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1. Introduction

The importance of simulation in the design and testing of space vehicle
systems is self evident. Simulation also plays a vital role in the training of
both astfonauts and ground crews. It may even form a vital part of the mech-
anization of -on-board displays. One of the most important parts of any space-
system simulator is the computer which calculates the simulated performance of
the vehicle. In previous years the simulation of aircraft and missiles in six
degrees of freedom has posed challenging computational problems. These problems
become even more severe in the simulation of space vehicles, since the dynamic
range of problem variables becomes much larger and the flight times become
much longer. For example, simulation of the full Apollo mission reguires
aecurafe computation of vehicle trajectories over the earth-moon distance,
more than 109 feet, for times of many hours or even days. Yet the same com-
puter is required to simulate docking maneuvers with resolution of better than
one foot, as well as reentry maneuvers where vehicle pitching and yawing fre-
quencies up to several cps and higher are encountered. In fact, accurate sim-

ulation of jet-reaction attitude control systems, including precise computation

of fuel usage, may reguire computer time resolution in the millisecond region.
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Although the above example is a severe one, it illustrates the type of
problems that may face the simulator designer in choosing the appropriate coﬁ-— &
puter system for the task. The purpose of this paper is to outline some of
the performance considerations of analog and digital computers which are im-
portant in space-vehicle simulation. The choice of axis systems such that
computer performance requirements will be less severe will also be described,
along with some typical computer results.

In considering the simulation of space vehicles there is a very wide range
of problem types which one encounters. We have already mentioned a full-
mission Apollo simulation in real time, which might be used for mission
studies or actual astronaut training. On the other hand one might be inter-
ested in simulating just the rotational degrees of freedom of one stage of a
space-vehicle booster syst'em as part of an autopilot-design study. Such a
simulation need not be in real time unless actual flight hardware is substituted
for parts of the computer as the design progresses. Or repetitive simulation of
space—vehicle reentry trajectories at speeds thousands of times faster than real 5
time may be required to implement a predictor display, or to mechanize a com=
putation of the optimum reentry trajectory. Most of the discussion that follows
will concentrate on the computational requirements for the xis-degree-of-freedom
full miséion type of simulation, since other simulation tasks are usually part

of this overall, larger task.

2. Bcope of the Full-Mission Simulation. Analog, Hybrid,

or Digital Computation

In a simnlation that involves lunar or planetary missions accurate tra-

jectory computation requires that a high-precision digital computer be
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used. This is because of the enormous range in force magnitudes which act
on the vehicle, and because analog computers have precision limited to the
order of 0.01 percent of full scale. In fact, care must be taken in a
digital simulation of such trajectories to make certain that roundoff and
truncation errors do not generate unacceptably large errors. For example,}
in Figure 1 are shown the results of a study performed by the Link Division
of General Precision, Inc., where a highly eccentric earth-satellite orbit
with apogee equal approximately to the earth-moon distance has been computed
using a fourth-order Runge-Kutta integration formula. The gbscissa is
essentially proportional to the vehicle distance from the earth, with check
point 60 representing lunar distance. Hence, except for the lack of in-
clusion of the lunar gravity, the results are representative of an Apollo
. '
lunar trajectory. The ordinate is position error, which builds up to 30,000
feet using a 24 bit word length (single precision). This would be unaccept—
ably large in many cases. On the other hand, using double precision reduces
the error to.less than 2000 feet, an acceptable number. In many cases
simulation of space-vehicle trajectories may have to be accomplished using
two simultaneous integrations, one at low iteration rate using double pre—
cision and a second at high iteration rate using single precision. The
second integration provides trajectory information at high enough rates to
be used to drive visual displays, but gets updated at the end of each com-
putational cycle of the first integration.
Although the space-vehicle trajectory may require digital solution, one
may wish %o solve the rotational equations on an analog computer. This is
because the accuracy requirements of the rotational equations are much less

severe, but at the same time the frequency components are much higher.




-

XTI b

Although current digital computers are capable of solving both rotational
and translational equations in real time, the initial programming of the
equations is extremely expensive as compared with an analog computer. Also,
one may wish to solve the equations faster than real time in order to avoid
long solution times in engineering studies, in which case an analog computer
must be used. TFigures 2 and 3 show block diagrams of the equations which
might be solved on the analog and digital portions, respectively, of such
a simulator. They also illustrate the complexity of the equations which
must be solved in such a six-degree-of-freedom simulation. When both analog
and digital computers are combined in such a simulation, we have a hybrid
computer, which requires analog-to-digital converters and digital-to-analog
converters for communication back and forth between the machine elements.
Actually, an all-digital simulatlion requires such converters to serve as
input-output devices, in any case. Although hybrid computers offer an
obviously efficient solution to the six-~degree-of-freedom space-vehicle
simulation problem, programming the computers and interface equipment is
by no means ‘a trivial problem. For this reason, it is probably well to
avoid hybrid simulations of this type unless there is a sizeable economic
advantage or unless it Is required because of performance considerations.
One of the computational areas where the digital computer has a size-
able advantage over the analog is in generation of multivariable functions.
For example, suppose that the rotational equations of motion are to be
solved on the analog coumputer, except that the digital computer is to be
used to calculate the aerodynamic pitching moment, since it is a complicated
function of Mach number M, altitude h, and angle of attack a. A block
diagram of the pitch loop is shown in Figure A, where the pitch acceleration

Q0 is computed in analog voltage form by dividing the total pitching moment -
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Ma + Mc by the pitching inertia IW. § is then integrated twice to obtain an
analog voltage © representing the vehicle attitude. The Fflight-path angle y
is subtracted from this to compute the angle of attack o, which is then con-
verted to digital form and fed, along with Mach number and altitude, into a
digital computer which calculates the aerodynamic pitching moment Ma' This is
in turn converted back to analog form and added to the voltage representing
the jet-reaction pitching moment Mc, thus closing the computational loop.

Let us now consider the effect of the finite calculation time T required
by the digital computer to calculate the pitching mowment Ma. To simplify the
analysis we will assume that the flight-path angle y remains constant, as well
as the Mach number M aad the altitude h. Furthermore, for these constant values
let us make the assumption that the aerodynamic pitching moment Ma is approxi-
mately a linear function of ao. Then the computer loop as showh behaves as a
mass-spring system with a natural frequency which we shall denote by w_. This
is just the approximate transient frequency of the vehicle pitching dynamics
under these flight conditions.

By means of the method of Z-transforms, such as is used in analyzing
sampled data systems, it can be shown that the computing loop in Figure k4 has
a transient frequency w and damping ratio ¢ {(fraction of critical damping)

1
given approximately by

€
i

1 2 2
wp(l lngT)’

§=—$wT, T < <= (2.1)

1

Howe, R. M., Error Analysis of Combined Analog-Digital Computer Systems,
Information and Control Engineering Program, The University of Michigan,
Ann Arbor, Michigan, May, 196h.
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Here mp is the ideal oscillatory frequency. Ideally, the damping ratio g - 0.T
is the digital cycle time (1/T is the number of computations of M_ per second).
The effect of the digital computer cycle time T 1is second order on the fre-
quency, but is first order on the damping. The computer loop as shown will
have a transient which exhibits a fractional growth in amplitude per cycle
equal to -2nf. A more complete simulation of the pitch system wquld include

a slight amount of aerodynamic dawmping (moment proportional to 8), but in any
event the demping-ratio error will be approximately that given in Eq. (2.1).
For example, if mp is 10 radians per second, the digital cycle time T must

be in 1 millisecond to have a damping-ratio error less than 1 percent.

The accuracy of the computing loop in Figure L4 can be improved remarkably
by updating the angle of attack into the A-D converter by the sum of the time-
delay exhibited by the digital computer ( t seconds) and the D-A converter
(0.5 T seconds on the average, assuming a zero-order hold). Noting that & = b
(Y is negligible), we feed o + 1.50T into the A-D converter. Under these con-

2
ditions one can show that the grequency w and damping ratio r are given by

_ 13 2 2
""“’p«(l*'gl; pr),

(2.2)

Here the damping ratio error is fourth-order in T, representing an enormous
improvement over the result in Eq. (2.1), where we failed to update the analog
input to the A-D converter.

Analyses similar to the above can be applied to all-digital computation

2
Howe, R. M., op. cit.
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of second-order computing loops, where the error in frequency and damping
using various numerical integration schemes is determined as a function of
iteration period T. Although actual three and six-degree-of—-freedom flight
equations are much more complicated, those portions of the problem with the
highest frequency outputs usually behave approximately like the loop in
Figure 4. Thus the simplified analysis as presented here yields valuable
insight into the computational speeds required to obtain given accuracy.
Most pure analog elements, such as summing amplifiers, integrating
amplifiers, coefficient potentiometers, function-generators, etc., have
dynamic behavior in the problem-frequency range which approximates that
of a first-order linear system, i.e., with a transfer operator of the form
K(1 + TP)_l, where T is the equivalent time consta.nt.3 For typical state-
of-the-art analog computer components T is the order of magnitude of 1
microsecond. In implementing computing loops similar to Figure 4 using
analog components exclusively, one can show that the damping-ratio error
is approximately given by

N
~ fp_ ; T
t= - 4L, # (2.3)
where the Ti represent , respectively, the time constant of each of the N
-5
analog elements around the loop. A4 typical value for I T would be 10
seconds, in which case LUP values up to 2000 radians per second (320 cycles
per second) could be handled with less than one percent damping error. For
many problems this means that the solution can be run at much faster speeds

than real time.

3
Howe, R. M. Design Fundamentals of Analog Computer Components, Chapter
2, D. Van Nostrand, 1961.
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3. Axis Systems for Computation of Space and Reentry Trajectories

In writing the translational equations of motion to be solved by tyhe
computer, either analog or digital, the forces, including inertial, are
normally summed along each of three axes and the resulting accelerations
are integrated twice to obtain velocity and position coordinates. The
importance of the choice of this axis system is readily illustrated by
comparing trajectory computation with the accelerations and velocities
referred to flight path axes and conventional body axes. For a near—
circular satellite the velocity along the x flight~path axis is relatively
constant, and velocity components along the y and z axes are zero by defin-
ition. [The welocity along the flight path can be computed as a small differ-
ence from circular-orbit velocity. 1If, however, the equations of motion
are solved in body axes and the vehicle tumbles, then the components of
velocity along the x, y, and z body axes may be either positive or negative
and the magnitude of any component may be as great as the total wvehicle
velocity. Therefore, each velocity component must be scaled for at least
twice the maximum flight-path velocity. Furthermore, each wvelocity com-
ponent must be capable of changing from maximum positive to maximum negative
in the time it takes for half a body revolution. The equivalent artificial
acceleration due to the rotating axes can be many times as large as the net
gravitational and inertial acce.leration acting on the body; hence the true
acceleration might be masked by errors in computing accelerations along the
body axes. Using the same computer, the flight-path axis computation will
obviously be much more accurate than the body-axis computation.

It has heen common practice to express the trajectory equations of

motion directly in a rectnagular cartesian inertial frame with origin at
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the center of the earth. In such a coordinate system, it is apparent that the
X, ¥, and 2 distances must be scaled to range through at least twice the apogee
radius from the center of the earth, the x, y, and z velocity components must
be scaled to range through at least twice the orbital velocity, and the x, ¥,
and z acceleration components must be scaled to range through at least twice
the gravitational acceleration. Since a velocity error of more than a few
feet per second cannot be tolerated, it is obvious that great computational
accuracy is required to avoid unacceptéble error build-up over the integration
period of hours or even days, when such unfavorable scaling is used. The
classical method of obtaining good scaling of the computation is to write

the equations of motion in terms of the elements of the osculating orbit.

This "method of variation of parameters" has several serious drawbacks for
real time simulation. The equations are more complicated than the usual
Newtons' Laws equations. There are a number of bothersome singularities in
them, and the results of the computation are obtained in terms of orbit
elements, rather than conventional length or angle coordinates, hence require
further érocessing if one wishes to display a trajectory.

A basic objective in selection of axes for the translational equations,
then, is to choose the axes to obtain some of the scaling benefits of the
method of variation of parameters but to retain direct computation of position
coordinates for display purposes. The selection of the reference frame in
which the equations of motion are to be expressed requires a compromise be-—
tween good scaling, simplicity of the equations and convenience of use of
the computed results. TFor best scaling, it is apparent that the reference
direction should be aligned with the velocity vector, VP. The equations of
motion are somewhat simpler, however, if the reference direction is aligned

with the horizontal component of the velocity wvector. For orbits of small
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eccentricity there is little difference in scaling between the two systems of
equations, so the latter reference frame, called the H~frame, has proven to
be preferable.
‘ The H-frame is defined as a rectangular cartesian coordinate system,
% s yh, Zh with origin at the vehicle center of gravity. The Xh axis is
normal to the radius from the center of the earth and points forward in the
plane of thée motion. The yh axis is horizontal and normal to the plane of
the motion. The zy axig is along the radius from the center of the earth,
positive dowvmward.

Considering the components of the acceleration with respect to inertial
space along the Xh’ yh, Zh directions, we obtain the following equations of

motion for a vehicle of mass m, velocity components U _, ¥,

b h,wh (Vh=0by

4
definition) and external forces Xh’ Yh’ Zh'.

g . & (3.1)
h r m
U T T (3.2)
m
U2 2
0 =_‘= gr
T LI (3.3)
r r m

In these equations r is the radisl distance from the center of gravitational

gttraction, go is the gravity acceleration at a nominal distance ro and
>

Ty is the 2, or radial component of B-frame angular veleocity.

Note that Egs. (3.1) and (3.3) can be solved for the in-plane motion

y

Fogarty, L. E., and Howe, R. M., "Flight Simulation of Orbital and
Reentry Vehicles" -~ IRE Transactions on Electronic Computer Vol. EC~11, Aug.
1962.
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independently of Eg. (3.2). Eg. (3.1) can be rewritten as

.
AL

which can be integrated directly and solved for Uh' Thus

m

. ,
S f ﬁ at + r(0) Uy (0) (3.4)

0

In the sbsence of external force X » Eq. (3.4) allows the horizontal velocity
Uh to be solved directly as an algebraic function of radial distance r. Thus

an open-ended integration of ﬁh to obtain Uh’ as would be computed from Eg.
(3.4), is avoided and much higher computational accuracy results. The time
duration over which sizeable non central-force field external forces Xh exist
is relatively short (e.g., thrusting and reentry) and the open-ended integ-
ration in Eq. (3.4) gives no problem. Actually, Eq. (3.4) is just the state-
ment of conservation of angular momentum.

A further scaling advantage is obtained by writing Egs. (3.3) and (3.4)

in terms of the variation 8r in radial distance from the fixed mean radius

ro and the variation 8U, in horizontal velocity component from the circular

h
orbit velocity Uh for radius r (Uh =+/gr ). Thus we let
0 0 0 00 .
r=r +8rand U =vVgr + 68U (3.5)
0 h 00 h

Rewriting Bq. (3.3) in terms of &r and 8U, , we obtain
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2
2Vg0r0 sy, + (5Uh) Zy,

§r = —— V (3.6)
(r0 + 6r)2 m

For near circular satellite orbits the net radial acceleration 6; is the small
difference between gravity acceleration garoz/r2 and centrifugal acceleration
th/r. The first term on the right side of Eq. (3.6) represents this differ-
ence directly and hence allows much more favorable computer scaling. In fact,
Eqs. (3.14) and (3.6) can be solved with satisfactory accuracy using an analog
computer, whereas equations based on more conventional coordinate systems are
campletely unsuitable for analog solution.

Consider, for example, a low eccentricity orbit with the analog computer
scaled to allow a range in Sr of 1_80 statute miles. We assume a pure central
force gravity field with no other external forcés.5 Several typical analog
solutions starting with the vehicle at perigee are shown in Figure 5. For
the case where the initial perigee altitude is at 16 miles the first apogee
is within 200 feet of the correct value of 146.5 miles and the second perigee
is ‘within 200 feet of the initial value, indicating orbit closure to that
accuracy.

Also shown is a case representing, ideally, injection into a circular
orbit. The computer solution, blown up by a factor of 200, is shown in the
figure and indicates that the altitude holds to within 200 feet of the initial
value over one orbital distance. The results in Figure 5 were computed at
100 times real time. Comparable results were obtained in real time and at
10 times real time. In the computer circuit used for these recordings the
horizontal velocity deviation éUh was represented to allow a full-scale

5
Fogarty, L. E., and Howe, R. M., op. cit.
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excursion of +U

h (corresponding to full circular-orbit velocity) even

though the actuag. range in (SUh in the solution shown in Figure 5 is a

small fraction of this. BSimilarly, Wh was scaled to a maximum of 1Uh /5
even though the actual range for the near-circular orbits shown in muco:h
smaller. This was to allow for utilization of the same scaling in the com-
putation of ascent and reentry trajectories. Despite this unfavorable scal-
ing for the near circular orbit case, the results using the H-frame coordi-
nates appear to be quite favorable. The H-frame has proven to be extremely
advantageous for digital computation, too.

In the gbove example the angular momentum integral was used to compute
horizontal velocity directly, as indicated in Eq. (3.4). One can utilize
conservation of energy as a constraint, tczo.6 In this scheme the total energy,
potential and kinetic, as determined from the position and velocity coordinates,
is subtracted from the known total energy as computed from the initial energy
plus the time integral of the energy rate of change due to external forces.
This difference defines the energy error e. A term proportional to € T is then
added to the right side of Eq. (3.6) to drive 6r in such a direction as to make.
e = 0.

The effectiveness of the use of energy constraint is illustrated by
considering the analog solution of a highly-eccentric satellite orbit.
Dimensionless radius p = r/r0 is shown as a function of dimensionless time
t in Figure 6, where the starting perigee = 0.121r~0 and the resulting apogee
should be l.88r0. In this case the initial horizontal velocity Uh = 3-96Uh
which should yield a minimum horizontal velocity at apogee of O.252Uh . Thg

. 0
analog computer exhibited the periodic solution shown in Figure 6 with a

6

Fogarty, L. E., and Howe, R. M. Axis Systems for Analog and Digital
Computation of Space and Reentry Trajectories, Application Report, Applied
Dynamics, Inc., Ann Arbor, Michigan, September, 1963
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measured apogee of p = 1.877 compared with the ideal value of 1.880 and

a horizontal velocity at'apogee equal to 0.256Uh instead of the ideal value
of 0.252Uh . Both results agree with the corres%onding theoretical values
to the ordgr of 0.1 percent of full scale, which is reasonable considering
that the required multiplications were carried out using quarter-square
multipliers with accuracies of approximately 0.05 percent.

Figure T shows a number of cycles with the energy-correction term re-
moved from the circuit. The resulting solution decays slowly with time.

After some T5 orbits the energy correction was repatched to the r integrator,
with the result that thev solution returns within one cycle to its correct
amplitude.

As a final example of space—vehicle trajectories, consider the simulation
in three dimensions of a lifting reentry vehicle. The problem was set up on
an analog computer using the H-frame equations as described earlier. The
three dimensional equations were solved for a number of different bank-angles,
¢ for fixed ballistic coefficient values, and for fixed lift-to-drag ratios
L/D. A typical recording of altitude versus downrange distance is shown in
Figure 8. TFigure 9 shows a plot of altitude L versus lomgitude A for a nom-
inal equatorial trajectory, and a number of additional trajectories, each with
a different fixed bank angle.7 Although these computer runs were made using'
an x-y plotter (approximastely 800 times real time) the problem was also solved
in repetitive operation at 80,000 times real time and the different values of
bank angle were set for ea.ch trajectory using a sample-hold circuit driven
by a low frequency sawtooth wave. Tﬁe result, when displayed as latitude L

versus longitude A on the face of a cathode-ray oscilloscope, appears as a

Fogarty, L. E., and Howe, R. M., Op. Cit.
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more-or-less continuous picture similar to Figure 9. If the L/D ratio is now
varied slowly, one can sweep out very quickly the footprint of possible land-
ing points for the lifting reentry vehicle.

It should be noted that solution of lifting reentry trajectories at
these high speeds requires analog computing components of considerable band-
width, since the trajectory oscillations near the end of the reentry have a

frequency of approximately 1 kilocycle.

L, Summary

We have seen that the simulation of space-vehicle systems poses sizable
computer problems, depending on the scope of the particular simulation being
undertaken. Many simulation problems, including some real-time probléems,
are amenable to-all-digital solution. Other simulation problems are more
suitable for all .analog mechanization. There is. a sizable class of problems
‘which is best solved on hybrid computer systems, although the programiing '
complexity in such a mechanization should not be overlooked. Whatever type
of computer system is used, it is important to choose gppropriate axis sys-
tems in writing equations of motion'so that required computer precision-and
speed.is minimized. Long term future trends in space-vehicle simulation
will probably see digital computers used more for real-time simulation of
computer problems, whereas analog computers will be used for faster—than-
real-time problems, such as trajectory optimization studies and predictor
displays. Combined anslog-digital systems will probably be used less for
real-time simulation but very much more for optimization and other design
studies, where the speed of the analog and the precision and function-storage

capability of the digital can be combined to-advantage.
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Single Precision Error Vs. Double Precision Error
- {Runge-Kutta Fourth Order)

Step Size 107 Seconds

30,000 |

25,000 _

20,000

15,000 ]

Double Precision

T T T T 1
¢] 10 20 30 o) 50 £

Check Point

Figure 1. Single precision versus double precision error in computing an
earth-moon trajectory . .
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Figure 4. Block diagram of hybrid computing loop for calculating pitch
angle 0.
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Figure 5. Analog solutions for low-eccentricity orbits.
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Figure 6. Typical solution for & highly-eccentric orbit.
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Figure 7. Periodic solution with no energy constraint initially. Energy
constraint is added after about 75 cycles.
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Figure 9. Typical impact footprint, L/D = 2.0




