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The concept of ccmpletc c o n t r o l l a b i l i t y  of Linear systems uaa introduced 

by Kalman i n  1960. This concept immediately provided the  i r t l o n a l c  f o r  aany 

of t kc  aseumptions inuoked in the  study of ltneer e y s t t i ~ .  For ~.utonowu6 

l i n e a r  s y s t t c s ,  a simple a l seb ra i c  test  determines both necessary and 

s u f f i c i e n t  condi t ions for complete cont ro l lab- i i ty .  Hovever, for the  complete 

c o n t r o l l a d l i t y  of nomutonowas l i n e a r  systems, Kalmsn derived ac i n t eg ra l  

c r i t e r i o n  involving the fundamental so lu t ion  of a h m g e n e o e s  i fnea r  system, 

which diminished t h e  usefuluess  of the  test. Iri 1961, Eeraenn in a d i f f i c u l t  

and obscure vork derived im a lgebra ic  test for the  complete c o n t r o l l a b i l i t y  

of nonautonoco;rs linear sysrew. He-n's approach vas based O;I t h e  gcope- 

trical in t e rp re t a t ion  of nonlultegrabiti ty of pfa f f i ans  and neighborhoods o f  

a t t a i n a b l e  po in t s  as denmnstreted by Caratheodory and subsequently extended 

by Char. 

Unfortunately the  f u l l  gene ra l i t y  of Chow's Theorem cannot be appl ied 

to noniinear systems efnce the  coordinate  system t s  endowed with one spec ia l  

coordfnate, namely t i m e ,  which has to  evolve. This r e s t r i c t i o n  inva l ida tes  

Choy'a Thcorea and Limfts i t s  app l i cab i l i t y .  For certain cont ro l  systems 

where the  con t ro l  ac tua tor  vectors  do not generate an "involutLve distrPbution",  

Char's Theorean =an be used t o  gem-rate c r i te r ia  for global  c c n t r o l l a b i l i t p .  

In general ,  for nonlinear systems, Chov's Theorem can only be used t o  

determine the  a i r t e n c e  or nonexistence of i n t eg ra l  manifolds and eotab l t sh  

whether or not some poin ts  are obviously inaccessible.  
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1 I. MXTHENAT ICAL PREL IN W A R  IES ANE) NOTAT ;Oh' 

We s h a l l  b r f e f l v  review sone of the notions and qmbol i sm assocf.?tcd 

w i t h  the  g e w e t r y  of m n i f o l d s  [l] t h a t  is per t inen t  tc the  geometric 

d i f f e r e n t i a l  approach to c o n t r o l l a b i l i t y .  For convenience a l l  manifolds, 

vector f i e l d s ,  cu-yes, m p s ,  etc,,  rill be assumed to be smooth, chat is, 

d i f f e r e n t i a b l e  2s o f t e n  as we please. 

stated i n  the  text.  

Any exceptions t o  t h i s  rule p i l l  be 

Canpositioc of mappings will be dencrcd either by @, + when brevi ty  of 

notat ion is required or by t he  obvious n c t s t i o n  

are a s s 4  to be connected and paracompact ( f i n i t e  covering) with coordi- 

@ ( + ( u J ) ,  A11 manifolds H 

n a t e  systems covering H denoted by (x 

fold, then a t  a point m r  M -Jc s h a l l  denote by F(H,m) t h e  set of s e t h  

functions with domain a neighborhood N(m) of m. A curve 'I ( u )  (ui th  para- 

meter a)  

tended to  a smooth map o f  an open in t e rva l ,  

x2, , . . . , xn>. I f  N is a s a n i -  

i n  W is a map of a closed i n t e r v a l  [a,b] i n t o  M which can be ex- 

TanKent Vector - The d i r e c t i o n a l  d e r i v a t i v e  of a funct ion f e F(M,m) a t  

m in t he  d i r e c t i o n  of a given curve y gives rise 

vector. 

i n t o  the  reals R' by 

t3 t h e  notion of a tazgent 

The curve Y [u)  generates a tangent vector y,(u) which maps F(M,m) 

far a parameter u gtiven by Q = y(u). 

l i n e a r  space denotcd by Y The dimension of l4 i s  n. t h e  dimension of ?4; i n  

fac:, i f  ( x ~ ,  xC2, . . . , x ) is 3 coordinate system Lr: a neighborhood N(m) of 

H, then (Dx , Dx , . . . . , D 

The tangents a t  8 point  m t M  form a 

ma m 

n 

) i s  a bas i s  for Mm, where Dx means parttal 
i X 1 2  n 
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d i f f e r e n t i a t i o n  with respect co the  x coordinate.  Tangents a re  completely 
i 

character ized by the following. 

Theore= 2.1 - I f  (xl, x 

. 
, x ) is a coordinate system a t  m t H  and 2" - n 

t enm a tangent vector a t  ill 

Dif fe ren t i a l s  - I f  d : M-N 

then t can be given the representat ion 

fs a smooth mapping of manifolds, the: ue def ine  

as follows. I f  Y e  Xm and f t F ( N , Q { m ) )  0 the  d i f f e r e n t i a l  of a, de: Y¶ - N 
then dQ(y)(f) = Y(-$?). 

ill 

Differcntiels - of Functions - Each element f of F(H,m) generates  by i ts  d i f f e r -  

enl ' ial  cu[f element of the  dual space M of  H bp df; Hm-R. By t h i s  asaocia- 

t i o n  if  t c Mm, then d f ( t )  - t ( f ) .  

dual to Dx (m). system at m, then (dxl, dx 

me d i f f e r e n t i a l  of a functfon f r  H(M,m) has a more obvious representat ion as 

* 
m m 

If (x, , x2, . . . , x ) i s  a coordinate  

, d x  ) forms a basis of M 
d * 

i 2 ' * "  n m 

Vector F ie lds  - A vector  field X, is a function defined on a subset E of a mani- 

fo ld  

is a 

with 

H which assigns a t  each point m t E  an  element X(m) of Mm. 

coordinete system then D is a sa io th  vector  f i e l d .  I f  X Is a vector  f i e l d  

its domain contained i n  t h e  coordinate  system then X may be given the re- 

If (xl, x2, . . . xn) 
i X 

presentat ion 
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where t h e  f are r ea l  valced functions. If X and Y a r e  smooth veztor f f e l d s ,  

(x1, x2,  . . . . , x ) a coordinate s - x t e m ,  and i f  X and Y have the represen- 

ta t€ons 

i 

n 

then the  Lie Bracket is a vector  f i e l d  defined by 

The brrc.cet operat ion is b i l i n e a r  with respec t  to real coe f f i c i en t s  and i s  

also skew-symmetric 

[H,V] = - [Y,X] 

In t eg ra l  Curves - If X is a smooth vector  f i e l d  then is the  in t eg ra l  curJe  

of X s t a r t i n g  a t  m i f  Y(o) = m and f o r  every u i n  the  d o m i n  of 7 , we have 

For the d e f i n i t i o n  of X given above, t h i s  i s  equivalent r*(a) = X ( y  ( a ) ) .  

t o  the system of d i f f e r e n t i a l  equations 

- drQl = f('y ( a ) ) .  
da 

D€ffarent ia l  One Farms - If (xl, x2, . . . . , x ) is a coordicate  system a t  

m t  H, then (dx , dx2, . . . . , dx ) a t  m forme a basis for the cotangent space 

If 

the reals, can be represented by f = 

n 

i n * 
so tha t  every element f of G'(MZ>, the space of l i n e a r  f u w t i o n s  on M m m i n t o  

2i(m)dxi. A di f f tTent fa1  one form of  

4 



M ,I a functcon 8 defined on some subset E of  M ,  whose value e t  each m e  E 

i s  an element uf G '  (M,). 

fora is  not necessar i ly  the d i f f e r e n t i a l  o f  a smooth function. 

* 
It should be noted that  every differential one 
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IIX DIFFERENTIAL GEOMETRIC APPXOACH TO CONTROLLABILITIl 

The basis  of Herma.nn's [2] d i f f e r e n t i a l  georletric approach t o  

cont ro l lab i i izy  is the  use of Chow's thec :em [3] which r e l a t e s  &e 

a c c e s s i b i l i t y  of points  to  i n t e g r a l  curves of a pfaf f ian  sys tem.  

Chow's theorem in turn, is a genera l iza t ion  of the important theorem 

due to Caratheo'dory [4] .for a single pfaf f ian .  We c i t e  the follow- 

ing contraposi t ive form of Chrathe'odory's theorem since i t  appeals 

d i r e c t l y  to the notion of con t ro l l ab i l i t y .  

3.1 Theorem - If the d i f f e r e n t i a l  one form c,,(xj = Ca,(x)dx,, defined 

on a lnanifold M with  coordinate s t ruc tu re  (x x2, . . ., xn), is not 

integrable  then there exists some neighborhood N(x ) of a given poin t  
0 

x eM i n  which a l l  pofnts a r e  access ib le  by i n t e g r a l  curves T(u) sa t -  
0 

i s fy ing  w ( 7 )  = 0 .  

by Chow t o  systems of 2faf f ians  6r differr:nCial 01;o forms. 

a y i l i c a t i o n  of Chow's theorem t o  the c o n t r o l l a b i l i t y  problem, Hermanu' s 

approach is based on the proposit ion that evmy poin t  

t h a t  i s  Dot obviously inaccessible .  

A s  previous ly mentioned, thls r e s u l t  was extended 

I n  the 

accessible  

To prevent: SUE points  L n  X(x ) 
0 

from being obviously inaccessible  i t  is evident t h a t  we must negate 

the existence of any i n t e g r a l  manifolds t o  the system of d f i f e r e n t i a l  

one forms. 

can be d e t r . n h ? d  by using Frobenius' i n t eg ra t ion  theorem [ 5 ] .  

The exis tence of i n t eg ra l  m.nifoldri for the  p fa f f i an  system 

Equiva- 

6 



l e n t l y ,  the in t eg rab i l i t y  condi: tons has a d u a l  formulation i n  term 

of d i s t r ibu t ions  of vector f i c l d s  being involittive. 

If 8 is a p-dhnensional l i s t r i b u t i o n  02 R maqifold M (p ,< ;tm(@) 

whlch assigns t o  each met.( a p-diir.ensionh1 l i n e a r  subspacc Q(m) of M m 

the tabgent space, then a vector  f i e l d  X belougs t o  the d i e t r ibu t ion  

8 denoted by XtQ i f  for  every point  rn i n  the domain of X, X(m> = 8(m).  

A d i s t r i b u t i o n  0 is imrolutive if for a l l  vector f i e l d s  X, Y which 

belong t o  Q the  lit brack?+ [XI Y] a l s6  klongs t o  the  d i s t r 3 . h t i o n  

8. A.n i n t eg ra l  manifold 17 of Q is d submnifold c f  M such t h a t  dL(Vm; = 

a(i(m)) where i defines  the map of KCM and d i  denotes the d i f f e r e n t i a l  

of i. 

in teg ra l  manifo3.d of 8 containing m. 

t i nen t  to the  exis tence of i n t e g r a l  manifolds for  involut ive d is t r ibu-  

t ions.  

3.2 Theorem - ifh i w o l u t i v e  d i s t r i b u t i o n  8 on M €8 integrable .  Further- 

uofe, through every mcM there passes a unique maxhal connected in t eg ra l  

manifold of 8 and every other  connected i n t e g r a l  manifold containing m 

i s  an open siibmanifold of t h i s  maximal one. 

A d i s t r ibu t ion  8 is in tegrable  i f  for every mcM there is an 

The following theorem is pcr- 

Hermann applied these results to the  c o n t r o l l a b i l i t y  problem as 

follows. Consider the control  system 

ir, - f (t, 5 ,  u) i 
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-&ere the s t d t e  ._ is  an ~=-wctox, the control u is an s vector 

(sSd and the Spctions f are sss-d to be s u ~ ~ ~ t h .  Ln -LhC 

(t, x,  u! space w e  can assocfate with  the aintrol system a codis- 

t r i b u t i n  of one forus defined by 

dxi - f (t, x, u)dt  = 0 i 

=e dual space of vector fielcis i s  spaanted by 

It $6 rllly a rt-itine mtter to demnstrate d e t e r  or not this dis- 

tziattion of vector fields is involutive under the l i e  bracket 

operation and thus determine the existexe or nonexistence of an 

intepral &fold. 

The relation of Hemam's propositton tegardisg avoidance of 

obvioasly inaccessible points as w e l l  as Carathe'odory's theorem and 

C t r d  s genualtat ion on Lntegrability a d  i a a c c e s s i b l e  polnts to the 

converse problem of accessible points f o l h  from the georpetrical 

8 



interpretation of the lie bracket of vector ffelds. lhe merit 

vectors associated with the integral c u m s  of the vector fields 

do not epan &e tangen: space H 
9' 

buwer, f f  the distrtbution is 

xmt tnvo'h~tive then the w e n t  vector6 associated Vi& the derived 

spster of vector f ie lds  d e r  the lie brackrr operation do span thm 

tangent space W If the tengent vectors spnn H tha- all p o h z s  
1- P' 

of the vector f i e lds ,  pnmidel we can identify integral curves uitb 

those vector fields that are zenarated by t h ~  lie bracket. 

ing theorem resolves this probletn 111. 

3.3 meor- - L e t  X and Y be smooth vector fields both defined at 

lhe follw- 

me& 

sequence the integral m r v ~ s  to the wector f ie lds  X, Y, -X, -P for 

a fixed parameter u and Z d t i a l  point a: then Y has [x, ~](d a8 a e  

If r(a) denotes the final point obtahed by tramrsing in 

l d t  of its tangents. 

m 

Figure 3.2 
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v 
1' 

Proof - Let  X and Y heve t!e representacicns X = &E, ( x ) h  
A - 

vector fiehis ]L ami Y respecti*ely so that ~ J u >  - X(p(u)), &*Cui = Y(+(u) ) ,  

then p and $ satisfy the differential equations 

As .we traverse a rectangle of integral cums (Figu~s 3-1) 6 ,  obtain 

the follmhg relations 

S i n c e  ye shall c q r e  the point m4 to the point y fur small e, w 

have on cscpaMtag the integral curves in e. 7hyIor's series fn u 
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the vecto: fields X and Y is, for small u, given by 

I& relation betcleen the htegral come T- ami the lie bracket is 

obvious since 

The lie bracket creates a second order w e n t  r a h r  than a arst 

oraer tangent since 

merefore for auy functi?m h we have 

This geoetrfcal interpretation of the lie bracket gives insigh:: 

into the Local at tahabi l i ey  of points. 

family of rectangles whose sides are tangent to  a distrlbutfon mfght 

‘Eravereing a one pcuanreter 
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y ie ld  1ocalZ-y a carve dose taagen"r is not 'n th dtstritution. 

the distributfor is nos Lwolutive, we un generate )II fndepamzknt 

s e t  of w e n t  vectors &ich span the maifo!.d and irplfes local 

attttnabil?-ty of potats by integral curves s J  the dfrtribution. 

When 



m. LIh'EAR SYST€PCi 

As an axzmple of tke differential g e o m t r i c  approach, H t m c n  derived 

the follauina alaebraic  test for the controllability of the linear spatem. 

n- L 
4.1 Thm_cru_ - If  the rank af [ B ( t ) ,  ?'%.!t), . . . . , r R(t;j , 
where r = 4 t ~ j - 3 ~ ~  is n fcrr each t then every point of the x-space is accesaible 

frmn the origin on paths that are so lu t ians  of the linear system (4.2) fbr sone 

ctcrica of the control u(C)- 

The proof  of t h i s  rheoren is f a i r l y  trivial and proceeds as follows, With 

the -tor f i e l d s  defined by 

? = Du 

succesofve application of the L i e  Bracket yields 

P CtC.  

14 



-e d i s t r i b u t i o n  is  not fnvolutiva if  rank [Bit), rB(t), . . ., fD”e(t ) ]  

t s  n, vhich ccmpletes the proof. 

Subsequent to th‘; result ,  Kalxren et.al. [6], der1 .d  the  fol lowing in tc -  

yral t e i t  for c o n t r o l i a b i l l t y .  

4.2 TSeorc= - Ihe tinear system (4.1) i s  COnq!htely c 6 n t t o ~ ~ a b ~ t  a t  to i f  

and only i f  there a i s t s  a t, > t  

W ( t n , :  ) is the nxn matrix drt-ued 

such that  U ( t  ,t  ) is  ncnsingular,  where 
- 0  0 1  

1 

c c 

5 

aed a(t,t ) is the fundamentel s o l u t i o n  t o  the  homogeneous differential equrtion. 

Central to t h e  proof of t h i s  theorem 13 the  dewnstratfon that  there exists 

0 

one fnten-a1 [toBtl] on uhich Che functfcrar c b ( t o , t ) B ( t )  arc l fnearlF lndepen- 

dent. The reason for this €a obvtous. 

independent on any Iuterval ,  then t h i s  Implies the existence of a constant 

vector C such that  

If the  fucctlms O(to , t )B( t )  art  not 

for a l l  t.  This, in turn, implies that  the  control system 

9 =. *<to,t)B(t)u 

derived froin (4 1) by the nonsingular transformation 9 is not controllable since 



T 
t h e  int-xral  manifolds would '>e ,:*:en by C 7 .  

The equivalence between Hemann's  aiy-brnic t e a t  end K R L m a i l ' s  fiitegrzl 

t es t  follows fro?: t h e  demonstratfon of the  l i n e a r  i i idrpcndtnce of the functions 

n-2 
9( to , t )B(c) .  I f  we assume t ha t  A!t) c C and E( t )  e CI1'l, lhezl by formally 

T d i f f e r e n t i a t i n g  the expression C 9 ( t  t ) B ( t ) ( f i - l )  t imes, ire 0b;at.n Hermann's 
0' 

algebraic  tes t  on negatfng the  existence of the  constant  vector  C. In f a c t ,  

there is an equivalence between t h i s  nethod and t h e  d i f f e r e n t i a l  geometric 

method of shoving thar  t k e  d f s t r i b u t i o n  is not iovolutive.  However, the 

algebraic  test  Lmplies t h a t  t h e  -func+Ims + ( t o , t ) B ( t )  .are l i n e a r l v  independent 

for a l l  if-tervals [totl]. 

t h a t  wd find one i n t e r v a l  where t h i s  is t r u e  for t he  Linear system t o  be 

completely con t ro l l sb l e .  

f m t f o n s  are i i n e a r l  J indebendent , there  can exis t  subintervals  of t h i s  in- 

Kalman's i n t e g r a l  tes t  on the  o the r  hand requires  

Having found one such i n t e r v a l  [t ,t,] on which the  
a -  

terval on which th2 functions are not itrdependent and i n t e g r a l  manifolds exist. 

Since t h e  i n t e g r a l  mautfolds are d i f f e r e n t  on each subinterval ,  otherwise thc  

func:?ons wwld  not be indcpendent, i t  follow t h a t  &he i c t e g r a l  manifolds must 

span t he  manifold E¶ for points  t o  be accessj. 'r aver the i n t e r v a l  [to,tlJ. - 7  The 

algebraic  test, therefore ,  constitutes only a s a r f , ~  t-nt condition f o r  complete 

c o n t r o l l a b i l i t y  of l i n e a r  systams Hwe-:er, i f  tf. rnsrrf 2es A ( t )  and B ( t )  are 

ana ly t i c ,  then Charg 

Obviously, i n  t h i s  case,  w e  cannot piece togsit..:.: -i :.-'.a?g-- .-I maniiolds t o  span 

the manifc1a s ince ff any row or cabi l ia t ior ;  of - w 5  of the matrix fcncpioa; 

[7] h3s ;#rove18 t h a t  t i ? ?  alp?b.rn:,: t e s t  is a l s o  necessary. 

+(t , , t )B(c)  a r e  zero on soms i n t e r v a l ,  then they are zero everywhere by the  

anal y t  IC i t  y cond it i o:? . 
The fol?,mir.g a lgebraic  tes t  is fully equivalent t o  Kalman's i n t eg ra l  t e J t  

?or con t rgl lab f 1 i t y  . 
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4.3 Theorem - Consider the l i n e a r  system 9 = H ( t ) u  %nere  H ( t )  is an nxr matrix 

composed c2 C 

and only i€ there e x i s t s  n times t , . . . , t 2 t ,  euch tha t  

n- 1 
elements. This syotem is completelv cont ro l lab le  at  t o  i f  

n 

Roof. 

is not comple'ely con t ro l l ab le  a t  to , t h f s  implies 

To show suf f ic iency  w e  prove t he  contraposi t ive.  If the l i n e a r  system 

f o r  any set t 1, 

c m t r o l r a b l e  e t  to, t h i s  implies there  e x i s t s  a nonzero vector  C such t h a t  

C H ( t )  - 0 for a l l  t 2to . 

. . . , tn l t ,  . In  f ac t ,  if the  l i n e a r  system is not completely 

T Tbia i n  turn impi i c s  t h a t  

(t) 9 
T. T (n-I) C H ( t ) ,  . . . . , C H  

are also zero for a l l  t L to Hence, f o r  any set e *, 3 t,Lo 

For necess i ty  we s h a l l  asstune t h c t  the l i n e a r  system is c ~ m p l e t e l y  cont ro l lab le  

, t > to  s x h  t h a t  1 " ' "  n- a t  to and demorstritte the  exis tence of a set t 

1 7  



This is equivalent t o  s b w i n g  that for aity nonzero vector C t he  n r  dimensional 

vet  t o r  

Since the  system fs assuned to be cont ro l lab le  

e x i s t s a  t > t, such tha t  e l H ( t l )  0. If renk T 
1- 

Let e be any nofizero vector.  

and H(t) is continuous thel: ihere  

H ( t l )  is n then the  :>roof i s  

1 

.F 

f i n i s b d .  

SO t h a t  e and e a r e  l i n e a r l y  independent. Now t he re  exis ts  a t t, s-ich t h a t  

If not ,  t he re  e x i s t i  a nomero  vector  e such t h a t  e%(t  ) = 0, 
2 2 1  

2 1 2- ' 
T= - .  

e 2 H ( t 2 )  f 0, if not ,  then e i H  (t) = 0 for a l l  tz t ,  . This j .m?lik; 

fe;i{t)dr = e2H(t) T = 0 

1 t 

fox- a l l  t2$  and con t r ad ic t s  t he  a s s u q t i o n  t h a t  t he  system is completely cou- 

trolXible. 

proof i s  finished. 

Next consider [€l(tl),i(t )) , if t he  rank of t h i s  matrix ?L, r! t h e  
2 

If not ,  therr t he re  ekists a nonzero veltcm e such t h a t  3 

,- T e , r R ( t l )  ,H(.q)] = 0; m d  3 t > t, such t ' q i t  e'g!t ! - 3 3 ' 3  0. 

Clearly e , ,  e and 2 arc t i n e a r l y  independent. Continuing induczively, c i t h e r  

for some 

- 2  3 

or e l e e  w e  generate n l i n e a r l y  independent vectors  e 1, . . . . , 8 such t h a t  n 



I n  the f i r s t  inr tance,  we are f inished.  In  the second, avy nonzero vector  C 

= z Y i e i  wi n not a l l  the  Y zero. From the  property can be expressed 2s C 

t h a t  the  ei s a t i s f i e s ,  ? c  fol:ciws t h a t  

i 

C T [H(tl).il(tZ), . . . . ,lI(n-l)(t )] # 0 
n 

This conrpletes the groof. 

-- 4.4 Coro!.lary - Concirler the  iinezz s y s t e m  

2 = A(t)x + S(t)u, 

n- 2 where A ( t )  is an nxn m i l t r k  of C elements, an3 B ( t )  is aa nxr matrix of 

p- 1 

t h e e  exists n times t 

elemtiits. This systeTl i s  comple'ie1.y controliabi-!  al' to if and only ff 

. . . . , t n l  to such t h a t  

rank [ B ( t l ) ,  *(tl,c2) r B ( t 2 ) ,  . . . . , @(t l , t2 )  :Tn**'3(t n )] = K 

where = A(t) - D andQ,is  the  furiamental  so lu t ion  t o  the homogeneous 

equation. 

t 

By means of t h s  following l e m a  xe C P ? ~  {ori-ie en w e n  simpler algebra,, 

test  for complete con t ro l l ab i l f  ty. 
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4.5 tepa - L e t  E(t) be an nxr PPatrfir vaZued €unction. 

[a(t,), . 
Suppose rank 

- . E(tn)]<a for all seta t,,t,,, . . . . .t w i t h  t > td The.1 
n } F- 

P 

{- 
there exists a nontr iv ia l  constant  vector C such that  C E( t )  = 0 for all. tzt; 
Prculf, 

rmk r 

&e* t&, be chosen so t h a t  rank E(t ) is --he?, .d cal l  t h i s  
, 1 

Select t so that raak fa(tl),E(t2)] is -rurLul and call th lr  r d c  r2. 1' 2 

We cartluue tbis process to  the choice of t such that  r& n-1 

[E@,), . - - -sH[tm-l)] = r < n  i s  naxiral. L3rlr either r ~ = r for $1 
11- 1. J .l+1 

j = 1,2, . . ,(n-l) or r = 11-1. In the'firat case, let j be the seallest 

h t e g e r - s u c h  that r = k 

U-1 
- 

The colums of E(t), therefore, rrst lie in the 
L .  j j+l' 

if C is a - t r iv ia l  -t& ortbgomal to this-srtbspace then 

all  tzt,. In Che secoad case, shte by hypothesis we cam& - 

inercue the rapk of iH(t,)* - - . .E(t, - ,)] by adjofaing H(t) ,  the colrms 

of H t t )  lie Ln the (n-1) di.mems€anal subspace spymum by t&e colmp of 

E(t1;s - - - - 

sHCt,-l 1 d a nontrivial vector c orthogonal to ttis subspace 

1 satisfied C H ( t )  = 0 for all- t 2 to. 

Xlwing theoren. - 

We are noin in s position to prove the 

4.6 Theorem - The system i = ;;<t)u is caplettly controllable at to Xf and 

&Ip ff there &gats P t h e 8  tl, . . . . .tn?ro such that rank 

[E(tl), . e . ,E(tn)] is a. 
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controllable at to . 
C H(t )  = 0, t It, , e i c h  inplies C [?i(t,), - . . . ,H(tn)]= 0 for a11 sets 

(cis . . . a t  } . n e  cantrapositive of th is  ShQy6, -if tb rmsk 

[E(t,), 

Tben there ex is ts  a nontrivial vector C such that 

z T 

F 
/ 

.E(tn)]i6 P for 8- Sets ( f l s  . . - .,tn) e m  the system 
- _  

is coqlcte l j  controllable at to . 
~ 

loat *se that rank [&el). .-. - . ..H(t,,)]<n €or al l  sets .tJ. 

- 
h by le& (4.5) there exists a nmtriHa1 vector C such t&t &(e) = 0 
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W e  shall be concerned vi th  nonlinesr systems in which the control appears 

linearly as defined by 

k = A ( x j  + B(x)u .- 5. i 

where A(x) is +I nx 1 wtrix of srooth functions; B(x) is an a x r (r_(n) 

3 matrix of smooth functions, and is assumed to be of maximal rank for a l l x  in 

sole neighborhood W(X) of 6 given point xee= 

and the control u is an r-vector, Associated w i t h  the contml system (5-1) 

X3 a codistribntion-w of (n-r) dir'ferential one forms, 

. - 
+e state x Is'au n-vector, 

5.2 

where e is ur*hg&al to B for a l l  x ~.tl(xJ. 

is spanned by the distribution 8 

The dual space of vector 2ields 

W e  can now apply HeL.LBIM'8 atthod to the diotrfbution 8 to derive alwbraic 

. criteria for the controllabiliry of the nonlinear system (5.1). Emever, we 

muat point o;Jt the fallacy in.Hermann's appraach, vhich we have delayed-until 

nus becpuse it does not present any problems for l inear  system, In the case 
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of nonlinear systems, demonstrating tha t  a given d i s t r i b u t i o n  is not in- 

volut ive does not Impiy, s i n c e  there  are no obviously inaccessible  poin ts ,  

t h a t  a l l  points  a r e  accessible .  This is because w e  deal  v i t h  cootdinate  

systems t h a t  are endowed with one spec ia l  coordinate,  namely t i m e ,  which 

has t o  evolve, or i f  parametrized it m s t  be monotone bcrcasiq.  

rcbcr ic f lon  p a r t i a l l y  inva l ida tes  Chov's theorem; houever, derons t ra t ing  t h r t  

t he re  are no obviorrsly inaccessible  paints is impcrtant to c o n t r o l l a b i l i t y .  

- 

This 

For a c e r t a i n  class of nonlinear contro: systems Chav's theorem does 

have application. Let us associate with o a reduced p fa f f i an  system 

0 = eT(x)dX 5.4 B 

Since t h e  is no longer present ,  the f u l l  gene ra l i t y  of C h w ' s  theorem can 

be applied to determine the  a t t a i n a b i l i t y  of points. The dual  space of vector 

fields &e now spanned by 

If 8 is not an involut ive d i s t r i b u t i o n  taen a l l  po in ts  i n  some neighborhood of 

a given point can he a t t a ined  inst.mtaneously. This is where the  geoPetric in- 

t e rpre ta t fon  of the L i e  bracket gives  b s i g h t  into t?e v a l i d i t y  of t h i s  r e s u l t ;  

Being able  t o  achieve des i red  states instantaneously is now defined a s  

R 

being t o t a l l y  cont ro l lab le  [8] and had i t s  genesis  in LsSalle 's  [9] concept of 

a "proper" cont ro l  system. 

p l e t e l y  cont ro l lab le  on every in t e rva l  of t ime.  

This concept requires  t he  cont ro l  system t o  be com- 
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W e  CJP now sunmarite t h i s  result i n  the f o l l w i n g  theorem. 

- 5.1 Theorem - The nonlinear sys tem (5.1) is  t o t a i l y  cont ro l lab le  fn  some 

reglot- N(x)C?4 i f  t h e  control  actuator  vectors  B(x)  do not generate an i rr -  

volut ive system of vector  f i e l d s  over N(x). 

This conc'ition is s u f f i c i e n t  but not necessary, s ince  there  are obvious 

cases where the  cont ro l  ac tua tor  vectors  de f ine  an i cvolu t ive  system of 

vector  f i e l d s  but t he  system is t o t a l l y  cont ro l lab le .  

Heaceforth, w e  shall confine our a t t e n t i o n  to the  case where the  con- 

Furthermore, trcl actaator vectors do generate  a involut ive dis t r ibr i t ioa.  

we s h a l l  assume t h a t  t he  dimension of t he  d i s t r i b u t i o n  is equal to  the  

h r  of control actuator vectors. 

we shall augment eh: cont ro l  hctuator  vec tors  wi th  t5e independent vector  

f i e l d s  derived by t he  Lie  Bracket so t h a t  the  asstmption Ls satisfied, 

If t b i s  is r o t  t he  case (dim s>t) then 

This 

a s s w t i o n  fs introduced purely as a leatrer of convenience, s ince  by v i r t u e  

of the  geoaietric i n t e r p r e t a t i o n  of t he  L i e  bracket ,  t he  o r ig ina l  cont ro l  

system will be f u l l y  equivalent  to t h e  a u p n t e d  cont ro l  system. For ' the  

"involutive" cont ro l  systems w e  have the  follwing decomposition theorem. 

5.2 Theorem - If the  control ac tua tor  vectms def ine  an h v o l u r i v e  d i s t r ibu -  

t i o n  of dirrznsion r, then the re  exists a coordinate t r a n s f o n a t i o n  vhich de- 

composes t he  cont ro l  system (5.1) i n t o  

= G(y,t) + H(z)u. 

5.5 



where y is an n-r vector, z an r vector, F an n-r vector ?f smooth functiong, 

G an r vector of smooth functions and H is a nonsingular matrix of smooth 

functions. 

Proof. Let 0 represent the distribution of vector fields B where 
j 

Since 8 is an invoZutive distribution then [B ,B 3.8 for all vector fields 

B ,B Also by asstnaption, for ezch nt3, 8 (m) spins  an r dimensfonal linear 

subspace of the tangent space H The proof, ic part, follows f r m  the re- 

presentation of inval-iti,re distributions as given by a theorem of Robenius 

i J  

f J' i 

lQ- 

[IO] ?hich saps :hat for each point mcM we can f h d  a coordhate system 

(zl, t . . . . , tn) such that the vector fields @= , . . .- . , DZ > 
generates 9 on M. 

that we can always choose a basis X for 6 such that (Xi, x5) = 0. 

i' this is not true for the basis B 

1 r 2' 
We have to modify this result somewhat since it assumes 

IU general, i 

. . . ,zr), denoted by ( y , z ) ,  represent 1' - Let (Yl' - - - -, Y*,= 1 a d  (2 

a partit3oned coordinate system of M'. If 9 is a lPappLng of H' into 24 as Efven 

by x = $(y,o), then the tangent vectors transform by 

T 
Dz = @,OD, 

By virtue of the transformation 0 we have 

T T 
(z)D, = B W D x  

5.6 

5.7 
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where H(z) is no-isingular and can be chosen t o  be I tf (B 

BI,Bj. This r e s u l t  can b r  . e r i f i ed  by der iving the  i n t e g r a b i l i t y  condi t ians  

f o r  the  nonhomogeneous p a r t i a l  d i f f e r e n t i a l  equations obtaiced from (5.7) by 

using ( 5 . 6 ) .  

B ] = 3 f o r  a l l  
1' j 

5.8 

The i n t e g r a b i l i t y  conditions are, in f a c t  

D i f f e r e n t i a t k g  the  t ransforna t ion  4 with respec t  to t i m e  y i e lds ,  

so t h a t  f r a  (5.8) t h i s  reduces t o  

Since the  Jacobian of t he  transformation 8 is a s s d  t o  be different from zero 

i n  SOIDS neighborhood of I4 then the decomposition (5.5) follows. 

The s igni f icance  of the  decomposition theorem is t h a t  it isolates out those 

transformed s t a t e s  t h a t  a r e  bbviously t o t a l l y  control lable .  

no loss of genera l i ty  if ve choose 

In f a c t ,  there  is 



so t ha t  the  cont ro l  systern now assumes the  fora 

Z ' V  

and the c o n t r o l l a b i l i t y  problem vicved BY determia4ng the r t t a i r a b i l i t y  of 

the states y(t) for give= inputs  z ( t ) .  

It should be noted thar  the p i a f f i a n  system (5 .2 )  transforms to  

I 
so t h a t  the reduced p fa f f i an  syarem (x)dx is c o g l a t e l y  in tegrable  lrrd 

dofhes an i n t e g r a l  manifold 'Jy y(x) = COnLtmt. 

W e  shall nav develop sode tquival~neor bemoon "invelutiv." contrcl 

syst- und " to t a l ly  singular" cont ro l  syrtea. In u n y  optimal control pro- 

b l e m  a s i n g u h r  problem can artre thee 18 ckarac tor i red  by tho fact t h a t  tho 

maximum p l inc ip lo  f a i l r  to  yloLd m y  I n f ~ r a ~ t l o t r  regording the  choice of the  

o p t h l  coatrolr. To dis t inguJrb  t h f s  condition, the  con t ro l s  a n d - t r a j e c t o r i e s  

aro trrmd riaglli8r. The c a a t ~ o l l a b i l i t p  prob1.p i s  i n t iu t e ! ,y  connected with 

tho tier optima1 problem. 

s y r t a  (5.1). 

m ( t )  t h a t  t r a n r f e r  t he  rtate from some specified l b l t i a l  condition x 

ficd f i n a l  condi t ion xf i n  sinimurn time. 

ThLa sonnectioa ti111 be shown f o r  the nonlinear 

Ths t h e  o p r h d  problem cons i s t s  of f inding the opt fau l  control8 

t o  ~ O Q I  rpeci- 
0 
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Following the KaIma!?-Caratheodory approach [lX], w e  d e f i n e  the system 

Hamf 1 tonian a s ,  

where p i s  an n vector describing the cost i l te .  

i an  is minimized wfeh  res9ect t o  the contro l s  over .he set of ndmissible concrols 

For each x and p, the  Haniltou- 

Q .  I f ,  for example,  the set of adni s ib le  controls are constrained t o  an r-dimen- 

sional hypercube described by 

5.9 

for the sboice of the optimal contro l s .  

Any rolution of the nonlinear system (5.1) ~ i t h  contro lr  (5.9) that pasa 

through the desired retrainat points  xo and x with the c o s t a t e  satisfying E’ 

would be rrgrrded as 4 miniraiting trajectory .  However, s ingular  contro l s  u (t) 

the€ sre not nacridarfly bang-bang can e x i s t  so that  the corresponding solutions 

tn (5.1) and (5.10) x g( t )  and p = $ ( t )  make w-c or a l l  of  the r components 

8 
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T of the vector B ((if)$ vanish over sow measurable t i m e  i n t e rva l .  It is 

immediately obvious tha t  t h i s  s i t u a t i o n  would inva l ida te  the maximum 

pr inc ip l e  f o r  the s ingular  components of the con t ro l  vector. The s ingu la r  

components of the  con t ro l  vector,  i f  they e x i s t ,  are obtained by repea ted ly  

d i f f e r e n t i a t i n g  the  appropriate components of t he  s ingu la r  condition 

B ((#)$= C wich respec t  t o  t i m e .  

i f  a l l  components of B ($)$ vanish. 

T The problem is sa id  to be t o t a l l y  s ingu la r  

T The equivalence between the "involutive" 

con t ro l  system and the " t o t a l l y  singular" c o n t r c l  system is s a r i z e d  in t h e  

following Lemna which is a genera l iza t ion  of t h e  r e s u l t s  f irst  proven f o r  

(n-1) components of con t ro l s  [12]. 

5.3 Lemma - A necessary condition t h a t  an optimal t o t a l l y  s ingu la r  vector 

con t ro l  exists is that t h e  vec tor  f i e l d s  generated by the  con t ro l  ac tua to r  

vector B(x) be involutive. 

Proof: The proof i s  t r i v i a l  and simply follows from the f a c t  t h a t  i f  B(x)  

does not def ine  an involu t ive  d i s t r i b u t i o n  then t h e  reduced p fa f f i an  system 

is not in tegrable  and Theorem 5.1 applies.  

The geome t r ic cqili V a l  enc e be tween "involu t i ve  " end "tot  a1 1 y con t r o l l  ab le 'I 

cont ro l  systems can be es tab l i shed  as f o l l w s .  For ease of treatment we s h a l l  

coneider the decomposed con t ro l  sys tem.  

2 - v  

5.11 
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It is evident from the pfaf f ian  system dy - F(y,z)dt,  tha t  the i n t e g r a l  

marrifolds y associated w i t h  the  reduced pfaf f ian  system s t r a t i f y  M, and 

motion on these in t eg ra l s  y(x) = constant ,  can be achieved in zero t i m e  
I 

by appropriate  choice of z. The minimtm time t o  t r sve r se  from one state  

t o  so= other s t a t e  w i l i  depend s t r i c t l y  on the vector y. Let us denote 

t h i s  cos t  by V(y). The r a t e  of change V w i t h  respect t o  t time is given 

5.12 dV T 

dt 
- = DYV(Y)G(Y,Z) 

Obviously, we have t o  determine those points  z(y) on the s t r a t i f i c a t i o n  

which extremizes the  cos t  der iva t ive .  These points  are determined by 

5-13 

so t h a t  the sys t em (5.11) can be integrated t o  y ie ld  y = @(t). 

in t eg ra l  curve 8 ,  w e  requi re  the  cos t  V ( 8 )  t o  be tfPre l i k e  so that from (5.12) 

we obtain 

Along each 

Dif fe ren t i a t ing ,  this i d e n t i t y  with respect  t o  time y ie lds  

5.14 
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If we now define the cos t a t e  p by 

p - D V  
Y 

then (5.13) becomes GzGTp = 0 which is the c o n d i t i m  f o r  t h e  cont ro l  vec tor  

t o  be t o t a l l y  s ingular ;  fur therml-e ,  ( 5  14) is s a t i s f i e .  by the coetstc  

eqwt ions  s ince  it redices  t o  

To obta in  necessary and s u f f i c i e n t  cor,uition!, for the  cont ro l laLi l i . ty  

of nonlinear systems, we need t a  combine the d i f f e r e n t i a l  geometric t tchnique? 

of Section I11 t o  r u l e  out obviously inaccessible  points ,  r i c h  a co’ t e p t  of 

l oca l  neighborhoods of a t t a i n a b i l i t y .  One r e s u l t  per t inent  t o  iecal neighbor- 

hoods of c o n t r o l l a b i l i t y  is the  fo l lnwing  theorem of Harkus [13] . 
n 5.4 Theorem - Consider the cont ro l  proczss i n  E 

it = f (x ,  u), 

with ftCL i n  En* and restraint u ( t )  c 11cBrn. 

Assume : 
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(5i)Rcontains  m+l vectors ul ,  uL, . . .,udl, which  

span an m-sirnilex w i t h  u 0 0 i n  its fn t e r io r ,  and also 

zontafns uL, u,, . . . ., u fgr  c e r t a i n  a rb f t r a ry  

S ~ l l  e>o, 

& mtl 

Ehere A = Dxf(o) B 1 DUf(o) 

Theii rhere exists soice open neighborhoo? of the or ig in  fn En, in which all 

st.ztes can bo steerd to the  o r ig in  i n  f i n i t e  time ty a d d s s i b l e  cont ro l le rs .  

Therefore, Theorem (5 .6 )  c a  be regarded as defining local cont ro l lab i l i? ;  

in s a  neighborhood of the  t r a j ec to ry  x = 0. 

theorem is in part based on t te  linear a p p r o x h t i n g  system 

Since the prouf of t h i s  

then t h i s  suggests applying t ' re  linear system c o n t r o l l a b i l i t y  r e s u l t s  t o  

l inear ized versions of the  cont ro l  system about s- specified t ra jec tory ,  

It would sppsar therefore  tha t  we can generate an Ltf fn i ty  of algeorhic 

criteria f o r  conr ro l l ab i l i t y ,  eazh one depending on t he  pa r t i cu la r  choice of 

t t e  t ra jec tory  defining the l i n e a r  ,pproximating system. This zaises the 

question of uhat t r a j se to ry  should be chosen. 

a t ra jec tory  defining a l i nea r  approximating system wkose algebraic  cont ro l la -  

b i l i t y  criteria iozcediately determines the complete c o n t r o l l a b i l i t y  of the  

or iginal  control  system. .ThCs question leais t o  a paradox tha t  vas f i r s t  

cbserved by Hermes[14! a d  Cs contaiaed i n - t h e  following theorem vbfch we 

ci:r  vfchou t  proof. 

Does there  exist, €or exilmple, 

32 



5 .5  Theorem - Tho l h e a r  appraximatins systm describing e-Jtions i n  s- 

neighborhood of the t o t a l l y  d n g u l a r  t r a j ec to r i e s  associated with the t i n e  

optimal p r o b l m  i s  not completely control lable .  

An cbvious conclusion of t h i s  theorem i a  the  follourng. 

5.6 Corollary - Tke d i s t r ibu t ion  of l inear ized vector f i e l d s  about the 

totalXy singular t r a j ec to r i e s  associated v i t h  the  tiac op t i sa l  problem is 

involut ive  . 
A reearkable facet of Theorem ( 5 . 5 )  i s - t h a t  the  r e s u l t  is independent 

of the o p t i a a l i t y  of the  t o t a l l y  s ingular  vector tmtrol, 

slngvlar arc is t r u l y  a mZnimizLng arc, one would expect i t  to  persist as a 

natura l  boundary to the set of reachable points, since by 4ef inI t ion  it w o d d  

I f  the  t o t a l l y  

3e b s t t e r  than any bang-bang control  i r r s spec t ive  of tb? magnitude of the  

cont rc l  ixnands. On the other  hand, if the control system is coqlctely cop- 

trollable, one would expect a i l  Protions t o  carnpletely f i l i  the n-dimensional 

manifold by virtue of the s y s t m  b e h g  linear fc the control vector, 

Therefore, one could conjecture t h a t  i f  the t o t a l l y  singuiar arc €or the  

t h e  optimal problem is not  a dnfr ix ing  arc, then the control system is c v l c t c l y  

cont rc l  l a h l t  . 
Unfortuuatelp, the conjecture &a i n su f f i c i en t  as it  s t a d s  to resolve the 

con t ro l l ab i l i t y  of nonlinear systems. That the conjecture is false is re f lec ted  

i n  the f o l l w i r g  example vsicb possesses a non-optimal singular arc  for the tima 

optimal problcm, Consider the aystem[l4) 

2 
2 1  x2 - 1 + x  x u 
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then it is t r i v i a l  t o  ve r i fy  by the  Green's Theores approach tha t  t ha t  

non-optimal s ingular  a r c  for  the t i m e  optimal problem is described by 

xl(t) = 0. Contrary to t h e  proposed conjecture,  the  lack of control la-  

b i l i t y  for the above system sari be deaoostrated by the f o l l w i n g  trans- 

formatian vhich is nollsingular fo r  a l l  f i n i t e  regions of Euclidean two 

epee. With the tranefornation 

(1 j b e c m s  

. 
y2 - e 

- 3 
The lack of global c o n t r o l l & i l i t y  i a e v i d e n t  s ince  

irrerpactivc of  the choice of the  control.  

= e-' '_/3>0 2 

Let us re turn  t o  Theorem4-6 and give a geometric proof thereof, since 

it  has obvious applications t o  nonlinear system. 

s ta ted ,  '"ha system 9 -,H(t)u 

i f  *ere exist n ti-8 tl, . . . .,tn&t, such t h a t  runk [Il( t l) ,H(q)r.  . 
is n". 

W e  recall tha t  the theorem 

is completely cont ro l lab le  at to If and only 

. ,H(tn)] 



The conclusion of t h e  theorem follows from the in t eg rab i l i t y  of t h e  

reduced pfaffian system and provides a techniquf f a r  gcncraticg necessary 

conditions for the con t ro l l ab i l i t y  of nonlinear systems. For the l i nea r  

system 

8 x 1  n x n-r mtrir of vectors orthogonal t o  H ( t ) .  

-tiom are confined t o  these hyperplanes the con t ro l l ab i l i t y  of t h e  l inear  

system ca.' ha 

stroeture i n  Lz. 

k = E(t)u we can associate the hyperplanes 9 ( t ) y  where 9(t) is 

Since the impulsive 

'hed in terms of the hyperplanes admitting a coordinate 

That is :o say, the hypev:enes span H by su i tab le  choice 

of the essent iu l  constants (tire) of *he hyperplanes by z 

the hyperplanes w i l l  span I4 i f  the normal vectors 4, (t 1 form a basis,  or 

= et(t ) J ,  then ~ 

t 

equivalently if t he  tangent vectors X ( t  ) form a basis. This requires 

that rank E(tl), H(t2),  . . . .,E(tn) is n. Alternatively t h i s  coxzdition 

can be drrfved by considering a sequence of n delta functions having measures 

e at  the points tl,t2,. . . .;t The rank condition defines a One t o  one n- 

mappLng bemeen the state y and the measures 6 .  

This theorem can be applied to the nonlinear system 

2 = A(x)  + b(x)u 

by the following tzansformation. L e t  @(t,y) denote the solution to 2 = A(x), 

then by a varfation of parameters we obtain 

i = m;d(t,Y)] -'B(e(t,p))u = ' d ( t ,Y)L  
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5.7 Theorem - A necessary condition fo r  the system 

ccnt ro l lab le  a t  t, i n  some neighborhood N of ye is t h a t  there exint n t h s  

tl, . . .tn2 t, w c h  tha t  rank [E(tl,y),R(t2,y), . . . ,H(tn,y)] is n -for 

almost a l l  ygN, and the  or ien ta t ion  of t h e  transforaation [H(t,,y),. . .,H(tn,y): 

is preserved. 

= H(t,y)u t o  be completely 

- Roof. 

sys t e r  of order r, then it follows tha t  the pfaffian system C (t,p)dy is integrable 

Let C(t,y) define (a-r) vectors orthogonal t o  H ( t e 3 > . .  H(t,y) fs an involutive 

T 

fcr fixed t. 

than n fo r  a l l  sets 

a nontrivtal. vector C(y) such t ha t  C (y)H(t,y) = 0. Since t he  pfaffian system 

C'(t,p)dp is integrrble for fixed t it follows t ha t  C (y)dy is LntegruhZe so 

If ue now assume t ha t  the rank [H(tl,y), . . . .,H(t=,y)] is  less 

tlo . . .,tm and a l l  yeN then t h i s  Implies t ha t  there exists 

{ 1 T 
I 

that an integral ran i fo ld  exists.  He=e, the control system is not c w l e t e l y  

+Ontr~llable, The contrapositive of t h i s  yields the r e s u l t  of the theorem. 

Since we d m f t  the vanishing of rank [ii(t,,y), . . . . , B(tn,y)] on sets 

of maamare zero, then vc have to pake sure tha t  the transformation does not 

fold up on itself, irec, the or ien ta t ion  of the transfoxmation must be preserved. 

There l e  a unique r e l a t ion  between the  singular arc and the  points of 

measure zero where [€i(tl,y), . . . . ,E(t,,p)) vaaishes and is summarized i n  the 

follaving theorem. 

S h e  rank [H(t,,y(t)),.' . . .,H(tn,y(t))] is less than n for a i l  sets  

4 tl,t2,. . .t 

36 



then there  ex i s t s  a non t r iv i a l  vector *(t) such t h a t  

*t(t)H( f , y ( t ) )  i ” 0  5.  15 

Since t h i s  is an i d e n t i t y  in t asld r t h e n  d i f € t r e n t i e t i n g  wlth respect to t y ie lds  

The r columns of H ( t , y ) ,  for fixed t ,  definci a complete set of tangent vectors 

of order  r. 

vectots, t he  order  of d i f f e r e n t i a t i o n  v i t h  respect  co y i n  equation 2. can be 

changed, on s u b s t l t u t i n g r =  t, to give 

Therefore, since t h e  Lie bracket  does not generate  new tangent 

[+t(t) +*t(t!X (t,Y(t))u(t)] H(t,y(t)) = 0 
Y 

The r e s u l t  is now obvious since*(t]  can be iden t i f i ed  vith t he  cos ta te ,  and 

equation (5.15) is t he  s ingular  conditioa.  
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