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ABSTRACT 

The paper describes how, through simulation with phys ica l  and math- 

emat ica l  models, t h e  e f f e c t s  of ground winds on e rec ted  launch vehic les  

a re  being s tud ied  a t  t he  WASA, Langley Research Center. $x>erimental 

programs include both ae roe la s t i ca l ly  sca l ed  models i n  wind tunnels and 

fu l l - sca l e  vehic les  i n  na tu ra l  winds. With the  a i d  of a mathematical 

model having nonlinear aerotynamic damping, i n s igh t  is gained which helps 

expla in  why i n  some ins tances  t h e  response at s u p e r c r i t i c a l  Reynolds 

numbers i s  a r e s u l t  of random forced exc i ta t ion  while i n  o the r  instances 

i s  charac te r ized  by a se l f - exc i t ed  per iodic  motion. 

Consideration i s  also given t o  the  response of e rec ted  vehicles t o  

atmospheric turbulence.  I t  is shown t h a t  a t  the  fundamental can t i l eve r  

frequenc37 of Saturn V c l a s s  vehicles t he  gust v e l o c i t i e s  along the  vehic le  
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are es sen t i a l ly  uncorrelated f o r  separat ion distances g rea t e r  than a few 

vehicle  diameters. Calculations indicate  that t h e  response is  s ign i f i c -  

INTRODUCTION 

This paper will concern a search f o r  new solut ions t o  ap old problem; 

namely, t h e  e f f e c t  of wind loads on f l e x i b l e  b lu f f  bodies. For years c i v i l  

engineers have grappled with t h e  problem i n  the  design of  such s t ruc tu res  

as smoke s tacks,  suspension br idges,  and t a l l  masts. 

refs. 1 through 4). I should point t h a t  included i n  these s tudies  a r e  

contributions by t h e  Director of t h i s  Conference, Professor Maher, who 

has conducted extensive wind-tunnel t e s t s  of suspension bridge sect ion 

models. 

[See, fo r  example, 

(See, f o r  example, r e f .  2 . )  

S t a r t i n g  with Goldman's invest igat ion of ground-wind loads f o r  t he  

Vanguard i n  1957 (ref . 5 ) ,  some form of wind-tunnel t e s t s  r e l a t ing  t o  

t h i s  problem has been a pa r t  of t he  development program f o r  p rac t i ca l ly  

every launch vehicle .  Examples of such s tudies  on spec i f i c  vehicles 

are t o  be found i n  references 6 through 9 ,  and other  more general  s tudies  

of vortex shedding from cy l ind r i ca l  bodies a re  given i n  references 10 

through 13. 

being expended i n  t h i s  area by noting t h a t  a t  t he  annual AIM Conference 

on Structures  and Materials held at Palm Springs,  Cal i fornia  i n  Apri l  of 

t h i s  year ,  f i ve  out  of a t o t a l  of seventeen papers i n  sessions on stru- 

c t u r a l  dynamics concerned t h e  subject of vortex shedding from bodies of 

revolution. Despite t h i s  extensive research, t h e r e  remain many important 

We f i n d  fu r the r  evidence of t he  extent  of  e f f o r t  present ly  



-XVII I -3 -  d 

questions t o  be  answered, especial ly  i n  t h e  high Reynolds number range. 

With the  a i d  of  figure 1 l e t  us iden t i fy  the  primary ingredients  of 

t h e  problem at  hand. This schematic diagram shows a launch vehicle on 

a f l e x i b l e  support s t ruc tu re  standing beside an umbilical  tower. A 

steady wind imposes both s t a t i c  and dynamic loads on the  vehicle.  

s t a t i c  loads ac t  primarily i n  t h e  direct ion of t h e  mean wind and the  

dynamic loads,  which a re  associated with vort ices  shed from t h e  vehicle ,  

a r e  l a rges t  i n  t he  d i r ec t ion  perpendicular t o  t h e  wind. These dynamic 

loads,  which m a y  r e s u l t  from e i t h e r  a random forced response or a per- 

i od ic  se l f - exc i t ed  response, are frequently seve ra l  times g rea t e r  than 

t h e  s t a t i c  drag loads.  The adjacent tower s t ruc tu re  and i ts  turbulent  

wake m a y  a l s o  have an  influence on wind loads.  These wind loads c rea t e  

problems i n  s t r u c t u r a l  s t r eng th ,  guidance alinement, and clearance be- 

tween adjacent s t ructures .  

The 

The purpose of t h i s  paper w i l l  be t o  discuss recent s tud ie s  i n  t h e  

area of ground-wind loads being conducted at the Langley Research Center. 

In  p a r t i c u l a r ,  w e  will consider four i t e m s :  wind-tunnel models and test 

techniques,  self-exci ted response, e f f ec t s  of atmospheric turbulence,  and 

fu l l - sca l e  programs. 
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WIND-TUNNEL MODELS AND TEST TECHNIQUES 

Aeroelastic Models 

The aerodynamic forces associated with ground-wind loads on erected 

launch vehicles  are a result of flow separat ion from b lu f f  bodies. Since 

such loads a r e  c r i t i c a l l y  dependent on Reynolds number, e f f o r t s  are made 

t o  dupl icate  fu l l - s ca l e  Reynolds numbers i n  the  wind tunnel.  Also, be- 

cause of  t he  s e n s i t i v i t y  of f l o w  separat ion t o  minor surface protuber- 

ances, such as conduits or  surface roughness conditions,  ca re fu l  a t t en t ion  

m u s t  be given t o  t h e  simulation of  de t a i l ed  geometric features. I f  steady- 

state loads were t h e  only consideration, a r i g i d  model having t h e  same 

geometric features  and Reynolds numbers as t h e  prototype would be ade- 

quate f o r  predict ing ground-wind loads. Unfortunately, launch vehicles 

are  not r i g i d  and usually the  predominant aerodynamic loads a r e  not steady. 

Therefore,  t h e  s t r u c t u r a l  dynamic propert ies  of t h e  vehicle ,  t h a t  i s ,  

mass, frequency, and damping, a l s o  become important considerations i n  

model scal ing.  Experience has shown t h a t  t h e  predominant dynamic response 

of launch vehicles t o  wind-induced loads is e s sen t i a l ly  t h a t  of the f i r s t  

mode alone. The s ign i f i can t  addi t ional  nondimensional parameters t o  be 

matched i n  the  wind tunnel  a r e  then the  reduced frequency based on t h e  

fundamental frequency of t h e  vehicle w D/U, t he  s t r u c t u r a l  damping, and a 

m a s s  r a t i o  involving generalized mass of  the fundamental mode t o  the  mass 

of air displaced by t h e  vehicle.  

1 

A model which simulates both aerodynamic and s t r u c t u r a l  dynamic par- 

ameters i s  r e fe r r ed  t o  as an "aeroelast ic"  model. Wind-tunnel tests of 

such models a r e  bel ieved t o  provide t h e  most d i r ec t  and r ea l i ab le  means 

of predict ing the  response of  launch vehicles t o  a steady wind. (See, f o r  
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example, r e f s .  14  and 15). 

Shown i n  f igure 2 are some ae roe la s t i c  models of s p e c i f i c  vehicles  

which have been used i n  ground-wind-load s tudies  i n  the  Langley 16-foot 

t ransonic  dynamics tunnel  during the  past  4 years.  Notice tha t  i n  most 

instances the  vehicle  models a re  t e s t e d  i n  t h e  presence of simulated um- 

b i l i c a l  towers or se rv ice  s t ruc tu re .  These towers a re  usual ly  scaled 

only with regard t o  over-all geometry. The exception i s  t h e  e rec to r  tower 

f o r  the Titan-Gemini which had scaled frequencies.  

and tower s t ruc tu res  - are  i n s t a l l e d  on a remotely control led tu rn tab le  

so as t o  permit response measurements t o  be taken from any wind d i r ec t ion .  

The models - vehicle  

By using a freon t e s t  medium, which has a kinematic v i scos i ty  of 

about one-fifth t h a t  of a i r ,  Reynolds number simulation can be approximately 

achieved f o r  a l l  of t he  vehicles shown except f o r  t he  Saturn V. For t h i s  

model, which i s  3 percent of ful l -scale  s i z e ,  t h e  Reynolds number i n  the 

wind tunnel was one-third of t he  fu l l - s ca l e  value. 

Even when Reynolds number i s  matched, however, there  are  differences 

i n  the  flow i n  wind tunnels as compared with t h a t  i n  t h e  natural  atmosphere. 

I n  the  wind tunnel  t h e  flow i s  approximately uniform and steady; i n  the  

atmosphere near t he  ground the mean wind var ies  with height and i s  gusty. 

An approximate means o f  taking i n t o  account wind var ia t ions with height is 

t o  r e l a t e  t h e  wind-tunnel veloci ty  t o  a calculated "equivalent" ve loc i ty  

which produces t h e  same s teady-state  base-bending moment as does the ac tua l  

wind p ro f i l e .  A reasonable approximation of na tu ra l  wind p ro f i l e s  has been 

simulated i n  wind tunnels by use of a t ransverse g r i d  of various s i zed  rods. 

(See r e f s .  16 and 17.) 

determine the  f e a s i b i l i t y  of  applying these techniques i n  ground-wind load 

s tud ie s .  

A p i l o t  study i s  present ly  underway at  Langley t o  
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Modeling c r i t e r i a  f o r  simulating atmospheric turbulence i n  wind tunnels 

have a l s o  been successful ly  applied i n  reference 18. These sca l ing  laws, 

however, are not compatible with those used i n  t h e  scal ing of ae roe la s t i c  

models. 

i n  wind tunnels w i l l  be given i n  a later sect ion of t h i s  paper. 

Some f u r t h e r  consideration of t h e  scal ing of na tu ra l  turbulence 

Response Measurements 

The p r inc ipa l  response measurements i n  these s tudies  a re  the  s t a t i c  

and dynamic bending moments i n  two planes at the base of t h e  model, and 

corresponding accelerat ions at  the  nose. Although t i m e  h i s t o r i e s  of the 

quan t i t i e s  are recorded, t h e  most useful  readout system employed i n  a 

two-axis oscil loscope and camera. 

puts  of X and Y bending-moment s t r a i n  gages are fed t o  the  X and 

As i l l u s t r a t e d  i n  f igu re  3, the  out- 

Y &es of t h e  scope and t h e  s e n s i t i v i t i e s  of t h e  two channels are  made . ’  
equal. A time-exposure photograph of t h e  oscil lograph screen produces 

a roughly e l l i p t i c a l  pa t t e rn  which defines the  envelope of t he  maximum 

bending-moment osc i l l a t ions  encountered during t h e  data  sampling period; 

t yp ica l ly ,  t h e  model encounters between 2,000 and 3,000 cycles of o sc i l -  

1at ion.during t h i s  period, which, i n  terms of t h e  fu l l - s ca l e  vehicle ,  is  

equivalent t o  wind exposure t i m e s  of t he  order of 1 hour. 

t h e  wind-off point t o  t h e  center  of t he  e l l i p t i c a l  pa t t e rn  represents t h e  

s t a t i c  moment, and the  longest vector  which can be drawn f r o m  t h e  wind-off 

point  t o  t h e  tangent on the e l l i p s e  is t h e  maximum resu l t an t  moment. Note 

t h a t  information on t h e  co r re l a t ion  between t h e  two-moment time h i s t o r i e s  

is displayed with this type of  da t a  presentation. It has been found t h a t  

t h e  probabi l i ty  of t h e  lateral and dragwise bending moments reaching max- 

imum values at  t h e  same t i m e  is  very low. 

The vector from 
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Damping Devices 

S t ruc tu ra l  damping has been found t o  be one of  t h e  key parameters 

which governs the  suscep t ib i l i t y  of a vehicle  t o  wind-induced osc i l l a t ions .  

It is  very d i f f i c u l t ,  however t o  control  damping i n  a model as accurately 

as other  parameters. 

oped which permits precise  regulation of t he  damping i n  a model. The de- 

v i ce  works on t h e  p r inc ip l e  of t he  c l a s s i c a l  Lanchester damper. 

of a s e r i e s  of lead slugs ( aux i l i a ry  masses) t h a t  a r e  free t o  s l i d e  on con- 

cave trays ins ide  of  a cylinder f i l l e d  with viscous o i l .  

v ib ra t e s  i n  a horizontal  plane,  t he  o i l  moves r e l a t i v e  t o  t h e  s lugs ,  there- 

by causing energy t o  be diss ipated.  The damping can be varied by changing 

t h e  number of slugs or  t h e  v i scos i ty  of t h e  o i l .  Figure 5 shows t h e  increase 

i n  damping i n  the  0.03-scale Saturn V model obtained with eight  72-gram slugs 

i n  the damper. 

A viscous damper, shown i n  f igure 4, has been devel- 

It cons i s t s  

A s  t he  cylinder 

Various damping devices have been used or proposed a s  means of  a l l ev i -  

a t i n g  wind-induced o s c i l l a t i o n s  of smoke s tacks.  Usually t h e  dampers a r e  

connected t o  the  s t ruc tu re  by means of guy wires ( r e f .  3 and 4). Since 

guy wire supports a r e  often not feasible  i n  launch vehicle appl icat ions,  

it is of i n t e r e s t  t o  consider t h e  use of aux i l i a ry  mass dampers, which re- 

quires  no ex te rna l  connections, as a possible method for reducing wind- 

induced loads on ful l -scale  vehicles.  Such devices presumably could be 

attached t o  the  vehicle  during high wind conditions and then be removed 

p r i o r  t o  launch. 

Theoret ical  performance cha rac t e r i s t i c s  of an auxi l iary mass damper 

a re  shown i n  f igu re  6 as a three-dimensional surface.  

an aux i l i a ry  mass rn is  connected t o  t h e  vehicle s t ruc tu re  through a 

spr ing kd and dashpot e ,  as indicated schematically i n  the  f igure.  

It is assumed t h a t  

The 
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vehic le  structure i s  represented mathematically as a single-degree-of f ree-  

dom o s c i l l a t o r  having a generalized m a s s  M and na tu ra l  frequency 

The case shown is f o r  m/M = 0.05.  The v e r t i c a l  a x i s  i n  the  f igu re  is t h e  

damping r a t i o  

from t h e  r e a l  pa r t  of one root  of t h e  cha rac t e r i s t i c  equation f o r  t h e  

coupled system. 

coupled f requencies ,  and 

ameter. This f igu re  simply i l l u s t r a t e s  a well-known r e s u l t  from t h e  

theory of v ib ra t ion  absorbers ( see ,  f o r  example, r e f .  19) t h a t  when t h e  

auxiliary m a s s  i s  "tuned" t o  the  na tu ra l  frequency of t h e  system t o  which 

it i s  a t tached ,  and 

pa t ion  can be achieved. The previously discussed Lanchester type damper i s  

represented by t h e  curve f o r  Note t h a t  t h i s  damper has optimum 

performance at c / 2 m  = 0.5. The wind-tunnel research appl ica t ions  where 

prec ise  con t ro l  of damping i n  ae roe la s t i c  models i s  des i red ,  t h e  f a c t  t h a t  

?' 

c1 assoc ia ted  wi th  t h e  vehic le  mode; th i s  was determined 

P lo t t ed  on t h e  o the r  axes a r e  wd/wl, t h e  r a t i o  of un- 

c/2mwl, a nondimensional viscous damping par- 

c/2mwl i s  near an optimum value ,  l a rge  energy d i s s i -  

wd/wl = 0. 

1 

5 is r e l a t i v e l y  in sens i t i ve  t o  va r i a t ions  i n  c/2mwl becomes an a t t r a c t i v e  1 

f ea tu re ;  however, i n  fu l l - sca le  appl ica t ions ,  where weight of t he  aux i l i a ry  

m a s s  may be an important consideration, tuned dampers o f f e r  more than an 

order of magnitude improvement i n  performance. 

SELF-EXCITED RESPONSE 

Various and conf l i c t ing  theor ies  have been advanced regarding unsteady 

aerodynamic forces associated with vortex shedding from c i r c u l a r  cy l inders .  

In t h e  s u p e r c r i t i c a l  Reynolds nunber range - t he  range of primary i n t e r e s t  

f o r  t h e  present problem - experimental da ta  ind ica t e  t h a t  i n  some instances 

these  forces a re  random and insens i t i ve  t o  notion of t he  s t r u c t u r e  (Fung, 
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r e f .  10) and in  o the r  instances per iodic  and s t rong ly  dependent on motion 

(Buel, et a l . ,  r e f .  12 and Den Hartog, r e f .  3) .  This s ec t ion  of t h e  paper 

w i l l  be  devoted t o  consideration of  these  apparent differences.  In par- 

t i c u l a r ,  a simple mathematical model, involving nonlinear aerodynamic da??p- 

i n g ,  i s  presented which has behavior cons is ten t  w i th  both  of  t h e  above- 

mentioned phenomena. 

Experimental Results 

In  recent  wind-tunnel t e s t s  at Langley involving Saturn I-B and Saturn 

V ground-wind load models v io l en t  se l f -exc i ted  o s c i l l a t i o n s  were encountered. 

These o s c i l l a t i o n s  occurred at Reynolds numbers as high as 4 X 10  

the  model's maximum diameter. 

reduced frequencies,  based on the  maximum diameter, i n  t h e  neighborhood of 

0.2 which happens t o  be t h e  S t rouhal  number of t h e  Karman vortex s t r e e t  at 

s u b c r i t i c a l  Reynolds number.' 

been observed on l a r g e ,  l i g h t l y  damped, s t e e l  smokestacks and t h e  so lu t ion  

has been t o  add damping ( r e f .  3) o r  a t t ach  aerodynamic spo i l e r s  t o  t h e  

s t ruc tu re  ( r e f .  2 0 ) .  

6 based on 

On both models t h e  i n s t a b i l i t y  appeared at  

Similar se l f -exc i ted  response phenomena have 

Now it might be argued t h a t  these  high response conditions observed at 

a p a r t i c u l a r  wind ve loc i ty  could be in t h e  nature o f  a forced  resonant os- 

c i l l a t i o n  r a the r  than an i n s t a b i l i t y .  Data presented i n  f igu re  7 ,  however, 

It should be noted t h a t  fo r  these  models the  peak response apoears t o  be 
a r e s u l t  of vortex shecding f r o m  t h e  lower s tages  at  a S t rouhal  number of 0.2. 
Response c h a r a c t e r i s t i c s  were r e l a t i v e l y  in sens i t i ve  t o  changes i n  nose shape 
or sur face  roughness condi t ions ;  f o r  o the r  vehicles conf igura t ions ,  nose shape 
and roughness may be t h e  dominant f ac to r  a f f ec t ing  response. (See r e f .  12.)  
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serve t o  disprove t h i s  argument. These da t a  w e r e  obtained on the  0.03- 

sca l e  Saturn V model. The f igu re  shows t h e  va r i a t ion  of dynamic bending- 

moment response with ve loc i ty  f o r  t h ree  values of  s t r u c t u r a l  damping. 

note t h a t  f o r  t h e  smallest damping of 5 = 0.004, t h e  response peaks sharply 

at a reduced veloci ty  of approximately 4.5. The sample t i m e  h i s to ry  shown 

f o r  t he  peak response point i s  a nearly constant amplitude s i n e  wave at  

t h e  fundamental model frequency. 

t o  0.008 t h e  sharp spike is eliminated and t h e  response time his tory i s  

character ized by a random-amplitude constant-frequency motion typ ica l  of the  

response of  a l i g h t l y  damped system t o  a random-forcing function. This com- 

p l e t e  change i n  character  of t h e  response time h i s t o r i e s  as damping increases  

suggests t h a t  at a c e r t a i n  c r i t i c a l  veloci ty  t h e  s t r u c t u r a l  damping of t he  

system is a control l ing f ac to r  which determines whether t h e  dynamic response 

is a r e s u l t  of self-exci ted or ex te rna l ly  forced motions. I n  e i t h e r  case it 

is  apparent t h a t  s t r u c t u r a l  damping of the  model is an important parameter 

t o  be simulated. 

on t h e  response of systems t o  random o r  per iodic  forcing functions,  without 

consideration of motion-dependent aerodynamic forces ,  would be inappl icable  

for these cases of s e l f - exc i t ed  response. Similar r e s u l t s  a r e  shown i n  ref-  

erence 12.  

F i r s t ,  

When t h e  damping is increased from 0.004 

Furthermore, t he  commonly used sca l ing  laws ( r e f .  21) based 

Conceptual Model of Self-Excited Response 

L e t  us now attempt t o  i n t e r p r e t  t he  mechanism producing these observed 

dynamic i n s t a b i l i t i e s .  Scruton, i n  reference 22, has made extensive wind- 

tunnel  s tudies  of i n d u s t r i a l  s t ruc tu res  such a s  smokestacks and towers, and 

has reported s i m i l a r  i n s t a b i l i t i e s  which he a t t r i b u t e s  t o  a nonlinear aero- 

dynamic damping t h a t  becomes negative at a p a r t i c u l a r  wind velocity.  

results were obtained at s u b c r i t i c a l  Reynolds numbers; however, h i s  f indings 

Scruton's 
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appear t o  be applicable t o  t h e  present s tudies  where Reynolds number varies 

from 1 t o  6 mill ion.  

A launch vehicle  s t r u c t u r e  and the  aerodynamic loads associated with 

vortex shedding are represented conceptually by t h e  block diagram pictured 

i n  f igu re  8. Le t  FS(t)  be t h e  aerodynamic forcing function which is in- 

dependent of vehicle motion and t o  a nonlinear aerodynamic damping 

force which depends on t h e  vehicle  motion. I n  t h e  equations of motion, d lso  

given i n  f igu re  8, t h e  left-hand s ide  describes dynamics of t h e  s t r u c t u r e  i n  

terms of a na tu ra l  frequency and damping r a t i o  and t h e  right-hand s i d e  ex- 

presses t h e  aerodynamic forces i n  terms of a lateral force coe f f i c i en t  

C ( t )  and damping coe f f i c i en t  C.. For t h e  present purpose it w i l l  be 

assumed t h a t  C ( t )  is a random function of time. Depending on t h e  re- 

l a t i v e  magnitudes of  t h e  s t r u c t u r a l  and t he  aerodynamic damping coe f f i c i en t s ,  

t h e  response x ( t )  

wind can t ake  on e i t h e r  of t h e  two forms indicated i n  the  f igure.  When the  

damping is  predominantly s t r u c t u r a l ,  t he  response w i l l  be t h e  c h a r a c t e r i s t i c  

random-amplitude constant-frequency motion t y p i c a l  of a l i g h t l y  damped system 

driven by a random forcing function. With aerodynamic damping present i n  a 

nonlinear form such as measured by Scruton, t h e  p o s s i b i l i t y  e x i s t s  for s e l f -  

exci ted motions indicated i n  t h e  figure by the  constant ampli tudesinusoidal  

response. A representat ive p lo t  of t h e  va r i a t ion  of C2 with reduced fre- 

quency (see f i g .  9 )  shows t h a t  over a narrow range of f D / U  near 0.20, t h e  

aerodynamic damping has  a des t ab i l i z ing  influence which depends s t rong ly  on 

t h e  amplitude of  motion. A t  t h i s  c r i t i c a l  value o f  reduced frequency the  

des t ab i l i z ing  e f f e c t  becomes smaller as t he  amplitude of motion increases.  

FD(t)  

L 

L 

of t he  s t ruc tu re  i n  t h e  d i r ec t ion  perpendicular t o  t h e  

Thus, an energy balance is eventually es tabl ished between t h e  energy input 

by negative aerodynamic damping and the  energy absorbed by pos i t i ve  
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s t r u c t u r a l  damping. This leads  t o  a l imit-cycle o s c i l l a t i o n  whose amplitude 

is  inverse ly  propor t iona l  t o  s t r u c t u r a l  damping as shown i n  p l o t  on r i g h t  

s ide  of f igu re  9. 

Analog Computer Studies 

Further i n s igh t  i n t o  t h e  behavior of t he  nonlinear mathematical model 

presented i n  f igures  8 and 9 may be gained from analog computer so lu t ions .  

For t h i s  purpose t h e  equation i n  f igu re  9 has been programmed on an analog 

computer i n  t h e  manner shown i n  f igu re  10. The random l a t e r a l  forc ing  

function C L ( t )  was obtained by passing t h e  output of a Gaussian white-noise 

generator through a f i r s t -o rde r  low-pass f i l ter .  The f i l t e r  time constant 

was ad jus ted  t o  make t h e  power spectrum of C ( t )  approximate c lose ly  the  

spectrum f o r  f ixed  cylinders presented by Fung in  f igure  11 of reference 

10. Output of t h e  noise generator was ad jus ted  such t h a t  t h e  root-mem- 

square of CL matched Fung's measured value of 0.12. A s  an approximation 

t o  Scruton's r e s u l t s  i n  reference 22, t h e  nonlinear damping coe f f i c i en t  

w a s  assumed t o  be inverse ly  propor t iona l  t o  a running average of t h e  ab- 

so lu t e  value of response. 

L 

The r e s u l t s  are shown i n  f igu re  11 as a p l o t  of maximum response 

observed during a computer run aga ins t  damping of t h e  s t ruc tu re .  

on t h e  l e f t  o f  t he  f igu re  represents  t he  system response with the  motion- 

dependent aerodynamic force set equal t o  zero. This response var ies  in- 

verse ly  as 6 
systems ac ted  on by a random forc ing  function. (See r e f .  21.)  According 

t o  Scruton's da t a  t h i s  is representa t ive  of conditions when the  na tu ra l  

frequency of t h e  system i s  not i n  t h e  v i c i n i t y  o f  t he  S t rouhal  frequency. 

The right-hand s i d e  of t he  f igu re  shows corresponding r e s u l t s  when the  

na tu ra l  frequency and t h e  S t rouhal  frequency have approximately t h e  same 

The p lo t  

which is  t h e  r e l a t ionsh ip  pred ic ted  f o r  l i g h t l y  damped 
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values ,  say,  fnD/UF=0.2. Note t h e  s i m i l a r i t i e s  i n  these  analog t i m e  

h i s t o r i e s  and the  bending-moment t i m e  h i s t o r i e s  shown i n  f igu re  7 f o r  t h e  

Saturn V model. 

The apparent incons is tenc ies  between F'ung's observation ( r e f .  10) - 

aerodynamic forces  on cy l inders  a re  random and e s s e n t i a l l y  independent o f  

body motions - and t h e  se l f -exc i ted  response observed f o r  both wind-tunnel 

models and smokestacks might then be reconciled as follows: In Fung's in- 

ves t iga t ion ,  t he  cy l inder  motion w a s  l imi ted  t o  reduce frequencies below 

0.12; Scruton ( r e f .  22) and t h e  present wind-tunnel s tud ie s  ind ica t e  t h a t  

motion dependent forces ,  i n  t h e  form of negative aerodynamic damping occur 

i n  a narrow range of reduced frequencies near  t h e  S t rouhal  number of 0.2. 

In  order  t o  shed fu r the r  l i g h t  on these and r e l a t ed  ques t ions ,  a generalized 

research study on two-dimensional cy l inders  w i l l  be  conducted i n  t h e  Langley 

t ransonic  dynamics tunnel  up t o  Reynolds number of 20 X 10 . The Martin 

Company, George C .  Marshall Space F l ight  Center, and Langley Research Center 

w i l l  be j o i n t  pa r t i c ipan t s  i n  t h i s  program. 

6 

RESPONSE TO TURBULENCE 

Comparison of Wind-Tunnel and Atmospheric Turbulence 

Unlike t h e  uniform p r o f i l e  of steady wind in  a wind tunne l ,  atmospheric 

winds near t h e  ground are t y p i c a l l y  as i l l u s t r a t e d  i n  f igu re  12. The pro- 

f i l e  pa t t e rns  shown represent  instantaneous d i s t r ibu t ions  of ho r i zon ta l  wind 

t h a t  may occur as a f i e l d  of turbulence i s  blown pas t  an e rec ted  vehic le .  

dashed l i n e  i n  t h e  f igu re  represents  t he  mean wind averaged over,  s ay ,  a 1- 

minute per iod;  t h e  l i t t l e  arrows represent more r ap id  wind f luc tua t ions  of 

wind components i n  t h e  d i r ec t ion  of t he  mean flow. A s  ind ica ted  i n  t h e  f igu re ,  

t hese  unsteady wind components vary randomly i n  both time and space. Since 

The 
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these winds produce random loadings on the s t ruc tu re ,  power s p e c t r a l  tech- 

niques appear t o  o f f e r  t he  most f r u i t f u l  method of analysis  and w i l l  be  the  

approach discussed i n  t h e  present paper. 

Before considering some mathematical techniques f o r  predict ing t h e  re- 

sponse of launch vehicles  t o  ground wind turbulence,  le t  us  first discuss 

the  p o s s i b i l i t y  of simulating such turbulence i n  a wind tunnel.  Consider 

t h e  question: 

of wind tunnels need t o  be modified i n  order t o  simulate “atmospheric“ 

turbulence i n  wind-tunnel t e s t i n g  of ae roe la s t i ca l ly  scaled models? Figure 

13 w i l l  serve t o  answer t h i s  question. The f igure shows t y p i c a l  p l o t s  of  

t he  power spectrum of wind-tunnel turbulence and atmospheric turbulence 

near t h e  ground. The curves a re  p lo t t ed  against  t h e  f ami l i a r  frequency 

scal ing parameter fD/U. 

l aye r  or i n  a wind tunnel ,  can be characterized by a mean eddy s i z e  or 

“scale” length 

l a t i v e  t o  t h e  mean wind ve loc i ty ,  d= For atmospheric winds near t h e  

ground, t he  sca l e  of  turbulence is  of  t he  order of t h e  over-all  length of 

Saturn V veh ic l e ,  or 10  vehicle diameters. In  wind tunnels a t y p i c a l  value 

of L might be 1/10 t h e  diameter of a ground-wind-loads model. A l s o ,  t he  

i n t e n s i t y  of turbulence is an order of magnitude d i f f e ren t  f o r  t he  two cases,  

being, say,  20 percent of t he  mean wind f o r  t he  atmosphere as compared with 

1 or 2 percent f o r  wind tunnels.  In  summary, t h e  f igu re  indicates  t h a t  over 

t h e  frequency range of  i n t e r e s t  i n  t h e  present problem, t y p i c a l  values of 

t h e  sca l e  and i n t e n s i t y  of turbulence i n  wind tunnels and i n  the  atmosphere 

are  vas t ly  d i f f e r e n t ;  t he re fo re ,  study of t h e  e f f e c t s  of gust loads assoc- 

i a t e d  with atmospheric turbulence i n  wind tunnels must a w a i t  t he  development 

of new techniques f o r  t h e  generation and control  of  wind-tunnel turbulence. 

To what extent  would the  turbulence s t r u c t u r e  representat ive 

Turbulence, whether it be i n  t h e  ea r th ’ s  boundary 

L ,  and t h e  rms in t ens i ty  of f luc tua t ion  components re- 
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Basic Power Spectral  Relationships 

I n  absence of su i t ab le  wind-tunnel techniques for studying the  re- 

sponse of vehicles  t o  atmospheric turbulence,  w e  m u s t  work e i t h e r  with 

mathematical models o r  ac tua l  s t ruc tu res  exposed t o  na tu ra l  winds. Both 

of these approaches a r e  being pursued a t  NASA-Langley. This sect ion of 

t h e  paper w i l l  concern an ana ly t i ca l  approach t o  t h e  problem. 

Power spec t r a l  techniques have proved t o  be powerful t oo l s  for analy- 

zing t h e  response of systems t o  random inputs.  

c r a f t  gust-load predict ion have been under development for more than a de- 

cade and o f f e r  an excel lent  foundation on which t o  formulate the  present 

problem. 

( r e f .  23) which presents an exhaustive review and extension of power spec- 

t ral  techniques i n  r e l a t i o n  t o  t h e  response of airplanes t o  atmospheric 

turbulence. A basic  equation for t he  power spectrum of a l i n e a r  system 

acted upon by mult iple  random inputs i s  presented in  references 23 and 24 

wherein t h e  s t ruc tu re  i s  assumed t o  be divided i n t o  an a r b i t r a r y  number of 

segmented areas with a random forcing function ac t ing  a t  the center  of each 

segment. 

Such techniques for air- 

Of pa r t i cu la r  value i s  t h e  paper by Houbolt, S t e ine r ,  and P r a t t  

* * * 
@ ( w )  = al1H15 + Q22H2H2 + Q33H3H3 + ... 

where 

@,(d 

@. . 
1.I 

power spectrum of a response var iable  r which may denote 

base bending moment, t i p  def lect ion,  e t c .  

cross spectrum of turbulence ve loc i t i e s  a t  ith and jth points 

on the  s t ruc tu re  
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H. frequency response function which gives t h e  response due t o  

a u n i t  s inuso ida l  gust component ve loc i ty  ac t ing  at  t h e  

segment of sur face  a rea  assoc ia ted  with t h e  ith poin t  

H . * ( W )  = H.(-W) complex conjugate of H. 

R e  denotes t h e  r e a l  p a r t  

I n  i t s  general  form this equation ind ica tes  t h a t  a considerable amount 

of information regarding t h e  s p e c t r a l  descr ip t ion  of turbulence is  requi red  

i n  order t o  define t h e  response spectrum. Spec i f i ca l ly ,  t he  power s p e c t r m  

of hor izonta l  components of turbulence must be spec i f i ed  a s  a function of 

frequency at each of n points on t h e  s t r u c t u r e  toge ther  xLth t h e  cross 

spec t r a  between a l l  combinations of p a i r s  of t he  ve loc i ty  components. Since 

such information is r a re ly  ava i l ab le  i n  the  form requi red ,  various simpli-  

fy ing  assumptions must be made i n  order t o  obtain numberical so lu t ions  t o  

equation (1). The most frequently made assumptions a re  t h a t  t h e  gus t  ve- 

l o c i t i e s  a r e  i n  phase at every poin t  on t h e  s t r u c t u r e  and t h a t  the  tu r -  

bulence f i e l d  is homogeneous; t h a t  i s ,  

all = 012 = a13 ... Oln ( 2 )  

With these  assumptions, equation (1) reduces t o  t h e  following simple 

form 

(3) 2 
Or(w) = \HI all 

where 

H = H + H + ... Hn frequency response function f o r  a s inusoida l  gus t  un- 1 2  

formly d i s t r ibu ted  over t he  vehic le  length  

power spectrum of gust components @11 

Bohne, i n  re ference  2 5 ,  u t i l i z e s  t h i s  equation i n  analyzing the  res?onse 

of launch vehic les  t o  ground-wind turbulence.  Various empirical  expressions 
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for the power spectrum of turbulence, derived from data obtained from wind 

towers and airplanes, are available fo r  use i n  such calculations. 

example, re fs .  23, 26, 2'1, and 28.1 

(See, for  

An obvious shortcoming of the assumption of perfect correlation of 

gusts along the length is t h a t  dynamic response i n  the  fundamental mode is 

l ikely t o  be grossly overestimated, especially i f  gust wave lengths corres- 

ponding t o  the fundamental s t ructural  frequency are small i n  comparison with 

the  vehicle length. A mare rat ional  assumption would be t o  account for  cor- 

re la t ion of gust velocities on the basis tha t  atmospheric turbulence is  

local ly  homogeneous and isotropic; that  i s ,  i t s  s t a t i s t i c a l  p r o p d i e s  i n  

a given volume of a i r  are the same a t  a l l  points and are independent of ro- 

ta t ions of the reference axes. In an analysis of response of line-like 

structures t o  gusty winds, Davenport ( re f .  29) makes similar assumptions 

and j u s t i f i e s  them on the basis of experimental evidence. 

conditions the cross spectra depend only on the separation distance between 

points and are independent of height above the ground. The following re- 

la t ions then apply 

Under these 

rnll = a2* = 933 = ... onn 

* * 'n ,n+l a12 = P23 = 034 = 

013 = = P = 35 @n,n+2 (41  

and equation (1) becomes 

ar(w) = mll { XIHl* + H2H2* + . . . 2Re [ '12 (E1 * H2 + H2*H3 + - - - 1 
11 

+ '13 (H1 * H3 + H2*H4 + ...I + --+E 'ln * H + H2Hn+1 + ... I]} ( 5 )  

11 '11 
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Cross Spectra of Turhulence 

In  order t o  calculate the response spectrum on the  basis  of equation 

These functions (5) the cross-spectra functions m u s t  f i r s t  he specified. 

are derived i n  appendix A from theoret ical  considerations which employ 

Taylor's hypothesis ( i . e . ,  fixed patterns of turbulence are transported 

at the mean wind velocity) together with the assumption that over the  

height intervals of in te res t  the turbulence is homogeneous and isotropic. 

Results from the  theory are plot ted i n  figure 16. 

15(a) are  experimental data obtained by Singer ( re f .  30)  from a. 400-foot 

tower in  wooded country at the Brookhaven Laboratory and by Davenport ( re f .  

29)  on a 500-foot mast i n  open grassland. 

the experimental data from both of these s i t e s  are  i n  reasonable agreement 

and tha t  the theoret ical  curve f a l l s  within the sca t te r  of the data. 

Also shown i n  figure 

It is encouraging t o  note t h a t  

Probably the most s ignif icant  feature of figure 1 5  i s  that  for  ver t ica l  

separation distances greater than about 0.3 of u component wavelengths o r  

0.5 of v component wavelengths the gusts are eSSentiallY uncorrelated. 

For example, i n  a 60-knot wind at a frequency corresponding t o  the Saturn 

V fundamental cantilever frequency ( f  0.5 cps) ,  correlation of u gust 

components is negligible for  separation distances greater than two maximum- 

vehicle diameters. 

The ordinate i n  figure 15, defined as the square root of the coherency 

function, represents the modulus of the complex cross spectra which consists 

of a rea l  (copowerl par t  and an imaginary (quadpower] part. It should be 

pointed out that  i n  the theoret icalcross  spectra the quadpower is zero where- 

as i n  the  experimental cross spectra  a s m a l l  quadrature component was  measured. 

These quadrature components are  due i n  par t  t o  shear flow i n  the  wind prof i le  

and also probably lags i n  the wind sensors. 
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Applications 

In appendix B the  freqwncy response functions indicated i n  equation 

(5)  are derived i n  t e r n  of natural  vibration modes of a structure. 

response spectrum f o r  a two-dimensional gust input i s  then expressed as a 

product between the response spectrum for  one-dimensional gusts and a so- 

cal led "attenuation" factor which accounts for  the  two-dimensionality of 

turbulence. For example, the  spectrum of response i n  the x direction 

due t o  u gust components is (see eq. (B-15a) 

The 

where the subscript 

uation factor given by equation (a-161 i n  appendix B. 

matrix equation indicates tha t  T 

h ic le  geometry, mode shape, wind prof i le  shape, and the cross spectra of 

turbulence between points along the vehicle. 

n refers  t o  the mode number and T (k) i s  the atten- 

Examination of t h i s  

un 

(k)  is dependent on such factors as  ve- un 

In order t o  present some specific resul ts  the gust attenuation factor  

w a s  evaluated for a Saturn V class vehicle i n  a Tun'k) = 'x/'x,uniform 

cantilevered unfueled condition. The Saturn V has a maximum diameter of 

33 feet  and is  about 350 feet  t a l l .  Natural frequencies of the first two 

cantilevered modes were assumed t o  be 0.48 cps and 1.85 cps. 

wind prof i le  shape considered followed a 1/5 power l a w  variation with 

height as suggested i n  reference 31. 

The steady 

Results of these calculations are presented i n  figure 16. Note that  

for  reduced frequencies fD/U greater than about 0.1 attenuation due t o  two- 

dimensional effects  i s  approximately twice as great for  the  f i r s t  mode as it 

is for  the  second mode. A physical explanation of this resu l t  can be gained 

by recognizing tha t  i n  the f i r s t  mode a 180' phase shift for  gusts on opposite 
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s ides  of the  node l ine  has a load amplifying effect. 

noted i n  reference 24. 

Although gust correlation effects  tend t o  attenuate the  f i r s t  mode t o  

Similar resu l t s  are  

a much greater extent than t h e  second mode, the absolute response is ,  never- 

theless ,  predominantly that of the  f i r s t  mode. This resul t  is associated 

with the  rapid decrease i n  turbulent energy with increasing frequency. 

An interest ing feature t o  be noted is  tha t  the  curves in  figure 16 are 

independent of the scale  of turbulence. 

assumption made i n  appendix A tha t  the gust wavelengths of in te res t  are 

equal t o  or less than the scale  of turbulence. 

This i s  a consequence of the  

Power spectra of first-mode response t o  u and v gust components are 

presented i n  figure 17 for  1-D and 2-D turbulence. The response deflection 

has been made nondimensional by dividing it by the  s t a t i c  deflection assoc- 

ia ted  with the mean wind speed. In  these calculations it has been assumed 

tha t  the wind speed is the 99.9 percent probable max imum a t  Cape Kennedy 

(ref.311 which is  43.4 knots at the 240-foot height. 

height i s  the  effect ive wind velocity 

over the  vehicle, would produce the  same s t a t i c  dragwise base bending moment 

as does the  assumed wind prof i le .  The mean square turbulence was assumed 

t o  be 2 = * = 0.03 U$. And f ina l ly ,  the form of the power spectra for 

The velocity a t  this 

Ue which, i f  distributed uniformly 

u and v was assumed t o  be given by equation (B-141 with L = 10DO = 

330 ft at a l l  heights. 

Note i n  the figure that at the lower frequencies, corresponding t o  

long wavelengths, the 1-D and 2-D response curves are almost identical. In 

the  vicini ty  of the  first-mode natural frequency, however, the e f fec ts  of 

2 4  turbulence are indeed s ignif icant .  

the variance of response for  1-D gusts are  approximately twice tha t  of the 

From areas under the spectra curves 

2-D gusts. 



-xvIII-21- 

FULL-SCALE STUDIES 

In  previous sections of the  paper we have discussed w q a  in  M c h  the 

response of launch vehicles t o  ground-wind loads can he simulated 

of models - both physical and mathematical. %ether o r  not these models 

are the  intended analogs of t h e i r  full-scale counterparts must he judged 

on the basis of comparisons between appropriate model and full-scale data. 

Although considerable e f for t  has been devoted t o  wind-tunnel studies of 

aeroelastic ground-wind models, there is l i t t l e  i n  the  way of full-scale 

data available for  correlation with similar model data. 

means 

Jupi ter  and mor Vehicles 

In order t o  f i l l  t h i s  gap the  Langley Research Center i s  engaged i n  

two programs aimed at obtaining ground-wind response data on full-scale 

vehicles. 

Thor vehicle which have been acquired as surplus property. 

are  t o  be used solely for  ground-wind-load studies over a 1-year period 

at Wallops Island. Vehicle response, i n  the  form of bending moments and 

accelerations, w i l l  be measured together with the wind inputs a t  two 

heights near each vehicle. 

be obtained from f ive  elevations on a 250-foot tower located about L f h  mile 

from the  vehicle s i t e .  Special fast-response anemometers similar t o  the 

prototype shown i n  figure 18 (ref .  32) w i l l  be used. 

have f l a t  response t o  frequencies several times greater than the fundamental 

vehicle frequencies. Vehicle response and wind input data w i l l  be auto- 

matically recorded on magnetic tape a t  regular intervals ,  or whenever t h e  

wind exceeds a preselected value. 

The f i r s t  of these programs involves use of a Jupiter and a 

These vehicles 

In addition, other wind measurements w i l l  a lso 

These instruments 
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The previously mentioned wind-tunnel t e s t s  of  a 20-percent scale  Jupi ter  

model indicated tha t  s m a l l  strake-type spoi lers  placed on the  nose had a pro- 

nounced load al leviat ion effect .  These resul ts  are  shown i n  figure 19 as a 

plot  of the maximum resultant bending moment against wind speed. 

our f i r s t  objectives i n  the full-scale program, then, w i l l  be t o  determine 

i f  spoi lers  are i n  f a c t  as effect ive as predicted i n  the  wind-tunnel studies. 

One of 

Titan-Gemini 

The second full-scale ground wind response program has been established 

f o r  the Titan-Gemini a t  Cape Kennedy. 

Martin-Baltimore under contract with the Air Force and Manned Spacecraft 

Center. It w i l l  be closely followed by the Langley Research Center while, 

i n  addition t o  having conducted wind-tunnel studies of the vehicle and 

erector system, is providing the previously mentioned fast-response ane- 

momenters f o r  the wind-measurement phase of the program. The bending- 

moment response of the  vehicle w i l l  be read out from load ce l l s  which are  

a par t  of the launch pad hold-down structure. 

be two opportunities t o  obtain response data  when the vehicle i s  not 

sheltered by the erector tower; these are  during a fuel  loading checkout 

and immediately pr ior  t o  launch. 

T h i s  program is being conducted by 

For each vehicle there  w i l l  

Although the system is  not yet fully operational, some hending-moment 

response data were obtained by the Martin Company jus t  pr ior  t o  launch of 

the  f i r s t  Titan-Gemini vehicle. 

gether with wind-tunnel resul ts  and theoret ical  predictions of response 

due t o  turbulence. The only source of wind data available a t  the time of 

these measurements w a s  a propeller-type anemometer mounted a few feet  above 

the blockhouse and read out visually on a meter. Therefore, precise values 

These data are presented i n  figure 20 to- 
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for  the  mean wind and the intensi ty  of turbulence at the  vehicle are  not 

knoun; the  intensi ty  of turbulence assumed i n  these calculations w a s  

&U = K U  = 0.2. Although there appears t o  be reasonable agreement 

indicated between these full-scale measurements and the predictions based 

on wind-tunnel data and assumed turbulence conditions, quantitative com- 

parisons should not be attempted unt i l  the  more precise measurements of 

the wind are  available. 

L 
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CONCLUDING REMARKS 

This paper concerns the role simulation plays i n  prediction of effects  

of ground winds on space vehicles erected on the launch pad. It is shown 

t h a t  with present techniques, both wind-tunnel and mathemtical models are  

required i n  order t o  predict the  response of vehicles t o  gusty winds. 

naeans of a conceptual representation, which involves a random forcing 

function and nonlinear aerodynamic damping, new insight  i s  gained in to  the 

mechanism of self-excited response which has been observed a t  supercr i t ical  

as well as subcr i t ica l  Reynolds numbers. In  consideration of t h e  response 

t o  ground-wind turbulence, it is indicated that  the spa t ia l  correlation of 

gusts along the vehicle length can have significant e f fec ts .  Finally, it 

i s  hoped tha t  by correlation of response measurements now being obtained on 

full-scale vehicles with those predicted from models the adequacy of existing 

simulation techniques can be b e t t e r  established. 

By 

i 
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SYMBOLS 

generalized coordinates for  the  nth modal functions i n  

the x and y directions, respectively 

l a t e r a l  force coefficient 

aerodynamic damping coefficient 

viscous damping coefficient 

diameter 

vehicle maximum diameter 

nondimensional correlation functions of velocity com- 

ponents para l le l  and perpendicular, respectively, t o  a 

l i n e  r between two points i n  the f i e l d  of t-bulence 

frequency , cps 

random forcing h c t i o n  due t o  vortex shedding from a 

fixed cylinder 

aerodynamic damping force 

frequency response functions relat ing response t o  a unit 

sinusoidal input force a t  s ta t ion  i on the s t ructure  

Bessel function of the th i rd  kind 

reduced frequency (k = wDo/Uo), o r  spring constant 

Bessel function of the second kind for imaginary argument 

vehicle over-all length 

scale of turbulence (see eq. IA-811 

auxiliary h p e r  mass or mass per uni t  length 

generalized mass of the nth natural  mode 

bending moment about ax& indicated by subscript 

orthogonal components of gust velocity a t  a point i 
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z 

a = -  Az f i  
L 

generalized forces f o r  the nth mode i n  x and y 

directions, respectively 

correlation distance 

r e a l  par t  of a complex quantity 

cross correlation of horizontal gust components at point 

i and j on a ver t ica l  l i n e  

integrals  defined i n  appendix B 

nondimensional time (s = Uot/Do 

time 

attenuation of response spectra i n  nth mode due t o  

spa t ia l  correlation of u and v gusts (see eq. B-151) 

horizontal components of turbulence i n  direction paral le l  

and perpendicular, respectively, t o  the mean wind 

amplitude of sinusoidal u and v gusts 

mean wind velocity, subscript 0 denotes reference value 

equivalent uniform wind velocity 

function defined i n  equation (B-4) 

deflection response o r  horizontal axes 

s t a t i c  deflection associated with mean wind 

deflections of nth natural  mode of vehicle re la t ive  t o  the 

t i p  deflection 

ax ia l  distance along vehicle 

Y normalized cross spectra of gusts (see eqs. (A-15) and 

( A-1-17 1 1 

see equation (B-3) 

distance between segmented areas 
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5 

K n 

K 

h 

v 

P 

U 

viscous damping r a t i o  re la t ive  t o  c r i t i c a l  

damping 

Nondimensional response functions(Sn = ;, nn = ””) 
DO 

D 2  

n 
density r a t i o  parameter (K, = F) 

constant i n  figure 9 (K = e) 
nondimensiond time delay (A = F) 
reduced frequency based on L, (v = F) 
density of air o r  wind-tunnel t e s t  medium 

nondimensional separation distance (0 = 3 or 

standard deviation of a random variable 

0. ( w )  power spectra  or cross spectra of a random variable 
Ll 

w circular  frequency 

Notation : 

A dot ( * )  denotes different ia t ion with respect t o  time 

A prime ( I )  denotes different ia t ion with respect t o  s 

A bar (-1 denotes average value 

An as te r i sk  (*I denotes conjugate of a complex quantity 

Vertical bars 1 1  denote modulus of a complex quantity 

L _I row matrix 

[ ] square matrix 

{ column matrix 
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mmmx A 

DERIVATION OF CROSS SPECTRA OF 'VERTICALLY SEPAPATED 

COMPONENTS OF TURBULENCE 

Consider the horizontal components of turbulence along a fixed ver t ica l  

I n  accordance with l i n e  representing the center l i n e  of an erected vehicle. 

Taylor's hypothesis it w i l l  be assumed that  turbulence can be t reated as a 

space pattern of veloci t ies  which are transported at a mean horizontal ve- 

loc i ty  U. In addition, the turbulence is assumed t o  be haogeneous and 

local ly  isotropic. With these assumptions the correlation of veloci t ies  

between two points depends only on the distance between the  points so that  

a simple relationship ex is t s  between space correlations and time correlations 

The method of analysis t o  follow m a y  be considered an extension of the 

cross spectra of ver t ica l  gust derivedby Houbolt ( re f .  241 i n  connection 

with two-dimensional gust loads on a i rc raf t .  

Cross Spectra of u ( t )  

Consider the u component of turbulence a t  two points a distance Az 

apart on the ver t ica l  z axis (see sketch a]. 

Sketch a .  
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The quantity of in te res t  is the  cross correlation between u ( t  + T) and 1 

u ( t )  from which the 

function, defined as 

2 

R12(T 

cross spectra can be derived. The cross correlation 

= l i m  - U (t]U2(t + Tldt T ST 1 
T - t -  0 

can be expressed i n  terms of the one-dimensional correlation function of 

the turbulence f ie ld .  The two such functions required are  f ( r )  and g(r1 

which denote the correlation of velocity components para l le l  and transverse, 

respectively, t o  a l i n e  (See sketch b . )  r between two points i n  the f ie ld .  

Consider the s i tuat ion a t  time t. The velocity at point 2, i n  sketch 

a is u2(t]. Upstream of point z1 a distance UT is the  velocity q C t r  
which w i l l  a r r ive at z1 

and u2( t ) ,  

ular t o  the  line r “1- at t i m e  t. Thus 

T seconds la te r .  These components, ul(t + T )  

can be expressed i n  terms of components para l le l  and perpendic- 
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where 

UT ; cos e = s i n  8 = Az 

Substitution of equation (A-2) i n t o  equation (A-1) yields 
- ‘ I  2 

R ~ ~ ( T ~  = u f ( r )  cos e + g(r1 s i n  e ‘r (A-3)  

where f ( r )  i s  the correlation of velocities p1 and p2 i n  the direction of 

r and g ( r )  is the correlation of velocities q1 and q2 i n  the direction 

normal t o  r. These correlations are defined as 

Longitudinal : 

f ( r )  = (A-4 1 

Transverse : 

Also, i n  deriving equation (A-3) use has been made of the following relations 

which resul t  from the assumption of isotropic turbulence 

and 
(A-5) 

The cross spectrum of the u1u2 components of turbulence is defined a s  

the  Fourier transforms of the cross-correlation function given by equation (A-3) 
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Thus i n  order t o  derive a specif ic  analyt ical  expression for  the cross 

spectrum it is necessary t o  assume a specific form of f ( r )  and g ( r )  i n  

equation (A-3) .  For t h i s  purpose the simple exponential correlation functions 

which closely follows the form of isotropic turbulence observed i n  wind tunnels 

w i l l  be used. (See refs. 33 and 3 h . )  These functions are 

. 

where 

J 
I the  so-called integral  - s c a l e  of turbulence 

Substitution of equations (A-71 in to  equation (A-31 gives - 
2 
U R ~ ~ ( T )  = 

( L I Z ) ~  -!- $T2 

Jm 
L 

- J G X P  

1 (A-9) 

L 
2L [ $T2e + (Az) 

Now l e t  

Then 

a = Az/L 

h = UT/L 
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- 
R12(h) = u2 (1 - 

L 

(A-10 ) 

and the cross spectra of turbulence then follows from equation (A-6) 

(A-11) 

2 a 

2 J X P  

or 

where v = wL/U. 

pression for  cross spectrum 

Integration of t h i s  equation produces the  following ex- 

where 

and 

K n ( d  

Hn ( ( ia 

the Bessel function of the second kind for  imaginary argument, 

the Eessel function of the t h i r d  kind 
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Equation (A-12) i s  a real quantity indicating that  the derived cross spectrum 

has a zero quadrature component. 

As the  separation distance Az approaches zero, the cross spectrum (eq. 

(A-12)) reduces t o  the power spectrum of the 

which, for  f ( r )  = e-rrL, is simply 

u component of turbulence 

- 
2u2 1 P ( v )  = -- 

ull II l + V  2 (A-13) 

It i s  convenient i n  response calculations t o  express the  cross spectrum 

i n  the following normalized form 

12 )U 

Yu = -  
12 QUll 

( A-14 I 

Equations (A-12) and (A-13) substituted in to  equation (A-14) give 

An important simplification resul ts  vhen it is  recognized tha t  the wave- 

lengths for  frequencies of primary in te res t  are i n  general less than the scale  

of turbulence; tha t  is 2n(U)/w<L. The parameter a in equation (A-151 then 

reduces t o  a s ingle  nondimensional parameter 

wL >>1.Q for  - U 
W A Z  e- (A-16 I 

Therefore 
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The absolute value of equation (A-17) is  shown plotted i n  figure l g ( a ) ,  to- 

gether with experimental data obtained by Singer i n  reference 30 and Davenport 

i n  reference 29. 

Cross Spectra of v ( t )  

The equation for  the cross spectra of horizontal transverse v compon- 

ents  of turbulence i s  ident ical  t o  Houbolt's expression f o r  the ver t ica l  

components presented i n  reference 24. 

w 

This expression is 

(A-18) 

I n  the l i m i t  fo r  

transverse components of turbulence which, for  g b )  

Az = IJ = 0,  t h i s  equation reduces t o  the power spectrum for  

as given i n  equation 

(A-T),  is 

Therefore 
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Again, it can be s ta ted tha t  f o r  the  frequency range of in te res t  i n  the 

present study (v >> 1.0) 

w AzIU alone and can be written 

equation (A-20) is  essent ia l ly  a function of 

(A-21) n w A z  
yv -- -- 2 u 12 

Equation (A-21) is  found t o  be an excellent approximation t o  equation (A-20) 

for  wavelengths equal t o  or  l ess  than 2L. 

A plot of equation (A-21) as a function of f Az/U is shown i n  figure 

15(b), where f i s  frequency in cycles per second. 

I n  order t o  obtain somewhat simpler analyt ical  expressions for use i n  

response calculations, the cross spectra defined by equations (A-151 and 

(A-21) have been approximated by damped cdsine functions. 

a least-squares-fit , the  following empirical equations were obtained. 

On the basis of 

and 
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APPENDIX B 

b 

DERIVATION OF GUST RESPONSE EQUATIONS 

Frequency Response Functions 

Two sets of frequency response functions w i l l  be derived. One set re- 

lates the response of the vehicle i n  the x direction t o  a sinusoidal u ( t )  

gust input and the  other relates response i n  the  direction t o  a sinusoi- 

dal  v ( t )  gust input. The following assumptions are made: 

y 

a. The vehicle is s t ructural ly  and aerodynamically symmetrical about 

i ts  z axis which i s  ver t ical .  

b. Wind forces on the vehicle are proportional t o  the loca l  diameter 

such tha t  the  assumptions of two-dimensional s t r i p  theory are applicable. 

c. Wind forces are  quasi-static (proportional t o  the instantaneous 

dynamic pressure) and ac t  i n  the direction of flow re la t ive  t o  the vehicle. 

d. 

wind speed. 

The unsteady components of  wind are s m a l l  i n  re la t ion t o  the mean 

e. Coupling between natural  s t ruc tura l  modes can be neglected. 

F i r s t ,  consider the deflection response of a vehicle i n  the direction of  

the mean wind. Let the x component of deflection be expressed i n  terms of 

natural  modes of the  structure 

x(z , t l  = al(tIxl(z) + a2(t)x,(z) + ... (B-1) 

where x (z)  is the nth natural  mode shape and a I t )  i s  a generalized 

coordinate determined from solution of the d i f fe ren t ia l  equation 

n 

(B-2 1 2 Qa B + 2 < w a  + w n  a n =  
Mn n n n n  
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I n  equation (E-2) 5, is the equivalent viscous s t ruc tura l  damping re- 

l a t ive  t o  c r i t i c a l  damping, wn the natural  frequency, Mn the generalized 

mass, and Qx,n the  generalized force - each f o r  nth mode of vibration. 

Assume that a gust velocity u( t )  acts over an element of length E 

centered over s ta t ion  z1 on the structure. The generalized force i n  equa- 

t i o n  (B-2) then becomes 

where 6(z,z ) is a function which has t h e  following properties 1 

= 0 elsewhere 

With the assumption that  the air density p is constant and the mean wind U 

i s  large compared with u and An, equation (B-3) can be written 

where 
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With the notation 

a n 5, = - 
DO 

-- a ‘ 0  a 
a t  D~ as 

equation (B-2) becomes 

where kn = - 
‘0  

a 
as’ 

and a prime denotes, - 

I f  the gust at  z1 is  assumed t o  vary sinusoidally with time i n  equa- 

ikS t i o n  (B-5); tha t  is ,  un(z13t1 = u e , 5, = then the frequency 

response function for  dynamic deflections of a vehicle i n  the x direction 

associated with this gust input is 

nO 

K t W n c Z I I  
‘no 

‘0 

HE l(k) = -- 
n kn2 - k2 f i ( 2 5  k + “Sn2)k 

n n  - 

Note tha t  the s t a t i c  dragwise deflection has been suhtracted from the t o t a l  

deflection i n  obtaining equation (B-61. 

The response of the  vehicle i n  the direction transverse t o  the aind can be 

similarly e q r e s s e d  i n  terms of natural modes 



where bn is determined from the equation 

bn + 2CnWn7;, + Un%, = L E  
‘n 

and yn(z) = xn(z) by symmetry. The generalized force for transverse re- 

sponse i s  

where 

s in  B = 

I n  a manner similar t o  tha t  followed i n  obtaining equation (B-6) the  

frequency response function for  the transverse response becomes 

0.5 K n  ;wn(Z1) 
“no 

no 
uO kn 

Hn l (k)  = -- v 
- k2 + i( 2Cnkn + 0.5 K S ~ , ) ~  - n 

bn 

Do’ 
where nn = - 

For cases wherein the gust input is assumed t o  be perfectly correlated along 

the length of a vehicle the frequency response functions m a y  be obtained by 
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integrating equations (B-6) and (B-10) over the vehicle length. 

uniformly dis t r ibuted u ( t )  gust the frequency response function f o r  de- 

f lect ion i n  the x direction is  from equation (B-61 

Thus f o r  a 

K s  
n n3 

- k2 + i(25,kn + KSn2)k 

(B-11) 

and similarly for  a uniformly distributed v ( t )  gust i n  equation CB-10) 

0 * 5Knsn3 
(B-12) 

- k2 + i (25 k + 0.5KSn2)k 
jn_(*)I uniform = kn n n  

1 

where 

3 0  

Response Spectrum 

With the turbulence spectra relationships i n  appendix A and the frequency 

response functions derived i n  the previous section, working equations f o r  the 

s t ruc tura l  response spectrum for the nth mode can be formulated as follows: 

For a uniform one-dimensional gust input equations (31, (B-111, and 

(B-12) combine t o  y ie ld  

one-dimensional u gust 
K 2s 2 n n3 

(k) 
‘c‘k)n, uniform - 2 ““,2 - k2] + (2cnkn + K ~ S ~ , )  k2 

one-dimensional v gust 
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2 2  
0 25Kn sn3 

4 d u o  
2 2  2 Qn(k)n, uniform - 

- k2) + (25,kn + 0 . 5 ~ ~ s ~ ~ )  k (kn 

The turbulence spectra i n  these equations a re  expressed as a function of 

k = -  wDo and u and v are normalized with respect t o  Uo. W i t h  these 
uo 

changes i n  variables the spectra given by equation (A-131 and equation (A-19) 

become, respectively 

- 
,2 1 + 3(L/Do12k2 

@ (IC) = (B-14b) 

Do[l + <L/DO)2k2]2 
v/uo A u 

For two-dimensional gust inputs the following expressions can be derived 

two-dimensional u gust 

two-dimensional v gust 

where the functions TU,(k) and Ty,(k) are i n  the  nature of "attenuation" 

factors  which account for  the two-dimensionality of  the gust f ie ld .  These 

"attenuation" factors can be expressed i n  matrix notation as follows : 



w 
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where 

i = 1, 2 ,  ... m 

j = 1, 2 ,  ... m 

The elements 

spectrum between points  i and j ,  are given f o r  t h e  u and Y compon- 

en t s  of turbulence by t h e  approximate formulas i n  equation (A-221. 

function depends on the  propert ies  of turbulence and i s  independent of 

s t r u c t u r a l  parameters. 

t h e  diameter and mode shape of t he  s t ruc tu re  as we l l  as the  shape of t h e  mean 

wind p ro f i l e .  (See eq. (B-41.) 

y i j (k ) ,  represent ing the real par t  of t h e  normalized cross 

This 

The quant i ty  W( jc], on the  other  hand, depends on 
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Figure 1.- Factors contributing to ground-Wind loads. 
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Figure 2.- Aeroelastic ground-wind-load modela in the &foot Langley 
Transonic nynamics tunnel. 
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Figure 3.- T i m e  exposure of bending moments on an oscilloscope screen. 

MODEL 

NASA 

Figure 4.- Viscous damper used in ground-wlnd-lo8d models. , 
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Figure 5.- Typical free-vibration records from 0.30-scale Saturn V model with 
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Figur? 6.- Perfolmence characteristics of an auxiliary mass aamper. m/M = 0.05. 
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Figure 7.- Effect of damping on maximum dynamic bending moment response of 0.03-seale Saturn V 
model. 
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Figure 0 . -  A conceptual representation of dynamzc response of structures to wind-induced loads. 
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Figure 9.- Nonlinear aerodynamic characteristics associated with vortex shedding. 
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Figure 10.- Analog computer simulation of vortex-shedding phenomenon. 
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Figure 11.- h a l o g  computer solutions showing effect  of nonlinear aerodynnmic damping on aynsmic 
response. 
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Figure 12.- Typical variations of unsteady wind with height. 
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Figure 13.- Comparison of turbulence characteristics in wind tunnels and the atmosphere. 
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Figure 14.- Response equations for systems excited by multiple-random inputs. 
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Figure 15.- Cross spectra of turbulence components as a f'unction of ver t ica l  separation distance. 
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Figure 15. - Concluded. 
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Figure 16.- Effect of fpst correlation on mods1 response of a launch vehicle. 
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. Figure 17.- Power spectrum of vehicle response to atmospheric turbulence. 
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Figure 18.- Fast response anemmter. 
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Figure 19.- Effect of nose spoilers on bending nwment response of 0.20-scale Jupiter model. 
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Figure 20.- Response of Titan-Gemini t o  ground-wind loads. 


