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ABSTRACT

A class of singular control problems is made non-singular by
the addition of an integral quadratic functional of the control to the cost
functional; a parameter € > 0 multiplies this added functional. The
resulting non-singular problem is solved for a monotone decreasing
sequence of €'s; € > €, ... > € >0. As k—»®, and €—> 0, the
solution of the modified problem tends to the solution of the original
singular problem. A variant of the method which does not require

that € —> 0 is also presented. Four illustrative numerical examples

are described.



1. Introduction

In recent years singular control problems have received attention
[1]-[8].‘+ However, researchers have concerned themselves mainly
with necessary conditions of optimality, and the computation of
singular extremals appears to have been ignored except for the
experiments of Bass [4], Kelley [9], Johansen [10] and Pagurek [11].
Johansen has pointed out that the convergence of the gradient method
on singular control problems is slow indeed. Jacobson and Lele solved
singular problems arising in [12] by using the conjugate gradient
method [13]; the convergence rate was acceptable, but in that class
of problems no control constraints are present, so that the conjugate
gradient method can be applied without modification. When control
constraints are present, the conjugate gradient method should be
modified:’:; one possible modification has been suggested [11].

In-[15] 2 second-order algorithm is described for solving optimal,
non-singular, control problems with control variable inequality con-
straints. Being second-order, the algorithm exhibits quadratic
convergence when the priming trajectory is sufficiently close to the
optimal. In this paper, a class of singular control problems is made
non-singular by the addition of an integral quadratic functional of the
control to the cost functional; a parameter € > 0 multiplies this added

functional. The algorithm of [1 5]* is then used to successively solve

+ Many additional references are given in [3], [5] and [6].

F Alternatively, the control constraints can be transformed away,
using Valentine's device [14].

% The control inequality constraints could be transformed away, using
Valentine's device; this would allow one to use an algorithm for
unconstrained problems which is also described in [15].

-1=
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this modified problem for a monotone decreasing sequence of €'s;
€ > € ... > € > 0. As k—»o00, and € 0, the solution of the
modified problem tends to the solution !of the original singular problem.
A proofof convergence of the method is given in Section 5. The method
is similar to the penalty function techniques of solving state variable
constrained problems [16], [17] and [18]. However, here the ‘penalty!’
is successively reduced rather than increaéed. As € tends to zero,

so the modified problem tends to become singular, which may result

in computational sensitivity. A variant+ of the modified problem is
described which allows the use of a small value of €, which is not made
to approach zero whilst stillkensuring convergence to the required
singular control. A proof of convergence of this variant is given in
Section 5. The techniques described in this paper are equally applicable
to purely bang-bang control problems, and provide alternatives to the
methods described in [21] and [22]. Four small control problems are
solved to illustrate the usefulness of the methods. It is hoped that in

a future paper, the computation of a seven state variable, three control,

nearly singular, model of a binary distillation column will be described.

2. Preliminaries

Consider a dynamical system described by the differential
equation:

ko= f00t) HE (x, 000 5 x(t) = x (1)

Here, x is an n-dimensional state vector and u is a scalar control. fl and
fu are n-dimensional vector functions. The control u is constrained in

the following way:

4 Similar notions have been used by Ho [19] and Powell [20] in penalty
function methods.
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la| <1 5 telr,t] (2)

The performance index, or cost functional, is:

te

V[u()] = X Lix, t)dt + F(x(t;) (3)

t
o

where the final time te is given explicitly. The functions fl’ fu’ L and
F are assumed to be three times continuously differentiable in each
argument.

The object of the control problem is to choose the control function
u(*) to satisfy (2) and minimize V[u(-)]. It is well known that the optimal
control function for this class of problems consists, in general, of
bang-bang and singular sub-arcs. Whilst purely bang~bang optimal
controls can be calculated, using, for example, the methods described
in [21] and [22], determination of optimal controls consisting of both

bang-bang and singular sub-arcs is not straightforward.

3. The €-Algorithm

In place of (3), consider the modiﬁed cost functional

t
f €
Viu(-), €k] = 5 [L(x, t) + -—2-15 uz]dt + F(x(tf)) (4)
t
o

where

€ >0 (5)

Define the following as the "€-problem": minimize (4) subject to
(1), (2). The €-problem is non-singular, and can be solved using, say,
the second-order algorithm described in [15].

Description of the €-Algorithm:

1) Choose a starting value € > 0+, and a nominal control function Gl(').

4 The starting value €, may be chosen heuristically.



2) Solve the resulting Ek-problem (k =1, initially) using the algorithm

of [15]; this yields a minimizing control function uk(-).
Kl < €k+’ and set G’k+l(') = uk('), k =k + 1 and go to 2).

4) Computation is terminated when:

3) Choose €

either, a) € is so small that numerical instability occurs

or, b) €, <o, ¢a small, pre-determined positive -quantity.

k
In Section 5 it is proved that as k—>00, so uk(')—-—>uo(') -- the optimal
control function of the original problem.

In the above algorithm, as k—»00, so the modified problem tends
to become singular; this can lead to numerical difficulties:?: when using
the algorithm of [15] to solve the modified problem. A variant of the

te-Algorithm' which overcomes these difficulties is described in the

next section.

4. The €-a(:)-Algorithm

The algorithm of Section 3 is used until € is reduced to a small

va,lue.$ Let this value of € be denoted EN'

Consider the cost functional:

t
£ €
Wlu(), e, a (1)) = S' [Lix, t) + _ZIE (u - as)z]dt + F(x(tg)) . (6)

t
o

Define the following as the "e-a(-)-problem": minimize (6)
subject to (1), (2), where a(-) is some piecewise continuous function

defined ont < t < t,.
o f

+ The amount by which € is reduced at each step 3) depends on the
particular problem; setting €., = Ek/lo was found to be adequate
in the problems tried (Section Z}

¥ Similar difficulties occur when using penalty functions [16]-[19].

$ Two possible criteria for deciding the smallness of € are given in
Section 6.
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Description of the €-a(-)-Algorithm:

1) Seta;(:) = uy(-) and El(-) = up(e).

2) Solve the resulting €y o (*)-problem (s = 1 initially) using the
algorithm of [15]. This yields @ minimizing control function us'(-).
3) Setu ,; =u/:), a_ () =u(), and s = s + | and go to 2).

4) Computation is terminated when:

t
f
S. (us - as)zdt <0 5 o a small positive quantity.
t

o
In Section 5 it is proved that as s—»00, so us(')ﬁuo(-), provided that

€N is sufficiently small.

5. Proofs of Convergence

a) €-Algorithm

Minimize:
u(-)
't € 2
Viu(-), Ek] = S' [Lix,t) + - u Jdt + F(x(ty) (7)
1:o
where:
X = fl(x, t) + fu(x, t)u (8)
and:
hat)] S 15 teft,t] (9)
for:
.. _ 1
€ > €41 >0 and Il:1m1t € 0 (10)
—>»00

Assumptions i)-ii)

Let R be the set of piecewise continuous control functions in the

interval»[to, tf] which satisfy inequality (9).
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i) {’[u(-)] is a continuous functional of‘u(-) Vu(-) €ER.
ii) infp {I'[u(o)] = minp ’\7’[11(-)] =v, >-m

Lemma 1: infR Viu(-), Ek] > infR \7’[11(-)] = v T

: > 3 e Sk E 2
Proof: infp Viu(-), ek] Z infp V[u(:)] + infp == S; u (t)dt

o

S

o}

Assumption iii) infp VIu(-), €k] = V[uk('), €k] is obtained in R Vk.

i.e., w()€R V.

Lemma 2: For k> 1{ (€k < €2):

V[uk(); Ek] < V[u£(=), Eﬂ]

Proof: V[u (), €k] = minp V[u(-), €] S Vw1, Ek]

< V[uz(-), €£] , 2s € > €
Theorem 1: For a positive sequence {Ek.} :€k > €k+1 >0 and Limit €_= 0

k—»c0 k
and under conditions i)-iii);

Limit V[uk('), €k] =v

o)
k—>c0

Corollary:
tf 5
1) Limit €k‘S; uk(t)dt =0

k-—o
o

2) Limit G[uk(-)] =V,
k —>c0

+ If the minimizing u(-) for the €-problem is identically zero then these
strict inequalities become equalities; however an identically zero
minimizing u(:) for the €-problem would also be the optimal solution
of the original singular control problem, so that there is no loss of
generality in considering u(-) # 0. In the following proofs we assume
that u(-) # 0.



...7..

Proof: Given any n > 0; by assumption i) and Lemma 1, :_}u*«(-) €R
such that:

V[ws()] <v_ + 2

Choose €, such that:

L
t
€ f :
] 3 2 n
> 5; [wk(t)] dt <=
o]

Then for k > £ (Ek‘< €£);

V[U-k('), €k] < V[U-z('); 61] by Lemma 2
S V[u*(.), €£]
n.,.n._
<v0+2+2—vo+n
Also:
Vlw (), €] > V[u ()] = v_>v_-n

Therefore for any n > 0;

lkv[uk('); Ek] - VOI <n Vk>£

b) €-a(:)-Algorithm

Minimize:

~uf(-)

t
f €
Wl('), €, 0 ()] = ft [Lix, t) + 5 (u - o )®Jat + Flxt,) (11)
o
where:
() = uyl-)
a, = uN(-) (12)
s41 T u’s(.) , 8= 1
and:

s=1,2,... (13)



Lemma 3:

Vo s W[us(.)’ EN’GS(')] < W[us-l(')’ EN’as-l(')}

for 'as(-) # a.s_l(-).

Proof;

t
- € f

W[us(.), EN,CLS(-)] = minR[V[u(')] + —Z-N- ‘S; (u - as)zdt]
O

ts

€
2 . hpd . . N - 2 2
mlnRV[u( )] + m1nR[———2 5 (u a) dt] vy

t
o -

Also:

Wla (), €y, ()] = ming Wlu(), e, a ()]
< W[U's--l(')’ EN’u's]

< W[us-l(')’ EN"a's-1:l
It'must be noted that to guarantee that the right hand inequality is strict,
N must be sufficiently small so that all the.us(-)'s fall in some
neighbourhood of the optimal control uo(-).+ Theorem 1 guarantees
this for €N sufficiently small. This leads to:

Assumption iv) €N is sufficiently small so that all the us(-)’s lie in

some neighbourhood of uo(').

Theorem 2: Under 'assuxnptions i)-1iv),

Limit W[us(-), eN,aS(-)] =V
s —>

+ Otherwise the algorithm may converge to a stationary, non-optimal,
solution of the singular problem.



Corollary:

t

£ 2

1) Limit €NS (us - as) dt =0
s —>00 to

2) Limit V[u ()] = v_
S—>»Q0 s °©

Proof: For any n > 0, by assumption i) and Lemma 3, Eluz_l(') such that:
V[u1_1(°)] < Vo tn

Then, for s > £,
Wla (), €, 0 ()] < W), o ()] for a () #ayl)

S W[uﬂ'l()’ €N’ uz(')]

-~ €N tf 2
= VI, N+ S; (g g -op)dt
o
=v0+n , since a,=u, ;
Also:
Wu_(+), €, a (1] > V[u (1] = v > v = n

Therefore for any n > 0,

|Wu (), epa (N -v | <n , Vs>

6. Computed Examples

Four numerical examples were solved using the €- and €-a(-)-algorithms.
Several important numerical-analysis details had to be resolved. These
were:

i) the choice of the sequence €, €,, ..., €,

ii) the choice of €N

iii) the choice of an adequate 'convergence criterion.’
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The first three control problems are known to have singular arcs in
;:heir optimal solutions, whilst the optimal control function of the fourth
ioroblem is known to be bang-bang.

The non-singular €- and €-a(:)-problems were solved using the
Differential Dynamic Programming algorithms described in [15]. The
differential equations arising in the algorithms were solved using a
simple Euler integration scheme. One hundred integration steps were
employed in the solution of the first three problems, whilst the fourth
problem was solved using four hundred integration steps. Details of the
numerical solution of the four problems are given in the following pages.
Graphs which display the results of using the €-algorithm and the
k€-a(-)-a1gorithm are presented. Each graph depicts u(-) computed by
the two algorithms and, where possible, Hu(°) is displayed (H is the
Hamiltonian of the original ‘:f[u(-)] problem). In the cases where Hu(‘)
is not displayed, it is indistinguishable from zero on the singular control
~éegrnents.

Problem 1:

Minimize:
u(-)
2
Viu(-)] = S' x% dt (14)
0
where:
kx=u ; x(0)=1 (15)

and:

[u] <1 (16)
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The €-a(:)-problem is: Minimize
u(-)
2 2
2 € 2
Wlu(-), €,a(-)] = x dt + - (u -a)dt (17)
0 0

subject to (15) and (16).
Using the second-order control inequality constraint algorithm
of [15] to solve the €-a(-)-problem (for € and a(-) assumed known), the

following equations must be solved iteratively:

AW - tEl-af- G-’ alt=2)=0 (18)
-WX = 2% + W (- ) ; W (t=2)=0 (19)
2-tw> it |u] <1
-W__ = xX ;0 W_ (t=2)=0 (20)
*% 2 if Ju| =1 xx

The new control function is obtained (see [15]) from u(:) and

u(t) = sat[a - WX/E] (21)

If |a(t = 0)| is zero (or, in practice, 'sufficiently small') then u() is the
solution of the €-a(-)-problem [15]. If |a(t = 0)| is not zero then the
above equations are used to produce a new improved control function
u(-) (see [15] for details).

The initial —ﬁ(-) and a(-) were chosen to be identically zero; thus,
initially, the €-problem was solved. The initial value of € was 0. 5.
Whenever ]a(t = O)] became less than 10-4, € was replaced by its
value divided by 5; that is, € = 0.5, €_= €k_1/5.

The €-algorithm was used until it was found that for both €_,; and
€N’ the same u(‘) caused ]a(t = O)] to be less than 10-4; this u() was

then considered to be the solution of the €-problem. a(-) was then set
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equal to G(') and the €-a(-)-algorithm was invoked. After only one
iteration, the optimal control function of the original \ problem was
obtained (to four decimal places). The result of this iteration as
well as the output of the €-algorithm are shown in Fig. 1. The value
of {/: that was produced by the €-algorithm was 0.3434. After the
one iteration of the €-u(')-~a1gofithm this was reduced to 0. 3234.

Problem 2: Minimize:

u(+)

5
\?[u(’)] = S‘ (Xf + xg)dt
0

where:
=% 5 x(00=0
5{2 =u 3 xZ(O) =1
and:
u] < 1

The equations to be solved for the €-a(-)-algorithm are:

A=W (u-W+E[-a)® - @-a)] ;5 alt=5) =0
%2

<.
1]

2x1 + WXIXZ(u - u) le(t =5)=0

<
H

2%+ W+ W (u - u) - W (t=5)=0
25 Tx X% X

(22)

(23)

(24)
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\
W =2- we /e
e | - X1%
-w =W -W_ _W_ _ /e)if |u] <1
x1%2 *1*1 X1¥%2 %*2
-W =2 +2W - w /€ \4 (t=5)=0
X X, %X, XXy / 1%1
) Xlxz(t: 5)=0 (28)
_W = 2
*1*1 W (t=5)=0
x2%2
—W = W lf lu] = ].

<
1

2 +2W
x

x /
172 )

The new control function is obtained (see [15]) from u(-) and

u(t) = satfa - WXZ/E] . (29)

Implementation of the algorithms was similar to that used for
Problem 1] however, there were minor differences. Here, € = 5.,

and € = €k_1/10. Moreover, N was found by reducing € until the
differential equations for the components of Wxx become ill behaved;
the last value of € for which these equations were well behaved was
selected to be SN its value being 0. 005.

V after using the €-algorithm was 0.828517, and this was
reduced to 0.828514 by the €-a(*)-algorithm. The €-algorithm required
16 iterations including 4 reductions of € and one increase (when € = . 0005
was found to be too small). The €-a(-)-algorithm required 3 iterations
and two changes of o.(-).+ Not much is gained by using the €-a(-)-algorithm
except for a slight sharpening of the switching in the control function

(see Fig. 2).

+ An "iteration" is one iteration of the second-order algorithm of [15].
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Problem 3:

This is a test of the algorithms on a problem whose optimal

control function is singular throughout the time interval over which the

system is run. Minimize:

u(*)
> 5 3 2 3.2 2
Vie()] = | {lx, - (3t + DI" +[x; - (5t7 + 1)] }at
0
subject to (23) and (24).
Clearly the solution is u(t) = il
The relevant equations are:

-3 = sz(u -0) +5[(u - a)? - @ -a)?]

2

- ' feoad - —3— - L . = -
le = 2(x1 8t t) + lexz(u u) ; WXl(t =5)=0
: - _3. . - . = -
W . = Z(x2 4t 1)+ W sz(u u) + le 5 sz(t 5y =0

whére the components of Wxx satisfy (28), and u(t) is given by (29).
The criterion of optimality was taken to be |a(t = 0)| S 2 % 1072
and €; was set as 0.5. In 21 iterations the €-algorithm yielded
’\; = 0. 0025, which was reduced to 0. 00152 by the €-a(')-algorithm.
The latter algorithm required two iterations and one change of a(-).
After another change of a(-) and another two iterations, \7 = .00147,
The results of this last iteration and of the €-algorithm are shown in
Fig. 3. Evidently the €-a(-)-algorithm seems to contribute more to
sharpening the control function than to reducing the cost. The devia-
tion of the control function from % at t =0 and t & 5 is attributed to

the crude Euler integration routine used.

3. te [0, 5] and the optimum V= o0.

(30)

(31)

(32).

(33)
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Problem 4: Minimize:

u(*)

~ 5 2,
Fu()] = S = (34)
0
subject to (23) and (24).
The relevant equations are (31), (32) and (28) and
W =W +W (u - u) W (t=5)=0 . (35)
%2 X1 x2%2 ' %2

Here, €, was set as 2., and € = Ek_l/lO. From previous experience
(Problems 1 to 3) a value of . 02 -;7vas chosen for N The criterion
of optimality was chosen as Ia(t'r- 0)] < 107%,

It is known that the optimal solution to (34) is bang-bang (for an
infinite upper limit of integration, the optimal control function exhibits
an infinite number of switchings and the state x of the system tends to
zero. Fuller [23] gives expressions for the optimal cost function for
the infinite time case, and because x tends rapidly to zero, these
expr(essions are useful for predicting the optimal value of V.)

A guess of the form of the optimal control function was made,
and ao(-) was set equal to this guess, i.e.:

a(t) = -1 0St<l.7

H

(36)

o.o(t)=0 1.7sts 5

K

Seven iterations and two reductions of € were required by the
E-algorithm-l-; the results are shown in Fig. 4. The minimum value of
Vis 0.2777. After 5 more iterations and 3 changes of a(-) in the

€-a(-)-algorithm, V was reduced to 0.2771. The resulting control

+ Note that in this variant of the €-algorithm, a(:) is non-zero and is
given by (36).
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function and Hu as a function of time are ‘also shown in Fig. 4. Note ‘
that the €-a(-)-algorithm sharpens considerably the switchings of the
control function, but does not affect markedly the cost”\;.

The final control function shown in Fig. 4 is clearly not bang-bang;
however in the non-bang-bang region, Hu(t) is extremely small,
indicating that the Pontryagin Principle is very nearly satisfied by
this non-bang-bang control function. This suggests that the optimal
bang-bang control should not produce a V which differs much from the
V obtained using our approximately optimal control (i.e. "\7[1;(')] is very
'flat' as a functional of u(‘) in the neighbourhood of the optimum).

The above conjecture is confirmed by the fact that, for the given initial
conditions, the analytic expressions, given in [23], yield the optimal
cost for the infinite time problem as 0.278 wlﬁch is not very different

from that obtained by the €-a{:)-algorithm.

7. Conclusion

e

The addition of a quadratic functional of the control u(:) to the
performance index {cost functional) of a certain class of singular control
problems, results in a non-singular control inequality constrained problem
which can be solved by an existing second-order successive approximation
method. A parameter € > 0, multiplying the additional quadratic func=
tional, is allowed to tend to zero, whilst the optimality of the non-singular
problem is maintained. In the limit as € —>0, the solution of the original
singular control problem is approached. A variant of the €-problem is
described wlﬁch allows the use of a small value of € which is not required
to approach zero, whilst still ensuring convergence to the required
singular control function. Four illustrative numerical examples are

presented to demonstrate the usefulness of the proposed algorithms.
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It is believed that, except for the gradient and a modified con-
jugate gradient algorithm, the proposed algorithms are the only ones

currently available for computing optimal singular controls.
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