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ABSTRACT

The paper describes how, through simulation with physical and math-
ematical models, the effects of ground winds on erected launch wvehicles
are being studied at the NASA, Langley Research Center. Ixperimental
programs include both aercelastically scaled models in wind tunnels and
full-scale vehicles in natural winds. With the aid of a mathematical
model having nonlinear aerodynamic damping, insight is gained which helps
explain why in some instances the response at supercritical Reynolds
numbers is a result of random forced excitation while in other instances
is characterized by a self-excited periodic motion.

Consideration is also given to the response of erected vehicles to
atmospheric turbulence. It is shown that at the fundamental cantilever

frequency of Saturn V class vehicles the gust velocities along the vehicle
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are essentially uncorrelated for separation distances greater than a feu
vehicle diameters. Calculations indicate that the response is signific-
antly reduced when these spatial correlations of gusts are taken into

account.

¢ INTRODUCTION

This paper will concern a search for new solutions to ap old problem;
namely, the effect of wind loads on flexible bluff bodies. For years civil
engineers have grappled with the problem in the design of sucﬁ structures
as smoke stacks, suspension bridges, and tall masts. (See, for example,
refs. 1 through %). I should point that included in these studies are
contributions by the Director of this Conference, Professor Maher, who
has conducted extensive wind-tunnel tests of suspension bridge section
models. (See, for example, ref. 2.)

Starting with Goldman's investigation of ground-wind loads for the
Vanguard in 1957 (ref.5), some form of wind-~tunnel tests relating to
this problem has been a part of the development program for practically
every launch vehicle. BExamples of such studies on specific vehicles
are to be found in references 6 through 9, and other more general studies
of vortex shedding from cylindrical bodies are given in references 10
through 13. We find further evidence of the extent of effort presently
being expended in this area by noting that at the annual ATAA Conference
on Structures and Materials held at Palm Springs, California in April of
this year, fiv¢ out of a total of seventeen papers in sessions on stru-
ctural dynamics concerned the subject of vortex shedding from bodies of

revolution. Despite this extensive research, there remain many important
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questions to be answered, especially in the high Reynolds number range.

With the aid of figure 1 let us identify the primary ingredients of
the problem at hand. This schematic diagram shows a launch vehicle on
a flexible support structure standing beside an umbilical tower. A
steady wind imposes both static and dynamic loads on the vehicle. The
static loads act primarily in the direction of the mean wind and the
dynamic loads, which are associated with wortices shed from the wvehicle,
are largest in the direction ‘perpendicular to the wind. These dynamic
loads, which may result from either a random fo_rced response or a per-
iodic self-excited response, are frequently several times greater than
the static drag loads. The adjacent tower structure and its turbulent
wake may also have an influence on wind loads. These wind loads create
problems in structural strength, gulidance alinement, and clearance be-
tween adjacent structures.

The purpose of this paper will be to discuss recent studies in the
area of ground-wind loads being conducted at the Langley Research Center.
In particular, we will consider four items: wind-tunnel models and test
techniques, self-excited response, effects of atmospheric turbulence, and

full-scale programs.




s
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WIND-TUNNEL MODELS AND TEST TECHNIQUES

Aeroelastic Models

The aerodynamic forces assoclated with ground-wind loads on erected
launch vehicles are a result of flow separation from bluff bodies. Since
such loads are critically dependent on Reynolds number, efforts are made
to duplicate full-scale Beynolds numbers in the wind tumnel. Also, be-
cause of the sensitivity of flow separation to minor surface protuber-
ances, such as conduits or surface roughness conditions, careful attention
must be given to the simulation of detailed geometric features. If steady-
state loads were the only consideration, a rigid model having the same
Vgeometric features and Reynolds numbers as the prototype would be ade—
quate for predicting ground-wind loads. Unfortunately, launch vehicles
are not rigid and usually the predominant aerodynamic loads are not steady.
Therefore, the structural dynamic properties of the vehicle, that is,
mass, frequency, and damping, also become important considerations in
model scaling. Experience has shown that the predominant dynamic response
of launch vehicles to wind-induced loads is essentially that of the first
mode alone. The significant additional nondimensional parameters 1o he
mgtched in the wind tunnel are then the reduced frequency based on the
fundamental frequency of the vehicle mlD/U, the structural damping, and a
mass ratio involving generalized mass of the fundamental mode to the mass
of air displaced by the vehicle.

A model which simulates both aerodynamic and structural dynamic par-
ameters is referred to as an "aeroelastic” model. Wind-tunnel tests of
such models are believed to provide the most direct and realiable means

of predicting the response of launch vehicles to a steady wind, (See, for
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example,, refs. 1k and 15).

Showm in figure 2 are some aeroelastic models of specifie vehicles
which have been used in ground-wind-load studies in the Lengley 16-foot
transonic dynamics tunnel during the past L years. Notice that in most
instances the vehicle models are tested in the presence of simulated um—
bilical towers or service structure. These towers are usually scaled
only with regard to over-all geometry. The exception is the erector tower
for the Titan-Gemini which had scaled frequencies. The models — vehicle
and tower structures - are installed on a remotely controlled turntable
50 as to permit response measurements to be teken from any wind direction.

By using a freon test medium, which has a kinematic wviscosity of
about one-fifth that of air, Reynolds number simulation can be approximately
achieved for all of the vehicles shown except for the Saturn V. For this
model, which is 3 percent of full-scale size, the Reynolds number in the
wind tunnel was one-third of the full-scale value.

Even when Reynolds number is matched, however, there are differences
in the flow in wiﬂd.tunnels as compared with that in the natural ztmosphere.
In the wind tunnel the flow is approximately uniform and steady; in the
atmosphere near the ground the mean wind varies with height and is gusty.
An approximate means of teking into account wind variations with height is
to relate the wind~tunnel velocity to a calculated "equivalent" velocity
which produces the same steady-state base-bending moment as does the actual
wind profile. A reasonable approximation of naturdl wind profiles has been
simulated in wind tunnels by use of a transverse grid of various sized rods.
(See refs. 16 and 17.) A pilot study is presently underway at Langley to
determine the feasibility of applying these technigues in ground-wind load

studies.
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Modeling criteria for simulating atmospheric turbulence in wind tunnels
have also been successfully applied in reference 18. These scaling laws,
however, are not compatible with those used in the scaling of aeroelastic
models. Some further consideration of the scaling of natural turbulence

in wind tunnels will be given in a later section of this paper.

Response Measurements

The principal response measurements in these stﬁdies are the static
and dynamic bending moments in two planes at the base of the model, and
corresponding accelerations at the nose. Although time histories of the
quantities are recorded, the most useful readout system employed in a
two-axis oscilloscope and camera. As .illustrated in figure 3, the out-
puts of X and ¥ bending-moment strain gages are fed to the X and
Y axes ‘of the scope and the sensitivities of the two channels are made
equal. A time-exposure photograph of the oscillograph screen prdduces
a roughly elliptical pattern which defines the envelope of the maximum
bending-moment oscillations encountered during the data sampling period;
typically, the model encounters between 2,000 and 3,000 cycles of oseil-
lation :during this period, which, in terms of the full-scale vehicle, is
equivalent to wind exposure times of the order of 1 hour. The vector from
the wind-off point to the center of the elliptical pattern representé the
static moment, and the longest vector which can be drawn from the wind-off
point to the tangent on the ellipse is the maximum resultant momenit. Note
that information on the correlation between the two-moment time histories
is displayed with this type of data presentation. It has been found that
the probability of the lateral and dragwise bending moments reaching max-—

imum values at the same time 1s very low.
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Damping Devices

Structural damping has been found to be one of the key parameters
which governs the susceptibility of a vehicle to wind-induced oscillations.
It is very difficult, however to control damping in a model as accurately
as other parameters. A viscous damper, shown in figure k%, has been devel~
oped which permits precise regulation of the damping in .a model. The de~
vice works on the principle of the classical Lanchester damper. It consists
of a series of lead slugs (auxiliary masses) that are free to slide on con-
cave trays inside of a cylinder filled with viscous oil. As the cylinder
vibrates in a horizontal plane, the oil moves relative to the slugs, there-
by causing energy to be dissipated. The damping can be varied by changing
the number of slugs or the viscosity of the oil. TFigure 5 shows the increase
in damping in the 0.03-scale Saturn V model obtained with eight T2-gram slugs
in the damper.

Various damping devices have been used or proposed as means of allevi-
ating wind-induced oscillations of smoke stacks. Usually the dampers are
connected to the structure by means of guy wires (ref. 3 and 4). Since
guy wire supports are often not feasible in launch vehicle applications,
it is of interest to consider the use of auxiliary mass dampers, which re-
quires no external connections, as a possible method for reduciné wind-
induced loads on full-scale vehicles. Such devices presumably could be
attached to the vehicle during high wind conditions and then be removed
prior to launch.

Theoretical performance characteristics of an auxiliary mass damper
are shown in figure 6 as a three-dimensional surface. It is assumed that
an auxiliary mass m 1is connected to the vehicle structure through a

spring kd and dashpot ¢, as indicated schematically in the figure. The




-XVIII-8-

vehicle structure is represented mathematically as a single-degree~of free-

dom oscillator having a generalized mass M and natural frequency w

1
The case shown is for m/M = 0.05. The vertical axis in the figure is the

damping ratio Cl associated with the wvehicle mode; this was determined
from the real part of one root of the characteristic equation for the
coupled system. Plotted on the other axes are Qi/wl, the ratio of un-

coupled frequencies, and c¢/2mw a nondimensional viscous damping par—

17
ameter. This figure simply illustrates a well-known result from the
theory of vibration absorbers (see, for example, ref. 19) that when the
auxiliary mass is “tuned" to the natural frequency of the system to which
it is attached, and c/2mwl is near an optimum value, large energy dissi-
pation can be achieved. The previously discussed Lanchester type damper is
represented by the curve for wd/wl = 0. Note that this damper has optimum

performance at c/2mml= 0.5. The wind-tunnel research applications where
precise control of damping in aeroelastic models is desired, the fact that

cl is relatively insensitive to variations in c/2mwl beccomes an attractive
feature; however, in full-scale applications, where weight of the auxiliary

mass may be an important consideration, tuned dampers offer more than an

order of magnitude improvement in performance.

SELF-EXCITED RESPONSE

Various and conflicting theories have been advanced regarding unsteady
aerodynamic forces associated with vortex shedding from circular cylinders.
In the supercritical Reynolds number range - the range of primary interest
for the present problem - experimental data indicate that in some instances

these forces are random and insensitive to motion of the structure (Fung,
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ref. 10) and in other instances periodic and strongly dependent on motion
(Buel, et al., ref. 12 and Den Hartog, ref. 3). This section of the paper
will be devoted to consideration of these apparent differences. In par-
ticular, a simple mathematical model, involving nonlinear aerodynamic damp-
ing, is presented which has behavior consistent with both of the above-

mentioned phenomena.

Experimental Results

In recent wind-tunnel tests at Langley involwving Saturn I-B and Saturn
V ground-wind load models violent self-excited oscillations were encountered.
These oscillations occurred at Reynolds numbers as high as 4 X 106 based on
the model's maximum diameter. On hoth models the instability appeared at
reduced frequencies, based on the maximum diameter, in the neighborhood of
0.2 which happens to be the Strouhal number of the Karman vortex street at
suberitical Reynolds number.l Similar self-excited response phenomena have
been observed on large, lightly damped, steel smokestacks and the solution
has been to add damping (ref. 3) .or attach aerodynamic spoilers to the
structure (ref. 20).

Now it might be argued that these high response conditions cbserved at
a particular wind velocity could be in the nature of a forced resonant os—
cillation rather than an instability. Data presented in figure 7, however,

1 It should be noted that for these models the peak response appears to be

a result of vortex shedding from the lower stages at a Strouhal number of 0.2.
Response characteristics were relatively insensitive to changes in nose shape
or surface roughness conditions; for other wvehicles configurations, nose shape
and roughness may be the dominant factor affecting response. {See ref. 12.)
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serve to disprove this argument. These data were cbtained on the 0.03-
scale Saturn V model. The figure shows the variation of dynamic bending-
moment response with velocity for three values of structural damping. First,
note that for the smallest damping of g = 0.00L, the response peaks sharply
at a reduced velocity of approximately %.5. The sample time history shown
for the peak response point is a nearly constant amplitude sine wave at

the fundaméntal model freguency. When the demping is increased from 0.00k
to 0.008 the sharp spike is eliminated and the response time history is
characterized by a rendom-amplitude constant-frequency motion typical of the
response of a lightly damped system to a random-forcing function. This com-
plete change in character of the response time histories as damping increases
suggests that at a certain critical velocity the structural damping of the
system is a controlling factor which determines whether the dynamic response
is a result of self-excited or externally forced motions. In either case it
is apparent that structural damping of the model is an important parameter
to be simulated. Furthermore, the commonly used scaling laws (ref. 21) based
on the response of systems to random or periodic forecing functions, without
consideration of motion-dependent aerodynamiec forces, would be inapplicable
for these cases of self-excited response., Similar results are shown in ref-

erence 12.

Conceptual Model of Self-Excited Response
Let us now attempt to interpret the mechanism producing these observed
dynamic instabilities. Secruton, in reference 22, has made extensive wind-
tunnel studies of industrial structures such as smokestacks and towers, and
has reported similar instabilities which he attributes to a nonlinear aero-
dynamic demping that becomes negative at a particular wind velocity. Scruton's

results were obtained at suberitical Reynolds numbers; however, his findings
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appear to be applicaeble to the present studies where Reynolds number varies
from 1 to 6 million.

A launch vehicle structure and the aerodyhamic loads associated with
vortex shedding are represented conceptually by the block diagram pictured
in figure 8. Let Fs(t) be the aerodynamic forcing function which is in-
dependent of vehicle motion and FD(t) to a nonlinear aerodynamic damping
force which depends on the wvehicle motion. In the equations of motion, also
given in figure 8, the left-hand side describes dynamics of the structure in
terms of a natural frequency and damping ratio and the right-hand side ex-
presses the aerodynamic forces in terms of a lateral force coefficient
CL(t) and demping coefficient C}-{. For the present purpose it will be
assumed that CL('t) is ‘a random function of time. Depending on the re-
lative magnitudes of the structural and the aerodynamic damping coefficients,
the response x(%t) of the structure in the direction perpendicular to the
wind can take on either of the two forms indicated in the figure. When the
damping is predominantly structural, the response will be the characteristic
random-amplitude constant-frequency motion typical of a lightly <damped system
driven by a random forcing function. With aerodynamiec damping present in a
nonlinear form such as measured by Scruton, the possibility exists for self-
excited motions indicated in the figure by the constant amplitude sinusoidal
response. A representative plot of the variation of C}.{ with reduced fre-
quency {see fig. 9) shows that over a narrow range of fD/U near 0.20, the
aerodynamic damping has a destabilizing influence which depends strongly on
the amplitude of motion. At this critiecal value of reduced frequency the
destabilizing effect becomes smaller as the amplitude of motion increases.

Thus , an energy balance is eventually established between the energy input

by negative aerodynemic damping and the energy absorbed by positive
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structural damping. This leads to a limit-cyele oscillation whose amplitude
is inversely proportional to structural damping as shown in plot on right

side of figure 9.

Analog Computer Studies

Further insight into the behavior of the nonlinear mathematical model
presented in figures 8 and 9 may be gained from analog computer solutions.
For this purpose the equation in figure 9 has been programmed on an analog
computer in the manner shown in figure 10. The random lateral forcing
function CL(t) was obtained by passing the output of a Gaussian white-noise
generator through a first-order low-pass filter. The filter time constant
was adjusted to make the power spectrum of CL(t) approximate closely the
spectrum for fixed cylinders presented by Fung in figure 11 of reference
10. Output of the noise generator was adjusted such that the root-mean-
square of CL matched Fung's measured value of 0.12. As an approximation
to Scruton's results in reference 22, the nonlinear damping coefficient
was assumed to be inversely proportional to a running average of the ab-
solute value of response.

The results are shown in figure 11 as a plot of maximum response
observed during a computer run against damping of the structure. The plot
on the left of the figure represents the system response with the motion-
dependent aerodynamic force set equal to zero. This response varies in-
versely as Yz  which is the relationship predicted for lightly damped
systems acted on by a random forcing function. (See ref. 21.) According
to Scruton's data this is representative of conditions when the natural
frequency of the system is not in the vicinity of the Strouhal frequency.
The right-hand side of the figure shows corresponding results when the

natural frequency and the Strouhal frequency have approximately the same
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values, say, an/Umo.Z. Note the similarities in these analog time
histories and the bending-moment time histories shown in figure T for the
Saturn V model.

The apparent inconsistencies between Fung's cbservation (ref. 10) =
aerodynamic forces on cylinders are random and essentially independent of
body motions - and the self-excited response observed for both wind-tunnel
models and smokestacks might then be reconciled as follows: In Fung's in-
vestigation, the cylinder motion was limited to reduce frequencies below
0.12; Scruton {ref. 22) and the present wind-tunnel studies indicate that
motion dependent forces, in the form of negative aerodynamic demping occur
in a narrow range of reduced freguencies near the Strouhal number of 0.2.

In order to shed further light on these and related questions, a generalized
research study on two-dimensional cylinders will be conducted in the Langley
transonic dynamics tunnel up to Reynolds number of 20 X 106. The Martin

Company , George C. Marshall Space Flight Center, and Langley Research Center

will be joint participants in this program.

RESPONSE TO TURBULENCE

Comparison of Wind-Tunnel and Atmospherie Turbulence
Unlike the uniform profile of steady wind in a wind tunnel, atmospheric
winds near the ground are typically as illustrated in figure 12. The pro-
file patterns shown represent instantaneous distributions of horizental wind
that may occur as a field of turbulence is blown past an erected vehicle. The
dashed line in the figure represents the mean wind averaged over, say, a 1-

minute period; the little arrows represent more rapid wind fluctuations of

wind components in the direction of the mean flow. As indicated in the figure,

these unsteady wind components wvary randomly in both time and space. Since
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these winds produce random loadings on the structure, power spectral tech-
niques appear to offer the most fruitful method of analysis and will be the
approach discussed in the present paper.

Before considering some mathematical techniques for predicting the re-
sponse of launch vehicles to ground wind turbulence, let us first discuss
the possibility of simulating such turbulence in a wind tunnel. Consider
the question: To what extent would the turbulence structure representative
of wind tunnels need to be modified in order to simulate "atmospheric”
turbulence in wind-tunnel testing of aeroelastically scaled models? Figure
13 will serve to answer this question. The figure shows typical plots of
the power spectrum of wind-tumnnel turbulence and atmospheric turbulence
near the ground. The curves are plotted against the familiar freguency
scaling parameter fD/U. Turbulence, whether it be in the earth's boundary
layer or in a wind tumnnel, can be characterized by a mean eddy size or
"scale" length 1L, and the rms intensity of fluctuation components re-
lative to the mean wind veloeity, \ u2/U. For atmospheric winds near the
ground, the scale of turbulence is of the order of the over-all length of
Saturn V vehicle, or 10 vehicle diameters. In wind tunnels a typical value
of L might be 1/10 the diameter of a ground-wind-loads model. Also, the
intensit_y of turbulence is an order of magnitude different for the two cases,
being, say, 20 percent of the mean wind for the atmosphere as compared with
1 or 2 percent for wind tunnels. In summary, the figure indicates that over
the frequency range of interest in the present problem, typical values of
the scale and intensity of turbulence in wind tunnels and in the atmosphere
are vastly different; therefore, study of the effects of gust loads assoc-
iated with atmospheric turbulence in wind tunnels must await the development

of new techniques for the generation and control of wind-tunnel turbulence.
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Basic Power Spectral Relationships

In absence of suitable wind-tunnel techniques for studying the re-
sponse of vehicles to atmospheric turbulence, we must work either with
mathematical models or actual structures exposed to natural winds. Both
of these approaches are being pursued at NASA-Langley. This section of
the paper will concern an analytical approach to the problem.

Power spectral techniques have proved to be powerful tools for analy-
zing the response of systems to random inputs. Such technigues for air-
craft gust-load prediction have been under development for more than a de-
cade and offer an excellent foundation on which to formul’ate the present
problem, Of particular value is the paper by Houbolt, Steiner, and Pratt
(ref. 23) which presents an exhaustive review and extension of power spec-
tral technigues in relation to the response of airplanes to atmospheric
turbulence. A basic equation for the power spectrum of a linear system
acted upon by multiple random inputs is presented in references 23 and 2k
wherein the structure is assumed to be divided into an arbitrary number of

segmented areas with a random forcing function acting at the center ‘of each

segment.
3 {w) o . H * ¢, 1 * *
= +
Pl = Oy O, Ryl b
+ 2R (&, H H + 0, _H "o, +
{0y, Hy + @) H) Ho o Ll0 8 Hy el (1}
where
<I>r(w) power spectrum of a response variable r vwhich may denote
base bending moment, tip deflection, etc.
sps .th .th .
(Dij cross spectrum of turbulence welocities at i and j points

on the structure
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H, frequency response function which gives the response due to
a unit sinusoidal gust component velocity acting at the
segment of surface area associated with the ith point

H. (w) = Hi(—w) complex conjugate of H,

Re denotes the real part

In its general form this equation indicates that a considerable amount
of information regarding the spectral description of furbulence is reguired
in order to define the response spectrum. Specifically, the power spectrum
of horizontal components of turbulence must be specified as a function of
frequency at each of n points on the structure together with the cross
spectra between all combinations of pairs of the velocity components. ©Since
such information is rarely available in the form required, various simpli-
fying assumptions must be made in order to obtain numberical solutions to
equation (1). The most frequently made assumptions are that the gust ve~
locities are in phase at every point on the structure and that the tur-
bulence field is homogeneous; that is,

o =0 =0 ... 0 (2)

11 12 13 In

With these assumptions, equation (1) reduces to the following simple

form
v (0) = m%ll (3)
where
= Hl + H2 + ... Hn frequency response function for a sinuscoidal gust un~
formly distributed over the vehicle length
Qll power spectrum of gust components

Bohne, in reference 25, utilizes this equation in analyzing the response

of launch wvehicles to ground-wind turbulence. Various empirical expressions
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for the power spectrum of turbulence, derived from data obtained from wind
towers and airplanes, are available for use in such calculations. (See, for
example, refs. 23, 26, 27, and 28.)

An obvious shortcoming of the assumption of perfect correlation of
gusts along the length is that dynamic response in the fundamental mode is
likely to be grossly overestimated, especially if gust wave lengths corres-
ponding to the fundamentsl structural frequency are small in comparison with
the vehicle length. A more rational assumption would be to account for cor-
relation of gust velocities on the basis that atmospheric turbulence is
locally homogeneous and isotropic; that is, its statistical properties in
a given volume of air are the same at all points and are independent of ro-
tations of the reference axes. In an analysis of response of line-like
structures to gusty winds, Davenport (ref. 29) makes similar assumptions
and justifies them on the basis of experimental evidence. Under these
conditions the cross spectra depend only on the separation distance between
points and are independent of height above the ground. The following re-

lations then apply

I T L
010 = Bp3 = Oy = eee Oy
83 = By T O35 = eer ¥ jeo (1)

and equation (1) becomes

o (w) = © {HH* nu o+ zR[Qle * *
Pl E 8y U HRH P, 4. 2Re q:ll(H1H2+H2H3+"')

2 2
13 ¥ * In, *
+ i, (B Hy + Hy By + ...) + E);._l-(Hl H o+ HH .+ )]} (5)
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Cross Spectra of Turbulence

In order to calculate the response spectrum on the basis of equation
(5) the cross-spectra functions must first be specified. These functions
are derived in appendix A from theoretical considerations which employ
Taylor's hypothesis (i.e., fixed patterns of turbulence are transported
at the mean wind velocity) together with the assumption that over the
height intervals of interest the turbulence is homogeneous and isotropic.
Results from the theory are plotted in figure 16. Also shown in figure
15(a) are experimental data cbtained by Singer (ref. 30) fram s L0O-foot
tower in wooded country at the Brookhaven Laboratory and by Davenport (ref.
29) on a 500-foot mast in open grassland. It is encouraging to note that
the experimental data from both of these sites are in reasonable agreement
and that the theoretical curve falls within the scatter of the data.

Probably the most significant feature of figure 15 is that for vertical
separation distances greater than about 0.3 of u component wavelengths or
0.5 of v component wavelengths the gusts are essentially uncorrelated.

For example, in a 60-knot wind at a frequency corresponding to the Saturn
V fundamental cantilever frequency {(f 0.5 cps), correlation of u gust
components is negligible for separation distances greater than two maximum-
vehicle diameters.

The ordinate in Figure 15, defined as the square root of the ccherency
function, represents the modulus of the complex cross spectra which consists
of a real (copower) part and an imaginary (quadpower)] part. It should be
pointed out that in the theoretical cross spectra the quadpower is zero where-
as in the experimental cross spectra a small guadrature component was measured.
These quadrature components are due in part to shear flow in the wind profile

and also probably lags in the wind sensors.
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Applications
In appendix B the frequency response functions indicated in equation
(5) are derived in terms of natural vibration modes of a structure. The
response spectrum for a two-dimensional gust input is then expressed as a
product between the response spectrum for one-dimensic;nal gusts and a so~
called "attenuation" factor which accounts for the two-dimensionality of
turbulence. For example, the spectrum of response in the x direction

due to u gust components is (see eq. (B-15a)

Qx('k) = Tun(k)q)x(k),uniform

where the subscript n refers to the mode number and Tm(k) is the atten-
uation factor given by equation (B-16) in appendix B. Examination of this
matrix equation indicates that Tun(k) is dependent on such factors as ve-
hicle geometry, mode shape, wind profile shape, and the cross spectra of
turbulence between points along the vehicle.

In order to present some specific results the gust attenuation factor
Tun(k) = Qx/q)x,uniform was evaluated for a Saturn V class vehicle in a
cantilevered unfueled condition. The Saturn V has a maximum diameter of
33 feet and is about 350 feet tall. Natural frequencies of the first two
cantilevered modes were assumed to be 0.48 cps and 1.85 cps. The steady
wind profile shape considered followed a 1/5 power law variation with
height as suggested in reference 31.

Results of these calculations are presented in figure 16. MNote that
for reduced frequencies fD/U greater than sbout 0.1 attenuation due to two-
dimensional effects is approximately twice as great for the first mode as it
is for the second mode. A physical explanation of this result can be gained

by recognizing that in the first mode a 180° phase shift for gusté on opposite
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sides of the node line has & load amplifying effect. Similar results are
noted in reference 24.

Although gust correlation effects tend to attenuate the first mode to
g much greater extent than the second mode, the absolute response is, never-
theless, predominantly that of the first mode. This result is associated
with the rapid decrease in turbulent energy with increasing frequency.

An interesting feature to be noted is that the curves in figure 16 are
independent of the scale of turbulence. This is a consequence of the
assumption made in appendix A that the gust wavelengbhs of interest are
equal to or less than the scale of turbulence.

Power spectra of first-mode response to u and v gust components are
presented in figure 17 for 1-D and 2-D turbulence. The response deflection
has been made nondimensional by dividing it by the static deflection assoc-
iated with the mean wind speed. In these calculations it has been assumed
that the wind speed is the 99.9 percent probable maximum at Cape Kennedy
(ref.31) which is L3.L knots at the 240-foot height. The velocity at this
height is the effective wind velocity Ue which, if distributed uwniformly
over the vehicle, would produce the same static dragwise base bending moment
as does the assumed wind profile. The mean square turbulence was assumed
to be 1_12 = ;2 = 0.03 Ue2. And finally, the form of the power spectra for
u and v was assumed to he given by equation (B<1k) with L = IODO =
330 £t at all heights.

Note in the figure that at the lower frequencies, corresponding to
long wavelengths, the 1-D and 2-D response curves are almost identicdl., In
the vicinity of the first-mode natural frequency, however, the effects of
2-D turbulence are indeed significant. From areas under the spectra curves
the variance of response for 1-D gusts are approximately twice that of the

2-D gusts.
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FULL-SCALE STUDIES

In previous sections of the paper we have discussed ways in which the
response of launch vehicles to ground-wind loads can be simulated by means
of models -~ both physical and mathematical. Whether or not these models
are the intended analogs of their full-scale counterparts must he Judged
on the basis of comparisons between appropriate model and full-scale data.
Although considerable effort has been devoted to wind-tunnel studies of
aeroelastic ground-wind models, there is little in the way of full-scale

data available for correlation with similar model data.

Jupiter and Thor Vehicles

In order to £ill this gap the Langley Research Center is engaged in
two programs aimed at obtaining ground-wind response data on full-scale
vehicles. The first of these programs involves use of a Jupiter and a
Thor vehicle which have been acquired as surplus property. These vehicles
are to be used solely for ground-wind-load studies over a l-year period
at Wallops Island. Vehicle response, in the form of bending moments and
accelerations, will be measured together with the wind inputs at two
heights near each vehicle. 1In addition, other wind measurements will also
be obtained from five elevations on a 250-foot tower located sbout L1/L mile
from the vehicle site. Special fast-response anemometers similar to the
prototype shown in figure 18 (ref. 32)] will be used. These instruments
have flat response to frequencies several times greater than the fundamental
vehicle frequencies. Vehicle response and wind input data will be auto-
matically recorded on masgnetic tape at regular intervals, or vhenever the

wind exceeds a preselected value.
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The previously mentioned wind-tunnel tests of a 20-percent scale Jupiter
model indicated that small strake~type spoilers placed on the nose had a pro-
nounced load alleviation effect. These results are shown in figure 19 as a
plot of the maximum resultant bending moment against wind speed. One of
our first objectives in the full-scale program, then, will be to determine

if spoilers are in fact as effective as predicted in the wind-tunnel studies.

Titan-Gemini

The second full-scale ground wind response program has been established
for the Titan-Gemini at Cape Kennedy. This progrem is being conducted by
Martin-Baltimore under contract with the Air Force and Manned Spacecraft
Center. It will be closely followed by the Langley Research Center while,
in addition to having conducted wind~tunnel studies of the vehicle and
erector system, is providing the previously mentioned fast-response ane-—
momenters for the wind-measurement phase of the program. The bending-
moment response'of the vehicle will be read out from load cells which are
8 part of the launch pad hold-down structure. For each vehicle there will
be two opportunities to obtain response data when the vehicle is not
sheltered by the erector tower; these are during a fuel loading checkout
and immediately prior to launch.

Although the system is not yet fully operational, some bending-moment
response data were obtained by the Martin Compeny just prior to launch of
the first Titan-Gemini wehicle. These data are presented in figure 20 to—
gether with wind-tunnel results and theoretical predictions of response
due to turbulence. The only source of wind data available at the time of
these measurements was a propeller-type anemometer mounted a few feet above

the blockhouse and read out visually on a meter. Therefore, precise values



-XVIII~23-

for the mean wind and the intensity of turbulence at the vehicle are not
known; the intensity of turbulence assumed in these calculations was
u2/U = v2/U = 0.2. Although there appears to be reasonable agreement
indicated between these full-scale measurements and the predictions based
on wind-tunnel data and assumed turbulence conditions, quantitative com-
parisons should not be attempted until the more precise measurements of

the wind are available.
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CONCLUDING REMARKS

This paper concerns the role simulation plays in prediction of effects
of ground winds on space vehicles erected on the launch pad. It is shown
that with present techniques, both wind-tunnel and mathemstical models are
required in order to prediect the response of vehicles to gusty winds. By
wmeans of a conceptual representation, which involves a random forcing
function and nonlinear aserodynamic damping, new insight is gained into the
mechanism of self-excited response which has been observed at supercritical
as well as suberitical Reynolds numbers. In consideration of the response
to ground-wind turbulence, it is indicated that the spatial correlation of
gusts along the vehicle length can have significant effects. Finally, it

is hoped that by correlation of response measurements now being obtained on

full-scale vehicles with those predicted from models the adequacy of existing

similation techniques can be better established.



Do

£(r), gl(r)

~XVIIT-25-

SYMBOLS
generalized coordinates for the nth modal functions in
the x and 'y directions, respectively
lateral force coefficient

aerodynamic damping coefficient

) viscous damping coefficient

diameter

vehicle maximum diameter

nondimensional correlation functions of velocity com~
ponents parallel and perpendicular, respectively, to a
line r between two points in the field of turbulence
frequency, cps

random forcing function due to vortex shedding from a
fixed cylinder

aerodyhamic damping force

frequency response functions relating response to a unit
sinusoidal input foree at station i on the structure
Bessel function of the third kind

reduced frequency (k = mDO/UO) s Or spring constant
Bessel function of the second kind for imaginary argument
vehicle over-all length

scale of turbulence (see eq. (A-8})

auxiliary damper mass or mass per unit length
generglized mass of the nth natural mode

bending moment about axis indicated by subscript

orthogonal components of gust velocity at a point i
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generalized forces for the nth mode in x and ¥

directions, respectively

correlation distance

real part of a complex quantity

cross correlation of horizontal gust components at point
i and J on a vertical line

integrals defined in appendix B

nondimensional time (s = Uot/DO)

time

attenuation of response spectra in nth mode due to

spatial correlation of u and v gusts (see eq. B-15))

horizontal components of turbulence in direction parallel

and peérpendicular, respectively, to the mean wind
amplitude of sinusoidal u and v gusts

mean wind velocity, subscript O denotes reference value

equivalent uniform wind velocity

function defined in equation (B-k)

deflection response or horizontal axes

static deflection associated with mean wind

deflections of nth natural mode of vehicle relative to the

tip deflection

axial distance along vehicle

normalized cross spectra of gusts (see eqs. (A-15) and
(A-17))
see equation (B-3)}

distance between segmented areas




Notation:
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viscous damping ratio relative to critical

damping
X ¥
Nondimensional response functions(i = —E, n,= _n)
n D0 n o

D2
density ratio parameter (Kn = %—O—-
n

U2D
constant in figure 9 (K = 9—2}11—->
s . . Ut
nondimensiocnal time delay (A = -
wl
reduced frequency based on L,{ v = T
density of air or wind-tunnel test medium

nondimensional separation distance (c = ﬁ—@ or

standard deviation of a random variable
power spectra or cross spectra of a random variable

circular frequency

A dot (*) denotes differentiation with respect to time

A prime (') denotes differentiation with respect to s

A bar (-) denotes average value

An asterisk (*) denotes conjugate of a complex quantity

Vertical bars H denote modulus of a complex gquantity

LJ

[ ] square matrix

{ } column matrix
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APPENDIX A
DERIVATION OF CROSS SPECTRA OF VERTICALLY SEPARATED

COMPONENTS OF TURBULENCE

Consider the horizontal components of turbulence along a fixed vertical
line representing the center line of an erected vehicle. In accordance with
Taylor's hypothesis it will be assumed that turbulence can be treated as a
space pattern of ‘veloecities which are transported at a mean horizontal ve~
locity U. In addition, the turbulence is assumed to be homogeneous and
locally isotropic. With these assumptions the correlation of velocities
between two points depends only on the distance between the points so that
a simple relationship exists between space correlations and time correlations.

The method of analysis to follow may be considered an extension of the
cross spectra of vertical gust derived by Houbolt (ref. 24) in connection

with two-dimensional gust loads on aircraft.

Cross Spectra of u(t)
Consider the u component of turbulence at two points a distance Az

apart on the vertical =z axis (see sketch a).
4

2 u,(t)
A 2
U e '
Az

———— V4
r 7
_ rd
._/__’ijr.. -~ _.—-._J_—).. ul(t + T)
u, (t) &

Sketch a.
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The guantity of interest is the cross correlation between ul(t + 1) and
u2(_t) from which the cross spectra can be derived. The cross correlation

function, defined as

T
ng("r) = lim% f ul(‘,tzug('t + 1)dt (A-1)
T » o [+)

can be expressed in terms of the one-dimensional correlation function of
the turbulence field. The two such functions required are f(r) and g(r)
which denote the correlation of velocity components parallel and transverse,

respectively, to a line r between two points in the field. (See sketch b.)
p,(t)

f(r)

Ve
yd ay(t)
p, (%) 4
< glr)

ql(t)

Consider the situation at time ¢t. The velocity at point Zy in sketch

a is u2(t). Upstream of point z, a distance Ur is the velocity ul(tl

which will arrive at z 1 seconds later. These components, ul(ft + 1)

1

and uz(t), can be expressed in terms of components parallel and perpendic-—

ular to the line T =.f (Az)2 + (Ur)z at time t. Thus

ul(t + 1) = pl(t) cos 6 + ql(’t) sin ©

uz(t) = p2(_t) cos 6 + qe(t) sin 8 (A-2)




where

sin & =

Rl2
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Az,

(1] = ?I:f‘(r) cos®o + g(r) singe]

H cos B =

Y, (Az)2 + Pr?

Substitution of equation (A-2) into equation (A-1) yields

V(82)2 + v?2

o

(A-3)

where f(r) is the correlation of velocities p, end p, in the direction of

r and g(r) is the correlation of velocities

normal to r. These correlations are defined as

Longitudinal:

Transverse:

|

ooy = 22T PaPe
(0} 2
Rpll P1
R (r) ——
- e -]
glr) = o—5—

R =
4,00 g 2

9 and a, in the direction

(a-4)

Also, in deriving equation (A-3) use has been made of the following relations

which result from the assumption of isotropic turbulence

and

The cross spectrum of the

2: 2:
Py 59
P19y = Py

Uy

(a~5)

components of turbulence is defined as

the Fourier transforms of the cross-correlation function given by equation (A-3)
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=y f_ﬁ R (0 7T (a-6)

Thus in order to derive a specific analytical expression for the cross
spectrum it is necessary to assume a specific form of f(r) and g(r) in
equation (A4-3). For this purpose the simple exponential correlation functions
which closely follows the form of isotropic turbulence observed in wind tunnels

will be used. (See refs. 33 and 34.) These functions are

flr) = e’lrl /L
~lr| /L '
g =[ 1Ll (am)

where I 1is the so-called integral - scale of turbulence defined as

©

i =J‘ flr) ar (A-8)
0

Substitution of equations (A~T) into equation (A-3) gives

—_—
(Az)2 + 0P

/(Az)2+U212 ’ Ni (Az)2+U2T2

RlZ(T) =

L
[ P2 g 2 (1 S(e2)? + P2 ] (8-9)

+ (Az 1 o

Az /L

Now let a

>
L]

Ut/L

Then
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2,,2

— 2 /
R = of (- —— :2——2) e (8-10)
24/ 07 + A

and the cross spectra of turbulence then follows from equation (A-6)

2. ® 2 [2 3 h
o (w) = %(—J_Ii f (1 _ ___.2_____>e" g A L
12 - 22 + 22
or ? (A-11)
2 w 2 _f2 2 .
o (v) = “_“ f <1 - ____2______>e J a7 olury,
12
= 2/ 6° + A°

J

where v = wL/U. Integration of this equation produces the following ex-

pression for cross spectrum

22
o, () =8 Ly (o) - Lx ()]

Yo T
22 (a-12)

_uu[_2_ (1) oy _ g (W) ]

=55 -%n (ia) iH, (ia)
where

o =g 1+ v2

and
Kn((x) the Bessel function of the second kind for imaginary argument,

Hn(l)(ioc) the Bessel function of the third kind




—XVITI-33-

Bquation (A-12) is a real gquantity indicating that the derived cross spectrum
has a zero quadrature component.

As the separation distance Az approaches zero, the cross spectrum (eq.
(A-12)) reduces to the power spectrum of the U component of turbulence
-r/L

which, for f£(r) = e , is simply

Yy T oL+ (8-13)

It is convenient In response calculations to express the cross spectrum

in the following normalized form

Bet) (a-1k)

Equations (A-12) and (A-13) substituted into equation (A~1L) give

v, =% ¢° [—QH (1) (44 - aHO(l) (ia)] (a-15)
u 1
12
An important simplification results when it is recognized that the wave-
lengths for frequencies of primary interest are in general less than the scale
of turbulence; that is 2n(U)/w<L. The parameter o in eguation (A-15] then

reduces to a single nondimensional parameter

2
Az wl
e NLYy
a2 m_(Afz_ for %Ii >>1.0 (a-16)

Therefore
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M ) [ 0GR ROC )]

The absolute value of equation (A-17) is shown plotted in figure 15(a), to-
gether with experimental data obtained by Singer in reference 30 and Davenport

in reference 29.

Cross Spectra of v(t)
The equation for the cross spectra of horizontal transverse v compon-
ents of turbulence is identical to Houbolt's expression for the vertical w

components presented in reference 2h4. This expression is

-
¢V12(V) = g;-{l ;UV [ (1u)] Zil++v3§/; [ -H <1)(1a)] }

(A-18)

In the limit for Az = o = 0, this equation reduces to the power spectrum for
transverse components of turbulence which, for g(r) as given in equation
(A-3) £ is

2

@v (v) = 2_ 1+ 3v .
11 T a2 (4-19)
Therefore
)
v 2
Y, =3 12 _ 1 { [1H (m)] a{H )(10) ]} (a-20)
12 v 1+ 3v
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Again, it can be stated that for the frequency range of interest in the
present study (v >> 1.0) equation (A-20) is essentially a function of

w 8z/U alone and can be written

. T bz (l)(.Azw)
W, 2 0 h 'y (a-21)

Equation (A-21) is found to be an excellent approximation to equation (A-20)
for wavelengths equal to or less than 2L.

A plot of equation (A-21) as a function of f Az/U is shown in figure
15(b), where f is frequency in cycles per second.

In order to obtain somewhat simpler analytical expressions for use in
response calculations, the cross spectra defined by equations (A~15) and
(A-21) have been approximated by damped cdsine functions. On the basis of

a least-sguares-fit, the following empirical equations were obtained.

o, ~kM(r 8z)/U b/ £ Az
Yulz = e cos 3 (-——-—U )
(a—2)
and Y, =e -3.2(f 4z)/0 %_(fUAz‘>

12
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APPENDIX B
DERIVATION OF GUST RESPONSE EQUATIONS

Freguency Response Functions

Two sets of frequency response functions will be derived. One set re-
lates the response of the vehicle in the x direction to a sinusoidal u(t)
gust input and the other relates response in the ¥y direction to a sinusoi-
dal v(t) gust input. The following assumptions are made:

a. The vehicle is structurally and aerodynamically symmetrical about
its 2z axis which is vertical.

b. Wind forces on the vehicle are proportional to the local diameter
such that the assumptions of two-dimensional strip theory are applicable.

¢. Wind forces are quasi-static (proportional to the instantaneous
dynamic pressure) and act in the direction of flow relative to the vehicle.

d. The unsteady components of wind are small in relation to the mean
wind speed.

e. Coupling between natural structural modes can be neglected.

First, consider the deflection response of a vehicle in the direction of
the mean wind. Let the x component of deflection be expressed in terms of

natural modes of the structure

x(z,8) = a (t)x; (2] + a,(t)x,(2) + ... (B-1)

where xn(z) is the nth natural mode shape and an(t) is a generalized

coordinate determined from solution of the differential equation

5 42 uwa +w g o= 2R (B-2)
n nnon n n
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is the equivalent viscous structural dsmping re-

In eguation (B-2) L,
Mn the generalized

lative to critical damping, o the natural freguency,

mass, and Qx n the generalized force - each for nth mode of vibration.
»

Assume that a gust velocity u{t] acts over an element of length ¢

on the structure. The generslized force in equa-

centered over station zy
tion (B~2) then becomes
(8-3)

_ z 1 [ . ) 2
Qx,n = -2~pCDD U- ax + u(t)ﬁ(z,zll] xndz

vhere G(Z,zl) is a function which has the following properties
= - £ £
G(Z,Zl) 1 when (zl 2)_<_z i(zl+ 3 )

= 0 elsevhere
is constant and the meen wind U

With the assumption that the air density o

is large compared with u and t;n, equation (B-3) can be written

u(z., t)

1 2 8.'n € 1
%, =2 °% DOZ[Sln =2 -I%SZn 27 W(zl)—ﬁg'- (B-1)
where
_ D(z) U(z} -
Wn(z) =5 xn(_z)CDCz)
o] 0
1
U z
s .= _f W o=—d(%)
nl o B UO 2
1



With the notation

equation (B-2) becomes

" + t
En * (gcnkn KSnQ)En

u)nDO
where k_ =
n U,
0
< = oZD2
n M
n

and a prime denotes, %E“

If the gust at 24

tion (B-5); that is, un(zl,t) =q e
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an
€n=5.5
2 %
3t DO

2
n

iks
no ?

@l
w

£

n

11

e

n0

iks

ulz

t)
L £ —L
tk gn_K[2Snl+lw(zl) ] ] (8-5)

0

is assumed to vary sinusoidally with time in equa~

then the frequency

response function for dynamic deflections of a vehicle in the x direction

(B-6)

associated with this gust input is
[
£ 7 W, (zy)
= n0 . _
Hg 1(k)“ T2 2
n n0 kK -k +i(2r-k + xS )k
T n nn ne
[¢]

Note that the static dragwise deflectlon has been subtracted from the total

deflection in obtaining equation (B-6}.

The response of the vehicle in the direction transverse to the wind can be

similarly expressed in terms of natural modes
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y(z,t) = bl(t)yl(z) + bz(t)yz(z) + ... (B-T)

where bn is determined from the equation

.1;+2z;w1.) +m2b=-%z-’2' (B-8)
n n'n n n n Mn
and yn(z) = xn(z) by symmetry. The generalized force for transverse re-
sponse is
A
Y] Lacp {24 [ °}
L r " :
,n o 2 oCyD + by, v(t)é}(z,zl)] ¥y, sin gdz
(8-9)
where
. = _' -
sin B by vﬁ(_z,zl)

/U2 + [—Tt;nyn + v(S(z,zl) ]2

In a manner similar to that followed in obtaining equation (B-6) the

frequency response function for the transverse response becomes

£
0.5 x 7 Wn(zl)

nno n
H (k) = =
nnl vnO 2 2
—— - + i + 0.
Uo kn k 1<2i;nkn 0.5 KSnz)k (B-10)
bn
where n_ = —.
n DO

For cases wherein the gust input is assumed to be perfectly correlated along

the length of a vehicle the frequency response functions may be obtained by
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integrating equations (B-6) and (B-10) over the vehiele length. Thus for a
uniformly distributed ul(t) gust the frequency response function for de-
flection in the x direction is from equation (B-6)

K 8
HE (k) = n n3

n

(B-11)

2 2 .
uniform kn -k 1('22;nkn * KSnQ)k

and similarly for a uniformly distributed wv(t) gust in equation (B=10}

Hn (k) _ 0. 5Kn5n3

n (B-12)
. 2 2 .
uniform k © -k + 1(2cnkn + 0.5KSn2)k

1

where Sn3= f Wn(z)d(z/l)._
0

Response Spectrum
With the turbulence spectra relationships in appendix A and the frequency
response functions derived in the previous section, working equations for the
structurel response spectrum for the nth mode can be formulated as follows:
For a uniform one-dimensional gust input equatioms (3), (B-11}, and
{B-12) combine to yield

one-dimensional u gust

= ® (k)
o 08) ) niform = ) 3 u/u,

2 2 2
(k, © -k} + (2:nkn + KnSn2) K

n
(B-13a)

one-dimensional v gust
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2
3

2
0.2 SKn Sn

@n(k) @v/UO(k)

n, wiform 2 2

2 2
) o+ (2cnkn +0.5¢ 8

2
(‘kn -k

n2) k

(B-13b)

The turbulence spectra in these equations are expressed as a function of

wD
k = =2 and u and ‘v are normalized with respect to UO. With these

changes in variables the spectra given by equation (A-13) and equation (A~19)
become, respectively

L/D

[l

) x) =2 — ,
u/Uy T er 1+ (L/DO)ZKQ (B-1ka)
2 1+ 3(L/D_ )%k
e,y (k) = %%"J’I:;— : 2 (B-1kb)
) o Do 2.2
[1 + (/D)%% ]

For two-dimensional gust inputs the following expressions can be derived

two-dimensional u gust

e, (k) = Tun(k)‘@g(k)

Y n, uniform (B-15a)

two-dimensional v gust

e (x) = Tm(k)an(’k)

n n, uniform (B-15b)

where the functions T\m(k) and Tvn(k) are in the nature of "attenuation”
factors which account for the two-dimensionality of the gust field. These

"atténuation" factors can be expressed in matrix notation as follows:
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2
1,00 = L e | [, ] {eual (B-16)
nl

The elements Yij(k) , representing the real part of the normalized cross
spectrum between points i and Jj, are given for the uw and v compon—
ents of turbulence by the approximate formulas in equation (A-22). This
function depends on the properties of turbulence and is independent of
strﬁctural parameters. The quantity W(Jje), on the other hand, depends on
the diameter and mode shape of the structure as well as the shape of the mean

wind profile. (See eq. (B-kL).)

2
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Figure 1.- Factors contributing to ground-wind loads.
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Figure 2.- Aercelastic ground-wind-losd models in the 16-foot Langley
Transonic Dynamics tunnel.
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Figure 3.- Time exposure of bending moments on an oscilloscope screen.

Figure 4.- Viscous damper used in ground-wind-loasd models.
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Figure 5.~ Typical free-vibration records from 0.30-scale Saturn ¥V model with
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Figure‘ 6.~ Performance characteristics of an auxiliary mass damper. m/M = 0.05.
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Figure 8.~ A conceptual representation of dynamlc response of structures to wind-induced loads.
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Figure 9.~ Nonlinear merodynamic charscteristics associated with vortex shedding.
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Figare 10.- Analog computer simulation of vortex-shedding phenomenon.
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Figure 1l.- Analog computer solutions showing effect of nonlinear aerodynamic damping on dynamic
response.
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Figure 12.- Typical variations of unsteady wind with height,
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Figure 13.- Comparison of turbulence characteristics in wind tunnels and the atmosphere.
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Figure 1h4.- Response equations for systems excited by multiple-random inputs.
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Figure 15,- Cross spectra of turbulence components as a funetion of vertical separation distance.
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Figure 16.- Effect of gust correlation on modal response of a launch vehicle.
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. Figure 17.- Power spectrum of vehicle response to atmospheric turbulence.
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Figure 18.- Fast response anemometer.
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Figure 19.- Effect of nose spoilers on bending moment response of 0.20-scale Jupiter model.
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Figure 20.- Response of Titan-Gemini to ground-wind loads.




