
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



-68-461
PREPRINTPREPRINT

NASA Tbil X— 63 4/7

POWER SERIES SOLUTIONS OF THE
THIFLE-BURRAU REGULARIZED PLANAR

RESTRICTED THREE-BODY PROBLEM

't

R. H. ESTES
E. R. LANCASTER

NOVEMBER 1968

---- GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

_	 1`V 69-18024
(ACCESSION NvM ER) 	

(THRU)--
O

MA

(PA
(CODE)

ÔR
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POWER SERIES SOLUTIONS OF

THE THIELE-BURRAU REGULARIZED PLANAR

RESTRICTED THREE-BODY PROBLEM

Regularizing transformations which remove the singularities at the attvaeting
masses from the equations of motion of the planar restricted problem of three-
bodies are well known. They have been developed by Thiele, Burrau, Levi-Civita,
Birkhoff, Lemaitre, etc., (3) to study the solution of the equations of motion at a
collision and to facilitate numerical integration of collision orbits.

The planar restricted problem of three bodies constrains two primary
masses to move in circular orbits about one another while a third body of infini-
tesimal mass moves in thkir plane of motion and exerts no force on the primaries.
Regularization calls for the elimination of one or both of the two singularities r t ;
and r2 1 , where r l and r 2 are the distances between the two primaries and the
third body. By simultaneous, or global regularization, we mean the process
which removes both singularities with one transformation, whereas by local
regularization we mean the removal of only one singularity by a single transfor-
mation.

Global regularizations generally result in equations of motion which are
considerably more complicated than either the original equations or the equations
obtained when a local transformation such as that of Levi-Civita is used. To
effect a solution by power series, the need for higher-order derivatives exists.
Szebehely ' a> has proposed a general method based on differentiating the equation
of motion which is straightforward but somewhat cumbersome. It is particularly
inadequate when an optimal power series integration technique, such as that of
Van Flandern t53 is desired. With this method, the integration step size at each
step is optimized with respect to computing time so that a large number of high-
order derivatives may be needed.

The global transformation proposed by Thiele (1895) and Burrau (1906) has
advantages over the other global regularizations since the equations of motion in
this system contain only derivatives and transcendental functions of the dependent
variables. Since the trigonometric and hyperbolic functions in the equations
themselves satisfy simple differential equations, the Thiele-Burrau regulariza-
tion is particularly amenable to the calculation of the series coefficients by re-
current power series techniques. (1)
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THIE LE -»]BUREAU REGULARIZATION

The equations of motion in a coordinate system with the origin at the mid-
point between the primaries and rotating with the mean motion area)

d	 z+ 2 i i - Qz 4)	 (1)	 ,

where

z - x + i y

z - dz/dt

^ w a +i
2x	 aY

i
k

(D^' 2 [0-/,i) r i + ^ r 2 + l r + r
tf 1	 2

j

I

and where µ is the ratio of the mass of the smaller primary to the sum of the
two primary masses. Here r 1 and r 2 represent the distances between the pri-
maries and the infinitesimal third body, and assuming that the more massive
primary is to the right of the origin we obtain

r 1
	 1Z	 %I	 (^

r 2 =	 1z+l/^I.

The first integral of the equations of motion is

J	 20 — Z) 2	 (3)

where J is the Jacobi constant of motion.

To regularize the equations of motion;, transformations
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Z = f (w)
	

(4)

and

2

dt = 
ddww)	 d-r	 (5)

are, introduced into Equation (1), where w = k + i v and where the function f (w)
is required to be such that the singularities of the equations of motion are re-
moved. The result of this procedure is (4)

IIw" + 2i ld
dwf - 2 

w' - Y W (*	 (6)

where

W ' = dw/d r

I

Lf 2	_ J	 ( )
dwl

	 4)2

	 7

The global regularizing transformation of Thiele-aBurrau is defined by 	 1

Equation (4) with

Z = f(w) = ,1 cos w	 (8)2

We then find immediately from Equations (2), (6), and (7)

r 1	 2 (cosh v - cos u)	 (9)

r
2 = 2 ( cosh v + cos u)	 (10)

r
k

2IL

dw	 r 1 r 2
4(cosh2 v - cos 2 u) 	 (11)

;	
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(j)	 ::	 r	 r 2 	 4) -	 2 J (12)

The real and imaginary parts of Equation (6) yield

Substituting Equations (9), (10) and (1) into Equation (12), we have

4) *	 M	 r i r 2 cii - 2 J (15)

2 r 1 r 2	 (1 — µ) r	 + µ r2 — J	 + (1 — /.b) r 2 + µr 1

-	 16 (cosh 2v - cos 2u)	
8 

(cosh 2v + cos 2u) -  - µ	 cos u cosh v
(71

+ 4- i + 2 co sh v +	 2- µ cosu

and it follows that

U" - 2 r 1 r 2 v' - 6 sin u[ 8 (2µ - 1) - 4 J cos u

+ (2µ - 1) cosh v (3 cos t u - cosh 2 v) + 2 cos 3 u]	 (16)

V" + 2r r 2 u' = 16 sinh v[ 8- 4 J cosh v

+ (2µ - 1) cos u (3 cosh  v -• cos 2 ) + 2 cosh3 v^	 (17)
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where the coefficients are to be determined recursively.

P
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which are the globally regularized equations of notion for the infinitosimal third
body under the transformation of Thiele-Eurrau, The dimensionless coordinates
x, y and time t may be recovered by the formulas

x = 2 cos u cosh v 	 (1$)

Y	 - 2 Sin u sixth v	 (19)

T
t = 4	 (cosh 2 v - cos 2 u) d r^f,r

0

while the dimensionless velocities may be obtained by applying Equation (5) to
Equations (18) and (19). The result is

(v' cos u sinh v — u' sin u cosh v)
x	 2rir2	 21

Y 
w _ Ly' sin u cosh v + u' cos u sinhv) 	

22)2r l rZ

RECtM—RENT POWER SERIES SOLUTION

The solution of Equations (16) and (17) is assamed to be represented by the
power series

U -	 ui T i	 (23)
i = O=-o+

O

V	
, V

i TL	 (2't)

i-`00

(2 U)



Define

co

a =	 sill U	 L a i Ti (25)

LNO

00

b = cos u	 E b, Ti (26)

IMO

00

c =	 Sifill v =	 IT, c I TI (27)

ixo

m

d = costa v =	 L di T
i (28)

no

00

p = b2	 L Pi Ti

i=0

q =	 d2	 qj T i (30)
1=0

f	 =	 - IJ +
(2A - 1) 

d (3p- q) 4 
1 

by	 = f	 T i (31)2 8 4
i=0

(2g - 1
00

g = - —j +
8 b (3 q - p) + 4-L dq	 = gi Ir

L
(32)

i=0

Then Equations (16) and (17) may be written as

2u" + (p - q) v' = (2/.z - 1) a + a f 	 (33)

2VII - (p - q) u' = c + c g .	 (34)
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Further, from Equations (25)-(28) we have the relations

a'	 b u'	 (36)

^I
	 W = - au'	 (36)

C1	 d v'	 (37)

d ' = c v'	 (38)

Substituting the series expansions into the auxiliary relations (35)-»(38), (31), (32)
and into the equations of motion, (33) and (34) and equating coefficients of equal
powers of T we arrive at the recurrence relations

f
a, - L j u J bj- j 	(39)

i=

i bl =	
j U  al-)	 (40)

j-i

i C  - L j vj d i - )	 (41)
J=^

ii di - L j vj CI-)	 (42)

Jul

for i ? 1, and

Pi	
L

  bi b1-;
	 (43)

d

7

i



i

x

4	 Y •s

at,f

^ 9

I

III c	 dj di-)
	

(41.4)

I

I	 7j u,-
	

[(3(2^.. i) dj + 2b ) pI-j -- (2f.`- 1) dj q,
)no

e-

f:

i

gI	
- 2jdi + 8 ^	

(3 ( 2/x - 1) hj + 2d j ) ql _ j - (2/j, - 1 ) bj pl..j	 (46)

j'0

I

	

2(1,+I)(i+2) UI+2 ° ( 2/,4-1) aj + ^ 1ajfi-j_(j +I)v j +I(Pi_j -9j-j	 (47)
)NO

I

2('+')(1+2) V +2	 cI +	 [C) 9I-1 + ( j+ ') uj4.1 (p i-) -q,, -j
)]
	 (48)

)MO

for i > 0, It is to be noted that for optimal computing advantage may be taken
of the symmetry in equations (43) and (44) to nearly halve the arithmetic opera-
tions involved in these recursions.

Initial conditions of the problem yield uo, v o, u i and v I . Then

ao = sin uo

bo	 cos uo

c0 = sink vo

do = cosh vo .

With these values at hand, proceeding through the above algorithm will determine
all higher-order power series coefficients in terms of tha preceding coefficients,

8

I

4i



Figure 1

9

t

o^

5

}

so that the solution may be extended optimally by analytic continuation using a
variable stela size and a variable number of terms in the power series expansion
for each integration step.

This power series method for the solution of the Thiele-Burrau Regularized
Planar Restricted Three-Body Problem, was programmed in double precision on
an IBM 864-91 computer using the optimal integration procedures outlined in
Reference (1) and compared with the non-regularized recursive power series
method of the same paper. As an indication of applicability, the periodic orbit
of Figure 1 (2) in the Earth-Moon system (p, = 1/82.45) with period

P = 6.1921693313196

and initial conditions

xo = — .7121285627653111



^I

yQ	 0,

xO = 0.

yO	 1,04935750983033

reveals a 33VO decrease in computing time as well as two more digits of accuracy
in the Jacobi constant after one complete orbital integration.

Thus, although the full power of this integration technique will be realized
with collisions or near collisions involving both primaries, the above example
demonstrates remarkable results in less extreme problems.
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