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FOREWORD

This interim repor: outlines the researches performed during the past
six months o Controllability and the Singular Problem under NASA Contract
NAS2-4898, Ames Research Center. The research vas performed by G. W. Haynes
of the Martin Marietta Corporation, Denver, in collaboration with Professoc.

H. Hermes of the Mathematics Department, Colorade University.



I. INTRODICTION

The coucept of complete controllability of linear systems was {atroduced
by Kalman in 1960. This concept imunediately provided the rationale for many
of the asgumptions Invoked in the study of linzer gsystems. For rutonomous
linear systems, a simple algebraic test determines both necessary and
sufficient conditions for complete controllab.iity. However, for the complete
controllavility of nonautonomous linear systems, Kalman derived ar integral
criterion involving the fundamental solution of a homcgeneous iinear system,
vhich diminished the usefuluess of the test. In 196i, Hermann in 2 difficult
and cbscure work derived an algebraic test for the complete controllability
of nonautonomous linear systems. Rermann's approach was based oa the geome-
trical interpretation of nonintegrability of pfaffians and neighborhoods of
. attainable points as demonstrzted by Caratheodory and subséqﬁently extended
by Chow. ‘

Unfortunately the full gererality of Chow's Theorem cannot be applied
to nonlinear systems since the coordinate system is endowed with ome special
coordinate, namely time, which has to =volve. This restriction invalidates
Chow's Theoream and limits its applicability. For certain countrol systems
whe¥e the control actuator vectors do not generste an "involutive distribution”,
Chow's Theorem -an be used to gen‘rate criteria for global centrollability.

In genersl, for nonlinear systems, Chovw's Theorem can oaly be used to
detexrmine the existence or nonexistence of integral manifeclds and establish

whether or not some points are obviously inaccessible.



IT, MATHEMATICAL PRELIMINARIES AND NOTATiON

We shall brierflv review some of the notions and symbolism associ.ited
with the geometry of manifolds [1] that i{s pertinent tc the geomatric
differential approacn to coatrollabiiity. For convenience all manifolds,
vuctorrfields, cu.ves, maps, etc., will be assumed to be smooth, that is,
differentiable as often as we please. Any exceptions to this rule will be
stated in the text.

Compositior of mappings will be dencted either by ¢,y when brevity of
notation is reaquired or by the obvious nctation (¥ (¢})). All manifolds M
are assumed tc be cornected and paracompact (finite covering) with coordi-
nate systems covering M denotec by (xl, Xgs o o v s s x:n). If M is 2 mani-
fold, then at a point me M we shall denote by F(M,m) the set of smooth
functions with domain a neighborhood N(m) of m. A curve 7 (o) (with para-
meter ¢) in M is a map of a closed interval [a,b] into M which can be ex-

tended to a smooth map of an open interval.

Tangent Vector - The directional derivative of a function fe¢ F(M,m) at
m in the direction of a givenr curve ¥ gives rise to the notion of a targeant
vector. The curve 7Y (o) generates a tangent vector "I*(d) which maps F(M,m)

into the reals R' by

Y,(0) (D) = S=(£27)0)

for a parameter ¢ given by m = 7 (o). .The tangents at a point me¢M form a
linear space denotcd by Mm. The dimension of Hm is n. the dimension of M; in
facet, if (xl, Kys = v o s xn) is a coordinate system i a neighborhood N(m) of

M, then (Dxl, sz, e e v e s Dx ) is a basis for Hm, where Dxi means partial
e



differentiation with respect to the X, coordinate. Tangents are completely

characterize: by the following.

Theorem 2.1 - If (xl, x2, « e e xn) is a coordinate system at meM and

tcuh a tangent vector at m then t can be given the representation
t = 2.t(x,) D_(m)
i xi

Differentisls - If 6 : M—>N is a smooth mapping of manifolds, the: we define

the differential of &, d@: M —> N_._ . as follows. If Ye¢M and £ e¢¥F(N,p(m))
@l @{m) m

then d@ (y)(f) = 7(fo9).

Differentials of Functions - Each element f of F(M,m) generates by its differ-
ential ar element of the dual space M: of Mm by d€f: Hﬁ-—*-R. By tbis associa-
tion {f tenm, then df(t) = t(f). If (x], Xgs o o v s xd) is a coordinate
system at m, then (dxl, dxz, e o s s dxn) forms a basis of H; dual to Dxi(m).

The differential of a function fe¢ F(M,m) has a more obvious representation as

af = 3. D_ f(m)dx,.
xi o

Vector Fields - A vector field X, is a function defined on a subset E of a mani-

fold M which assigns at each point m¢E an element X(m) of Hm. 1f (xl, Xgs o o - xn)

is a coordinzte system then Dx is a smooth vector field. If X is a vector field
i

with {ts domain contained in the coordinate system then X may be given the re-

presentation

X= finxi,



where the f1 are real valued functions. T1f X and Y are smooth veztor fields,

(x,, X,y « « . . , X ) a coordinate svstem, and if X and Y have the represen-
1" 72 n

tations
X=2£D , Y= gD
i 1
then the Lie Bracket is a vector field defined by

{X’Y] - 2:(fliigi B giﬂkifi)nx1

The brac<et operation is bilinear with respect to real coefficients and is

also skew-symetric

[x,¥] = - [r.x]

Integral Curves - If X is a smooth vector field then ¥ is the integral curve

of X starting at m if ¥(0) = m and for every ¢ in the domain of ¥ , we have
y*(a) = X(vy (¢)). For the definition of X given above, this is equivalent

to the system of differential equations

4y () |
e £(v (a)).

Differential One Forms - If (xl, x .« o o xn) is a coordirate system at

2

me M, then (dx , dx « .. dxn) at m forms a basis for the cotangent space
i

2*

*
Hh so that every element f of G'(M;}, the space of linear functions on Mm into

the reals, can be represented by f = 2: si(m)dxi. A diffe-ential one form of



M .8 a functi’en O defined on gome subset E of M, whose value at each me¢ E
*
is ar element uf G'(Mm). It should be noted that every differential one

form {8 not necessarily the differential of a smooth function.



IIT  DIFFERENTIAL GEOMETRIC APPROACH TO CONTROLLABILITY

The basis of Hermann's [2] differential geometric approach to
controllabiiity is the use of Chow's thec -em Eﬂ which relates the
accessibility of points to integral curves of a pfaffian system,
Chow's theorem in turn, is a generalization of the important theorem
due to Caratheo'dory Bq ‘for a single pfaffian., We cite the follow-
ing contrapositive form of Carathe’odory's theorem since it appeals
directly to the notion of controllability.

3.1 Theorem - If the differential one form w(x) = E:ai(x)dxi, defined

on a2 manifold M with coordinate structure (xl, x . ey xn), is not

2>

integrable then there exists some neighborhood N(xo) of a2 given point
xoen in which all points are accessible by integral curves Y(g) sat-

isfying w(y) = 0. As; previously mentioned, this result was extended
by Chow to systems of pfaffians or differcutial oues forms. In the
arplication of Chow's theorem to the controllability problem, Hermanu's
approach 1s based on the proposition that evi:ry point .- accessible

that is pot obviously inaccessible. To prevent soume points 1n H(xo)

from being obviously inaccessible it is evident that we must negate
the exlstence of any integral manifolds to the system of diiferential
one forms. The existence of integral manifolds for the pfaffian system

can be dete miusd by using Frobenius' integration theorem Eﬁ. Equivi-



lently, the integrability condi:{ons has a dual formulationm in termns
of distributions of vector firlds being invélucive.
If @ is a p~dimensional listribution oz a manifold M (p < Um(M))

which assigns to each meM a p-dimensionsl linear subspace 6(m) of Hm

the taugent space, then a vector field X belougs to the distribution
0 denoted by X«8 if for every point m in the domain of X, X(m) = Q(m).
A distribution O is involutive if for all vector fields X, Y which
belong to O the lie brackat [X, Y] also belongs to the distribution

9. An integral manifold V of 9 is a submanifold cf M such that di(V;é =

9(i(m)) where i defines the map of NM and di denotes the differential
of 1. A distcibution O is integrable if for every meM there is an
integral manifcld of @ containing m, The following theorem is per-
tinent to the existence of integral manifolds for 1nvolutive distribu-
tioms.
3.2 Theorem - An involutive distribution 8 on M is integrable. Further-
more, through every meM there passes a unique maximal connected integral
manifold of O and every other connected integral manifold containing m
is an open snbmanifold of this maximal one.

Hermann applied these results to the controllability problem as

follows., Conslider the control system

ii = fi(t’ X, u)



where the state . is amn nr-vector, the comtrol u i= an s vector
(s €£n) and the fupctions £ are assumed to bhe smooth. In the

(t, xz, u) space we can associate with the control system a codis-

tribution of one forms definmed by

dx, - fi(t’ x, u)dt = C

The dual space of vector fields is spammed by

X= i)t + £, (e, x, u)l’x1

It is 20w z ri1tine matter to demonstrate whet.er or not this dis-
tribution of vecter fields is involutive under the lie bracket
operaticn and thus determine the existeace or nomexistence of an
integral marnifold.

The relation of Hermarn's proposition regarding avoidance of
obviously inaccessible points as well as Carathe'odory's theorem and
Chow's generalization on integrability and inacecegsible puints to the

converse problem of accessible points follows from the geometrical



interpretation of the lie bracket of vector fields. The tangent
vectors assoclated with the iantegral curves of the vector fields

do not span the tangent space Ha' However, 1f the distribution is

oot invoiutive then the tangent vectors assoclated with the derived
system of vector fields under the lie bra&cket operation do span the

tangent space H-. If the tangent vectors span Hn’ thar all points
in some neighborhood S(xo) can be .attained by integral curves

of the vector fields, ptovide:l we can identify integral curves with
those vector fields that are generated by the lie bracket. The follow-
ing theorem resolves this problem {1] .

3.3 Theorem -~ Let X ard Y be smooth vector fields both defined at

meM, If y(o) denotes the final point obtained by ttaversiné in
sequence the integral curves to the vector fields X, Y, -X, -Y for

& fixed para’uneter o and Init{al point m. then ¥ has [X, Y](m) as the

lixdt of its tangents.

Figure 3.1



Prcof - Let X and Y have the representacicns X = Ef, (x)Dxl,

4 :-Zgi(x)t:xl. If P(c) and P(o) are the iutegral curves to toe

vector flelds X acd Y respectively so that P, (o) = X(P(2)), v (o) = Y(¥ (o)),

then P and ¥ satisfy the dirferential equations

d ay _
-55'= £(9): 3, = 8.

As ve traverse a rectangle of integral curves (Figu-e 3.1) «e obtain

the following relations

n, = #(s, x)
v, = v(o, “1)
m, = p(-o, az)
m, = v(-o, w,)

Since we shall compare the point m, to the point my for small o, we

have on expanding the Integral curves in a2 Taylor's series in o



”;

my =g + f(m)e + X(m) f(m)%ﬂ + 0(63)

2
®, = & +g(m)ot Y(ml;g(al)-g - 0(s

2
a1y - Em)o + X(n,)£(=,)S + 0(a)

2
y = - 8o +Y(a)z@)? +0(s)

K;pand:lng these terms about ti:e point m upd only retainiug ierms

in o or lower, yields

m = u - fiade +x(m)f(m)§'

2

a, = @+ (£@) +g@lo + T +X(wgim) + 2K(me )

¥ 21~}

2
my = m+gme + (ZKlg@m) + Imelm) - 2 @EW);

"

o, = m+ (ZX(m)glm) - zr(m)f(m)){

4

Therefore the curve generated by the rectangle of integrel curves of

11



the vecto: filelds X and Y is, for small ¢, given by

T(e) = my - m= ((adg(m) - X £(m)y

The relation between the integral curve ¥ and the lie bracket is

obvious since

= Y] = {X(x)gi(x) - Y(x)fi'&:)} Dx.

The lie bracket creates a second order taagen: rather thae a first

oraer tangeant since

d‘)’ioz = 0

do
Therefore for any function h we have

2 -
2[x, Y)h(w) = 9——2 ho7) (o)
do

This geometrical interpretation of the lie bracket gives insgigh®

into the local attainability of points. Traversing a one parameter

family of rectangles whose sides are tamgent tc a distx'bution might

12



yield locally a curve whose tangent is not 'n tre distritution. When
the distributior is not involutive, we can generate in indeperient
set of tangent wvectors wshich span the manifold and implies local

attripabilfty of points by integral curves £o the distribution.



IV, LINEAR SYSTEMS

As an example of the differential geometric approach, Hermann derived

thr following aleebraic test for the controllability of the linear svstem.

®x(t) =~ A{t)x{t) + B{t)u(t) (4.1)
n-1
4.1 Theorem - If the rank of [B(t),T2(c), . . .. ,p BR(],

where T = A(:)—Dt, is n for each t then every pcint of the x-space is accessible
from the origin on paths that are solutions of the linesr system (4.1) for some
cheice of the control u(i).

The proof of this ctheorem is fairly trivial and proceeds as follows. With

the vz2ctor fields defined by

-~

X = nt + (A(t)x + B(t)u)‘Dx
¥ = Du

successive application of the Lie Bracket yields

[1.x] = B(t) Dx
[x, [x.x]] = (rB()ox

(x,[x, (v.x]]] = (riecen™x etc.

14



The distribution is not {involutive {f rank [B(t), rs(e), .. ..r""ln(c)]

is n, which completes the proof.
Subsequent to th‘; result, Kalran et.al. [6], deri. ed the following inte-

gral test for controliability.

4.2 Theorsm - The linear system (4.1) is completely controllable at t, if
and only if there enists a t, >t° such that w(:o’tl) is ncasingular, where
H(th,:l) is the nxn matrix def-ned -

t

. Y T, T
c.(to,tlx ! ®(c ,t)B(t)B () & (¢ ,t)dt

-
-
-

]

and ¢(t.t‘°) is the fundamentel solutiom to the homogeneous differential equstion.
Central to the proof of this theor;n i3 the demonstration that there exists:
one interval [to,tl] on which the functiens tb(to,t)B(t) are linearly indepen-
dent. The reason for this is obvious. If the functicns ¢(t°,:)B(t) are not
independent on any intervai, thea this implies the existence of a constant

vector C such that
T
C <l>(to,t)8(t) =0
for all t. This, in turn, implies that the control system
¥ = @t ,t)B(t)u

derived froa (4 1) by the nonsingular transformation € is not controllable since

-
w



the integral manifolds would bYe given by CTy.

The equivalence between Hermann's algebraic test and Kalman's iategral
test follows from the demonstration of the linear {udependence of the funct tons
¢(to,t)8(c). If we assume that Af{t) e Cn.2 and R(t) eCn-l, then by formally
differentiating the expression CT<§(to,t)B(t)(n-l) times, we ob.ain Hermann's

aigebraic test on negating the existence of the constant vector C. In fact,
there is an equivalence between this method and the differential geometric
method of showing that tke distribution is not ipvolutive. However, the
algebraic test implies that the»func*tons«b(to,t)B(t)‘are 11near1§ independent
for all irtervals [cotl]. Kalman's integral test on the other hand requires
that we tind one interval where this is trne for the linear system to be
completely controllsble. Having found one such interval [t',tl] oa which the
functions are iinearly inderendent, there can ?xist subintervals of this in-
terval on which the functions are not independent and integral manifolds exist.
Since the integral manifolds are different on eacih subinterval, otherwise the
func>ions would not be indupendent, it follows that . he integral manifolds must
span the manifold M for points to be accessi.'r over the interval [to,ci}. The
algebraic test, therefore, constitutes only a suir.. ent condition for complete
controllability of linear systems Hewever, 1f tlL: mitri:es A(t) and B(t) are
analytic, then Charg {i] has ptovéu that to> algebra’: test Is also necessary.
Obviously, in this case, we cannot plece togsth:- i .2gr.l mauirfolds to span
the manifcld since 1if sny row or combination of -"ws of tne matrix funcriou:z
$(t,,t)B(t) are zero on some interval, then they are zero everywhere by the
analyticity condition.

The following algebraic test is fully equivalent to Kalman's integral teat

for controllability.

16



4.3 Theorem - Consider the linear system y = H(t)u where H(t) is an nxr matrix
composed cf Cn—l elements. This system is completelv controllable at t, if

and only {f there exists n times t

1,,...,t > t,. such that

n=- o

rank [H(ti),lrl(tz),}‘l. (t:3), e . e ey H(n-l)(tn)] is n.

Proof. To show sufficiency we prove the contrapositive. If the linear system

is not comple’ ely contrellable at t this implies

o ?

-rank [H(tl), . o . o ,H(n-l)(t )](n

n

for any set Eyr oo o e ,tng t, . In fact, if the linear system is not completely.
control.able ot t , this implies there exists a nonzero vector C such that

c'H(t) = 0 for all 2t . This in turn impbies that
T. T (n-1
chige), . . . ., cH® Dy,

are also zero for alil tZto Hénce, for any set Eis o o0 o s t 20

, g™

rank [H(tl)’ﬁ(tZ)’ - v e . (tn)]<n.

For necessity we shall assume that the linear system is completely controllable

at t, and demonstrate the existence of a set tl’ e e e e tnz t, such that

rank [H(tl),fl(tz), . e e H(‘n_l)(tn)] is n.

17



This 18 equivalent to skowing that for any nonzero vector C the nr dimensicnal

vector

CT[H(tI), e e . ,H(“-l)(tn)] # N. Let e, be any nonzero vector.

1
Since the system is assumed to be controllable and H(t) is continuous then :there
exists a tIZ t, such that e'{H(tl) # 0. If renk I-l(tl) is n then the v»roof is
finisbhel., If not, there exists a noazero vector e, such that egﬂ(tl) = 0,

s¢ that e, and el are linearly independent. Now there existsa t22 t. such that

egfi(tz) ¥ 0, if not, then e;H' (t) = 0 for all tZto . This implizu

t
fezﬁ(t)dt = egﬂ(t) =0
£

1

for all tZto and contradicts the assumption that the system is completely coun-
trolimble. Next consider [H(tl),fl(tz)J , 1f the rank of this matrix is r thsz

proof is finished. If not, thea there exists a nonzero ver tor e, such thatr

-
.

Nt # 0.

T ;
e MH(r ) H( )] = 05 nd a2t JHCEy)

3>t:\ such thit e

Clearly e, e, and 2, are linearly independent. Continuing inductively, cither

for some
j<n, rank {H(t_).fl(t,,), e e ey H(j-l)(tj)] is n

or elec we generate n linearly independent vectors €s « o - . s € such that

18



T s Y (3-1 -

In the first in-tance, we are finished. In the second, ary nonzero vector C

can be expressed as C =:£:71ei wi n not all the 71 zero. From the property

that the e satisfies, 1t follows that
T . (n-1)
c e ) (), o ... (e )] £ 0

This completes the proof.

4.4 Cozollary - Concider the iinezr system

® = A(t)x + B(t)u,

. =2 R
where A(t) is an nxn matrix of C elements, and B(t) is aa mxr matrix of
n-1 . S . R
c elements. This system is compleiely controilabl- at T, if and only if

there exists n times t

R tn'>‘ t, such that

ns _*\n"lh -
rank [5"‘1)""(':1":2) TB(t), . . . . ,&(t,,t ) _»s(tn)] =r
where T = A(t) - Dt and $1is the furiamental solution to the homogeneous
equation.

By means of th: following lemma we c=u. Jerive an even simpler algebra.:

test for complete controllability.

19



4.5 lemmz - Let E(t) be an nxr matrix valued function. Suppose rank

[u(r.l), . - e H(tn)]<n for all sets{gl,t,,. . e e ,tn}nith ciz to Thea

there exists a nontrivial constant vector C such that (;Tll(t) = 0 for all tZto-

Prcof. Ler tl?.:o be chosen so that ramk H(tl) 1s maximal, and call this

N

xerk T,. Select t, so that rank [B(tl),n(tz)] 13".’-:1-1 and call this rwnk r

1 2 2°

We continue this i;trocess to the choice of tn-l such that rank -

[H(tl), . - '-"H‘tn-l‘)] =r _;<n is maximal. Now either r_i = rr‘_1 for some

i=L2, . ... ,@-Dorx . = n;l. In the first case, let jAbe the smallest

a-1

integer -such tha: rj = ’rj - The colums of H(t), t&efefote, must lie io the

): for

1

tj dim:i__sloual subspace ,spannedi by the cclumms of ll(tl), . - -« HH(E 3

- a1l t. Bence, if C is a noutrivial vector orthogonai. to this subspace then

.

CTH({:) ‘=5 for a:!ll_.A t2t . In the second case, sine by hypothesis we cax!no't‘

increase the rack of :ll(tl), - o o o ,ﬁ(tu;l)] by adjoi.nﬁ»ng H(é), the columns

of H(t) 1lie in the (n-1) dinensiopal subspace kggmed by tl;g columas ;'»f

iﬂ(tl), . e o = ,'H(t'n_l)’_ end a montrivial vector C orthogonal to thkis subspace

sntfgﬂed cTﬂ(t) = Q0 for all’ tZto. We are now inr position fc»o prove the

s31lowing theorem. -

4.6 Theorem - The system y = a(t)u is coq;let;ély controllable at t, if and

only if there ezxist;s n times t,, . . . . ,thto such that rank

v[n(t1)’ . e e . ,n(tn)]‘ is n.

20



Proof. The °73tﬁ‘; = H(t)u is completely controllable ar t 1if and only
if cTn(t) = 0 for t2t° fmplies C = 0. Suppose the system is not completely
controllable at t, - Then theré exists a nontrivial vector C-such that

Crll(t) =0, tZto , 2hich implies ACT [H(tl), e o o a ,u(tn)]- 0 for all sets

{tl. e o« = o ot }7. The contrapositive of this shows, ‘if the rack -

Ve

[n(t ) J PP ,n(t )]13 a for some sets. { - - I } then the system

is cogletely controllable at t, .-

Next suppose that rank [H(tl),,:. . .,n(tn)]<n. for all sets {tl’ . .‘ - 't»n}'
Then by le;qn' (4.5) there exis‘té a ﬁont_:ivi;l vector (;‘{mc\h' l:lm:t ctn(:)r =0

for all t2 I'.'hlcil shows that the system is not g:oqietely ;ogttollable.

-21



V. NONLINFAR CONIROL SYSTEMS

We shall be concerned with nonlinear systems in which the control appears

linearly as _defined by
x = A(x) + B(x)u - 5.1

where A(x) is an nx 1 matrix of smooth functions, B(x) fs ann xr (r<nmn) |
matrix of smooth functions, and is assu-ed to be of maximal rank for all x in
some neighborhood Il(x) of ¢ given point x e](. ‘.l‘he st;te x is an n-vector,
and the conttol u is an r-vector. Associated with the control systea (S 1)

is a oo;listrii:ntion;u of (n-r) ditferential one forms,
T T ‘
=¥ (x)dx - ¥ (x)A(x)dt 5.2

where ¥ 13 or':hogonal to B for all xe R(x ). -The dual space of vector fields

is spanned by the distribution 9

- T
Dt + A (x)Dx

BT (x)Dx

He can now apply Hermamn's nethod Eo the distribution @ to derive gl\‘gebraic
critetia for the controllabilicy of the nonlinear system (5.1). However, we
zust point out the fallacy in Hermann's approach, whlch we have delayed unti:

now becouse it does not pteaent any problems for linear systems. In the case



of nonlinear systems, demonstrating that a given distribution is not in-
volutive does not impiy, since there are no obviously inaccess}ble points,
that all points are accessible. This is because we deal with coordinate
systems that are endowed with one special coordinate, namely time, which
has to evolve, or if parametrized it must be monotone 2nereasing. This
rercriciion partially invalidates Chow's theorem; however, demonstrating that
there are no obviously inaccessible points is impcrtant to controllability.
For a certain class of nonlinear contro: systems Chow's theorem does

have applicacion.A Let us associate with w a reduced pfaffian system
T .
wa = ¢ (x)dx 5.4

Since time is no loager present, the full generality of Chow's theorem can
be applied to determine the attainability of points. The dual space of vector

fields are now spanned by

T
OR JB (x)]'.)x

If 0R is nct an involutive distribution then all points in some neighborhood of
a8 given point can he attained instantaneously. is is where the geometric in-
terpretation of the Lie bracket gives ‘nsight into the validity of this cesult.
Being able to achieve desired states instantaneously is now defined as
being totally controllable Eﬂ and had its genesis in LaSalle's Eﬂ concept of -
a "proper” control system. This concept requires the control system to be com-

pletely controllable on every interval of time.
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We csr now summarize this result in the following theorem.

5.1 Theorem - The nonlinear system {5.1) is totally controllable in some
regloo N(x)CM if the control actuatov vectors B(x) do not generate an in-
volutive system of vector fields over N(x).

This condition is sufficient but not necessary, since there are obvious
cases where the control actuator vectors define an involutive systcm of
vector fields but the systum is totally controllable.

Heaceforth, we shall confine our attention to the case where the con-
trcl actvator vectors do generate a involutive distributioa. Furthermore,
we shall assume that the dimension of the distribution is equal to the
number of control! actuator vectors. If this is not the case (dim 8>r) then
we shall augment th2 control &ctuator vectors with the independent vector
fields derived by the Lie bracket so that the assumption is satisfied. This
assumption is inftoduced purely 2s a matter of conv;ﬁience, since by virtue
of the geometric interpretation of the Lie bracket, the original control
system will be fully equivalert to the augmented control system. For the

"involutive™ control systems we have the folloéing decomposition theorem.

S.2 Theorem - If the control actuator vectors define an involutive distribu-
tion of dimension r, then there exists a coordinate transforaation which de-

composes the control system (5.1) into
y = F(y,2)

5.5
z = G(y,z) + H(z)u.
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where y is an n-r vector, z an r vector, F an n-r vector <~f smooth functiong,
G an r vector of smooth functiions and H is a nonsingular matrix of smooth
functions.

Proof. Let O represent the distribution of vector fields Bj where

. . ¢
Bj - }:B“(x)nxi = j(x)l)x

Since O is an involutive distribution then [Bi,Bj]GO for all vector fields

]

subspace of the tangent space Hm. The preof, ir part, follows from the re-

Bi’B . Also by assumption, for each meM, Bi(m) spans an r dimensional linear
presentation of invelutivse distributions as given by a theorem of Frobenius
[}Q} +hich says that for each point meM we can find a coordinate system

(zl, S zn) such that the vector fields (Dz s = » <« 3D )

2 : 1 'S
generates O on M. We have to modify this resuvlt somewhat since it assumes
that we can always choogse a basis xi for 6 such that [Xi, Xj] = 0. In general,

this 1is not true for the basis Bi'

Let (y;5 - - - -» y;_r) and (zl, - - - - »z ), denoted by (y,2), represent
a partitioned coordinate system of M'. If ¢ is a mapping of M' iunto M as given

by x = ¢#(y,z), then the tangent vectors transform by
D= @9 5.6
z 2 'x *
By virtue of the transformation ¢ we have

HT(z)Dz = BT(x)Dx 5.7
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where H(z) is noasingular and can be chosen to be I &f [Bi’Bj] = ) for all

Bi’B . This result can be .erified by deriving the integrability conditioms

]
for the norhomogenecus partial differential equations obtaired from (5.7) by

‘using (5.6).
010 = e |1 5.8
The integrability conditions are, in fact
[Bi,Bj]eo
Differentiatirg the transformation § with respect to time yields,
Tye T,.
nyﬁy +D_0z = A(9) + B(P)u
so that from (5.8) this reduces to
T, T, , .
Dyﬂy +'D:O(z - H(z)u) = A(@)
Since the Jacokian of the transformatfon § is assumed to be different from zero
in some neighborhood of M then the decomposition (5.5) follows.
The significance of the decomposition theorem is that it isolates out those

transformed states that arc bbviously totelly controllable. In fact, there is

no loss of generality 1f we choose
-1
u =1 (2)[v - 6@y,2)]
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so that the control systam now assumes the form

= F(y,z)

.

M
N
<

and the controllability problem viewed 2s determiming the attairability of
the states y(t) for given imputs z(t).

It should be noted that the praffian system (5.2) transforms to
dy - F(y,z)dt = 0

so that the reduced pfaffian system 1;(x)dx is completely integrable and
defines an integral manifold Ly y(x) = constant.

We sha1i>uow develop so.e equivalences betuocn "fnvelutive” contrel
syite-s and "totally singular"™ control systeam. In -nn} optimal control pro-
blems a singular problem can arise that is characterized by the fact that the
max {mycs piinciplc fails to yield any information regarding the choice of the
optimal controlis. To distingulsh this condition, the controls and trajectories
are tarmed singuiar. The courrollability problem is intimately connected with
the time optimal problewm. This connection vill be shown for the nonlinear
system (5.1). The time ovpiims: problem consists of finding the optimal coatrols
u(t) that tranafer the state from some specified {initfal conditiom %o to sooe speci-

fied final condition xf in minimum time.
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Following the Kalman-Caratheodory approcch [11] , we define the system

Hamiltonian as,
T , . T
H(t, x, p, u) =1 + p A(x) + p B(x)u,

where p i8 an n vector describing the costate. For each x °nd p, the Hamilton-

ian is minimized with resgect to the controls over .he set of admissible controls
Q. I1If, for example, the set of admnisible controls are constrained to an r-dimen-

sional hypercube described by

<£1,11,2, ... .,r,}

Q= {u:,ui
the maximum principle yields
T
u = -sgn(B (x)p) 5.9

" for the choice of the optimal controls.
Any solution of the nonlinear system (5.1) with controls (5.9) that pass

througk the desired terminal points x_ and Xgs with the costate satisfying’

(o

p = -bAT()P - u'D B (x)p 5.10
would be regarded as a minimizing trajectory. However, singular controls us(t)

that sre not necessarily bang-bang can exist so that the corresponding solutions

to (5.1) and (5.10) x = g(t) and p = ¥ (t) make some or all .€ the r components
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of the vector BT(¢)¢' vanish over some measurable time interval. It is
immediately obvious that this situation would invalidate the maximum
principle for the singular components of the control vector. The singular
components of the control vector, if they exist, are obtained by repeatedly
differentiating the appropriate components of the singular condition

BT(¢)¢v= G wich respect to time. The problem is said to be totally singular
if all components of BT(¢)¢ vanish. The equivalence between the "involutive"
control system and the "totally singular" contrcl system is s»gmérized in the
following Lemna which is a generalization of the results first proven for

(n~1) components of controls [12].

5.3 Lemma - A necessary condition that an optimal totally singular vector
control exists is that the vector fields generated by the control actuator
vectof B(x) be involutive, i
Procf: The proof is trivial and simply follows from the fact that if B(x)
does not define an involutive distribution then the reduced pfaffian system
is not integrzble and Theorem 5.1 applies.

The geometric equivalence between "involutive" and "totally controllable"

control systems can be egtablished as follows. For ease of treatment we shall

consider the decomposed control system

y = G(y,%)
5.11
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It is evident from the pfaffian system dy - F(y,z)dt, that the integral

manifolds y associated with the reduced pfaffian system stratify M, and

motion on these integrals y(x) = constant, can be achieved in zero tiée

by appropriate choice of z. The minimum time to traverse from one state
to some other state willi depend strictly on the vector y. Let us denote
this cost by V(y). The rate of change V with respect to t time is given
by

av D::V(y)G(y,z) 5.12

dt

Obviously, we have to determine those points z(y) on the stratification

which extremizes the cost derivative. These points are determined by
D G (y,z)b .V =0 5.13
¢ (>2)Dy .
s0 that the system (5.11) can be integrated to yield y = @#(t). Along each
integral curve @, we require the cost V(#) to be time like so that from (5.12)
we obtain
T
DyV(G)G(¢,Z(¢)) =1

Differentiating, this identity with respect to time yields

GT{(D GT)D.V + Do(D V)G} -0 5.14
y y y vy
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If we now define the costate p by

then (5.13) becomes DZGTp = { which 18 the conditica for the control vector
to be totally singular; furthermiie, (5 14) is satisfic. by the costate

equations since it redices to
GT{@yGT)p + 13} =0

To cbtain necessary and sufficient corndition: for the controllability
of nonlinear systems, we need to combine the differenti:! geometric techniquee
of Section III to rule cut obviously inaccessible points, with a co cept of
local neighborhoods of attainability. One resu’t pertinent to local neighbor-

‘hoods of controllability is the follrwing theorem of Markus [13] .

5.4 Theorem - Consider the control procass in E"
X = £f(x, u),

with feCL in En+m and restraint u(t) Cc QK .

Assume:

(1) £(0, 0) =0,
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({i) Qlcontains m+l vectors u, which

2 0 o
span an m-simjlex with u = 0 in its interfor, and also
contains Yps Uay oo ey UL for certain arbitrary
smallAe>0,

(11i) reok [3, AB, . . . ..A“'ln] - a,

where A= Dxf(o) B = Duf(o)

The:i: there exists some open uneighborhool of the origin in En, in which all
st2tes can be steered to the origin in finite time Ey admfssible controllers.
Therefore, Theorem (5.4) can be regarded as defining local controllabilisy;
in soe neighborhood of the trajectory x = 9. Since the proof of this

theorem is in part based on the linear approximating system
x = Ax + B,

then this suggests applying the linear system controllability results to
linearized versions of tne control system about some specified trajectory.

It would sppear tperefo:e that we can generate an infinity of algeoraic
criteria for concrrollability, ea-h one depending on the particular choice of
the trajectory defining the linear opproximating system. - This raises the
question of what trajectory should be chosen. Does there exist, for example,
a trajectory defining a linear approximating system whose algebraic controlla-
bility criteria immediately determines the complete controllability of the
original control system. This question leads to a paradox that was first
cbserved by Hérmes[l&] and i{s contained in the following theorem which we

cite without proof.
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5.5 Theorem - The linear approximating system describing » - tions in some
neighborhood of the totally singular trajectories associated with the tine
optimal problem is not completely controllable.

An cbvious conclusion of this theorem is the following.

5.6 Corollary - Thke distritution of linearized vector flelds about the

totally singular trajectories associated with the time optiwxal problem is
involutive. |

A remarkable facet of Theorem (5.5) is that the result is independent
of the optimality of the totally singular vector control. If the totally
singvlar arc is truly a minimizing arc, one would expect it to persist as a
natural boundary to the set of reachable points, since by definition it wovld
be batter than any bang-bang control irrespective of the magnitude of thé
contrcl bounds. On the other hand, if the gontrol system is completely con-
trollable, one would expect ail motions to completely fili the n-dimensional
manifoid by virtve of the system being li.ne—ar ir the control vector.

Therefore, one could conjecture that if the toxally singuisar arc for the
tiwe optimal problem is not a minimizing arc, then the comntrol sy;lte- is completely
contrcllahle,

Unfortunately, the corjecture iz insufficient as it stands to resolve the
controllability of nonlinear systems. That the conjecture is false is reflected
ain the follo;iing example which poséesses a non-optimal singular arc for the time

optimal problem. Consider the system(ls]
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then it is trivial to verify by the Green's Theorem approach that that
non-optimal singular arc for the time optimal problem is described by

xl(t) = 0. Contrary to the proposed conjecture, the lack of controlla-
bility for the above system can be demonstrated by the following trans-
formation which is nonsingular for all finite regions of Euclidean two

space. With the transformation

y; =x

1 1 -x3
1
3

yz = x,e

the control system (1) becomes

71"“
- _3
= .8
3

Y2_=e

The lack of global controllability la:evident: since 5'2 = e-y31/3>0
irrespactive of the choice of the comntrol.
Let us return to Theorem 4.6 and givefa geometric proof thereof, since
it has obvious applications to nonlinear system. We recall that the theorem
stated, "The system y =-H(t)u is completely controllable at t, if and only
Lf there exist n times t,, . . . .,tné t, such that resk [H(tl),ﬂ(z),. .. .,H(tn)]

is n".



The conclusion of the theorem follows from the iIntegrability of the
reduced pfaffian system and provides a technique for generating necessary
conditions for the controllability of nonlinear systen;s. For the linear
system y = H(t)u we can associate the hyperplanes \P:(t)y vwhere ¥(t) 1s
an n x n-r matrix of vectors orthogonal to H(t). Since the impulsive
motions are confined to these hyperplanes the controllubility of the linear
system ca. he “tned in terms of the hyperplanes admitting a coordinate
structure in M. That Is to say, the hyperrianes span M by suitable choice
of the essential constants (time) of 'hefhyperplane.s by z = Q’t(t )y, then N
the hyperplanes will span M if the normal vectors d»tkt ) form a basis, or
equivalently if the tangent vectors R(t ) form a basis. This requires
that rank H(tl), H(tz), « o .,H(tn) is n. Alternatively this cordition
can be derived by ;onaiderin_g a sequence of n delta functions having measures

§ at the points tl,tz,. .« . ‘. ;tn. The rank condition defines a one to one
mapping between ;he state y and the measures §.

This theorem can be applied to the nonlinear system
x = A(x) + b{(x)u

by the following transformation. Let $#(t,y) denote the solution to % = A(x),

then by a variation of parameters we obtain

5 = 0]9(e,5) B,y = Aty
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5.7 Theorem - A necessary condition for the system ¥ = H(t,y)u to be completely
ccntrollable at t, in some neighborhood N of y, is that there exist n times

€y « - - ot 2t, such that rank [K(t;,y),H{(t,,y), . . . .,H(t,,y)] is n for
alwost all yeN, and the orientation of the transformaticn [H(tl,Y).- . .,H(tn,y)}

is preserved.

Proof. Let C(t,y) define (a-r) vectors orthogonal to H(t,7). H(t,y) is an involutive
system of order r, then it follows that the pfaffian system cr(t »y)dy 1is integrable
" fer fixed t. If we now assume that the rank [H(tl,y), O, .,n(tﬁ,y)] is less
than n for all sets {tl. . e .,tn}and all yeN then this implies that thére exists
a nontrivial vector C(y) such that cr(y)H(t,y) = O, Since the pfaffian system
cr(t,y)dy is integrable for fixed t it follows that cr(yidy is integrable so
that an integral manifold exists. Herce, the control system is not eompletely
controllable. The contrapositive of this yiel;is the result of the theorsm.
Since we adnit the vapishing of rank‘[!l(tl,y), o o o oy H(tn,y)] on sets
of measure zero, then we have to make sure that the transforwation does not
fold up on itself, i.e., the orientation of the transformation must be preserved.
There is a unigue relation between the- singular a;c and the poinrs of

measure zero where [H(tl,y), - .. .,n(tn,y)] vanishes and 1is summarized in the

following theorem.

5.7 Theorem - Suppose there exists a smooth curve y(t) such thst

rank [n\ftl,y(t)), R(tz,y(t)),. . . .,B(tn,y(t))] n for all sets {tl,tzz,. . - .,tn}

then y(t) is a sinmgular arc for the control system y = H(t,y)u.
Proef.

Since rank [H(tl,y(t)),.‘ . . .,H(tn,y(t))] is iess than n for all ;ets
{tl,cz,. . . .cn}
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then there exists a nontrivial vector ¥(t) such that

¥ (T ,yie)) =70 5.15

Since this is an identity in t and r then differentiasting with respect to t yields

¥E () H(r,y(t))+ \Pt(t)ﬂy(r.y(t))H(t.y(t))u(t) -0

The r columns of H(t,y), for fixed t, defirz a complete set of tangent vectors
of order r. Therefore, since the Lie bracket does not generate new tangent
vectors, the order of differentiation with respect to y in equation 2. can be

changed, on substitutiug r= t, to give

¥ + ¥ @z ey )] de,y(e) =0

The result is now obvious since ¥(t) can be identified with the costate, and

equdation (5.15) is the singular conditiom.
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