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1. Introduction 

SYSTEMS 

The importance of simulation i n  t h e  design and t e s t i n g  of space vehicle 

systems is  s e l f  evident. Simulation also plays a v i t a l  r o l e  i n  the t ra ining of 

both astronauts and ground crews. 

anization of on-board displays. One of the  most important par t s  of any space- 

system simulator is t h e  computer which calculates the  simulated performance of 

the  vehicle. In previous years the simulation of a i r c r a f t  and missi les  i n  six 

degrees of freedom has posed challenging computational problems. 

become even more severe i n  the  simulation of space vehicles, s ince t h e  dynamic 

range of problem variables becomes much larger  and the  f l i g h t  times become 

much longer. 

It may even form a v i t a l  par t  of t h e  mech- 

These problems 

For example, simulation of t h e  f u l l  Apollo mission requires 

accurate computation of vehicle t ra jec tor ies  over the earth-moon distance, 

more than 10 f e e t ,  f o r  times of many hours or even dqrs. Yet the same com- 

puter  i s  required t o  simulate docking maneuvers with resolut ion of b e t t e r  than 

one foot ,  as well as reentry maneuvers where vehicle pitching and yawing f re -  

quencies up t o  several  cps and higher are  encountered. In f a c t ,  accurate s i m -  

u la t ion of je t - react ion a t t i tude  control systems, including precise computation 

of fuel usage, may require computer time resolution in  t h e  millisecond region. 

9 



3 

a 
7. 

I 

-XII-2- 
r, 

&though t h e  above example is a severe one, it i l l u s t r a t e s  the type of 

problems t h a t  may face the  simulator designer i n  choosing the appropriate com- 

puter system f o r  t h e  task.  

the  performance considerations of analog and d i g i t a l  computers which are  i m -  

portant i n  space-vehicle simulation. The choice of axis systems such t h a t  

computer performance requirements w i l l  be l e s s  severe will a lso  be described, 

along with some typica l  computer resu l t s .  

The purpose of t h i s  paper is t o  out l ine some of 

I n  considering the  simulation of space vehicles there  i s  a very wide range 

of problem types which one encounters. 

mission Apollo simulation i n  r e a l  time, which might be used f o r  mission 

s tudies  o r  actual  astronaut t ra ining.  

We have already mentioned a f u l l -  

On the other hand one might be in te r -  

es ted i n  simulating jus t  the ro ta t iona l  degrees of freedom of one s tage of a 

space-vehicle booster systkm as p a r t  of an autopilot-design study. 

simulation need not be i n  r e a l  time unless actual  f l i g h t  hardware is  subst i tuted 

f o r  par t s  of the  computer as the design progresses. Or r e p e t i t i v e  simulation of 

space-vehicle reentry t r a j e c t o r i e s  a t  speeds thousands of  times f a s t e r  than r e a l  

time may be required t o  implement a predictor display, or t o  mechanize a com= 

Such a 

putat ion of t h e  optimum reentry t ra jec tory .  Most of the  discussion t h a t  follows 

w i l l  con cent ra te  on the  computational requirements f o r  the x is  -degree-of -freedom 

full mission type of simulation, s ince other simulation tasks are  usually par t  

of t h i s  overa l l ,  l a rger  task.  

2. Scope of the  Full-Mission Simulation. Analog, Hybrid, 

or Digital  Computation 

I n  a simulation t h a t  involves lunar or planetary missions accurate t r a -  

a high-precision d i g i t a l  computer be jectory computation requires t h a t  
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used. This i s  because of t h e  enormous range i n  force magnitudes which act  

on t h e  vehicle, and because analog computers have precision limited t o  the 

order of 0.01 percent of f u l l  scale. In  f a c t ,  care m u s t  be taken i n  a 

d i g i t a l  simulation of such t ra jec tor ies  t o  make cer ta in  t h a t  roundoff and 

truncation e r rors  do not generate unacceptably large errors .  For example, 

i n  Figure 1 are  shown the  resu l t s  of a study performed by the  Link Division 

of General Precision, Inc. ,  where a highly eccentr ic  ear th-sa te l l i t e  orbi t  

with apogee equal approximately t o  the earth-moon distance has been computed 

using a fourth-order Runge-Kutta integrat ion formula. The abscissa is 

essent ia l ly  proportional t o  the vehicle distance from the ear th ,  with check 

point 60 representing lunar distance. 

clusion of the  lunar gravi ty ,  the  resu l t s  are  representative of an Apollo 

Hence, except f o r  t h e  lack of in- 

lunar t ra jec tory .  The ordinate i s  position error ,  which bui lds  up t o  30,000 

fee t  using a 24 b i t  word length (s ingle  precis ion) .  This would be unaccept- 

ably large i n  many cases. On the  other hand, using double precision reduces 

the e r ror  t o . l e s s  than 2000 f e e t ,  an acceptable number. I n  many cases 

simulation of space-vehicle t r a j e c t o r i e s  may have t o  be accomplished using 

two simultaneous integrat ions,  one a t  low i t e r a t i o n  r a t e  using double pre- 

c is ion and a second a t  high i t e r a t i o n  ra te  using s ingle  precision. 

second integrat ion provides t ra jec tory  information a t  high enough r a t e s  t o  

be used t o  drive visual  displays, but gets updated a t  the  end of each com- 

putat ional  cycle of the  f i r s t  integration. 

The 

Although t h e  space-vehicle t ra jectory may require d i g i t a l  solution, one 

may wish t o  solve the ro ta t iona l  equations on an analog computer. This is 

because the accuracy requirements of the  ro ta t iona l  equations are  much l e s s  

severe, but at the same time the frequency components a r e  much higher. 



-XII-4- 

Although current d i g i t a l  computers a r e  capable of solving both ro ta t iona l  

and t rans la t iona l  equations i n  real time, t h e  i n i t i a l  programming of the  

equations is extremely expensive as compared x-ith an analog computer. Also,  

one may wish t o  solve t h e  equations f a s t e r  than r e a l  time i n  order t o  avoid 

long solut ion times i n  engineering s tudies ,  i n  which case an analog computer 

must be used. Figures 2 and 3 show block diagram of the  equations which 

might be solved on the  analog and d i g i t a l  portions, respect ively,  of such 

a simulator. 

must be solved i n  such a six-degree-of-freedom simulation. 

and d i g i t a l  computers a re  combined i n  such a simulation, we have a hybrid 

computer, which requires analog-to-digital converters and digital-to-analog 

converters f o r  communication back and for th  between t h e  machine elements. 

Actually, an a l l -d ig i ta l  simulation requires such converters t o  serve as 

input-output devices, i n  any case. Although hybrid computers of fe r  an 

obviously e f f i c i e n t  solution t o  the  six-degree-of-freedom space-vehicle 

simulation problem, programming the  computers and interface equipment is  

by no means a t r i v i a l  problem. For t h i s  reason, it i s  probably wel l  t o  

avoid hybrid simulations of t h i s  type unless there  is a s izeable  economic 

advantage or unless it i s  required because of performance considerations. 

They a l so  i l l u s t r a t e  the  complexity of the  equations which 

When both analog 

One of t h e  computational areas where the  d i g i t a l  computer has a size- 

able advantage over t h e  analog is  i n  generation of  multivariable functions. 

For example, suppose t h a t  the ro ta t iona l  equations of motion are  t o  be 

solved on t h e  analog computer, except t h a t  the d i g i t a l  computer i s  t o  be 

used t o  calculate  t h e  aerodynamic pitching moment, since it is a complicated 

function of Mach number M, a l t i t u d e  h ,  and angle of a t tack  a. A block 

diagram of t h e  p i tch  loop is shown i n  Figure A,  where the pi tch acceleration 

0 is  computed i n  analog voltage form by dividing the  t o t a l  pitching moment 

c 
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analog voltage 8 representing the vehicle a t t i tude .  The flight-path angle y 

is  subtracted from t h i s  t o  compute the angle of a t tack  a, which is then con- 

verted t o  d i g i t a l  form and fed, along with Mach number and a l t i t u d e ,  i n t o  a 

d i g i t a l  computer which calculates  the  aerodynamic pitching moment M 

i n  tu rn  converted back t o  analog form and added t o  t h e  voltage representing 

the  jet-reaction pitching moment Me, thus closing the  computational loop. 

+ Me by the  pitching i n e r t i a  I 6 is then integrated twice t o  obtain an 
YY' 

This i s  a' 

Let us now consider the e f f e c t  of the  f i n i t e  calculation time T required 

To simplify the  by the  d i g i t a l  computer t o  calculate  the pitching moment Ma. 

analysis we w i l l  assume tha t  the  flight-path angle y remains constant, as well 

as the  Mach number M add the a l t i t u d e  h. Furthermore, f o r  these constant values 

l e t  us make the assumption tha t  the aerodynamic pitching moment M i s  approxi- 

mately a l i n e a r  function of a. Then the computer loop as shown behaves as a 

mass-spring system with a natural  frequency which we s h a l l  denote by w 

i s  j u s t  the  approximate t rans ien t  frequency of the  vehicle pitching dynamics 

under these f l i g h t  conditions. 

This 
P' 

By means of the  method of Z-transforms, such as i s  used i n  analyzing 

sampled data systems, it can be shown tha t  the computing loop in  Figure 4 has 

a t rans ien t  frequency w and damping r a t i o  5 ( f rac t ion  of c r i t i c a l  damping) 

given approximately by 
1 

1 
Howe, R. M . ,  Error Analysis of Combined Analog-Digital Computer Systems, 

Information and Control Engineering Program, The University of Michigan, 
Ann Arbor, Michigan, May, 1964. 



- X I I d -  * 

Here w i s  the  idea l  osc i l la tory  frequency. Ideally, t h e  damping r a t i o  5 - 0.T 

is the d i g i t a l  cycle time (1 /T is the  number of computations of M per second). 

The e f f e c t  of t h e  digital computer cycle t i m e  

P 

a 

T is  second order on the  f re -  

quency, but is  f i r s t  order on the damping. The computer loop as shown will 

have a t rans ien t  which exhibi ts  a f rac t iona l  growth i n  amplitude per cycle 

equal t o  - 2 ~ 5 .  

a slight amount of aerodynamic damping (moment propor t iond  t o  Q), but i n  any 

event the damping-ratio e r ror  will be approximately t h a t  given i n  Eq. (2.1). 

For example, i f  w is  10  radians per second, the d i g i t a l  cycle time T must 

be i n  1 millisecond t o  have a damping-ratio error l ess  than 1 percent. 

A more complete simulation of the p i tch  system would include 

P 

The accuracy of the  computing loop i n  Figure 4 can be improved remarkably 

by updating t h e  angle of a t tack i n t o  the A-D converter by the sum of the time- 

delay exhibited by the  d i g i t a l  computer ( t seconds) and the D-A converter 

(0.5 T seconds on the  average, assuming a zero-order hold) .  

(f i s  negl ig ib le ) ,  we feed 

di t ions one can show t h a t  the  grequency w and damping r a t i o  5 are  given by 

Noting tha t  & = 6 

a + 1.56T i n t o  the A-D converter. Under these con- 
2 

Eere the damping r a t i o  error i s  fourth-order i n  T, representing an enormous 

improvement over the resu l t  i n  Eq. 

input t o  the A-D converter. 

(2.1), where we f a i l e d  t o  update the  analog 

Analyses s imi la r  t o  the  above can be applied t o  a l l - d i g i t a l  computation 

2 
Howe, R. M.,  z. &. 
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of second-order computing loops, where the  e r ro r  i n  frequency and damping 

using various numerical integration schemes i s  determined as a function of 

i t e r a t ion  period T. Although ac tua l  three and six-degree-of-freedom f l i g h t  

equations are much more complicated, those portions of t h e  problem with the  

highest frequency outputs usually behave approximately l i k e  the  loop i n  

Figure 4. 

ins ight  i n t o  the  computational speeds required t o  obtain given accuracy. 

Thus the  simplified analysis as presented here y ie lds  valuable 

Most pure analog elements, such as summing amplifiers,  in tegra t ing  

amplifiers,  coefficient potentiometers, function-generators, e tc .  , have 

dynamic behavior i n  the  problem-frequency range which approximates t h a t  

of a f i r s t -order  l i nea r  system, i . e . ,  with a t r ans fe r  operator of the  form 

K ( l  + T ~ ) - ' ,  where T is the  equivalent time constant. For typ ica l  s ta te -  

of-the-art analog computer components T is the  order of magnitude of 1 

microsecond. 

analog components exclusively, one can show t h a t  the  damping-ratio e r ro r  

i s  approximately given by 

3 

I n  implementing computing loops s imi la r  t o  Figure 4 using 

where the T~ represent,  respectively,  t he  time constant of each of t he  N 

analog elements around the  loop. A typ ica l  value fo r  ZT. would be 10  

seconds, i n  which case w 

per second) could be handled with less  than one percent damping error.  For 

many problems t h i s  means tha t  t he  solution can be run at much f a s t e r  speeds 

than r e a l  t i m e .  

-5 

1 

values up t o  2000 radians per second (320 cycles 
P 

3 
Howe, R. M. Design Fundamentals of Analog Computer Components, Chapter 

2, D. Van Nostrand, 1961. 
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3. Axis Systems f o r  Computation of Space and Reentry Trajector ies  

I n  writing the t rans la t iona l  equations of motion t o  be solved by the  

computer, e i t h e r  analog or  d i g i t a l ,  the forces, including i n e r t i a l ,  a r e  

normally summed along each of three axes and the  resul t ing accelerations 

are integrated twice t o  obtain veloci ty  and position coordinates. The 

importance of the  choice of t h i s  axis system is readily i l l u s t r a t e d  by 

comparing t ra jec tory  computation with the  accelerations and veloci t ies  

referred t o  f l i g h t  path axes and conventional body axes. For a near- 

c i r c u l a r  s a t e l l i t e  the  veloci ty  along the  x flight-path axis  i s  r e l a t i v e l y  

constant, and veloci ty  components along the y and z axes are  zero by defin- 

i t i o n .  The veloci ty  along the  f l i g h t  path can be computed as a small d i f fe r -  

ence from circular-orbi t  velocity. I f ,  however, the  equations of motion 

a re  solved i n  body axes and the vehicle tumbles, then the  components of 

velocity along t h e  x, y ,  and z body axes may be e i t h e r  posi t ive or negative 

and the  magnitude of any component may be as great as the  t o t a l  vehicle 

veloci ty .  Therefore, each velocity component m u s t  be scaled for  a t  l e a s t  

twice the  maximum flight-path velocity. Furthermore, each velocity com- 

ponent must be capable of changing from maximum posi t ive t o  maximum negative 

i n  t h e  time it takes f o r  half  a body revolution. The equivalent a r t i f i c i a l  

accelerat ion due t o  the  rotat ing axes can be many times as  large as t h e  net 

grav i ta t iona l  and i n e r t i a l  acceleration acting on t h e  body; hence the  t r u e  

acceleration might be masked by er rors  in  computing accelerations along the 

body axes. 

obviously be much more accurate than the body-axis computation. 

It has been common pract ice  t o  express the  t ra jec tory  equations of 

Using t h e  same computer, t h e  flight-path axis  computation will 

motion d i rec t ly  i n  a rectnagular Cartesian i n e r t i a l  frame with or igin at 
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the  center of the  ear th .  I n  such a coordinate system, it is  apparent t h a t  the  

x, y ,  and z distances must be scaled t o  range through a t  l e a s t  twice the  apogee 

radius from the center of the e a r t h ,  t h e  x, y,  and z velocity components must 

be scaled t o  range through a t  l e a s t  twice t h e  o r b i t a l  veloci ty ,  and the  x ,  y ,  

and z acceleration components m u s t  be scaled t o  range through at l e a s t  twice 

the gravi ta t ional  acceleration. 

fee t  per second cannot be to le ra ted ,  it is obvious tha t  great  computational 

accuracy i s  required t o  avoid unacceptable e r ror  build-up over the  integrat ion 

period of hours or even days, when such unfavorable scaling i s  used. The 

c l a s s i c a l  method of obtaining good scal ing of the computation is t o  wri te  

the  equations of motion i n  terms of the elements of the  osculating orb i t .  

This "method of var ia t ion of parameters" has several  serious drawbacks f o r  

r e a l  time simulation. The equations are  more complicated than the usual 

Newtons' Laws equations. There are a number of bothersome s ingular i t ies  i n  

them, and the resu l t s  of the  computation a re  obtained i n  terms of orb i t  

elements, ra ther  than conventional length or angle coordinates, hence require 

fur ther  processing i f  m e  wishes t o  display a t ra jec tory .  

A basic  objective i n  select ion of axes f o r  the  t rans la t iona l  equations, 

Since a velocity e r r o r  of more than a few 

then,  is t o  choose the  axes t o  obtain some of the  scal ing benefi ts  of t h e  

method of var ia t ion of parameters but t o  re ta in  d i rec t  computation of posi t ion 

coordinates f o r  display purposes. The select ion of the reference frame i n  

which the equations of motion a re  t o  be expressed requires a compromise be- 

tween good scal ing,  simplicity of the  equations and convenience of use of 

the  computed resu l t s .  For best  scal ing,  it i s  apparent t h a t  the  reference 

direct ion should be aligned with the  velocity vector, V The equations of 

motion are somewhat simpler, however, i f  the  reference direct ion is aligned 

with the  horizontal component of the velocity vector. For orbi t s  of small 

-f 

P' 
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eccent r ic i ty  there  is l i t t l e  difference in  scal ing between the  two systems of 

equations, s o  the  l a t t e r  reference frame, ca l led  the  H-frame, has proven t o  

be preferable. 
4 

The H-frame i s  defined as a rectangular Cartesian coordinate system, 

yn, yh, % with or igin a t  the  vehicle center of gravity. 

normal t o  the radius from the  center of the  ear th  and points forward i n  the  

plane of the motion. The y axis i s  horizontal and normal t o  the  plane of 

the  motion. The zh axis is along the radius from the  center of the ear th ,  

posi t ive downward. 

The % axis  i s  

h 

Considering the components of the acceleration with respect t o  i n e r t i a l  

space along t h e  %, yh,  zh d i rec t ions ,  w e  obtain the  following equations of 

motion for  a vehicle of mass m ,  veloci ty  components Uh, Vh, W (Vh = 0 by h 
4 

def in i t ion)  and external  forces 5' Y h 2  %' 

* 'hWh % u - - = -  
h r m 

r U  = Y h h  
m 

(3.3) 

In  these equations r is the  radial distance from the  center of gravi ta t ional  

a t t r a c t i o n ,  g is the  gravity acceleration a t  a nominal distance r and 

rh is t h e  zh or  r a d i a l  component of E-frame angular velocity. 

0 0, 

Note tha t  Eqs. (3.1) and (3.3) can be solved for  the  in-plane motion 

4 
Fogarty, L. E., and Howe, R. M., "Flight Simulation of Orbi ta l  and 

Reentry Vehicles" - IRE Transactions on Electronic Computer V o l .  EC-11, Aug. 
1962. 
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independently of Eq. ( 3 . 2 ) .  Eq. (3.1) can be rewritten as 

which can be integrated d i rec t ly  and solved f o r  Uh. Thus 

(3.4) 

I n  the  absence of external  force s, Eq. (3.4) allows the  horizontal veloci ty  

U t o  be solved d i rec t ly  as an algebraic function of rad ia l  distance r. Thus 

an open-ended integrat ion of U 

(3.41, is avoided and much higher computational accuracy resu l t s .  

duration over which s izeable  non central-force f i e l d  external  forces Xh ex is t  

is re la t ive ly  short (e.g., thrust ing and reentry) and the open-ended integ- 

ra t ion  i n  Eq. (3.4) gives no problem. Actually, Eq. (3 .4)  is j u s t  t h e  s ta te-  

ment of conservation of angular momentum. 

A fur ther  scal ing advantage i s  obtained by wri t ing Eqs. (3.3) and (3.4) 

h 

t o  obtain Uh, as would be computed from Eq. 

The time 

h 

i n  terms of the  var ia t ion 6 r  i n  rad ia l  distance from the  fixed mean radius 

r 

orb i t  velocity Uh for radius r (uh = Jgr 1. ~ h u s  we l e t  
0 0 O 0  

and the  var ia t ion 6U 
0 h i n  horizontal veloci ty  component from the  c i rcu lar  

r = r + 6 r  and uh = Jgr + 6uh 
0 0 0  

Rewriting Eq. ( 3 . 3 )  i n  terms of 6 r  and 6Uh, we obtain 

(3.5) 
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2 

?I 
2 & T  6Uh f (6Uh) 

0 0  

For near c i rcu lar  s a t e l l i t e  orb i t s  the  net  rad ia l  acceleration 6 r  is  the  s m a l l  

difference between gravi ty  acceleration g r f r  and centr i fugal  acceleration 
2 

Uh /r. 

ence d i rec t ly  and hence a l l o w s  much more favorable computer scaling. I n  f a c t ,  

Eqs. (3.4) and (3.6) can be solved with sa t i s fac tory  accuracy using an analog 

computer, whereas equations based on more conventional coordinate systems are 

completely unsuitable for  analog solution. 

Consider, f o r  example, a low eccentr ic i ty  o r b i t  with the  analog computer 

2 2  

0 0  

The f i r s t  term on the r igh t  s ide of Eq. (3.6) represents this d i f fe r -  

scaled t o  allow a range i n  6r of +_ 80 s t a t u t e  miles. 

force gravity f i e l d  with no other  external  forces. 

solutions s t a r t i n g  with the vehicle at perigee a re  shown i n  Figure 5. For 

the case where the i n i t i a l  perigee a l t i t u d e  i s  at 16 miles the f i r s t  apogee 

i s  within 200 fee t  of the correct value of 146.5 miles and the second perigee 

is within 200 fee t  of the i n i t i a l  value, indicat ing o r b i t  closure t o  t h a t  

accuracy. 

We assme a pure cent ra l  
5 

Several typ ica l  analog 

Also shown is a case representing, idea l ly ,  in jec t ion  in to  a c i rcu lar  

orb i t .  The computer solut ion,  blown up by a fac tor  of 200, i s  shown i n  the 

f igure and indicates  t h a t  the a l t i tude  holds t o  within 200 fee t  of the  i n i t i a l  

value over one o r b i t a l  distance. The results i n  Figure 5 were computed a t  

100 times r e a l  time. Comparable resu l t s  were obtained i n  r e a l  time and a t  

10 times r e a l  time. In  the computer c i r c u i t  used f o r  these recordings the  

horizontal  velocity deviation 6U w a s  represented t o  allow a ful l -scale  h 

5 
Fogarty, L.  E.,  and Howe, R. M., z. s. 
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excursion of cUh 

though t h e  ac tua l  range i n  6U i n  the  solution shown i n  Figure 5 is a 

small f rac t ion  of t h i s .  

even though the  ac tua l  range fo r  t he  near-circular o rb i t s  shown i n  much 

smaller. This w a s  t o  allow f o r  u t i l i z a t i o n  of the  same sca l ing  i n  the  com- 

putation of ascent and reentry t r a j ec to r i e s .  Despite t h i s  unfavorable scal-  

ing f o r  the  near c i r cu la r  o rb i t  case, the  r e su l t s  using the  H-frame coordi- 

nates appear t o  be qui te  favorable. The H-frame has proven t o  be extremely 

advantageous f o r  d i g i t a l  computation, too. 

(corresponding t o  full circular-orbit  ve loc i ty)  even 
0 

h 

Similarly,  W w a s  scaled t o  a maximum of TUh / 5  h 
0 

I n  the  above example the  angular momentum in t eg ra l  was  used t o  compute 

horizontal  veloci ty  d i r ec t ly ,  as indicated i n  Eq. (3.4).  

conservation of energy as a constraint ,  too.  I n  this scheme the  t o t a l  energy, 

po ten t i a l  and k ine t i c ,  as determined from the  posit ion and velocity coordinates, 

One can u t i l i z e  
6 

is subtracted from t h e  known t o t a l  energy as computed from the  i n i t i a l  energy 

p lus  the  time in t eg ra l  of the  energy r a t e  of change due t o  external forces. 

This difference defines the  energy e r ro r  E .  A term proportional t o  E 6 is then 

added t o  the  r igh t  s ide  of Eq. (3.6) t o  drive 6; i n  such a d i rec t ion  as t o  make 

E = 0. 

The effectiveness of the use of energy constraint  i s  i l l u s t r a t e d  by 

considering the  analog solution of a highly-eccentric s a t e l l i t e  orbit .  

Dimensionless radius p = r/r is shown as a function of dimensionless time 

T i n  Figure 6,  where the  s t a r t i n g  perigee = 0.121- 

should be 1.881- . 
which should y i e ld  a minimum horizontal  velocity at  apogee of 0.252Uh . 
analog computer exh ib i t ed the  periodic solution shown i n  Figure 6 with a 

0 

and t h e  resul t ing apogee 

In  t h i s  case the  i n i t i a l  horizontal  velocity Uh = 3.96uh 
0 

0 
The 

0 

0 

6 
Fogarty, L. E . ,  and Howe, R. M. Axis Systems fo r  Analog and Digi ta l  

- Computation of Space and Reentry Trajectories,  Application Report, Applied 
Dynamics, Inc . ,  Ann Arbor, Michigan, September, 1963 
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measured apogee of p = 1.877 compared with the idea l  value of 1.880 and 

a horizontal  veloci ty  at apogee equal t o  0.256uh 

of 0.252Uh . Both results agree with t h e  corresponding theore t ica l  values 

t o  t h e  order of 0.1 percent of f u l l  sca le ,  which is  reasonable considering 

t h a t  the required mult ipl icat ions were carr ied out using quarter-square 

mult ipl iers  with accuracies o f  approximately 0.05 percent. 

instead of the  idea l  value 
0 

0 

Figure 7 shows a number of cycles with the  energy-correction term re- 

moved from t h e  c i r c u i t .  The resul t ing solution decays slowly with time. 

After some 75 orb i t s  t h e  energy correction was repatched t o  the r integrator ,  

with the  resu l t  tha t  the  solut ion returns within one cycle t o  i t s  correct 

amplitude. 

As a f i n a l  example of space-vehicle t r a j e c t o r i e s ,  consider the  simulation 

i n  three  dimensions of a l i f t i n g  reentry vehicle. The problem was  s e t  up on 

an analog computer using the H-frame equations as described e a r l i e r .  The 

three  dimensional equations were solved for a number of different  bank-angles, 

+ f o r  fixed b a l l i s t i c  coeff ic ient  values, and for f ixed lift-to-drag ra t ios  

L/D. A typ ica l  recording of a l t i t u d e  versus downrange distance is shown i n  

Figure 8. 

i n a l  equator ia l  t ra jec tory ,  and a number of additional t r a j e c t o r i e s ,  each with 

a different  f ixed bank angle. Although these computer runs were made using 

an x-y p l o t t e r  (approximately 800 times r e a l  time) the  problem was  a l s o  solved 

i n  repe t i t ive  operation a t  80,000 times r e a l  time and the  d i f fe ren t  values of 

bank angle were s e t  f o r  each t ra jec tory  using a sample-hold c i r c u i t  driven 

by a low frequency sawtooth wave. 

versus longitude A on the  face of a cathode-ray oscilloscope, appears as a 

Figure 9 shows a plot  of a l t i t u d e  L versus longitude A f o r  a nom- 

7 

The r e s u l t ,  when displayed as l a t i t u d e  L 

7 
Fogarty, L. E.,  and Howe, R. M., 3. C i t .  
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more-or-less continuous picture  s imilar  t o  Figure 9. I f  t h e  L/D r a t i o  is  ncnr 

varied slowly, one can sweep out very quickly the  footpr int  of possible land- 

ing points for  the l i f t i n g  reentry vehicle. 

It should be noted t h a t  solut ion of l i f t i n g  reentry t r a j e c t o r i e s  at 

these high speeds requires analog computing components of considerable band- 

width, s ince the  t ra jec tory  osc i l la t ions  near the  end of t h e  reentry have a 

frequency of approximately 1 kilocycle. 

We have seen t h a t  the simulation of space-vehicle systems poses s izable  

computer problems, depending on the scope of the  par t icu lar  simulation being 

undertaken. Many simulation problems, including some real-time problems, 

are  amenable t o  a l l - d i g i t a l  solut ion.  Other simulation problems a r e  more 

su i tab le  f o r  a l l  analog mechanization. There is a s izable  c lass  of problems 

which i s  best  solved on hybrid computer systems, although the programming 

complexity i n  such a mechanization should not be overlooked. Whatever type 

of computer system is  used, it is  important t o  choose appropriate axis sys- 

tems i n  writing equations of motion so t h a t  required computer precision and 

speed i s  minimized. 

will probably see  d i g i t a l  computers used more f o r  real-time simulation of 

computer problems, whereas analog computers wi l l  be used f o r  faster-than- 

real-time problems, such as t ra jec tory  optimization s tudies  and predictor 

displays. Combined analog-digital systems w i l l  probably be used less  for  

real-time simulation but very much more f o r  optimization and other design 

s tudies ,  where the  speed of the  analog and the precision and function-storage 

capabi l i ty  of the  d i g i t a l  can be combined t o  advantage. 

Long term future  t rends i n  space-vehicle simulation 
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Single Precision Error Vs .  Double Precision Er ro r  

. (Runge-Kutta Fourth Order) 

Step Size 107 Seconds 

4 30,000 

i 25,000 

1 20,000 
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Check Point 

Figure 1. Single precision versus double precision e r ro r  i n  computing an 
ear th  -moon t ra j e c t ory 
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Block diagram of hybrid computing loop f o r  calculat ing pi tch 

Figure 5. Analog solutions for low-eccentricity orbits. 
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Figure 6. Typical solution f o r  a highly-eccentric orb i t .  
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Figure 7. Periodic solution with no energy constraint  i n i t i a l l y .  Energy 
constraint  i s  added a f t e r  about 75 cycles. 
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Figure 8. Typical reentry p ro f i l e ,  L/D = 2.0 
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Figure 9. Typical impact footpr int ,  LID = 2.0 


