	1. 5	5	15
numbe 3 pe punctrares per $100 \mathrm{~m}^{2}$ and il years	2000			$0 \cdot 1$	$1 .$	1.5

Incjaent aluxes anc Craberine Pereneters in Overley

at Presem $(p=1.3)$
"Wormel" Overlay Surface, Remote Rrom Laxe Cretars

(9) (the projectile is explosively austrojed)
$w_{0}=6.0 \mathrm{~km} / \mathrm{sec} ; \delta=3.5 \mathrm{~g} / \mathrm{cm}^{3} ;$ upper limit radius $f_{0}=0.035 \mathrm{ca}$;

per cne horizontol surfece and year; cwalative mase flux,
$d \mu / \partial t=1.0: 5 \times 10^{-5}\left[1-\left(R / R_{0}\right)^{1.3}\right]$ gram per cu^{2} and year Cratering parameters: penetration negligible, $\pi_{i}=5.0 \times 10^{4}, s_{c}=2.32 \times 10^{3}$ dyne/ $\mathrm{cm}^{2} ; \mathrm{k}=2.0, \gamma=45^{\circ}, \underline{p}=3.52, \mathrm{D}=169, \mathrm{D} / \mathrm{p}=43.0, \mathrm{~B}_{0}=333 \mathrm{n}$ $x_{p}=7.04 \mathrm{R}, x_{0}=5.92 \mathrm{R}=0.2 \mathrm{~cm}, x^{1}=x_{0}(1-\cdots)$; cumulabive

F , am $\quad 0.035 \quad 0.0205 \quad 0.0121 \quad 0.0060 \quad 0.0010$

cuanl. crater
coverage, $\sigma_{B} \quad 0 \quad \therefore .72^{-4} \quad 8.33^{-4} \quad 1.23^{-3} \quad 1.81^{-3}$
$\mathrm{B}_{\mathrm{O}}, \mathrm{cmi}$
11.86 .7 4.1. 2.1 0.3

TABIB XBXV, continued

B. Visual Dust bells. (fig)

(the projectile is explosively destroyed)
$W_{0}=18 \mathrm{kn} / \mathrm{sec} ; \delta=0.65 \mathrm{~g} / \mathrm{cm}^{3} ;$ Lower Limit radius $\mathrm{R}_{0}=0.061 \mathrm{cmi}$

 $\left(\mathrm{R}_{0} / A_{i}\right)^{1.2}$ gram per cm^{2} and year. Cratering parameters : peretraction of majority small; $\bar{s}_{c}=2820\left(1+1.47 R^{2}\right)$ dyne $/ \mathrm{cm}^{2} ; \mathrm{k}=2 . \mathrm{a} .1$; $\gamma=45^{\circ} ; \mathrm{p}=1.82\left(1+1.47 \mathrm{R}^{2}\right)^{-1 / 30 ; ~} \mathrm{D}=223\left(1+1.47 \mathrm{R}^{2}\right)^{-0.233}=\mathrm{B}_{\mathrm{c}} / 2 \pi ;$ $x_{0}=2.91\left(1+1.47 R^{2}\right)^{-1 / 30} \cdot R ; y^{\prime}=x_{0}\left(1-F_{B}^{2}\right)$;cumulative $\operatorname{crs}^{2} t e z^{2}$ ares coverage,$\sigma_{\mathrm{B}}=0.785 \int_{\mathrm{B}_{1} \mathrm{~B}_{2}\left(\Theta_{g} \triangle \mathrm{H}\right)}$.
$\begin{array}{llllllllll}\mathrm{R}, \mathrm{cm} & 0.061 & 0.109 & 0.194 & 0.415 & 0.743 & 1.32 & 2.84 & 5.08 & 9.03\end{array}$
Curule. mass
fraction $\begin{array}{lllllllll}1.00 & 0.50 & 0.25 & 0.10 & 0.05 & 0.025 & 0.010 & 0.005 & 0.0025\end{array}$ Cumul. number $3.72^{-9} 3.28^{-9}, 2.85^{-10} 1.18^{-11} 1.01^{12} 9.12^{-14} 3.75^{-15} 3.30^{-10} 2.89^{-17}$

Fraction or
granular
$\begin{array}{llllllllll}\text { target, } & G_{g} & 0.49 & 0.52 & 0.57 & 0.63 & 0.67 & 0.72 & 0.79 & 0.85\end{array} 0.92$
Cumul.crater
coverage $V_{\mathrm{B}}^{5} \quad 2.21^{-5} 6.64^{-6} 2.02^{-64} 3.17^{-7} \quad 7.23^{-8} 1.55^{-8} \quad 1.51^{-9} 2.67^{-10^{-8}} 4.50^{-11}$
shax Xicel Contrued
C. Heteonites-hpol12 aroup (f)
(the projectile is exthosively destroyed)
$W_{0}=20 \mathrm{~km} / \mathrm{sec} 5=3.5 \mathrm{~g} / \mathrm{cm}^{3} ;$ redius mon-penetraing upper limits;

 cumulative mess $a / d a t=5.5, y 10^{-11}(2 / 6)^{0.3}$ gram per cmat and yeer. Crateming parameters: $s_{p}=2.48 \times 10^{4}\left(2+\frac{1}{3} \times 0^{2}\right)$ dye $/ \mathrm{cm}^{2}$ when $x_{0}<173 \mathrm{~cm}$ and $s_{0}=7.6 \times 10^{2}\left(1-1 / 3 / x_{0}\right)$ when $x_{0}>173 \mathrm{~cm} ;$

Cumbl. mess
frection
$\begin{array}{llllllllll}\mathrm{R}<\mathrm{I}_{0} & 1.000 & 0.813 & 0.659 & 0.502 & 0.408 & 0.330 & 0.253 & 0.245 & 0.2650 .2\end{array}$ Cumul. mumber

Cumul. creter

Cumal.creter

1. Ejecta from Penetrating Crevaring Gats
($\sigma_{e} . \%$ the projectile is not cestroyed; $\delta=2.6$)
part (e) refers to primary impacts. Contributing impacts (Apollo -Wetorite type) th from 400 to 1600 cm (Inner impacts ave oubstive reach of "nomen." surface sample) f typical "feeding" impact $\mathrm{R}=300 \mathrm{~cm}, \mathrm{~B}_{0}=30 \mathrm{~F}=24000 \mathrm{~cm}$ yielding largest ejecta

 per che and year; cumulative mass ing lux of ejecta $d \mu / \bar{c}=$ 3.47 盾 10^{-7} y. in gram per an and year, with $y=\left(x / x_{0}, 0.125\right.$ maximum velocity on ejection, wax ${ }^{2}=u_{s}{ }^{2} \lambda^{2} / y^{2}$, and average
 $v_{8}^{2}=2.17 \times 10^{8}, \chi^{2}=0.28 ; \sin \because=0.3 y$ maximum distance
 Impact into overlay, $w_{1} / w_{0}=0.842, s_{p}=2048 \times 10^{4}\left(2+y^{2}\right) ;$ s_{p} and m_{3} as in Part C of this table, $\mathrm{F}=0.562 / \mathrm{s}\left(\mathrm{com} \mathrm{m}^{-1}\right)$,
 $a^{2}=9 r^{2}\left(\mathrm{~mm}^{2}\right), \mu=10.8 x^{3}(\mathrm{gram}), m=3.47 \mathrm{~m}^{3}\left(\mathrm{~g} / \mathrm{cm}^{2}\right), a^{2} y^{2}=0.5\left(2 /(\cos \gamma)^{4}\right.$ $x_{0}{ }_{0}^{8}=V_{0}($ pressure component $)+v_{a}$ (dynamic component) $=V$ (total volume), $V_{p}=5.726 x_{0} \sec \%, v_{d}=10.13 k i_{0}\left(\sigma_{0}\right)$, $\dot{x}^{8}=x_{0}\left(1-V_{B}\right)$, all to be used with the equations of section II. E. The blocks under oblique incidence are ricocheting and usually settle on the maisturbed surface not fat from the math cither.
part; (b) contains crater statistics for the sum total or ricocheting chains: Cumulative number of craters to indiceted Limit $\left(S_{0}\right), ~ d N_{2} / C t=\sum 2.57 \cdot\left(G_{g} \Delta N\right) 。(1.5-0.50 \mathrm{~g})$ per cm^{2} and yest (primaries + mocoheting chain), where Δ in is the differential number of primary impacts.

Cumul. mess
 Cumul.
number:

$\cos \pi \quad 0.6000 .681 \quad 0.740 \quad 0.8000 .8350 .8030 .893^{\prime} \quad 0.911 \quad 0.936 \quad 0.941$

π_{0}, $69.158 .5 \quad 47.9 \quad 34.4 \quad 25.6 \quad 13.210 .90 \quad 7.02 \quad 4.36 \quad 2.19$
k. $\quad 0.160 \quad 0.2190 .2560 .3020 .3930 .4720 .567 \quad 0.6130 .6460 .656$
$\mathrm{V}_{\mathrm{a} / \mathrm{f}} \mathrm{y} \quad 0.6120 .611 \quad 0.6190 .6530 .7120 .7620 .331 \quad 0.873 \quad 0.007 \quad 0.929$

 $\begin{array}{llllllllllll}Q_{g} \operatorname{pan}^{2} y, 00 & \ldots 00 & 0.92 & 0.81 & 0.75 & 0.69 & 0.62 & 0.56 & 0.02 & 0.46\end{array}$ Gren.impact
cumul. numbes

$$
\begin{aligned}
& x \text {, om } \\
& 0.10 .05 \\
& 0.02 \\
& 0.0 \\
& 0.00 \\
& 0.0020 .0010 .00050 .
\end{aligned}
$$

(b) Prinary incocheting fupects (numbers reduced to seme crater dimeter himity B_{0}, s in the pen line above)
Cumul. Crater $0 \quad 3.23^{-15} 1.09^{-14} 1.48^{-13} 1.02^{-12} 7.10^{-12} 9.04^{-11} 6.32^{-10} 4.34^{-9} 5.65^{-3.3}$ number per

cuid year

cumal orates
coverage, $\mathrm{y}^{2} 0 \quad 1.18^{-9} 3.33^{-9}-1.00^{-8} .2 .00^{-8} 4.17^{-8} 1.20^{-7} 2.6^{-7} 5.72^{-7} \quad 1.76^{-6}$
 $\begin{array}{lllllllllll}\text { Average } x^{\prime} \operatorname{cm} & 53,3 & 44.7 & 30.4 & 25.5 & 18.6 & 15.5 & 6.57 & 3.77 & 2.24 & 0.92\end{array}$ nverage

$$
\begin{array}{llllllllll}
B_{6} / N^{2} & 27.9 & 14.6 & 9.3 & 5.6 & 4.3 & 2.6 & 3.2 & 3.2 & 3.1
\end{array}
$$

y_{16}												
	0.3	9,05								0.0002	$5 \times 10^{-5} 2 \times 10^{-6}$	
Cwan - mess freation. y	0.385	0.355	0.36	0.230	0.236	0.267	0.217	0.300	0.173	0.163	0.150	0.133
Cump ommers $x^{2}<x_{0}$	5.33^{-47}	3×82^{-6}	0.45^{-3}		$20.54{ }^{-3}$	$\therefore \mathrm{SL}^{-2}$	0.394	. 3.21	30.6	233	1060	29100
							$0 .$			0.95	0.903	0.964
cos:	0.951	0.359	O, 36"	0.072	$0.97 ?$	0.832	0.895	$0.03 i$	0.530	30800	32700	33500
\% y ch/see	22700	18300	15500	16900	13300	20700	32600	2 sem	27000			SE. 8
	11.9'?	12.8	2 12 6	14.0	17.5	18.8	23.6	23.6	30, 会			Ses
G_{8}	0.48	0.36	0.35	0.32	0.85	0.26		$0.20:$	Cols	0.1	0.16	0.15

 body.
 gives 3.47×10^{-6} gram of debris jer men and year, the rots is sightly leas then the average arrive at in Section VT. 3 and would correspond to present time and e greater protective layer tho the averse in the pas io The figure is essentially on enrimicn value, as it is basel on the actual volume ejected from observed caters (Table xxL). with another empirical datum, Inking the largest projectile size to the bianeber of the crater (section VIT. © D), the affective radius of the largest resent will be assumed to be

$$
x_{\max }=3_{0} / 130
$$

where E_{0} is the diameter of the crater in the bedrock from - with the fragments were ejected. With a maximum finish dim trance of the largest feggmans about 3 km [ígth line of Table
 their lite of survival on the Lunar surface (et. Section A A), one cratering event per $27 \mathrm{~km}^{2}$ an $400 \mathrm{~m} y$. would correspond to $9 x 10^{2}$ events per $10^{6} \mathrm{~km}^{2}$ and 10^{9} years; in Treble XNIX; this comesponds to $\mathrm{B}_{0}=240$ meters, r max $=200$ co as an erective upper lind t of debris sizes. of course, several hundred such blocks could be ejected in one cratering event and, in the case of o Large crater, the blocks contd be larger such os in, from field in mare pranguilittatis (Fisc 15) where, on a lunar limiter II photorraph, blocks up to 9 meters diameter are discernible. The Survivor fields, however, seen to age with tho expected average conditions, with blocks 0.3 y up to meter size visible
(Fig. 5,$6 ;$. Setting $x_{m a x}=200 \mathrm{~cm}, \quad n=3.875$ 6equation (161) and Section val. B], and the total mass flux being given, the
 hanle xNy have been celculated with the aid of well known integrel fomilae (fpik, 195a).

The gelocities and angles of ejection from the parent crater, iadepencent of the parent velocity when $y>f_{z}$ and solely depending on crushing strength and density of parent tergei, rock, were cnlculated according to the formulae of Sections TX. F, C, F; with $\lambda^{2}=0.22$ (Tleble XV) and $s=5.7 \times 10^{8}$ dyne/cur at $\mathrm{B}_{0}=2.4 \times 10^{4} \mathrm{~cm}$ as the assumed topical parent crater uisneter scoraing equation (190) , with $9=2.6 \mathrm{~g} / \mathrm{cm}^{3}$, this gives $v_{s}{ }^{2}=2.19 \times 10^{\circ}(\mathrm{m} / \mathrm{sec})^{2}$ and a maximun velocity of ejection

$$
\max ^{2}=\left(\lambda u_{\mathrm{s}} / \mathrm{y}\right)^{2}, w_{\operatorname{mex}}-6050 / \mathrm{y}(\mathrm{~cm} / \mathrm{sec})
$$

where y is tive cumblative relative mass as given in the third line of the tables identical with fractional onater volume of section If. B. The average velocity of ejection is assumed
 arbitrery spen of the model is much greater; ayway. The uper part of Table 喰 (lines $\bar{\beta}$ to \hat{H}) cortains these asource dets or overlay-flux, ongle, velocity and renge Is on the fragumbs. The ajecta are landing at sama velocity and engle os those of ejection. This is the low-velocity problem of impact into gremular sargets solved with the aid of the equations of Sctions II. R, F. The lower pert of the table contains the calculeted cratering data, especially B_{0}, the crater dimetem, x_{0} : the
penetration, and Lis $^{\prime}$; the apparent creter depth as corrected for fallback.

We note that, in our schemotically reguler mocel, the ejecta rasii are assumed to be/unigue function of j, which defines the position and shock pressure irside the crater during ejection. This is essumed to be motched in a unique maner by the increasing bohesive streneth as the particle size decreases, an essumption which led to a successfiwl prediction of overlay parifcle size distribution (Section VII. D). In neture there will be, of course, considerable s.tatistical fluctuation around the averase relationships. Also, those high-velocity ejection phenomena connected with say craters are here not taken into eccount. Our model is meent to represent the bulk of the efection processes, while the exclusive jex-forming processes ene not quantitatively prominent enough to modify essertially our conclusions (cf. concluadins paragraph of Section V.C).

Table xxt purports to describe quantitatively the cratering events at impact into the granular target of overlay. Yet when the projectile happens to hit a flogment considerably laxger then itself; the projectile will react solely with this freg. ment; the impact will then be virtually as onto hard rook, and not of the granular type. The last line in each of the sections of the table contains a probability factor, G, cerived as subsequently described and indicatins the fraction of impacts which are of the granular type, while tre remainder, a frection of

1- Fig $_{g}$, awe limited to inpacts into single large graine or blocks aud are thus of the hara-target type as dealt with in Section. I. B:

For a nypervelocity projectile (eromps $J_{\text {in }}, J_{0}$ and J_{1} of. the teblo), a small grain though larger toon the projectila itseli may bo demolished completely and the raciel monembut transmitted to other grains. The ultimste result will not dinfer essentiany from a truly graniler cratering whare the grains are all maller than the projectile. The blocking efect of lexe greins fill be felt omy when the shock wave tron the enlision does not transcend; partiolly at loast, the bounderies of the treget grain, in other words, when the virtual creter dianeter: $\overline{3}_{\mathrm{K}}$, producea by tile impect into the pard substance of toe taget grain by a projectile of radus R, will be of the order of the target grain diometer, \& x (crotal F. sumes for projectile radias, for farget grain radius). On a monel of a circuler tanget-grain cross secuion, the blocking effec; measured by the proanct of target gramares, trat and the blocking eficiciency was roughy eraluated as follows (blocing efficiency measured by the azimuthal angle of shielaing by the grain).

$$
\begin{aligned}
& \text { (1) ror } r \gg \mathrm{~B}_{\mathrm{a}} \text {, blocking etfect } \pi \mathrm{r}^{2} \\
& \text { (2) ror } \mathrm{r}=\mathrm{B}_{\mathrm{R}} \text { and } \Delta \text { =istance between grain center anc }
\end{aligned}
$$ impact certer, the rough estimate by zones of Δ yielas:

It is concluded therefore the, for bypervelocity (ides. structive, tupect, the blocking effect of large target grans can be represented satisfactorily by the grain bree, Tr a, when $r>x_{b}=y_{r}$ " "and taken equal to a mo when $r<r_{b} ; r_{p}$ cen $b=$ celled the granular blocking limit. From the equations or section

 visual dustonils (J_{0}) $\mathrm{p}=0.534, \mathrm{D}=10.7, \mathrm{P}_{\mathrm{Ft}}=21.4 \mathrm{~F}$ ane the blocking It mit $x_{b}=11$ he for the Apvilo-meteorite grove (J_{1}),
 are quite lith, cue to the destruct we exrictevey of the high -velocity impact.

Diferatat is the case with the secondly enecta(ty); at their low velocities, they axe reflected without destruction
from a lax ger tercet groin, Considering only head on collisions. e Cregment of velocity w_{o} and mass fo will import to a great of mass f in a forward velocity of
and rill :self acquire a reflected velocity of

$$
\begin{equation*}
\mathrm{W}_{\mathrm{R}}={ }^{W_{0}}\left(\mu_{\mathrm{O}}-\lambda \mu_{\mathrm{r}}\right)\left(\mu_{\mathrm{r}}^{+} / \mu_{\mathrm{R}}\right) \tag{193}
\end{equation*}
$$

which is negative when the projectile is bouncing beck. in the
 scoring to experiments mentioned in Section Il. ${ }^{\text {i }}$) is the Linear kin tic elasticity, comparatively high for this case of a single collision of rocky particles. the target grain which wa hit proceeds further as an independent projectile, but its penetration $x_{0}=x_{n}$ into the granular substratum will be moles then the normal penetration of the projectile, $x_{0}=x_{p}$. sinh the equations of section IT. IE, the degradation of the barret measured by the ratio of the penetrations was found to be as follows:

$$
\begin{aligned}
& r / E=2 \quad 2 \\
& \mid L_{i} / \hat{H}=1 \quad 8 \\
& x_{1} / x_{R}(\lambda=0)=0.625 \quad 0.894 \\
& x_{r} / x_{\mathrm{h}}(\lambda=0.5)=0.325 \quad 0.382
\end{aligned}
$$

It appears that a blocking $13 m i t$ on $m_{0}=2 \pi$ con be assumed. On account of the slow variation of the cumulative mass of the overlay ejecta with radius (Table xxv. Th a, free line), the act limit is irrelevant The blocking effect is thus equal to the relative cumbetive cross section. $\sigma_{B}=\sum$ mine, of the overlay
perticlas with $\gg r_{b}$. The surface requenoy exponent on partiche staes is owinuely $n-1$, wheme n is the volune Esequenoy exponert in equation (161) (eadi particle lyine on the surfece
 The cumalastve crosn section area is then (to a constont fector) $\int r^{-n+1} \cdot r^{2} d x=\left|r_{2}^{4-n}-x^{4-n}\right|$, mathis is eyactay the sexe as the expression for cumulative volume or mass reckoned per volume fience tho blocking efoct. I G_{i}, equels the cumbative mess of tho frogments for $x>x_{0}$, and g, the Eraction of Exanylar turet inyectes equels thus the cumaletive mass to $1 K^{\prime}$
 As a ponsequences of the broac Erequency distribution of overlay particle stzes, quite a corsicerable proportion (1 - Gg) of the impucts are nommrenular in charactevs the proportion increasing with decreasing size. ste mean velues (weignted by mess) of the rramulax impoct mactions can be gosumed to be:
 Apolto metconites (J_{1}) non-penetratinct) $\overline{\mathrm{F}}_{\mathrm{g}}=0.78 ;{ }^{\circ}$ secondary ejecte (Je $\because=\overline{G_{g}}=0.55$. Thus, the granular target nocel ajone cannot serve even as a first aproximation. of course, "brocseat - Impacts into lerge grains or blocks mill not Ne groance crat-3s observeble in cvexiay but only suall craterlets or pockmerks on the rocky tarcets. All the cretero in overlay recomizabie as suon on Surveyor piotuxes must therefore be procuced in the granular impact procese; the factori G_{g} gives theix number
relative to the toter, and can be called the "overlay cratering fraction"

C. The Astronautical Asgard

The astronaut on the lunar surface is exposed to the bombard m mont by flying secondary debris from cratering impacts alecwhere on the moon, though mostly from his imediede viciniters in aciditicn to direct nombaranent thy interplanetary particles. Hae total mass of the secondary fragments exceeds se times the incoming meteoritic mass; although its momentum, on account of the low velocity, is only one-sixil of the meteoritic one (table xxatlv) the hazard from this source may appears serious. Thur g from the cumulative numbers of Table NXV , the number on his per $100 \mathrm{~m}^{2}$ and 10 years would be:
$\begin{array}{llll}\mathrm{K} O \mathrm{~K}_{2} \geqslant \mathrm{~cm} & 0.02 \quad 0.2 & 2\end{array}$
$y_{y}($ micrometeorites $) \cdot 180$
J_{0} (austb:llls) $\quad \therefore \quad 0.0025 \quad 1.5 \times 10^{-3}$
J_{1} (Apollo ineteorites) $0.032 \quad 0.000031 .3 \times 10^{-7}$.
$J_{e}\left(\right.$ secondiary ejecta $550 \quad 0.73 \quad 3.5 \times 10^{-4}$
Anons the smell particles; the micrometeorite impacts of course prevail over the ejecta; on account of their much higher velocity, despite their mass being only one -third of the mass of the ejecta. Among the larger particles the ejecta appear to dominate.

However, unlike, the direct meteoritic components which appear as a tux of statistically independent individuals, the
ejecta are coming in in busts ron large and rare cretering events in the vicinity. piney are spaced by long intervals of time during which no ejecta awe falling. the total frequency or the parent catering events (primary meteontes and secondary rayocrater ejecta), given by the cumulative sum in the the In e of tine Table xxx, is 2.3×10^{8} per $10^{6} \mathrm{~km}^{2}$ and 10^{g} years. The maximum flight distance of fragments with $r>0.2$ is 10.5 lng so that spray of this size con reach a given point from a sumpuncing area of only about $350 \mathrm{kn}^{2}$, which corresponds io o $3 n$ expectation of one event in /loco years. 90 per cent of the spray cones from $\beta_{0}>49$ m [Table XxIX (B), Fth line $]$, with an expectation of one event in $6 \times 1 C^{5}$ years. For comparison, the expectation to be killed in a car accident in the UsiA. is one in 5000 years, and to be injured one in 200 years. Clearly with all the other sources os accident i on earth-mearthaukes, humicames, fires and warring hostilitiesw-the moon is a much safer place to stay on; in any case, the havana from flying secondary debris of component J_{e} can be disregarded altogether, not only because of their low velocities but also because af their wide spacing in time.

There: remains the hazard from direct individual interlinetory meteorite hits, mich may be nope dangerous on account of the great ir velocities involved, re shielding by the lunar body reduces tie hazard precisely to an3-helf that in interplanetary space. Tame yurI contains the relevant expectations based on datarombtier publication (Oik, 1ว6la)。

On account of the micrometeorites, the hazard in the case of weak protection is quite considerable; an astronaut with I mm magnesium sheet metal armour runs the risk of being badly hit during 5 years of exposwe. With 4 nra protection, the risk drops to one hit in 70,000 years. Ty us, from this standpoint also, the tron may be easily mede a much serer place to stay on than cur earth.
D. Observability/Shatow of craters and Ricocheting

From the E_{0} / x^{\prime} ratios in Table wry it appears that the craters produced by secondary fragments (J_{e}, Part D) are deep and must be well observable when no" degraded by erosion. on the contrary, the craters produced y the meteoritic components are sinalloy and practically non-obsurveble even when fresh. From a study of surveyor Ψ pictures and crater combs on then by the WASA team at the suns altitudes of 20° and 8° (Jame et el. , 1066b, pp. 18--.25) it appears that those with profile ratio of $B_{0} / x^{\prime}<20$ were certainly detectainla (unless covered by shadows inside larger craters); the detection of those with a profile ratio from 30 , to 50 is dubious, and those with $\dot{3}_{0} / x^{\prime}>50$ are certainly missed (on Fig, 3, the largest ratio is 120 for craters observed on the moon at large; however, it seems that a ratio of 80 is mi lu upper limit for recognition by repeated observations on the moon, and at the surveyor conditions 50 appears to be a. generous per limit). faking 50. is limit, we can say that the craters produced by micrometeorites and dustballs (rants

A end B of Thble XXV , are unobsenvble even when Eresh, elthough whe volume disturbed con be large and moy be the ohtof concributor: to the migration of dasts these eomponents do not contrinute to the roughness of the surface but cause only a smoothing or polishing and smeepinx effect. In the fopolo froup (Part C of the table), cuters in overlay lergen than 15 metere in diameter ($\mathrm{n} \boldsymbol{y}$ 10גcm) have obsexvable profiles when treek, but still are molatively shallow. On the contrary, seconcemy enecta (Part D of the table) produce in overlay deep well observanle crovers, the profile ratio decreasing with stze therefore prectically all creters less then 15 meters iñiameter obstruble on the lunar surface must be produced by the secondary ejecta.

A beatiful extmple of such e feature is rimmed Cratey Mo. 5 of the Surveyom pictures (Jaree.et al. 1966abo ; Nevell. 1066). It is plaped boout 11 meters to the southmeasi (astronautioal) from the apacearatit, and can be seen left of the middle on Fig. 5 , and on Figs. 16 and 17 at difrement illumination, with the sm at a low mgle on the latter. Its liemeter is 3.3 meters sra the depuh is stabed to De $\frac{2}{3}$ ma Fron a study of the pictures I find a smanex depth, $x^{*}=34$ om os the depth betow the undis turbed sur face, which gives $B_{0} / x^{4}-9.7$. The neaxest cescription is $f 0 r^{2}=50$ or as the secondary fagment radius in Part 0
 The observed exater is somewhat shallower possibly due to some erosion or, a afforent angle of imped and velocityif the - Itgures are taken literally.

Whe roulder witch procuced it, howevex; is hissing from the interioz of thiew-rnd similas othor eratersa it mot have ricochetted out, possiblit even brearing up into e rew harge pieces: ard the somemat eroded onnder vigible in the rish: comem of the proture (reacuring 53 $x \geqslant 6$ a 15 em ebove Eround) or anothes in the south-west (astroneatical) (50 x $25 \times 15 \mathrm{~mm}$ ebove ground), or both, couln be (improbably; hovever, es tixey are too near the crater) portions of the oripinel orojectile. The remorl ablo feature of smat ant large often anculay boaldeys
 out depinjte tracos of craterims around thon, can be explained by multipte ricocheting of the impacting frexments, something
 1967) alttough in this case the vernier mokets were meinly responsibis. If λ is the kinetic erficiency of ricoche in? (in the sense of section if. F), ia repeater jumos the velouty woulo cecrease in a ratio of λ; ezcin time makine smalem ersters, so that in the lest jump no visirle erabex is orodeled, the frgeme nt fingliy comint to res. at a depth oz not more whan a fev centimeters as did the survefor iootpeds. ithth $A=0,00$, $h_{1}=0.3$ initial velocity $w_{0}=60 \mathrm{~m}$, sec as in the table, the nicochetirg velocities and distancos will be $\left(\gamma=45^{\circ}\right)$: micochet (impaci) $1.2 \cdot 3$, 4
$\mathrm{w}, \mathrm{m} / \mathrm{sec} \quad . \quad 6018$ 5.4. . 68.0 .49 I, jumpine distancelhtor $200 \quad 18 \quad$:. $62 \quad 0.15$ metess

The surveyor experiments permit of an estimate or the a ricochewing clastic efficiency $\quad \hat{\lambda}=\lambda_{3^{2}}$. Oscillations of the spacecraft on hard ground had a frequency of $8.0 \mathrm{sec}^{-1}$, while on the
 For hemouic oscillations this means that, at equal peak lond, the amplitude A_{0} on hard ground was increased in the ratio of
 surface responding with nearly one hale the amplitude of the spacecrar", (mich was about 0.2 cm) From computerimsinulated strain gere data of landing on a hard surface (Jefe et al., $1066 \mathrm{~h}, \mathrm{p}, 73$), a very low value for the shock absorber, $\lambda_{0}-0.114 \mathrm{H}_{\mathrm{g}}$. results, wile on the lunar surface the velocity dean ratio for footpad 2 of Surveyor I was 0.30 (che velocities being given by : 2 Et , where $\mathrm{f}=162 \mathrm{~cm} / \mathrm{sec}^{2}$ on the moon, ant t is the time of free flight between two toxchaoms). Fence $\left.\left(\lambda_{0}^{2}+A_{0}+\lambda_{S}^{2} A_{s}\right) /\left(A_{0}+A_{s}\right)=(0,2)\right)^{2}$ and with the ratio of A_{s} to A_{0} given, $\lambda_{0}^{2}+0.51 \lambda_{s}^{2}=0.06$ end $\lambda_{s}^{2}=0.092$, eccl cento ely almost erectly the value (0.03) estimate a in section vary. for the kinetic efficiency of lunar soil in a cratering process. The value of $\lambda^{2}=\lambda_{s}^{2}=0.03, \lambda=0.3$ seers to of well justified for all impact processes in the lar soil, to be compered with a value o: about 0.5 for hard rock.

As a consequence of ricocheting s a rock fragment impinging onto the lunar surface with a moderately low velocity will produce several craters in successive leaps, the velocity bi-
cresting with a derping ratio of A. The upper limit or initial velocity for eumblel of the exacment at impact is given by equation (10) , with $f=3,3, s_{p}=9 \times 10^{9}$, it is of the order of $0.5 \mathrm{ka} / \mathrm{ses}$ Hence cratering from component Jo is not completely exhausted by the data som primary impacts as contained in table
 by xicochotrics, schematically calculated by assuring a content angle $\%$ throughout the ricocheting sequence. After a mioocket from granular surface (probability g_{g}); the velocity is assume a to decrease by a factor on $\lambda=0.2$ with a crater imprint to be Lex: beninct a ricochet from a hera forget (large rain. x_{0} 应 2) hoes not make a cater but the damping factor in lamer, $\lambda=0.5$ being assumed. The notation se are those of table wry and Sections IT. Es F。

The Dh colum gives Be_{0}^{2}, the relenting, cratering areas the both rives $x_{0} B_{0}^{2}$ or the total volume excavated, no units on 0.363 ma 3 the 1 th gives $x^{5} B_{0}{ }^{2}$, the volume ejected beyond the crater rim, in same units; the $12 t h$ colum contemns kw or the average racial momentum imparted to l gran of the "volume affected $[$ equations (2) and (36)], The chain is temmated ether when $L<\frac{1}{2}$, or when the thitwae of the rebound is less than x_{0} s so that the projectile falls back into its lust craves. The last line in each section of the table shows tue "cmpliticetion ratio' or a enter y which each op the items is increased in the sum total of the chair, as compared to a first and direct impact into granular target Except for inc

f_{30}
 TABLE MXGLE

Somple Calculated Bicochetins, Grabei Chains, component Ia

(1) $x=0.5 \mathrm{~cm} G_{\mathrm{g}}=0.52$. Internituent Gronular and Hard tangeb

C2"atering

${ }^{f} 31$
 TABLE XXVIT, bontimued
 (2) $x=0.5 \mathrm{~cm} ; G_{g}=0.52$. Invermittent Gramulax and Hard Target $\left(G_{g}=0.5\right)$ Celculetea
 Tard Stom

TABLE XXXYI. Continued

(3) $x=0.5 \mathrm{~cm} ; G_{5}=0.52$. A11 Granular Target ($G_{g}=1$) Calculated Cratering

Radial
Wo. Of
Impact wo $x_{0} \quad B_{0} \quad k \quad x^{t} \quad E_{0} / x^{5}$ I Area Volume ($0.3 j B \mathrm{~cm}{ }^{3}$) momentum $\mathrm{cm} / \mathrm{sec} \mathrm{cm} \mathrm{cm}$ cm $0.7 B 5 \mathrm{~cm}^{3}$) total ejected (an/sec per gran $1103804.36 \quad 7.000 .6462 .68 \quad 2.61 \quad 214 \quad 130 \quad 6710$
$\begin{array}{lllllllllll}2 & 3110 & 2.98 & 5.12 & 0.567 & 1.54 & 3.32^{4.20} & 26.2 & 78 & 40 & 1760\end{array}$

$4 \quad 2800.58 \quad 4.900 .2320 .41 \quad 7.0 \begin{array}{cccccccc}340 & & 0.4 & 8.4 & 5 & 3 & 70\end{array}$
$5 \quad 840.0751 .860 .127 \quad 0.03317 .4 \quad 3.5 \quad 0 \quad 0 \quad 10$
$\begin{array}{llllllll}6 & 25 & 0.0070(0.93) 0.107 & 0.0068 & 137 & (0.9) & 0 & 00\end{array}$

7 Stop $\begin{array}{lllll} & 000 & 0 & 0 & 0\end{array}$

Chain total	0.61^{30}	102.1	321	186	8320
Amplification ratio. 10	2.08	1.50	1.43	1.33	

(4) $T=50 \mathrm{~cm} ; \mathrm{G}_{\mathrm{g}}=0.92$. A11 Granular Target $\left(\mathrm{G}_{\mathrm{g}}=1\right)$ Calculated

No. 02
Impact wo $x_{0} B_{0} k \quad x^{\prime} B_{0} / x^{\prime} t$ Area Volume (0.353cn ${ }^{3}$) Radiomentum $. \mathrm{cm} / \mathrm{sec} \mathrm{cm} \mathrm{cm} . \mathrm{cm} . \ldots \mathrm{cm}\left(\mathrm{Ci}_{\mathrm{om}} 785 \mathrm{~cm}^{2}\right)$ total ejected icm/sec
I. $5830 \quad 47.93390 .25643 .7 \quad 7.8 \quad .1 .15^{5}$. $5.50^{6} \quad 5.03^{6} \quad$ per gram

$\begin{array}{lllllllllllll}3 & 525 & 11.3 & 242 & 0.153 & 5.7 & 42 & 1690 & 0.59^{5} & 0.67^{6} & 0.34^{5} & 80\end{array}$

${ }^{r_{33}}$
TABLE XXXVI, bontinued
(5) $\mathrm{T}=200 \mathrm{~cm} ; \mathrm{G}_{\mathrm{E}}=1.00$. Aly. Gramuar Target $\left(G_{E}=1\right.$) Celculated Cretaxing

TABLS XTKILI:
Comparison of ticochetins hmplification letios

total cratering area, these factors are all within the order of poitier.

Will e G_{g} is the probroility of impact into fienular banket, a ricocheting chain may here all cominetiona of herd mia granular impacts according to the hinomat lan of probability. Io calculate all. these combinations would wen stretching our numerical analysis too fax; the circulations ere very aporotimate anyway, although certainly beater than a mere qualitative appraisal.

For $=0.5 \mathrm{~cm}, \mathrm{G}_{\mathrm{g}}=0.52$, three typical cases have beet considers: (1), an alternating, chain of hard and "sort impacts, starting with a soft one; (2) a similar chain starting with . a hare impact; (3) a "soft" chain throughout. The the statistical mean fox $x_{g}=0.50$ should not differ essentially from tin average of the first two cases; and a comparison with the third case could show then the error of neglecting the hard impacts altogether, at the given value of $3_{\mathrm{y}}=0.50$, The comparison is made in Treble XXXVIII. The last line gives the ratio of the first two lines, or the correction factor in a transition iron $G_{g}=1$ to $F_{g}=0.5$, Within the uncertainties of the model, the factor is the same fox all four parameters, its average value, of 0.621 showing the result of the difference in the elastic constant $(\lambda=0.3$ and 0.5 , respectively) between the two cares. For equal. A, the true average should equal $G_{g}=0.5$ exactly", but because elasticity in hard impacts is higher, the chain loss is partly compensated; as con leered to the "all sett thin
$(G=1)$, the correction factor of the amoliricetion ratio cen be assund to be $G_{g}-g_{g}\left(I-G_{g}\right)=1$ E Es $-0.5 H_{g}^{2}$, which gives
 Iy descrifes the true factor at, "soft" amplivication ratio of 1.5 and is a gcon mpoximation for obter retios.

The emplification retios, A_{0} ealeulyted at $G_{g}=1$ do not diter vexy much in the sampe casos (3), (3) and (5) or tarie WXVII, sc thet avereges con be tycent $A_{0}=A_{2}=2.17$ for craturing erea, $A_{0}=A_{v}=1.44$ for total volums excavated and $A_{0}=A_{e}=1,35$ for volume ejected. The chain amplification ratio for rock fragments of hard grains impacting with moderate velocity ($\leqslant 500 \mathrm{misec}$) and ricocheting on hmar overlay is then

$$
\begin{equation*}
A_{0}=G_{g} A_{0}\left(1.5-0.5 G_{g}\right), \tag{1,94}
\end{equation*}
$$

With the proper value of A_{0} corresponding to the perticular
 the ricicheting chain is obtained by applyina the factor A_{7} to the erra, volume, etce of a direct "soft" first impoct. This kind of amplification of crotoring by ricochetims con he beke place only when the projectila is not destroyed, bee in the case uf component J_{e}. Another kind of morification, ceased Dy the granular ejecta themselves, is comon to all types of impact. Bucause of smalness of the grath, small k and Q_{g} values and low velocities on ejection; cratering proper in overlay b: the secondery ejecta fram the overlay itself can be discounterin but as a factor of mobility of the "dusti this a a s
to be considered. Only transnission of radial monentum is or inaportonee here.

Of the ejectas, only thone'with $y>u_{s}$ (all notetions are those of fection II) Ere to be considered as a factor of cauing huther moblity in the taxget. This limits the active mass to a froction of $7 x: / x_{p}$ of the total mass affectec; on the other hend, the velocity of ejection increases towerd the imen porions of the orater [equations (16) m-(26)] which partIy balenctas the limitation of mas. For hypervelocity impacts the ratio of radiel momentum tranmitted by the ejecta indo the surnoundines to radial monentum of the primary onatering event is :round to be
 where k_{0} and wo are radial monentum factor and velocity for the primery orent, and k is the radisl momentum coefejcient in the seconary showeri for micrometeonite impact, wo $=6.0 \times 10^{5}$ $\mathrm{cm} / \mathrm{sec}, \mathrm{u}_{\mathrm{s}}=200 \mathrm{~cm} / \mathrm{sec} \mathrm{k}_{\mathrm{O}}=2 ;$ with $\mathrm{H}_{2}=0.3$, $\mathrm{m}=0.2$ (ch, Table XXXVII, $x=0.5 \mathrm{~cm}$, at $w=200 \mathrm{~cm} / \mathrm{sec}$), anc from Table Xuvy, (A), $G_{g}=0.4,2 \% x_{p}=0.75$, the factor in square brackets (accounting for incressed velocity of ejection from the intertox) becomes
 -destructive impact (J_{e}), the gain in total momentum rrom ejecta is still smallers and can be neglerted completely. Thus, onty ricocheting is of signipicance in mplinying the action of, primery inpects on overlay, while the contribution from seend-
ary ojecta is two mell to be taken into account.
Wh The amplification factor in (194) consists of two distmen fectors : G_{g}, the stretehtforvaro probabiltty of "soct cratering, which thus rules the number of sucessful exatering events in each ricocheting step, the same as for the primery impacts; and the product $A_{0}(1.5-0.60 \mathrm{~g})$ which measures the total quantitative gain in the parameter (sum of area, voluna, etc, of oraters) for one primary impacte we mar assume the crater parameter (area, volume) to decrease in geonetrical progression with each ricochet (which is an idealization of a more comilew process) (cfotrale xuxyII); in Δ is the common ratio of the progression (assumed infinite); evidently

$$
\begin{equation*}
A=\left[A_{0}\left(1.5-0.5 g_{g}\right)-1\right]\left[\hat{A}_{0}(1.5-0.5 G] .\right. \tag{1.05}
\end{equation*}
$$

At $G_{g}=$ a as for the "test casen or condetely gronular target,

$$
\begin{equation*}
\left.\Delta=\cdot A_{0}-1\right) / A_{0} \text { or } A_{0}=I /\left(1-A_{0}\right) \tag{156}
\end{equation*}
$$

For vater aroa $\left(B_{0}^{2}\right), A_{0}=2.17, \lambda_{0}=0.539$ whence for crater diameter $\left(B_{0}\right), \Delta_{0}=(0.539)^{\frac{1}{2}}=0.734$ and $A_{0}=3.76$. For total crater vo:ume $\left(B_{0} 2_{y_{0}}\right), A_{0}=1.4 A, A_{c}=0.300$; this is the procuct of the contion ratios for B_{0}^{2} and x_{1}, whence the ratio for crater denth or penetration (x_{0}) becomes $A_{0}=0.303 / 0.530=0.566$ with $\Lambda_{0}=2.30$. Similary, for the , wparent depth (x^{\prime}) : $\Lambda_{0}=0.430$, $A_{0}=1.92$. This of coumse is an oversimplisicationg as can bs seen from table XXXVII, and is meat only to convey an overzall idea of the ricocheting process which is too complicated to be
represented by a bufformy decreasing geometrical progression. Neverthelass. for the sake of simplicity, sone of the ricocheting chain parameters pan be expressed through such a progression of a constant common ratios with as error of a few per cent only. The cratering area of a ricocheting chain according ko equation (194), is amplified by a factor of 2.17 as compared to the parent graben then $G_{g}=1$. However, the ricocheting craters are smaller, and when the sum total (cumataive number, areas volume) to a fixed limit of crater diameter is taken the room chewing members arise from leger fond less numerous exeter sizes, so that the relative contribution at the fixed limit is less then 2.17. The actual contribution depends on the frequency function o: the primary diameters. Similarly s the combination to crater numbers is also a decreasing progression. With an emprical value on $3=3.27$ es representing the cumatetive primary exeter numbers $\mathrm{F}_{0}{ }^{-n}$ between $\mathrm{B}_{0}=330$ and $7.0 \mathrm{~cm}(\pi=50 \mathrm{a}=0.5$ cm, Last line of Port (a), Table XXV .D), and with the prom gression ratios as quoted above, simplified expressions fop the ricocheting chain parameters were adopted as follows. So r the combative crater numbers primary of ricochets to same 1 imit B_{o} ?

$$
\begin{equation*}
\cdot \sigma V_{j} / \partial=1.57 \sum\left(1.5-0.5 \mathrm{G}_{\mathrm{g}}\right)\left(\mathrm{G}_{\mathrm{g}} \Delta \mathrm{~L}\right) \tag{197}
\end{equation*}
$$

was assumed, where ΔN is the direrentiol ripequency or primary impacts, or ($G_{g} \triangle N$) the differential fran frequency of "sore (granular) primary impacts [Jest line of (a), Table XXXV 。D]. The cursive crater coverage to limit R_{0} (area per can \& years or : rectional area per yosr)is then

$$
\begin{equation*}
\sigma_{13}=0.785 \Sigma B_{1} B_{2} \Delta v / 6 \tag{195}
\end{equation*}
$$

where ΔH_{y} is the differential frecuency of crater numens (primarymicochets) for the interval fron B_{I} to B_{Z} as can be obtained fram (197) on Prom the Ist Line in Part (b), Teble XNX. D .

Throuzh admisture of degraded shallowe ricochets, croter depth is aereesed: The depth-to-djameter retio in a chain forms a progression with a comon xatio un $0.566 / 0.734=0.772$ fon $x_{0} / 13_{0}$ end one of $0.480 / 0.734=0.663$ for x^{1} / E_{0}. With $0.734^{-14}=0.365$
 as the "desradation retio" of croter numbersfor a ricometng diameter becrement of 0.73s, the arerage penetration, x_{0}, at constant crater diancter, requires a correction factor of

$$
(1=0.365)(1-0.365 \approx 0.772)=0.884
$$

and the apparent depth, x^{1}, must be similarly multiplied by a factor of 0.834 . It tums out that, aespite multiple ricocheting, neither the crater numbers nor their total areas and volumes are change ${ }^{\text {a }}$ very moh as comparea to the primary impacts when statistics are mede to constant caratex diemeter limits, the deyreded chain mobers join the mang more numerous groups of smaller craters where theik nubre are relatively smalland tithe wifet the whatege.

In Part (b) of table XXV. 1 the xicocheting chain date:, primary and secondary members count.ed to the same limit of to, are givem.
> F. Overlopping and Surviva: of Eraters

> Table XXXV contains the predicted retes of crater formetion
from the metn sourees. The actual ereter mumbers depend on the balance of pormation and removal.

Hwo man processes of remcivel of craters by extincous agents can be discernec: thaough oupemposition or overpetang of a later lefer cratery enc thang oxosion by smolles ereterm ing impacts. Grosion works gradually, exponentielly with time, anc camot emase a crater completely although tit may beopme too shallow fon reongntion; this will be discusbed ius sabsecuent section. Oremapping ohonges the terrain cumpletely and no trace of a small crater cen be expected to remain wher it happenec to fall wionin the boung of e letter; sutficienty lazge crater. Quantitatire estinstes of overiappizg can be tece on the besis . of table Xexv.

Only a very schematic approson to the problen can be ju;tiIled. The nemarketion line between 'swall" anc"arae" cratom: comot be sharp. Yet withoux allowing row intomediabe trans..w fionel cases, we choose a convetiont cherp margin of crater size for deletion by overlapping whinch, from ano rouph estimates; should leac to more or less the samo statisticel result as metheraticeI adapation with gracted, transition

Let B_{C}; $x^{\text {F }}$ be the dianeter anc appacnt depth of the eaplex craters ${ }^{3}$ and $x_{0}=x_{a}$ the diemeter and depth of penetration as the later crater Geveral conditions of removel can be set ul to be applied in dirferent cases.

The ovarall condition of removal or exasure is set by a
effective minimuratio of diameter which we fino must be close to

$$
\begin{equation*}
3_{a} \geqslant 2 B_{0} ; \tag{199}
\end{equation*}
$$

also; the center of B_{0} must fall within the boundary of B_{a}. This condition is sufficient only wen the lager cater gigs to sufficient depth, namely when

$$
\begin{equation*}
x_{a}>\frac{1}{2} x^{\prime} \tag{200}
\end{equation*}
$$

In such a case the rate of removals V_{g}, is evidently equal to the curative coverage by craters larger thar i $2 \mathrm{IB}_{0}$,

$$
\begin{equation*}
r_{2 n}=\sigma_{2} \tag{201}
\end{equation*}
$$

When (200) is not fulfilled, or with the larger crater is much simllowes than the small one, partial filling to a depths of $2 x_{2}$ after one overlap is assumed, and the rate of removals becomes

$$
\begin{equation*}
v_{B}=2 x_{0} \sigma_{23} / x^{\prime} \tag{202}
\end{equation*}
$$

A variant consists in selecting $\mathrm{B}_{\mathrm{a}} \geqslant \mathrm{CB}_{\mathrm{o}}$ - with $\mathrm{o} \geqslant 2$ and such that (200) is fuliniled and setting

$$
\begin{equation*}
v_{B O}=\sigma_{C B} \tag{203}
\end{equation*}
$$

Of the aljematives presented by (202) and (203) that is to be chosen which yields the langer rate of removal.

Table = XXXV contains only those components of impacting flux which do not penetrate the overlay at present. A fourth component, represented in Table $\bar{x} X$ in 50° par as it, does rot overlap w th those of liable XXXV, rust be added although it is important only in the lax per crate classes. The"primaxies" of this comment are essentially an extension of the Apollo
-reteorite group of Toble XrXy and shall be cotered only begiming with B_{o} av >123 meters ($\mathrm{B}_{\mathrm{c}}>114 \mathrm{~m}$) . The $"$ secondaries" in Table XXIK aro primaries from the standooint of Toble XXCV they are probably energetic ejecta from ray craters with respect to which component $D\left(f_{0}\right)$ of Thble Xuy is secondaxy. An upuer
 in cenfombty with our assumption that our recion is "normal" and heyonc the reach of large craters. In such a menner the area coverage by the achitional "component J_{c} " of the larks creters, calculated fron Table Xry.s is given in toble xaxl.

In feble Xis a summsy of crater formetion and renoval by overlaping is given. only craters with a proflle retio or $B_{0} / x^{\prime}<50$ at the monent or fomation are incluced. fois rew stricts the small-crater statistics ehierly to componerts J_{0}, and part $C \hat{A} J_{3}$ (Thble $X X Y, D$ a C), in the lercer sizes supale-
 ad dustbell meteors (F (able $\mathrm{XXXV}, \mathcal{A}$ \& B) produce flat unre cognizanle craters which are not ircluded in the counts, al. thowh their ebility of deleting sualler craters by oveclapoing must be reckoned with.

The top of the teble gives the necessary explenations. F_{i} (F_{0}) in the 5th, sth or yoth colums of each subsection is the theoretiochly calculated cifferential mate of cratering (on the basis 3 observed interplenetary populations and, for J_{1}, from the rate of groth of orerlay, itself based in turn on
observed excavated crater volume), with allowance for the . factor $G_{E_{2}}$ or the proportion of prater impacts; ito cumulative rates axe given in the list line or Table XXXV, D (b).

Without yet billowing for erosion, the time variation of crater area density n_{i}, subject o creation rate x_{i} and deletion rate V, is determined from the differential equation

$$
\mathrm{dn}_{i} / \mathrm{dt}=\mathrm{m}_{i}-\sqrt{n_{1}}
$$

 yields

$$
\begin{equation*}
n_{i}=\left(F_{i} / V\right)\left(I-e^{-v t_{0}}\right) \tag{204}
\end{equation*}
$$

For $\sin _{0} \rightarrow \infty$, the equilibrium density $\mathrm{F}_{\mathrm{i}} / \mathrm{V}$ is reelect. When νt_{0} is smell, $n \rightarrow F_{i} t_{0}$. In the $6 t h$ or 5 th colum or each Part of I able XI, the calculated crater density n_{0} correspond.. ing to $t_{0}=4.5 x .10^{9}$ years of uneroded existence is given.

When constructing table xxix on the basis of Shoemakers s counts, erosion mas assumed to delete a crater after an exciton Infetimo on

$$
\begin{equation*}
t^{r}=1.58 \times 10^{5} B_{0} \tag{205}
\end{equation*}
$$

years when Bo is given in centimetre. The equation is based on a discontinuity in the gradient divas explained as an erosional removal of craters with $B_{0}=286$ meters ia a time interval nit. 4.5×10^{9} years. The provisional erosion time sale as given by (205) is shown in the fth or 7 th column of Tablet.

Then $t^{\prime}>\tau_{0}$, erosion is ton slow and craters are removed manly by overlapping; this is the case for the smell - crater en of the table, in when come the theoretical crappers density will be close to n_{0}. When tic $<\tau_{0}$, erosion prevails

TABS XL

Balance of Crater Creation by Impact and Deletion by Overlaying and Erosion to Profile ratio $\mathrm{B}_{0} / \mathrm{x}^{5} 50$ (Tale XIv for impact
 (outside the jota from craters lamer then 590 m$)$. $\mathrm{T}_{i}\left(\mathrm{~cm}^{-2} \mathrm{mp}^{-1}\right)$, differential influx; ν; deletion expectation per year (from all five sources); B_{0} / x^{\prime}; crater profile ratio at impact; $\tau_{0}=1 / \nu$, years; n_{0} is the arifomential number of craters jer $100 \mathrm{mi}^{2}$ which would survive is unercied for 4.5×10^{9} years; $t^{\prime}=1.58 . x 10^{5} \Xi_{0}$ (yrs) is a rough Pirst-aproximation erosion, lifetime as used in fable xXIX, and te the lifetime according to the fir al solution (tables LI, LII). The deferential crater densities per $100 \mathrm{~mm}^{2}$, predicted from $n_{2}=10^{6} \mathrm{E}_{i}[1-\exp (-1, \nu)] / v \Omega$ are r_{0}, r^{\prime}, n_{e}; corresponding to so 4.5×1.0^{9}, t_{1}, she t_{i} :
 densities per $100 \mathrm{~m}^{2} . \mathrm{B}_{0}=$ crater diameter $x^{2}=$ crater depth,
(e) Component J_{e} : secondary ejecta from nearby penetrating cratering events (ie. which are penetrating the overlay); primary and ricochets combined

$1460 \quad 27.9 \quad 1.82^{-10} 5.2^{9}$.
$65514.61 .03^{-9} \quad 9.3^{8} 1.23^{-15} \quad 2.44^{1.55^{8}} 0.190 .1 .3^{3.54^{7}} 0.044^{0.1} 0^{1}$

$$
1.37^{-13} 16.6 \quad 3.43^{7} 42 \quad 1.05^{7} 1.38
$$

K_{50}
Bins st

(b) Component J_{l} : Weteorites-Aponno

289
$13300.116 .6 \quad 2.7^{-12} \quad 3.7^{11}$

$$
2.82^{-19} \text { I. } 27^{\sim 3} \quad 1.57^{9} \text { a } 41^{-4} \quad 0.37^{3} 2.6^{4}
$$

$$
2.35-17 \quad 0.098 \quad 4.73^{8} 1.11^{-2} \cdot 1.52^{8} \quad 3.6^{-8}
$$

$227025.90 .1^{-11}$ 1. $10^{10} \cdot 0.101 \cdot 1.31^{-2} \cdot 4.6^{-3}$

$$
1.255^{16} 0.44 \quad=.95^{8} 0.040 \quad 4.43^{7} \quad 6.0-8
$$

153036.9 . $1.77^{-10} \cdot 5.0^{9}$
0.54
0.053 .
1.06^{-2}

$$
7.58^{-16} 2.0 . \quad 1.98^{3} \quad 0.145 \quad 1.3^{7} 0.014
$$

$103060.7 \quad 3.69^{-10} 2.37^{9}$
2.54
0.201
C. 025

and the calculated exeter densities/ smaller than n_{0} setting
 density as due to the combined removal by overlapping end nypotheti rel (emparicerayerteblithed) erosion have been cal-
 each subdivision of roble xu corinne the frodioled cumulative frequency If $_{e}$ of craters per $100 \mathrm{~m}^{2} \therefore$ The three components of the table are not overlapping and their sump obtained as shown
 ximetion total cumatave crater density as derived from the influx rete of the projectiles, cratering theory, available knowledge of the mechanical properties of the lunar soil and bedrock. elimination though overimping by larger craterstwell defined) end erosion by smaller inojectiles (provisional rete of erosion, empirically suggested by a discontinuity in tho gradient of the crater frequency unction): This can be compared with observed crater densities from three afferent sources es derived Prom the lunar probes (luth, lIth, and ESth columns) : Ranger VII end VTII, (shoemakers 1966), Ranker VI. II (Track, 1966), and Surveyor I (Janine et af.; 1906 b)。

A comparison of the list approximation (N, Eth column wo keble kif) and observed (10th-w10;h colum) crater densities seems to show convincingly that prediction even with the provision al assessment of erosion is in sedisfectory accord with observation and that, in the same mower as with the lis-

* Thas suraberay deap to be obsenec

 in the counts tw these small croters ar the number vas tremeesed acoremagy.
tribution of large craters in the aria, the smili-scale relief of the lunar sumer can be well accounted for theoretically in terms of the musical factors as listed above. The divergencies between the different sources of crater courts are even Greater then those between prediction ana observation. Only within the 10 to 6 meter diameter range there seems to be a major discrepancy, the predicted numbers being some $\overline{5}$ timer too high, but even this deviation is contradicted by the Surveyor data at 3 meters which show twice as many peters is those predicted, and 5 times the miner derived from the lager photographs. The weak point of the prediction is the provisional end oversimplified treatment of erosion, In Section X. E, H a more sofisticsted treatment of erosion is applied with the calculated results given in the mile part (columns 6--9) of Table dur. There is certainly bettor agreement now in the most ascrepar: crater range (3 - - 20 meters). However, the main features of the statistical balancer of cratering on the roo n are not mich altered by this more detailed theoretical study of erosion: the observational data (piety reflecting real differences on the lunar surface) are not concrident enough to perming check on the more subtle cattails oi f the theory.

F. Mine of oymley

Sech cratering event displace; a volume of $0.363 x_{0} B_{0}{ }^{2}$ [equation (1) with x_{0} now steading for $\left.x_{0}\right]$ which is pertly ejected, arty falling back, Phis material becomes thoroughly
mixed, to on average mixing depth h_{0} over the crater area dufy ${ }^{2}$, given by

$$
\begin{equation*}
b=h_{0}=0.462 x_{0} \tag{206}
\end{equation*}
$$

For a static overlay layer at depth h_{0} the maxing efficiency per unit of time (year) equals $\sigma_{5}^{\prime}(x)$, the fractional area of the surface covered in unit time by craters reaching to and beyonä central penetration depth x_{0}; this can be derived from the data of Tables XXXV and XXXIX though the letter does not, ada much. over a time interval of t years the mixing factor $\theta_{r a}$, or the effective number of times of complete exchange $0:$: material of this specific layer situated at depth ho with the ovcratying soils "is then

$$
\begin{equation*}
\varepsilon_{m}\left(h_{0}\right)=\sigma_{B}\left(x_{0}\right) \cdot t \tag{207}
\end{equation*}
$$

and the mixing time t_{m}, comesponcing to $Q_{m}=1$ or complete single mixing is

$$
\begin{equation*}
t_{n}=1 / \sigma_{R} \tag{208}
\end{equation*}
$$

However, the simple mixing process is complicated by the accretion of overlay which not only adds nev material to tho surface but provides an ever increasing protective layer. fine average accretion of overlay on on "hormel" region was estimated to equal et present 12 meter per $5.5 \times 10^{\circ}$ years or 2.67×10^{-1} ? cm per year; any marked layer at depth h_{0} can be assumed to sink under the surface at this rate, so that its age in yeans is

$$
t=t_{0}=b_{0} / 2.67 \times 10^{-7}=3.75 \times 10^{6} \mathrm{~m}_{0}
$$

When $\dot{t}_{0}>\dot{t}_{\text {in }}$, mixing is efficient: when $t_{0}<\dot{t}_{\mathrm{n}}$, the layer? sinks faster than its time scale of mixing, end becomes only T_{T}
portly mixed with the overlying strata, or not at all.
A question of identity arises for mixed strata. Physical identity is maintainod only over sfort intervals of time during wich the fate of sinking is thus physicelly meaningtul. The rate remains the same although the metertial content may conge with efficient mixing.

Tha (ifferential equivalent ois equation (207) is

$$
a Q / a t=\sigma
$$

and with the linear depencence of re on dapth (200) the mixing factor can be integrated in terms of increments of either b or $n_{0}, \theta_{m}=\int \operatorname{cct}$ or

$$
\begin{equation*}
\Delta a_{10}=\sigma_{B}\left(h_{0}\right) \cdot \Delta t=3.7 \times 10^{6} \sigma_{B} \cdot \Delta b_{0} \tag{20}
\end{equation*}
$$

The integral fron $t=0$ to $t=t_{0}$ yilelds the total mixing factor for the past history of the layer when its depth wos less than h_{0}. Phe integral from $t=t_{0}$ to $t \rightarrow \infty$ defines the mixing factor for the future; $Q_{f}{ }^{i}$ whea this is sman, mixing can be assumed to cease and the layer becones stagnant, The probability of cyentual subsequent mixing is

$$
\begin{equation*}
c_{m}=1-\exp \left(-Q_{p}\right) ; \tag{211}
\end{equation*}
$$

for small values it is close to Q_{f}, for large values it approaches unity.

Table XuII conteins the celoulated mixing probabilities as depenaing on the depth h_{0} below the sumace. The crater coverage, N_{B}, is the sum for all four components of table XxXV, logenthmically interpolated when necded for the chos.m values of x_{0}.

The dividing Ine of $t_{\text {m }} / t_{0}=1$ is at a depth of $h_{0}=11$ arm
 At $h_{0}<$ 手 em the leyers become well mixed, with mixtme timet runajg from a few million years to 160,000 yesm ot e depts of from 2 to 0.5 cm Eelow $h_{0}>25$ om the chance of utimate mixing becomes very olight and the layers become stagnent. preserving the stratificution once formed when they were netr the surfece. The stretificetion is weshed out over a layer thiokness of $8 \mathrm{~cm}($ linear dispersion it 4 cm) ; chronologicaliy it ropiacts the averoge conditions (e.g. with respect to cosmic -rest interactions)over a time intervai of 30 miltion years. Fluctuations of a shorter period must be smoothed out and camot be detecter, unlike the high resolution in time of termecriol seóments. with (

TABLE MITT.

Probability $\left(g_{n n}\right)$ of Overlay at $\mathrm{p}_{\text {resent }}$ Depth h_{o} (cm)
$\sigma_{\mathrm{E}}=$ relative crater creation ares ser year; $\mathrm{x}_{0}=$ crater peritrom tron deptry; $\hat{\epsilon}_{0}=$ accretion age; gears; $t_{n}=$ time scale or mixing, years

TAR HE XXIX
Cumulative Area Coverage (G raper year) by Farce Craters
Component Joe (supplementary to Table XxXV) which contains component J_{1} only dorm to $B_{0}>1.39$ meters. the rest of it being represented by sole xXxi. C
Bo, meters $325 \quad 246 \quad 188 \quad 145 \quad 113.5 \quad 88.5$ σ_{CB}, primaries $.0 \quad 1.16^{-12} 2.87^{-1.3} 6.01^{-12} \quad 1.09^{-11} 1.09^{-11}$ σ_{cB}, secondaries $0 \cdot 3.11^{-12} 7.92^{-12^{-13}} .01 .0 \mathrm{x}^{-11} 1.19^{-11} 1.36^{-11}$

B_{0} meters $\quad 69.7 \quad 55.0 \quad 43.3 \quad 32.1 \quad 23.8 \quad 17.7 \quad \therefore 27.7$
 $\sigma_{C B^{\prime}}$ secondaries 1.76^{-11} 2.34 $4^{-11} 3.33^{-11} 4.68^{-11} 6.70^{-11} 9.2 e^{-11} 9.25^{11}$ $\left(x_{0}=0.358_{0}\right)$
σ_{CD}, tole 1 $2.85^{-11} 3.43^{-11} 4.45^{-11} 5.7^{-11} 7.78^{-11} 1.02^{-10} 1.03^{-10}$.
such a Inv resolution, the quatematy and Miocene would have been lost in the preceding miocene, even the large subdivisions of the tertiary and the Cretaceous- raleocere transition would have been washed out.

X. Erosion Lifetimes of Surface Features

A. Transport end sputtering s Lifetime of Boulders

In section TX. E deletion of small craters (oz other features of roughness) by later superimposed larger ones mes evaluated on a firm stetistizel basis, while erosion by contimous influx of smell projectiles producing orates smaller on a lInear scale then a given roughness feature was treated, as a first eporoximetion, summarily by invoking an empirically adjusted unspecified smoothing process whose linear sapele is proportional to age. In this section we pill consider theoretically the actual processes of this gradual erosion $\rightarrow x$ "polishing", the final results, however, haviry been included in the middle pert of Table XTT. Two main processes are at work sputtering of large grains, bonlacrs, and crater mime, and transport of the granular matrix.

Outstanding large grains or blocks, sufficiently langer than the impacting projectile, which do not behave es part of the gramlex matrix but retain their individuality (cf. Section XX . B), and unprotected caster rims, are sputtered by herd impacts. they ere not much affected by the infal ing accreting overlay (j_{e}) on account of its low velocity (acme
grindins and colnisionst cmese ocours; honever, the mess arfectec is incigniticant); only mypervelocity bombardmeat by the whteoritio components is kexe relevant and, becauss of the lerge mass influx nate (ϵ^{x}. Dable XXTV); bomberdment
 sidered alone.

Mrangoot, as distinct irom plain mixing of the gramisy meatm or a horizontal surfece and discussed in the preceing section, works on slopes of craters on other elements of roughese. At a cretering impact, noxe graine ace ferther ejected dombill thon uphizl, which leads to a net downin. 1 aisplecement of flow of the granulen meteriel. Also, out of a hole feven srains will be ejected by cretering evento into ble eumomang texein, then imjectod into the hole from the surxomange; this loads to e gradual filling of the hole (orater).

In trensport, besides the mjometeorites $\left(J_{m}\right)$, overlay influr (J_{e}) may be of some inportance (cf. Table xXXI). somewhet mhenced by the higher vilocities of ejection (n_{s}) due to groater strensth (s_{0}) at greatar penetretion (x_{0}) then in the cose of miorometeorites. In adajtion to momentum as detemming the mase ejected, the transport exficioncy cen be ssamed proportionel to the ilight distance, H [eguation (45)], On this besis, the trensport offioienoy

 The comparison thon consiste of two stops. An imex porticn $\left(y_{m}^{3}=0.32\right)^{\prime}$ or the J_{m} creter whion has the sme shock relocity (u) as the antire ($y_{e}=1 \neq$ haxdex J_{e} cretex. yiclas (f cel-

 $0.476 / 2.57=0.105$. The ratio turae out to be nonaty the nane as thet errived at in meble wall from a noxe rough estimate. To allow also fow the othex small. components and going besk to Table WuIV, the transport ersiciency of the y_{r}-conponent mey thus bo token with an additumel inoroase ot 25 per cent of its vinue. The predominance $0 \because$ micrometeoritic eroeion thus gxeatly simplifies the calchastion on treneport, which anymey cmot be estimeted betten than to e close orner cif nagritude.

The expexinents by Gold and Heple (1966) as mentione above could suscest that, simultenecus with dispersal of the grannlay substance themgh impacts, a builemp of eurfec: ronchnes ("feiry cestles") wowle toke oleoe as due to 8)
 due to tho very small groin size, of the order of $10^{-4} \mathrm{~cm}$. It cen be show that, for a great fy simplified model of two colliding equal mphertash semi-mastic grains: the maximum reketive velocity of encounter which cen be balanced by the tensile zlestist force as limited by cohesion, on the "velocity of inelastic of pure", equals

$$
\begin{equation*}
\mathrm{v}_{\varepsilon_{1}}=(\sigma / \mathrm{Y} \delta)^{\frac{3}{d_{2}}}{ }_{\mathrm{a}_{2}}\left(\pi \lambda x^{2}\right), \tag{212}
\end{equation*}
$$

where f=Young: modulus, $f=d e n s$, ty, $A=$ force of cohesion between wo grains, $\lambda=$ linear ulestio efficiency, $=$ mains. For silicate grains in vacuo, $1=3 \times 10^{11}$ dyne/ $\mathrm{cm}^{2}, ~ \hat{0}=2.3$ gif $/ \mathrm{cm}^{3}$, A $\mathrm{d}=1.0$ dyne (snoluchowski, 1966; Ryan, 1966) , $\lambda=3.5$ as for yard rock in a single collision, we have

$$
\begin{equation*}
v_{e}=7.27 \times 10^{-5}-2 \quad(\mathrm{~cm} / \mathrm{sec}) \tag{212a}
\end{equation*}
$$

For $x=10^{-4}$ an as in Gold - Heptre's experiments, $V_{a}=127$ onf/sec and the pericles can be efficiently captured at moderate velocities of impact, while at $x=10^{-2} \mathrm{~cm}, v_{e}=0.0127$ - cia/sec, they hardy could stick, especially whom perturbed by other oncoming pericles. Yer, according to table Xiv, $D(y)$, the mass of the smell particles from 2×10^{-5} to 2×10^{-4} cr e could only emombto 4.5 per cent of the to ala mess of the overly, while tho y larger then 10^{-2}. am ac. 2 aunt fox Th per cent. There sue not mough "sticky" particles in the overlay, end the buildup, on "tatry pestle" strictures
must be freatly inhibited, as compared to the fomation of regular inpact-crater depressions, thile the formex are much mose easily destroyed by "herd" impact than the lajter.

He mill first consider the levelling action of metroritic bonvardment on the granular elements of curfece roughness, Mef $_{\text {e }}$ the consequence of meteoritio (end other) improt, different parts of the ovexley surface are exchanging materiel (the influx from component J_{e}, or secondery ejecta from neariy craters descends equally on ell surface elemonts, leading to a continuous growth and, simultaneous redistr:bution or filling, in section X. Consideredi). For en element of surface placed at the same level ints suxrouncinge (differm ences of level that metter are of the order of th the slisht distance of the ejecta, ejection and influx axe obTiously balanced: A surface element pleced in a dopreseion will receive more or less the same intur as if it wery placed on level grounc, but, or account of gravity, there will be some fallbeck at ejection, so that jinfluy over the xin of the depression will exced ejection and the depression will bcgin filiing. On the contrary, en elevation will eject (ver its rim the seme amount as when placed on level ground, while receiving less from the surroundings; its height will decrease. Je will axy to obtein a guantitative estima: for the time rate or "mocthing lifetime" for the elumis of roughess as dupending on their linear scale.

Only a omade mproch is attempted. thriot evalustion. of the internels as conditioned by the adontod nodel is not justified; the modol of cretoming ejeote being iteeli but epurcoinete, involving arbitrexy quantitative relatione [such as eguation (27) fox the ajection angle, β, axt the we of 3. mean coerficieut of elastio exticiency, λ Jo sono of the simplifications, everage quantities of ejection or influx ovar entre areas are hore used, instead of the integrese. The mathenaticel emrox, perhaps some $10-20$ per cent, is probably much smaller than the uncertainoy in the besic assumptions.

The gromulat surface is assumed to be horizontal on The average, except fon the rendomy aistributed elemen's of roughness (chienty craters). Heteomite impecte on inv chined surfeces will lead to symbemetic flow downilis a process to be considered seperetely.

For exenular overlays with the exatering parameter, es ajoptec in Table XXX: A ana ecuetion (4), the narginal shock telociby is

$$
u_{\mathrm{o}}=2170^{\frac{1}{2}}=46.6 \mathrm{~cm} / \mathrm{sec}
$$

and the equivalent volume of gemular ejocte, proportional to $G_{g}=$. 414 the frection of gremular encounters), sute in creuser by 25 per cent to allor for other componente of meteorite inmax, and to the product $k w / u_{s}$ according to equatirn (i4), becomes
H_{6}
$\left.X=0.663 \times 1.05 \times 10^{-8} \times 0.4\right] \times 3.25 \times 2 \times 6 \times 10^{5} /(45.6 \times 1.3)$
$X=7.13 \times 10^{-5}(\mathrm{~cm} / \mathrm{year})$
$\left(\mathrm{cm}^{3} / \mathrm{cm}^{2}\right.$ - fear). In a succespftu granular impact; the ratio of mass ejected on disturbed (inctuang tall bach ${ }^{\text {ta/ tine }}$ micrometsorite.projectile mass is then

$$
\begin{equation*}
3 \mathrm{c} / \mu=1.72 \times 10^{4} \tag{614}
\end{equation*}
$$

The profile ratios B_{0} / x_{0}, if of the order of 60 for micrometroxite impact into the grnviar surface (Mable may. A). The peter is extremely flat and the rim angle, β_{0},
 we set sta $\rho_{0}=1$. Within the same mathematical frenemome es used . or the determination of fallback in section II. F. the average velocity of ejection in the direction pane at crater mess fraction y is

$$
\begin{equation*}
\dot{\hat{v}}=\mathrm{cos}_{\mathrm{s}} \lambda / y=32.1 \lambda / y \quad(\operatorname{cov} / \sec) \quad \tag{21.5}
\end{equation*}
$$

the factor 3 allowing for the armand damping of ejection: velocity with depth $x[$ Fig. 1 wa equation (24) $]$. The layer radiated from a horizontal level element of surface beycha a circle of racine 5 (55) around it and thus lostitio the surroundings beyond I is then

$$
\begin{equation*}
Y_{S}=x\left[\left(x+j^{2}\right)^{\frac{1}{2}}-y\right](\text { cry year }), \tag{96}
\end{equation*}
$$

where

$$
J=e^{\prime} I^{\prime}
$$

end

$$
\begin{equation*}
a^{1}=\frac{x}{2} E / v_{0}^{2} \lambda^{2}=0.084 / \lambda^{2} \tag{:17}
\end{equation*}
$$

$v_{0}=32.1$ is the velocity corresponding to $y=1, \lambda=1$, as of equation (215). The same amount Y_{I} in, of course, gained by the element of surface through incite from beyond radius f : as fellows from the condition of ecuilibrim, end cen be proved directly by integration. In the framewomep the prescribed conation, (216) is wathincticoly exact.

Interne now the entire level circular portion of the surface of radius I radiating over its bombay. The casa is more complicated than the fatback problem, because in a single catering event the ejscta. were supposed to tan out redselly though at ditieren; angles, and the distance from crater rim was pique for tach radiating spot, while In the presently considered process econ spot emits ejecta in all directions along which the fine ficus to the berar line art different. Instead of numerical integrations, we estimate the average radiation son the entire surface, sort coyer the borderline \bar{j}, to correspond to a point at 0.75 In Tron the center of the area, and to equal the mean of two expressions (216), one for $\mathrm{H}^{\prime}=\mathrm{H} / 4$ and the other for $\mathrm{I}^{n}=7 \mathrm{I} / 4$ (antipodal distance). thus, for she entire level circular area of radius L, the average envision as well as influx over, on fro y over its border, becomes
$\left.\Psi_{1}=\frac{1}{2}\right)\left[\left(1+y^{2} / 16\right)^{\frac{1}{8}}+\left(1+49 j^{2} / 16^{\frac{1}{2}}-2\right]\right.$ (cm/yerr).

mated by $2[8 /(74)-4 / 53]$ ．
Consider how e cylindrical depression of radius J ，隹et at the bottom and of depth II．From equation（45）fir the flight distance，us compared with the vertical range of the hight ir factory，at $\beta=55^{\circ}$ a pritiche ejected from the enter will just pass ven the sin when fork． Fe mekc the schematic assumption that when $11 \geqslant$ hie ejection is virtually blocked and（218）represents，the net sewerage． accretion at the bottom．Further，when $\pi<\frac{3}{3} \mathrm{X}_{\mathrm{i}}$ ，we assume a In ear decrease of the accretion balance from its maxima value（z18）to zero at $\mathrm{B}=0$ ．This defines thus the time scale of filling of tho depression，

$$
\begin{equation*}
\left.\widehat{C}_{x}^{r}=\frac{1}{2}\right]_{1} / \bar{\psi}_{L_{1}} \tag{:19}
\end{equation*}
$$

 time twill be

$$
\begin{equation*}
i H_{t}=\mathrm{F}_{I} \exp \left(-t / \tau_{i}\right) \tag{200}
\end{equation*}
$$

For $4>$ 章 w ，the accretion is constant，

$$
\begin{equation*}
\mathrm{dII} / \mathrm{a} \mathrm{t}=-\overline{\mathrm{T}} \mathrm{I} \tag{2江}
\end{equation*}
$$

Equations（218）－（221）apply els to a oylinariocl cleva；ed circular plateau of sadi I with a granular surface，when et a positive height，f tho doe receive but a negligible influx Pron the lower place a sur x cubing and loses the net count given by（218）．Table XLIXI contains the pare－ meters fad lifetimes of depressions（craters）or elevations （granular monas）．

${ }^{H} 9$

TAETE XITIT

Inetimes (Ψ_{N}^{\prime}) of Ocaters or Grenuler rounde of

H $<$ th with Bespect to Eticring of Overley

- by Small projactiles
(Crater or mound dimeter $B_{0}=$ 交)

 $21 \log \tau_{ \pm} / 21 \log _{0} 3_{0} \quad 1.47 \quad 1.54 \quad 1.71 \quad 1.77 \quad 1.87 \quad 1.94$ $\sigma_{\hat{x}, \text { years }} \quad 14300 \quad 39600 \quad 71300 \quad 12400 \quad 186000 \quad 682000$

These lifetimes are shorter then the hypothetical t Values $[$ Table $X L(4)]$ for the small craters for $B_{0}<100$ cm, End amewhet shower then the overlapping lifetimes So for the crete diameter range from about 8 to 2000 cm and, thus, must appreciably affect the caster statistics (Tables ru and XLT, 2 st versus end approximation) Also,
 and mounds, so that treble XLIII may be considered as of general applicability with respect to this particular process of erosion.

That part of metconte flux which iq not instmontal in grammar cratering (ice. e fraction $1-G_{g}$ of the to bal) produces herd sputtering on single grains or exposed boulders. The sot: component, J_{e} is inetifient in this respect end only micrometeorites may be considered. With $s_{c}=9 \times 30^{8}$, $p=2.6, \mathrm{k}=2, \mathrm{v}=6 \times 10^{5}, \mathrm{u}_{\mathrm{s}}=1.86 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$, equation (1.4) yields for the sputtering mass patio a value 400 times zees then the of (214) and negligibse as a factor of mas thaneport, Also, with $\lambda^{2}=0.25, y=0$. ; , the high-spece ejected (and cr very tine grain) are spread over a radius or oren 20 km and are not avejlable for small-scale local smoothing. Ir equation (190) is accepted, for the small craters of about 0.2 cm produced by the micrometeorites in rock the efl ejective strength of the ratexial must be greatly increased, to about $s_{c}=1.04 \times 2.0^{10}$ dyne/cne; this sets
$u_{s}=6.3 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$, and (14) then yields only

$$
\begin{equation*}
n_{c} / \mu=12.7 \tag{222}
\end{equation*}
$$

the layer carried away from en exposed horizontal grain ca rock surface (density 2.5) by micrometeorite soxtteco ing is then $y_{s} y_{s}$, when χ_{s} denotes the equivalent ley en of overlay (density 1.3) created,

$$
x_{s}=1.05 \times 10^{-8} \times 12.7 / 1.3
$$

UV

$$
\begin{equation*}
\because_{g}=1.03 \times 10^{-7} \cdot(\mathrm{~cm} / \text { year }) \tag{:23}
\end{equation*}
$$

This will be the ablation when $\vec{H}>$ a for the blow A rocky surface on level with the surroundings will be covered by overlay ejecta and thus protected from direct; sputtering. For an intermediate height, the thickness $0:$ the protective layer will be such that micrometeorite bombardment will sweepraway it os, cones in. As the influx is äecreased in en assumed ratio of $\quad \mathrm{C}=4 \overline{\mathrm{H}} / \mathrm{B}_{\mathrm{o}}$ basis of equations (219) and (220)], the micrometeorites will spend a reaction $I-x$ of their momentum in sweeping embay the thin protective sheet (actually if is an exponentel function of K, cf or next following subsection); foot the sputtering efinciency ion the underlying rock will thus be K 。 In addition, overlay is showering on the block, burying jus base at a rate of $1200 / 4.5 \times 10^{9}=2.67 \times 10^{-17}$ $\mathrm{cm} /$ year. The outstanding height or such e block with flat top decreases thus at a rate of

$$
d r a t=-2.67 \times 10^{-7}-2.06 \times 10^{-7} 7_{11} / B_{0}
$$

$$
\mathrm{K}_{12}
$$

whence

$$
\begin{align*}
& H=\left(F_{1}+1.29 B_{0}\right) \operatorname{sxp}\left(-2.06 \times 10^{-7} \dot{t} / B_{0}\right) \cdots I_{0} 29 B_{0} \tag{22.4}\\
& \text { The block is completely buried when } \mathrm{i}=0 \text { ox } \\
& \exp \left(-2.06 \text { y } 10^{-7} t / \mathbb{D}_{0}\right)=1 /\left(1+0.775 \mathrm{H}_{1} / B_{0}\right) \tag{224e}
\end{align*}
$$

 is in on:, the time in years.

As an example, set typically $\mathrm{B}_{0}=50 \mathrm{~cm}, \mathrm{H}_{2}=25 \mathrm{~cm}>\mathrm{ci}_{3}$ in the beginning (ci. Figs. 5: 1.6, 17) , the surface is at first unprotected, being smoterea at $\frac{4}{n^{2}} \chi_{5}=0.515 \times 10^{-7}$ om/yecr (223) end buried att $2.6^{7 \%} \times 10^{-7} \mathrm{cn} / \mathrm{yec}$, or a combined rate of 3.18×10^{-7} cig/year. Atrex on initial period of 12.5/3.28 $\times 10^{-7}=3.9 \times 10^{7}$ years the outstanding height is reduced to 12.5 cm after which (224) applies, with $H_{1}=12.5, B_{0}=50 \mathrm{~cm}$. The total lifetime of the block vail complete burial becomes

$$
3.9 \times 10^{7}+4.3 \times 10^{7}=82 \mathrm{million} \text { years, }
$$

when its thickness will be reduced to

$$
2.67 \times 10^{-7} \times 8.3 \times 10^{7}=21.8 \mathrm{~cm},
$$

having lost only 3.2 cm through spattering. This typical case shows that blocks of this and other sizes are not ground to powder by meteorite impact before being buried. in overlay; after a lifetime of $10-100$ million jeers . (according to size), they become incorporated in overlain'; being no longer disturbed except in e. care large cratering event. Such hide collections of blocks may then be the
caued of themal anomises, even when they are not visible, being acyered entirely by overley grecipitation (ef. Socton Vi. 0).

B. Dombili literation of Tust

In Fige 18 , a micrometeorite otrites a gnemulew surfice bs, inclimed under en engle α to the horizon Hit the meteoxite mo impacts in an arbitraxy unspecifjed arectim and ceuses a spray of ejecte from the point or impect. 0 (Which stande Eoz an infinjtestnal creterlet), symotricil wi th rempect to the nomal on , whatever the direction of On. Luo oppgsite, symuetrically with respect to om directed jets (axtelo β) $C A \sin O B$ are usmetricel with respect to the rextical $0 \underset{\text { th }}{ }$ resulting in a greatex domminglight distance, I_{j}, then unhill, I_{i}. The reantitis a oot down mil ajopacement

$$
00_{1}=\Delta L(\hat{P}, C)=\frac{1}{2}\left(I_{B}+I_{A}\right),
$$

If beinis tersen algebraicelly, negetive when to the left of 0 . The dinglecenent projected cn tise howimontel plene is evidentiy

$$
0^{\prime} 0_{2}^{i}=\Delta \mathrm{B}=\Delta \mathrm{T} \cos 0^{\circ}
$$

end thi ie the neasure of migrtion of a mess fractions dy: ejeoted under an ansle in suoh thet

$$
\sin \beta=y \quad \Rightarrow
$$

[eguation (27) with sin $\hat{\beta}_{0}=1$ as in the preceaing section]. From elemontery winometicel conciderebions we then find

$$
\begin{equation*}
\Delta s=\left(2 y^{2} / 6\right)\left(1-y^{2}\right) \tan x, \tag{225}
\end{equation*}
$$

where F is the average affection velocity (215). Substitute. ing this, intersection over y yietat ha average displacene m of the ejecta, there, however, axe sone complications which refer to the crelicily of equations (ens) or (IG), Indited by the condition $y>\mathrm{F}_{\mathrm{a}}[$ equation (dy)] for ejecta of
 to flight distances of the order of 5 km , fer above the crater thaensions we axe concemed with. Such Rest ejecta will go equals un and dom hill of males carters without a systematic drift, their effect being covered by the theory or the preceding section while for dommill drift they ar y or no rail. Clearly, ejecta from the inner portions of the craterlet are irrelevant in the context. only alow ejecta from the outer portions of the cratexhe, nose hint aistrances use not large as compared to eater aiomater, win contribute to filling the crater by downhill drift. In fig.
 by a cone HO_{2}, of constant slope d. Ejecta $\left(\mathrm{OO}_{1}\right)$ from a middle joint 0 (the micrometer craterlet) on the slope will
 the opposite ledge $\left(\rightarrow \mathrm{OO}_{2}\right)$ and even club up or leave the crater then $\Delta S>0^{\circ} 0_{2}{ }^{\prime}=\mathcal{S N}_{0}$. Instead of proper integration whose a curacy is not justried, by the uncertainty in the basic duce, we use averages as in many other cases ox this
treatise nc sot the lower limit of integration for equation (225) at a hoxizorital light distance one quarter of the crater ciameters

$$
v^{2} / s=1 / 4 \alpha, y^{2} \leqslant \alpha_{2}^{2} 3
$$

whence the lower limit of integration becomes

$$
y_{1}=\left(x_{0}^{1}\right)^{-\frac{1}{t}}
$$

There is a lower limit to the validly of the treatment; Fo $>1 / \alpha^{\prime}$ (corresponding to the per $\lim t y=1$ not to be exceeded) di being given by equation (217) : Hence the average down hill displacement inside a crater of diameter band Buertge
 factor of (2/T) to allow for slent(non-movidional, directions, becomes

On

$$
(2 / 5) \int_{y_{1}}^{1} \Delta s \cdot d y
$$

$$
\hat{B}=\left[2 x^{1} /\left(\sigma_{0} \beta_{0} B_{0}\right]\left[\left(\alpha^{6} B_{0}\right)^{\frac{1}{2}}+\left(\alpha^{1} B_{0}\right)^{\infty}-2\right.\right.
$$

 Less quantity o me how through 1 cm of crater circum ference (TB, not necessarily $T_{1} B_{0}$, where $E=00_{2}$ is an inner diameters Fig, ASa) is then evidently

$$
\begin{equation*}
T d=\dot{\lambda} \cdot \overline{d s} \cdot[1-\exp (-n)] \tag{2201}
\end{equation*}
$$

where X is the volume of granular material ejected per cur and sec (213) and γ the "kinetic depth" of overlay at the spot so that the expression in brackets denotes the fraction of projectile momentum spent in the (not infinite) granule layers toe rest being applied to the bedrock with much less
sputtering efficiency (223) but of long range (10 km) and thus indifferent for the downhill migration problem.

Assuming the availability of sufficient supply, thus maintaining a thick layer of overlay, \rightarrow so the time scale for filling a conical depression of volume $V=\left(\pi x^{2} 3_{0}^{2}\right) / 12$ by drift becomes

$$
\tau_{F}=v /\left(\pi E_{0} F_{i}\right)
$$

or

$$
\begin{equation*}
\sigma_{F}=\pi_{1}+B_{0}{ }^{2} /\left\{2 4 \lambda \left[\left(\alpha B_{0}\right)^{\left.\frac{2}{2}+\left(\alpha_{0}\right)^{-\frac{1}{2}}-2\right]}\right.\right. \tag{223}
\end{equation*}
$$

With α^{i} and X as in the preceding lection this becomes

$$
\begin{equation*}
\left.\tau_{F}=1710 B_{0}^{2}\left(0.9668_{0}^{2}+1.035 B_{0}\right)^{-\frac{3}{2}}-2\right)^{-1} \tag{229a}
\end{equation*}
$$

in years when B_{0} is in cm . The formula is valid for $\mathrm{B}_{0}>2 \mathrm{~cm}$, end the tiling is supposed to proceed exponentially with time.

For craters completely imbedded in overlay, there is no shortage of supply to peed the flow domhith, min and creterbec consisting equally of the dust and rubble of grot depth. From Tale EXIX the size limit for this condition ($\overline{r i}_{p}<13$ meters) to be fulfilled is $B_{0}<160$ meters for primaries and $B_{0}<36$ w for the "ry $y^{\prime \prime}$ seconories. In this vase the flow sucks away the rim, the crater diameter increases, encroaching on the surrounding terrain, while the interior is filling. Shallow craters without elevated rims (as seen on the Sur veyor and Ranger pictures) are thus produced. Fquations (229) or (229a) give unconditionally the flow) τ_{F}, for these overlay craters.

When supply is insufficient, and when, as for larger praters, there is bedrock underiying the caterer profile, the flux defined by (ea), adjusts itself to supply through a finite value of the overlay kinetic thicmess x; a thin layer of overlay etbeins then equilibrium with supply and domaill flow, especially ta che outer positions of the crater where bare unprotected rock will be exposed and subject to erosion by sputtering st a fate of

$$
\begin{equation*}
d x / d-a x_{s} \cdot \exp (-n) \tag{239}
\end{equation*}
$$

($\mathrm{cm} /$ year) where X_{5}^{2} is given by (223).
Supply to the outer regions of these larger craters an De assured to consist of three main components:
(1) Low velocity granular ejecta from the surrounding: however mostly non-sticking [cr. equation (212a)], ricocheting inverts, end not apt to provide much of supply rear the crater rim; the rate of crater filling is measured by yo (Table XITI) but only one-half of this should apply to the rim region.
(2) High velocity sputtered material, of deposition rate $X_{s}(223)$ corresponding to a time scale (on the conical profile model) $q_{s}=\frac{1}{3} x^{5} / \alpha_{s}$ (no correction factor of 1 - t_{8} shall. be applied because the sputtering applies equally tr granular and no ${ }^{2}$ granular impacts); the fine-grained natural (partly atomized) sticks to the soot without ricocheting and thus equally feeds the rim and the central regions.
(3) Low-rverocity mostly coarse ejecta (σ_{e}) of the accumulating overlay, within a time scale $\tau_{e}=\frac{1}{3} x^{\prime} / \tau_{e}$ and $J_{e}=2.67 \times 10^{-77} \mathrm{~cm} / \mathrm{ye}$ ex .as in the preceding section; these ere even more mobile than the finer ejecta from the surround ing, and onewtizipd of the rate er be essumedrsomethat ambitwarily and thus of the validity of (229) is then evidently

$$
\begin{equation*}
1 / \tau_{n}=1 / 2 \tau_{S}+1 / \tau_{S}+1 / 3 \tau_{E}>1 / \tau_{F} \tag{231}
\end{equation*}
$$

in wind sase the overlay thickness increases everywhere while the crater profile is gradually levelled out when this is not funpllea, party or entirely unprotected rock exposed begimping from the rim inwards, and drift is adjusted to supply through the proper value of X in equation (223):

$$
\begin{equation*}
1-\exp (-W)=\frac{\sigma^{\prime}}{H_{1}} \tau_{N_{i}} \tag{232}
\end{equation*}
$$

the arindag of the incompletely protecteatim process then at a rote of

$$
\begin{equation*}
d H / a=-2 X_{s} e^{-x}=-5.2 \times 10^{-3}-x(\mathrm{cn} / \text { year }) \times 4 \tag{233}
\end{equation*}
$$

The maimer erosion from this 3 effect in 4.5×10^{9} years aromas thus to 234 cm , ie. about waters.

- Craters Jess then 300 m , which axe eroded in less thar 4.5×10^{9} years, would ot present upper now various stages of erosion, according to age. With an initilel depth to diameter patio of x / B_{0} about 0.12 (cr. Fig. 4); in an average half -eroded cater $x^{2}=0.06 B_{0}$ can be assumed. With this the supply parameter according to equation (Rit) becomes

$$
\begin{gather*}
\mathrm{K}_{19} \\
\left.I / \tau_{\mathrm{m}}=1 / 2 \tau_{\mathrm{f}}\right)^{2} 0.6 \times 10^{-6} / \mathrm{B}_{0} \tag{231:i}
\end{gather*}
$$

The calculated drift lifetimes, $\mathcal{T}_{\vec{B}}$ (2zea) with the corresponding supply lifetimes, θ_{m}, are given in Table KiNG

From the table we can see that condition (231), or $\tau_{m}<\tau_{F}$, is not fulfilled within the range of B_{0} from about 6 cm to 28 meters, where it. is irrelevant because these small craters are completely built into overlay. Therefore, within the valid city of our assumptions (in which respect undoubted y considerable uncertainty exists), the values of T_{F} (229a), or the drift rates d [equation (223) with $\lambda=\infty]$ seem to be valid unconaitionelly.

This refers to the average flat crater rims. Step (moderately steep) wins of larger craters with bedrock exposed will retain their unprotected rocky surfaces, while the inpouring ejecta are rolling or ricocheting toward the interior. Alphonsus is an example (Pigs. 7.8 , 9), although on a much larger scale and representing a more primitive stage. Ane her example is the boulder rim or stone wall of the Surveyor :: crater on the horizon (Figs, 5 and 6).

C. Filling by Ricocheting Overlay Injection

The Last, and most important; factor of erosion for tie lune surface features (craters) to be considered is the filling of depressions by incoming overlay, The ricocheting grains of overlay, as they are using kinetic energy in successive semi-elastic impacts; will have a preferential.

$$
\begin{aligned}
& K_{20} \\
& \text { ThBin XITV } \\
& \text { Dript ingrapion-time, } T=\text { of cratere } \\
& \text { [Vilid sibler wen } G_{\mathrm{F}}>\mathrm{r}_{\mathrm{ri}} \text {; or when cretcr diemeter } \\
& \mathrm{B}_{\mathrm{o}}<30 \text { mejens (prowned by "ray secomenties") or } \mathrm{B}_{0}<160 \mathrm{~m} \\
& \text { (prounced by interplanetary primeres)] } \\
& \text { The conditions of trathity are always furfillec }
\end{aligned}
$$

tendency to enllect in "holes" from which they ore unable to escaps. mberepare the holes will receive moxe generion then the ir surpounings and will be gredusily filled at the Latweris expense. This driferentish leveline action of eccretion is superimposco on a contimonaly wistum Foneral Level or overlay . with thas as well on with the wo other types of exosion discussod eamter (Sections X, A, b, the levellinc; of the Gepression takes pleae preferemtialls ot the expense of its nearest summonaings they are, sowto asyeaks ructed in by the onater vortex and a seconotuy, mizer but shallower; depression is formsa around tae original erutex: thus, the depression never disappars completely exeept won
 Iy shallower untll becoming unobservable.

The theory or these processen; though more or less straightformand wen the initial conditions (coeficiemh of elastioity, λ; etc) ane derined, leads to exmplicated statistical integrathoos: amputing to an unjustitist overdiscuscion. To the foklowing a simplitiec articicial mechonical model is ingiom Gucecs amply surficient to estimate the brapping efficiency of a depression without pretending to deseribe the actual statistiont complexity of trapping.

It atso must be pointed out that the prexential trepping in depress lons applies only to the non-sticking riconetins pert of atcretion minometeonte materidel (Jm) retaned by the mon is not only quantiotivel, insignisicant as comperad
with tho overlay ejecte (0_{e}), but it in finemgainea ox even partly etomized and must stick at the spot viaere it settles. equally even a hole or an elevainon it covens the terain - with a u iform layer witnout a leveluing action on its rourhm ness parileo similomy, the finewdraned component of ovenm ley, bey below $r=5 x \quad 10^{-5}$ an mach, arcoraing to (223) , mould stick at on impact velocity as high as 5 m/sec, must be exsluded as non-sctive; zccoraing wo table xXev. D, this component pccounts for 15 per cent of the i icoming mass. On tife other lena, laxge projectiles are not filline but destroying a dzw pression ohroush overlsp. For a given eraber size s_{0}, one may set an vpper limit of a "filing" projectile siae as that producing a creter trice the given sizes i.e one as diame jer ${ }^{25} 0$ (the limit ts rough, made to noincide with the lower jimit ossmabe for overapoing the convontional vogueness or it is of littla precticel consequence because of the siov variation of the cumatative mess of J, with jrojectile radius) omas,
 and a curviative mass traction $y=0.628 ;$ suburecting 0.15 as for the sticking Tine-greined frection, the actively filing frection $2 x$ overiay for this size of cretem becomes $j_{\mathrm{f}}=0.628$ $-0.150=0.478$ (of the total stetec to be 3.57×10^{-7} Erem per crill and ye $2 x$):

Instisa of the statisticel of mplexity of pexticle size and velocity distributions (iable why. I), we choose a tyfical
suerage zite which best raxesents toe entire particle spectumo Tor a given exaber diameters the medan parkiche sige is thet comespo aing to helr-mass or, $\overline{3} y_{f}$ as dejined obove. In fenje Yuy some sample phmact pammeterr for this medien size axe Histed。

It and be found tant, as companee with the other twe erosion rocesses, filling, is imprtant only for the lereer cxaters bith this in view, we assume the troical pxojectile perometess as $r_{0}=r_{m}=0.5 \mathrm{~cm}, \cos _{0}=0.926, \sin \gamma_{0}=0.373$,
 oonventimally; 0.5 et this sjze (Teble XCuV. D), which mesme alterneting "soft" and "hera" micochets uthth $\lambda=0.3$ and Co5s respectively as pepresented in Teble אMAVI (1) \& (2). As an aditicnat sohemetingtion, se sssume at impact the specular Lew of metuction for the anges, wille the velocities ere reduced ly a footor on) atrer each impact.

Het $G_{\text {雷 }}$ denote the "goin factort or be xatio of accretion trepped sn a depressions to tinat accreted by a level surpase of equal area. Obvicusly this is a fonction of the depth and profile of the depression. Provisionally a single depression situated om an intinite lovel arem is constiered, conpletioion from other cepressions being thus dispegerded.

Jet in Pige $10 \mathrm{~S}_{1}$ be the point of firet impect of the projectile upon level suriace S_{5}, and $S_{2,} S_{3}$, S_{4}, S_{5} the ricocheting impects when tinelly come to rest at so, all
the points being conventionally assuned to lime up on a strabigt ine (zigw bes peths wil not essentinaly elber the gain tacton: rectilinear peth and specular mexlection angle are convenient simplitioations winch should bave litole efeet
 of dioneter 3 in which the racocheting pata is assured to pass through the miade: winh contain the point E_{0} thus accrete the particle men the centex of the aven ts afsplaced over a Tange of distance $C_{1} C_{2}=3$ along the patias. its "catch lequth" being thus fi a cisoulsx depression of equal ajemeter mey trap the particle when impacting at S_{3}, (botton part of tizure, A_{2}; prticle inpinges at S_{3}, is reflected inverds and tropped at S_{00}. though unble to trap ir at S_{2} when the aistance

 path wht can be trapped. We Reve thus obviously, irmm simple pronobility considerationt,

$$
\begin{equation*}
G_{E}=A_{1} A_{2} / C_{2} C_{2}=1+\Delta I / B \tag{234}
\end{equation*}
$$

where $s=\Delta r_{0}$ in the particulas ense considered.
 $s_{g} \mathrm{~S}_{1}$ (minch may but be zero an the general case), each ar the precedirg tapacts adds to the probability. In such a case

$$
\begin{equation*}
\Delta D B E_{0}+\Delta G_{2} \Delta x_{1}+C_{0}=\sum I L \tag{235}
\end{equation*}
$$

An overall thum rule, already applied in Seetion x. A, would sct the extra trepping lerpin equal to foum times the
average doth which, for conical cross section, equals one -hear the maximum depth, x^{4} a Fence

$$
G H=\frac{1}{2} x^{4} x 4=8 x^{3},
$$

0

$$
\begin{equation*}
G_{R}=1+\operatorname{cxs} / 1 / B \tag{236}
\end{equation*}
$$

For on actuarily wormed out numerical, case(mental experimert, see below) of $x^{5} / \mathrm{B}=0.25, G_{\mathrm{S}}=1.529$ has been four d while (236) yields 1.5 , a surprisingly gee confirmation of the thumb rule.
 the reflections corot be kept ir the same plane but, disregarding this finesse (in line with other simplifications), the ratio of depth to chord in a cross section remains equal to $x^{1 / 13}$ and (236), as well as its more sophisticate a original (234), should remain valid for the entire depression area, ono not only for its central section.

Of course, these expressions presume a depth to dime ter ratio considerably smaller than ult, as is always the case with actual impact craters. In the case of a very deep or infinite holes, every particle entering it is trapped. The rain factor then is evidently

$$
\begin{equation*}
\left.G_{00}=1+\left(5_{3} 5_{0}\right) / 1\right)+7 \tag{2:57}
\end{equation*}
$$

where π is the number of touchdown preceding S_{3} (when $\xi_{2} z_{3}>B$).
(Here S_{3} stands for the more genera S_{n}, the n-th bouchomu) With an average box the two types of ricocheting as represented

5_{26}

Tsiblit x NV

 of Dicmeter B_{0}

Bo. cm	$\mathrm{ram}_{\mathrm{m}} \mathrm{g}$ ctit	$3_{0} / 2 \mathrm{x}_{\mathrm{m}}$	Wos cm/sec	cos. ${ }^{\text {\% }}$
$\geqslant 653$	2.4	$\geqslant 195$	$\leqslant 8400$	0.890
80.	3.87	216	11.000	09830
21	0.1	210	12700	0.951
3.26	0.017	191	16000	0.963

Trapire Gain moctor fox Tukibitely Deep Cincular Hole

 $G_{\infty} \quad 7.50 \quad 0.03 \quad 3.035 .234 .233 .413 .21 \quad 2.63 \quad 2.00 \quad 1.02 \quad 1.57$

TRELS KLVII
Cumulative Deficit or Negative Gain Pactory $\omega_{\text {es }}$ (nommatred to unity) axounce a yeprssion with $x^{1} / B=\frac{L}{x}=\angle S / B$ is the relative distance from the edge, so that the corresponding aistance from the center of the depression is $B\left(\frac{1}{2}+\frac{5}{5}\right)$

ξ	0	0.121	0.168	0.241	0.292	6.330	0.47	0.54	0.61

$\begin{array}{llllllllll}0 & 0.257 & 0.346 & 0.474 & 0.558 & 0.608 & 0.762 & 0.834 & 0.391\end{array}$
$\begin{array}{lllllllllll} & 5.70 & 0.31 & 1.01 & 1.74 & 2.08 & 2.75 & 4.66 & 5.25 & 11.2\end{array}$
$\omega_{e} 0.9320 .9540 .959 \quad 0.9790 .9850 .982 \quad 0.997 \quad 0.999 .1 .000$
by censes (I) and (2) or mable XuvTt, the gain factor is then as shown in mehle Kiva. Thine depressions of finite depth: the gain factor is different for a chows and a diameter. The case, however, is only of academic interest as the moon is concemben, although is probably helps in understanding the significance of the notion of gain factor.

Fig. 20 explains in detail the conditions set v_{2} in the sample calculation of the gain factor for a triangular conical) tree (cross section ACR of a depth one-quarter its dimeter, $O C / A B=x: 1 t=4$. AB represents the ground level. The portion of the graph dove this line pictures the transition from trapping to escape velocity(escape from the hole), for lunar eccelergion on gravity ($162 \mathrm{~cm} / \mathrm{sec}^{2}$), in the form of $10 \mathrm{~g}\left(\mathrm{v}_{\mathrm{e}}^{2} / \mathrm{B}\right)$ where fe is. the first rebound velocity after any impact at first entry (theist sufficient mo moke the mines the depression $B=A B$ is the diameter of the trap.

The succession of "soft" and "hard" imosobs was assumed exactly as in Table XXXVII, variant (I) ("soft" start) and variant (2) (Bharat start) being considered separately and an average of the two results then taken. The elementary kinemeti cal problem consists in the condition for a projectile shot mp from points (time 19, lees Shes an example) under zenith angle z_{1} with initial velocity v_{l} tc reach point ir at distance $L_{5}=G_{j}$ fond altitude $h=m$. The equation of the parabolic trenectory

$$
\begin{equation*}
n=I_{1} \cot \ddot{Z}_{1} m^{2} /\left(2 v_{1} \sin ^{2} \operatorname{z}_{2}\right) \tag{233}
\end{equation*}
$$

to be represented also as a condition for velocity,

$$
\begin{equation*}
v_{1}=\operatorname{gin}^{-1} /\left\{\sin z_{1}\left[1-\left(b \tan \operatorname{cin}_{1}^{2}\right) / 5\right]\right] \tag{2323}
\end{equation*}
$$

when aphied to the sinde or anobe replected trajectoriss
 solves the problem or the velocity of escape from the trop. in the single, repeoted (double) collisions the degredation of velority was onsumed to procesd with strictly alternating elasticity factors $\lambda_{1}=0.3$ and $\lambda_{2}=0.5$ in continuation ox the sequence of Teble XXXVIT. Ti the point fig (fig. 19) was on the rim (B or $A ;$ Fig. 20) or the depression and the velocity v_{1} was a minimum as compered to other combineticns, this was then the escape velocity (v_{e}) required fon a single impact。 In Fi 沓. 20, impacts on the back slope, CR , are indeed mestectad in such a maner thet most feficient escape is

 etc. (the nurvabure or the incoring trajectories is neclected). The escope velocity for these irpects is represented by the curve D'F'Pr (Fig. 20, urper graph), based on three calculated poinç:
for entry at D, at velocity (D^{\prime}), $\mathrm{ve}^{2 / B=131.0 ; ~ f o r}$ entey $a=F$, velucity (P '), $\mathrm{V}_{\mathrm{e}}^{2} / \mathrm{B}=-152.6$; for entry at B,
 Jogaritums of these quentitiess

For impacts on the front slepe (somernere all alons ics
 zenth ancle $\tilde{Z}_{\mathrm{E}}=z_{1}=760^{2}$. 4 and either meets the opposito slope (CB) , oxy evon then not mettros requires a double touct-
 is the oposite stope C (ox fig. 20), the impocting zenith angle Z_{2} is determined from
the impect velocity from

$$
\begin{equation*}
\left(v^{\prime}\right)^{2}=v_{y}^{2}-2 \sin \tag{240}
\end{equation*}
$$

fnd the remected zenith angle (5is. 19) from

$$
{ }_{3}=180^{\circ}-2 t-y_{2}
$$

where \mathcal{d} is the inclination ot the slope of or ch tacis in the present case).
the lefthond side of the velocity oiogron in titg 30 (above AD) represents the escape velocities $\left[\log \left(\mathrm{ve}^{2} / \mathrm{b}\right.\right.$] jor thpacts on the front slope AC. TVo direfreat cases ocur, corresponcing to two possible vaiues of the elastieity fartox at secord impect, $\lambda \rightarrow$

Tous, a projectile entering at a alote Er (fic. 20) wil
 trajectoxy np:pp when $\lambda \div 0.3$ at point p of second impect;
 point 9 . mins hirurcotion of eseape velogiby at ligact on the front slope AC is represented in the upoer graph of piro

$K_{3.2}$

$$
\lambda=0.5 .
$$

 catch Iemeth is then equal to the abscissa interval in the upper portion of sig. 20 over whin the retuel rebound vela.. city, v_{n}, falls below v_{e}. Thus, for $\mathrm{v}_{e}^{2 / 0}=1.00, \log _{\mathrm{e}}^{2} \mathrm{P}=$ 9.00, this conditions is fulfilled $\begin{gathered}\text { over the entire length }\end{gathered}$ $A B$, or the catch length $I I=B$. For $T_{e}^{2} / B=300,10 \mathrm{gv}_{\mathrm{e}}^{2} / \mathrm{B}=2.3$, the condition is fulfilled only ores the leftohand portion, AD, or fore impacts on slope AC while those imputing on slope Ci l all an escape; $515=0,408 B$ obtitins in this fosse. Calculations of the gain factor at $x^{1} / \mathrm{B=}=\frac{1}{8}$ along thess principles for the same chosen se. of diameters as in liable mini yielded G_{f} from 1.40 to $1 . \sigma_{1}^{n}$, monosystematically Guctuating over the entire range of B from 2 to $8 \times 10^{4} \mathrm{cas}$ in. the range for which $\mathrm{B}<\mathrm{S}_{1} \mathrm{~S}_{2}$ (Tate) (the finstrie)-
 crease orly for larger depression diameters. The fhetions were due to a "resonance" ox interferences effect between the banter and the set of ricochet intervals, btherwise the absolve value of B was imelevent, sud the individual values of $G_{\text {find }}$ for each B were considered as fix random samples o.. the gat factor An ave rage or

$$
C_{P}=1.529 \pm 0.089
$$

was obtained. Of this the unit par* is accounted fox by the length B itself; a fraction of 0.39°. is the average of the tailpiece $\Delta L_{0} / B\left(S_{3} \%_{0}\right.$ in Fig. 18) , and a fraction of 0.142
 15). By matocy tith the thum-wale equation (2as), me may get (when x:/3 me.5)

$$
\begin{equation*}
G_{2}=1+2.116 x^{5} / 4 \tag{242}
\end{equation*}
$$

the costricient betne hesed on the outcomo of our "monexicel
 amension when $B<800$ moters and, thus, proctically applies to cratsus of all sizes which can be eroded in $4,5 \times 10^{9}$ years or Jess and whioh ara the object on our inverest.

Gain in accretion inside a crater must be compenseted by a loss an ans netghborhood. Whe trapped tatlolece of the rieochet, $14=S_{3} S_{0}(E T g, 19)$ would have passed on level ground to a distance a menging rrom 0 to At beyona the rim of the oxater and is thus subtrected from a sing axomot
 trabution function being milomm over this zange (of the lineat ofsplecement of the bouree S_{2}, Fig. 10). In a first
 creases , the range $A L$ decreesen also and the withorawt is enfected chethy by namoving the ming on whindraway, mille little changing its aepta.

From the seme numericel experiment of tilling a depth with $x / 3=\frac{1}{4}$ overlay (for a progrecsion or the diametens as in thble (WV), the distribution e 全 the deficits (whth drawels) th the sumouriturs wes cbtained as pepresented

In Teble KLVI (each parialo trapped in the depression corresponding to one missing from ths prospective Lending point oustide the depresplon)。 $\xi=\Delta x / B$ denotins the reletive madial orbension of the cateh area, each indivinual (unity) event conmmoting σ_{p} to the gath factor instide the dew pression (B) in conventionaly to be spread wnitomay over AI ena sontributes over this lempth to a minomm dexicit
 nomalized to unity, is given in the table for eoch $\}$ vatue whout moothing, i.e. 0 it dirpoty turred out in the calculation Por single chosen B-whmes

The desiont integrated orre the interval of $\xi=0$ to $\xi_{5 \rightarrow \infty}$ (xatus $\left.0,5+\right\}$ to ∞ in B-mits) mat equal the gain
 accretion $) / X_{0}\left(\operatorname{in}\right.$ mits os avez+ge accrewion, X_{0}) around the depression (creter) is given ly

$$
\begin{align*}
& X / X_{0}=1 \cdot \frac{\pi}{4}\left(\omega_{5}-1\right) \cdot\left(d \omega_{e} / \sigma \xi\right) / \pi(1+2 \xi), \\
& { }^{0 x} X / X_{B}=1-\frac{1}{2}\left(\theta_{E}-1\right)\left(d \omega_{e} / d \xi\right) /(1+2 \xi ; \tag{243}
\end{align*}
$$

Hexe $1+\varepsilon \xi$ is the relotite sadius, or che relative dienets
 Iy from the smoothed deto of Toble XUVI, and the resultint relative sccretion function (slightty amoothed) is given in Table XLivTT, for the original cose of $x / B=\frac{1}{6}$ and for a number of other depresslon (creter) profiles based on equa. tions (24:3), (243) end a homology celation rollowing from
them when $\xi \sim G_{\rho} . .1$,

$$
\begin{equation*}
\left(x_{0}-x_{b}\right) /\left(x_{0}-x_{a}\right)=\left(1+2 \xi_{a}\right) /\left(1+\dot{\varepsilon}_{2} \xi_{b}\right) \tag{244}
\end{equation*}
$$

where

$$
\xi_{b} / \xi_{a}=\left(x^{i} / B\right)_{b} /\left(x^{i} / B\right)_{2}
$$

Figuxe 21 represents the aistribution of accretion rates inside and around a crater, socording to the table.

The cats of fable XIVITI can be used to calculate the evolutionary changes in the crater profile as it is filling, x decreasing while a conical cross section is assumad to be maintained. is dia $=X_{0}$ at is the inerement of total accretion, the locai: increment is $d z=X_{d e}$ anc that at the erater edga (initially level outworis, without raised rim) $h_{0}=0.6904=$ $0.60 . X_{0}$ di.(a). Filling of the crater depth by an amount -dx reletive to the edge (stmultaneousty raised by tho) requires the adition or an average accretad layer avor the crater sxea equis to $\frac{1}{3} \mathrm{am}^{1}+d \mathrm{~h}_{0}$, whence

$$
X_{0} G_{f} t=\frac{1}{3} d x^{8}+d h_{0}
$$

on, eliminating the time, 0 or, as well as X_{0} from expression (a), we cbtain
lsc, for any point at distance 5 from the crater eagen with its proper pecretion rate X, the relative increment of accretion becomes

$$
c\left(h-h_{0}\right) / d x^{1}=\frac{1}{3}\left(X / x_{0}-0.69\right) /\left(G_{p}-0.59\right) \cdot(\dot{2}: 59)
$$

Starting with $x^{1 / t s}=0.25$ or the first cose of Teble xtuluty the evolution of the crater profile as calculated by approsi-
racus ximal
Ficletive hocretion, x / y_{0}, Cutsloe a Crater at Distence $\triangle I=E_{\text {P }}$ from the Rim; Inside, the Avernee Volue is Ge;
$x^{5} /$ E is the cooth to diencter netio of the circules Gepresaton

$$
X^{\prime} x_{0} 0.690 .735 \quad .779 .838 .850 .896 .031 .664 .989 \quad .990 \quad .003
$$

$$
x^{8} / B=0.15 \% \dot{c}_{\mathrm{I}}=1.317
$$

$$
X /{ }^{\prime} 0.690 .742 .794 .838 .871 .923 .968 .587 .998
$$

$$
\sqrt{/} / W_{0} 0.690 .758 \quad .825 .372 .911 .931 .997
$$

$$
\mathrm{x}^{8} / \mathrm{B}=0.10 ; \mathrm{u}_{2}=1.212
$$

$$
x: B=0.05 ; x_{f}=1.100
$$

$$
X / K_{0} 0.690 .809 \quad .397 .981 .997
$$

$$
\begin{aligned}
& \xi=0.0 \quad 0.050 .10 \quad 0.250 .20 \quad 0.30 .4 . \begin{array}{lllllllllll}
1.5 & 0.6 & 0.7 & 0.3 & 3.0
\end{array} \\
& x!/ \Delta=0.25 ; \quad G_{4}=1.529 \\
& \text { X/40 0.650.730 . } 760 \text {. } 805.835 .932 .912 .533 .062 .983 .095 \quad .093 \\
& x^{*} / B=0.80 ; C_{0}=1.423
\end{aligned}
$$

 in remix Mime
the consecutive stage of evolution by filing are represent se in Figoe2; according to the data of Table NuTX. The carnal degradation of the crater at the expense of hus nearest sumomaings leads to the formation of a depression aroma the crater border, gents' sloping toward it without sharp outlines, reminding of sone $/ /^{\prime \prime}$ washed-out crater structures on finger photographs (shallow depressions and. "dimple' caratern Fig. 23). At stage V, the crater and juts surroundings have melted into one such shalom structure of increased dimeter and indefinite outline. This is as far as the integration of (245e) is self-consistent and cen be trusted. As to Stage VIgity is the result of a linear extension of (245) and is but of qualitative on symbolic significance.

Although derived for the process of filling by incoming overlay, the sequence of evolution of a crater profile as shown in Pig. 22 would also apply to the two other processes of degradation (filling by spray, and domhill migration) because they, too, are working t t the expense of the nearest surroundings of a crater; only the appropriate time scales of the recesses will be different. The presence initially or a resend "sort" rim, consisting of the same overlay rubble, will no" alter essentially the time semis of degradation, although geometrically there will be some difference while

x_{97}												
Evolution of Crater protio by Puting												
$\overline{3}=(2 / T 1) B_{0}$												
stage	$x_{1} 1 / \mathrm{h}$	1. 2 等/ B	0.1	0.2	0.3 10	0.4 56	0.5 $30 / 7$	$0,6$	0.7	0.8	1.0	r_{c} / B
I	0.25	0	0	0	0	0	0	0	0	0	0	0
II	0.20	0.0222	178	322	432	492	558	606	635	650	657	0.0 .146
III	0.15	0.0457	414	739	958	1129	3254	1351	1390	1410	1427	0.631 .5
IV	0.10	0.0747	762.	1322	1722	1.979	2156	2237	2239	2309	2316	0.0515
V	0.05	0.1103	1570	2162	2692	8035	3202	3340	3352	3412	343	0.6761
VI	0.00	0.1562	2557	3576	8085	4458	4656	4768	4815	4835	4549	.0.1078

the rim is eroded stoultanously with the filing of the ureter.
As to a herd rocky tim, much as presently could be expetted for eaters lamer than 150 m , a two-staged process of their degradation will be constered separately

By the nature of the filling process, the absolute rate of fillime is roughly proportional to the relative depth $x^{8} / 33$, implying the rete of degradation to be an approximately exponential function of F , the total accretion (Bro column of Table XIXX). indtiplying these values by a factor of a/Tw $0.6: 37$ as for on average chris of a circular crater; to. obtain the accretion in writs of β_{0},

$$
\begin{equation*}
x^{1 / 1 / B_{0}}=\left(x_{1} / B_{0}\right) \exp \left(-1 / B_{e}\right) \tag{256}
\end{equation*}
$$

where x_{1}, as before denotes the initial depth, the average linear measure of degradation, E_{e} corresponding to the different intervals of the tables is found as follows: Interval: $x^{i} / B \quad 0.25 \cdots 0.05 \quad 0.20 \cdots 0.05 \quad 0.15 \cdots 0.05 \quad 0.10 \cdots 0.05$ $\mathrm{F}_{\mathrm{e}} / \mathrm{Bo}$
0.0437
$0.04=0$
0.0375
0.0323

The variation of this paxarget ex partly reflects tho appruxingtive character of equation($245 a$) in which changes th the surroundings are not taken into account, and only partly seems to be due to o. real acceleration of the process at. shallower profiles. This detail is only of academic interest,
 The relax zion time for filling is then

$$
\tau_{\mathrm{e}}=\pi_{\mathrm{e}} / \chi_{0}^{-}
$$

or, wii the nonsticking influx of overlay being given by

$$
X_{0}=2.60 \text { x } 10^{-7}\left(y_{2}-0.15\right)\left(g / \cot ^{2} \cdot y e a z\right)
$$

where 7 F is the cumbativo mess reaction in the end Line

$$
\begin{equation*}
\pi_{e}=1.4 . x 10^{5} 5_{0} /(y 2-0.15) \tag{243}
\end{equation*}
$$

in years fox B_{0} in m These values are calculated end used jointly with the two other processes of erosion in the nett following section.

I. Erosion inietime of Soft binmen Craters

 scales of erosion and filling we boston lifetime as used in (eos) and which is to be set against elimination by orem. lapping of. larger craters, is the time interval during which the crater profile becomes so shallow as to become prectizal. If unrecognizable in the crater sounds. for this we nod ab
 Hence the erosion lifetime of o rater starting with a prow file ratio of x^{i} / B_{0} cen be set equal to

$$
L_{\epsilon}=\tau_{F_{1}} \ln \left[\left(x^{1} / 13_{0}\right) / 0.02\right.
$$

where

$$
I \tau_{q}=1 / \tau_{e}+1 / \tau_{j}+I / \tau_{e}
$$

and $T_{\text {IF }}$ is the to tel crater degradation time scale.
In Section VII. C, when discussing the accretion of oven lay; a lend in the frequeriey of lunar craters at $B_{1}=8.85 \mathrm{~m}$ sughertez e lifetime of $45 \times 10^{\text {th }}$ years at this size and

ribliz h

, Pilling Time Scale $\left(\mathbb{C}_{\text {e }}\right)$, Total Degreation time Seate
$\left(\tau_{\text {wi }}\right)$, and Degradetion Irietime $\left(t_{0}\right)$ Ror Craters in Overany
Bichout Terd Rim
(a) Component Je with kicocnets
$\mathrm{B}_{0} 9 \mathrm{~cm} \quad 3.26 \quad 7.00 \cdot 22.1 \cdot 21.0 \quad 44.6 \quad 80.0 \quad 143 \quad 339 \quad 655 \quad .6400$ $\mathrm{X}_{1}{ }^{5} / \mathrm{B}_{0}$;
$\begin{array}{llllllllllllll}\text { aver. } & 0.286 & 0.323 & 0.313 & 0.313 & 0.278 & 0.232 & 0.179 & 0.108 & 0.068 & 0.036\end{array}$
$\begin{array}{lllllllllllll}y_{2} & -0.15 & 0.32 & 0.38 & 0.43 & 0.48 & 0.55 & 00.61 & 0.57 & 0.77 & 0.84 & 0 & 85\end{array}$
Te, Yeare $1.44^{6} 2.60^{6} 4.06^{6} 6.17^{6} 1.144^{7} \quad 1.85^{7} \quad 3.01^{7} 6.21^{7} \quad 1.10^{8} \quad 2.42^{8}$ $T_{\text {E, years }} 8.70^{4} 1.31^{5} 2.01^{5} 2.92^{5} 7.77^{5} \quad 1.70^{6} 3.73^{6} 1.26^{7} 3.29^{7}$ 1.05
 $\widetilde{\tau}_{\text {E }}$ years $2.01^{4} 5.10^{4} \cdot 1.05^{5} 1.96^{5} 5.78^{5} \quad 1.33^{6} 2.99^{6} 0.36^{6} 2.43^{7} 7.15^{7}$ tes years $5.35^{4} 1.42^{5} 2.89^{5} 5.33^{5}$ 1.53 $6.25^{6} 6.55^{6} 1.67^{7} \quad 3.05^{7} \quad 4.22^{7}$ (b) Component J_{I} (Hetecmites-Apol10); ye - $0.15=0.85$
$\begin{array}{llllll}B_{0} & 1530 & 2270 & 3940 & .7140 & 13800\end{array}$
$3_{1}^{1 / B_{0}} \quad 0.027 \quad 0.0390 .0560 .060 \quad 0.660$
Te, yeara $2.54^{3} 3.77^{8} 6.54^{8} 1.19^{8}$ 2. 29^{9}
\mathbb{N}_{p} g years $1.13^{8} 1.97^{8} 1.54^{8} 1.10^{9}$ 2. 42^{9}
Cey years $3.33^{9} 7.43^{9} 2.23^{10} 7.36^{10} 2.75^{11}$
$\tau_{\text {G }}$ yeang $\quad 7.33^{7} 1.28^{8} 2.62^{8} 5.67^{8} 1.28^{9}$
tes years $\quad 2.39^{7} 8,59^{7} 2.70^{8} \cdot 6.24^{8} 1.41^{9}$
t^{\prime}, vears $2.12^{8} 3.59^{8} 6.23^{8} 1.13^{9} 2.13^{9}$

Inear dependence of the litetime on crater diameter fox smaller cataters,

$$
\begin{equation*}
t^{5}=1.58 \times 1.0^{5} B_{0} \tag{250}
\end{equation*}
$$

in years when k_{0} is in cno The formule was meant to apply or ly to laxer eraters: $285>B_{0}>20$ netern. This provisional lifew tine (without allowance being yet usde for rewoval by overlapping) is guoted in the last line of Table ifo At the largest size (133 , m) , where the linear effect of filling (τ_{e}) preveils, the two figures are close enough rer this sort of date, while for smallex sjzes the a priond calculated values of i_{e} becorie rapialy shoxtex then the rough linsear appoximation, t', on gecount of the non-linear effects (ff flow (\mathcal{F}_{F}) end apray $\left(T_{f}\right)$. The t_{e} values eamy, of couse, a greater weight than tr: a xough sporoximation.

H. Hrosion Lifetime on Hard.rimen Craters

A reised rooky min can at present only be an attribute of moderately laxge cratems, measuring hundreds of meters o: more. smaller cmaters will he competely bullt in overlay with the projectiles not reaching dom to the bearock (as tiose of Teble 9 XXV). A rocky wall will solate the erater from ins But.
surroundics as spray thow are concerned, while the treohentin of filling by ficocheting overnay vinl be less impeded. ve assume thats while the wall lasts, the erater boun is fillea by all the incoming overlay ($2.661: 10^{-7} \mathrm{~cm} /$ year) without e:tw cluding ary pext of it (the "sticking" fracion is taken ex.e
of by the flow end spray mechenizm instide the cxeterp walls)
 which mokeg an aresoge accretion of

$$
X_{i}=2.74 \times 10^{-7} \text { 20/yeari }
$$

while outside the oreters in vien of the outwerd siope (ther j), the accretion mil incuease onbwaras, being negligibse on the wait top. This woutd lead to a levelline out of the oumard tervein and burying of the rocky well, accelenated by direet sputhemins as considered in Section $X_{0} A$. With some motective layer being present we essume onewhal of the moximm sputwer-
 the rell is buried into a level terrain as

$$
\begin{equation*}
X_{e}=X_{1}+2.6 \times 10^{-8}=3.00 \times 10^{-7}(\mathrm{~m} / \mathrm{year}) \tag{25.1}
\end{equation*}
$$

A rocky rim of heignt $h p$ ebove the terrain will thus be buried in a time. interval of

$$
t_{i}=b_{B} / \chi_{e}
$$

whion represents the duration of the finst stage of exosionn
 the averabe cepth of a typical crater reotroned from the woll. top is $0.663\left(x^{4}+1 x^{2}\right)$. Duxing the firts stage, this decreases of $X_{i} t_{I}$, whence the dephat the end of the fingt stage becones

$$
\begin{equation*}
x_{1}^{\prime}=x_{x}+b_{1} f_{6} x_{i} \times 0.463 \tag{253}
\end{equation*}
$$

the soconc, rim less stage begins th this point and in to be treated according to the rules of soction X. ${ }^{\prime}$. The prelaretion times, \mathcal{G}, are aspumed to depend so:ely on cratem dismeter as
berore, while the erosion lifetime in the second stage, t_{e}, is calculated for a degredation or the profile from z_{1} / B_{0} to 0.02 equation (2ne)]. The results are collected in Table LI. the sotel lifetine equals then the sum of the two time intervals,

$$
\begin{equation*}
t_{t}=t_{6}+t_{I I} \tag{254}
\end{equation*}
$$

The provisicnally estimatea $]$ inear liretime, ti [ecuation (250)], differ by chence very little from the values of t_{e} or. ty of case B of the table: Contrery to what was found foz the smal: मimess eratern, the erasion lifetimes of the eraters with a hacd wim are found here to be longer than the tr-velues: by a $0-30$ per cent in Case A (prinaries) and by a factor of about 20% in Case B (ray secondaries). The turning point is the fregnency of eraters would then be expected to teke place ot $B_{0}=2.4$ meters when the prinary craters (Cese a) begin io be completely e2oded in 4.5×10^{9} yeaxs, and a second turning point is prečicted at obout $F_{0}=112$ reters when the deeper profiles of the seconsaries (Case B of the teble) are evasrad during this interval of time. Of mourse, the trensition in the frequency hunction of crater area: densities is expected to teke place gradually, on account sif the spread in the phys..col and geonetrical parameters of eratering. the empirically suggested ataxt or complete erocien at $\mathrm{B}_{2}=285$ motere is th us not in contradiction but in satistactory agreement with the prediction which, besides, cannot pretend to susieest any... thing mor? then a close order of negnitude.

Frosion and Filump Yegradation hifetimes (t) af Cratexs
with a Texd Eim
Woscm $4.02 \times 10^{4} 3.65 \times 10^{4} 2.83 \times 10^{4} 2.14 \times 10^{4} 1.64 \times 10^{4} 1.29 \times 10^{4} 1.00 \times 10^{4}$
jrosion relanetion times indeperdent of profile
 for combill transport; $G_{i}=144 C_{0}{ }^{2}$ for spray orem the aim (too lorg to be considered); all in yeexs; $\tau_{m}=\left(1 / \tau_{0}+\frac{1}{2} \tau_{i}\right)^{-1}$ the totel relaxation rime.

KAS

 defines the survival of an orighat sconewalled wim/ since the "begimang". In Case A (asteroiand) ' the lover lint of uncondtional survitel of a hard xim is $B_{0}>700$ meters, while in Case $\mathrm{D}(\mathrm{secondartes)}$ the deepes profile would allow the roeky rita to survive when $\mathrm{B}_{0}>270$ meters.

A striking examples elmost. a best case, is presented by the stonewwaled exater on the horizon of Surveyor I pictures (tig. G) . The boulder wall is apparently the crest of a bura ed rocky rim of a crater which has come near the end of the firnot stoge of eroston. Athough treare is much freedom in the inberpratation, sone Iimitations can be discemed. with $B_{0}=450$ meters, its age must be lese then tryicn is 7.5×10^{9} yea:'s when a secondery (Cese B) and 3.0 : 10° years wen a primex ongter (kase A) If a secondary its actual age cannot exueed 4.6×10^{9} yeare, during wich time tus outwaxd rim hojght, chenly buried and parity croded, hust have decreased by
 $\tilde{n}_{x}=0.05 \mathrm{E}_{\mathrm{C}}=22.5 \mathrm{~m}$ would Ieave thut 9.0 metens of a buny rim towering cbove the summonding plaing and more if the age is shontex; the actual height of the stone wall at its conspicuous part is 7.7 ms and the all-round arerage is Lessg perneps 700 mo Cese B is difficult to reconcile vith the data and appears to be itaprobable.

It remains to assume that the crater is a primaxy one,
of an age less then about three billiton years. Where iss of course, an uncertainty in the initial profile ratios but as fumIng the typaesl Cage A or Table II, the intuit rimheight roy have been $h_{x}=0.02 E_{0}$ or 9.0 meters of which, however the tc p may have consisted of overlay. The miner ingredients on over. Ley are rapidly removed bitherometronte impacts, leaving the coarsen fraction, about 60 per emt of its mass (able dur A, $1 . G_{\text {Q }}=0.60$ average); to be sputtered as hard rock fie effective height on the rocky win iss thus to be decreased by O. 4 of the overlay layer If th s the age of the crater as a Erection of 4.5×10^{9} years, the overlay thickness at time as iropect can be set at $1-1(1 . \sim t)$ meters, the effective initial: attitude of the hare exatex wall at $0.0-0.4 \times 14(1 \times t)$ meters which is to be buried and eroded at a rate of $3.00 \mathrm{x}, 10^{-7} \mathrm{x}, 5 \times 10^{9}$ cm or losE meters per chosen unit es time [tho initial rete of overlay formation, ta m before the cratering event is pixposealy taken larger than its later or present rate, $2.56 \times 10^{-7} \times 4.5 \times 10^{9}$ cm or 12 meters per unit time (aeon) If the wall height has been decreased by burial and erosion to an average attitude oi 1.0 m , this leads to an equation for the detemmation of age :

$$
9.0-5.6(7-t)-1.0=13.5 t
$$

which yields.

$$
t=0.30=(1.35 \pm 0.3) \times 10^{9} \text { years }
$$

roughly lat billion gears for the eq e of the stonewalled crater of surveyor I.

F. Queminy Accretion : Second Apnroximation

In pable xat the overloy volume was calculatea from obm served cratex volume statistics with provisional allowhee being wade for the disappearence of smaller eraters through erosion; end fon wo limiting opsen of a probective layer : A, for gero 'overlay thickness; and m, for 12 meters as its present thick ness. The linear eguation (250) for the liretime was used. Wow We ore in possession of exosion lifetines, caleulated a priors by more sophisticated methods which cen be applied to a revision of the expected eccumpeted volume of overley. only those crasers whose lifetime is shoxter than 4.5×10^{9} years
 has been recalculated ecorangly, with the new lifetime dota as of tables is and LI, separathy for primaries and secmderies. Oreslopping is a minor effect for these lorge craters, affect ing their numbers but by a fraction of a percent and is here diswegerded. The crater areal densities are then simply prow portional to the lifetime, te Gable LJI conteins the results of the rerision.

The result does not differ essentially from the first one and inmly indicates on overlay layer of about la meters a* preseat. The total sun in the lest line of the tabie, 1535 cm replecing the fomer result of $1307 \mathrm{~cm}_{2}$ is increased chierly at the expense of smell secondaries waich were actively offecting the bedrouk only a very short time after the cowntion of the maxte. this detall is highly conjestural, end me may leave the aubject as that, being satisrica that the new refined treatnent of crater lifetimes has littie afected our oxighnel estimete of overlay tickness.

ThETS LII

 a minorm sete or aceretson (dete which mes not quoted ate smo

x_{p} (true numbers
 culebecomanmands!
 "suftiyyears
 Iebion rotio)
no foredieted cbu... $5.66^{4} \cdot 1.09^{5} 2.71^{5} 1.00^{5} 2043^{5} 3.13^{5} 5.58^{5} 6.33^{5} 6.19^{5}$ semable muber or
primeries)
 $s_{0} \operatorname{nan}_{0}$ inomeluded
observalie tumper... $9.11^{4} 1.23^{5} 1.81^{5} 3.72^{5} 6.52^{5} 1.10^{6} 2.41^{6} 4.72^{6} 8.83^{3}$
of secondaries
t_{e} scoonabries
(B) $\geqslant 70 \mathrm{~m}, \mathrm{hare-tim}$
med; $\mathrm{B}_{0} \div 52, \operatorname{soft}$
-rimmed, 2.03 times

Figure Captions

 prototype is the mishear explosion＂teapot＂crater in Nevada；Shoemaker， 196\％）．the linear scale unit：is Bo，the rimmomrin diameter of the crater．

Fig．2．Throwout integral $1-\mathrm{P}_{\mathrm{B}}$（ordinates，logarithmic scale）as function of $\log \mathrm{t}$ for four discrete values of ：$(0.20,0.39,0.70,0.91)$ ，figs 20 ， same as a function of $\log (\mathrm{ab})$ ，when：>0091 ．fine parameters：

 ordinates，depth to diameter ratio，$\left(x^{3}+7\right) / \mathrm{B}_{\mathrm{o}}$ 的casured points： centered circles，Mass 2；crosses，Masses 3 and $4 ;$ dobs，class jo The four calculated curves are those of table XIV，with the parameters indicated in the Figure．

Fig．4．Crater profiles for Baldrin＇s Oles 1 （postmade age），Coordinates ひ家
 on continertes；abate centered circles，ray craters．The two 1 rex calculated curves（ P and 9 ）are those of cable $X V$ ，and the two upper ones
 the curves．

Pig．5．Sur veyor I photograph 66un－334，Tune 2．1966．At center left．a crater of 3 meters diameter，probably of secondary origin，its roo y project ill having ricocheted out．［n the foreground，a rook about； 70 cm ，
a scontsuy ejectum having cone to rest on the gurface antex xiondeting On the horizon, a mbonemallod crater 450 motors in diametex, with the stone wall sem best preserved in the upper riqut comer; probably inherplanetaxy primary

 comer (same as in Higo 5) on the hurizon (4.50 m); average blooks in its mali measure 70 en: Gountesy on dash.
 betose impact on faych 24,1965, Incm 2 altitude of 258 miles Dimensions of Some 121×179 rilles. Courtesy of the MARA Goddard Space might Centex. Greenbolt, hacyland.

 Godard Space Finght Genter, Greenbelt, hasymano

Figo 9. Whe Hest (astronautioat) on West (astronomicat) (tezt) want on Aplonstas.
 of Jash Goocana Spaco Flight Gentox, Greentelt, Maryland.

Fig. 10. Distribltion of overlay thioloness in huny maxizo hbscissec, peroentoge ares. Oxdintres, fhickess in meters. Fow full line, soale to the left; for dashed Iine, scale to the xighto

Hig. tho Dissxibution of overlay thickness in lums highands (ocisinentes). Gf. Big. 10.

Fig. 12. Surveyo: I, Footpad 2 on 2 wox sursace Diametex of rootrad bop, 30.5 cme Courtesy of Mr MA.

Fig. 130 Surveyo, TIX, Footpad 2, thind touchrow, with surdace samplex and a dopression male by it (bottom ledt). - Grurtesy of Mrsa.

Pig 15. Oxbitor II photograph (november 19: 1966) of an area $360 \times 450 \mathrm{matex}$
 In diameter. - Gownesy of man.
 mad rock, tide same as in Fig. 50 - Courtesy of NASA.

Figs. 17. Surveyor I photograph 66- wants the 15, 1966. Grater ho. Fan block (see jigs 5 and 16) at how gun inimanation. - Courtesy of Hasid
 surface sss. OA. On are trajectories of particles ejected symatricarly with respect to the normal on when makes an angle o with the vertical oz, Figs ida. Cross section of conical eater. If OH, with impact oraterlot at D. Trajectories shorter than 00_{1} lead to wrestricted domhill drift, those longer then 00_{2} end uphill tr outside the crater.

Fig. is. Frapping of incoming ricocheting overlay particles by a depression n with a circular horizontal contour.

Why 20. Shaping mechanism through somi-elestio ricocheting in a depression of triangular (conical) verizeal cross section the impacting projectiles cater along an, DN, Pat, at an angle $z=1=220.2$ from the vortical.
 outside a rimless crater $\quad \xi$ (abscissa) is the distance reckoned outward da from the carter edge, in units of crater diameter. Profile ratios: centered circles, $x_{i}^{f} B=0.25 ;$ dots, $x_{:}^{\prime} / B=0.20 ;$ crosses, $x_{i}^{\prime} / B=0.15 ;$ cen cered squares, $x_{i}^{\prime}, B=0.10$; centered triangles, $x_{f}^{\prime} / B=0.05$ 。
Pug. 22. Evolution of rimless crater profile and its surroundings by trap ring and finking Initial profile ratio $x, / B=(025$ e Qualitatively valid al so for erosion o

 Rourtery or vitus.

XI. Summayy

(1) Impact oratexting and exosion axe the prevalling iractors which have been shaping the \therefore unar sumface for the pasi four billion yearse
(2) Inpuct molting has produesd the Lave flow of the maxia, sit ar early stage, 4.5 billion reace ago. The maria wece al so the seat of pameval volcarign as testified by sone loss conspicuous surface detailg suoh as the domes anc dyreso (3) Ho tarace: of eontemporary orogeny or volconism on the moon are indicateã. The diphorsurs event of 1958 inas not a gose us ezuption but a case of flurescence of the solid crater peak.
(4) Cuateunin Pormulae are proposed as derived fron first prineiplos, with litite empicioni adutabiono whe main arguments are nomentun of the projeatile and Etrengha of he targets not energy as has ocen often used in limitea intexpolations of experinem,al remults. The rante of apritcation of the fomulae in almost unlimi ted, for velocities from tenc of oentimeters to tens on kilometon pex secono. whout using empirical coefrici nte of proportionality, the formelae represent tha oratering dimensions - pertortion and volume - bettex thar witin E20 pes cen:in speotial fommae are dorireci and empirjeally bested for lom velcoiby imptot on zitgic projectiles into semulax targets, with dixeot applicatior to the Junar surfece layez fhe oxaterinsformune including inmomout ang fallback oquaticiss are used to derive the ooh sive strength of lunax rocks, in its beasing on tile oxjein and histoxy of the 1 mar surface.
(5) Pommlao for the encounter probobilitiong lifetimes and statistienh accelemations of particies in planctary con ountexs are grivon, with emphs sis on mall relati"e velocitiors ns for neax-oixeliar nsarly somplamar orbitso ine
damping erfect of an orbicing ring of particles upon its inôivjaual menbers, and its besming in acoretion of Jarger boaies is considered.
(6) The problems of the origin of the moon are andysed atith the hel? of the theories of cratering and planesary onoomters the mathemation theor of thal evolution can desertbe the past history or fhe darth-mon gyten with some conridence only as far back as to a "zeco hour" corresponding to the moon's distance near hoche's limit, somemat less than 3 earth wadil, whon the moon started pectingo Fron gelogic evidence, the date of tha phate could not have been later han 3.5 billion yesw ago, the age of the oldcst dated teruestrial rocks; most probably, it coincided with the age of the earth, 405 billion yeaus, because all the initial evente conncoted vith the origin of the moon mut have evolval on a shont inme scale of $10^{5}-10^{7}$ yearso Tidal fxiction at the time of elonest aprosoh, working on a thime scele of 10^{3} years or less (too short for sigaificant soling by radiation), most heve nelted the outcr mantle of the eaith, exasing all mevious geologic iecordso
(7) The hixt xy of the enth-mon system rrion to this zero how is oper to conjectuxe, peaxuo neithox tho inent ty if the interacting bodies of wich most have dispepeared, nor their masses ma int tiol orbits can be ascertsinod. If however, the theories ace to conform mith the meage observational eviderce, requiring (a) that the araters on the con, inentos rere it orned on the reveding moon by protectiles oxbiting the earth at abott 5 carth radis (as testin'ted by their alipticities, and by the lack of an excess of cratex numbers on the preceding he aisphere of the noon), and (b ' that the surface of tine moon at that time, thougt solid but sotit, wos hot but miy insigniricantly or modera;ely melted by the imparts, - two hodeln rppear more monable than the others: (I) Hodel 5 of lable x, implying an origin from debris orbiting inside foche: a limt enther,
analogous to the rings of Saturn, or chrow off through instability of the rotating earth; with sufficient mass load in the rings, cohesive chuping of the debxis enables thom sloviy tompit thetre way out tidellys beyond Roche's jintits to collect fixst into worde six-oad intemeatiate moonlets, and ultimtely into one lunitr body at abou's 5 earth radii: (II) Alrven's adaptation of cerstenkom's model or tiaal capture, in which the inconing moon, oxiginaily captured into a retrograde orbit and put into synchronous rotations passes slightly outside Roche's limit at olosest approach were it sheds ofi its outer and li ghter mantle, retaining a densor corec Thie, while recening, again collects most of the lost material. The formotion of the maria or, the exthbraxd side of the mom, through a belated tupact on a moonlet (broker, up tidally berore impact on the moon), previousiy formed fron the material ejected invards, is also plausibly accounted for by Alrven's modele Ag to the time of the event, it never could have heppened as recently as $700-1000$ million years ago, for reasons stated under point (6).
(8) The formation of a maxe is explained by impact nelting of a hot crust in a cratering coll sion, on a linear scale surficiently laxge for the melt to fall back into the erater; on a smaller soale, the liquid is spayed cver the crater walls in all directions and connot fom one coherent fluid body of lava。
(9) Orater profiles, oxographio ditiorences in level, and the secondary craters produced by the ejecta of ray cuatexs can be consistently interpreted on assuming (a) that the postmare craters rexe producen in ar relatively cool rocky terget of the strengta of granite or basalt, by intexplanetary projectiles (asteroidal bodies and conet nuclej) at velocitios of 26 . $40 \mathrm{kw} / \mathrm{sec}$, and (b) that the promare oraters were fročuced by slow projectiles, bout $3 \mathrm{kr} / \mathrm{sec}$, impating on a hot and relatively soft surface, about one-tenth of the strencth of pranite, and o) that th
orographic dirferenoes on level on the noon wereformed duting the same priod of prineval vobarinent wan the orust ves hot and notto
 With astronorical obsexwtion, orabering bzeory and theory or paaneday moounters when barget rook in assumed to be of the strengh of gramite or basthe whome is no basis whiever for interpating the origin of the overthelming majority of the catiers as not being caused by impats.
 a minimuan survival lint of abou 300 meters diameter against eroston during 4.5×10^{9} yems. Ghis roughy agees with theoretical ealouations of hat rate of exosion on the noono
(12) Statintion of stall oraters in Arhonsum are consisterit sith their impact origin from 1 mixec population of premaxe projectines, anong whioh slow secondary efteta mevailed; the scarciby of cutarlets on the peak and mall of Alphonsus is explained by the haxdness of these targets (bare rook or rok under a. thin protentive cover), while the thon of Aphonsua canying $55-20$ timesmore
 of terrestrin desert alluvium fhe collapse or caving-in mpothesis cif the oratorlets is moceptable, both because en their prevajling oircular shape, and because of the relative untromity of the ar distribution, the exeter dersity dom to tho same finnetex being similar in oistant regions on the maria as well as in Alphomsus, The floon of Alphonsus, form derobably whomi coherent meting may have srread out into a level suriace in a kind of "ash illou". Tts peal (as well as the peake of wany other ciatoms) oan binternuetod as a surviving manant (compacted at impact) of the sex poxtion or the provectile that promow the crazer.
(1) Sine top Layex of lunar soll constots wif heterogenoow mutuce of farbicles
 quantities may depent on partioles of difiecent size rivus the therm conavetivity of the upear 10 oms continting of thene componaybs othe buth conductivity burough a grain, the radiasive conductivity betreen gaims, ard the comtact conductivity (depencang on eontaot area, incoeasing with faessure

 requires the presenoe of a prominemt component of sizeable boulhexs, foodded in the muble as moll as strem over ins survece The norma radar refloctivty, pojnbing to n bult dielectrie constant $0.2 .6-3.0$, is compotble with an arexage densiby of to3, or 50 poronity ioz a baszitte composibjone vonerion of gaxins in vacuo is sufficient to bolanee the luma grasity of grains smainer than about 0.13 cmg these axe remponsible for the "fatyonctite" strusture of tite top layet detemining the optical properties of the moon, espectally the dominamoe of chase angle and the stiong backsoattex a.t zexo phase, in the visiole portion of the specturuo on a scale of centimetexs and metexs, the top sohl is polished by macroneteorives intc a gently unoulating surfoce with speculax remectivity
(14) The dersndence of sadiosetive conduetivity on temperature Jeads to a daysuight asymmetry and a positive thembal gradiort in the top soil even at sext ilux If

 the lunax rediug (n nus comesponding to equal content of radiobctive iources if thermat equiliorium is assumed.)。
(15) The average temerrature on the lunar equator is -650 on the surface, mi s $9^{\circ} \mathrm{C}$ at one rater and $-23^{\circ} 0$ at 7 meters depth she pressurtmependent increase of conductivity wish depth prevents the too layer fran playing day significant insulating roles so that the theme ste te of the moon's crust is not much affected by its at equal denting the ousts only about $50^{\circ} 0$ warmer than it would have been without the insulating top layer.
(16) Impact erosion leads to leveling out of lunar surface features without relevance to an "angle of repose".
(17) The amount of inn surface material sputtered to space by solar winds about $15 \varepsilon^{\prime} \mathrm{cm}^{\prime}$ in 4.5 billion years, isyearly equal to the gain from the glom morometcrates of zodiacal duad The meteoritic material is adorer to an average accumulated overlay layer or abotitis meters on $1700 \mathrm{gam}^{2}$ (over the maria and outside the range of ejecta of large craters). The other, fast meteoric components lead to a loss of mot ut $23 \mathrm{~g}_{\mathrm{g}} \mathrm{om}^{2}$ of lunar material.
(18) In building up of overlay from the ur der dying rock three penetrating omponents of meteorite flux axe relevant: the Apollometedrite commoner (peadom asteroidal): the nonet nuclei; and the asteroids deflected from lars crossings. arequoney formulae for the three fluxes as depending on particle wadi: are given and the corresponding crate x densities (numbers per unit area) calculated s The observed excess in the densities of man craters is consistently inturyeted as due to a fourth component, namely to secondary ejecta from violent cratering events (ry craters) , with little dependence on this interpretation, the overlay thickness and its statistical distribution over maria and coninentes is calculi tod from the volume excavated by the actually observed craters the numbers of those smaller than 300 m berg correcter tox survival from erosion
(19) From cratering theory and an ompiricel dependence of the strength of brittle mater lats on particle size ($-x$ pores of diameter), the exponent of the differential ficqueroy (per wat it of volume on mos) of particle radiant in catering ejecta is found to be $n=3.875$, in good agreement with prucicle counts in lunar overlay from spacecraft landings
(20) The mechanical properties of lunar soil are similar to those of tomestamal sand. The bearing strength at equal depth, and the kinetic efficiency at impact are nearly onechalf of those of typical terrestrial beach gavel. the bearing strengthen (frontal resistance) is about 5×10^{h} dyne con^{2} at the sure ce, 6×10^{5} at 5 cm end 2.5×10^{5} at 10 om penetrations The cohesive $2 a^{2}$ exam resistance (crushing strength) is about $1 / 18$ th of the bearing strength at equal depth
(21) Fheckostatio transport is theoretically limited to particles of submicyon size the absence of busing of detail (leas than 0.5 lon for denarkition lines in Alphonsus) indicates that such particles and "electrostatic hop pint" do not play a sigaticant role on the lunar surface.
(22) the ballistic fluxes impinging on the lar surface consist of ave intern planetary sorponents ($J_{5 ; 1}$, the micrometocritens Jos the durban meters;
 to earth crossing) and of secondary ejecta of primary exaterint event; (component Te) o The quant dative charactoristion of the interplanetary component are deduced Ir om observation as corrected fer selectivity, while J_{e} is assessed from the excavated cratering volume as corrected for interplanetary irpacts and erosion.
(23) Cratcriag paranetexs for the ballista fluxes are calculated for orexayo Yow component Jos quantitatively assessed ricocheting is viewed as am hiring
crater generation in overlay. Only a fraction $G_{g}(0.4-1.0$ as depending on particle size) of the impacts are of the granular target type while the rest are into lar yew rains or boulders nad are of the hand target type.
(2k) Components If ard üo produce too shall on craters in overlay to be observed; the action o: these components is limited o erosion, 82 per cent of which can be accounted $\{0:-$ by them Component de accomis for 97% of the ballistic mass, but only for 15 of the impact momentum and ex vive capacity Components d_{2} and J_{3} (cont Hole. and the haw asteroids) are negligible for mall cratering in the subukilometen to meter range whore J_{e} and the meteorite groups, J_{i}, are solely of importance but they - chiefly J_{2} o gain in importance ard dominate in large cratering evinces (above 5 km) 。
(25) With a conventional limit di observability of 0.02 for the cater doth to diameter ratio, the a priory calculated crater generation rates, as set against deletion the rough overlapping and degradation through filing and erosion, lead to theoretical crater areal densities in the diameter range from 3 on to 110 m and beyond which are in satisfactory agreenem with observation from space probes.
(26) fixing of overlay proceed n slower than its accumulation o The mixing thickness is about 8 c , corresponding to a difference or "blurring" in age or the strata of about 30 million years; this represents the "stratigraphic resolving power" on overlay o There is practically no interchange of material between ligers separated by more than 25 on or 100 million yeans.
(27) The ballistic astronautical hazard on the mar surface is negligible ${ }^{2}$, being by orders or magnitude smaller than the he wards we are willing to scop; in everyday life on earth.
(28) Grater ar boulder degradation rates ion filling by overlay, and from several types of erosion (spray iron micromeleori: e impact, dombill migration in aust,
noutterine of crater sims and boulder e and their burial by overlay) have been quantitatively assessed theoretically from first principles and from the observed
 accord with the observed areal densities of mall craters on the moon
(29) Ablation of exposed rook on the lune surface is estimated to be about $.5 \times 10^{-6}$ dry years while the average rate of broil into overlay (horevers a widely Muctuatiag quantity, according to cratering events in the vicinity) is about $2.7 \times 10^{-7} 7$ of years so that th is buried before becoming eroded. Rows lying on the sumftco are secondary ejecta which have cone to rust after sever al ricochets, orates, tin overlay left behind the ricocheting impacts are relatively deep (Fig: i, the emoter crater), contrary to those made by primary interplanetary impacts with are too shallow to be observable.
(30) As the rent of riling and exowons which takes from the surrounding the filing matrixals the crater profile beeches shallower wile the of fective diameter inn:xeases.
(31) Some examples on theoretical degradeticn lifetimes of enates, or the time of rowetion to a profile ratio of $x^{1} / B_{0}=0.02$:

Mbpehaxces

Alsven, Ho (1963). Icarus, 1, 357-353
Aliven, He (1955). Soience, 148, 1.76-4.77.
Altrven, He (1968). personal discussion
Allan, J. the and Jacobs, J. bo (1956)e ceochinica et Gomochimice heca, 9. $256-172$.
 Chicago, 259 ppo

Baldwin, B. Be (1963). "The Measure cr tho hoon" Unive out Chicage Exess, Chicago, l,88pro

Basting J. A. (1965). Nature, 207, 381001382 :

(1)oud, P. Ee (1968). Science, 160, 7r90736.

Goftern, I. Te (1965)。 Astrone Je $70,403-433$.
Comexford. Wo (h. (1966), Emithsonian hstrophysical Obsexvatory preprints in Fe:eomitios: "Comporative Frosion Pates of Stone ana Tron hetzorites untex Small Paxticle Eonbardment"。 36 pps

Dollfus, An (1966) . In "The Ilature of the Turax Suxface", 155-1720 Johas Hopirins, Baltimore, $320 \mathrm{pm}=$

Drake, F. (1966) . In "rihe Nature of the Junar Suxface", 277w28to Johns damine Ratrimere. 320 mo

 Ta, Polybeohric Tnsti bite

 Thite of Chicago Paess, chicago. 810 pp.
Fedorets, \dot{V}. Ao (1952). Public. strone observatory fharkov, 2, 49-172.

Fielder, G. (1963) o Nature, 198, 125501260,
wielder, Go (1965) (10nthy llotices Royo Astron. Soco 129, 351-361,

Gants, D. Fo, Juaide, 符, Lu, Oberbeok, Tr. Ro, and hoore, H. Je (1966) Sgience 153, $385-988$.
Gear, A. Fe, and Mastin, t. Ae (1902). . Eature, 196, 1305.
Gehrels, To, Corfeen, tio : and Orings, D. (1964) Astrone Jo, 62, 826-852.
Gerstentoxn, he (1955), Z, Astromysos, $36,245 \mathrm{~m} 274$,
Gold, T. (1955) Eonthly Hotices Bex. hstron. Soc. 115, 585-604
 Fidse leaderaio Press, New York, 571 ppo
 Hopkisis, Baltinore, 300 pp .

Cold, t?, and Haphe, B. W. (1966). Scjence, 153, $290-293$
Haghors, i', (1966). In "The Nature of the lunar suxtace", 229.23. Eoms Hopkins, Baltirose, 320 ppo
Hapke, I. M, and Van Horn, H, (1963) Io feophyso hoteareh, 68, 4545-4586

Hapke, B. We (1966a). Tr The Nature of the Iunax Surface", 141mi5te Johns Hopkias, Baltimore, 320 ppo

Hapkes B. W. (1966b). Astrons J. 71 333-339;
Hapke, Bo Fir (1968). Planetray Space Scie $16,101-110$
 89pp., Bethpage, H. Y.

Hamman, W. K. (1965). Icarus, ty 157-165 and 207-213.

Jafre, JoD. (1967). Jo Geophys. Reswarch, 72, 1727-1731,
Jafre, I. Do and NaSA Tean (1966a), Tcjence 152, 1737-1750
Jafc, L. D. and Hask Tean (1966b). "Surveyor I Massion Report" Fart IT, TPL Pasadens, Tech. Report No. 32~1023, 100 ppo

Kopal, Z. (1965) . Booing Scio Reseanh Lab, 1fathestimpte No. 430, 39 ppo
Kopai, Zo (1966a) In "she Nature of the Lunar Surface", 173-183. Hess, W. The, Henzel, D. Ho, and O'Keefe, J. Ao: Bdso Johns Hopkins, Baltinore, 320 ppo

Kopal, Z。 (1966b) I Icarus, 5, 201-213,
Krotikov, V. D., and Troitsky, V. S. (1962) Astron. Zho, 39, 1084-1093,

Fozyrev, T. Ao (1959a), Exirode, Mar oh 1959, 84-37.

Kozyrev, N. Ao (17593). Sky Telesocee, 13, 561,
Rozyrev, M, A. (1362). Tn "Yhe koont, 265-265. Kopal. 20, and atiknailot,

 (1900) "Photographio Euner hilias". Univershty of Chicago Preas, Chicige.
 Conferonce (JM $1 \mathrm{~h} 3-266)$, 61076. and elsemine.
 Joms Hopkine, Dut timore, 370 ppo

Minsky, t. Tio (1966) Tearus, 2, 606-634
Lipsky, X. 3. (1956). Bky Tolegcone, 32, 257-260

 Chicagos 601 ppo
 29 haicoh 4968 m

Waxphey, 1. 3. (1961). In Prooeding of the Cratexins Syposjum, : 'aper Q_{9} tert3. Lavenve kadation Faboratory, Liver ore, Galifomia, 1 ; 斿 ppo

Hast (1967) "Surveyon TTI , Pasadena, Fart $I_{9} 194$ yer, and Paxt II (Juns 1, 1967), 216 pro
 SP $=126.39$ ppo

Hewdil. H. Jow and NASA Team (1967). "Surveyor ITI Telinainaxy Report", Hasa se- $146,159 \mathrm{pp}$.

Foxdyte, W. (1961) © In Proceding of tho Graterine Symposium, Faper Fs A-14e Liancence hadation haboratoxy, Liverare, Galifornia, 46. ppa

Oetking ? (1966) . Io Geophye hesparch, 71, 2505-2513

O'keefe, J. A. (1964). Science, 146, 514.515 ,
 Joms Eopkins, Batrinore, 320 ppo

 Unive Tgrtu, A30; Fagtu 0bsexve Tublice, 28, No. 6 .

Opik, E. To (1955) O Irjsh Astron. Je , 3y 245-248 =

Opik, E. 3. (1958c). "Fhysion ot Feteor ilight in the Atnosumere". Cnterscience, New Yoxth, 174 ppo

Opik, E. Jo (1961a). "Jotes on the theory or Tmpat Graters". In Procerdings of the Gconysical faboratory - Laspence liadation raboratom Dratcring Eymontum, Fapes 3, 1-28. Lilo E. Nordyke, We, Lamence Reaiation Laboratoxy, Livemone, Cajiformias 454 pp .

Opik, Li。To (19610) Agranc x_{0}, 65, 50-67
Upik, E. Jo (1962a). In "Frocress in the Astronautica] Sciences", 215m250 So p. Ginger, kis, North Holland, Amstexam, 390 ppo

Opik, To Jo (19623). Planetary Space Scio, $9,219-2 h_{1}$,

 No. 38. (1963) IBidem, 6, 162-164

Opik, Eu To (196it) Trish Astion. Jo, $6,2730280=$

 in Interactions of Svace Vehioles with an Ionjzed Atrosphere, $3-6 \mathrm{C}$, Ferganon Press, Oxford; Arsug OLeerv. Contrib. So. 52 .

 $575-500$
 1.0. 54
 Jome lioplins, faltincie, $=0 \mathrm{pmo}$

Onik, J: Jo (1966e) E EGieneo, 153, 255-265,
Opik, E. Jo (1966) Trigh istron. Te 7, $201-205$

Pettit, bs (i961). In "Manets and istellyies", 400-420. nuiper, G. Pos and Miadiehurst, B. the, Elise, Univo on Chjeago Jress, Chicago, 601 pp ,

Senior, 1. B. h. (1962). Gonformee on tanax buptoxation, Fapex ix, 32 po Van Polytechnio Thstikuta.
 Bureau of Standards, 64 D, 2170229
Bhomake, E. He (1963). In "The Horn, Neteorites, and Conets", 52i-336.
 Chicago Prens, hieago, 810 ppo

Shomakez, If. 10 (1966). In "The lathre of the Limar Sursace", 25-77. Johns flopkins, Baltimore, 320 pe .
 the Astrononioal se iences, 8, $70-89$; Plemun juess

 Surfoce ${ }^{4}$, 245-223, Jolns Hopkine, Baltimore, 320 pp

Slichtex, I. B. (1963). Ju Ceghys. Resemach, 68, 4, 281-4288,
Soith, Bruve Go (1967). d, Geopyss Berearoh, $72,1398-1399$.
Snolwohomst, Ro (1966). I- Ceopays, Renearch, 71: 3569-1574. Sorotin, T. Ae (1965) Astronombeleskis Ghmal, 12, 1070-1074.
Thompon, T. Mo, and Dyce, R. B. (1966) Jo Geophys, Research, 75, 484.3-4853.

Turkwich, A. Lo, Whangrote, E. J.s and Paterson, J. H. (1967). Erienco
158, 635-637.
Turkevich, A. L., Patterwon, J. H. and Pranogrote, E. J. (1968). Ficience 160, 1106.-1110.

 $111_{4}-1122_{s}$ Nor sh-Holkand, fmoterdam; and eltewhere

Urey, H. O. (1960b) J. Geophys. Renearch. 65. 350-359; and elsemere
Urey, Ho C. (1965) . Jet, Sech, Repors 32-800, 339-362.

Walkex, H. H. (1966). I. Gromys, Masearoh, 71, 5007-5010

Wattson, R. Bo, and Hapke, B. W. (196\%). Astrophyso Jo, 144, $364, \ldots 68$.
Vehner, (. Ko, Kenkijght, C . Ho, and husenberg, D , (1963a). planesary Snue seit, 11, 1257-1261

Whmer, G. Ko, Konimight, C., and Ronenderg, D. Jo (19630) o planctary Space Scjerice, 11, $885-395$,
Fesselink, a. J. (1948) o Bul3, Astron. Instrutes Fethatimas, 10, 351-363.
Whipple, F. J. (1959). Vigtas in Astronatics, $2,267-272$,
Whitaker, F. A. (4966) . Tm "The Wature or the Lman Surface" $79-580$ Jolms Kopkins, Bultimore, 320 ppo

103.51075

(ㅅ) Craterirg Symols

as b of failiback parameterst also nombunes of ellipso
$a^{2}=2 \operatorname{cm}^{2}$. 0 cosentchent of surteoe strength of Eranulax taxget

d soo iphericol eguivalent atametex sh projectile
$D=H_{o}$ e. .va the readotvo catcox dameter
 tgainst cohentve reaigtance

Tb *o tiffexencial tallback fradtion
Fb oo antegrated fallback fraotion
fsoo ooefricient of Priotion
\hat{S}_{8}. . vaporized fraction in contrat fumnel
g.a. icoelcuation of gravity
K_{a} *o drag oonficiont on inertial (hydrorynamic) tesistanee
颣 0 .
r . . Winght detonoe of ejecta.
U *os 0 otal araterting mass arpected
1800 3abering mans omushed
n + on mass lond of mojectile per wit cross section
$\rho=x_{P} / a$, the relative penetration

Q e. syabol of contrel fume:
9 wo whok hrating per unt mass
R... vquivatent macius of projectiz tront surisee (cross motion)

$s_{c} * 0$ owhesire component of Latexal strength
st oo trasible surengen

u \because. 0 shook front wolociby
$u_{5} \ldots$ Intimate (destructive) show valonity of target
$V_{s} V_{a,} T_{p} \ldots a$ total oratering volure affected, mind its dyamic and pressuye
componts
Vo oo sratexing volume crughed
vs, V_{0}, efection velocity fron depth and fron surtace
Wo .. intital inmact velocity of projectile

$W_{n} \ldots$ winiman velocity for destruction of projectile
x_{0}.o. depth of penetration ox frontsit projectile belon original tracet sumace
yp oox maximm deoth of crater botton affeoted
$x^{\prime}=.$. appaxent dapth or exater
$x_{0} \ldots$ avarage depth of orushing
y... Traction of oratesjat mass intide shook Exont
y_{0} e.o fraction of eratering mass in central fumel
π.o. zenith angle of insidence or t jection

fio angle of incidonce of projectile relative to norral
Foue denatity of projedtile
シoon elligtiet by of ertater

λ_{1}... smas. ina ricocheting

- 0.0 mass of projectile
\vec{T}. 4 enoss section of projectile
G; o. strengtion of target ab secondary rey orater
... density of target (rock, soil)
(B) Planetacy Encounters and Cosmogony Sybools
$\mathrm{A}=\mathrm{d} / 2 \mathrm{rala}$ rive sempajor axis of orbit
Ap o. yotal acorebion race (on a satellitte)
a. ©o orbital semimajor axis
$a_{m} a_{1}, a_{2}$ oo oistanco or mon from arth, eaxth radit.
c_{1}, c_{2}. average specirio heat of silia and liquid

$D_{r} \ldots$ lloohe's limis of distance for sical dispuption
e, $e_{0}, 0$ o. orbital eccentriciby
$f_{m} *$ alltod fraction of crateming material
fege. "raction of partioles ejeoted ut on the systen in ravitational racounters
G ace mavitational constant
H_{0} so remelting host per unit mass
$\mathrm{ir}_{\hat{a}}$.o. hot of fusion
ie ... inclination or the orbits of to colliding bodies to the resultant credit
$i_{,} i_{p}, i_{c} \ldots$ orbital inclination
J_{IL} oo. late of mass accretion per unit area
$E_{p} \ldots$ coefficient of F_{D} or of the average encounter probainility
Et, 扉 \ldots hemal conductivity, and wame of romper rook
$\mathrm{K}_{\mathrm{g}} \ldots$ Eteren's radiation constant

$m_{1} m_{0}$ ln $_{c}$ ic o mass load per unit cross scotion; of premplenetany ring if jisuriexmil
mic ... in near mass lond of planetesimal
N \quad... number density
if \ldots number of fragments
N_{x}. . number of fragments in one convent ring

$P_{0} \ldots$ average P_{e} for a random Jowett
E \quad.. rate of black body radiation
$\mathrm{R}_{\mathrm{a}} \ldots \mathrm{or}$ vitus of sphere of gravitation ad action
$\mathrm{R}_{0} \ldots$ radius of planet (earth)

$R_{r} \ldots$ ippor limit of radius of rragusts surviving tidal breakup
r.os distance from main body (heliocentric, geocentric)

Ta \ldots angular deflection prancer

Tr oo brapereture of pheton

ta oo bitm of outherd tidul dript of the reos

tr coo racial damping time at itwoo
t_{5} ono b, modic onbital peranon

$u_{0} \rightarrow \theta_{\text {egutorial velooity on rotation }}$
 xtick itte averarac

$V=0$ chenanter veloojty in satajo untos
v_{0} ooe orbiting cixcular velocity
Vir oce hetiocerimio velogity
y ao velociby of escape

In of thickaess of $2 a v a$ ocust

M九 o. probaility of encombex jox time interual t
\Rightarrow tor E max \cdots melter fraction

(1) Sybols in Fijxed Cortext

Aa, $A_{v}, H_{e}, A_{0} \ldots$ ricocieting ampli..ication factorss
Ad ... force of cobesion betreen grans
$h_{x} \ldots$ reflectivity dt nomal incidere
$d_{g} \ldots$ dianeter of grain
A! 6
$d_{V} / d_{6} \ldots$ nunbet flux

Eif o. statistical crosion (survival) factor of eraters

Fic. \because dowhill RIow (of dust, of overlay)
fg ... fraction of granular target at impact into overlay
$G_{f}, \mathcal{E}_{\mathrm{y}}, \cdots$ gain factors in filling of acpression by overiay
H ... lepth of depression; also botal layer of acoreted overiay
$\Pi_{p} H_{s} \ldots$ impact penetration into overlay
h_{x} oe height of rim

$J_{1}, J_{0}, T_{1}, J_{2}, J_{3}, J_{e} \ldots$ the six components of the lunar surface cratering (radial) momentum flux in overlay, as well as the symbols of tie components themselves: micro meteorites, dusthall meteors, ipollometreositers comet nuclei, Mars astaxolos, secondary ejects Fer
$J_{0} \ldots$ supplementary to preceding, overlay penetrating flux relating to intermediate and large craters: $\beta=J_{0}-J_{1}$
J_{x} oo total redial monenturn in a cratering event
In on electrostatic seeming length; in plasma

Hin o. radius of spread of cratering ejecta
lt ono effective depth of thermal pate in moil
n on power index in differential frequency function ot particle :adit. (frequency index of radii)

$n_{i=} n_{0}, n_{0}, n_{p}, n_{B} \ldots$ member of imputes; crater areal density
Qa \ldots amplitude of heads content per cm^{2} of surface
Quran Qp oo mixing factor of overlays for past and future
R. with moper subindioes ... impinging projectile radius
x, row ... ejecta particle radius as distinct from R
S ... area
so, $S_{f} \ldots$ area of center, area covered by ejecta

```
ta *. relative age of caters
Le, t' }\because\mathrm{ dequadation lifedime of crateug, and provisional value
```



```
t a = sotsl deguadstion lifetine of cimmed ormtors
tw wos miving time of overlay
#e *or volume of ejecta
Vaveor velocity of inelartiry grain mapoure; gimo xicocheting escape
        velociby rion trap
X, Kos }\mp@subsup{X}{1}{}\mathrm{ *. overlay thiokness: i rom mmall cxateses averaged from
                        large cadbers
Y ... Young's modulus
    a ao. angle os inclination to horizon
    \mp@subsup{x}{}{\prime}}\mathrm{ vor kinetjo paraneter for ejecta (om-1)
/t:0o thexmal incx,ba parametex
    is co wo dielectric constants ci gramulax ana ot compact rocir
    " * frachion of momentum retained after penetradion oi a laye:
* * co nurace tomperatume ampliture
X es kinetic thiokness or a proteotive layer
A ... mavelengeh
```



```
d/aL co mass miux
Y - overlapping deletion rate o* craters
O O. oumulativo orater area coverage per unit time and aurea
F ono contact area of ginjns pex mitt cross section
} *. Iractional area covered by ejecta; also total erosion rutamation
        time
```

$$
\begin{aligned}
& \text { posen of crater degradation } \\
& \tilde{\tau}_{\pi} \cdots \text { total supply of ovenjey arexetion time } \\
& \tilde{Z}_{\mathrm{E}} \text { +oo total degraçation time scale (relaxation time) } \\
& X_{0} \lambda_{0} \text {... equivalent thickness of overlay annually displaced by } \\
& \text { meteorite impact } \\
& X_{s} \text { wo rack or boulder ablation, cm/yeas }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tie oft negative gain factor aroma depression }
\end{aligned}
$$

$m^{m g}$

8593

$$
F \because 5 a \cdot(\text { Compare } F 6,56)
$$

$$
\text { Fis. } 5 \mathrm{~g} \text {. (companerig.o ors }
$$

f

$$
\therefore \text { cill ojpire - enatering }
$$

Fig 10

$\operatorname{tag}!$
Obix-cuathims

Fig

Öpik-Cratering

Fig. 16

Fib. 19
Opik-Crater

$\operatorname{Fg} 2 C$

5922

[^0]: * In the trbles; aboreviatea numerals are orten used, substioubing for fowers of teas $1.58^{-10}=1.38 \times 20^{-10} ; 6^{6} 0^{6}=6.0 \times 10^{3}$ 。

[^1]:

