TRECEDING PAGE BLANK NOT FILMED. No. 106 WAVELENGTH DEPENDENCE OF POLARIZATION X. INTERSTELLAR POLARIZATION*

by G. V. COYNE S.J., AND T. GEHRELS May 25, 1967 N 69 - 18303

ABSTRACT

A survey of O and B stars was started with the new 154-cm Catalina reflector. The equipment is described and results are given for 33 stars. Of these, seven stars show variable polarization. Striking discrepencies from the mean interstellar polarization-wavelength dependence are found near Orion. The brighter component of θ^2 Orionis, a spectroscopic binary with a 21-day period, shows variations of $\pm 0.5\%$ in the ultraviolet. The spectroscopic binary φ Per shows variations of about $\pm 0.2\%$. Both stars have a strong wavelength dependence of the polarization position angles. A time dependence of the position angle is found for the spectroscopic binary and shell star ζ Tau.

1. Introduction

S a continuation of a program of study of the wave-A Sa continuation of a program of a stellar polari-length dependence of interstellar and stellar polarization, a survey of the polarization of O and B stars as faint as V=8.0 near the galactic plane and well distributed in galactic longitudes was undertaken. The first results of this survey are presented in Sec. III. A subsequent paper will give further observations and a more thorough discussion of the results. In Papers II and VIII (see references) we found a mean interstellar polarization curve, with a maximum at about 5200 Å decreasing rapidly towards longer wavelengths and less rapidly towards shorter wavelengths. On the other hand, several stars show large deviations from such a mean curve (Paper VIII), indicating a large dispersion in the wavelength dependence of interstellar polarization. With the additional observations contained in the present paper, we rediscuss this mean interstellar polarization curve and the degree of dispersion in the polarizationwavelength dependence for various stars (Sec. IV).

In the course of the survey several stars were found to have variable polarization. Available observations on these stars are limited. In anticipation of further observations a preliminary discussion of these variations is presented (Sec. V).

2. The Equipment

In November 1965 the 154-cm reflector of the Lunar and Planetary Laboratory, situated at an elevation of 2510 m in the Santa Catalina Mountains north of Tucson, was first used for polarization measurements. The observations in this paper represent the first group of polarization measurements made with this telescope. The telescope has Cassegrain arrangements only, and both the f/13 and f/45 secondary mirrors are used in this program.

For a determination of instrumental effects we observed 20 stars within 51 pc and with less than 0.04% polarization over a wide range of galactic coordinates (Behr 1956). The instrumental polarizations for the seven filters from Infrared to Nickel

*Reprinted from the Ast. J., Vol. 72, No. 7, Sept., 1967, with permission.

sulfate, described below, are respectively 0.03, 0.07, 0.11, 0.11, 0.13, 0.17, and 0.14%, and their equatorial position angles respectively 146, 144, 152, 148, 147, 150 and 153°. These amounts are known with a probable error of $\pm 0.01\%$. No difference between f/13 and f/45 was found. We are indebted to J. H. Richardson of the Kitt Peak National Observatory for the care with which he aluminized the three mirrors.

Figure 1 shows the polarimetric equipment at the Catalina 154-cm telescope. The polarimeter is the same as that used previously (Gehrels and Teska 1960); the paper referred to also has a description of the calibration of polarization position angles. The polarimeter has, successively, a slide for the Lyot depolarizer, a field-viewing eyepiece, a slide for diaphragms (0.25 to 10 mm in diameter), an eyepiece for centering, a filterslide, a Wollaston prism, a Fabry field lens, and two photomultiplier tubes. Seen in Fig. 1 is the Wollaston neck and the dry-ice box for S-1 phototubes; there is a separate Wollaston neck and ice box for blue-sensitive tubes. For photometry with these boxes, the Wollaston neck is clamped in a fixed orientation, or a separate 1P21 ice-box is put on instead of the Wollaston arrangements.

The output of the phototubes is simultaneously received by two Weitbrecht integrators and recorded on the strip chart on top of the console. The recorder is currently used only for visual display and as a diary for the observer, since all data is punched on paper tape. The outputs are digitized by the voltmeter seen under the recorder. Below the digital voltmeter is a high-voltage power supply for the phototubes, and below it are the programmer, and the clock/timer. The time is displayed in binary code ($1^{h}35^{m}4$ is shown). To the right is the paper-tape punch with the integrator power supply on top.

Since Paper VIII, the following improvements have been made. D. L. Brumbaugh designed the clock/timer and he and V. J. Borg improved the digitization equipment, especially its speed. The integration time for objects brighter than eighth visual magnitude is ordinarily 7 sec, during which occur the readout and the punching of the Wollaston angle, object identification, time, depolarizer state, filter and star/sky identification.

Fig. 1. Photopolarimeter with dry-ice box and Weitbrecht integrators mounted on the Catalina 61-in. (154-cm) telescope. Strip-chart recorder, digital console, paper punch, and integrator power supply are also shown.

After the integration, the readout and punching of the measured intensities takes 5 sec. During this latter 5 sec of readout an experienced observer has just enough time to change the Wollaston angle or the depolarizer state, and to check the centering, in order to start the next integration. E. H. Roland made the new dry-ice box for the S-1 phototubes (RCA 7102) so that the refrigeration is considerably improved. T. M. Teska selected the best blue-sensitive tubes; the EMI 6255S were replaced by 6255B, and those in turn by EMI D205R (super S-11 with quartz window).

The characteristics of the filters used in this program have been given in Paper VII. The filter at $1/\lambda = 1.39$ was replaced by an orange interference filter (Baird Atomic B-5; "Peak: 6450A+50A-25A. Total width at half peak: 1032A-1290A. Peak transmission: 50-60%"). The effective wave numbers for all filter/tube combinations used in the current study were estimated anew. For white light (which approximates the reddened B stars of this paper) at 1.3 air masses they are 1.06, 1.21, 1.56, 1.93, 2.33, 2.78, $3.03 \ \mu^{-1}$, and for a reddened K star 1.05, 1.19, 1.54, 1.91, 2.29, 2.75, and $3.00 \ \mu^{-1}$. These wave numbers are uncertain by ± 0.02 since the

tube responses are not measured but adopted from the manufacturer's mean curvc.

Figure 2 shows the response curves for the various filter/tube combinations. The letter used to designate each filter is as in Paper VII. The new interference filter described above is the O filter. In the tables to follow, these filters are designated by the effective wave numbers given above for white light and an extinction of 1.3 air masses. Only three stars with spectral type later than B occur in the tables, and these are indicated. The nearly complete absence of red leakage for the $U(1/\lambda = 2.78)$ and $N(1/\lambda = 3.03)$ filters is periodically checked, on the reddest objects. We are grateful to S. F. Pellicori for the determination of the filter and tube characteristics.

3. The Observations

Most of the observations were made between June 1966 and February 1967; a few were made earlier in 1966 or later in 1967.

The observations at each filter are made by taking measurements with and without depolarizer at each of six orientations of the Wollaston prism, the orientations being separated by intervals of 30°. On the average this routine is repeated three times giving a total of 18 pairs of measurements. For faint stars, for stars with small polarization, and especially for the filters at $1/\lambda = 1.06$ and $1/\lambda = 3.03$ a total of 24 to 30 pairs of measurements is usually made, in order to obtain the desired accuracy. Such a set, of about 18 pairs of measurements at a given filter, is defined as a single observation. A least-squares solution for the percentage polarization and position angle is run at the Numerical Analysis Laboratory of the University of Arizona. We are indebted to D. L. Coffeen and Mrs. L. C. Hess for certain improvements in the data processing. The instrumental polarization appropriate to each orientation of the Wollaston prism is subtracted from the measured value of the polarization at that orientation. Each final value of the percentage polarization is multiplied by a factor of 1.004, the measured value for the depolarizer deficiency.

Tables I and II are a journal of observations for stars which, in the course of this program, show no variable polarization and for stars with indications of variable polarization, respectively. The polarization position angle, θ , is in the equatorial coordinate frame. The dates are given in Universal Time.

Table III gives the weighted mean percentage of polarization during the present observing period. Five stars (HD 37041, 36371, 37202, 134320, 134335) in Table III and in subsequent tables have been previously observed (Paper VIII). Only in the case of HD 36371 have we combined the previous observations with the new ones. In the cases of HD 37041 and HD 37202 there are indications of variability (discussed in Sec. V); the Paper VIII results for IID 134320 and 134335 are considered too poor to be combined with the new values. A few entries marked with a semicolon represent single observations. All other entries represent the weighted mean value of two (in some cases three) independent observations made on separate nights. In previous papers we used the inverse of the probable error as the weighting factor rather than the inverse of the probable error squared. The statistics were poor, with only six measurements per least-squares solution. This is no longer true. Hence the weights assigned here are the inverse of the squares of the probable errors obtained from each separate least-squares solution. The

average probable error of the weighted mean values is $\pm 0.04\%$. This probable error is largest ($\pm 0.06\%$) for $1/\lambda = 1.06$ and $1/\lambda = 3.03$ and smallest ($\pm 0.02\%$) for $1/\lambda = 1.93$. Colons in Table III indicate probable errors greater than $\pm 0.10\%$.

Table IV lists the equatorial position angles. Again we have the weighted mean values from two (in a few cases three) independent observations, with weights equal to the reciprocal of the square of the individual probable errors. These errors in position angle are proportional to the error in percentage polarization divided by the polarization (Hall and Serkowski 1963); and weights have been assigned on this basis. The average probable error for the position angle is ± 1.21 . This average probable error is largest (± 1.66) at $1/\lambda = 1.06$ and smallest (± 0.08) at $1/\lambda = 1.93$. Single observations in Table IV are indicated by a semicolon; colons indicate probable errors greater than $\pm 3^\circ$.

Table V presents some of the fundamental data for the stars observed in this program. This table has been constructed in the same way as Table VI of Paper VIII (see references there), with the addition of a column

TABLE I. Journal of observations, Nonvariable polarization.

									and the second se
HD	1/\	Yr.Mo.Day	Р% <u>+</u> ре	9	HD	1/λ	Yr.Mo.Day	P% <u>+</u> pe	θ
4180	1.06	66.12.09	0.858 .032	85.33	8965	1.21	66.08.13	2.360 .061	105.46
4180	1.06	67.01.12	0.937 .043	84.82	8965	1.21	66.08.15	2.081 .050	106.21
4180	1.21	66.12.09	0.825 .020	81.69	8965	1.56	66.08.13	2.970 .071	107.31
4180	1.21	67.01.12	0.821 .022	82.06	8965	1.56	66.08.15	2.980 .051	101-51
4180	1.56	66.12.09	1.106 .032	80-88	8965	1.93	67.01.13	3.123 .033	105.17
4180	1.56	67.01.12	1.053 .023	82.64	8965	1.93	67.02.07	2.919 .029	105.10
4180	1.93	67.01.02	1.042 .019	83.79	8965	2.33	67.01.13	2.897 .027	103-49
4180	1.93	67.01.03	1.044 .015	03.57	8965	2.33	67.02.07	2.902 .020	104-54
4180	2.33	67-01-02	1.040 .010	87+07 84.81	8965	2.18	67.01.13	2.104 .035	102.44
4180	2+33	67-01-02	1.028 .019	84.38	8965	2.03	67.01.13	2.570 .062	103.77
4180	2.78	67.01.03	1.006 .018	84.31	8965	3.03	67.02.07	2.442 .084	105.90
4180	3.03	67.01.02	0.967 .037	90.73			0/10210/	20112 1000	100
4180	3.03	67.01.03	1.019 .044	84.56	10898	1.06	66.10.12	2.643 .181	94.63
					10898	1.21	66.08.26	3.007 .079	95.59
4768	1.06	66.08.15	1.637 .061	83.81	10898	1.21	66.10.11	3.382 .059	93.79
4768	1.06	66.08.26	1.801 .107	97.01	10898	1.21	66.10.12	3.369 .047	92.45
4768	1.21	66.08.15	1.767 .104	82.48	10898	1.56	56.08.26	4.073 .083	94.21
4768	1.21	66.08.26	1.942 .077	71.89	10898	1.56	66.10.11	4.042 .113	94.72
4768	1.56	66.08.15	2.365 .077	/9.14	10898	1.56	66.10.12	4.009 .075	93-21
4/68	1.56	00.00.20	2.340 034	02.01	10848	1.93	00.U9.21	9.012 .051	93.93
4100	1.43	66.10.13	2 502 .077	£1.47	10040	2 22	00.09.22	4.377 .030	99.20
4760	1 3 2	66.10.13	2.365 .028	81.72	10070	2.33	00.07.21 44 00 33	4 394 021	97+1U 03 70
4768	2.33	66.10.13	2.387 .023	80.61	10898	2.79	AA.09.23	3.992 .102	72417
4768	2.78	66.10.10	2.304 .047	81.15	10898	2.78	66-09-22	3.959 .062	94.43
4768	2.78	66.10.13	2.151 .036	79.86	10898	3.03	66-09-21	4-027 -103	95.29
4768	3.03	66.10.10	2.407 .140	78.00	10898	3.03	66.09.22	3.783 .107	93.33
4768	3.03	66.10.13	2.164 .096	78.15	10898	3.03	66.09.22	3.792 .107	93.41
7252	1.06	66.08.13	2.986 .162	107.11	15558	1.06	66.10.12	3.661 .149	121.91
7252	1.06	67.01.12	2.411 .142	97.35	15550	1.06	66-11-16	3.748 .119	121.73
7252	1.21	00.00.13	2.527 .055	101-11	15558	1.21	66.10.12	4.204 .003	121.43
7383	1+21	0/.UI.IZ	2.049.000	90.00	12228	1.41	00+11+10	4.294 .002	121-01
7282	1.54	67.01.12	3.424 .089	94.55	13330	1.70	44.11.14	5.344 002	119.39
7252	1.93	67-01-13	3.619 .023	97.35	19990	1.93	66.10.11	5.311 .022	120.67
7252	1.93	67-01-28	3.793 .079	98.29	15558	1.93	66-10-13	5.279 .030	119.57
7252	2.33	67.01.13	3.498 .026	98.11	15558	2.33	66.10.11	5.139 .018	121.11
7252	2.33	67.01.28	3.719 .030	98.08	15558	2.33	66.10.13	5.458 .036	118.57
7252	2.78	67.01.13	3.370 .060	97.58	15558	2.78	66.10.11	4.529 .042	119.18
7252	2.78	67.01.28	3.398 .028	97.92	15558	2.78	66.10.13	4.764 .035	118.78
7252	3.03	67.01.13	3.144 .109	98.42	15558	3.03	66.10.10	4.362 .233	121.67
7252	3.03	67.01.28	2.886 .110	101.08	15558	3.03	66.10.13	4.481 .107	114.37
7003	1 64	44 10 11	2 221 124	04 96	17604	1 05	44 04 20		
7902	1.00	00+10+11 44 10 12	1 947 002	74.03	1/500	1.05	00.08.49	0.722 .030	118-31
7402	1.00	67.01.12	1.805 .092	95.24	17500	1.10	66.00-20	0.815 -015	110.35
7902	1.21	66.10.11	2.642 .084	98.19	17504	1.19	66.12.09	0.797 .014	115.57
7902	1.21	66.10.12	2.444 .060	95.91	17506	1.54	66-08-29	0.991 .015	113.91
7902	1.56	66.10.11	3.160061	94.91	17506	1.54	66.12.09	0.923 .017	110-59
7902	1.56	66.10.12	3.228 .056	95.05	17506	1.91	66.12.09	1.127 .035	112.97
7402	1.93	66.10.11	3.349 .017	96.02	17506	1.91	67.01.02	1.138 .023	115.36
7902	1.93	66.12.08	3.296 .017	95.55	17506	2.29	65.12.09	1.105 .030	111.75
7902	2.33	66.10.11	3.307 .017	96.58	17506	2.29	67.01.02	1.043 .024	111.36
7902	2.33	66-12-08	3.208 .017	95.12	17506	2.75	66.12.09	0.885 .033	112.78
7902	2.78	00.10.11	3.268 .099	93.26	17506	2.75	67.01.02	1-112 -044	119.61
1902	2.10	00.12.08	2.447 074	40.40	1/506	2.15	D/.02.08	0.920 .047	111.05
7002	3.03	00.10.11 AA.12.04	44041 4010	73+73 97,28	1/500	3.00	47.01.02 47.01.02	U. 444 .072	110+17
1746	2007	30016040	21001 1000	*****	1/500	3.00	67.02.04		117.90
8965	1.06	66.08.13	1.955 .155	99.71				A.104 .134	
8965	1.04	66.08.15	2.031 .110	100.71	ł				

which lists our observed mean value of the polarization position angle. An exclamation mark (!) in this column indicates wavelength dependence of the position angle. The $P_{\rm vis}$ column now gives the weighted mean of the polarizations at $1/\lambda = 1.56$, 1.93 and 2.33 (colons and semicolons are given half weight). The photometric data for HD 37061 are from Lee (1966).

4. Interstellar Polarization

Table VI gives the normalized polarizations. The normalization is performed by setting the straight

average of the polarizations at $1/\lambda = 1.93$ and $1/\lambda = 2.33$ equal to 100%. In this way we can both compare stars which are variously polarized to one another, and also combine the observations for various stars in order to study the more general features of interstellar polarization. Colons are us 1 in Table VI to indicate that the probable error for the normalized polarization is $\pm 8\%$ or greater. Semicolons are for single observations.

Figures 3(a) to 3(e) give the normalized polarization curves both for the stars observed in the present study (solid curves) and for the stars of Paper VIII (dashed

TABLE I (continued)

HD	1/>	Yr.Mo.Day	• P% <u>+</u> pe	θ	HD	1/2	Yr.Mo.Day	P% <u>+</u> pe	θ
25914	1.06	66.09.25	3.437 .138	138,33	32990	1.06	67.01.01	1.026 .044	85.97
25914	1.06	66.10.12	2.954 .089	137.48	32990	1.06	67.01.12	1.058 .058	88.48
25914	1.06	67.01.01	3.161 .094	137.61	32990	1.21	67.01.01	1.240 .030	86.16
25914	1.21	66.04.25	3.950 .056	137.91	32990	1.21	67.01.12	1.327 .041	86.34
25914	1.21	66.10.12	3.714 .074	137.98	32990	1.56	67.01.01	1.506 .039	83.88
25914	1.56	66.09.25	4.338 .077	139.46	32990	1.56	67.01.12	1.572 .076	85.69
25914	1.56	66.10.12	4.451 .089	137.39	32990	1.93	66.12.09	1.697 .033	78.66
25914	1.93	66.09.24	4.647 .025	141.17	32990	1.93	67.01.03	1.665 .013	85.23
25914	1.93	66.10.18	4.578 .038	139.89	32990	2.33	66.12.09	1.672 .023	84.61
25914	2.33	66.09.24	4.562 .020	141.21	32990	2.33	67.01.03	1.607 .021	85.59
25914	2.33	66.10.18	4.266 .032	139.27	32990	2.78	66.12.09	1.547 .026	83.71
25914	2.78	66.09.24	4.078 .056	139.36	32990	2.78	67.01.03	1.489 .019	86.07
25914	2.78	66.10.18	4.082 .074	140.46	32990	3.03	66.12.09	1.435 .039	83.91
25914	3.03	66.09.24	3.571 .166	138.66	32990	3.03	61.01.03	1.287 .050	85.42
25914	3.03	66+10-18	3.774 .108	138.21					
			A 747 AND		36371	1.06	63.12.02	1.520 .031	177.64
25940	1.00	00.09.23	0.101 .038	1/0-25	36371	1.21	63.12.02	1.700 .058	176.47
22240	1.05	47 01 01	0.714 .040	1/1-14	36371	1.21	66.10.12	1.641 .023	179.92
26040	1.04	A7.01.22	0.621 024	100.07	36371	1.39	63.12.02	2.040 .040	178.59
25940	1.21	66.05 72	0.488 .029	174 43	30371	1.39	02.09.21	1.361 .072	176.39
20740	1.21	66.09.25	0.704 .019	170.44	30371	1.50	66.10.12	1.601 .038	161-22
23340	1.21	67.01.01	0.755 .018	147.89	303/1	1.93	05.12.01	2.230 .049	173-31
25940	1.21	67.01.27	0.700 .017	173.14	36371	7.33	43 13 01	2.221 .072	117.34
25940	1.56	66-09-23	0.759 .013	149.48	36371	2.33	0J+12+01	2.090 .040	174 93
25940	1.56	66-09-25	0.879 .024	173.39	24271	2.70	63.12.01	1.930 .031	170.40
25940	1.56	67-01-01	0.928 .021	172.34	36371	2.78	65.08.13	1.490 .390	173.79
25940	1.56	67.01.27	0.783 .023	171.41	36371	3.03	63-12-01	1.780 .081	168.90
25940	1.93	67.01.02	0.797 .027	169.38		5105		11100 1001	100170
25940	2.33	66.09.22	0.651 .016	176.50	3706:	1.06	67.02.08	1.369 .075	62.57
25940	2.33	67.01.02	0.737 .021	170.42	37061	1.21	67.02.08	1.687 .054	57.25
25940	2.78	66.09.22	0.409 .018	176.48	37041	1.56	67.02.08	1.508 .046	63.83
25940	2.78	67.01.02	0.471 .028	171.38	37061	1.93	67.01.03	1.523 .022	66.12
25940	3.03	66.09.21	0.494 .062	171.69	37061	1.93	67.02.04	1.549 .057	65.23
25940	3.03	67.01.02	0.232 .064	178.82	37061	2.33	67.01.03	1.367 .029	70.24
					37061	2.33	67.02.04	1.454 .014	67.43
29866	1.06	66.10.12	1.528 .076	16.39	37061	2.78	67.01.03	1.201 .044	73.08
29666	1.06	67.01.12	1.616 .091	7-84	37061	2.78	67.02.04	1.293 .030	67.71
29866	1.21	66.10.12	1.482 .047	12.01	37061	3.03	67.01.03	1.096 .073	75.25
54900	1.21	07.01.12	1.399 .097	8.19	37061	3.03	67.02.04	1.478 .107	69.20
29800	1.21	01.01.20	1.722 .072	10.08					
27000	1.30	47 01 13	1.00/ .030	11.00	37367	1.06	67.01.12	0.596 .108	23.69
20044	1.84	67.01.3A	1.739 044	7.00	37307	1.06	07.02.06	0.457 .071	21.17
29844	1.01	67.01.12	1.724 -012	10 24	101/6	1.21	0/+01+12	0.038 .030	10.00
29866	1.92	67-02-04	1.806 .013	9.09	10110	1.21	0/+UZ+U0	0 404 675	24.22
29844	2.11	67-01-13	1.605 -011	11,12	3730/	1 24	07+U1+12	0.000 .0/3	21.0L
29866	2.33	67.02.0A	1.721 .082	16.51	27147	1.01	47.01 02	0.761 044	24.J4
29866	2.78	67.01.13	1.438 -032	13.48	37247	1.03	67.01 13	0.917 .011	24.40
29866	2.78	67.02.0H	1.426 .023	12.29	37347	2.22	67.01.02	0.626 -014	22.22
29866	3.03	67.01.13	1.193 .051	15.75	37367	2.33	67.01.13	0.727 .041	21.48
29866	3.03	67.02.08	1.211 .067	10.84	37367	2.78	67.01.04	0.511 -020	28.44
					37367	2.78	67.01.13	0.736 .019	21.44
32481	1.06	67.02.06	1.473 .128	91.33	37367	3.03	67.01.03	0.635 .078	-0-05
32481	1.21	67.02.06	1.706 .057	78.39	37.167	3.03	67.01.13	0.447 .043	21.65
32481	1.56	67.02.06	2.061 .081	80.01	1				
32481	1.93	66.12.14	1.725 .040	77.05	40111	1.06	66.12.13	0.685 .044	177.92
32481	1.93	67.01.13	1.989 .043	81.01	40111	1.06	67.01.01	0.719 .044	161.20
32481	2.33	66.12.14	1.810 .024	77.37	40111	1.21	66.12.13	0.602 .024	180.58
32481	2.33	67.01.13	1.958 .021	81.88	40111	1.21	67.01.01	0.809 .024	161.38
32481	2.78	06.12.14	1.762 .046	72.90	40111	1.56	66.12.13	0.853 .039	180.63
32481	2.78	67.01.13	1.699 .082	82-11	40111	1.56	67.01.01	1.048 .031	163.86
32481	3.03	66-12-14	1.444 .131	83.34	40111	1.93	66.12.09	0.686 .014	170.60

i.

curves). The average probable error for the normalized polarizations plotted in Figs. 3(a) to 3(e) is $\pm 3.0\%$. Where the probable error is greater than $\pm 8\%$, an open square is used; open circles represent single observations. Omitted from the figures because of unusually large uncertainties are 11D 83953 of this paper and the following stars of Paper VIII: 11D 24431, 134320, 134335, 193443. The irregular red variable μ Cephei (III) 206936) has also been omitted since its large amplitude variation in percentage polarization (approx 2%) will be discussed in a subsequent paper in

this series. The observation at $1/\lambda = 3.03$ for HD 134320 has not been plotted, since the probable error is $\pm 22\%$. For ζ Tau (HD 37202) the combined values from Table X of Paper VIII and the present Table VI (colons and semicolons half weight) are plotted. Since θ^2 Orionis (HD 37041) has variable polarization only the 1964 observations are plotted.

The marked similarity of a majority of the curves is a noteworthy feature of Figs. 3(a) to 3(c), as are the departures from this "characteristic" curve. We have combined the observations for 52 of the stars in order

ñ,

έÅ

TABLE	I (con	linucd)
-------	--------	---------

HD	1/λ	Yr.Mo.Day	P% ± pe	θ	HD	1/λ	Yr.Mo.Day	P% <u>+</u> pe	θ
10111	1 01	47 01 03	0 741 010	170.05	134335	1.05	66-03-16	0.362 .027	83.95
40111	1+93	61.01.03	0 704 034	168.11	134135	1.05	66-06-13	0.313 .039	95.69
40111	2.33	67 01 04	0.490 .014	149.49	134345	1.19	66.03.16	0.568 -017	85.42
40111	2 . 33	61.01.00	0 512 .026	175-88	134435	1.19	66.06.13	0.578 .013	82.69
40111	2 10	67 01 03	0.371 052	168.45	134335	1.37	66.03.16	0.489 .046	80.97
40111	2.10	46 12 09	0.254 .055	166.74	134335	1.54	66-04-16	0.550 .030	88.02
40111	3.03	47 01 03	0.6233 0044	161.35	134335	1.54	66.06.13	0.624 .041	82.40
40111	3.03	01+01+03	0.533 .000	101133	134335	1.01	66.02.28	0.639 .079	82.28
		47 01 13	1 400 110	162.70	134335	1.01	44-04-13	0.641 016	91.10
41390	1.00	47 01 12	1 061 040	160.67	134335	2.20	AA 02.20	0.701 073	63 23
41398	1+21	47 01 17	2 246 471	142 80	134335	2.20	66.03.13	0 666 077	94 19
41398	1.03	64 19 16	2.249 .071	148.44	1 1 1 4 1 2 5	2.75	64.02.14	0.403 092	80.70
41348	1.92	00+12+14	2.001 .029	167 71	134335	2 75	AA 02 20	0.535 044	70 07
41398	2.33	66 12 16	1 544 .020	149-89	134336	2.75	66.03.13	0.501 .059	09 37
41340	2.10	00+12+14	1.100 1027	143.70	124326	3 00	44 02 29	0 410 076	70,32
41342	2.02	00+12+14	1.071 .017	103417	134335	3.00	66.02.12	0.451 090	74 40
		44 12 13	0 025 004	162.17		3.00	00.03.13	0.473 .007	10.07
40404	1.00	00+12+13	0 077 044	174.18	170404	1.06	44.04.11	0.004 054	177 20
40484	1+21	00.12.13	1 402 .097	181.43	179406	1.23	66.06.11	1-006 .037	191.19
40404	1.01	44 17 14	1.200 .020	175.28	179406	1.56	46.06.11	1.211 .045	178.02
40484	1.72	64 12 14	1 204 017	177.15	179406	1.54	64.07.06	1.111 035	194 74
40404	2 7 9	66.12.14	0.990 .054	178-99	179406	1.03	66.06.15	1.285 011	103.71
40484	2.10	00+14+14	0.770 .034	1100.77	179406	1 03	44 07 04	1 316 017	103411
47240	1 64	44 12 13	1.000 .072	178.24	179404	1.03	A6.07.22	1.079 057	102.40
47240	1 04	67 01 01	0.657 .050	167.19	173406	2.33	00.01.22	1 227 010	104 42
47240	1.00	47.02.09	0.607 .050	171.90	179406	2.33	AA.07.22	1.220 .024	104002
47240	1 21	44.12.13	0.945 .036	173.63	179406	2.78	AA.0A.15	1.155 .019	197.48
47240	1 21	67.01.01	0.841 .068	170.82	179404	2.78	A6.07.22	0.820 .028	103102
47240	1 27	47 02 00	0.753 .014	172.10	170404	3.03	44.04.15	1.147 .037	144.00
47240	1 64	66.12.13	1.078 .039	180.95	179406	3.03	66.07.22	1.045 .047	1008 77
47240	1 84	47 01 01	0.993 .040	172.90	1	2003		11002 8001	
47240	1.84	47.02.09	1.021 .048	174.22	193237	1.06	66.08.27	0.761 .035	40.73
47240	1.03	A7.02.07	0.996 -013	172.45	193237	1.06	66-10-14	0.953 .032	39.46
47240	2.22	47.02.07	1.076 .051	172.68	193237	1.21	66-08-27	0.918 .020	38.85
47240	2.79	47-02-07	0-691 -033	150-80	193237	1.21	66-10-14	1-062 -015	40.74
47240	2.78	67.02.07	0.752 .074	180-16	193237	1.56	66-08-27	1.201 .025	38.84
47240	3.03	67-02-07	0-631 -067	176-06	193237	1.56	66-10-14	1.383 .023	40.22
41210	2002		•••••		193237	1.93	66-07-26	1.372 .007	38.17
83953	1.06	67-01-03	0.539 .078	175.14	193237	1.93	66.08.27	1.432 .010	35.08
81951	1.04	67-01-12	0.337 .035	174.70	193237	2.33	66.07.26	1.365 .030	38.58
83953	1.21	67.91.03	0.381 .021	172.76	193237	2.33	66.08.27	1.501 .005	35.15
83953	1.21	67.01.12	0.364 .025	172.64	193237	2.78	66.07.26	1.381 .012	38.42
83953	1.56	67.01.03	0.411 .035	177.61	193237	2.78	66.08.27	3.412 .013	37.22
83953	1.56	67.01.12	0.297 .018	177.78	193237	3.03	66.07.26	1.372 .019	40.04
83953	1.93	67.01.13	0.323 .014	183.13	193237	3.03	66.08.27	1.368 .022	39.28
83953	2.33	67.01.13	0.580 .074	167.16	1				
83953	2.78	67.01.13	0.114 .022		216411	1.06	66.08.15	1.588 .068	45.69
83953	3.03	67.01.13	0.105 .03/		216411	1.06	66.08.22	1.389 .084	44.10
					216411	1.21	46.08.15	2.082 .046	56.89
134320	1.05	66.03.16	0.404 .035	89.75	216411	1.21	66.08.22	2.131 .031	46.52
134320	1.05	66.00.13	0.447 .031	90.56	216411	1.56	66.08.15	2.627 .053	45.19
134320	1.19	66.03.16	0.432 .019	83.51	216411	2.56	66.08.22	2.427 .068	49.16
134320	1.19	66.06.13	0.456 .029	84.19	216411	1.93	66.07.22	2.659 .046	50.96
134320	1.37	66.03.16	0.529 .029	86.80	216411	1.93	66.07.26	2.653 .026	48.39
134320	1.54	66.03.16	0.621 .027	8t.28	216411	1.93	66.10.10	2.784 .063	48.65
134320	1.54	66.06.13	0.600 .024	85.94	216411	2.33	66.07.22	3.010 .044	51.27
134320	1.91	66.03.13	0.604 .011	82.84	216411	2.33	66.07.26	2.529 .016	49.28
134320	2.29	66.03.14	0.617 .016	88+20	216411	2.33	66.10.10	2.967 .059	49.21
134320	2.29	66.03.15	0.635 .023	93.14	216411	2.78	66.07.26	2.263 .052	49.01
134320	2.75	66.03.14	0.533 .055	90-20	216411	2.78	66.08.12	2.391 .040	47.95
134320	2.75	66.03.15	0.655 .036	86+99	216411	3.03	66.07.26	2.107 .067	51.20
134320	3.00	66.03.14	0.584 .143	78.87	114912	3,03	66.09.12	2.245 .087	51.84
134320	3.00	66.03.15	0.994 .141	84.39	1				-

18

TABLE II. Journal of observations. Variable polarization.

					·····				
HD	1/2	Yr.Mo.Day	P% ± p	e O	HD	1/λ	Yr.Mo.Day	P% ± pe	θ
10516	1.06	66.08.22	0.822 .0	1 34.93	37202	1.06	64.025	1.400 .054	30.43
10516	1.06	66.06.29	0.812 .03	35.13	37202	1.06	65.08.13	1.355 .027	
10516	1.06	66.12.09	0.902 .02	6 33.90	37202	1.21	64.01.25	1.260 .022	30.95
10516	1.06	61.01.02	0.243 .0.	1 30.65	37202	1.21	65.09.21	1.056 .139	28.19
10516	1.21	66.06.15	0.676 .0.	14 34.51	37202	1.21	67.04.22	1.276 .020	33.09
10516	1.21	66.00.22	0.744 0	25 36.52	37202	1.39	64.01.25	1.210 .036	33.71
10516	1.21	66.08.29	0.686 .0	9 38.23	37202	1.39	65.09.21	1.213 .206	34.01
10516	1.21	66.12.09	0.895 .0.	39.11	37202	1.56	67.04.22	1.368 .063	32.93
10516	1.21	67.01.02	0.693 .0.	6 34.41	37202	1.93	64.01.26	1.437 .031	23.53
10516	1.56	66.08.15	0.790 .0	10 41.00 10 45 44	37202	1.93	64.01.28	1.512 .034	20.12
10516	1.56	66.00.29	0.126 .0.	19 4 5 -40	37202	1.93	66.12.09	1.517 .018	37.50
10510	1 56	60.12.09	0.486 .0	R 39.94	37202	2.33	64.01.28	1.542 .040	27.50
10516	1.03	66.11.17	1.054 .0	1 41.98	37202	2.33	66.12.09	1.684 .023	36-47
10516	1.93	67.01.02	0.929 .0	9 42.59	37202	2.33	67.04.22	1.536 .024	35.24
10516	2.33	66-11-17	1.147 .0	41.33	37202	2.78	64.01.26	0.952 .058	23.39
10516	2.33	66.12.00	1.102 .0	40.79	37202	2.78	64.01.28	0.997 .045	23.20
10516	2.33	67.01.02	0.945 .0	15 42.11	37202	2.78	65.08.13	1.080 .112	
10516	2.78	66.11.17	0.823 .0	2 50.13	37202	2.78	66.12.09	1.111 .015	40.62
10516	2.78	66.12.08	C.683 .0.	18 53.67	37202	2.78	67.04.22	1.089 .050	29.36
10516	2.78	67.01.02	0.606 .0	21 59.54	37202	3.03	64.01.26	0.688 .081	18.16
10516	3.03	66.11.17	0.718 .0	17 59-81	37202	3.03	64.01.28	0.669 .063	17-24
10516	3.03	66.12.08	0.767 .0	4 65.75	37202	3.03	66-12-09	0.908 .052	41.63
10516	3.03	67.01.02	0.488 .0	55 10.36	37202	3.03	67.04.22	0.558 .025	35.00
35468	1.06	67.01.26	0.070 .0	12 74.21	169454	1.06	66.06.08	1.239 .032	9.23
35468	1.06	67.01.27	0.149 .0	82.89	169454	1.06	66.10.14	1.498 .045	13.92
35468	1.21	67.01.26	0.132 .0	79.49	169454	1.21	66.06.08	1.431 .025	10.34
35468	1.21	67.01.27	0.159 .0	14 81.30	169454	1.21	66.10.14	1.593 .028	14.05
35468	1.56	67.01.26	0.195 .0	08 74-58	169454	1.56	66.06.08	1.888 .025	16.33
35468	1.56	67.01.27	0.159 .0	10 75.74	169454	1.56	66.10.14	1.982 .047	18.13
35468	1.93	67.01.03	0.196 .0	25 85-23	169454	1.93	66.06.14	2.022 .029	17.04
35468	1.93	67.01.2/	0.209 .0	11 79.10	169454	1.93	66.07.12	1.714 .021	13.58
35468	2.33	67.01.03	0.232 .0	22 82.09	109474	2.33	00+00+14	1.611 020	10.90
33468	2+33	67 01 03	0.209 .0	22 73.07	160454	2.33	66.06.14	1.724 .040	14.45
35460	2 78	67.01.27	0.282 .0	14 68.80	169454	2.79	66.07.12	1.255 .104	20.30
35468	3.03	67.01.03	0.335 .0	33 68.41	169454	3.03	66-06-14	1.968 .087	21.92
35468	3.03	67.01.27	0.282 .0	14 70.39					
					181615	1.06	66.06.07	0.594 .033	163-19
37041	1.06	64.01.27	0.808 .0	67 94.01	181615	1.06	67.04.22	0.437 .023	173.85
37041	1.06	64.01.29	1.010 .0	81 103.98	181615	1.21	66.06.07	0.696 .010	163.06
37041	1.06	64.01.29	0.923 .0	49 94.17	181615	1.21	67.04.22	0.596 .014	174-84
37041	1.06	67.02.08	1.132 .0	43 104-22	181615	1.56	66.06.07	0.939 .021	164.82
37041	1.21	64.01.27	0.925 .0	67 108-47	181615	1.56	61.04.22	0.664 .020	140 20
37041	1.21	64.UL-29	0.900.0	26 101+41 26 100 11	10.415	1.02	00.00.14	1.007 .020	170.70
27041	1.30	64.01.27	1.012 .0	54 85.30	181615	2.32	66.11.17	0.667 .039	173.63
37041	1.30	64-01-29	0.833 .0	63 94.41	181615	2.78	66-06-14	0.920 .015	171.79
37041	1.56	67.02.08	1.071 .0	43 100-84	181615	2.78	66.11.17	0.514 .019	179.15
37041	1.93	64-01-24	0.955 .0	67 106.10	181615	3.03	66.06.14	0.859 .034	171.03
37041	1.93	64.01.28	0.829 .0	31 105.42	181615	3.03	66-11-17	0.580 .040	188.56
37041	1.93	67.02.05	1.040 .0	10 91.30					
37041	1.93	67.04.23	0.946 .0	27 98.06	197770	1.06	66.08.13	2.845 .109	131.35
37041	2.33	64.01.24	0.565 .0	18 98.69	197770	1.21	66.08.13	3.175 .038	130.65
37041	2.33	54.01.28	0.624 .0	40 104-38	197770	1.56	66.08.13	3.475 .039	129.71
37041	2.33	67.02.05	0.981 .0	06 86.78	197770	1.85	66.08.13	4.077 .044	131-04
37041	2.33	67.04.23	0.855 .0	19 91-91	197770	1.93	00.07.26	4+005 +011	130.07
37041	2.78	64.01.24	0.357.0	47 79+11 06 102 26	19/170	1.93	00.10.10	3 770 013	130.02
37041	2.78	64.01.28	0.472 0	74 LUZ-20	19//10	2.55	44 07 24	3 671 037	127.10
37041	2.70	67.04 23	0.450 .0	17 01+70	197770	2.79	66.10 10	3.367 .010	128.66
27041	2.02	64.01.24	0.260 0	30	197770	3.03	66-07-24	3.380 .034	130-02
37041	3.03	64.01.28	0.447 -0	40	197770	3.03	66.10.10	2.860 .089	128.34
37041	3,03	67.02.05	0.800 .0	34 79.44	1				
37041	3.03	67.04.23	0.207 .1	34 78.67	1				
21041	2003				1				

to obtain a mean interstellar polarization curve. All stars in Figs. 3(a) to 3(e) except HD 6675, 35468, 37041, and 37202 have been used for this purpose.

In Table VII we list the results obtained by taking the weighted mean of the normalized polarizations for all stars at a given wavelength and the curve is plotted at the bottom of Fig. 3(e). The error bars there give the average probable error, which is a measure of the precision of determining polarization for a single star at the respective wavelength. It does not indicate the dispersion in interstellar polarization for various stars.

The mean curve shows the characteristic broad maximum centered at about 5200 Å with a sharper decrease at larger than at shorter wavelengths. We have also determined a separate mean ir terstellar polarization curve for stars with $P \ge 2\%$ and P < 2%, respectively, at $1/\lambda = 1.93$. There is no significant difference between the two groups. It is to be noted,

however, that all of the stars in Figs. 3(a) to 3(d) which show marked peculiarities have polarizations less than 2%. We include among such stars the following: HD 6675, 25291, 25940, 35468, 37041, 37202, 37367, 40111.

Table VIII lists the residuals of the observed position angles from the weighted mean position angle (see Table V). In determining this mean, colons and semicolons in Table IV are given half weight. Colons in Table VIII indicate probable errors greater than $\pm 3^{\circ}$; semicolons indicate single observations. Exclamation marks (!) behind the HD number note stars for which there is an appreciable rotation of the plane of polarization with wavelength. The judgment that a star shows rotation is based both upon the probable errors and the smoothness of the variation of the residuals with wavelength.

5. Variable Polarizations

There is a growing problem in polarization studies as to whether the interstellar polarization is varying or whether all the variations which we observe are intrinsic to a star, stellar system, or circumstellar clouds. Intrinsic variations are now well established for various types of stars including the spectroscopic binary β Lyrae (Shakhovskoi 1964; Appenzeller 1965;

F10. 3 (c). Same as for Fig. 3(a).

20

Sand to a superstant of the second

1 24 22

. . . .

ų

• · ·

`.,

.,

F1G. 3 (c). Same as for Fig. 3(a). Error bars on mean curve give the average probable errors.

%

v

	P	ercentag	e polari	zation c	bserved	at $1/\lambda$	=
нр	1.06	1.21	1.56	1.93	2.33	2.78	3.03
179406	0.99:	1.01:	1.15	1.38	1.32	1.14	1.13
134335*	0.35	0.55	0.60	0.66	0.67	0.54	0.55
134320ª	0.43	0.44	0.61	0.60:	0.62	0.62	0.79:
193237	0.87	1.01	1.30	1.39	1.50	1.40	1.37
216411	1.51	2.12	2.55	2.67	2.61	2.34	2.16
4180	0.89	0.82	1.07	1.04	1.65	1.02	0.99
4768	1.68	1.88	2.35	2.39	2.37	2.21	2.24
7252	2.66:	2.58	3.76	3.64	3.63	3.39	3.02
7902	1.94	2.51	3.20	3.32	3.26	2.97	2.81:
8965	2.01	2.19	2.98	3.01	2.90	2.67	2.53
10898	2.72	3.27	1.04	4.60	4.31	3.94	3.87
15558	3.71	4.28	5.33	5.30	5.20	4.67	4.46
17506*	0.75	0.81	0.96	1.13	1.07	0.96	0.98
25914	3.15	3.86	4.39	4.63	4.48:	4.0S	3.71
25940	0.68	0.77	0.81	0.80;	0.68	0.43	0.37
29866	1.56	1.52	1.73	1.76	1.61	1.43	1.20
36371	1.52;	1.65	1.80	2.23	2.14	1.81	1.78
37367	0.50	0.69	0.87:	0.82	0.64	0.56	0.52
32990	1.04	1.27	1.52	1.67	1.64	1.51	1.38
32481	1.47;	1.71;	2.06;	1.85	1.90	1.75	1.44;
41398	1.70;	1.85;	2.25;	2.08;	2.10;	1.57;	1.70;
40111	0.70	0.71	0.97	0.72	0.68	0.46	0.33
37202	•••	1.28;	1.37;	1.52;	1.61	1.11	0.62
35468	0.07	0.14	0.18	0.21	0.21	0.29	0.29
46-184	0.83;	0.98;	1.49;	1.29;	1.21;	0.99;	•••
47240	0.70	0.84	1.03	1.00;	1.08;	0.70	0.63:
37061	1.37;	1.69;	1.51;	1.53	1.44	1.26	1.22:
37041	1.13;	1.01;	1.07;	1.03	0.97	•••	•••
83953	0.37	0.37	0.32	0.32;	0.58;	0.11;	0.11;

TABLE III. Observed percentages of interstellar pelarization. Weighted mean values.

* These stars are K-type stars and the corresponding effective wave numbers are 1.05, 1.19, 1.54, 1.91, 2.29, 2.75, and 3.00 μ^{-1} .

TABLE IV. Observed position angles of interstellar polarization. Weighted mean values.

		P/	wition an	ale obsats	ed at 1/A	=	
пр	1.06	1.21	1.56	1.93	2.33	2.78	3.03
179406	177:2;	181?2;	182?3	183?7	184:6;	183?7;	187:0
134335	90.1:	83.3	84.5	81.1	83.8	84.6:	78.2
134320	90.4	83.9	86.1	82.8;	91.2	87.4	85.3
193237	39.9	40.2	39.7	37.1	35.2	37.9	39.7
216411	45.2	47.5	46.6	49.0	49.6	48.3	51.5
4180	85.1	81.9	82.0	\$3.6	85.4	84.3	88.0
-1768	87.5:	75.2:	80.7	82.5	51.1	80.4	78.1
7252	102.6:	99.0	96.2	97.4	98.1	97.9	99.6
7902	95.6	96.8	95.0	95.0	95.9	96.6	95.2
8965	100.4	105.9	103.5	105.1	104.2	103.6	104.8
10898	93.5	93.4	93.9	94.1	94.4	94.5	94.1
15558	121.8	121.2	119.3	120.2	120.6	118.9	115.6:
17506	118.6	118.3	112.6	114.6	111.5	115.0	116.6
25914	137.8	137.9	138.6	140.8	140.7	139.8	138.3
25940	171.2	170.9	170.4	169.4;	173.9	174.7	172.9
29866	12.6	10.2	10.5	9.7	11.2	12.8	13.9
36371	177.6;	179.6	181.1	175.9	175.2	171.0	168.9
37367	22.2	21.5:	24.0	24.6	22.2	26.1	21.7
32990	86.9	86.2	84.3	84.3:	85.1	85.2	84.4
32481	91.3;	78.4;	80.0;	79.2	80.3	75.0:	83.3
41398	162.8;	159.4;	162.8)	168.5;	167.7;	169.9;	163.8
40111	169.2:	168.2:	168.8:	170.2	169.5	175.4	163.3
37202		33.1.	32.9;	35.4;	35.9	39.7	37.8
35468	75.2	79.9	74.9	80.0	77.4	70.2	70.0
46484	162.2;	174.2;	181.4;	175.3;	177.4;	179.0;	•••
47240	173.1	177.2	172.7	172.5;	172.7;	180.7	176.1
37061	62.6;	57.3;	63.8;	66.0	67.9	69.3	72.5
37041	104.2;	100.1;	100.8;	92.0	85.6;	82.4	79.2
83953	174.8	172.7	177.7	183.0;	167.2:	•••	•••

G. V. COYNE AND T. GEHRELS

TABLE V. Various data on the stars observed in this program.

		Gal	actic	0		D 1/	P	n	Dista	ince (l	(pc)	D.	ā	Domorkek
HD	Name	long	lat	Sp	<u> </u>	B-V	ĽB-V	<u></u>	Phot.	Par.	Kei	I vis	0	Kemarks-
169454 181615 179406 134335 134320		18° 22 28 38 39	0° -14 - 8 +59 +60	B1Ia+ A pep B3IV gK1 gK2	6 ^m 61 4.61 5.4 5.83 5.68	+0 ^{m94} +0.10 +1.21 +1.24	1 ^m 16 0.11 0.08	3.6 3.6 3.6 3.6 3.6	0.7: 0.3: 0.3:	•••• ••• ••• •••		 1%28 0.64 0.61	15°.5 169.0 182.9! 83.0 87.0	Sp. bin. Var. Var.?
193237 197770 216411 4180 4768	P Cyg BS 7940 +58°2492 o Cas +58°119	76 94 108 122 123	+ 1 + 9 - 2 -15 - 3	Bp B2IV B1Ia B2V B5Ib	4.80 6.32 7.20 4.50 7.57	+0.41 +0.33 +0.60 -0.06 +0.38	0.57 0.82 0.18 0.48	3.6 4.2 4.9 5.4 5.4	0.3 0.9 0.2 1.4	1.0 	f n f f	1.40 2.61 1.05 2.37	38.5 130.1 48.31 84.0 80.7	Shell, Nova 1600
7252 7902 8965 10898	+60°188 +57°257 +59°260 +57°399	126 127 128 131	- 3 - 5 - 2 - 4	B1V B6Ib B0.5V B2Ib	7.12 6.93 7.28 7.40	+0.09 +0.40 +0.02 +0.35	0.35 0.48 0.30 0.53	5.5 5.5 5.6 5.6	0.6 1.0 1.0 1.1	••• ••• •••	f J f	3.68 3.26 2.96 4.32	98.4 95.7 104.0 94.0	
10516 15558 17506 25914 25940 29866	φ Pc. +60°502 η Per +56°884 48 Per BS 1500	131 135 139 147 153 163	-11 + 2 - 3 + 3 - 3 - 3	B1III? pe O6 K3Ib B6Ia B3V pe B7? e	4.06 7.81 3.79 7.99 4.04 6.06	$\begin{array}{r} -0.04 \\ +0.52 \\ +1.69 \\ +0.60 \\ -0.06 \\ +0.10 \end{array}$	0.84 0.31 0.68 0.14:	5.6 5.8 5.8 6.0 6.1	0.5 0.2 1.5 0.1:	0.06	n n f n	5.28 1.05 4.50 0.76 1.70	44.4! 120.0! 115.3 139.1 172.1! 11.5	Sp. bin. Var. Var.?
36371 37367 32990 32481 41398	xAur BS 1924 103 Tau +21°754 +28°1008	176 179 179 181 182	+ 1 - 1 - 10 - 13 + 3	B5Iab B2V B2V B2Ib	4.77 5.95 5.41 8.10 7.46	+0.35	0.45 0.50	6.1 6.0 6.0 6.0 6.0	0.5	••• ••• •••	f	2.06 0.76 1.61 1.91 2.14	175.51 23.2 85.3 80.8 165.0	Sp. bin. Sp. bin. Sp. bin.
40111 37202 35468 46484 47240	139 Tau ζ Tau γ Ori +04°1319 BS 2432	184 186 197 207 207	+ 1 - 6 - 16 - 4 + 1	B1Ib B2IV p B2III B1V B1Ib	4.83 3.03 1.63 7.74 6.15	-0.07 -0.18 -0.21 +0.36 +0.14	0.15 0.06: 0.03 0.62 0.36	6.0 5.9 5.6 5.2 5.2	0.9 0.2: 0.1 0.4 1.0	neg 0.04	n	0.79 1.53 0.20 1.33 1.04	169.3 35.81 75.41 174.9 175.6	Sp. bin. Var? Shell Var.?
37061 37041 83953	-05°1325 # Ori BS 3858	209 209 256	-15 -19 +22	B1V O9.5V p B2 pe	6.80 5.07 4.78	+0.27 -0.08 -0.12	0.53 0.22:	5.2 5.2	0.3 0.6 	neg		1.49 1.01 0.39	66.8! 89.81 175.1	Var.? Sp. bin.

• In the relative distance column, near stands for 0.1-0.3 kpc and far for 0.6-1.5 kpc. • In the position angle column, an exclamation mark (1) indicates wavelength dependence of position angle.

		Normali	zed perce	ntage pola	arization a	at $1/\lambda =$	
HD	1.06	1.21	1.56	1.93	2.33	2.78	3.03
179406	73.5;	74.4;	85.0	102.3	97.7	84.2	83.4
134335	52.0	82.9	90.4	99.1	100.9	80.3	81.8:
134320	69.8	71.6	99.3	98.5	101.5	100.7	129.1:
193237	60.0	69.9	90.0	96.4	103.6	96.6	94.8
216411	57.2	80.2	96.6	101.1	98.9	88.8	81.8
4180	84.5	78.5	102.2	99.5	100.5	96.9	94.4
4768	70.4	78.9	98.5	100.4	99.6	92.7	94.1
7252	73.3	70.9	103.4	100.1	99.9	93.4	83.1
7902	58.8	76.3	97.2	101.0	99.0	90.6	85.5
8965	67.9	74.2	100.8	101.8	98.2	90.4	85.5
10898	61.1	73.4	90.6	103.3	96.7	88.4	86.9
15558	70.7	81.5	101.4	100.9	99.1	88.9	84.9
17506	68.0	73.8	87.7	102.8	97.2	87.0	89.6
25914	69.2	84.9	96.3	101.6	98.4	89.6	81.6
25940	92.4	103.5	109.9	107.7	92.3;	57.7	49.6:
29866	92.8	90.0	102.8	104.6	95.4	84.9	71.2
36371	69.6;	75.4	82.5	102.1	97.9	82.8	81.5
37367	68.8	95.0	120.1:	112.4	87.6	77.0:	71.9:
32990	62.6	76.8	92.0	101.0	99.0	91.3	83.4
32481	78.6;	91.1;	110.0;	98.6	101.4	93.2	77.1;
41398	81.3;	88.6;	107.4;	99.6;	100.4;	74.9;	81.2
40111	99.9	100.5:	138.4:	102.8	97.2	66.0:	47.5
37202	•••	82.8;	87.5;	97.1;	102.9	70.9	39.6
35468	34.4	64.9	86.4	98.8	101.2	137.9	138.4
46484	66.1;	78.3;	119.6;	103.4;	96.6;	79.3;	•••
47240	67.9	81.4	99.8	96.1;	103.9;	67.7;	60.9
37061	92.4;	113.8;	101.8;	103.0	97.0	85.3	82.1:
37041	113.0;	101.0:	107.0	103.0	97.0	•••	•••
83953	82.2:	82.8	71.1	71.5;	128.5:	25.2;	23.3

TABLE VII. Mean interstellar polarization.*

 1/λ	No. of Stars	Mean Norm. Pol.	Average Prob. Error
1.06	52	68%	3%
1.21	49	78	3
1.39	27	96	3
1.56	25	99	ž
1.93	52	101	- 2
2.33	52	98	2
2.78	51	90	3
3.03	50	87	5

* All stars of Table X in Paper VIII and of the present Table VI except HD 6675, 24431, 35468, 37041, 37202, 83953, 193443, and 206936.

Belton and Woolf 1965; Serkowski 1965; Rucinski 1966), the irregular red variable μ Cephei (Grigoryan 1959; Coyne and Gehrels 1966; Serkowski 1966), and various Mira type variables (Serkowski 1966).

Tables IX and X list the difference of our observations made during 1966–1967, with those of other observers extending from 1949 to 1965. The second column in each of these tables lists the difference between our observations at $1/\lambda = 2.33$ and those of Hall (1958); the third column lists the difference between our observations at $1/\lambda = 1.93$ and Hiltner (1956); the

*ي*دي ال

TABLE VIII. Residuals of position angles.

TABLE	IX.	Our	percentage	polarization	minu
		that	of other ob	servers.	

									that c	of other observ	vers.
HD•	01 1.06	nserved m 1.21	inus mea 1.56	un for e 1.93	ach stai 2.33	r at 1/λ 2.78	3.03	HD	Hall 1949–54	Hiltner 1949–54	Behr 1956–58
179406! 134335 134320 193237 216411!	- 6°; + 7: + 3 + 1 - 3	$-2^{\circ};$ -3 +2 0	0° + 1 - 1 + 1 - 2	$^{+1^{\circ}}_{-2}$ $^{-4;}_{-1}$ $^{+1}$	$+2^{\circ};$ +1 +4 -3 +1	+1;° +2: 0 -1 0	+ 4°; - 5 - 2 + 1 + 3	179406 134335 134320 193237 216411	-0.38% +0.26 -0.06	+0.33% -0.05	+0.05% -0.03
4180 4768 7252 7902 8965	+ 1 + 7: + 4: 0 - 4	- 2 - 5: + 1 + 1 + 2	-20 - 2 - 2 - 1 - 1 0 - 0	0 + 2 - 1 - 1 + 1	+1 0 0 0 0	0 0 +1 0	+ 4 - 3 + 1 0 + 1	4180 4768 7252 7902 8965	-0.01 +0.30 +0.50 (-0.93) -0.14	+0.14 +0.05 +0.33 +0.16	+0.29
10898 155581 17506 25914 259401	0 + 2 + 3 - 1 - 1	$ \begin{array}{r} -1 \\ +1 \\ +3 \\ -1 \\ -1 \end{array} $	$ \begin{array}{r} 0 \\ -1 \\ -3 \\ -1 \\ -2 \end{array} $	$0 \\ -1 \\ +2 \\ -3;$	0 +1 -4 +2 +1	$+1 \\ -1 \\ 0 \\ +1 \\ +3$	0 - 4: + 1 - 1 + 1	10898 15558 17506 25914 25940	(+0.63) -0.10 +0.15 (-0.95) -0.47	+0.10 (+0.69) +0.23 -0.07	···· ···· ····
29866 363711 37367 32990 32481	+ 1 + 2; - 1 + 2 + 11;	$ \begin{array}{r} -1 \\ +4 \\ -2: \\ +1 \\ -2; \end{array} $	-1 +6 +1 -1 -1;	$-2 \\ 0 \\ +1 \\ -1: \\ -2$	0 0 -1 0 0	+1 +3 0 -6:	+ 2 - 7 - 2; - 1 + 3;	29866 36371 37367 32990 32481	-0.37 -0.44 -0.33 +0.30	•••	-0.21 +0.20
41398 40111 37202! 35468! 46484	-2; 0: -13;	$ \begin{array}{r} - 6; \\ - 1: \\ - 3; \\ + 5 \\ - 1; \end{array} $	$ \begin{array}{r} - 2; \\ - 1: \\ - 3; \\ 0 \\ + 6; \end{array} $	+4; +1 0; +5 0;	+3; 0 +2 +2;	+5; +6 +4 -5 +4;	$ \begin{array}{r} -1; \\ -6 \\ +2 \\ -5 \\ \cdots \end{array} $	41398 37202 40111 35468 46184	+0.01 -0.57 +0.27 -0.47 -0.43 -0.17	-0.14 -0.34 -0.09	 +0.03
47240 370611 370411 83953	- 2 - 4; +14; 0	+ 2 -10; +10; - 2	-3 -3; +11; +2	3; -1 +2 +8;	-3; +1 -4: -8:	+5 +2 -7 	+ 1; + 6 -11 	47240 37061 37041 83953	-0.44 +0.01 +0.28 -0.20	-0.06	•••
• Stars ence of po	with exclar sition ang	nation mar les.	ks (l) show	w apprec	iable wa	velength	depend-	Syst. Diff. Mean Res.	-0.10 0.28	+0.04 0.17	+0.06 0.14

fourth column gives the difference between the weighted means of our observations at $1/\lambda = 1.93$ and $1/\lambda = 2.33$ with those of Behr (1956); and the last column gives the average of the differences between our observations at $1/\lambda = 1.93$, 2.33, and 2.78 with Serkowski's green, blue, and ultraviolet filters, respectively. The Serkowski observations were supplied to us directly by the author, corrections being applied in the same way as described in Sec. III of Paper VIII (see references there). At the bottom of each table the systematic difference is the straight average, and the mean residual the average of the absolute value, of the residuals exclusive of those in parentheses.

In Table X, with the exception of HD 35468 there are no significant residuals. Large residuals in Table IX for HD 7902, 10898, and 25914 may indicate variations in percentage of polarization. All three of these stars have large polarizations (greater than 3%) and they are relatively distant.

We now discuss the polarimetric observations of the B2III star, γ Orionis (HD 35468). In Table X, the residuals of the position angle in both the Hall and Behr columns are remarkably large (of the order of 50°) and similar. Our determination of θ is the result of measurements at seven independent wavelengths

made on three different nights (see Table II). The largest probable error for the combined value at a single wavelength is $\pm 1.9^\circ$. For a total of ten other stars observed on three different nights on which we observed γ Orionis the mean absolute residual in position angle, Coyne-Hall, is $\pm 4^{\circ}$. It appears that either the plane of polarization of γ Orionis has rotated or that we or Hall and Behr are in error by some 50° for γ Orionis. There also appears to be a dependence of θ on wavelength (see Table VIII) and a monotonically increasing polarization with decreasing wavelength [see Tables III and VI, and Fig. 3(c)]. Although the percentage of polarization is small with a maximum of 0.3% at $1/\lambda = 3.03$, the average probable error of the combined observations from two different nights is also small, $\pm 0.01\%$. The remarkable wavelength dependence of the percentage of polarization depicted in Fig. 3(c), which suggests a small mean particle size for the scatterer, as well as the indications of a rotation of the plane of polarization with wavelength and time, suggest γ Orionis as a candidate for more detailed observations, especially in the far ultraviolet.

For the spectroscopic binary and shell star, ζ Tau (HD 37202) we find no change in the percentage

Serkowski

1960-65

... ... +0.02%

+0.10 +0.30 +0.10

+0.02

+0.06

. . .

+0.09

0.11

G. V. COYNE AND T. GEHRELS

TABLE X. Our position angle minus that of other observers.

HD	Hall 1949–54	Hiltner 1949–54	Behr 1956–58	Serkowski 1960–65
179406 134335 134320 193237 216411	- 1° + 9 + 2	···· ··· + 2° + 4	 + 4° + 6 	 + 3°
4180 4768 7252 7902 8905	$ \begin{array}{r} 0 \\ - 2 \\ - 1 \\ - 1 \\ + 1 \end{array} $	-4 - 1 0 + 2	+ 1	 0 1
10898 15558 17506 25914 25940	$ \begin{array}{r} -3 \\ -1 \\ -4 \\ +1 \\ -2 \end{array} $	$ \begin{array}{c} -1\\ 0\\ \cdots\\ -3\\ \cdots \end{array} $	 - 1	···· ··· ···
29866 36371 37367 32990 32481	+ 50+10- 3+ 6	•••• ••• •••	+ 2 	0
41398 40111 37202 35468 46484	- 1 - 8 +13 (+56) +11	+ 2 + 6 +11	 (+46) 	•••• ••• •••
47240 37061 37041 83953	+ 1 + 2 - 16 - 1	+ 2	 	
Syst. Diff. Mean Res.	+ 0.7 4.0	+ 1.5 2.9	+ 2.4 2.8	+ 0.4 + 0.8

polarization between 1964 and 1967. There is, however, a change in the position angle. The mean angle for the 1964-65 observation is 26°8; for the 1967 observations it is 35%. For both epochs there appears to be a rotation of position angle with wavelength of the order of 5° to 10°. The rotation, however, is in the opposite sense for the two epochs, such that the difference in the position angle at $1/\lambda = 3.03$ between the two epochs is 20°.

 \mathcal{H}

12

We have checked the internal consistency of the position angles for both the 1964-65 and the 1967 observations by intercomparisons of observations on other stars and planets observed on the different nights during each of the two observing runs when HD 37202 was observed. There appear to be no systematic effects.

In Table II, in addition to HD 35468 and HD 37202 for five other stars suspected of variability in polarization the individual observations are given. Four of these stars are spectroscopic binaries. HD 10516 (φ Persei) is of particular interest since its period is 127 days and the variations in the percentage polarization are of the order of $0.2\% \pm 0.02$ occurring over a period of about 4 months. Furthermore, there is a rotation of the plane of polarization with wavelength of the order of 30°. Likewise HD 37041 (θ^2 Orionis), a spectroscopic binary with a period of 21 days, has a variation in the ultraviolet polarization of $0.5\% \pm 0.04$ and a rotation of the plane of polarization with wavelength of the order of 20°.

REFERENCES

- Appenzeller, I. 1965, Astrophys. J. 141, 1390.

- Behr, A. 1956, Nachr. Akad. Wiss. Göllingen, II. Math.-Phys. Kl., No. 7, 185; Veröff. Göllingen, No. 126. Belton, M. J. S., and Woolf, N. J. 1965, Astrophys. J. 141, 145. Coyne, G. V., and Gehrels, T. 1966, Astron. J. 71, 355 (Paper VIII).

Gehrels, T. 1960, ibid. 65, 470 (Paper II).

- Gehrels, T., and Meltzer, A. S. 1966, *ibid.* 71, 111 (Paper VII). Gehrels, T., and Teska, T. M. 1960, *Publ. Astron. Soc. Pacific*
- 72, 115. Grigoryan, K. A. 1959, Soobshch. Byuranskoi Obs. 24, 43.

Hall, J. S. 1958, Publ. U. S. Naval Obs. 17, Part VI.

- Hall, J. S., and Serkowski, K. 1963, in Basic Astronomical Data, Vol. 3 of Stars and Stellar Systems, K. Aa. Strand, Ed. (University of Chicago Press, Chicago), p. 296. Hiltner, W. 1956, Astrophys. J. Suppl. 2, 389.

Let, T. 1966, Doctoral dissertation, University of Arizona.

Rucinski, S. H. 1966, Acta Astron. 16, 127.

Serkowski, K. 1965, Astrophys. J. 142, 793.

1966, ibid. 144, 857; also, I.A.U. Inf. Bull. Var. Stars, No. 141.

12

Shakhovskoi, N. M. 1964, Astron. Zh. 41, 1042 (English transl.: Soviet Astron.—AJ 8, 833).

Acknowledgments. This work is supported by the National Aeronautics and Space Administration (NsG-670 and NsG-733).