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Introduction t o  the  Session on S t ruc tu ra l  Dynamics 

bY 

I. E. Garrick 

National .Aeronautics and Space Administration 

It is  my p r iv i l ege  t o  ac t  as chairman for t h i s  Session on 

S t ruc tu ra l  Dynamics. 

professors who were a t  the Langley Research Center i n  the  American 

Society for Engineering Education program. The f u l l  session top ic  

could appropriately read, "The Role of Simulation i n  S t ruc tu ra l  

Dynamics f o r  Space Technology;" s t i l l  more precisely,  we  could use 

t h e  word "simili tude" for t h e  word "simulation." "Simulation" is 

a word with many connotations. It could mean pretending t o  be what 

you are no t ,  for example, t he  protect ive colorat ion assumed by some 

a n i m a l s  i n  nature;  or it could s tand for t he  act  of p i lo t ing  a space 

vehicle without leaving the  ground. I n  t h e  use of t h e  word i n  s t ru-  

c t u r a l  dynamics, w e  may mean t o  describe t h e  role  of a s i m i l a r  or 

dynamically scaled model, or even t h e  parameters of governing equations 

of a mathematical model. A mathematical ideal izat ion of a physical 

s i t u a t i o n  always contains a degree of simulation. The art  of a math- 

ematical  model l i e s  i n  the  simplest model t h a t  ye t  simulates. In  

f a c t ,  for Nature h e r s e l f ,  t h e  word "simulation" has t h e  two d i s t i n c t  
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meanings: as, f o r  example, protect ive color i n  animals or i n sec t s ;  

or t h e  meaning as given i n  D’Arcy Thompson‘s c l a s s i c  book, “On Growth 

and Form,” i n  which famous scal ing l a w s  applying t o  l a rge  and s m a l l  

species i n  na tu ra l  evolution are so c l ea r ly  described. 

All t h ree  of t he  t a l k s  f o r  t h i s  morning’s session are being given 

by my colleagues from Langley, and these  talks, as well  as t he  fourth 

t a l k  t o  be given by M r .  Bozajian t h i s  afternoon, a l l  deal. with space 

vehicles ,  launch vehicles ,  and payloads, on the  ground and i n  space. 

A s  you may know or r ea l i ze  on b r i e f  r e f l ec t ion ,  t h e  major cost  of our 

nat ional  space programs is i n  the  hardware, i n  t he  vehicle i t s e l f ,  and 

its payload; t hus ,  t h e  major problems, moneywise, are i n  the  engineering 

technology r a the r  than i n  pure science. Space science,  however, cannot 

be pursued without a su i t ab le  technological base. Distinguished sci-  

e n t i s t s  have frequently planned t h e i r  s c i e n t i f i c  experiments ye l l ,  but 

i n  many ea r ly  space attempts have completely overlooked f ac to r s  of t he  

environments i n  which these experiments are placed. The role  of s i m -  

u l a t ion  i n  space technology i s  thus very much l i k e  an insurance premium, 

and i t s  main object ives  are t o  reduce costs  and ensure r e l i a b i l i t y  of 

t he  f i n a l  products. Many factors  need t o  be considered i n  t h e  realm of  

simulation of s imil i tude:  

governing mathematical equations ; parameters, dimensional and non- 

dimensional; t h e  natural  environments as well  as induced environments ; 

material propert ies .  Although very much remains t o  be done, progress 

has already been made, a5 our speakers w i l l  d isclose.  

s t r u c t u r a l  dynamics; physical  phenomena; 
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Figure 1.- Approaches to experimental analysis of space vehicles. 
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Figure 3. - Derivation of dimensionless ratios by nondimensionalization of governing kquations. 
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Figure 4.- Example of a complete set of dimensionless ratios for an assumed set  of 
pertinent variables. 

e GEOMETRIC: 
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F i g w  5.- Definition of various types of similarity. 
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Figure 6.- Inherent relationships for various types of similarity. 
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F i w e  7.- Sources of excitation of space vehicle structures. 
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Figure 8.- Various types of dynamic models used in space vehicle systems analyses. 

FULL SCALE DYNAMIC MODELS 

VEHICLE SCALE (PERCENT) PURPOSE 

SCOUT 15.0 GROUND WINDS 
JUPITER 20.0 GROUND WINDS 
TITAN-GEMIN I 1.5 GROUND WINDS 
TITAN I I I CORE 20.0 STRUCTURAL DYNAMICS 
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SATURN V 10.0 STRUCTURAL DYNAMICS 
SATURN V 3.0 GROUND WINDS 
SATURN V 2.5 STRUCWRAL DYNAMICS 
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Figure 9.- Dynamic models of launch vehicle configurations under study a t  the 
Langley Research Center. 
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Figure 10.- m i c a 1  semple or response data from 1/5-scale structural w w i c s  model 
of Titan 111. 
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Figure U.- Damping of l/p-scale structural dynamics model of Titan III. 
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Figure 12.- Sketch of lJ5-scale structural  dynamics model of Titan III. 
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Figure 13.- Nimbus - Polar Orbiting Weather Satel l i te .  
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Figure 14.- Comparison of responses at the base of control section on 1/2-scale model and 
full-scale spacecraft. Excitation along pitch axis. Wdel frequencies divided by 2. 
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Figure 15.- Effect of solar panel damping on dynamic amplification as a function of 
excitation frequency. 
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Figure 16.- Impact simulator fo r  lunar and planetary gravitational f ields.  

Figure 17.- 116-scale dynamic model of lunar lanaing spacecraft. 
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Figure 18.- Effect of atmospheric pressure and amplitude of oscil lation on aerodynamic 
damping of plates and spheres. 
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Figure 19.- Effect of model scale on damping. 
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Figure 20.- Horizontal support systems for launch vehicles. 
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Figure 21.- Vertical support systems for launch vehicles. 
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