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THE CONCEPTUAL  DESIGN OF A SMALL, SOLAII PROBE
(SUN BLAZER)

A scientific experiment to measure the electron density of the solar corona
will use apparatus consisting of a small, solar-pressure-oriented spacecraft con-
taining a multiple-frequency, pulsed, 2-kilowatt, solid-state transmitter, and a
terrestrial 50-dB dipole phased array receiving antenna.

Included are analyses of the communication system, the 0.63-AU perihelion
solar orbit, the semi-passive attitude control system, the spacecraft power and
thermal control system.

The conceptual electrical and mechanical design of the spacecraft hardware
covers the basic configuration, RF and digital electronics design and packaging;
and includes fundamental stabilization, separation, desp gn and deployment schemes.
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Plate 1 Sunblazer Spacecraft.
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Plate 2 Launch configuration -- front view.
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î r}
}

jt^yusistor Ix)wer vs frequexivy (	 .	 .	 .	 .	 e	 .	 •	 •	 . .	 . 3
2

1

1.2	 11 11"Is o "Impl i fier	 .	 •	 s	 s	 •	 e	 •	 s	 a	 e	 e	 s	 e	 s	 e	 .	 •	 s •	 e 3'ti'2
®`^12 - 12 )	 p y	 p	 E►3 ®dt 3 (lufad rature hybrid	 .	 .	 .	 ► 	 ► 	 .	 •	 .	 .	 .	 •	 .	 .	 . •	 .3b.1

12- 1e3 RU, oircu t pact aging.	 .	 .	 .	 •	 .	 •	 .	 .	 .	 .	 .	 •	 .	 .	 .	 . •	 . {j328

12®14a, Mock fliagrt)m of the }rea on tt'e nsmittei . .	 .	 .	 •	 .	 .	 e	 . .	 . 328

12-141) Bp. von antenna switvh .	 .	 .	 .	 •	 .	 .	 .	 .	 .	 .	 •	 .	 .	 •	 . .	 • 333
12- 1 5 Spacecraft projection	 .	 .	 •	 .	 .	 .	 .	 .	 .	 •	 .	 .	 ► 	 .	 .	 . .	 • 330

12 - 18 Determination of 0 and A for any paint in space	 .	 .	 .	 . •	 . 333
12_17 asc Normalized 13"1,	 Ili I, and 1 -.91 patterns

for t. a 1 00 cm anti f n 7
0 	t g

tx •	 .	 .	 .	 •	 •	 •	 •	 .	 •	 .	 •
t	 ^Ag1^

.	 • 3133 f
H

f a	 1 5 ,^V.} ITz	 •	 •	 .	 •	 .	 .	 .	 .	 •	 •	 .	 . •	 • 33.9
f a 801V111z.	 ► 	 .	 .	 .	 .	 .	 .	 .	 ► 	 ► 	 . .	 • 340

12 . 18
E-i

Normalized I S I patterns for 1, a 100 cm and f w 75 1Vt11z . .	 . 341
12-19 Interface between transmitter and its antenna.	 .	 .	 .	 .	 . .	 . 343
12-20a Radiation res istance as a function of rod length, rod spacing

and frequency .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 344

12w201a Antenna reactance as a function of read length, rod spacing
and frequency .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 345

12-21 Geometry and current distribution of a sail 	 .	 .	 .	 .	 .	 . .	 . 347
12-22 Evaluation of the vector potential due to a current strip of

width w and height dx 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 347
12-23 Normalized i^c I and 191 patterns for a dipole constituted

bya. pair of tilted rods	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 351

xiv



LIST OF TA:' ILES

Table	 gage
3-1	 First-order computations . . . . . . . . . . . . . . . . . . . 	 22
5-1 Signal frequency bands	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 127
5-II Cain per element .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 130
5-111 Design summary 29- dB pilot array. 	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 139
5-IV Pilot array electronics .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 145
5-V Design summary of 40-dB array . 	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 146
5- VI Design summary of 50-dB array . 	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 149
6-1 Distribution of payload weight .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 151
7-1 Results of RFI shielding tests . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 174
7-II 'Pest results on £iltercons . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 176
7-111 Thread strength test results (averaged)	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 176
7-IV Results: moments of inertia . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 186

9- I Sunblaxer spacecraft thermal constants 	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 269
9-II Expected spacecraft temperatures for 3/4-year orbit .	 .	 .	 . .	 .	 278

11-I Nominal current and voltage output of Sunblaxer array .	 .	 .	 . .	 .	 289
11-II ""1.," Converter parts list 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 293
11-III "X" Converter parts list	 0 295
11-IV Capacitor test results	 . 301

12-1 DC to RF conversion table for the different sections
of the transmitter	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 . .	 .	 314

12-11 Basic parameters of beacon transmitter	 .	 .	 .	 .	 .	 . .	 .	 .	 . .	 .	 329

xv



CHAPTER I

1.0 INTRODUCTORY REVIEW OF ` HE S1 NBLAZER P1tW-HAIM

1.1	 IMission Consideratiuns

1.1.1 Scientific Mission Objectives
The primary objective is to measure the electron density profile accurately
and unambiguously over the 5-to-100 solar radii distance from the sun,

where it has been inferred only with considerablo ambiguity fr #one ;radio
:star occultation measurements.

A secondary objective is to measure, clearly, the scale cif turbulence ill
the inner corona and the outward-moving velocity of the inhornogeneities
in the inner coror!a, by measuring the scintillations in angle and time of

arrival of coherent transmissions as occultation progresses.

Other objectives are: to infer some qualitative information about the
existence of a general solar magnetic field; and, through observation of
Faraday rotation or pulse splitting, to carry a variety of particle and
field experiments to the Q. 52 AU region of interplanetary space,

1. 1. 2 Other Flight Program Responsibilities
There appear to be no other NASA flight programs which could, fur either
economical or technical reasons, satisfy all of the mission objectives of
the Sunblaxer program. These objectives are: primarily, to make elec-
tron density profiles in the region from 5 or so solar radii out to 100 solar
radii; and, through the measurement of fluctuation phenomena observed
on the ray paths near occultation, to determine the scale of turbulence in
the inner corona; and perhaps, through Doppler-broadening measurements,
to measure the velocity of the inhomogeneities in a general radial direction.

To accomplish these objectives, one should have spacecraft reaching
perihelia of 0.52 to 4, 65 AU so that occultations will occur in a reason-
able time such as 1 to 1.5 years after launch. To the best of our knowledge,
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tt " ► tee , e,l' the Nlatit, , -r spacecraft will cle ► this. Similarly, tlre 11iot1e•e•1*

tttissie ► te. which alight have Ront . int", this region. is no lmiger planned.

!le ►Wove r, even  it it Were. tire.• leettg-texrnr requirement to make" tt"*t ejttly a

:sitttte(Y sedated .wcultation	 but perhaps a sttt °c •es.,04)n e ►f tlu-se,

:.c " e that tit(- highly variable cormtal densities could he ttuwv accurately

characteri':cd, would utidersc ore_ the importance of a relatively intrxpvn-

sive lrtetttc h vehicle and spacecraft feet • ttmakittg such a series cif tneasttre.-

1111 ,tats.

1• tltlet-V a tu- lio.rrd  Experiments

(hie pre •settt spacecraft weight is apprc,ximate»ly 211 pettttttls exchisive (if --my

(ats-leefard -xjwritne nts, and the 5- s-lagv Svi)ut is capable (if plac • ittg a l ay-

lejad cep 55 pc ►utrds into a 0. 65 At' orbit. They wc,rd "payload" in this case

applies t,e all weight appended to the fifth-stage rocket casing. `e' lje'ry are

at It-ast lU to 15 pounds of excessive telemetry which have been put aboard

tlre 5-stage acout vehicle as performance -testing telemetry which presum-

ably could be removed on later launches. We would expert that this addi-

tional weight could be used for additional science on Sunblazer. A large~

ttttntber of suggestions for quite meritorious experiments have been  pro-

posed, relating mostly to particle and field experiments in the 0.52 to

0.65 AV,, region that Sunblazer will traverse. Dr. Van Allen has proposed

a Geiger counter experin.%mt to count energetic particle fluxes in this

region. Dr. Simpson has proposed a cosmic ray experiment to determine

the cosmic ray gradients in the region chaser to the sun; this is also a
simple counting experiment. MIT experimenters have proposed placing

an x-ray detector on Sunblazer, looking in an antisolar direction, to

measure the x-ray sky background over a wide range of angles as Sun-

blazer orbits the sun, which would be a very rewarding experiment. A

simplified plasma probe for measuring the solar wind density and velocity

at 0.52 AU is also a possibility, and Dr. Shapiro has discussed with

us the possibility of placing aboard Sunblazer a coherent x-band
beacon sea that his fourth test of general relativity could be undertaken.
This is a pai ticularly practical and attractive way to conduct Shapiro's
experiment. Weight limitations clearly will not permit all of these
being done on any one launch, but combinations, perhaps two at a

time, could be done over a succession of launches over several years.

It may also be possible to employ a flux gate magnetometer to measure

magnetic field strength at 0.52 AU.

All of the experiments listed are typically those that count events over a

cane-day per- z)d and require the contents of a counter to be transmitted

back once a day or so for the experiment to be accomplished. These are

2



quite suitable for the low-data-rate transmisesiun system that Sunblaier
will have•.

1.1.4 Missions and Experiments for a Ten-fear Pr{,gram
It Itas always been felt that tilt- great advantage of a light-weight, low-cost
spacecraft for interplanetary missions ix that it would offer the! possibility
of retreated measurements of coronal densities and scale sizes through a
major portitni r,f a solar cycle. It seems, feasible to plan to latr •rch two
spacecraft per year over a 10-year period. with the basic propagation
experinient tieing dune on all of them, since this is essentially built into
the cormnunicati+nnss system oil 	 spacecraft. Orbital choices and on-
board experiments can vary over the tune.• period, dependitig on the total
weight available in each launch. It is believed that th«- first three mis-
sion,  should probably be 0.65 Al' ones; with conjunction occurring in 1.5
years. One might regard these are providing exploratory measurements
of the corona and as proving out the design of the spacecraft itself. They
would a;so provide, if all three were successful, the opportunity for
making, spatial and temporal correlations of the coronal densities at dif-
ferent azimuthal positions in the ecliptic. The 0.65 AU ur'bit provides a
very slow passage through conjunction. It would be desirable to return to
ou- original orbit having a perihelion at 0.32 AU and a rapid conjunction
passage at one year after launrh to make electronic density profi'e meas-
urements which are more nearly fixed in time. and it is suggested that
three 0.52 At" launches be made.

It is also possible, by causing the hyperbolic excess velocity after escape
to be almost orthogonal to the ecliptic, to achieve an inclined orbit where
the inclination might be as much as 10o. In this case an out-of-plane
distam!e of perhaps 30 million kilometers could be obtained. A number of
these launches could be considered partly to make propagation measure-
ments on ray paths out of the ecliptic, but principally to carry on-board
experiments significantly far from the ecliptic plane.

On all of these missions, the 0. 52 AU, 0. 65 AU and the out-of-the-ecliptic
inclusion of two out of the five or six possible on-buard experiments could
also be made, to provide the opportunity for a number of particle and field
experiments.

1.2	 Propagation and Communication Considerations

1. 2. 1 The Choice of 75 MHz Frequency
The arguments on choice of frequency, and the belief that a frequency in

3



the 75 Nlhhz its brec+ to utse, are complicated but theme art- the• high points of

the argument. if it is amsumed thtut the twin frequencies unreel in the ex-

periment are a probing freque*nc• Y and an infinite reference frequencyo

then the amount r,f relatives delav between identical signals transmitted

on these two carriers varies inversely at; the second power of the► €te►
-quency, At 75 N111z it is predicted the average corona will have a relative

delay ()f 535 uns at 100 solar rathi and about 10 mu at 5 solar radii

If. for the sake of reducing the• complexity and cost of the ground equ 1 ►tetent,

and also in the process simplif y . ng the spacecraft, one uses a reference

frequency nsotnet 10"., greater than the probing frequency, theft these delays

are divided by a factor of 5 and become- 2 tits and 107 jus. They are Estill

readily measurable by the pulse teclutique:s which we propose for Sssetblazer

where the effective pulse definition can be made of the order- of 5 jA s. if

a 150-Nlhiz. carrier is used, these delays become reduced by a factor of 4

and become 500 js and 25 ps which, while still measurable by the Same

methods, would suggest greatly reduced accuracy. Similarly, if the fre-

quencies used were arts high as 2200 MHz, the relative delays become

ridiculmisly xs ►nall and can no longer be measured by group delay methods.

A similar arpument applies to the important scintillations and Doppler-

broadening measurements. The angular scintillations at the 4-meter

wavelength are fairly readily measurable In the 5 to 20 solar radii range,
whereas, with the higher frequencies they would become too small to

measures accurately.

1. 2, 2 The Propagation Experiment

By now, many studies nave been made of the extent to which the turbulent
coronal plasma would be expected to distort a pulse transmitted through

either the frequency broadening which would arise from the motion of the
turbulent refractive inhomogeneities or, correspondingly, from the delay
1istortion which would occur in the time domain through the dispersive

nature of the medium or through multipath. It has been concluded, on

the basis of both theoretical studies and the +examination of the data pro-
vided by radio star occultation and by the Mariner 4 frequency-broadening
measurements made during its occultation by the sun, that a 3-ms pulse
at 75 MHz has an excellent probability of being detected in as close as
5 solar radii, and further that this pulse ct.n be composed of 5-14s
elementary pulses distinguished by phase - reversal modulation. In
effect, there would be a 5-ga resolution, and any multipath contributions
would be identifiable, as well as those contributions arriving on different

4



cnagnt-totonic proi angation mode:;. The large advantage that this pulsed

group-delay method has over the kind of sinusoidal modulation employ'•d

in the Pioneer pr-opagation experiment is that the cverludicity of that mudu-

tution lrrecludex the po%sibility of identifying m. ltipath and other perhaps

unanticipated propagation modes, and maker 4ifficirlt. if not risky, the

interpretati-,)n of the delay data.

Th ,1, ► rthi r, in our view, great deficietic .N of the Pionecrr experiment is that

the delay measurements are made on the u j olink. for engineering convenience,

but the interpretation must be done then by a relatively Inept machine, and

not by the scientific observer who is available if downlink transmissions

are emps,,yc d. We recognize, as (hws anyone with space ctntimunication

experience, that uplink sensitivities c-,ia always be made supertor. bvit,

this Is hardly Important in vii w of the grout advantage of ground-timed

Interpretation If downlink transmissions can be trade A de►rluate, as we

believe they are in Sunblazer. In Pioneer. for example, all possibility

of scintillation measurements, fro. quency -broadening measurements and

Faraday-rotation measurements are excluded unless an extremely com-

plicated receiver on the spacecraft Is pustulated. We are convinced from

an engineering viewpoint that ,he MIT propagation measurement has been

proved feasible.

1.2. 3 Communication Bit-Ke es
If the closely-packed 75-Mitt frequency-hopping experiment is the one we
design fur, then with the 45- to 50-dB ground antenna, a bit -rate of ap-

proximately 1 bit per second can be expected with low-error probability
when Sunblazer is 2 AU from the earth. Assuming that the spacecraft is
visible at least two hours per day, this is a capability of 7200 bits, which
is more than enough to communicate all of the engineering data such as
temperature, battery voltage, orientation angle, etc. , as well as the re-
sults of any simple on-board experiments. Mring the summer periods
when the visibility is more likely to be six hours per day, a corre-;pundingly
greater amount of information can be telemetered. As a matter of interest,
the Sunblazer bit-rate of 1 bit per second is a remarkably high bit-rate
for such a simple spacecraft, when compared to the Mariner bit-rate of
S bits per second using directive antennas on the spacecraft, 3I0-foot
antennas, the Goldstone maser receivers, and a much shorter transmission
range of only 50 million miles.
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1. 2. 4 Tracking Requirements
Tracking and communications are not a problem if the normal NASA track-
Ing; nets are not used. The angle and Doppler Information we get can Sun-
1 11 asw,or c",.ina the phaned array will be sufficiently accurate to establish the
orbit with enough tare: fission for thc. ,,rolaagation experiment. For the
propagation experiment, the only important parameter is the displacement
of t1.e ray path from the solar center. The actual locations of the terminals,
assuming that both are well outside of the region of greatest electron
density, are unimportant. Even so, from the angle and Doppler measure-
ments we expect to be able to lovate the spacecraft within 10, 000 km 3 with
high reliability.

There is no uplitjk contemplated in the y Sunblazer mission, and the modest.
amount of teltmetr•y indicated will be multiplexed on the same 75-MIlz
carrier emanating from the spacecraft.

1.3	 xhe Ground Receiving Terminal

1.3. 1 Initial Proposal
When the Simblazer experiment was first proposed, it was hoped that the
relatively high energ y to be transmitted per pulse, consistent with the
comparatively long (25-ms) pulse width, (1,2) would allow one of the ey ' sting
metric-wave-length radio astronomical telescopes to be employed as the
ground -re eel ving antenna. Several unsuccessful attempts were made to
get a commitment of more than a few hours a week of observing time on a
numN%nr of suitable facilities, such as the Arecibo, P. R. telescope and a
local 150-foot paraboloid. It was concluded that the only way in which
observing time, consistent with the investment in spacecraft and launch
costs, could be guaranteed would be for Sunblazer to have its own receiving
antenna. The least expensive means of obtaining a suitable aperture was
believed to be through an array of dipoles patterned after the 38-MHx scalar
radar telescope at El Campo, Texas which had been operated for some
time, although design differences were require' by the higher 75- and
225-MHz frequencies for the initially proposed two-frequency Sunblazer
experiment. It was further proposed to take advantage of new developments
in solid. fate circuitry to make the array automatically phaseable, as
opposed to the time-consuming cable-plugging method then in use at
El Campo, and an increase was planned from 1, 000 to 4, 000 dipole ele-
ments to give an improved receiving gain of some 36 dB. (3) This corre-
sponds approximately to the gain in the Arecibo telescope at 75 MHz.
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After scrntt- conside rable and(aint Rif laboratory develolmi 'nt and test work
on the electronic amplifier and pha%ing package to be associated with each
diw)lt• eienic-ttt, the design of these was sufficiently firm so that bids fr#eni
st•vt'ral t-loot -4ttiic manufact urers could he obtained to give realistic cost
data on the array 's 	 components. These outside e:stintates indi-
cated two things: 1) That more than 90": of the cost (if the two - frequency
array was in t1w t-lectronics, and 2) that the cast of a dual-polarization,
two- frequency, 400U-dipoet- array was likely to he eonsiderably m excess
of the $3 million e^5timate which had earlier been pustulated. .These some-
what discouraging but realistic conclusions were reported to a group from
NASA Headquarters and Langley at a meeting (if the Stiublavvr coordinating
committee held in Cambridge oil YM May 1967.

1.3.2 High-Gain Elements

As a result of this meeting a fundamental redirection of the array program
was made. Since the major coast items of the array were in the electronic
system, any attempt at significant cost reduction required a less complex
electronic system. For a ,given raver-all system ,gain this implies re-
placement of the individual 5 -dB dipole elements with higher - gain types.
A coat a. lysis, based upon various cost-versus-gain functions indicated
that minimum overall system cost results when the lenient (mechanical)
cost and the electronic system cost are approximately equal. It was
further Indicated that an array of 14-dB to 20-dB elements would yield a
reduction of an order of magnitude in electronic system complexity over
the previous individual dipole system. Several typical high-gain elements
were considered, but no decision was taken as to the final element design,

The approach was discussed at a Sunblazer coordinating committee meeting
in Washington on 13 July 1967, and again in Cambridge on 23 August 1667.
At the August meeting it was agreed that the 128-element pilot array would
continue to be installed at El Campo using dipoles as the radiating element
since that work was well along. However, the 225-Mliz array would be
redesigned to achieve 25-dB gain using an array of high-gain elements.
Subsequently the backfire configuration was selected for this array. The
225-MHz array was completely redesigned and typical antenna patterns
taken on the element. A complete set of electronic and mechanical hard-
ware was prepared. However, the 225-MHz system was not installed due
to a change, dictated in part by budgetary considerations, in the format of
the pulse transmitted from the spacecraft. This forr-nat is fully described
in Section 1.3. 3, and was described at the Sunblazer Review meeting on

7
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163-14 March 1968 and 23 July 1968. The closely-packed, sins le-frequency
fov: ,pct eliminates the need for the 225-Milz array and has ° ;,additional
advantage of higher permissible ,gain at 75 MHz for constant facility cost.

Them,  remained, however, the question of the element for the 75-1011z
array. Although the backfire configuration was satisfactory for the 22 a-Mllz
;system, it possessed mechanical disadvantages at 75 MHz due to the rela-
tively large (4-meter) wavelength. fused upon cost figures Obtained from
the construction of are in-house modal and estimates obtained from outside
vendors, it was determined that the cost-per-unit of gain of this antenna
type was inordinately high. The approach to this problem was to keep
the clervent ;gain constant at 14 dB while investigating other elermirrts of
equivalent gain. Details of this evolution are given in the ducunit- it "llistory
ar^d nesign Summaxy, Sunblazer Phased Array". (4) The fundamental con-
clusion vas: "The best method, in terms of satisfying the Sunblazer track-
ing requirements (both engineering and science shots) at minimum uverall
cost (initial installation, operation and maintenance) is to construct a
cross-polarized wideband dipole array at El Campo, Texas. " In this array
the eleme-nt is realized by the interconnection of six dipoles. Basically,
it has been determined that a 14-dB antenna element is less expensive and
has better performance when constructed by connecting six dipole elements
together as opposed to employing single or multiple backfire or other slow-
wave type elements. A detailed description of the 50-dB array using this
six dipole (double-tee) interconnection is given in the Sunblazer Ground
Antenna Report ( February. 1969).

1.2.3 Change to Closely-Packed "Single" .Frequency Experiment
The foregoing changes would have been final ones except that information
recently gleaned from the Mariner 4 solar occultation experiment (5) sug-
gested some changes in the transmitted-pulse format, which further inter-
acted with the ground antenna design. This experiment measured for the
first time the frequerr ^ broadening which a coherent signal undergoes
when transmitted on ray paths within four to six solar radii of the solar
corona. When the 2200-MHz Mariner 4 measurements are scaled to 75 MHz
by theoretical methods justified by some recent results in our laboratory (6, 7),
they strongly suggest that the 25-ms pulse for Sunblazer earlier proposed
should be reduced to a pulse no longer than 3 ms, if coherent integration
and coding within the pulse are t: , be employed. pulse-coding is desirable
to achieve a 5- to 10 -14s resolution and accuracy in our time-delay meas-
urements. Without a substantial increase in peak power, the reduced pulse

8
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width means a correspondingly reduced energy per pulse which call only b"
made up by an increase in antenna gain can the spacecraft or tin the ground.
P*or reasons associated with the simplicity and the reliability of the space-
craft, we preferred not to change the radiation pattern of its antenna from
an essentially umnidirectional one, which meant that to obtaitl all acceptable
:signal-to- guise ratio on a single• pulse, a ground antenna ,gain in excess cif

36 dli would be required. This, in turn, implied the addition of many more
elements and returned the design problem again to one of overcoming a
cost constraint.

The solution this time, in an attempt to :stay within the $3 million budget,
was to simplify the experiment in what was believed to !,e all
way, by using a separation between the probing and reference frequencies
of same 10"' F, such that bath frequencies could be received within the band-
width achievable in a single array. This reduces somewhat the accuracy
of the delay experiment but does nct compromise the experimental results.
Oil the other hand the elimination of the 225-Mllz array represented a sub-
stantial saving in cast which could then be applied to increase the ,gain of
they 75-Mllz array to a 50-d13 level. This provides an ;. ,xcellent (16-dB)
signal-to-noise ratio on the narrow (3-ms) pulse now to be transmitted
from the Sunblazer spacecraft, and results, it is relieved, in a better and
a simpler all-around experiment.

A 50-siB antenna at 75 .MHz is a rather remarkable instrument in its own
right and is some i rk dB greater than the gain of the telescope at Arecibo
at this wavelength. It is also some 14 dB greater than the circular inter-
ferometer composed of 96 45-foot-diameter paraboloids operated by
CSIHU in Australia. 'het it is believed that the present development and
test experience with both the 75-Mliz dipole pilot array, and measurement
design efforts to date on the high-gain backfire elements at 225 MHz,
allow one to say with some degree of confidence that the electronically-
phased wideband array of 1024 20-dB, 75- MHz elements with dual polari-
zation is a realistic design and can be built for approximately the $3 million
figure.

While, indeed, there have been a number of major changes in the overall
Sunblazer propagation experiment and in the receiving array, they have
been made for good reasons and are precisely the kind of changes in con-
cept or design that one should expect for work done on supporting research
and technology funds. In making these changes, the primary motivation
has been to select carrier frequencies and modulation formats which are
most likely to lead to the frvduction of useful data in early Sunblazer

9
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propagation experinients and, at the same time, are cottdetc ive to spac"e"craft

attd gr+nttid antenna designs whivit must satisfy serious cost c°omaraints.

1.:1, 4 Additional Advantages of the 50-Mi ttroadband Array
A further benefit of they use of a 50-dil ground terminal is the• rather high
fait-rate (possibly in excess of several bits per secundt which can fie made
availabte for the telemetry of data from on-board experiments over dis-
tances as great as 2 All. This is a matter of some considerable.* importance
for on-board experimenters, and to t1w future use of Sunblazer as an inter-
planetary tibseirva.tory.

As a radio telescope the array also has important ancillary use's, t ile most
recent an(] exciting of which concercis t1w observation of the nvW le a dis-
covered pulsars at a frequency somewhat below that on which they lts,ve
thus far been observed. The high ,gain and directivity of this array at
75 Mllz may well provide important new information and improved resolu-
tion of the signals from the sources observed thus far, and its greater
sensitivity may lead to the discovery of still more sources.

The modular nature of the array also snakes it practicable to provide small
solid-state power amplifiers in the 250- to 1000-watt range on each ele-
ment, which makes possible conversion of the array into a radar telescope
or a future uplink station to Sunblaxer of impressive performance. The
power amplifiers required are essentially indentical to those developed for
the Sunblazer spacecraft and, while some ,resign work is involved in
adapting and packaging them for the ground array, their addition to the
array is largely a matter of cost. That is, the overall transmitter power
could be somewhere between one and four MW, depending on the funds
available and the interest in adding the transmitter facility. This was an
item in the original proposal, but was eliminated at an early stage because
of cost considerations. It is, however, a growth item which should not be
forgotten in future planning.

Solar radar echoes have never been observed at 75 MHz, and the reason
for this is believed to be that sufficient radar telescope sensitivity has
never been available to counteract the additional absorption losses in the
corona, which occur along a ray path prior to the reflection point. The
great advantage in making solar radar observations with this instrument
would be improved sensitivity and a greatly improved angular resolution,
which would make it possible to resolve quadrants of the solar disk, and
to improve the capability for observing average Doppler and Doppler-
broadening of the signals which contain important, and otherwise
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2.0 CHANNEL CUAltAC ERIZATION

In ()td(-r to invasure the integrated electron density along t)le . communication
path and the fluctuation of this density, it is necessary to dr- tersnine- how
theist- two quantities will affect signals propagating through such an ionized
medium.

The integrated electron density will cause a transmitted pulse-- to have an
additional delay over the free- space] delay and cause it to be dispersed in
time,. The fluctuations of this integrated electron density will cause the--

arrival time to he random and fluctuate from pulse to pulse. In addition, it
will also cause the received signal to be dispersed in frequency. Tliv band-
width and duration of the transmitted pulse must be chosen so as to minimize
thci time and frequency dispersion effects while at the same times allowing
the measurement of the pulse-- delay and delay fluctuation to a reasonable
degree of accuracy.

The main reason for the minimization of the dispersion effects is so that a
simply near- optimum detection-estimation scheme may be used to make the
desired measurements. At present only the frequency and time dispersion
of the channel are known. In general complete statistical description of the
channel is necessary to design the optimum receiver. However, if the S,gnal
duration and bandwidth can be chosen so as to make the channel appear sta-
tionary during the pulse duration, a simple detection scheme results. In
effect, a transmitted pulse will be received with a random delay, frequency
shift, amplitude and phase which are constant over the pulse duration. The
optimum detection scheme is then a bank of matched filters, covering the
expected frequency shifts; each filter being matched to a frequency shifted
version of the transmitted signal and followed by a square-law envelope
detector.

2. 1	 Time belay

Due to the integrated electron density over the communication path between
Sunblazer and the earth, a narrow-band pulse will suffer an additional delay
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ar •t , 21 00 krn in size anti that the rnis electron density fluctuation is 0.05
times thti average electron density.

Th( R nivasurement, of the relative delay will give Me value of h, the integrated

olvetri)n th-nsity, while a measurement of the stantlat-d deviatrun of this dt-la.v

will give a valttt . fttr b (A	 wbery it is the y ""blob " sizes ,anti ^̂^ the rRnls
vle;etron density fluctuation.

2, 2	 ` ime Dispersi on

`1Tho integrated electron density along the communication path also causes

tho time- dispersion of a narrow-band pulse; this effect has been ;studied byR
I Iirrttyck(2) . The Sunblaxer signal will, be spread in times by two phenomena.

The first is dispersion of tliv various frequency components of the y signal due

to the frequency-dependent phase delay in the medium. The sveontl is multi-

path :spreading, dui, to they random bending of various rays frFrm the trsans-
mitter by the y eoronal refractive index fluctuations. anti the resultant varying
path lengths of these rays from the transmitter to thew receiver.

R

Tbcj behavior of the dispersive timer spreading was studded soiree time ago 2).

Assuming that tner medium is constant over the pulses duration, the y e_airannel
can be modeled by a linear dispersive" network with a transfer function
ll (W) = exp i - j O (w) j , where:

0 (w) = To (w - w )
	 (2.2)

in which TO is the free- space propagation time and wpp is the average plasma

frequency along the path. A study was made of they output signal as a function

of the proposed orbit, assuming that the receiver contains a filter matched
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to the transntrtte"d signal. followe d by a square - law envelope" (It-te •ctor. if
thr , pulse is a binary-phase modulated carr ie r at e3n W with a fait time ( of t 
the output of the detector is not greatly degraded as long as t  y T o W

`' ern	 . In the abse-nce a ►f dispersion (and noise) the output is th ► •
square of the envelope" of the" autocorrelation function of the transmitted
pulse (assuming the Dopple= r has been removed). The" correlation peak has
a width of 2/t

1 and reaches a maximum at the at-rival time plus the signal
duration. With dispersion pre"-rent, and for t  = pr o , the peak width is doubled.

and its maximum value is down 3 ,^41. The "dis persion time",'rd , is shown
in Fig. 2-2 as a function or the offset distance for the proposed orbit.

Althou; h xo givers a good rhea -cure for the dispersion of one pulsw,, it does

not include the effects of multipath spreading. This i-s cause-d by t1w arrival

of a continuum of delays of the transmitted pulse. over a time comparable to

the pulse duration. In all regions where dispersion is noticeable. the multi-
path spreading is significantly greater than the dispersion. The nature of
this time spreading can best be understood from the angular power spe-ctrum
of the received e=lectromagnetic signal. It is well known that radiation from
a point source will be scattered or randomly bent by the corona. and this
radiation will arrive at a receiver with a random angle for angles) cif incidence.
If we represent the corona by a thin refracting or phase changing screen at
the center of the propagation path " then energy arriving from an angle d with
respect to the line-of-sight path will suffer an additional propagation delay
T002 with respect to the direct path " where Tes is the line-of-sight propagation
time delay from the transmitter to the receiver. Thus. if the mean square

angle of arrival fluctuation is 90 . we might e=xpect an average multipath
spreading of the signal on the order of T002 . A rigorous analysis of the

received field from thin screen has shown that this intuitive result is very
nearly correct(3)

A meaningful description of the multipath spreading in the channel is found

in the delay scattering function. This function tells us on the average how

the power from a very short narrowband pulse is spread out in time by the

channel. If a very large number of these short pulses were transmitted

through the channel and the received power from each pulses recorded and

averaged over the ensemble of pulses " then the result would be the delay

scattering function.

For an anisotropic thin screen model of the corona, the delay scattering

function has been shown to be:

fit'	 1	 1	 I

0 0 i	 0	 i	 Old	 01 	0
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where 0i and 0o a rea the• rms scattering anglers in and out of tile plant- of the

ecliptic. To is the propagation time delay from the receiver to the transmitter

along the line.-of-sight path, tr n 0 in the arrival time of the pulse along this

path. and to its the zero- order modified Hessel function (flessel function with

an imaginary argument). if the medium is isotropic (0i ' A(e) thus expression

reducers to an exponential. whereas if 0o ^10 a  or vice versa the scattering

function approaches tLe chi-squared density. In any case the mean multipath
delay is found to he

T In2+02
x rtts	 r	 o('r) d-r u	 (2.4)

0

regardless of the anisotropy ratio.

Since the mean square scattering angles are highly variable. we would expect
the multipath spreading to vary widely from day to day. Thus when the Sun-
blazer path offset decreases to the point where the average multipath spread
is comparable to the pulse length. operation will probably become inter-
mittent. In this cases a measurement of the multipath spreading characteristics
of the channel will also yield valuable information.

! r tency Dispersion
If a long unmodulated carrier is transmitted through the solar +corona, they
received signal will be spread in frequency. The only experimental data on
such phenomena is given by Goldstein (4). Mariner IV transmitted an un-
modulated carrier throu,;'3 the corona and the spectrum of the received signal
was estimated. If it is assumed that the received signal is . sample function
from a stationary random process. then the power spectrum estimated is the
Fourier trantiform of the statistical correlation function of the process.
Analysis of the corona validates this assumption. Hollweg (1) has shown that
the spectral broadening is proportional to f I and Goldstein (4) concluded that
for small antenna beamwidths the broadening is proportional to the beamwidth.
Scaling the Mariner IV data taken at 2295 MHz with a be;amwidth of 0. 14
degrees to Sunblazer's 75 MHz and 0.3 degree's, the equivalent noise band-
width of the received signal is

B so =--: x --Hz 3 t. p s 5
	

(2.5)
P

The data art valid only between 3 and 6 solar radii. However. Hollweg's {1 }
results indicate that for p > 10 solar radii B is proportional to p- 1. b . 1 / B
is plotted in Fig. 2-2 with the correct extrapolation made.

18

2.3



2, 4
	

Simnal Selection
The correct signal bandwidth and duration can now be deduced from the above
data. Singe  it is desired to make accurate time-cif-arrival measurements. the
transmitted pulse must possess a good ambiquity function. This can be accom-
plished by phase modulating a currier pulse of duration T with a Maximum
Ler,gth Linear Recurring Sequence of M bits, the bit time being t 1 n T/M.

The' nandwidth of the signal is then W a 1 /t 1 and the time-bandwidth product
TWuM.

Considering first the dispersion tune T o , it is seen that for t 1 > T A the
received signal will not be ,greatly dispersed	 distorted in time. By letting
t 1 .2 ;5 µsear, dispersion will not be noticed until 6 solar radii. At this point
the detection loss is 1.5 dBand the correlation peak width is about 1. 5 timers
the undispersed case.

lk: ving fixed the bit time it is now necessary to see if the bandwidth of the
signal is reasonably larger than the spread in frequency caused by the me-
dium. As seen ;a Fig. 2-2 the bandwidth W is at least one hundred times B
for p > 4. lienee, the received signal will not be noticeably dispersed in
frequency.

The signal now is not dispersed in time or frequency. However, the pulse
duration T has to be adjusted so that Vie received signal will be coherent.
As noted in Section 2, 3, B is a measure of the bandwidth of a frequency
dispersed cat rie x r. Hence. the signal will tend to be correlated over a time
of I/ H sec. By choosing T = 3 cosec, it is seer, from Fig. 2-2 that the
received signal will be coherent up to about 6 solar radii. After this point
the signal startb to become aistorted and the matched filter square-law
envelope detector is no longer optimum.

From the above analysis it appears that based on the present knowledge of
the solar corona that a binary phase-modulated pulse of duration 3 msec and
a bit time of 25 µsec, in conjunction wi+b a. matched-filter, square-law
envelope detector receiver, should produce reliable measurements of the
electron density and its fluctuations up to about 6 bolar radii, or until the
multipath spreading begins to dominate.
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	3.1	 Basic Orbital ONective
In order that the main experiment in the Sunblazer program b y conducted
properly, it is necessary for the aunblazer vehicle to be placed in a solar
orbit which allows it to pass behind the sun's disc (as seen from the earth)
within a reasonably short time after launch. In other words, the orbit must
eventually cause the vehicle to line up approximately with the sun and the
earth.

	

3.2	 Relative Motions of Spacecraft and Earth
This result can be most reliably accomplished if we first note that, in
general, the vehicle's orbit and the ecliptic (i.e. , the earth's orbital plane)
will be mutually inclined by some small angle, due to errors in injection
velocity. Irrespective of these errors, the earth will certainly be in Sun-
blazer's orbital plane not only at launch, but also after each six-month
interval after launch (i. e. , after the earth has traversed nor radians from
the launch point where n is an integer). This means that, if superior con-
junction with the sun should be required to occur after the earth has tra-
versed n7r radians in central angle about the sun, the vehicl% must have
correspondingly traversed nr * yr radians during the same time; thus., the
required2exiod of the vehicle's orbit about the sun must be nn 	 times the
earth's orbital period (under some additional assumptions given below). If
this condition is achieved, than regardless of the inclination of Sunblazer's
orbit, after nsix-month intervals or- n-  years, 1) the earth will be in the
vehicle's orbital plane, and 2) the vehicle will have traversed exactly 7r
radians more or less than the earth in that plane.

This condition on the vehicle's orbital period comes out so neatly for all n
only because the line of apsides of the vehicle's orbit (the line running
through perihelion and aphelion) will nearly coincide with its line of nodes
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(i. v.. the litre of intersection of its orbital plane with the ecliptic) for any

" , reasonable ► " injection scheme. But this latter restriction applies only if
n + 1 is odd. for if n + ,I is even, it is easily shown that any single-impulse

ig1vrtir ►rt will bring about tht* desired result. The important point t o  he
made here is that, if a nominal orbit is of;elected for Sunblazer with aside®

real period of bt years, then comparatively large launch® vehicle injection

errorF, can be tolerated by the main experiment anal tht ► reliability of the

mission consequently increased.

3.3	 Evaluation of ;Possible Orbits

`fable :i-T

First-order computations.
n sidereal Semi-major	 per, i-	 aphe-	 time to	 inj.

period axis	 helion	 lion	 sup. conj.	 vel.
(yrs) (AU)	 (AU)	 (A U)	 (yrs)	 (km/sec)

1/2 0.62 0.26 1.00 1/2 10.7
1 degenerate

2/3 0.76 0.52 1.00 1 5.1
2

2 1.50 1.00 2.17 1 5.1

3/4 0.66 0.65 1.00 1 1/2 3.3
3

3/2 1.31 1.00 1.62 1 1/2 3.3

4/5 0.66 0072 1.00 2 2.5

4 4/3 1.21 1.00 1.42 2 9.4

5/6 0.69 0.77 1.00 2 1/2 2.0
5

5/4 1.16 1.00 1.32 2 1/2 1.0

These figures assume the earth to be a massless point in a circular orbit
about the sun. The actual values depend upon the time of year of launch
since the earth is in a slightly eccentric orbit.

Other considerations besides sensitivity to out-of-plane velocity error are
displayed in Table 3-I. In calculating the required injection velocity, it
is assumed that the most efficient use is made of the launch vehicle by
launching it either parallel or anti-parallel to the earth's orbit velocity. It
is seen that for each n there is both an orbit which remains entirely outside
the earth's orbit (and corresponds to injection parallel to the earth's orbital
velocity), and another which remains entirely inside (and corresponds to
launching anti-parallel).
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llowever, orbits which remain outside 1 astronomical unit have he #-n rejected
ft,r, the y initial missions because, t) the- available solar irowe• r would be de•
(• r 1 PRAV0, and 2) the- cormsponding communication distances would be longer.

Of the remaining candidates (which extend no farther than 1 astronomical
unit from the sun), the 1/2-year orbit rust be rejected. For, despite its
appealing property of achieving superior eonjunc*ion in only half a year, it
not only requires a rather large injection velocity» but also subjects the
vVhic O Lt. a solar readiation-flux at perihelion 15 times greater than that
existing at 1 astronomical unit. On they other hand, although the 5/5-,year
orbit requires a low injection velocity and subjects the spacecraft to only
a small ineraase in solar intcusity, it has they disadvantage of rt-quirin,g
2 1/2 years for superior conjunction. It therefore, must laa rejected from
considerations of spacecraft deterioration.

Of the remaining candidates (2/3, 3/4 and 4/5) the 3/4-year orbit possesses
a spacial advantage which is not apparent from the acompanying table: it
carries the :spacecraft through not ones, but three superior conjunctions with
the sun (Fig. 3- 1). Furthermore, this orbit permits thej vehicle to remain
within a subte'nde'd angle of 3 o from the sun for more than six months. com-
pared with less than one month for the 2/3- and 4/5-year orbits.

Sunblaxer design work has determined that the 2/3-year orbit both reduces
the permitted payload weight to marginal levels for a first mission, and
creates cooling problems for this lightened vehicle at perihelion. Therefore,
in order to achieve a balance between the conflicting requirements of low
injection- velocity and a minimum time to superior conjunection, as well as
to take advantage of its other special properties, the 3/4-year orbit has
been selected.

3.4	 The Generation of Three Superior Conjunctions

In order to understand why the selected orbit yields three superior conjunc-
tions with the sun instead of just ones, we need only call attention to three
simple facts. First, any orbit which remains wholly inside the earth's
orbit must have, on the average, an angular velocity greater than that of
the earth. Second, because the vehicle is launched from the earth, that
launch point is at the aphelion of the 3/4-year orbit where the angular velocity
is actually less than that of the earth (recall that the injection direction is
opposite to that of the earth's orbital velocity). Third, at superior conjunction
1 1/2 years after launch, the vehicle will be back at exactly the same point
in its orbit from which it was launched (i. e., after having made exactly two
revolutions about the sun, it is again at aphelion and has a smaller angular
velocity than the earth).

23



u^iR ISMS

OR 9j, m O's

SON
	

2j VON

Wd(494 to Not	 •
fie

13 R

fie IGO*

l ym ' s , mat -	 NO$

Ito

lym, I jmos

wo,

-;433 AU

300

M9

EARTH
ago*

LAUNCH -JULY 4

ORKTAL PERIOD
	

YR

31"AM A91110,U54SAA

##CLMTIOW,3 doorm

OWTAL ECCENTRICITY- ,0673

TIME TO SUPERIOR CONJUNCTION- IjYlARl

PERIHELION DISTANCE- .635A.U.

Fig. 3-1 Motion of Sunblazer relative to the earth.

\11

24

so

340



We sti •e from the first fact that the y ve*hiel must, on the average, gain central
angler on the earth. but from the second fact it appears that 0!e earth will gaits
on tlw vehicle whenever the latter is near aphelion (including the launch point).
Therefore. we seer that the vehicle will make steady gains on the earth, inter-
ruptt-d pvriodicially by small segments of apparent retrogrades motion. Further-
more, from the third fact we note thatthat one of these retrograde segments will
occur "behind the.' sun" after 1 1/2 years, thus giving rise to a triple superior
c(m.1unction.

3, 4. 1 Influe-nee, of launch Time on the Retrograde Motion Amplitude
Oaring the first mission-planning studies of the 3/4-year orbit done at MIT,
it was discovered that the amount of this apparent retrograde motionmotion of the
spacecraft about the triples superior conjunction was markedly influenced by
the earth's orbital position at launch 1 1/2  years earlier (or equivalently,  by
they calendar elate of the launch). It was subsequently concluded that they
seemingly small eccentricity of the e'arth's orbit (0.016726) was responsible
for this effect (Figs. 3-2 to 3-13) by means of the following mechanism.

If the- vehicle is launched around July first, when the earth is near its own
aphelion, then the aphelion of the 3/4-year orbit must be at l east as great as
that of the earth, or greater than 1 AU . Correspondingly , the
perihelion must decrease in order to keep the major axis (and fixes orbital
perked) constant. This increase in aphelion and decrease in perihelion for
a July first launch results in a slightly larger eccentricity for the vehicle's
orbit, thus increasing the extremes of angular velocity at these points. In
particular, the spacecraft's angular velocity at aphelion is even smaller than
it would be if launched tangentially at exactly 1 astronomical unit. But
1 1/ 2 years from launch it will be January first, and the earth will be at
perihelion where its angular velocity is greatest. Thus, the small change
in conditions caused by launching on July first adds two independent inputs
to the magnitude of the vehicle's apparent retrograde motion 1 1/2 years
later, so that the subtended amplitude of this retrograde motion is 6 0 as
seen from the earth. Similarly, the decrease in eccentricity of the vehicle's
orbit for a January third launch has been found to decrease the amplitude of
retrograde motion to only about lo,

3. 4. 2 In- Plane Errors
Although the sensitivity of the 3/4-year orbit to out-of-plane launch error
has been minimized, it is still necessary to cone~ Ider the effect of the in-
plane component of error. To do this, it was first determined that the
sensitivity of the orbital period to a change from the nomina'. heliocentric
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vel(wity of they spacecraft was about 20 days/km /scr (e. g.. if the nominal
launch velocity were changed in magnitude only from 3.:3 t o 3. :3 # 0.2 km/sec,
then the orbital period would be changed front 3/4 of a year to about 274
[0. 2) [20], or 274 t 4 (lays).

If we assume that the vehicle's launch velocity is 200 meters per :second too
high, than its orbital period will he shortened by four (lays so that 1 1/2 years
later., after two revolutions, it will arrive at its apbelion point vi ;lit days

sooner than nominal. Since the earth moves about 1 0 per day, it will then be
a,br)ut 0" from they spacecraft-sun line. and since the spacerraft will be about

2 AU from the earth , the subtended angle betwe=en the vehicle

and the sun will be 4o as seen from the earth. This means that, if the launch

velocity is 200 meters per second terr y high, every point in the sr,lar-vnrounter.
profile will be moved about 40 to the left. This would be acceptabiv. at least
for the first missions, since the spacecraft would still remain within a r°et ion
of interest for more than half a year.

It should also be noticed here that all of the solar- encounter profiles could
be centered by changing the initial velocity by less than 100 meter: per second.
The reason some of the profiles are not centered is that the period of the orbits
has been fined at 3/4-year, and the earth is in an orbit of finite eccentricity.
Also, the nominal inclination to the ecliptic is zero, and the selection of 1/2 0
inclination in the solos- encounter profiles is only to demonstrate the effect of
a finite inclination.

3.4. 3 Escapes Velocity Error
It should be craphasized here that all of the previous figures ignore the
hyperbolic escape trajectory from the earth or even the need for achieving
escape velocity. They apply only at the earth's sphere of influence, which
is at a radius of about 920, 000 km. Unfortunately, the errors present at
launch-vehicle burnout (without 300 km of the earth's surface) are magnified
considerably at the sphere of influence. To see why, define vb as the burnout
velocity, v., as the velocity at the sphere of influence, and ve as the earth's
escape velocity as the burnout altitude. Conversation of energy yields the
equation voo =Vvb̂ » ve . If we take the derivative of v., with respect to
vb , we will get:

d VW	 b,^.....=	 = . 12.. ^' 3 1/2	 (3.1)d vb	 2	 2 v., 3. 3 -
vb ve
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for the 3/4-year orbit. This means that, if the burnout velocity its in error
by l meter per second, the error at the earth's sphere of influence will be
.about 3 1/2 meters per second. Consequently, the 200-meter-per-second
vrrc ► r discussed pr-eviously reduces to al,out 60 meters per second, ( ► r about
1801 feet per second for they launch vehicle at burnout.

3. F)	 Computer-Generated Numerical and Gravhical Orbit _Information
The position of the spacecraft during the 3/4-year orbit is graphically shown
in 10-day increments in Fig. 3-2 through 3-13, and the angular dispinec tnent
effect on the t: dale conjunction characteristics due to launch time is also
shown in the ,same figures entitled "Scalar Encounter Profile".

The numerical data which were utilized to generate these graphs are also pre y -
rented.
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_.5.82a0..__^^'S1I311 --_0. y4^ î4 1.95281	 577.143 _	 .7.432	 -. ^.:_144.. 09141
590. U 1 .00599 0.9 441 A 1.94014	 582.004 762.4(14 -0.201 0.162
595.0 1 .00455 0.92165 1.92616	 5 86.887 76 7. SQ4 -0. 301 0. 1 16

600.0 1.00307 0.9079? 1.91091 591.780
--_____.____ _000_0._

772.752
0__00_0 _^

-0.464
.. _	 _

O.1H9
609.2 1.00157_. 4 .87iU l -14^4I _^_61+^g _^9^14Q _. -1i^701...-

-
0.200 _	 _

610.0
615.0

1.00006
0.99954

0.87720
0.86042

1.87691
1.85830

601.606
6U6.540

783.715
789.594

-1.013 0.210

620.0
-1.412 0.217

0.2220.99704 0.84288 1.83870 611.489 795.6')U -1.906
625.0 0.99555 0,82475 1.81819 _ 61.6,4} 1 801_968 ^2 s 500__ . U.22.ti	 _	 __	 1

630.0 -3.200 0.214	 T0.99410 0.8()6.71 1.79683 621.427 808.514
635.0 0.99269 0.78752 1.77468 626.418 81+.492 -4.013 6.22_ L
640.0 0.99133 0.76893 1.75179 631.421 82?.747 -4.945 0.214 _
645.0 _ . 9 .99003 0.75076 , 1* 72819 636.437 830.357 ___ -5:999 ^_- 0_. 204
650.0 C198881 0.73336 1.70394 641.465 R3R.337 -7.1 16 0.169

-^_

..
0000

' r
„^-,0000	 ...

0000

..». _.	 _.

.. 0000.._	 ..
R

t



655.0	 00 14It767	 (1.71 711	 1, 6791, 1)	 h4h.5U5	 A40S91,102	 -8.416	 00171

wwn_n J% 4L (] 11411 l.h1 _hhh AhS `1 7

665.0 11.9hc)bH (1961'9(,7 1.627511 6h69615 Rh4.4H9 -11.476 0.123
67060 U.984n4 0,0929 1.6U115 661.6b4 0130811 -130062 000'3!
675.0 O.9H41? 0*611h? 195744? 666.760 8111.')()7 -14.1,Sb U9U1
680..,11_ ,.0.9b3ti2 U.b"lib 1.54751) 611.b41 093,32U -16.585 0.025
60590 001005 0.61,544 191)211':2 676.431 9113.?25 -1894114 -0.01?

690.0 0 * 9b27U _ 0.66717 .1.41471 .682.023 913.127 -20.328 -U9U1)1
6959Q U.4h244 Oo61209 1946014 687.11H 92?.911 -2?.231 -010119

cZ-UO.Q O. y ci241 0667991 1.44U1b b92.214 9120551 -24.130 -00121

r



-:,^	 Hm.^_.w..^r_^

SUNHLAIFR
^ ,
 f'RD IT

TINIT= 000 TDFLT	 TRt^,* 61.0 SFM i MAJOR Axl S n O.b25481711

FCCF N TRICITY s 0.2015791% INCIINAMIN* 0.i000	 50 INJECTION VELOLITYsU*89719

PE R I DO SINS TO INJECT V1 l a 211.42 HAYS . PFR/KM/ A, L VSRSO I a U• 11213 TPA• U.0

TIME	 RFR	 RSP	 UIST	 FFw7	 FS8	 AlINUTH FLEVATIUN
-	

000 0.99146 0099109 000U616	 3.181 2014 32 - 103.711 10910
5aO Ala.9.9283.®. al61911Z,. 0.013b2 . _ _ ,8.184 __7.292 e... _,8.30.271 4.029

10.0 009475 009"No r, 0.02501	 13. 172 110766 - 76.O 12 4e034
_.1154 0 0a,9951_Q_ _Oa98500 .D 01431-. . 1.l1a 147. _. lha2.b7 - 70x,96 3 4.025

2000
,5

0.99719
_ 0,94970

0.97')KA
0.97306

0.0434?	 23910A
005241 ^	 2H.OSS

?00804
26i2408

-6s.18U
-59.302

4.Ull
10986

30.11 1.00021 0996485 U.O6132 32.988 400078 -53.235 3.946
_....3-50 -0 	 1 . VU 1 .130 a.9.'^.^+23 _ f1a1tZQ2l^._ w _3 7.QL___ ,n ^,4. Hllt.^_ .-4.4.91? 1. tlbb	 _	 ....-

4090
&5.0

1.00323
1.00470

0.94422
0.9-1187

0.07944
0.08914

429811
47.702

3906'17
44.680

-40.317 3. /sly
3.h78-33.536

5000 1.OU613 0.91,824 0.04967 52.580 49.804 -26.556 30521
`talc LDQ1^Z.^_llul), 1 .Z41 _, .._ 0 @ 11146	 .____._. 1..A_4!: , . _ 45&.09_Q_, -1 99_4W . _	 3.32.5

U * 8874h
0.87050

O.1x495 610296
67.136

60.559
6h.2I5

-12.456
-5.596

300'44
2.8-14

6000
65.0

1.00886
1.01012 U .l, 0^ 0

7000 1.01132 0.85266 0015887 71.965 12.143 0.944 2.555
/.:,0.12.43L-	 "B.AA (L _ _ _Q. 18 016 LI+ 1 TALL.__/$_.. / 11 2 O L

8000 1.01341 000150t M04b5 810592 84. 760 12. 708 109111
8.5aS2 _-_ .1.aD14 3.7 0,79560- O.? 33? 1 __ iAk392___. `1 L `̂.A ^ 7._s,7 Z  1.7u5_

90.0 1001519 0071615 0.26546 910185 98.626 22.257 1.445
.-__954.11 _. _..1,.015119__ 0 *. 7_'2A9_4_ __249 1 b4._ __ 1.2U5
100.0 1.01649 0.71A34 0934208 100417 12U 113.940 24.511 0.9d6

.1Q2.a,^s_..1.0161$._ Q:IZtl12 ___ -. 031 A4_3.____..105t _7̀.2` . 00.709
11000
115.0

1.01732
1.01755

0.7045?
0.69016

0.43463
0.48634

110.296
115.(165

1!0.824
134.949

34.643
362502

0.613
0.451

120.0	 1.01765 0967810	 0954128 1190832 149.225 37,943 Oo 320
_125a0	 _^.Slllb3^_^a5^87Z_._ 0.59875__,12'4.'319..___._1StAl.QSt._. 391012 _  0.201
130.0	 1.01748
135.0	 1_01721

0.66239	 0.65812
0.65935	 0.71864

129.367
134.136

1680811
118.863

39. 753
40.216

00 098
0.009

140.0	 1001681 0.65971	 0.77946 1389909 1NA.454 40.450 -0.066
145:SZ_	 1.01629____0.66,347_..Q*,8398 L__14.3-:6-05- _.194z.112.____ 40_.50-1 __- -0.1,28

150.0	 1.01566	 0.67U4A	 0089888	 148.467	 2UA.A49
	

40.424	 -00180

	

40.254	 0.221__
160.0	 1901406	 0.69305	 1001070	 1589049	 227.773	 40.032	 -0.254

	

1 6S.0 1.01310 0.70784	 1.06246	 3	 236.718
170.0	 1.01205	 0.7243A	 1.11101	 167.665	 245.274	 39.554	 -0.296
175 0 0	 1.01021	 Q LL . 4	 1.15615	 L7 2:4.8 7	 _ 223o433__ .

18000	 1.00969	 0076101	 1019780	 17?9320	 2619198	 19.1/6	 -0014
185.0	 1.00839 X78029	 1.23591	 182.164	 260.584	 „ 39.058	 -0.316
19000	 1.00704	 0.79976	 1027050	 187.020	 275.612	 38.997	 -0.313

_000,0
..



195015 1060563 0.81 ,112 1.30164 191. bo y ?h?0 307 100996 -00307
20000 1.UU418 0483412 1.32941 lub. 1 11 288, 694 390 UA) -0.291
205.11 1.00270 0905654 1.35390 2019667 2949804 39.174 -0.2x7

210.11 1.OU12.0 Ua81421) 1.37523 206.516 3UU . 659 39 . 39U -06213
215.0 0099968 008409 .1 1.39352 211. 1500 306.299 39.577 - 092,28
221141-11-.	 - L.991i1 t 0.90bb 1 1.40flfl9_ 2164.430 3114717 398851 -0,240
22590 0.91667 11.92121 ► 1.42146 221.3'30 3169961, 40.lhH -U.221
7%n_n O_Q.i41Q n_Qi`hi 1 _4 lk1 41, 22&-456 422_(1r,li 40_52n -0.2u1
2 35.0 U . 993 74 U. 94669 1.4 1871 2 31.3 36 32 7.014 40.9U2 - 001710

.240.0 U.99234 U.915740 1.4437U 236.329 331.852 41.306 -oo 11)6
245 * 0 U.9y100 069 6h 73 1.44641 2419336 3lh05Fiq 41.779 -0.133
25n_11 0-QRQ77 0_414&7 1_447111 246.31)1) 341,24-4 42-11)1 -a- I tiB 
255.0 0.98852 0.9E+105 1.445b4 251.386 345.828 42.578 -0.Od3
26OsO-_ 11..!331 740 U.9fi.601_ ._ __1..-.42.41- 256.42.@_. a.. lb0a361 42x996 -00057
265.0

2.711_0

0998638

n_QM%AI.

0098946

0_94141

1.43767

1.44139

261.481

266-%43

354.Nti15

359.32%

43.317

41.773

-1)9031

-O.0114
275.0 0.98465 0099185 1.42382 271.614 3639784 44.116 U.O13
280.1!._._..._ 0	 9	 6 _____.tl.._99U.1.?.__ __a..2Zb.*k92._ 3b.fla2.4^+.  __54,54.15 .0sO1-
285.0 0.9E-33') 0.19817 1.40554 281.776 3729724 44.663 0.017
2906Q	 _D.9tit `^^___YLI.^Ll1_4S2I._. _La.3'^a14^	 286ALb.152 _,_. ^s.3..L7aL.l•!3__ _ __44e8.49 Ua1Vit
295.0 0.9826 1 0.97049 1.16404 29109158 3310707 4499b4 0. L 3 L

31)11.0 _ __0.4b24^ _^o. y11^:?	 _1.3I.3_ZUU_._29_L.QS	 _ -lab.ly9 4.%mi) __. _.00157-
^°	 :05.0 0.913241 0.9629 1 1. 362 79 302.150 114100111 44.941 U. 1 et2

10a n	 ^0^824Y_ O,St52 .3_.___ _ 1.3521^ __..__.illl_.2^6_ 3^^5. d6ti 4Z_9b.___ 0,2Ub_
315.0
32n_n

0.98272
O_9K ;111

0.94164
(1.920116

1934205
1433277_

312.341
317.413

400. /')U
415. 162

44.519
44. 17 1

0.221
0.2 !)o

325.0 0.98355 0.91517 1932460 322.52L 410019 41.6dU U.2b8

33 II. d _ 0.9 8416 .. _0.'3 QU Q'7 _ ., _._ 1.31 ZHl	 __ 317 a +601 _ _ _-4l bi.2.42_., - -4.3,, 044 _	 O.2 U 4
335.0
340_11

0.984E-9
O_9R573

0.8839?
().Rnk7A

1.31269
.30957

332.679
337.747

421.754
427.477

47.314
4t.4fi2

0.297
0.306

345.0 0.98668 0.84871i 1.30857 342.807 433.434 40.433 00311
_35.0..j1_._.-_ O_ 9R77 3 1 - A I n 1)6 34 7 a$56. _	 439 . 6 62 _ .,-9_&.2.'72__ 0,312_ 
355.0 0.98887 0081080 1.31423 3520896 446.177 38.023 UO3UB

3E,n_ (1 0_ yon 1 n n_ 79 1 44 1. 32 1 2 4 357.92 3 45 3.01 i A6.(230 0.29-)
365.0 0.99140 0.77201 1933119 362.938 460.189 35.120 0.245
32D...LL.._0.9.92.76 _.0.`251290 1.34415 __..._:3619 1 .41_	 4̂6t.735 092b_7
375.0 0.99418 0.7i448 1.36009 372.931 475.660 31.784 0.243
3.8D..D ._.._ 0 ^Q ^^ 5 6'4 .^0 ._Z1_ZL3. 1. 3 7 R 8 y  __ _3.Z.Z.a_^a? Q.6..__._...4E13^^^bt.__.__..L^.eSI$ Q ___ _	 t). e.21.6_ .
385.11 0.99712 0.70120 1940016 3829868 492.720 28.100 0.1E-4

,330.0	 0 , 9 9 A6 3 U . 6 8 Z 3 R _._..-1-a.42 4j.L9, 0_00 0 _.311. all 501.823   _ _ 2b^1^S1 _^_. _	 _ ^? .s. LSt 1,
395.0	 1.00014 0.67585	 1.45002 392.749 511.?.70	 24.175 0.112
4n0.0	 1.nnl65 0.66711	 1.47742 397.668 521.004	 22e-L6 3 00.OZ_.#_._._._
405 * 0	 1.00315
1a l n _ n	 1 QO463 __

0.66146	 1.50591
__ 0-6S914	 1. 53501

4029574
4,07 . 46 '

530.9 1)1	 20.141
541 . 019	 18 . 1 3 _

0.035	 1
-0.004

415.0	 1.00606 0.66023	 1.56430 412.343 5511.105	 16.154 -0.041	 7	 ^



42090 1000746 0966471 !.59340 417.208 5619106 149224 -0901•,
425aU la0DU19_. 0.67237 1.62.25111- 4229061 5100921 Us 376 -0.lu1
430.0 1.01006 0.6M?'l4 1964990 426.90? 5809484 10.!,13 -091!4
435.E 1 .0l 1-2 6 0.6146014 1 .61696 4-41-  1 41 589. 715 a Ut -0.1 2d^^.._,__
440.0 10012j? u. 71 l 24 1910310 436.&j90 6)40 9 5 78 7.404 -0011h
44590 1.01340 Oo72610 La72821 4419359 601905U 599 17 -Uel`04

450.1) 1.01431 0.74h1'l 1.1529 1 446.160 6t`► 91 14 49675 -U.7U6
455.0 i_015t5 0.765011 1.778 45(1.953 622.807 3.!iuu -0.214
460.0 1001596 0.18445 10751816 495.739 h3(1911`i ?.450 -0.?16,
46 1)90 19.1?1646 , s 0980391 --1,& 8 19 5-4 460, 51 9 6ST9011,! 1. 514 -09211
47090 1.01 6, '14 0981327 1041997 466. ?94 641o0*06 00715 -U.217

.30754,0 100,1730 0984211 19959.3.9 470065 650.0^?1 O.U•,y -09 213

480 * 0 1.01754 oeb6o3N 1.81779 474.834 656 074 -0.ti7U^ -U.2uh
46590 1.a.0.1.765 0a8-77bli Ia19l12_. kv)abU,1.. ..64 1 . 8 8 0 -10019 -001 4 1
490.0 1.01763 0.894411 1.91133 484936H 667.464 -1.450 -U-ldb

993!.,9 5-6 0	 1.01 '14 9-.-. O a . 9 0 910- _ _.__1_..42 6 35 A 8 9 a.13 ►̀ 612 a 8!o2, -, 19 756 -091 13
500-0

S05.0
1.017?2
1 .016th

uo92421
0.937 jn

1.94015
1.95265

441.905
498.617

678066
6H3,1 2k

-1.Qb2
-2. 1 3h

-0.1:)y
-0.144

51000 1901632 0.9490 c) 1996302 5030453  6HA.0`.r7 -2.2?4 -U.12ti
_515.0_-_1aO1569,_.....x,._Q,a95..5,1-- -la-9 LOS- 5Q492 35 _	 6X12!1171....__ _ -2..2. 2̀ 1 -O. 11.1
520.0 1901495 0.968 53 1098190 t01 36 027 6979 ti'lU -20231 -09U9 4
526.0) 1.01410 0.,47612 1.98874 517.917 702,227 -2,164 -0.075
530.0 1001315 0.98224 1.99406 522.620 7069801 -200914 -O.Oti6
535*_!!_,-__ la.D121S1	 _Oa 9Q.(t$	 .. _ n_19.L$2^^ ...521.4 3.1. 711 a3^	 _ _- _-1a_'^ 23_ - U. G 3 7, _

540.0
545.0

1.01096
1-0097S

0099001
0,941tal

2603001
2_00060

532.253
ti37.09h

715.811
720,27h

-1.761
-1.58,

-O.OL8
O.Qul

55000 1.00846 0.9 .4174 1.99960 541.924 7249716 -19392 0.02 U
555-0 La0U711 0.•991.5214 _.l.a_99.70.0. 	 _54 h 9 784._ 124 9 2.U.0._- ___ - 1_4120 U U604 u
560e 0 1 .005 70 0.96 742 1099281 551.653 733.684 -10006 0.05e)

^65.9U _ ,, 1.D.0425 _0.413301 1 .9$210§__ _ 5569514__ 7:1Ba_2t11,_,.._. _-:0.026 ._ O.1i77

570.0 1.00277 0.97 710 1.97974 561.429 742.765 -00654 010913
-315. U 1&-QU121___ ._ - (2.. 96.9..73 .__ __1:.9.7.0!1.1___ _ .2' 4b. ..31_0-.___.J..4 7 73_9..2.. -11.5 20 00113 
58000 0. g9976 0096091 1.96061 571.261 7529098 -09414 L013U

..585.0 09-99824_. _ Q:95060._ _	 1..24	 9__. _ `ZZbe 1914 __ 756..E^.	 .T -(1.343 0.146
59000 0.996,74 0.93910 19935b0 581.149 761.NO9 -0.'123 0.102
595.0 0.99526 0.42620 1.92141 596.115 766.951 -0.356 0.176

600.0 0.99381 0.91205 1.90578 591.094 7129040 -0.453 0.189
_6525 9 () _ ._ .Q_:9y2_4_L__Sta y	 1 ___^1 ^^OS2 ___5^L6..._12_d 1__.....7 7 T• 402. --Q. 625 U ? UU
610.0
615.0

0.99106
0_98978

0.84033
0.8629F

1.87113
1.85.26

601.093
606.111

-.._
7b29956
78A.728

-00878
-1.218

--
00210
0,217

620.0 0.4885A 0.84481 1-A3247 611.142 7449743 -1.660 0.222
625.0 0•4.6 o. 82UO..._ 1.811 d 3 _lba^ 11,4 .. __411:	 ^_.__ ___ 2.20__ 0.2., `1 5

630.0
X635.0

0. g 8t43
0.98551

0.86674
0.78728

1.79041	 621.236	 8070608
1.76827	 626,29U	 8 14.514

-2.867
-3.648

0-225
0.222

640.(1 0.98469 0.76790 1974547	 631.368	 821.768 -4.555 00215
_60_9 () _ _ 0.98 390, 0.7489f► 1:72203	 636.446	 $299 -5s 5 0._2 05
65000 0.98342 0.71067 1.69800	 641.530	 8379412 -6.763 0.1.1



65500 0.4d?°10' 0.	 l .thl
1067.434 64h.l-1N 04%oe?6 -$soch O0 I /!

E.E.n_fl 0-OM2dr^Il_h)).tt. 1.^^ ^ r.tit_ It 1 AhtL12 -a_y4 ►. _. _.,(1.3	 1
6695 (l.(IM?46 O00)1%4 11 1067256 060 to 06 Ph` 314 12 -11.047 O0 t "I
6?UOU 0098241 Uo67374 1*5964!! 6L 10903 873* 326 -12.711 UaQ;t1)
61')9(1 Oo94249 0"6b')61 10'57(10? 666o9g9 Hb3011? - 140410 0006'(
680* U- 10.9;3(70 usbfiubli 1.64344 6?100')4 863.094 - 16*JLU 0x014
605.() 5 006',91(11 1.51695 677.1 HIS 40`5.1 74 - 19 020 8 -0001?

690* 6 0 * 9ts3!)3 0606091 Is49081 682.274 913.25G -200145 -000`J1
695~() Uallt441 S 00bf f'011 10 4h ah7 68 7.3121 413.219 -2 ?.047 -000,0%

.--2<40.0 U.984d5 0.67 g 4C 1.4414.1 6)2.433 9j2.51tj9 -?4.043 -00111

_ .x



SUNRLAIER ORPi1

T1N1T • 0,0 T0ELT x 5,0 TIINL• 70090 TREGn 91.0 SEMI MAJUR AXIS•0.N254d177

ECCFNTRiCIIY & 0.2116432M INCLiNAT1nN • 0.5000	 SO INJECTION VtLnclTYw0.8A7N1
P(RiOn SENS Tn INJECT VI L & 20.21 DAYS PER/ KM /SEC V SUS0160, 11 140 TPA n U.O

TIME,	 RE K 	RSO	 UIST	 FFR	 1,^%0	 AZ1MUT11 ELEVAT IUN

0 0 0 1 .Out:? 1 1000019 0000610 3. 111 ► ?. ?71 - 490 y MN 3. O1 7
560 4.00173 =- 0..99%41 ^-,1401578 _.UaO38 7.11#6 -81.015 3,' 44

1000 1.OU323 U.9470h 0.02532 1?9443 Ii.')3R -75.172 3.942
--L5 s U 1,0D470 Ua99116 0.0,:l*12 17,834 15,95G -69.645 3,'1117

20.0 1.0061 11 009N771 0.04408 12.71 1 1119416 -64.ON7 §.912
25.0 1.0u752 0_9RO74 0.05124 27.1476 24.933 -58.3' ► 6 1.846

30.0 1.00666 0.97225 0906231 32.426 29, 621 -52.4$3 3, 847
35Ls , U---	 la-0.1012.___.._Va 9622-R D.l144 3.?.268 44.19.7 _- -46.325 3088
4090 1.011 32 0.95089 11008080 42.096 300978 -196911 3.704
45.0 1.01243 0.91809 0-09067 (16.915 43.883 -33.2G[L 1.5dn
5000 1.01345 0.92395 0.10137 51.724 489931 -269420 3.438

..55.0 - la,01-431-00"lk 0^ 11!!9. .14, 5Z4 54&143 -19 * 499 _ !.251

60.0
65.0

1001519
I	 i Sdy.[

0084145
o.8 7428

0.12692
0.14 bh

61.316
66.10

54.542
1 ti3

-12.600 3.030

7000 1.01649 0.85967 0.16101 70,882
-65.

710001
-s. 8 A -1

O.6'.)R
2,792
2.513

754 0 " 0.1.6.96, U:-..84626- ._ ...!1 .18 238 	 .^ e _ .tea 61 I . __ 2? a 11.1^ 	 ^i,^UL . 2, 2 J 5....
80.0 1.01732 0.81626 4.20716 80.420 U3.526 129301 10958

.-95,.G- ._l..,O L755r - - 0..795 @8 II.23^6.4__.	 85^	 t1. '111,262 ^.^ .	 1Z^,35	 ._. 19 6dy	 i

9000 1.01765 0977539 0.26806 899964 97.354 210850 19439
95, 0 1.01763 0. 7.5512.... 0.3045.8 5t4..T31 _, 106a 2@ _ _... 253_.17.0 1, i yd
100.0 1.01748 0.74543 0. 34528 99.498 1170710 29.136 0.962

_-"5-a 0 _ L.0-172-1 - 0, 71b.72 0.& 39010 -- 104 -tZb _ 12	 91	 ..... 31 ! 9.69.- 0 0 78 7
11000
115.0

1.01681
1 .01L24

0.69946
0,68413

0.43891
0.49140

109.040
113.817

129.747
138.891..__

34.302
36,169

0.613
 0.45111

120.0 1001566 0.61121 0954716 118.590 14A9434 37.613 06311
-125.0 1..01411..._ Q,154LLti__- ^_0,6115!t1U . 123, 6 _ _ ,15!1^,3511._m.._ 48:-675 092U2
130 * 0
135.0

1.01406
1.01310

0.65434
0.65106

0966600
0. 72 7SS

128.181
132.984

160.427
1 18- I,Q,3,

399403
A9,846

00094
0,010

140 * 0 1.01205 0.6'11145 0.78936 137.796 1894036 40.056 -00065
,.145011 10.1-0.91__._^.^SQ0^^y^.., 12a.41y . -0.127

15000
_155.0

1.00969	 0.663U3
1.00839	 V.b7374

0.91040	 147.451
0.96804	 1S2.296

209.371
2192175

39.982
39.794

-0.174
-0.270

160.0 1.00704	 0.68722 1.02311	 157.152 228.632 39.561 -0.252
slZ055 63	 U. 70 30 1-le 0750 1_-,_...11L2A 021 217,695 	 3 Q 317 ., .., , -0476

170.0 1.00418	 0.72061 1.12351	 166.903 246.317 390088 -0.294
175.0 1.00279	 0.114►̀7 1.16843	 17127 9, J L̀4. X50 . ^^ 38.4	 ^,	 , ^Q.^:4► 5 ,r

18060	 1.00120	 0.75942	 1920970	 176,708	 262,343	 380751	 -0.311
185.0	 0,99968	 0.77976	 1.24730	 181.631	 269.7!4	 38,666	 -09313
190.0	 0099017	 0.80025	 1.28129	 186,569	 276.747	 38,649	 -00410



19s00 09416h7 0.aF"04? 19 1117? 191.6)21 ?14 4.411 ► 1406#!( -(). just
20000 061951 ) 00a40 ItI 1Wl,!l1 12 19b . 4bl ltl ll. 1» 3N.Bi3 -0.21! 1
205. r, 0. `#43 14 09H ) 17! 1.3h,) 10 201.461 ? !*). A I t 3tl. 991, - 00 ? 1 ► 4

210.0 1.1"123 t Uod11114 t o 302d3 200.461 Jul. CPU() 3 197id -U.?. !u
?15.O 009 , P100 096 Vi4 k ) 19400 ?C 111.4h? 2122. 1,i, 4 1 Vie ') 77 - 60?y6)
220.11. 0.91)072 0.11114 1.41442 216.48b !124511 39.811 -U.2Jb
275.0 0941(Ri? 0. 4 ," 7114 t.4261 4 ? 2 t. s10 31 to i( ► 1 4 0921,b -0071 ,1

.2.1) j 11_ 431171. 11 A_4l.11t1/. 1 _f. Ah 1 4 2' ba..	 1 .--^- 11 4 	 681 . -G.1 yy
2 35.() U. `)Nh IH () .91344 1,44154 231.61'3 127.4•)4 41. 1;1 -U. I it

.-240.0 0. 98541, U*964b4 1a44 ' 3 b a 6 P) .!12.3.,_1 It 1 .0u^p -U.I /y
245.0 U. `)h r•h' ► 0.91419 1 .44 7?1% 241. 74h •1 37.11,17 4?.Oh4 it
250 - 0 11_WA "'. 11_14 !1.7 45 1 _4y11ku 24E,_924 A41-''l:3 42	 4s 1 fA.-,^-^a1ijI
255.0 01 HN 1 11) 0.9,,,OU L 1 .4di;.rh 7 ?51. g t)tl 1411. 1)_1,0 it 1.0(14 -0.01i1
260.0. "9,U2 P) 0. +./)412 1.44048 256.997 JJ0.531 43.517 ..U.07
265.A 0. 1108?61 o.4,)?f) # 1.43477 267 9040 3'54.'#43 44948h -00031

_27n_(1 u_'4N^)4Ci 2 &7-IAS 31411.329 44.4vt1 -0.004
27590 0,9024 L 190( ► O1 1941924 272.241 36 is ?U) 44089 00 013
280.0 D 's 9d2 itI us9190 q 1.4U9dU 27193lb 3689.044 4 59120 090*)o
28500 U.962 l2 0.401446 1934-) 1)2 ?H?.473 31?.419 45.3 +2 0.0.7
29090 0608307 _ _ us 9"21J. 1.o3.d8b2__ 287.564 316.4US 45.546 091U4
255.() 0.914351) 0.9K6 314 19!17J7 292 * 652 Jd 1.3 16 4').7'22 0. 131

30000 _ U 's 9b •116 'DA 97,90b,, 1&16587 2`31.135- 385 a g uti _ 45_,.761 00157_-
305.0 0e984Oil) no9 10?'i 1. 454141 302.811 190.'51? 45.703 U. LM2
310x_0 _0.911513_ 0, 9:t9 1)V 1..34351.- 101..87.9 3911-a2.09 45.541 U.296
315.0 006660 0.94N?7 lo33315 31203H 4U0.015 459265 09224

„32(1.(1 "_ya71A n_^j 1 6, 1 ki 	 _ 1_30 A17.yNd 404.x)48 44.969 0.2^W
325.0 009doti 1 099'' M 1.31545 4239027 410.030 44.346 00768

-3.1060 0694010	 _ Alls90510 143.0870_ 3284059 41.5.280 43.692 092d4
335.0
1;4(1_1'1

0.99140
n-y,)2 t6

0088826
n.97n3H

1.10372
_ 311U ts1

333.0 t0
33	 .013

41(1. 722
4^6.381

42.902
4 1.975

0.247
U.3u?

345.0 0.9941 R 008 1)15A 1,10022 343.062 43792h4 40.41 1 0.312
150,0 U.9 9.5b3 09^UJ203 100221_ .148..03.6 .. ,. 438.409 J 90711 09313
3550 0.99112 008t143 1.30618 351.000 4440017 314. 3 7H U.Wi

jb (1. 0 n. A9A6 A n. lv 1 sn 1.3147 1 457,24H 451.746 16.920 0.30 1
365.0 1.00014 0.71101 1032551 362.881 458.917 35.342 0.2h7
37040 i.OUIE5 0,6775085. 11)-1.3941 367.800 466.417 3°1.652 0.269
37500 1.0031') 0.73143 1.35640 172.70*) 414.448 31.862 0.245
1aQ,,kQ ",.Q04b J_.A ,..0..712:1,0 1..:3.7630 377.59.1 4 02,8 44 - 2.99982 00218
385.0 1.0u606 0.64601 1049843 382.475 441.667 28.026 00196

39D.i1 , a. I a U 46__...QA 61115 , _ _.42394. .l-1.:3:40	 50	 903- 26 * 006 0.151
395.0 1 .0U S7q 0.66R80 1.45003 392.192 5100516 23.938 09113

.4AIl G ID UbL -0.& 6 19 41 _,..1.4 7 0,4 0.._ 3 9-7-0-0 31 _...5252.. 4.41 219 8 It 2 000713 
405.0

,&1n_n
1.01126
1 _nl	 47

0965134
hti ft

1.5Ub84
1.53875

401 * 863
4u6. 6A2

530.614
540.915

19.7.36
17.641

0.035
-U.OU.!

415.() 1.01340 0.6S202 1.56865 411.491 541.237 15.580 -0.040

r.



420.0 1.1114 f 4 09 6'169 1 1.59514 4169292 561.465 1 1-'315 -0 90 /5
-425.0 1.Q1.5.15	 ... 0966501_.., 1.62695 T__. 421•aB4 5 t la491 ._. 11..64 1. -001111
430.0
43K_t1

1,015146
i _111446

00674411
1

1965486
1 _6A177

425.810
4;0.65U

Sd1.226
Ky0.6U3

y-H13 -001 35
-0-14%4

44090 1 901644 0970661 1. 70764 435942'i lillo.5 17
---R.090

69489 -00118
445.0 10.17,30 (1.724- & t- 7.324.7 44Qa 197 6U60-12-1 5,OLd -00114

450.0
4%S.O

1.01754
1.0176S

0.74114
0,76-174

1.75630
1.77915

4449965
4191. 733

6 L6,250 '4.660
2.477

-0.2U6
-01.2

460.0 1.n1763 n9 78414 t9RO1u 5 454.tiUU
62i29SS
6 11.262 1.408 -U.21 m

. 465..0 1-U 1 14') _._ 0, 00461._.. _I&B22U-1	 _ 459o267 6 19-1 `18 0.412 -0.219
470.0 1 .O L 7l? 0 * 8246 7 1.0420 3 464.016 6449792 -n.342 -0.216

-6L 5-. Q .1- o-16 r1 U - 8 4 4 64 .1.. !!!6j^1.Q..n,.,_ 4 6 d_a 0 09 _ 6 51.0.12, . -1.0 28 -09212 

480,0 1001632 0.86373 19f47g17 473.585 657070 -10601 -0.2US
_ 46.5sQ__ ,._ .1 , 015k9 0.8.16146 l a.$.5?11.2.1.. , ^. 4-70-A 366____ __602, 014 -2.067 - u-1 V5	 _
490 * 0 1.01445 098')ylA 1091217 483.154 6b893s0 -29433 -0.164

1.01 41D-,-- 0 - Q1,^ 2-0 - -1-s-924" 4 8.7.-.'L4,0 .. _ . t 7.3.64.6 . -29  ? 0 -00 1 Q ...
150090

SU5.0
1.01315
1.111210

0993015
0.94373

1.94060
1.95295

492.751
497. 63

670,766
6842770

-29M69
-2.946

-09158
-0.143

51000 1,011.96 U. 95544 1996398 502.385 6869619 -'19031 -0,1"27
_.5x15 ,0. _5-0.7.217._..- 69-12	 j  90-03.__ _ _ -0.110
520.0
%25._0

19OUP46
1.00711

0.9 7606
0.98390

1.981116
1.98860

512.060
516.916

697, 970
702.946

-20917
-2.783

-U. 042
-0.OZ4

53090 1.0()570 099`.0023 1.99383 5219784 7U79036 -29606 -09056
_535.4.0-__ .. _1r.0S1425	 99.95.	 .__.__.l a 99751	 - .52-b& ft4tL._... Z11: x..73_ _ -.2A-1..96--  -0003

54090 1900277 099,0825 1.99960 5319561 7159881 -2.15b -09018
545.0 1 8 0012.7 0.99993 2800010 536.464 720.2Gh -1.097 00001
55090 0.99176 1900005 1999900 5419393 724.639 -1.624 09020
i55,Q _0 * 91P24 ___0499 _840 .__1,9962 -- __5.46 02.9.__._ 1-_--U9 * 0 _710 4.7 U.0.sy
56090 0999674 0.99 558 1.99197 5519281 7339421 - 1.069 09058
565.9.___0499.524 - --0._990512___ 1.98608 __14941402 O.p76

570.0 0.99381 0*96492 1997863 561.225 742.337 -09555 090y5
-515-a 0. __. UA-"2.41 _ _	 _ D.:'11.7.30 9.999. _1:9_4 63_ _. -50692,10 _34E:. 	 _ -09 330 O, 112
bbU.(1 0.99106 099tole 1. 95')23 5719224 751.5u6 -0.140 09129

_58sli-U __ 0,98971-	 OAL9-^160__ __ 1,_'±43	 L_-_ ..5Z4LZ.-41_ __? -ba2 y _ __	 6059 09145
59090 0098858 0.94559 1993416 581.273 761,056 09108 0.161

5.0 , 1,,, 94746 0.93221 1.91965 586.315 766.020 Q.153 0,175

60090 0.98043 0.91752 1.90394 591.367 0.124 0.1687719135
605-0 	 _ Q., lid 	 1--0-x90160	 1a88709_.^ ^R^+, 42^_. 77(^.424^ _ Qs 071 -	 U •_^ yy_
610.0	 0.98469	 0988453	 1.86919	 601.500	 7810911	 -00190	 0.209
615.0	 0.98399	 0x86644	 1.85034	 606.577	 7879620	 -0.487	 0.216
620.0	 0.98342	 0.84747	 1 83061	 611.661	 793,579	 -09887	 09222
625. 0___D, gg2 y 7	 0,82778	 _ 101009	 616 ]50	 799.81¢__-19401_____.___0•.2 

	

630.0	 0.98265	 0.80759
	

1.78884	 621.843	 806.361	 -2903b 
	

0.225

	

1.76692	 62f..93A	 Al 14_24[%	 -12 -A 	 (1_222

	

640.0	 0.98241	 0.76669	 1.74439	 632..035	 8211.497	 -3.709	 0.216

	

-6&3,.0.._._..0.98249	 0.74662.	 1.72126	 637.131	 82P.143	 _-ni ,753	 092y^___

	

650.0	 0.98270	 0.72724	 1,69756	 642.226	 8369204	 -5,940	 0.192

R



655.0 (1.'414 40 1) 0071,-)1 ti 1.67328 647 * 31h 644.69! - 1.2 11 0.l 14

Ak&f1_A 11_YA1%1 4_hu -N	 74(1 ^_1S?
665.0 0998413 0067829 1.62302 65704M9 8b?0915 - 10. 341

^,
0411126

670.►-0 ,(1.!1:8465 0..661,.53 l*b97U6 662.665 812.611 -12. Obi? 0.096
675.0 0.')866'1 U06•)/N? 1057Of7 0670633 HN?.toUU -1108AR U.OhI

.690-0t	 - us9abb3 x061249 _1.544911_- 672.613 842.1109 -156 SU0 U. Uib
6H5.(1 0, 98 h4 0.b,0/f1 1051 /14 677.744 9u'l.111 -17.775 -00012

690.x.-	 .C eY bH S2 --- (l.b'i21i# __1.4 .1016 b92.783 913.432 -196791 -000 1
69%00	 0, () ,)0(. , 4 0, wo$ 1 10464 42 6N 7.rI1 ')13.67.'3 -21.8?? -00010

.2011.0	 0.991.33 Uobul24 1.44U", e,92&821 9.13.59 q •-230847 -00128

i
i



SLINDLAZFK nKotv

n #

DF	 U f^ 1' N	 100
,_

. 0L a    	 T14 F r x' l 2?, 0 SERI MAJOR AXIS &0 * 82 654811?T1 N" i a 00 

ECCE NITKICITYru * 221969S) I NC I. I NAT inNs 0.5000	 SO INJECTION VELflClTVs0.8?#j3J

PERino SENs in INJFLr VCL z 19999 DAYS PER/KM/SFL VSKSOl s 0o1I415 TPAw 090

TIME	 w64	 MST	 FUR	 FS11	 AZIMUTH FLFVATinN

010 1900412 1.OU863 0900625 3o071 ?*?21 -85,373 3*815
5.&_Q 1,* 01 0 3 7 __ 1. 00.2.11.2 15 91 1 * 94 1 7001 V- -VU -s -375 3,@ 8'24

10 * () 101155 1*00541 0e02567 1?o739 -75.423 3.848
I5 -0- 1ao12b-4- laouli p 16.04523.._ 17a54 159660-- -loaal 30836
20 * 0 1*01364 0094577 0 * 04461 22.361 2000,S7 -65. 164 30821
25_0 _1, n W%& 0.96 9 11 7 0-0%363 27-160 24-471 -52.737 3. 8117

3(190 1*01534	 0.91981 0o(16292 31.951 290918 -549055 3.715
35. Q. 1,01602	 --"9,69c.12--_ _U42j2UZ_ J6e_W___ l 3a5_13 ---- - - 3 * U 1)

40oO
45. 0

1*01659	 009,071
I_01704	 0.94444

0.08129
0.09097

41o514
46-288

3897.14
43,099

-41o813
-35.313

306`1
3.54#4

5000 1.01737	 0*929114 0*10138 S10060 480061) -28*646 3.414
---55-t-0 5 .5 *-.OZT -_ 5.3...20.3:_....

60 * 0
65.0

1.01766	 0o89664
1,01761	 0,87927

0*1?6Ul
0.14115

60,594
65,361

59*913 -14ob57 JeO36
2,799

70,0 1o01744	 0081)8mg 0015880 70.120 69*81)3
-8m042
-1945b 2*540

24	 4.792.
80. (1 1.01672	 0.81770 0.20348 79,672 82,290 10.519 1o942

1. 722

9000
95.0--

10000
105._0___
11000
115.0

1.01552
_-1..014 75 ___

1 * 01387
1,11290
1.01.183
1,01067

0* 77481
O.&TU-4 5	 _A)&Z2%Q5
0 * 73263

O,h9441)
0,67809

0*26305

0 * 33936

0*4321*1
0.48546

----9't,021-
89.232

980818

100.437
113,261

96.,070
_1103 *50_2_6^6'5 5
111 * 460

128.647
137.924

20*5*38

28*202
31*1'1Z---
33*669
35. 654

1o465
1.225
1.005
Q*AL05,
0e627
0e468

12000 1eOU943 0*66427 0e54161 118.096 147.624 67.191 0*328
t 2- 5-4- -I -cQU 13	 0.6'2 340 Qe60062 122e943 157o690 343. 325_ __VoUT..

130 * 0 1,00676 0*64616 0*66175 127*801 168e039 39*106 0.101
135.0 1,09535 0m64264 0,72411 132,673 178e5§4 39,586 0.011
140s0 1.00389 0 * 64306 0o78677 137 * 558 189* 139 39*820 -0*065
145.0 	 1,0024Q ._0.64742 0,84880 142,456 19-99,636 39.865 -0&j2A_

15000 1.00089 0 * 65550 0o90933 141 * 368 209 * 933 39.776 -0*160
155.0 0,99938 0,66698 0,96762 152.295 219,927 39.600 -0.221
160o0
165.0

0.99787
0,99631,

0,68139
0,69922

1*02308
1,07527

1!7 * 235
42. 1!10

224 * 541
238,723

39.383
39*159

-0*253
_-0*277

170* 0
175.0

0 * 99490
0, 99346

0e71693
0,73701

1912391
1s16883

167.159
172,142

247 * 448
245.713

38*957
38o798

-00295
- .306

180.5
185.0

0 * 99207
0m99074

0.75798
0,77941

1.20999
1,24739

177.138
182,147

263 * 529
270,920

38.695
38,658

-0o311
-0*312

19000 0o98947 0080092 1028108 187*168 217 * 914 38*691 -0o310



195.0 U098029 0.812 ?2 1.31 1 l ► 197.202 2#44e 54 1 30. UM -U. sir s
200.(1 069HI19 U084301 1.33176 171.246 240.H42 l9891u -U.2,14
205.0 094t4619 `J. g o ) 1() q l . 3609d 707. 301 2 P6, 144 t 3l. ? 1 0 -0.2411

21000 .Us98h29 us 81322-a 163SU91 207.345 JU26513 3,18512 -U.2V4/
215.(1 0Ots45l 0.90042 1 0 3 9 ids 212.431 1UH.Ohn 190 HbH -08254
22.0..-0._- U,,981114 0491738 1.41.11H 217.511 313.353 40a273 -0.23b
225.0 001183?4 0991 WA 1.42 7 9 7 222.601 310*4')2 40.71'i -0.117
21n_11 0"2 Ai4 0_1)4 /44 1_ 4 4170 2?7_6j2 474_ 4 ►4y	 41_1C4 -0.1'i1

235.11 009111.314 00900 11 1.4'1117 232.7Nh 3ZA.Idl) 410 701 -09116

..2.911.11- Us9d2-4A 0.9.1184 1.44056 231,801 JJ2. tla3 42.221t -0.154
245.0 00((241 0.9118 l 1.44192 242.973 311.4 18 47..753 -0.151
2Sn-n 41_0x214 ,0_yIn2 4 1-44 104 24H_07 4 44 1 .y 2 / 44-242 =O .IU?
255.0 0.48278 0.4'17111 1.43831 251.1h41 146.34M 43.t3U1_ -0.0b2
260,.0- ___._U...gl1.3.16 1.UU238 1.043381 25d3a2')') 3508 715 449301 -08 U;)6
265.0 00l4H 166 10OU606 1.4277 1 2b 1.34h 35504) 44,771 -0.030

,2711_ 0 a, g A4 4 n 1 _()cm 1 3 1 _4;022 76x3. 42 1 4!29. 34 1 4ti, 21 5 -O. our.
275.0 0.'f6505 190oM54 1.41 lh 1 273.502 3639640 45.606 0.0e 3
2flll.tl_._._ Ll.-9H5,,9-L. .".UQl44. _1,. 1117 1 1 21d,hbb 3b7...936 55.`)42 0801.1?..
205.0 0 0 98688 1 .004hN 103912r 28 3.6145 312.246 46.214 0. U I 1
290.0 _ U.9d 1 _ 38 .111.5.... 2tl.a. 673 i tk,5r 11 46.411- 0_.1 U-3
2 g 5.O 0098 911 0999416 1.36870 2430 71 1 360.974 46.525 O.1 3U

.3W, n u. a y 0 5̂ _ __ Ala 9kAd- ___ __._1_,35_713. __ __21d el lb_ _ 18 5.,-42 7_ --- 46- 4 b_
305.0 0.99167 O, g 7774 1.34571 303.749 381.951 46.460 00181
310.0.0.. 3304	 0-ynLli1.334611 ._ _ 308. 149__ --31 -4.567 Ab-al. G _ 482Ub
315.0
32l)_n

0.99446
0_9y544

009tiyU7
(]_94147

1. 32434 313.735
318_708

399.2,43
4U4_14A

45.94)9
45.537

0..22$
0-249

325.0 0.09742 0.92654
1- 1̀ 14_45

1.30602 323.667 409e l •y 2 44e975 U.2c► H

330. LL___ Q* 998-U _ _._ 0-9102 1-30021__ U .28.4
335.7
l4n_n

1.00044
1	 q6_n01

0.8'5290
n.8742n

1.7_9544
1.29279

3339543
43A.45y

419.6 )8
475.2,41

4 X1.442
42.467

0.298
0.3U'I

345.0 1.00345 0085462 1.24251 343.367 431.114 41.353 0.313
350.( l __.__1.004 4 2 Q-,^2Il__ _.la29146	 ..25.Q___ _4l I_a251.1_._.___ 4.0...1.01 0.314	 -
355.0 1.00635 0081"117 1030006 353912b 443.692 38.714 0.311

hn_n 1_00774 0_79174 1.30827 357.988 450.474 37 -200 0.303
365.0 1.00905 0.71022 1.31960 362.830 457061'4 35.5(34 0.269
:4..7.0...,0_.. _ ill0li13.1_._ 0.74.8.9.4
375.0 1901149 0.72810 1.35174 372.504 413.200 .116965 0.24K
iB0.12w_ __ L,IllL`•22__.._Qali2#i l4_.__ 1.37235... 31 To 32.1.._ -At ill :_Niq___ _^3 )1302.1_-- -_.	 __09224
385 * 0 1.01351) 0.6)077 1.39571 382.128 4'10.591 27*998 O.ld8

390.0 .	 1.014 5 0	 09 61491...._- 1, 42146 _ .. -JOA,92 7	 499062	 25, 909_ _  0 .9-.3
395.0	 1.01530	 0.66169	 1.44915 391.719	 5U9.746 23.769 0.115
400. 0 	1,4115 9 9 ---16-6-5 161	 1.43@23-- -396,503 __51y_^8$.0_ .21	 98 16_	 ..._
40590	 101657	 0.64509	 1.50825

1_n17n2	 1_53®57
401.282	 530.277

540_823
19.415
17.244

0.036
-0.003410_0	 ()664240

r	
415.0	 1.01736	 0.64367	 1.56871

406,057
410.827	 551.392 150108 -0.041



420.0 1001IS7 U. 64884 1.59828 415.596 501.846 13.031 -00076
_42S&,- 1401166-. _, 512.091 __._ 119031 -1?.lul
430.0 1.()176 1 0.66983 1.65469 425.1 SO St1 ?.01 5 9.144 -00 135
4 .45.0 1 _ n1745 0 _ 68480 1.68128 4 9 Byb by1	 54) T_37 t
440.0 1.017ts 097020A 1.70676 434.667 6UO,425 51729 -00119
445.1) 1&U.1.614 0.7.21.12- 10 Uns . 439.490- 60., 4*226 ,.06195

450.0 10016?0 0.74143 1.75460 444.21H 6170419 29868 -0.2U6
4SS.0 1.015hh 0.7ti25A 1.777 1M 440.000 625,14A l.bS4 -0.214
460.0 1.01474 097H401 1.79866 4 5 1. ld9 6 37.44 7 0,58b -0.2 L H
465.-U.. __1x0.1312 __ -- U * lU.5!)0,..^1..fl1234 _._458..585 63 99 360 -0.345 -00218
470.0 10017)5 U.b7611 148 1911) 463. 390 645.916 -1.136 -00216

X35_._0 1...0.118£1 0,.84137 1x8.5114_- .4bb,203 652.141 -10798 -0.211

480 * 0 1.01() / 1 0.86121 1081617 471.021 6JO * ON 1 -20,118 -0.204
4_d 5.0 _1.-QS1 yy 9 0980425. 1,M22 _At i, 	 61_. ____6.6 3..1-fit► -2.761 -0-9 1,05
490.0 1900819 0.90414 1990925 482.708 6b99214 -3.071 -0.lb3

.._.4Q isAl , __1.0 _".9241 _48 7._ 45. , b T 4.4 5.1. -3.2 91 _ -00171__.__
50000
_505.0

1.00542
1.0OA96

0.93627
0.95032

1.95797
1.95052

492.436
447.421

619.519
6d4.4 S

-3.416
-3.455

-0015?
-0.142

51040 1.00247 0.516295 1.9611? 502.218 689.145 -3.419 -0.126
._.515..0___ 1, 1U0..3L__. fl, YZ4.10-__ ^^Z15^SQ7-.130 65.3041______-3.:114 __ _-S?^ 1U y 	_	 _-
52000
525.0

U.99945
0.99794

0998374
0.9YIH3

1098015
1.98715

5129055
516.995

699.403
.817

-31150
-2.93

-00041

530,o 0.99644 0.998 36 1.'39264 521.949
70
707.285 -2.670

-0.01;
-0.0i)y

__535aQ-- _ SL	 UL) A 4 L__ 1.99656 _____526...911 7.1.1.642 	 -2,312-0,,o.l Z_.

540.0
545.0

U.99353
0,99211

1.00664
1.008;7

1.119890
1.99963

531 .900
SA6,995

715.964
720,264

-2.046
-10699

- 0.018

550.0 0099080 1.00849 1099875 541.904 724.556 -1.31?
0.OU1
U.020

-_555, 0 069895) _1, QU699 1.'19624 _	 ._ 546.,925_.__ 12.8. 6ti5 	 ._ -0.915 U.0 i.1
560.0 0.98834 10OU 388 1.99211 551.958 7 63. 173 -09610 U.u!)7

_S65-0_ 0m -99.914 _1.,_28.6.4:0- .__.557.,1202-- _7.3L523 _-.0.2.65_ 0.076

570.0 0.08624 0.99288 109?911 562.056 741.024 0.071 0*094
_ 5.15...4	 _ . 0-98533-._ Q t- 915-02._ 1.2.ZQiQ-.._.^_6._7^_11^^_^_46 L ...__ -_ U. 366_ 00111
58000 0.98454 0.97560 1.96002 572.191 750.128 0.628 0.128

194831 57 7 . 279_---- _J5.s50! _. _ 0.845. 0.1.44
59000
595.0

0.98332
0698289

0.95225
0.93840

1.93525
1.92Q92

582.355
587.445

7b0.318
765, 292

10002
1,096

0.159
00113

600.0 0.98260 0.92318 1090538 5929539 7 70.241 1.115 09186
_ 605.-0_ 0: 98244	 0 .90 665_.-- -.1.0$83_4_ S	 34___ _Z LS.._454 	 ._-_--1s 447 __ _ DIVA C-)S 
610.0
615.0

0.98241
0.98252

0.88892
0.87010

1087108
1.85248

602.731
607.821

780.872
7d6,515

0.884
0.615

00208
0.215

620.0 0.98276 0.85032 1.83305 612.921 792.416 00237 0.221
625=0 0.98313 0.82976 1.81285

630.0	 0498364	 0.80862
635.0	 0.9b426_	 0._78715

1079196	 623.100	 8050109
1.77043	 628.181	 811.969

-09907
-1.683

0.229
0.222

640.0	 0098501	 0.76565
645.0	 0.98587	 Q„74447

1974831	 633.256	 819.213
1.7256Q	 639 l.3 23	 826.874

-2.605
-3.678

0.216
09 2 06

650.0	 0.98683	 0.72401 1.70229	 643.381	 834.976 -4.904 0.193	 a

+,



bh5.0 0.407411 097 1475 1.610 Ri 646.424 843.536 -6•? ► 1 0.1 1ti

i.&A-t] n_Q,. NIII, n_ All I1#4 1 -A ll 470 hh4-fsa! 146a9	 hh -7 Alu tl_1vjA
66So0 009 1407 4 U0611H5 to620'i? 6511.491 862.Ul0 -9.41M

.r..
0.1.;# r 

620.0 0.991 b0 -O.6!)926 1.602) 7 6t,M06 Ol1.OW -11.215 0.0.17
675a 01,192 07 0.649'+1 1.1)15"8 668*507 811290tiL -11.1".1 0.061

-6911.0-- 0.9.9.439 U.64418 1.54889 673.414 8 1 12.511 -15.1d2 00027
685.0 00946) ►l1) 0.64? 3 4 1.51 L52 670.4614 9036 on - L 1.247 -0.01 L

690.11 U.99 135 - 4U.64445 -.x..44421 683.427 '113.639 -19.354 -0.171
695.0 U • 9989h 0.6')04 1 L * 467	 0 h138• 3 71 924.00 l -21.4 71 -0• Q^rU

--I=,&0 1.00:2.37 006e,0U1 1.44146 69.1.3 U4 954.242 -23a542 -0.129

R

^^M _ 
a 1 wt"L..	

^^.a..,.wY4'^ s	 -	
Pam..



SUNNI.ALrR I Rai r
TINI T= U.1) TQFI.T s 13.0 TFINL • 700.0 T9EG=15?.0 SEMI MAJOR AXISs0.82548177

ECCENTRICITY n 0.?7 ,401144 INCLINATION• 0.5000	 SD INJECTION VELOCITY=U.8717y

PEf1Irl b SFNS Tn IN.IFC.T VEIL • 19984 LAYS .NCR/KM/SEC V5HSOl s 0 . l143t TPA ! u.0

TIMl-	 AFR	 RSR	 131ST	 FLR	 rSu	 AZIMUT H ELFVAIION

0911 1.015 34 1.0141) 4 0.00625 39U49 2.647 -92.374 30011
5.0 1.01602 _, 1.01310 -ILD16.14 .s ._	 tA34._-. 6014. - 019210 3. 745

10.0 1.01659 1.01124 000258? 112961?. 11.185 - 77.312 3.743
-15aU 1.01,704 laO0 713__ Oa0.35AZ.__._- .17-albb _ ._1 59464 -72.771 3.7148

2090
25.0

1,0171 7
1 .01 758

1.OU 140
U.9')40S

0.0448?
A.OS404

22.151
26.925

199 784
-14-161-0

-670908
-62.749

3. 7110
1. 71) r

'4000 1001766 0.49511 0.06306 31.692 2 11.6 11 -57.31 3 3.74 3
35 a0L ^LaII1J4L. _ OaSZI4	 4..	 ^a-Q11 .5L4.__ _ _36a452- ..13 . 15.0 .-51.5/1 3.704
40.0

45.0
1.01744
1_01714

0.96254
0.94d9A

0008097
0.09022

41.227
45.997

170741)
42.'366

-45.50()
-39.120

3.641)
3.560

50011 1.01572 0993401 0.10004 1)00710 47.4tf1 -32.454 3.443
0 & 91164_.. ___S1a1111ft2- ___3.5.9t.548 :02....'2fa!z	 _ _	 -Ztia.5 74 .	 _ 10 ? b 9

60.0 1.01552 0089998 60.331 57.H41 -10.568 3.0990012298
65 .0 1.014 75 0. dm 1 12 0. 13702 65. 120 63. 3 i 7 -1 1.	 S; 2 ,815
70.0 1.01387 0.86120 0.15347 690916 69.0HU -4.700 2.622

__75, U _. 1AL1.2.20. -0.a8A(W-..w. Q.lZ28_t !AjLY21 15.102 1 • e`j4_ 2 9 $ 5^
80011 1.01183 0081881 0919552

-
79.535 1)1.435

_ _
70486

--	 - _- __
2.071

85 -a0 .1a.0l &T- ._ .Os-7 96 76.__ 0.221'18 .. -84.ali ... 889115 13, 6SZ6_.. l. 7 44

9000 1.00943 0.77451 0925252 149.194 45.178 18.654 1.527
- 9590 1&00.813 09 212.311 lu2.6. 59-.--_-23...au4 1.277	 r
100.0 1.00676 0.74071!1 0.32669 980900 110.587 260951 1.047

.105 a 0 .19.005 3 5 _ __ _. 0_a 7191.5 _ _ -0-a-1-7-04 L__. -Mea 7 TT 6O.11..._._._,_ _ 3.0 0.212 00838 
110.0
115.0

1.00389
1.00240

0.69102
0061393

0.41862
0.47087

1089656
113.585

127.874
137.	 39

32.1416
35.0147

U0b52
0.4116

120.0 1000089 0.65946 0.52681 118.467 147.0')3 36.798

a

U.34U
12590 0.999.3@___ _. 0.64815____ Q_. 58	 1 12^, 39;1 _ ._L'13►.^2^9.__._ Qz066	 _. 0.214
130.0 0.99787 0.64046 0.64710 128.334 167.769 38.91)4 0.1Uti

140.0	 0.99490	 0.65721	 0.71286	 1'486257	 189.222	 39.823	 -0.066
.145.0- - _ 0.9-993-4	 44139	 Q8 3 S3.5__._-.._L4-31.249__ 1.99 .890 	-3-9 -9_q43-	 09_l 1

__	
e15000	 0.99207	 0.65027	 0.89637	 148.236	 210.345	 390879T -0.1113

15.5.0	 0.99074	 0.66230	 0.95511	 153.245	 220s473	 39045	 - 0_,_2.Z_5
160.0 0.98947 0967738 1.01097 158.267 230.196 39.566 -0.257
165. 0 _0_: 9 @.829 0. b^95 1.06351 16 3 ,500 234.460 39 0
170.0 0.98719 0.71445 1.11244 169.345 2439242 39.217 -00298

-1-75 ...Qa^8^t12 Q:a r23	 I.1g761.7	 400 21)6.540 _3-9-10 ._ _ -_0.309 ._

i
18000 0.98529 0.75700 1019895 178.464 264.370 39.037 -0.314

_11510._ __ _Qa_U4S1 0. 7792Z 1.236S0 183.536 _.23.1:3^5L 9 04:...___..^ -..3
19000 0.98384 0.80150 1.27032 188.615 278.737 39.119 -0.312

p

FA

1

F(

ti

!i

n 1



195.(1
20000
20500

0098474
U. 9U288
U.482h4

O.H,' 146
U0d44bb
0081 ► 'rh4

1.'40050
1.3271 13
1. 3504 1)

1 ) 40 101
19d0 T91
?0 4. h84

?Woo 141)
1'110004
2')7.55, 1

19.?h6
3')0401
1'4.76U

-0. lulj
-002•0b
-U.?84

210.0 U.9b&'43 0.8e!)2r,1 1.31055 dud09do 3030251 40.098 -UO2 lU
21500 0.9M241 0.90384 1. 3n751 2 14.1176 411p.6'0 1 40.48#4 -0.254
220.x. _0.9'31253 0092 12 11 1040152 219s l T2 313.5130 40o923 - 0026 7
22500 019021#4 0.9173) 1.41?70 2?4.?61 4108976 41.3175 - 00218

23(1.11 f1_(AK II a fl_4',?ul 1 _421) ^)9N_ 115 ►2„	 A. 4_!1!,11	 41 -k4tj -0.1414
23 1)00 0.983hh U.96'124 1.42772 234.445 17H.h01 47.411 -0.110

_.2.4.0.0 00984 W us g ro ►i 1 1.4JUd5 23'0 526 3338212 42 o 9 ,.ou - U0 1 y4
24500
250_0

0098505
8_19x551

00 9f , 7 1 1.4 4 ?.25
1 _4"4154

144. 60U
24(4-1 h 1

31 To Pi l
442-114

43.4 h l
44	 [jIN

-00 1 31
x.1116

255.0 00986HH 1.01)276 1.42902 254.1?4 34ho5.19 44.1536
=

_09032
2600.0 -. L..-99795 1.OU8.15 1.42472 2596 712 3'500 84 b 45 • U31 -0006
26590 0098911 1.01190 1.41605 264.HO-) 3559114 45.494 -00030

27500 0099167 1.01449 10 4(, 310 274 * 847 36'10602 46.2r^9 00 013
2U,aG -1.3VAIZ. 21.5.1147 307..#441 469bu.) 0.050
28590 0.99446 1.G t050 1. 3R 349 284.8 34 31?. O9b 46.81W 0.11 1 T
290..0. 0099513 289&807 _ _371+0.81 47.020 0.10..!
295.0 0.99742 0199996 1.36154 2 c14976t, 360.714 47.1U4 0.130

_3004.0__..... Q.19tL43_- ____Il.'3Y22Z__ 1-a3.5.c 251-5..110.___ _ 3ti!i,.105 . 418 095 _04156._	 _
30500 1.00044 0,W249 1.33916 304.641 3h9057.4 46.9H4 0.161

AID" ---10Il.0196 _--Oa_97.2.L4-.._ _.1a.32845 309,557 __394.11.4. 46.-7 6 1 09209
31590 1.00345 0.911977 1031839 314.460 39ROB03 46.422 0.2g!d
'490_n 1_nn499 0_44(i9) I.-40499_ 41y. 44y 41j;.60A 4S. glib  Og241_^
32590 1.00635 U.94U6? 1.30140 324.?24 4UR0553 45.364 UO2u6

1&OD7-7X- __0.9U97 1..29504_.._ 32-9x087 41.3,..-676. 44. E 5 5 0.2 6 4.
335.0 1000905 0084609, 1. ?9048 333.937 418e497 43.770 U.?48
1400 1.01011 (1.87695 1.9H8C1n AAM.775 424,542 42 ,765 0.301
345.0 1.01149 0.8')6F12 1.20789 343.603 430,342 419621 0.31 1
35(19.0 Do 83582 _..	 9290523E___.3.4fls5.19.43ft,^42L,. 40 9 340 00315
355.0 1.01359 0.81413 1.?9568 3530227 442.852 38.926 0.312

X60.0 1-014%0 0- 7922)2 1 . 303CY9 45R.	 26 440.591 7. ANA U. 3U4
'365.0 1001530 0.76976 1.31541 362.811 456.740 35.7lb 0.291

.310_a.II__-__.1 .0.1.599._ _ ....aa7.4ZI1_____1.33Dl10 . -361._6.02. 464...314 .____ _33 .940 0 . 27 2
37500 1.01657 0.72627 1.34770 3729381 472.341 32.U')7 0.249
SflQ.O___._1..OlI,O2 . D.?11592 ___1^.1.^,^40 37-1,15,.5	 _.._^48.Q,845 _ Jos08u 0.221
385.0 1.01736 0.68718 1.34184 381.926 4h g o635 280020 U. L90

3$000.. .1, 01,157 _..___0..!^7O1:i1-__._ 1._41_L65 316.b91, ..__4.9yt&2-99_ __ _ _25093 p.1'54
395.0 1.01766 0.65676 1.44540 391.461 509.202 23.712 0.116
400.0 _._ ._L.O.1.?b.l..^Q. f^^s615t - _ .1^73u.4 000 0. 3'36..2.2$.__ ..2L^,t ^!4 2 _.- _ .	 21- 498 O. U 7 7
405.0 1.01745 0.6 3933 1.50449 400.916 5.50.043 19.270 0.03 7

415.0	 1.01674	 0.6'1784	 1.56467	 410.539	 551.512	 14.874	 -09041



420.0 L .01610 0.64 321) 1.69)399 415.316 S620 14l+ 12. 756 -09016
425.0 1.01555 0.65256 1,622A11 4200099 Sl2a5J4 10025 - 0.1851
430.0 1.01479 0.66529 1.64971 424.487 SM205d7 80hU3 -U.136	 14A	 _11 t _01 `tnl L"Ho95 14A ts96 - 424.6A4 Sul.	 14 7_ 0n6u. lal

mi=x

4411.0 1.01795 Ofb4alit' 1070lU9 444.48M 6010176 50349 -U.100
445.0 1.01144 U. 71del 1,72521 43').3U2 410* O S4 10E44U -U.1 its

4511. 11
x,.11

1.01074
1.00949

U.7 1947
G'. 761 go

107483H
1. 770114

444.125
448.98 ,

618.2bi
62	 99%

7.483 -00?07

4hO.0 11000119 O, /0407 1079218 4151.800 611o2+1`1
1.	 hu
0.2 1b

-u.21S
-11.21 d

465.0 1.00GdJ U.8U623 _108128.8 454.664 640.110 -0.614 -00211
470.11 1.OU547 0.8713119 1.03280 463. y 3S 640S 7Uh -1.433 -u.?lb
41-75x0 1800346 00dit9l1 10135120 464@419 1)520902 -2.0`.► 5 -00211

480.1 1.OU747 U. Hh s)f! 4 1. A70it, 473,317 61H.AUU -2.548 -U.2u4
48560 1.,. D091 U,dd932 10817-51 478.,221._ 664,4 33 • 26 92U -09154
490.0 0099945 0.90 ?68 1.90389 48 1.154 66'1. A 32 - 30 L 1 14 -0. l aj 3
495 * Q__._11.997144_..__ 0 a 9"A 19 1941922 580,.054 61500,23 -30333 -00110
500.1) 0999644 Oo940hH 1.' 5342 49190414 6#10.032 -5.3' 2 -001tib
505.0 0.99497 0.Y5496 1.94642 443.016 6 d4.8d4 -3.3b4 -0, 11# 1

._ , <.

-95814 302.998 6#1y.y40 -'3.251 -0.lzti
_51500  0 * 9-9213. 0.9.1.92 70x..- 1096852_ __ _5-079994 614 s 11G _._. _ -_1: 014?_ -00 148

52010 0099080 0090912 1.97747 51,40002 694.694 -?.044 -U.Uy l
525.0	 U.9^53 0.50)58 1.98496 S18,02 1 70,. 111 -2,555 -0.071
53090 0.98834 1.00405 1094042 52300116 707.463 -2.221 -0001)7

._53500. 0* 90724 ___Is- QO9.08 10^95ttiL ^..^518 .1982. _Lll.l^3-1_^eH.`,# - 00016

540.0 0.98624 1.01241) 1.99810 ^533.154 116.018 -1.455 -0.01H
545.0 0.98533 1.01426 1,149921 5482218 7' x1.271 -t.U41 U.UU1
55000 0.98454 1. U 14 34 1099880 54 4.290 724.5U l -0.615 09020
55500 0098387 100005 1.,..'79.671 543. 34:',1 _ _T-481a.L48 . -0.1`56 000314
560.0 0998342 1.00468 1.99298 553.454 733.009 00219 0001)7
565.0 009U-89 __ 190048H l, g t1765.... 5509 5,44 7.37,3.0-3._ .__	 09626 00015

570.0 0.48260 0.94044 1.90075 56'1.631 741.646 1.OU6 U.0113
_-51.5, 0. M82-4-4-- 00 99042. 19 9.72.82.___..._56-0-0_73z.___, __4Agqj2 _ . _ .	 l . 347 00110
58000 0.98241 009"OH1 1.96240 5730829 150.517 1.646 O.lt7

.3-25.._0 0.98252 --0.46961. 1.95.10...._ 570L*_92.5 .._ _x.550119 _._ -.10891- _ 0.143
590.0
595.0

0998216
0.98613

0.95644
0.94276

1.93838
1.92443

684.0?0
589.111

75y .A15
764.64 6

2.076
2.186

0.158
0.112

600.0 0.98164 0.92718 1.90924 594.198 7699631 2.217 0.185
60500_ 0.984 ?.6 _ 0.91!)25. 1.,69 45 555.?..8(?  ....Z4s79.4__.. 2. !tib 0.146
610.0
6.14.0

0.98501
0.98587

0989206
0.87274

1087580
1.85765

604.354
609.421

780.161 19994
-

O.2U6
- 7d	 .27.7 1.721 0.214

67.0.0 0098683 OoS	 241 1.83865 614.419 791.615 1.328 0.720
_12-5.0 0 009874Q....-Q,83 124. It DIM. _^^ty^528_.	 _6A__ _ 00805 0.223

63 0.0
-635.0

0.98905
0_99029

0.80944
0.18727

1.79841
1.77739

624.565
629.591

804.743
811.08'

0.145 0.224
-0.660 0.221

640.0 0.99160 0.76502 1075570 634.604 818.320 -19618 0.216
_ m.9.929 7	 0.7-4AO-k--_1 ,13338 639.6.9 r.^^2 . _ '.2:73	 _..__^.Q^2U 6

650.0 0999439 0.72182 1.71043 644.592 434.116 -4.004 O.l93



655. () 0949586 0 0 7 411 17 1.614671 104 1 )	 Ir.bf, 1447.1?3 -',.414 0 01 71)

- &A - A 144% (1-9.11 ;taa 1 _All p 1 % l.6.I.	 4)t ► A 61 1 R L - 7_L.. l,_ 1 	 A
665.0 009914 tih Oo6o 146 1061710 654,4 ?1 461. 1?? -4, ?4 4 1 U.1l7
67060 -- 1.UUGS7 0.b54Z1 1461100 664o 402 H 11.36d - 100611 06091
615.O 10001110 0.64440 1 .511401) 6690 320 Old i. / l 1 - 120 549 0* 064
head, U', 1.OU3lti U. bib is 1.55641 6 74.22 i 811 2. !2 3 - 14.660 U. UL 7
60501) 1.Ou4145 0.6 )Ra44 1952027 b79. L 17 Nu to (W —160 1 r) -1).111 1

b9O.0 1.00628 0663ab6 -_1150000 L8369ub 913.7il - 1 A. OU
69510 1 0OL766 0064495 1.472115 Wl1$ 0 8liI W.4 • IN / -21 .1 1h - t)•U/^!
20040 1400899 0.65500 1.444tl1 6936701 f1.l4. 11!) -23.362 -0.11y

^,^^^



SUNRI AI.FR nRP I t

TINTT* 0.0 TDFLT • 5 .0 liINLE 700.0 IPFG • 1N3o0 SfMi MAJOR AXIS • O0b?y4b177

FCCF N IRICITY=u.?416751&) INULINATION• (J0S000	 SI1 1 04JCGTION VFLOLItYaO.dbli10

PFK11U) :►FNfi fn I NJFC I V f L • 19079 uAYS PFK/kM /Sr L VS SCI I n U. t t4$9 TPA• U00

TIMF	 KFK
	

KSH	 GIST	 FCR	 1Sh	 AZIMUTH FLFVATION

000 1.01766 10011,1; 0 0 1101-3 3 ).u42
500 1801758- -. 10U1a l► U ._Q..U1614 7800(o

1000 1•O1759 1.01!41 0.0259! 12.571
1500 1.01704 100092" 0003555 1Z,34d

7000 1001662 100045(1 00114440 ?2012?

P66119 -die 346 30712
l► a t10- - 83052 1# $ 07 00

11 •13'x - dOo442 3 .777
159392 - ?6 0 1 sd 30711 
1401, ,42 -71.758 30768
2d.- (11. -0./._YhI 1_'f+.a

loon 1.01537 0 * 907014 0.06 241 31.hR4 2Ro477 -610016
J50U_ - A.&OL45&- 009744 4 ) 0001101 _ 36,475, !?0095 -5b0U5j
40. a
45.0

1901369
1.n 1269

0.964 44
0_95069

O.OA024
l.Od8y6

41o273
46.	 u

.17.620
42.3h9

- 500 142
-43.866

5000 1.011 1,0 0094557 0009RO11 booH96 47o266 -!7.247
5309 "Q1L' 4!._ 001901► .041u79J _ 505,1!?. 52<a, 3l0 - $001,23 

6000	 1.00g1H	 0040124	 0911894	 60055rl)	 516507	 -?301 16
65.A	 1 tlt)7Ah 	 A_RN121	 n_t'111f.ti	 0%0%_&na	 0.1_nA.r%	 - Ir. _aA%

3.74 5
1071&)
3.b71

3.SO
303 12

3.?. V()

loon l o OU64H	 0986209 091465P ?00269 600741 -A. 746 2.742
?SOU I& Wb Ub .._Dafl41U 4 ._ _ ._ _0.a1642'tR.___15a141 ._..	 1ka7-1 I _.._-t1..tw 2.a41I
0000 1000.154	 0001925 0.18531 80031 810118 4.813 20 104
05..0 1aOV21	 0 96` 5 _ . _-0.21QDA ,,&4a_5L12 s _b 7AA2___ ___10.a 9.+17  t.8'.o

90 0 0 1000059 0.71442 0.23847 09.847 '34.841 169410 10616
9560 0a99 9 08 Do 7! 2.01 11,02IMS 94.171 lU2a.32i_._ __2. La786 10349
10000 0099757 0073011 0031011 99.720 110.261 250519 19lU4
10580 0499607 0470,919 DA-13251- a, 10406..t.fl _ _4.1.18..	 76.._ _._2,9.120 0.882
11000 0.94460 0.68976 0.39956 1090649 127.584 32ollS 0.684

120.0 0099180 006&)768 0.50544 119.633 1460849 360464 0.356
IL2500 0.99048. 0.64616 0,564-AL,__.__124a 0.5_a _1>7 9{ 1)7	 _ „4709 11 0-.22 3
130.0 0.98923 0.63814 096251" 129.669 167.bb9 J0994b 0. 101)
135.0 0.98806 0.63451 0.687bU 134.70S 118,414 49.648 O.Ol3
140.0 0.98690 0.6!502 0.75056 1340751 189.254 409044 -0.068
14500 009860 0 0 a, k$960_._.. 0a.@..1.348. _ 14_.4 * ,00 ._	 _ 149 a 9.118.._m.:. 0,	 2 ,1.1 ._, -0.1 3 4

150.0 0.98513
_.,

0.648 31
_..

0.8742 3
__0_ .^-_.. _._.._ _._^,^..,a,_
149.874

._,__ n^...^.._,._.,..^__
21Oo 502

_.
40.260

__ _ _	 __..
-0.188

155.0 0.98436 0.66OS7 0.93319 154.948 220.682 40.1d9 -0.231
16090 0.98372 0.61590 0.98934 160.028 2!0.444 40.064 -0.265
16 ,̀La n . _. ,5? 0	 8 3 251 _.^ _ SLi.43l IS_ 	 _ 1 9_422 3 ._ . _ 1115 .11'	 s__2_l t # a 	 _ J9 0 2 L. __ _. -0.2-87 	 _	 ^-
17000 0.98281 0.71355 1009155 1t0.2OS 248.541 390806 -0.304

..^L]^ • ^Jn,..... _,Q .a9.@Z55 , ._...0.a..i.#4^_._._1.a_l.'3 l l `^ _.^..._Lt.`^...:2.9^ a^ ,^^^.2̀.2.::__..._,__39..:.. 724._. - Q. s 15... _ ...

18000 0.98242
9822.4.3

0.75677-
0.?7924

1.17896
1.21100

180.395
18_5.492

264.697
272.013 _._j%

39.695	 -0.320
72.^_=12:	 0^^_ ^.a r.

19000 0998257 0980174 1.25133 1900588 279.045 39.826 -0.316
_.^..^.64,._.__

d	 _	 ,
.	 -	

ib



VISO) ()• i ti 2N4 001)t' i+ ► t1 10 ?NNO) 1 116) 0 0)14 1 ? ►11106 1 14 $1.1 *1 -e/.$09
200.4 U. t?tl3da U0d4561) 1.30 .13U 1000112 1,'11. 1111 40.219 -003uu
205.0 U. 9d STN U0 t1nh4 1 1. 13 114 eO'i. H o il 1 1 T.H 1 i 4O.50t, -1).? ►, 1

210.0 0 * 9d444 U. UL'U.J1 1,3 y 3 ►1 b 2100938 3U3. `2U4 4v. 84(o -00213
215.0 1)•985?! 009116) 11) 107144 .7 16.1)11 WO o 4 V 41.2 $ 4

22:1.0-- U..9ah,!U U.W270 1.36610 221.075 31Its140 410661
2 2500 00914409 009`1$(1? 1.39146 dehe1 41 Sl9.l I1 42s 1.10 -00[,L0

-2 `An_ n " _ t) API- t 1 _ U ,. 17 4	 ..-1.&.il1 1 ? 2 41 _ 1 1 -1 12 01 _ u 1 4, 0	 -n-  1 y `.)
MO 0.4H936 (1•' ► hIN) 10 4 1 3hN 7 it► •21 1 42FIO P)h Is 1'd -0.1 IT

.2.404u U.94C61 (is y 1011h 1,41613 ?4,1.234 3330 36)1 4396Ut► •U 0 155
245. () U. 99144 U• 48 111 4 1.420 $0 ?46• ?44 3.1708 ' ► 4 44.11(. -to o l s l
Zgin _A t1_Q444.7 G_'I.a'N I  1_&7`14+,) 251_24.) 442_2tht, 44-est -u`1511
255.0 (1.994 75 1.0041- 1 1 .4 1140 , 0 ?Sh •?2t ► 146, hu t► 4S 	 U it,

0000_

- 0.4181
260.1! 11.99622 1,L1U3U 1.41517 2fJ1419L 350.8 •/(+ 45.16)2 -U.U:16
26500 0049772 10CI40E. 1041010 1660 Pi? Oil, 1 4M 450910 -000,30

^3'n_0 A_0002^ 1_A162j^ _1_40394 271_[104 Asia. 414 46, Al	 j -0.Lt_•4
275.0 1000075 1.016fq 1039598 276,U?2 S63.hP9

-
44.bt49 00013

2. &a U1 5!'C 1 0.:18 132 280 . 930 3u ICU? 1160962 U.OaU
285.0 1000376) 1.01?1.T 1037786) 2N I).j33 1 , it ?.U4?, 47.160 0.(17
290.0 .1,0052.1 11OL81,0 1.036T78_ 290._121 316.3117 470244 00103
295.0 1.00663 1000 20S 1.3,734 ?`150594 3HU.617 47.34h U.13U

300aO lo-CIU800_ _...9,994:11 _._AA-467A 30:0,45.4.. 3t11!.9 ti b 1416302 00156
3050 1000931 0.411VIS 1.33624 3U5.3U2 "104.4 S4 47.16)4 O.lbl
310.0 _..IA10,5.5' 0.974L 12	 ___.1.0326U11,_,, .!111.138 3930 43 46.9Uh 002Uy
31 1)x0 1001172 0.951r , 5 1 63 165 3 514040$ 111006?4 46.543 O.22g

„	 2n-n 1 _ t712AO n_Q4zkA	 1_'1<n7 (4-778 40 t.4J2 46,0,_jH 0.249
325.0 1.013 l8 0.41116 10:4003?. 324.5d4 4011. 111 45,,441 002N8

_"Q410 ___ . l.ul" t 0,91536 1...29.422 321.3(11 413s436 449 7116) U.2d4
335.0 1.01545 0.09721 1.28qq3 334. 171 4 111 * 7 ill 41.819 0.247
I4n_A 1_(11102 n_147U) 1 _2m74tj AAA.t154 424.266 42.,x18 u.Au7
345.0 1901661 0.$ j74)f, 1.287 $1? 34 s. 73? 4$O.049 41.671 11..11 1

3.50...0 1.011111 4.913644 1.2(1.960. .,,3.48..506 _n 4$6&12Q_, ,_ 40.3 •► U 0. '115
3'35.0 1.()1741 0.8145? 10?947 11 3 1)3.276 442.512 300977 09312

4E,fl_n 1 _n1 761) 0,,..742 1: b 1.102RO 'ASH.044 44y.2b3 4, -16-,T_4 Og 464
365.0 1.01766 0076961 101385 362.11 4 56o4OH 35.711) 002.0 1

_3711,.11	 3. -1,01759 Q,. 74.72i'.. 1&327-93_ 367.5 rd 40.it902_ _ ._ 33.994 0.213
375.0 1.01140 0.72556) 104519 .372.346 412.01$ 320119 00250
31100._ .1.0.11.L9. _.._0..,71i.4 9 11136514 _ 0171. ! lb.. ^. 41!0..5 $ 7... __.	 30_.14 :i U.2l2
385.0 l o01664 0.685x6 193881A 381.890 4114.551 28.0$4 001941

390^.0_ a_1,91G1?S . __ _0"690 1A	 13.41(.._ ?5.41) 5 0.1 55
395.0 1.01541 0.65443 1.44052 391.452 5000449 23.772 0.117
409^0^	 1 - 01 462_. _..0.1(4417 .^.mol.a4lt90y._ 3 9Aa 242a.....,1_0*31.3__ __	 2.1.553. 0.077
40590 1.01313 0.63719 1.49840 401.040 514.956 19.321 0.0.37'
vin-n

41590
1_(11274

1.01166
A.64431
09646)67

1.4281)2
1.55743

4US.946 _
410.662

540.74%
5ti10Sti9

17. 100
14.918

-0.00„4,
-0.041



420 * 0 1,01:,49 0,641?0 10514624 415 * 488 56? * 2i7 12.794 -00077
42590 1*00924 0,p6 ,v066 1661-419 420 * 324 57207vo 10. 769 -U* lug
430o0 1*00793 0, bil 46o 1*64113 4?5.173 507 a 804 8*81)? -0.137
435 Q. . 74) 5 2 1,667 4 44 ).0 44 992. 4 70 7. tjfA6 -Lj- 1 ft2

440 * 0 1000515 09647H4 1*69196 4(4*907 bUlo660 5e423 -0o1h2
44590 1*00366 04,717'I7 1*71595 4349794 61()@3&► 7 39934 -001,17

450. C; 1.002i7 007191? 1073910 444.694 61he564 20603 -002()d
455.0 -J^a 0 tj 0 b 6 11. 76155 1,76147 449,609 6Z(l.3Ut 1,429 -V. 2 1(,
460.0 009915 0, 7t-411'+ 1.78312 464.5 37 6!'4.1396 Oo42u -0.214
465 * 0 Ls 9' 0 7 b 4 Vsdk-6112. -,1a80.4U7 4 5, * 1 * ,4 10 1 640,464 -09448 -0 0 7? ()
410,n 0,9Y614 0*8211t;4 10824iO 464.437 647,001 -10165 -00211
475,0 0099467 U-85013 lsdUeQ 4649408 6.)1. 1 d4 -1*740 -U-212

4609 0 0*99424 O.8 1081 1*86249 4749393 6','1 . 006 -2. 1 d4 -09 2U4
48590 "-U186 0, 8901tP 1.1	 O-U 664,682 - 2 . 51)5 - 0.145 
490,0 0o99054 0690401 1*89722 484*402 6/0e063 -29710 -091ti3

--495- 90- -A49d9Z9- .0992h28_ 1991310 _4695.415___ --675.234 -2@809 -00110
500 * 0 099hV12 0o94220 1,92787 494*460 6d()*224 -20814 -001&ib
505.0 0,99703 l. 4h67) 1.44145 4910,506 -2.1 -12 -0,141

51011 (1 0, 98(; O r) 0. 46') 1? 1*95376 5U4, 563 6h9,749 -2057.3 -0. US
,515s0 Qa98517---- 0a,9n2l IA-96,4 ZZ -509#6Z8 A,^	 -4 * 325---- 2 .@ 14 5 - (_t I vs
520.0 0*98440 0. 94 113 1*97426 514. 701 bYAo803 -2. 059 -0.041
525.0 0.914 17 5 0. YT,446 [."232 5190782 704, 19 #4 -1,724 -0.013
530.0 0*983?2 1.00617 1o98885 524,A68 7u7.530 -1*346 -UOU55
535*V- -0 o 0, k-

540oO 0049256 1.0146A 1.94715 535o052 716o053 -00509 -00017
545.0 O-0242 1,01645 1,99887 540,148 720,275 -O.() 44 0.0u1
55000 0,9(1242 1a01657 1199895 545.245 724*490 0*381 00020
555 * 0 0*96216-- 1. 01504 --lAA IY-7 3 1) 550  -'^ 41 72-9 7W  09830 0.038
560s0 0.96282 10011H13 1*99420 555*435 712*949 1*261 00057
-5 65--a 0 0-s-9,d322 -- 1.00-01 1, 9894..0 _ 560a.525... ue 015

57090 0098375 1900054 1.98303 565.611 741*544 2.051 o.(;,.)3
--.575912 -Go-9B44-0- 0.9924 4 1*. 915-" -5-70-0 0,91 - 745, 9 I 0- 2, 3 .

42 0. 110
58000 0.98517 O.9H?7S 1*96576 575.765 750*395 2o682 0.126

--585.0 --te48 6 0!? U - 911 0.830-__ 75 4 9 _._ ?•9.16 0.142
59000 0*98704 0095869 1.94282 585.886 759.631 3.063 0.157
595.0 0,98812 0,94440 1,92942 590,932	 764.4fi l 3.172

600.0 0998930 00992868 1o41483 595.967 7699406 3o177 Oelk,4
I a 99914 . .--505---7T4q-5L5Q- , - 3.0 , 87 0. 1 it)

610.0 0099187 0o89325 1988244 606o002 779.89E1 2.893 0*205
615.0 0g99325 0m87374 1o8IS482 611,000	 -- 785,478 2.585 - 0o213
620 * 0 0e99468 0.85320 1o84635 615.985 791.320 2*154 0*219
625.0 5	 0 A jJL8-1-- ---1 . 8 2 7 10	 6a-1-955  - - -L9 	 ---1.593 U.222

630 * 0	 0.99765	 0 * 80977	 1.80713	 625 * 912	 803e922	 0.892	 0.223

640 * 0	 1*00067	 0o76481	 1*76515	 635*783	 817*987	 -0o956	 0*215
645.R-,- 1,00218	 0,74257	 1,74313	 640.698	 825,658	 2	 00?05
65090	 1.00367	 0*7210?	 1072039	 645o598	 834*796	 -3*426	 0*192

I	 -l"Now

I 

WA^w	 I.All



6550 1100514 097001 +1 1069611 1, 6'x0,405 114J.4,e0 —41899 00174

Win. r̂ ^ --..1.jlitti9^_r?-'p. A 2u^_ _ A ,2 A 2 r. S ti_ t 5 H "51 - 6_ 5 2 6

66590 1.001!)4 0066515 1,64704 660.219 Hb1.11 -80290 0.127
67.0•-11 L.11Ul-25 t1.6!JZiff 1..62064 bb5.061 911.1 l y -10.2U3 060'17
675. ►) 1,01044 0.642 15 1159J26 66,)e904 NM 1 . tiH 1 - 12,724 n,064
68II.II^_ .--L.-QlLb 6 Lis 6 S 612 1.56'111.11._ 674.. fi l 8 J2."41 -14.335 0.D11
68510 101275 0963424 t,S361U 671.' 45 401,9 )'i6 -16.515 -0 0'1! 1

.69..0aOL 1.01314.	 _.. O.(j3651 -----*.5061..2 04.351 913,851 -1867.36 -01001
695.') 1. U 146 3 0o64290 1.47794 68 ). 14H 02401)11 -20.'# / 1 -0.0 40

.?.U.U41L.-- -	 1.11 1.541 U. 413.14 1.44910. U%.1.9.3 1) 934,894 -23.1'15 -00129

i



SUNBLAZFR nRP l r

TINI T= 0.0	 f0F.LT= 5.0 IF I NL= 7U090 rnFG=21 3.0 SFMI MAJOR AXI S=U.8254tiL 11

FCCF4TKIC 1 TY= 0.221405?S4 INULINATIOlo 0.5000	 Ss INJECTION VFLO:I TY=0.871 I1

PFRI(11) SFNS TO INJECT VF:L = 19.84 DAYS . PER/KM/SEI: VSHSI7I s 0 . 11437	 TPAs U.0

-
71Mr-	 REK	 KSH	 UIST	 Flat	 FS8	 AZIMUTH 1.LF VA IIUN

oat) 1001537 1.01456 0.0U625 3.049 2.697 -82.348 1. fl? 1
` *0 _1.0145.@.- 1 * 01374______52.Q 16.1l5 -____ _7._840 6,9 $4 -8-6.5 2 3 39 K L6
1000 1.01361) 1.Ull?7 0002567 12.638 11.184 -83002 3.7143

._.._15, 0 1 a U 1269. 1.01) 7.16 U&,Q3,.2A __.__ __.11-x-445, _ 150 ^_62 -W) * ()22 J0790 
20.0
5.0

1.01 1611
1.01043

1.00141
0_994(]8

0.04482
(]_05368

22.261
27.087

19. 783
24.16.0

-75o612
-70OR 14

3. 784
A	 7 1a

30.0 1.00918 0.98514 0.06264 31.924 28.609 -65.124 3.768
_	 35.0	 1.O U.7.kb___Sl,^_1.4!G2__ _. ^.IlZ114__ .. __	 6^?3 3 _ .__ _..3 3._L4.#L_ --60 o 2 T 3 3.746.
40.0 1.OU649 0,96257 0.01946 4L.634 37.792 -54.4-)6 3.714

--,4 5.0 1.00h0jj 0.94902 0.08774 4(1.509 42.563 -488250 3.6ol
5U90 1100459 0.93403 0.09623 51.396 47.478 -41.652

-
3.,')19

55_0__ _-_1,Q.U21.11____. U_*_9Al1► 6 -0 - I U 5 2 7	 _.a(t_.-29-7 _ . 5.2.L62___

60.0 1000(1159 0090000 61.212 57.83b -270410 3.3U60.11529
_ 65.0 U.99yU8 0.88114 0012680 66.142 631J31 -19.444 3.1V6

70.0 0194751 0.116121 0. 14038 11.085 bl).0'16 - t?9441 2.866
_ . 75 :-Q_ .,0.;_9_9.6 LL_._ 	 _0, 84038 _	 0.15642_ _ _7sz:.0l43  15.0 ,0 7 -S. 08.8__ __. _-2-^594._

80.0 0.94460 0.81882 0.176U8 A1.014 819430 1.959 2.3UO
8:5.,3,1 0 , 9:131.14__ __ 0.134 61-	 __61922 t^ __ __ .1! `^ ^^ .__ 8 t_U-1- 8,479 _ _ 19996

9000 0999180 0.77451 U92266U 900998 95.173 14.415 1.7U2
95A0 0999 04.13	 ._ U.a 7_52311. _ -_Q.AlVi i	 ___._ 96jL0 10, IUT. /-`-_4V 11 A04 5 _. 1 +421
100.0 0098923 0.73077 0.29476 101.034 110.582 24.290 1.161
10510 0.9880-6--_0!_71014. 0,33583 _AD6_ 07-0____.11.8.983 2Rt_207-. 0.925
110.0
115.0

0.9869A
0,986U0

0.69100
0.67391

0938149
0.43153

111.116
ll^.173

117.869
137.235

31.418
34.144

00715
0.530

120.0 0.98513 U.65943 0.48-,,.)1 121.23939 147.050 - 36,257 0.3b9
_125_, 0_____S1z9_!#.5 ib^__41, b4H 12 _0.54285 _1 .6__:_3 L  Ati L&2 5 7 __3 ToE1 74 0.2 3 1
130.0 0.98372 0.64043 0.60279 131.39? 167.768 39.058 0.113

_135.0 0_98320 0.63673_ 0.66443 136.480 178.4A8 39.873 0.013
140.0 0.913281 X1.6.4717 0.72678 141.570 lti9.222 40.386 -0.010

_145,0_ ___U,982 55 	 _ U.64175 0. 78885 _,_ _146.664 .____199 814	 _,__ 40 _6 .65 .__.__.-00138

_155.0	 0-98243	 _ 0.6.6228	 0.90861	 156.857	 220.477	 40.766	 -0.237
150.0	 0.98242	 0.65024	 0.84973	 151.760	 210.347	 40.113	 _00193

160.0	 0.98257	 0967736	 0.96484	 161.953	 2309199	 40.695-0.210
--lb5-.4 _- __0- 9b2#A___ 0.62494 ___1.01796	 _. --16 . 7.046	 239,1 464	 40. 599 	 _	 -0.294
170.()	 0.98325	 0.71444	 1.06766	 172.137	 248.246	 40.510	 -00311

_175 ,.0 	 4._9.837 __-U^Z 5:1^-Ls1.1 3^ _.1 7̀7 ?23	 256,545	 .409449 _ _	 -0*32.1

180.0	 0.98444	 0.75707	 1.15616	 182.303	 264.375	 40.432	 -0.326
-_185.0._. -9-a-98-5 21 	 0.77926	 1.194,88	 l_H 	376	 27- .764	 40.4b8 _ e -0.316___._
19000	 0998610	 0080150	 1.22997	 192.440	 218.742	 40.562	 -0.322

1

d

`i



195.0 0098709 Oob?447 1.?6153 1979496 2Mti.346 40,714 -0.31y
200.0-- (1.91ifl18 U.84490 1.28.96-4 202.542 2914609 40*923 -U.3U5
205.(1 0098916 0*8655h 1.31441 201.576 297.567 41. 1d4 -0.212

210.0 0.99U61 U..Ad_526 1,.-334US 212.599 3U3.255 41.4 73 -Ua217
215.0 009194. 0.90 $87 1.35466 217o609 3UH.7Ul 419844 -Ue2tj0
22 I..t1..a 0...q%142 - U*-91127 1..31034. 222..6U! 313.934 42.2 3U -0.242
225. 11 0.994 715 0994735 1.38326 22 7.591 310.974 42.644 -00212
2311_n 0_94&22 0- Q 41211& 1_30154 212_661 323.8 .2 43	 0111 -U_2l)1
235.0 0999772 0.96517 1.40134 237.Vi17 320.E104 43.526 -09119

ZAD-oD._. _Q..99923 L1.97.700 11140681 24-.A5 9 . 333.225 43a98U -00156
245.0 1.00075 0.94 T 1 H 1941007 247.3d? 337.742 44.4 3a -00133
2r%n-n 1 _!1(1221k l)_Qfjh	 k 1 _ 61 1 All 2h2-3n1 '442-1 7s 44.876 -U`lu8
255.0 1.00375 1.0u274 1.41063 257.?00 3469519 45.503 -000 81
2601..0_____-_.L.DU5L1 11WUU.fl18 I& k0.6.23 2b2ad6-,.___35Q.E49 45.705 -00077
265.0 1.OUE,63 1.01193 1.40425 266.959 355.12U 469075 -00031

2 ln_ n 1 _ nnRun 1 _ n 1 4n5 1 _ 39HdH 271 . A 19 350. 366 46.405 14-0-604

275.0 1.00911 1.U1452 193922H 276.667 363.602 46.688 00023
2AQ,.A.._,_. i..tl_L	 . -- 1.38465 ._ 46a 9lb 0.-,OlJU	 -
285.0 1901172 1.01053 1937616 286.328 372.095 47.OdC 00077
290..0..... 1.012.8-Q 1.006.09 1. 36702_ ._ , L91 ,^4.i _.__ 346._391 __ __._ 4 7._114 _	 O..1U4
29590 1.U1378 0.9,4999 1.35745 295.949 380.712 47.184 U.1su

3Q0a_^.---A..M1A6Z._ Q. 942 40 1-'34766 OV. 746	 __^} 5. 104 .___ ._-420_117. _.. Ua1J_fL._._,	 _
305.0 1.01545 0.98302 1.33789 3059536 389.571 46.951 041M1
31II.0_ ___.1..,OA612__ 0.97217 1.32838 ____310.319	 ._1%-4-a-130	 --._4 8.4.	 w ..	 00Z%t!?,_-.__._ _..._
315.0 1.01667 0.95980 1.31937 315.097 398.800 46.309 0. ?-28
4211_n 1 _01 71n (1_44594 1,11t13 319.871 41.3. 600 45.819 Q.24Y
325.0 1.01741 0.94065 100393 324.641 400.549 45.209 0.267

33D. ._D 1 .0 1 7b-u-_  00 91 399 _._ __. 1.298U 4-.__..32S.a.409- _. 413.672 ._.4.4_..475	 ..__._ 0,264,_
335.0 1.01766 0989607

n_RU47
1.29374
1_24130

334.176
339.943

418.993
424.538

43.612 0.2.77
0.3u734D.n

345.0
1.01759
1.01740 0.85683 1.29059 343.711 450.337

4226t9
419494 0.312

3:iD-0 1_.Q1 7Q d 	 _.. n.a 15e2__ 1.29304 3411..481	 436.42--4.4.,_2-39 _. Oa_314
355;0 1.01664 0.81414 1.29769 353.255 442.827 38.854 0.311

fin.n
365.0

1 _n1 6()A
1.01541

0. 79 2(12

0.76976
1.3051 i
1.31544

{58.0 43
362.817

449.586
456.735

37,346
.15.717

Q.303
0.291

370.0	 1A-a146_2 0.74770 1. 32875 367.6U7 464.309
375.0 1.01373 0.72626 1.34502 372.405 472.336 32.131 0.2130
3E.0,_0__ 1.012 7!t 0.7 U 5 91-1,3 6414 _37.211	 4 8 0.8 41 -_ 	 ,30.-L9-1----
385.0 1.01166 0.68716 1.38591 382.027 489.830 28.168 00190

390.0 1.01049 0.61058 3.41001 386.853 499.2,45 26. 74  0^_L55
395.0 1.00924 0.65673 1.43603 391.689 5090199 23.929 0.117
400.0 _ 1.00793 0.64616 1.46348 396.538 519:480 21.7 40.__ 01.0-L7,__i_
405.0 1.00655

1.nn513
0.63930
0.6364 7

1.49182
1.	 Q54

401.398
406.27

530.042
540.7 65

19.5515
17.37"

0.031
_& inn
415.0 1.OU366 0.63781 1.54918 4119159 5 151.513 15.230

-90OU3
-0.041



42000 1000?17 00644?4 1.57736 4lh.Oti9 5699147 13.151 -09077^
42590 1 soul oh 004'1251 1# 60dt" . 4200 7 4 S 72.'342. 11.163 -00 109
430.0 009991 11 0160526 1.63141 425002 5d2.5d0 9.287 -0013d
435.0 0_951761, o.bkso42 1.65722 630.845 542.	 t® 7.541 -0_162
440.0 0.99(.14 0064846 1.68210 435.802 6019381 5.940 -00182
44500 0 * 99467 U. 71QH0 1afftll_ 44.0a 173.. 4.,492 _.	 -00190

450.0
455.0

00443?4
0.94136

u.7 091
0.76119

1. 72950
1.75215

445.758
450.756

618.?56
625.940

3.202
2,070

-0.209
-O.	 17

460.0 00990 ,)/f 0.70402 1.77414 4559767 633.286 1.096 -O.211
465.0 0 a 98 0 2 14 _ 0 a 8t ► 62 3 _.,"19548 460090. 640.183 0.273 . -09221
410.0 Oo98r12 0082810 1981615 465.825 646.710 -0.401 -0021H

.x.7.5a0 0.9003 0984 938 1a8.3.6.11 __4J0a b71 652.9.0.6 - -0,942 -0.213

48090 0.4660ti Oo86985 1.85530 475.928 658.804 -1.349 -09205
485.0 0.9 b5l 7 0.81"931. 1.11236.4..__.. AB OA 519..x_._. _ ft.64a_ 417 _ -1.635 -0.194__
490.0 0.9844U 0.9(1770 I.P9106 4869066 669.835 -108()9 -O.l84

__495x0-. _._Da.963_15-- _.0,924AZ _	 1.9Q,.746	 -. -491.a.1.4.f__	 _ -6159026--- _-1,8$0.___ -Owl 7_h
50000 0098322 0094061 1.92276 496.233 6b09035 -10859 -0.157
505.0 0.982A? ).9&s494 1.93687 501.323 684.A8h -1.757 -0_142

510.0 0.98256 0096740 1.94970 506.417 689.600 -1.560 -0.126
-515,0 .__ II..3.8^42-__12.9 7 9 30 4_ a L4 R	 -1,341
52000
525.0

0998242
0.982, 6

0.98915
0_99742

1.97124 516.610
521,706

698,646
703,113

-19049
-0.709

-00041
-O.0l31497982

53000 U09H2b2 1000408 1998687 526.800 707.464 -0.317 -00055
- _5..35,_O-__ _0.51E1:322--__1. 00912 --.-- 1,99234 531 0-890 711. 764 0,071

54000 0098375 1.01252 536-.476 -0.0181.49621 716.028 0.481
545.0 0.99440 1.01429 1.99845 542.056 720.271 02905 0,001
550. U 008517 1.01441 1.99906 547. 13O 7249507 1.331 00 010
555.4 0,94605 190.12H8 o-() s 4
56000 U0987U4 190OY72 1.99538 557.751 7139OUB 2.146 000ti7

..̀x'65, 0 0a_9.bt12 w__ 1._0049.1	 _ l.a-9-911-4...-,	 5-62-9-29-7- . - _737:3SZ2____ 	 2 * 5 0, 075

570.0 U 19s )"30 0.99849 1.96533 5679332 7419644 2 * 856 0. ( ► y3
0-.	 __ 0 ._990-5-5 -_ 11:.'1 0 10 Is -9 ^ 46.051 __ _3•_163. , _ 0.11-0 ---	 _.

580.0 0.99187 0.98084 1.96920 577.367 750.535 3.397 0.127
505..a4- ___ V &.9-9325 0031-6466__. 1:.95.888 755.117 395.8L _.. 0.142-
59000 0.99468 0.95696 1.94742 58 7.350 75q* 813 3e696 0.1,37
595.0 0.9yE.15 0.94279 1.93459 592,320 764_643 3.714 0.171

600.0 009 14765 0992720 1.92056 5979277 769.628 39685 O.l84
^41-0._ _0a_9-99 16 4,21027 1.90541 ..___6QW2.0 774,790
610.0
615.0

1000067
1.002.18

0089208
0. 87275

1.88923
1.87209

607.148
612.063

780.156'
785.753

3.296
2.938

0.205
0.213

620.() 1.00367 0985242 1.85406 616.963 791.611 2.459 0.218
625.5.0 1.00514 008 3125 1.83521	 --6213 850 797,76 1 1_t051__^

630.0	 1.00656	 0.80945	 1.81557	 626.723	 804.238
635.0	 1_00793	 0278727	 1.79817	 631.584	 811.077

1.108
0,225

0.222
0.214 ,`

640.0	 1.00925	 0.76502	 1.77401	 6369432	 81x.315
-642,_0_-_ _1:01 049 	 0,74306 -__1.IS209	 641.269	 825.984

-0.813
-10998

0.213
0.204

650.0	 1.01166	 0.72181	 1.72934	 646.094	 834.111 -3.337 0.190



655.0	 1001275	 007()115 1.70569	 6 1500910	 842.119	 -4.810	 001913

"n-n	 I _AI I 7 il_/.M'w9 I -AAJOb l.6q_ 71A All; 1	 017 -t,	 y7:1 (1	 14.9
665.0	 1.0146) 0966767 1.65540 6609514 861.3 16 -8.2154 0.126
d7II.II....^ 1.II15s1 L.bl ltl ._ 1.62Hb3 _66.5.30. LU..365 - 10.-164 U.U/6
67500	 1901609 0.64431 1960081 b70008A 8810715 -120100 0.Ub3eae - e	 _.1.II1	 ^_m u_e a22&.Ml :-.14..297 _	 L021
685.0	 1001108 0.66641 1.54263 614.6'39 903.062 -160473 -0.0II

.41.9016.0	 -_._L..ul &D. 0 _ e Jae s	 t _ 5 t ^^D _ _	 4.4.LQ_ _9.13.&J96 ... -18&690 -0..050
695.0	 1001759 0.64442	 194833) 689.110 924090 -200920 -00090

_I_DO..II_.__1.111-706.0___-- t"i447 6.Y3..945x.-- - 944.711.. ._a-23.1310 -00128

4



SUN81A1f R ►► kC. 1 T

TINI T s 090 TOELI X 5.0 TFINL s 700.0 ThC6s?44.0 SkMi MAJOR AKlSsU.A254tl177

ECCENTR IC 1 TY : cl.72164446 INCLINATIONS 094000 	 SO 1NJLCIIUN VEL0C1TYs0.A7854

PFRIO1) SM Tn INJECT Vi L s 20900 DAYS PPR/KM/SFL V58S0I 6 0.11414 1VA s U.0

TIME	 RFR	 RSI+ 	DIST	 FER	 I SR	 AZIMUTH CLEVATIUN

0.0 1600F97 1.011844 000061R 3.074 ?*?24 -85.4U7 !. RB 3

590 1900.199 ___	 1.Oc, 7_G4 - ^_^?L^22__. _.._Ta_42 7o()2()	 ____.-,89:_1925 308,24
10.0 loOOC20 1.00522 0.02571 129789 11.324 -870079 3.044

...,1500 1,OU 1, 17 10OV120 0.10352W_.._ .17,.666- 1 x+0666 -_03a183 3. 2356
&0 p 1.00 3 W U.9'45c)4 090446x8 22.556 109046 -189762 5. b3U
5.0 1,00160 0.988 4(1 0.0!)3S? 2 7.4b0 24.4111 -732983 3.21`6

30.0 19COC29 ()991964 0006223 ,52.318 211.989 -600686 3.611
3 5.. Q _^_ _ _^2.,L !7 9 ^' 1.7._ _ S2 a 9 t^ X13 4 _.____ _Q. a O Z4.'L4 __. -- 31. s	 1 S	 _._ ^, 3 3 _: ►̀ 	 It_ _ _. tt	 .:m 4 4	 . 3-002
40.0
45.0

0994721
0.99574

0.95758
0.94434

0.07864
0.08658

42.25to
47.217

3220289
43.116

-579641
-51.4!1

3.7l'j
5.7 .40

5000 0949432 0.92971 0909464 529191 411.088 -4498Uti 3.6 8
55...0	 _ -a-9929il.._._ Oa-9..1..3.71.5 __ _O 103162___-57s- Z.9

60.0
E.5.

0.99153
0,94022

0.89653
0.87811,

62.1H1
67.195

',8.555
64.099

-30.361
-22.711

3.4G4
3.211

0.11240
0.12304l

70.0 0.98E'99 0085880 0.13570 72.221 69.82!8 -14.958 29973
-__3 5.10- __ U 2 8 7S A	 -0-a #1..05:1, 5 9	 _ _., _._..m .a.'.l `2 U - 7.315  - . _2 o- 6 H 6-o --_

R0.0 0. 1486711 0.81767 0.16929 82.308 92.311 0.305 2.31#4
__1l5-..62_ ^i 61@582__._9.Jy6 :1__.^a_L13.Z^_$1a36L___.8^aS122 ^^•911 __ 2.00dI

90.0 0.98496 0.7741+? 0.21757 92.434 96.09b 13.163 1.771
95.L► U s 9EL42 3T -Us 7. 53 6 24821___ -_ 9 7 *50	 ..___1!1- 3.578 18,727-- - _.	 1:476_
100.0 0.98360 0.73269 0928346 102.591 111.488 23.571 1.203
1.05. C 0,52.8.311_ 0,-712.$..9 0 * 32 338 __.-__107._63,3 ____11'1 850	 27.302_._ 09-916
110117
115_0

0.98274
1.98251

0.6945t.
0.67822

0.36787
0.41670

112.770
111.865

128.671
137.945

31.156
41,918

0.767
0.545

120.0 0.98241 0.6644? 0.46946 122.9b1 147.641 369228 09379
._125._0 _s__	 2!t^11a.6J3.^+_`j__11. 525`59 1Ztla_0`t_L1^_7:Z().f ^L:94`x___._ _9. t2 .3b
130.0 0.98261 0.64634 0.58435 133.153 1611.048 39.2titi 0.115
14S. L) 0.9c)	 i1 U.64283 0.64488 138.246 178.567 40.166 0.012
140.0 0.98334 0.64 37.5 0.70625 143.335	 t219. 1.3'1	 40.766 -0012
14.5.0 c1..983 , 0_.-6^► __^t3^35_l  l ^^ti?.9	 1 y ^b_2!141_129__-- -__-^, 142

150.0
155 2 0

0.98458	 0.65567
0 8 98538	 0.66713

0.82771
0.88626

1539499
158.570

209.921
219.911

41.293
41.339

-0.198
-9024L

160.0 0.9H629	 0.68152 0994234 163.633 229.520 41.3117 -0.21t)
16590 _ 0.987	 0	 0.6	 32_ . _ . 0.99553 _16 }.687 2,8.699	 _	 41 1239 -0.300
170.0 0.98841	 0.71701 1.04549 173.730 247,423 41.163 -11.317

175, 0__ _.A:98qfi-2___ 0a3V 746_ _ 1.09203  178.70! 255.687  41.1	 .^ __10.-t 321	 -... ..	 _	
A

	180.0	 0.99087	 0075801	 1.13504	 1839783	 263.503	 41.0723	 -0.332

	

._.185 Lo -0.99221	 0,77941 	 188.791	 210.894	 41•Q94	 -0.332

	

190.0	 0.99360	 0080091	 1.21045	 193.786	 277.8823	 41.159	 -Co.328

99,99._



19500 0. )N5U5 0082718 1.24294 1990767 2..114 * 511 41.21 ± -0.3.: U
200.0_.. _ -0.99651_ II.tl7,235s. --1&22201 2513. 134 210ALS 41.4,! l -U.31U
205.0 0.49AU? OoSh30? 102 y /910 2030688 2 46 .01A 41.647 -00297

_U0.-u _.- --U.9V!ib4 Q4,BA211 _ "121111 21,1.627 3112.5 2 41. y UU -00262
215.0 1.00105 0.90031 1.34041 218.952 308.048 4?91'01 -U.264

.220.11 ..:sA,6,n ZSlA X917-21 ._ _ 1.,351-36= 221.443 313.3 !4 42 . 513 -0.146
225.0
IIn_it

1.OU404
1 _nnr au

00 9095
n_0472A

1937150
1	 3A'Ai ) 4

22 8. 16U
2 43_24,

318.4 1 1)
323. 37%

42.862 -002!6

235 * 0 1.00691 0.9602?
_

1.37210 238.113 37.H.1T3
44-230
41.611

-a.21y4
-00182

.260.11.._1.011827 0..91169 1.e32$H3 242..971_ 3.12adb2 436999 -Ust!)b
245.0 1 .00956 0. 96 164 1.403 i / 24 /. H 16 337.4?. 8 44o384 -U. 134
24n_n 1 _ 01070 n_u-')nn% 1 _4(1ti11I. Zti2_A il n %41 . 91,) 44 _ 764 -0.104
255.0 1.011-4 0990692 1.40644 257.473 3469342 45.129 -U.UH4
26II. 0 . ,.._.1..111.4 00 _ "OD220 1.5.,11526„ _ 281..2!!.6-__ :) 0,111 459412 -00  O;o b
265.0 1 * 01397 1.0o1387 1.40249 26%0000 355 * 041 45.7Ff6 -0.()31

177n - fl 1 _ n 14K3 1 _ n) 79h 1 . josi 211 271. RA C+ ASS	 146 46.	 b-(j -0.004
2 75.0 1.015')9 1.0!14141 1.39281 7 76.6 74 M3,641 46. 302 U.023
2 An-.0L.(1L6L4 _l.aflL1126_m.,^.. 1.38625	 _ -201.456 _._ _3ix-T	 .._^. .. 4h.41H _ -0,60 0-
285.0 1001676 1,00454) 1.37817 286.233 3129?53 469618 O.U77
2-9A&.Q._.__-l-"OLl"' -._.1.,aDUO1A. __..._ 1 - -4 7058 _. Z9-" 1Q1i_ - . 3 Me 5.90 _... _. 46-^.614l O.1S14
295.0 1.01746 0. 9141 A 10361do 2 105.776 360. ,)bH 46.613 00131 

-ion, n _...._ 1..Q1 762_.	 o- ^$ae6 . 3 280	 3.OS1,.54i®
305.0	 1.01765	 0.47757 1.34381	 305.310 389.964 46.410 0.182
310.II._ 5.h- -0.6-96h 1.334.89	 -3-104.0-7 -- 4b.141-_ ._ .. 0,206_
315.0	 1.01734	 0.95487 1.32637	 314.446 3940309 45.710 002111
32n_n	 i _n1 Tun	 n_cj41 33 1 .318591	 419 - f,117 404- 16S 45.2,,o2 x.2&1
325.0	 1.01654	 0.92641 1.31195	 324.392 4U'1.171 44.701

`
00201

33D, n _- 1.01596. _
335.8	 1001526
34n _n 	 1 _ n144%

__
0.89271)	 1.30149
Q-A 1417	 1.2YAR4

_., ..321..1.71.._
333.4'36
+ SN.747

_ 414..3.4.tL__..__
414.720
415.315

_4-3.s 9.92
439161
42,205

002t3 .
U*296
0.3y6

34590 1.01354 0985455 1.298.?O 34:3.547 431.159 41.123 U.Ill
3.50.-O_. 1.()1 2 S 

_j
__..x.83411- -._...1 .29978 	 __.348a.355 4_47.283	 -- #9.9.14 Q.'31 3

355.0 1901143 U.H1314 1.30379 353.172 443.719 380581 0.310

36n_n 1-911024 D-7917 3 t-3-1f&4 '4	 8	 OL 450.SU1 37,127 U. 4U2
365.0 1.00898 0.77024 101984 362.839 457.661 35.556 0.2t)9
370.0 1,00266 _0.7489g 1.33248 16 %.690  ?^3.4 _.3.3-._ J5 _	 . __ __0_921 l
375.0 1.00627 0.7?P36 1.347113 372.553 473.236 32*092 0.248
380.1 1.00484 U. 7419113_. 1.36499 __ 3 % /.429	 481ak 5 .39...216_-_- -- _	 0_92.2.1_._
385.0 1.00337 0060088 1.38540 382.319 490.615 28.260 00189

390.0	 1.00187	 0.67504. 1.40810 L 3H lu222	 499.993	 --Zb,t.235_.._ _ 0.154
39590	 1.00036	 0.66185	 1.43274	 392.139	 509.763	 24.160	 U.116
400.0	 0.99985	 0.65178	 1.45887	 397.071	 519.893	 22.95-2- ___ 0*07,.___
405.0	 0.99734	 0.64527	 1.45600	 402.016	 530.284	 19.933	 0.037
r.. u. b.	 ---	 i.^i Men	 23AMa y_10	 -91U. nlen	 1 re BZ (	 - U. UU.!
415.0	 0.99438	 0.64385	 1.54147	 411.950	 551.389	 15.760	 -0.041

r



4?090 0 19 s)1" ► h 11.64902 1 . hf+90? 416.437 hh 1 . (148 130 1 1)6 -0. U / 7
425.0 4469915') 0007135 1059603 4 219930 572.063 11.@40 -Oalu'i
430.1) u0g9U^H 0. 6h997 1062251 426.951 5h1.998 10.013 -001jo
4A S.0	 '.1 U.989t1 l) (1.644412 1.641123 4AL.911 hyl.Rly A. A3 12 -L1.1&A
440.01 U. 4M1WJ U. 70217 1967324 437.015 hu0.6u? 60810 -U.lb.1
445.!' U.9Nt W 1 0972120 1.69756 4429063 604 9221 59411 -0.1 !y

4500 o 0.985h6 0.741411 1.721? °3 44 1. 121 617o394 4. 1 14 -00210
-615.4.0 11.98boo 0.76255 1.74477 45	 .188 625.117 3,086 -(J.2 IN
460.0 009m476 OoIH401 1076669 457.263 612.420 2.147 -0.2d'1
465.0 U096 3 ( ' j U9 b1154F _ la7Wd ._ 4b2 . 344 6)Q . 3'4 10153 -002'!2
47090 0.48313 0.826h7 1.A0962 467.432 645.H Iri1 007u5 -U.22U
.475.0 00'18" 16 Ueb4731 1083Q04 4720523 6',201,4! 00 1 112 -00214

490 * 0 0.987 ,32 U.80)719 1.A4968 4779617 6'jN. Off 5 -0.21b -0020/
485.0 OL&-"241 0986.615 1.8.6#14,7__. 462..714 bb3, 145 -0.4 14 -00197
490.0 0.98244 0.911411 5 1.A0632 4879810 6690 l-44 -0.607 -0.186

._495.4_. _Al,&902bU__. U.920.72 490314 4'02. 4 06 6.14.439._._. -O# 7 Itz -u.l 13
50000 00982H4 0.91613 1091885 491.999 619.S03 -0.136 -0.1'jd

_55.0 0.983 42 0.9rjO 1 1 1.9; 4 {6 hO3.Ody 604,411 -0.650 -0.14 3

51000 00481117 0.96279 1994658 508.114 6899182 -0.'500 -0.111
515.0 0.9b451___ U0'1.L.3.' .4 _._ 1.'65	 44^ .. 51 l.25?1..._ .__!±'^3^^ 	 T_ _ -8021 -U. -110
520.0

_525.0
0.9b5 14
0.2H624

0098 357
0.9-11b6

1.96A91
1.91188

SIR, 325
523.388

6 14A.394 -01059
0.

-00042
?020H70 63 -0.014

530.0 ().9E1725 009941A 109HS33 52A.442 7071219 00593 -00055
5.3 5.0_ 0.,961{35 .1.00!11 .. 1.9'#_1.21, -513..40	 ____7.11,ti.^ @_	 ^_..^11^sy31.. ._ -00037.0...

540.0
545.0

O.gH954
0. 940 131

10011645 
.m

1.00919
1.99549
1	 7.94mi

53E1.519
54 3.54«

715.962
7211.264

1.288 -00018
1.6S2 0.01,1

550.0 0.94214 1900830 1.99923 54d.548 724.558 2.0i1 0.020
_555.0 0.99354 1900680 _.1	 9867	 _ 55).544.- --720 * -050 .2..359 09039
560.0 0.994 97 1,00370 1 .99641 ► 558.526 7339178 2.685 0.057

_._5.65.0 0499645._. _ 0. 94.9100 _. 1 a 9927.4_____5#63..49.4_._ .___I 37.051	 .,._	 .. _22 0 9ti1t._ 09016 

570.0 0.91795 0.9,071 1.98744 568.448 741.932 3.250 Oeb•i3
_.575.0 tl. g9'94b_.._ _09984435 1 *AffQb1 573..J.8JL_._ -74fit,3. 7._._ 3 .470 _ 0.111
58000 1000098 0.91544 1.97232 578.313 750.941 39639 0.127

_58590 1.0..0?4.8_ _._.0.9 9_6__4_5...1_...___1 a 9b2b.1___ _543-:.225 _	 ... 7. `̂ m5s 58.0 000,_0_ w .__.31_749_ 0.143
59000 1.OU347 0..95210 1095155 588.123 760.334 3.742 U0158
595.0 1.00542 0293826 1.93920 593.007 76.5.220 3e760 0.172

600.0 1.00684	 0092305 1092562	 597.877 
__._...._.__.._

770.261 3.643
_ 

O 
_ 
.ld4

_4Q`^_..Q.__.r..1^ 18_2k	 0.911654 1.910906Q2_sZ L̀	 1 75.477
610.0 1000950	 0.88883 1089509	 607.581 7809895 3.1.11 0.205
615.0 1.011173	 0.87002 1,87828	 612mJ16 786.540 2.719 0.212
620.0 1001189	 0.85026 1.86051	 617.239 792.441 2.191 00218
625.0 1.01295	 0.82971 1.84183	 ---622.Q53 19As30	 . 543 - .	 -Q_„x.2,1,. _ _.____ _0000

630.0 1.01392	 0080859 1.82229	 626.857	 805.137 0.764

640.0	 1001556	 0.76567	 1.78068	 636.442	 819.242	 -10205	 0.212
6452_0.____ 1.01621	 0.74451	 1.75859	 64 225	 826.902	 -2.401	 0203	 .
650.0	 1.01674	 0.72408	 1.73560	 646.002	 8350003	 -3.743	 O.ld9



6SS90 1001716 0004115 1071164 650.775 043.tibl -5.729 0.112

"n-n I _ni 7` f. n_&III &t 1 _ tiW^.k^ ti5^S .,^y2_57N -ti_ 9 4& n_ î ',n
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CHAPTER 4

4.0 COMMUNICATION SYSTEM
	 .,

This chapter provides an overall description of the communication system
requirements and constraints, and the functional design of each of the major
elements of the system. Topics covered include the signal design, the anti-
cipated signal-to-noise ratios, analysis of the expected system performance,
and the hardware implementation of the spacecraft equipment.

4.1	 System Requirements and Constraints

The purpose of the communication system is to satisfy the mission objectives
described in Chapter 1 of this report. Within this general framework there
are two notable subdivisions.

The propagation experiment of immediate interest requires the transmission
of accurately timed pulses of coherent RF energy at two different frequencies,
and the precise measurement of relative transmission time delays, and fre-
quency and delay perturbations induced by the transmission medium. As de-
scribed fully in Chapter l, these measurements are expected to 'yield unique
data describing the electron density surrounding the sun, and the nature of the
turbulence.

Another important communication system requirement is to provide engineer-
ing data confirming the viability of the small, inexpensive, solar stabilized,
spacecraft as a vehicle for the propagation experiment and for possible sub-
sequent part ale and fields experiments in the 0. 5 AU region of interplanetary
space. Primarily, this requires a reliable acquisition and tracking capability
and the provision of a telemetry data link for evaluation of the spacecraft
behavior and for the return of data from experimental packages carried on the
spacecraft.

Principal communication system constraints are imposed by the expected
perturbations in the channel that is to be in. ,:stigated, and by the very low
signal-to-noise ratio. The latter is limited severely by the very long range
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over which communication must be maintained. Additionally, the spacecraft
size and weight restrictions conspire to limit both the average power avail-
able to the spacecraft transmitter and the peak power that can be realized
with available space-quality components.

4.2	 Functional Description of the Communication System

Seven major system elements are relevant directly to a discussion of the total
system function and performance:

1. the spacecraft programmer, which generates all the timing
pulses and reference frequencies required in the spacecraft;

2, the main transmitter, concerned primarily with the short pulses
required by the propagation experiment;

3. the beacon transmitter, used primarily to provide a spacecraft
tracking signal and a telemetry link for spacecraft engineering
evaluation data;

4. the communication channel, which also is the medium that is to be
investigated;

5. the receiving antenna, a large phased array;
6. the receiver RF section, which provides power gain with the least

possible additive noise; and
7, the data evaluation section of the receiver, which is concerned

with the accurate measurement of time and frequency perturbations.
Functional diagram, D-106-400000, shows the relation between these various
elements.

In the spacecraft a stable, crystal-controlled, oscillator, operating at a fre-
quency close to 5 MHz, provides a basic timing reference signal. Output of
this oscillator is frequency multiplied to define the required RF carrier
frequencies of 70, 75, and 80 MHz. Output of the oscillator is also counted
down in the programer to define the time intervals d1iring which the trans-
mitters are turned on. Derivation of the timing pulses and carrier frequen-
cies from the same source ensures that the transmitted pulses are completely
coherent and, as will be discussed later, makes it possible to phase code
the pulse in a manner which enhances substantially the time measurement
capability of the system.

The main transmitter emits pulses with a duration of 3 ms, internally phase
coded with a baud time of 25 µs. Peak power output of this transmitter is
2 kW. The pulse repetition rate varies, in sympathy with the actual power
available from the solar cell array, from a minimum of one pulse in 120 a
to a maximum of one pulse in 0.8 e. Eighty percent of the total energy output
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of this transmitter is used to emit pulses alternately at the two extreme
carrier frequencies of 70 and 80 MHz. These are the pulses used in the
relative delay time measurement. Twenty percent of the energy output is
transmitted in the form of similar short pulses at a carrier frequency of 75
MHz. These pulses serve an important function during the signal acquisition
and receiver synchronization process, and, also, permit some of the fregen-
cy spreading effects of the channel to be measured.

The beacon transmitter emits pulses with a peak power of 50 watts at a car-
rier frequency of 75 MHz. This transmitter operates in two modes. In the
first few days of flight, before the spacecraft solar-cell array is oriented
properly towards the sun, the beacon transmitter operates from a bat+ory
power supply and transmits pulses with a duration ranging from 50 to ! 50 ms
at a repetition rate of one pulse in 120 seconds. These pulses provide an
immediate spacecraft tracking signal, while the pulse duration is used to
convey telemetry data describing the behavior of the spacecraft during the
initial solar-acquisition and spacecraft -stabilizacion phase. After the space-
craft has been oriented, and sufficient power is available from the solar cell
array, the main transmitter is activated. In this mode, the beacon pulse
duration is increased to range from 5 to 7 seconds. These longer pulses are
interleaved infrequently with the main transmitter output. This permits some
additioi,Rl frequency-spreading data to be measured, and also provides a con-

t
	 tinuing, redundant telemetry link.

Pulses transmitted from the spacecraft must pass through the communication
channel, which is the physical entity that is to be investigated. It is expected
that the channel will introduce significant frequency dependent time delays
and apparent frequency and time perturbations. These effects are described
fully in Chapter 2 of this report. Here we note only that the anticipated
relative time delays are expected to range from a few lis up to the order of
1 ms, and that the probable frequency perturbations range up to a few hun-
dred Hz at the carrier frequencies used by Sunblazer. As will be seen, these
parameter ranges affect importantly + he optimum signal design.

The phased array receiving antenna and associated RF amplifiers also are
described fully in Chapter 12 of this report. Here we note o.-nly that the meas-
urement precision required when the communication line of sight passes
close to the sun dictates a combination of high gain antenna and low noise
amplifier with an effective signal-to-noise ratio of the order of 50 dB. Later
sections of this chapter will show this in detail.
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The data ::valuation sections of the receiver include a 5-MHz oscillator that
is slaved to the oscillator in the spacecraft. Three separate control loops
are used in difft-rent combinations. For initial acquisition, the oscillator is
tuned manually by an operator referring to a display of the received signal.
The oscillator then is tuned more finely by a pulsed frequency discriminator
that is used to examine the 75-MRz pulses emanating from the main space-
craft transmitter. And, finally, the oscillator is tuned precisely by meas-
uring the time interval between received pulses; that is, by measuring the
pulse repetition rate which is known to be integrally related to the transmitted
carrier frequency. In a manner analogous to that used in the spacecraft, the
oscillator output is counted down to provide accurate timing pulses, and is
frequency multiplied to provide coherent RF reference signals. These RF
signals are used as reference inputs to the mixers in the front end of the
receiver.

Prime measurements are conducted by banks of correlators in the receiver.
By reference to the basic oscillator, these correlators compare the signal
actually received with a multiplicity of postulated signals generated in the
receiver. The actual time of signal arrival is obtained by a maximum
likelihood choice based on the outputs of the correlator banks. This subject
is discussed in later sections of this chapter. Here we note only that the
required system precision necessitates the use of a few hundred correlators
for the examination of each of the two extreme carrier frequencies of 70 and

b,

80 MHz.

Other sections of the spacecraft and receiver complex are concerned with the
conversion, coding, decoding, and display of telemetered data. This is super-
posed on the beacon link by pulse duration modulation, and on the main link
by pulse position modulation. The rationale for this is discussed in later
sections of this chapter. Here we note only that the format is designed so
that the prime propagation experiments are not degraded by this piggyback
data.

4.3	 Signal Design

Two separate but related commurication links are included in the Sunblazer
system. For maximum reliability, these two links are used redundantly as
much as possible. Both links offer a capability for the measurement of fre-
quency broadening induced by the transmission medium, and both provide a
capacity for the superposition of ti lemetry data. Each link, however, has a
difference prime function that dictates a different optimum form for the signal
coding. This optimum signal design is the subject of this section of the report.

92

1



4. 3. 1 Main Transmitter

The signal coding used in the main transmitter is designed to optimize the
prime propagation experiment. This experiment requires that the space-
craft emit pulses of relatively short duration with large peak power at
each of two different carrier frequencies, so that the relative transmission
delay imposed by the medium can be measured accurately.

Practically, there is a fairly broad range of acceptable values for the dura-
tion and peak power of the transmitted pulse. A somewhat arbitrary 'optimum'
combination of these parameters has to be chosen on the basis of a tradeoff
among several conflicting system constraints. This compromise leads to
the selection of a pulse with an envelope duration of the order of 3 ms, a
peak power of the order of 2 M and an internal phase coded structure with
a baud time of the order of 25 µs. Telemetry is best superposed on this
structure by pulse-position modulation. The rationale for these choices is
discussed below.

4. 3. 1. 1 Pulse Envelope Duration

Consider first the most desirable duration for a single transmitted pulse. In
order to enhance the time resolution capability of the system, and to minimize
the effective sample aperture time for the experiment, the pulse duration
should be as short as possible. But, in order to minimize both the transmit-
ter peak power requirement and the receiving antenna gain requirement, the
pulse duration should be as long as possible. A compromise between these
two conflicting requirements can be effected by considering the limitations of
the receiving antenna and the postulated behavior of the medium when the
spacecraft is close to superior conjunction.

A practical lower limit for the beamwidth of the receiving antenna is of the
order  (" 0. 5 degrees. This minimum beamwidth is primarily constrained by
the necessity for tolerating angular scintillations which cause an apparent
random motion of the signal source.

This finite antenna beamwidth will prohibit reception when the angular offset
between the solar disc and the line of sight from spacecraft to earth is less
than about one degree. In this condition a portion of the solar disc will inter-
cept the antenna beam. And since the sun has an effective noise temperature

•	 of a few million degrees at the frequencies of interest, the total background
noise picked up by the receiving antenna will increase prohibitively.

Now, as the spacecraft approaches superior conjunction the range over which
communication has to be maintained is 2 AU, or 3 x 10 11 meters. This causes
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a path loss of:

_1_ .	 1	 ft-240 dB.
47rR2	4^r(3 x10 11 ) 2

	(4.1)

Because of this very substantial signal attenuation it is necessary to design
the receiver to detect the presence of a pulse by coherent integration of the
total energy in the pulse. But for this to be possible, each pulse must be
individually coherent. That is, the RF carrier phase must remain essential-
ly undisturbed for the duration of a single pulse.

Some quantitative speculation relevant to this requirement is provided by
Chapter 2 of this report. There it is shown that the average channel coher-
ence time is likely to be related to the offset of the line of sight from the solar
disc in the following manner:

Offset Coherence time
(Degrees) ( milliseconds)

0.5 0.3

1.0 3.0

1.5 10.0

It is apparent from these figures that the "optimum" pulse duration is of the
order of 3 me.

A pulse significantly shorter than 3 ms would require either the transmitter
peak power or the receiving antenna gain, or both, to be increased to main-
tain the same collected signal energy per pulse. But these rather difficult
and expensive changes would not improve the experiment significantly. Since
the channel coherence time reduces very rapidly for offset angles less than
about one degree, and the solar noise contribution increases very rapidly at
the same time, the possible decrease in minimum observable angular offset
is very limited.

At the expense of a rather significant increase in the minimum observable
offset angle, a pulse longer than 3 ms could be used to justify a reduction in
the transmitter peak power or receiving antenna gain. However, this increase
in minimum observable angular offset would materially degrade the experi-
ment in a region of particular interest.

Further, if the increased pulse duration were used to justify a reduction in
the transmitter peak power, then the total radiated energy per pulse would
be unchanged and no other system constraints would be relieved. The only
effect of this change, therefore, would be to reduce slightly the difficulty
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involved in the design of the transmitter at the expense of a degradation in
the experiment.

On the other hand, if the transmitter peak power is assumed to be a constant,
a longer pulse duration could be used to justify a reduction in the required
receiving antenna gain. But this is not an unalloyed blessing. Since the
energy per transmitted pulse is increased by this change, while the average
power collected by the spacecraft solar cell array remains constant, the pulse
repetition rate would have to be reduced proportionately. Thus the sample
data points obtained at the two different carrier frequencies would be more
widely separated in time and the total sampling rate would be reduced. Both
of these changes represent a further degradation of the experiment.

4. 3. 1. 2 Peak Power

The most desirable transmitter peak power also has to be chosen as a com-
promise between two conflicting sets of constraints. It is desirable that this
be as low as possible, both in order to permit the maximum possible pulse-
repetition rate compatible with the limited average power available in the
spacecraft, and also in order to simplify the design of the transmitter. But
the peak power should be as high as possible to provide a maximum overall
signal-to-noise ratio so as to achieve a maximum precision in the time of
arrival measurement for a given receiving antenna gain, or, equivalently,
to minimize the required receiving antenna gain for a specified measurement
accuracy. The compromise here is settled largely on the basis of the trans-
mitter design difficulty and the achieved pulse-repetition rate.

Available transistors permit a single power amplifier stage to generate about
70 W at the frequencies of interest. As described elsewhere in this report,
a larger total RF output is created by using many such stages in parallel. In
principle, this procedure can be extended as far as necessary. Practically,
however, the inputs and outputs of the paralleled stages must be isolated by
lussy power dividers and combiners to prevent destructive interference be-
tween the parallel stages. As the number of stages is increased, the losses
introduced in the combining process tend to increase progressively due to the
increasing difficulty of maintaining a precise phase match between the various
parallel paths.

Extensive design and experimentation have shown that a few tens of stages
may be connected in parallel with a consequent total peak-power output of 	 }
the order of a few kW. At the present time, this represents a practical up-
per limit for this procedure. And, in turn, this sets one rough bound on the
choice of peak-power level.
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One of the physical parameters of interest in the propagation experiment

is the scale size of the turbulence in the electron density. Currently, it is

believed that the plasma will contain 'blobs' with a diameter of the order of

200 to 300 km moving radially outward from the sun, with an initial velocity

of the order of 200 to 300 km per second. These 'blobs', then, may be ex-

pected to traverse the communication line of sight in a time of one to ten

seconds.

It follows that the propagation experiment must achieve a sampling rate of the

order of one sample per second. This will, at least, permit the observation

of large inhomogeneities moving diagonally across the line of sight.

The average power output of the solar cell array is of the order of 18 W

when the spacecraft approaches superior conjunction. After allowing for some

inefficiencies in the energy conversion processes, and for the fixed overhead

drain of the spacecraft timing and control circuits, this allows an average RF

output power of the order of 6 W at the two extreme carrier frequencies in-

volved in the propagation experiment.

The required combination of one pulse per second and an average output power

of 6 W requires the energy of a single transmitted pulse to be 6 joules. And

since the pulse duration has already fixed as 3 ms, this requires that the

peak power be 2 kW .

As shown earlier, this requirement for 2-kW peak power is compatible with

the capability that can be achieved in the transmitter. It will be shown later,

also, that a 6-joule pulse permits the required measurement precision to be

obtained with a receiving antenna gain of the order of 50 dB.

4.3. 1. 3 Intrapulse Coding

The 3-ms-duration pulses are internally coded to improve the time of arrival

measurement precision that can be attained. This internal coding (modula-

tion) increases the effective bandwidth of the signal and, in combination with

a matched filter receiver, permits a measurement precision equivalent to

that which could be obtained with a much shorter duration but equal energy

pulse.

Since the pulse envelope duration has been chosen so that the received pulse

is coherent, in the sense that the carrier phase remains correlated for the

total duration of the pulse, the required coding can be superposed by phase

modulation of the transmitted signal. That is, the total pulse is divided into

a number of discrete but contiguous segments distinguished by the phase of

the RF carrier.	 4
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Selection of an optimum segment duration, or baud time, requires some
consideration of the effective bandwidth of the channel. It will be shown later
that the error in the estimation of pulse arrival time is related directly to the
baud duration. Ideally, therefore, the baud duration should be very short.
Practically, the usable duration is determined by the necessarily finite
bandwidth of the channel. This bandwidth imposes a minimum limit below
which the signal will be severely attenuated, with a consequent serious waste
of signal energy.

In the Sunblazer system the frequency selective nature of the channel imposes
the most stringent limitation on the minimum usable baud duration. Note
that the spectrum of the transmitted signal will include numerous sidebands
with a total frequency extent that is inversely proportional to the chosen baud
time. Since the channel is frequency selective, these sidebands will be
delayed selectively in a manner that causes the envelope of the received pulse
to be different from the envelope of the transmitted pulse. This effect can
cause a significant reduction in the output of the recei-er matched filter
which, in the absence of prior knowledge of the channel characteristics, is
optimally matched to the transmitted signal.

As noted in Chapter 2 of this report, this effect has beer: studied in detail. It
transpires that the channel can be characterized by a 'dispersion time', and
that the effective system signal-to-noise ratio is related to the channel dis-
persion time, Tc , and the selected baud duration, T b, by the factor:

1
G a	 T	 (4.2)

1 +T
b

Also shown in Chapter 2 is some quantitative speculation relating the channel
'dispersion time' to the angular offset of the communication line of sight from
the solar disc. Using these data, it is postulated that the signal attenuation
will be related to the angular offset and the chosen baud duration in the fol-
lowing manner:

Baud duration
(microseconds)

Angular offset (degrees)
0.5	 1.0	 1.5

35 -3. MB -1. 5dB -1.2dB
25 -4.2 -2.0 -1.7
15 -5.6 -3.0 -2.6

From this tabulation it is seen that a baud duration of 25 to 30 µs will permit
continued observation to an angular offset of about one degree without intol-
erable signal degradation. This choice is consistent with the receiving
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antenna beamwidth and channel coherence time limitations discussed pre-
viously. Thus we have the desirable situation that no individual system
parameter is unduly restrictive.

Now, since the best pulse envelope duration is of the order of 3 me, and the
best b id duration- is of the order of 25 us, it follows that the intrapulse cod-
ing should be chosen to yield about 120 segments. Two important additional
restrictions are that the code should have a good aperiodic autocorrelatior.
function with a strong central peak and minimum sidelobes, and that it should
be easy to generate with a minimum amount of hardware in the spacecraft.
A less important, but not negligible, restriction in that the baud duration
chosen should be a binary multiple of the period of the basic 5 -'MHz oscillator
in the spacecraft. This, also, will tend to minimize the complexity of space-
craft hardware.

One class of codes satisfying theme requirements is the set of 127-bit pseudo-
noise sequences that can be generated readily with a seven stage shift register
using linear feedback. Several hundred possible sequences are available
within this class. The particular sequence chosen, on the basis of minimum
hardware complexity, is such that:

Bit1 = Bit 2 = . . ` . . . . . = Bit 

Bit (I + ?) = Bit(i) (D Bit(i +6)	 11 s 1 s 1201	 h

The particular baud-duration chosen, again on the basis of minimum hardware
complexity, is 25. 6 Ns. Thus the exact pulse envelope duration is:

127 X 25. 6 X !0- 3  = 3.2512 me

4.3.1.4 Telemetry Modulation

There are two ways in which telemetry data may be superposed on the main
communication channel without materially affecting the prime propagation
experiment: either by choosing a different intrapulse coding sequence to
represent different telemetry data bits or combinations of bites, or by using
pulse position modulation in which the telemetry data bit is represented by
the relation between the actual pulse transmission time and an arbitrarily
defined time reference. These two approaches differ mainly in the achiev-
able telemetry data rates and the amount of hardware required in the re-
ceiver.

The telemetry data rate that can be achieved using pulse position modulation
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is limited by the number of different time slots that can be recogn. l zed un-

ambiguously. In the Sunblazer system the relative transmission delay may

be as large as a few tens of milliseconds. The time separation between

pulses transmitted at the two extreme carrier frequencies ma y , in some

circumstances, be as small as 0.4 s. In this context the choice is restrict-

ed to, say, four different time slots. Correspondingly, each transmitted

pulse may represent one of four different quantized levels with a consequent

data rate of two bits per pulse.

By contrast, there are several hundred distinctive, nearly orthogonal, intra-

pulse code sequences that may be used. With this system, therefore, each

transmitted pulse may be used to represent one of several hundred different

quantized levels, with a consequent data rate of the order of eight to ten data

bits per pulse.

The amount of receiver hardware required to detect telemetry data superposed

by pulse position modulation is much less than that required to detect a

multiplicity of different codes. In each case, the pulse time of arrival has

to be estimated for the purpose of the propagation experiment. This requires

a bank of filters matched to the expected pulse. If the data are superposed

by pulse position modulation, the same bank of filters may be used repeatedly

at times corresponding to the possible data time slots. But if the data are

superposed by the use of unique codes, a separate bank of filters must be

provided to match each possible code.

Another distinction may be made on the basis of the probable error rate. For

a particular signal-to-noise ratio and data rate in a given channel, there is a

corresponding theoretic bound on the bit error rate. This error rate increases

rather rapidly as the data rate is pushed toward the limiting channel capacity.

Physically, we may note that, since the pulse rate is fixed by the require-

ments of the propagation experiment, an increase in telemetry data rate

requires that the receiver be presented with a larger number of distinctive

signals. This, in turn, increases the probability that the receiver will in-

correctly identify the received signal.

Since the telemetry data rate required in the initial Sunblazer flight is quite

low, we elect to use the simplest possible system in which each transmitted

pulse is used to represent one data bit, and the bit is identified by transmitting

the pulse at either one of two predefined times. For subsequent flights, ad-

ditional hardware can be added to the receiver to increase the system capabil-

ity without in any way inhibiting continued reception from the first space-

craft.
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4.3.2 Beacon Transmitter

Signal coding for the beacon transmitter is designed primarily to enhance the
performance of this communication link during the critical first few days of
the spacecraft flight. In this time era, while the spacecraft is orienting the
solar cell array toward the sun, the beacon must provide accurate space-
craft tracking data and engineering telemetry describing the behavior of the
spacecraft.

These functions are performed by transmitting a pulse with a peak power of
50 W at a constant carrier frequency of 75MHz. Telemetry is superposed
by analog modulation of the pulse duration from 50 to 150 mu. The rationale
for this choice is discussed below.

4.3.2. 1 Pulse Envelope

Accurate tracking of the spacecraft and prediction of its orbit require meas-
ure of two important parameters: the spacecraft direction with respect to
earth at the time of observation, and its relative motion. A determination
of the current spacecraft direction requires mainly an ability to point the
receiving antenna beam so as to maximize the received signal amplitude. A
determination of relative r!otion can be made by measuring the Doppler shift
induced in the known carrier frequency.

The signal coding used in the beacon is designed to ensure that these meas-
urementM ran be made with adequate precision. Primarily, the signal power
is chosen to yield a received signal-to-noise ratio sufficient to permit the
antenna to be pointed accurately. The minimum pulse duration is chosen to
permit an adequate measure of the received frequency and, correspondingly,
the Doppler shift.

At any instant, the received signal-to-noise (power) ratio is:

IT	 4:r 1l k T bf

where Pt is the peak power of the transmitter,
R is the spacecraft-to-earth range,
k is Boltzmann's constant,
T is the combined effective noise temperature of the observed back-

ground and the receiver front end, and
Af is the receiver bandwidth;	 w

E{

and Ae, the effective area of the receiving antenna, is given by:
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^ 2 O r 	(4.4)
Ae — 

(^
 w

where G r is the directional gain of the receiving antenna.

Analysis of the spacecraft dynamics, described elsewhere in this report,
indicates that the initial stabilization phase, during which the beacon may be
the only communication link, will continue for a period of about ten days.
Orbit calculations, also described elsewhere in this report, show that in
this period the maximum range achie l,ed will be 3.9 X' 109 meters, and
that the maximum Doppler frequency will be 800 Hz. The average galactic
background noise temperature at, 75 MHz is 18000 K, and the receiver front-
end equivalent - noise temperature is 850 0 K. Assuming a receiving antenna
gain of 30 dB, which present schedule and funding limitations indicate is all
that may be availab a at the time of the first engineering test launch, and
assuming a receiver bandwidth equal to the maximum expected Doppler fre-
quency, we have:

S	 Pt x 4 2 x 103
T s	 Wr x 3. 9 x 10) x 1. 38 x 10	 x (1800 + 850) x 800

.t 0.23 Pt .	 (4.5)

However, a proper receiving antenna beam pointing capability requires a
reasonable signal-to-noise ratio of, say, 10 dB. This, then, requires the
peak power of the transmitted pulse to be on the order of;

Pt 3- , 44 W

Available transistors permit use of a single stage to generate a fairly long

pulse with a peak power of 50 W. This, therefore, is selected as the best

peak power to use for the beacon transmitter.

To permit adequate accuracy in the prediction of the spacecraft orbit; the

rme error in the measurement of Doppler frequency must be held to about

1 Hz. In terms of the pulse duration and the signal-to-noise (power) ratio,
a

this measurement error is:

Q ^
	 1

Tp x2r

We therefore require:

T	 1

p a x 24N

(4.6)
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Tp	 -
I-X 2WVqV-g .w 

50 ms	 (4.7)

Fifty milliseconds, therefore, is selected as the best minimum pulse duration
for the beacon transmitter,

4.9.2.2 Telemetry Modulation

A prime requirement for the telemetry superposed on the beacon transmitter
in the early phase of the flight is that the data rate be reasontibly high in
order to provide a comprehensive description of the initial behavior of the
spacecraft. For maximum reliability it is desirable, also, that the hard-
ware be as simple as possible. And it is necessary that each transmitted
pulse convey as much information as possible so that the number of pulses
and the consequent drain on the battery power supply may be restricted.

For these reasons the beacon telemetry is implemented as an analog system
in which the magnitude of the data point is represented by the duration of the
transmitted pulse. Since the minimum pulse duration has already been fixed
for other reasons, it is only necessary now to choose the maximum duration
so that the available range will permit a tolerable data measurement accuracy.

In terms of the receiver bandwidth and the received signal-to-noise (power)
ratio, the rms error associated with the measurement of a pulse duration
is:

o a	1
8	 2N	 (4.8)

or, with the assumptions used previously, is:

Q ` 800

280 Ns .	 (4.9)

The full-scale data range is chosen as 100 ms in order to limit the contri-
bution of this error source to a tolerably small 0.25%. That is, the beacon
pulse is designed to be modulated from a minimum of 50 ms to a maximum
of 150 Ms.
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4.4	 Signal- to- Noise Ratio
In this section we discuss and evaluate the nature and magnitude of the various
signal- to-noise ratios that are of interest. It is shown that the ratio of inter-
est in the main communication link is the energy ratio and that the minimum
value of this ratio is 16 dB. For the beacon link the parameter of interest
is the power ratio which has a minimum value of 13 dB.

4.4. 1 Main Communication Link
The prime purpose of the main communication link is to permit the accurate
measurement of pulse arrival time that is required by the propagation exper-
iment. This measurement is best accomplished by the use of a bank of
matched filters in the receiver. This matched filter reception procedure
performs coherent detection such that the receiver output signal - to-noise
ratio is related to the input signal-to - noise energy ratio. That is, the critical
ratio determining system performance is the ratio between the total energy
in each received pulse and the total system-noise energy or spectral density.

The signal-to-noise (energy) ratio is:

Et Gt2 a	 (4.10)
0 4 r R k T

or, substituting:

^2 G
Ae : Gr	 (4.11)

F	 EtC't ^2 C'r_ 	 (4.12)
1	 20	 (1 R)kT

where Et is the energy of the transmitted pulse, in joules,
G  is the gain of the spacecraft antenna in the direction of earth,
X is the wavelength of the RF carrier, in meters,

G  is the directional gain of the receiving antenna,
R is the range from spacecraft to earth, in meters,
k is Boltzmann's constant, in joules per degree K,
T is the total equivalent noise temperature of the galactic back-

ground and the receiver front end, in degrees K.

The transmitted pulse energy is:

Et = 3. 25 x 10 3 x 2 x 10 3 = 6.5 joules.
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The main spacecraft antenna provides a directional gain of 3 dB in the
galactic plane, and the receiving antenna is assumed to have a directional
gain of 50 dB. The average galactic background noise temperature at 75 MHz
is 18000 K, and the equivalent noise temperature of the receiver front end is
8500 K.

Substituting these values:

E :---	 6.5 x2x42x105
No	 (4 r R) 2 1. 38 x 10- 23 x 2. 65 x 103

3.6 x 1024
	

(4.13)
R

Evaluation of this ratio yields Fig. 4- 1 which shows the energy ratio as a
function of the angle between the communication line of sight and the solar
disc throughout the spacecraft flight. It is seen that the energy ratio remains
above 16 dB up to the time at which the receiving antenna beam intercepts
part of the solar disc and the direct solar noise contribution becomes pro-
hibitive. As will be shown, later, this energy ratio is sufficient to yield the
required measurement accuracy.

4.4. 2 Beacon Communication Link
One prime purpose of the beacon communication link in the early phase of
the flight is to permit rapid signal acquisition using non- coherent detection
to minimize the search difficulties. In the later phase of the flight, the
beacon transmitter is used to emit a relatively long pulse designed to permit
a direct measurement of the frequency spreading induced by the medium: the
nature of the disturbance which is to be measured will make the received signal
incoherent, again necessitating non- coherent detection. The critical system
parameter for this link, therefore, is the ratio between the received peak
signal-power and the total system noise-power within a defined bandwidth.

4

The signal-to- noise (power) ratio is:

S	 Pt Gt x2 Gr
(4.14)

(4 r R)2 k T Af	 hi
where Pt is the peak power of the transmitted pulse, in watts,

Af is the receiver bandwidth, in Hz,
and all other terms are as previously defined.

The beacon transmitter peak power is 50 W. Substituting this and other
previously defined values yields:

3
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Fig. 4-1 Energy ratio at 75 MHz (neglecting solar noise).
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S 50x2x 42XG rs
(4 x R) x 1. 38 x 10 x 2. 65 x 103 Af

2.8 x 10 20 Gr
^	 (4. 15)

R Af

There are three different time regimes, and corresponding sets of system

parameters, for which this must be evaluated.

For the first ten days of the flight, a prime task is to acquire the signal

rapidly without requiring an accurate knowledge of the Doppler shift. To

permit this, the receiver bandwidth must be of the order of 800 Hz, which

is the maximum frequency shift expected in the first few days. Another

constraint is set by current funding and schedule limitations which indicate

that, for the first engineering test launch, the receiving antenna gain will

be limited to 50 dB.

After these first few days it is expected that the spacecraft will orient the

solar cell array toward the sun, permitting the main transmitter to be

activated. In this mode the beacon pulse duration is increased to five sec-

onds. This long pulse, coupled with the fact that prior measurements will

than permit a fairly accurate prediction of spacecraft position and motion,

will allow the receiver bandwidth to be reduced to, say, 100 Hz.

The third era of interest commences about six months after launch, when a

measurement of the medium induced frequency spreading starts to become

interesting. For this experiment the receiver bandwidth must be maintained

in the order of 20 Hz to accommodate the expected perturbations, and the full

receiving antenna gain of 50 dB is required. For the three different eras,

then, we have;

S = 2. 8 x 1020 x 103 - 3. 5 X 1020
N R, X8•X10	

Rte_ CO s Days 9 101

^

	

0 2.8 X 1020 x 10 3 	 2.8 x
R xix10	 R 7—

S	 2. S x 1020 x 105	 1.4 x 1024
N	 R,2 X 20	

R2-

110 s Days S 401

1200 '-Days] 	
(4.16)
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Evaluation of these ratios yields Fig. 4-2, which shows the beacon link

signal- to- noise (power) ratio throughout the three interesting segments of the

spacecraft flight. It will be shown later that the achieved ratios are sufficient

to permit the required measurement accuracies to be obtained.

4.5	 System Performance and Measurement Accuracy

This section demonstrates the validity of the communication system design

by showing that it is possible to obtain detection probabilities and measure-

ment accuracies that are consistent with the aims of the experiment. Clearly,

the system performance will depend not only on the signal design described

previously, but also on the efficiency with which the received signal is pro-

cessed. For this reason we start with a description of some of the important

characteristics of the receiver and the manner in which it operates.

4. 5. 1 The Correlation Receiver

In the ground receiver we are confronted by the classic radar problem: a

noisy input must be processed to detect the presence of a signal of known

form; and the time of arrival of that signal must then be estimated. In the

Sunblazer system the problems are particularly challenging for two reasons.

First, as a consequence of the wide bandwidth signal that must be employed,

the peak power signal-to-noise ratio is very low. Second, the received

signal will be subject to substantial pulse to pulse time perturbations of a

pseudo-random nature due to the turbulence of the medium. These problems,

however, are a matter of degree affecting the detail and complexity rather

than the form of the solution.

An optimum detection procedure for this situation involves the calculation

of the cross correlation between a postulated signal of the known form and

the actual signal received, and the subsequent comparison of the correlator	
9

output with a predetermined threshold. A decision "signal present" or	
s

"signal absent" is made, depending on whether or not the correlator output

exceeds the threshold. The arrangement may be said to test the hypothesis

that a signal of the postulated form exists as one component of the noisy input.

Two kinds of error can occur. A 'false alarm' occurs if the receiver decides

that a signal is present when it is truly absent, and a 'miss' occurs if the

receiver decides that a signal is absent when it is truly present. A tradeoff

between these two kinds of errors may be made by adjustment of the threshold.

A low threshold setting will decrease the probability of a miss, but increase

tits probability of a false alarm, and vice versa.
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Simultaneous minimization of both kinds of error can only be accomplished
by increasing the signal-to-noise (energy) ratio. We are not concerned here
with a detailed examination of the receiver performance in this respect. We
note only that it is possible to achieve both a miss probability and a false
alarm probability of 0. 002 if the energy ratio is of the order of 13 dB, and a
simultaneous miss probability and false alarm probability of 0.00001 if the
energy ratio is of the order of 16 dB. As shown previously, the minimum
expected energy ratio in the Sunblazer system is, hideed, 16dB. Since the
pulse repetition rate is L, the order of one pulse per second we may therefore
expect a maximum combined statistical detection error rate of the order of
two events in 28 Dours of observation time. Evidently, this is not the most
critical problem that has to be solved.

Since the energy ratio is sufficient to provide a high level of confidence in
the detection procedure, we may now turn our attention to the next problem
of defining the time of arrival of the signal. This is an extension of the
detection problem: we now wish to know not only that a signal is present but,
also, that it is present at a particular time.

By analogy, an optimum procedure for this time estimation involves the cal-
culation of the cross correlation between the noisy input and a signal of the
known form occurring at a known time. Subsequent comparison of the cor-
relator output with a known threshold will then permit a decision " ► signal
present at this time" or "signal absent at this time" to be made.

But a further improvement in detection strategy can be effected by calculating
simultaneously the cross correlation between the noisy input and a multi-
plicity of signals of the known form occurring at different times. An estimate
of signal arrival time is then made by nok ing the correlator which provides
the maximum output; or, equivalently, by noting a pair of correlators which
bracket the maximum and provide equal outputs.

This is the 'maximum likelihood' detection strategy. In detection parlance,	
r

the arrangement may be said to yield the aposteriori probability that the
signal arrived at time t, given the reception of the signal.

This arrangement is commonly implemented witli a parallel group of matched
filters, exemplified by the tapped delay line. Thia implementation, however,
is less than optimum for the Sunblazer system for hieveral reasons. First,
the time-bandwidth products involved make a tapped ,delay line prohibitively
expensive. Second, analog signal processing tends to require frequent and
critical calibration. Third, it is not clear that an analog system could be
adjusted readily to accommodate the expected signal pert krbations. Fourth,
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a hard wired system lacks the flexibility required to cope with the sequential
observation of several spacecraft transmitting different signals.

We elect, therefore, to use an implementation that is largely digital in nature.
This is shown as Fig. 4- 3. In a synchronous demodulator the received signal
is multiplied by a reference carrier to effect a frequency translation. The
resultant video is processed in eeveral parallel paths. In each path it is
multiplied by a version of the expected modulation. These various locally
generated signals are displaced successively in time by a small increment, t.
Outputs of these rr.ultipliers are integrated separately. The integrator outputs
are then compared in order to select that path in which the signal is most
closely aligned with the locally generated expected signal.

Most of the hardware is concerned with the code multiplication process. This
is inherently a simple, inexpensive procedure, making it practical to replicate
the parallel processing paths in large numbers. Typically, we envision sev-
eral hundred individual correlators making.it possible to use a small separation
time increment for adequate measurement resolution with a large total time
span coverage for adequate capture range

The foregoing description has glossed over many of the practical difficulties
involved in the implementation; a full discussion is provided by the reporting
of the associated contract for the development of the phased array and re-
ceiver complex. One point worth noting here is that the lack of a stable
phase lock between the received carrier and the local reference used in the
"synchronous" demodulator makes it necessary to calculate not the cross
correlation function itself, but the square of this function. This affects the
system performance analysis, but does not i..:iiect the validity of the comparison
procedure used in the maximum likelihood estimation strategy.

4.5. 2 Time of Arrival Measurement Accuracy
One criterion in the signal design is the use of an intrapulse code having a
'good' autocorrelation function with a strong central peak and minimum side-
lobes. The maximum likelihood, multiple correlation, procedure yields a
set of sample point y tracing out this autocorrelation function in teams of the
time displacement between the received signal and the locally generated
postulated signals. The form of this output is shown as Fig. 4-4.

Evidently, the measurement precision cannot be better than the resolution
that is determined by the time displacement between successive correlators.
To permit an analysis of the system accuracy, therefore, we assume that,
at least in the vicinity of the central peak, there are enough ° -elators
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separated by a sufficiently small increment that the output is virtually
continuous tracing of the autororrelation function.

It is also evident that a discussion of system accuracy is meaningless if the
receiver mistakenly selects a sidelobe rather than the central peak. We
also assume, therefore, that the form of the autocorrelation function and the
system signal-to-noise ratio are adequate to avoid this ambiguity.

With these assumptions, the interesting portion of the sampled function is as
shown by Fig. 4- 5. The ideal central peak is a triangle with amplitude A
determined by the energy of the received signal pulse, and base width 2T 
determined by the baud time of the intrapulse code. Noise is superposed
on this peak with a relative magnitude determined by the system signal-to-
noise ratio.

Consider, then, a time estimate made by noting which correlator output
sample first exceeds 5016 of the maximum output; or, equivalently, the time
at which the "leading edge" of the function crosses a threshold set at A/ 2.
The error in this time estimate will be proportional to n(t), and inversely
proportional to the slope of the function. But this slope is A/T B so:

AT n(t)
AIT B

TB
=XTRUT	 (4. 17)

and for repeated measurements, the variance will be,

T 2
a = AT 	 --n-.,	 (4.18)

[A /n

Now , the IF energy ratio may be shown as:

Er (4.19)-R- IF 7-T

where E, is the signal energy at the output of the receiver RF
preamplifier and mixer,

k is Boltzmann's constant,
T is the effective system noise temperature, including

the contribution of the RF section of the receiver.
Synchronous demodulation doubles the signal-to-noise ratio. This is a con-
sequence of the fact that the frequency translated vignal sidebands add coher-
ently, while the noise components add incoherently. So, following synchron-
ous demodulation, the energy ratio is:
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Then after the matched filter and integrator, we have:

T

	

A	 J p Tr	 1 dt • Er	(4.21)
o
	 p 4TP

and

	

;=nffk T	 (4.22)

Hence the measurement variance is:

T 2	 T2
a2	2 -7 a	 E	 (4.23)

A /n	
2 k T

But the form of the autocorrelation function is such that the output noise is
uncorrelated at sample times separated by intervals of T B. We can, there-
fore, make a similar, independent measurement on the "trailing edge" of the
function at the same threshold level of A/2. Averaging tihese measurements
will improve the overall measurement by a factor of 2. Hence the total rms
error in the measurement of pulse arrival time will be:

2
Q =	 TB a TB	 (4.24)

M42 kT

Then, setting TB, the code baud time, equal to 25 µs, and using the data of
Fig. 4-1 which shows the signal-to-noise (energy) ratio throughout the space-
craft flight, and the data of Fig. 2--1, which shows the predicted magnitude
of the relative delay that is to be measured, we obtain Fig. 4- 6 which shows

f

the rms error as a percentage of the measured quantity. It is evident that
the measurement accuracy is consistent with the aims of the experiment.

4.5.3 Main Telemetry
As described previously, data are superposed on the main communication
link by pulse position modulation such that each transmitted pulse has only
two possible positions in time. These times are chosen to be far enough
apart that there is no possibility of a reception ambiguity caused by a sudden
fluctuation of the total signal propagation time.
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An undetected data bit error, therefore, requires the receiver to "miss"
a pulse by indicating that a signal is absent when it is truly Present at one
time; and, for the other one of the p&Jr of possible time slots, to cause a
"false alarm" by deciding that a signal is present when it is truly absent.
We require to know, therefore, the provability that these two different kinds
of error will occur jointly.

The probability of a "miss" and the probability of a "false alarm" are both
related to the threshold used in the detection procedure and the effective
system signal- to- noise (energy) ratio. These probabilities are tabulated in
the literature, A convenient description is given by Barton(1),

Using these data, and setting the threshold so that the probability of a "miss'
is equal to the probability of a "false alarm", we find that the joint probability
of an undetected error is related to the energy ratio in the following manner:

Energy Ratio
dB

"Miss"
probability

"False Alarm"
probability

Joust Error
probability

10 0.03 0.03 0 X 10- 4

12 0.005 0.005 2. 5 X 10-5

14 0.0007 0.0007 5 X 10- 7

16 0.00001 0.00001 1 X 10- 10

It is instructive to compare this with the number of telemetry data bits
received during the spacecraft flight. The pulse repetition rate is of the
order of one pulse per second and an average of four hours observation time
is expected each day. Hence the number of data bits received per day is
1.4 x 104 , and in 400 days the total is 5.6 X 10 6 . The error rate associated
with an energy ratio of 16 dB indicates a loss of one bit in about 2000 space-
craft flights. If the energy ratio decreases to about 12 dB, a statistical
undetected error rate of one data bit in each spacecraft flight can be expected.

Of course, these extrapolations are not very significant because the number
of data b is involved is not large enough to make the statistical error rate
meaningful. Most likely, errors will occur in bursts when detection is less
than optimum for some reason, such as a gross mispointing of the receiver
antenna. However, the calculated data reliability shows, at least, that no
serious problem is involved.
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ntAT (
 = ^^ tr (4.25)

4. 5.4 Beacon Telemetry
In the first feiv days of the flight the beacon transmitter provides the only
communication link. Telemetry is superposed on this link by pulse duration
modulation to describe the initial behavior of the spacecraft. In this time
era the power signal- to-noise ratio is amply large to ensure reliable detection
of the signal. We are principally concerned, therefore, with the precision
with which the duration of a received pulse can be measured.

Consider the possible error in the measurement of a single pulse of the form
shown as Fig. 4- 7. An estimate of the time of occurrence of the leading edge
can be made by noting the time at which the pulse amplitude first exceeds a
threshold set at, say, 5016 of the maximum amplitude. For reasonably large
signal-to- noise ratios, the error in this measurement will be:

A similar, independen' ,,.rror will occur in the measurement of the time of
occurrence of the trailing edge of the pulse, so the combined error in the
estimate ,,f pulse duration will be:

AT = r2 AT	 t,(t) _ 
VT

(4.26)r

	

A/ r	 W n t

Then the measurement variance will be:

2 t 2	 2 t2
Q2	

A 2
/n = SAN	 (4.27)

where SIN is the video signal-to - noise (power) ratio. But the pulse rise
time will be limited primarily by the receiver bandwidth so:

trft2 
1 
F (4.28)

where F is the effective bandwidth, in hertz. Further, the signal-to-noise
ratio may be written as:

S = Sr
	

(4.29)

where Sr is the received signal power,
k is Boltzmann ' s constant,
T is the total effective system noise temperature, and
F is the receiver bandwidth.

So:

118



Received Pulse
with Noise

0I

n (t)

I
I	 A

AT 	 ideal
.P

.00	 Received
Pulse

Fig. 4-7 Error in measurement of pulse duration.

119



- 7
kTs 2S(r	 r
	 (4.30)

Note that the receiver bandwidth appears in the denominator of this expression,
This is a consequence of the fact that the pulse rise time is limited primarily
by the receiver handwidth. In practice;, little will be gained by making this
bandwidth greater than, say, 50 times the reciprocal of the pulse duration.
Since, as shown previously, the bandwidth required to accommodate the
Doppler shift is of the order of 800 Hz. this can be used as the receiver
bandwidth.

Now, the received signal power level is:

PT x GT x X2 x G 
r	 (4 x a x R)2

(4.31)

where PT is the transmitted power, in watts,
G  is the directional gain of the spacecraft antenna,
X is the wavelength, in meters,
G  is the directional gain of the receiving antenna,, and
R is the range, in meters.

So, for a 30- dB receiving antenna, which may be all that is available for the
first engineering test flight, we have:

S - 50x1x42x1000
r	 (4 x r x 3 x 109)

x 5 x 10-16 watts	 (4.32)

And, typically:

kT ¢ 1.38 x 10 23 x 2. 5 x 10 3 ft 3.5 x 10-20 W/Hz	 (4.33)

Substituting these values yields:

v	 3. 5 x 10- 20

2x800x5x10-16

vd 2 x 10- 4 - 200 µs	 (4.34)

Since the full scale range of the analog data representation is from 50 to
150 ms, the rms measurement error is:

E - 200 x 10 B x 102 - 0. 276	 (4.35)
(150-50) x 10-

120



This is acceptably small, both in comparison with the probable data conver-
sion errors in the spacecraft and in terms of the function required of this
telemetry link.

4. 6	 Spacecraft Programer
This section of the report describes the hardware implementation of the
spacecraft programer and telemetry subsystem. Topics covered include they
functional operation of the subsystem, detail of the hardware implementation,
and the telemetry format. This format is consistent with the signal design
criteria discussed earlier.

4. 6. 1 Functional Description
Drawing No. D-106-400000 shows a functional diagram of the total Sunblazer
system. The spacecraft equipment includes a programer that is responsible
for timing all the activities on the spacecraft, a beacon transmitter and its
associated telemetry encoding equipment, a main transmitter and its asso-
ciated telemetry encoding equipment, the aspect sensor and sail controller,
and a power subsystem. In this section of the report, we are concerned
primarily with the programer and telemetry encoding subsystems.

A more detailed functional diagram of the spacecraft is shown by Drawing
No. D- 106-400001. All timing pulses and RF carriers used in the spacecraft
are developed from a basic 5- MHz oscillator. Output of this oscillator is
counted down by the pulse duration counter and the pulse spacing counter to
generate "transmit" controls for both the beacon and main transmitters.
Other outputs of the countdown chain are used to control the operation of the
telemetry encoders so that appropriate data modulation can be added to the
transmitted pulses. Output of the oscillator is also frequency multiplied to
generate the required RF carrier frequencies.

4. 6. 2 Logic De s ign
Logic diagram E- 106- 400017 and timing diagram E- 106- 400018 show the
detailed implementation of the spacecraft programer and the resul ,^ant pulse
and telemetry formats. The logic symbology used is chosen to maintain a
one-to-one correspondence between the logic elements and the actual hardware
elements. This symbology is explained as a part of the logic diagram.

The pulse duration and pulse spacing counters together form a 29-stage
binary counter. Principal outputs of this counter chain are: a square wave
with a period of 25.6 µs, used to define the baud duration for the phase coded
main transmitter pulses; a square wave with a period of 3. 2 ms, used to



define the t:nveiopo :j^,,ration for the main transmitter pulse, and a square
wave with a period ranging from 0.9 to 107 seconds, used to define the pulse
repetition rate for the transmitters. Other outputs of the counter chain are
available to control the remainder of the timing and encoding hardware.

A mode control section (lip-flops 30 and 311 ) define which one of the two
operating modes is in effect. In the "beacon only" mode, the spacecraft
operates from a battery power supply, and the main transmitter and all its
associated control hardware are inactive. In the "main" mode, both the
main transmitter and the beacon transmitter are used, with power being
derived from the spacecraft solLr cell array.

The pulse duration modulator (flip- flops 32 through 38) controls the duration
of the pulse that is emitted by the beacon transmitter. In the "beacon only'
mode, the minimum pulse duration is fixed as 50 me by the control gates
associated with flip-flop 33. The maximum duration of the pulse is 150 me.
This is controlled by the element shown in the logic diagram as flip- flop 38.
This element has the form of an astable multivibrator in which the pulse
recovery time is controlled by an analog input.

The controlling analog input is obtained from the output of the beacon data
multiplexer. This is a set of 16 gates activated sequentially to select one
of 15 possible data inputs. One position is left blank to provide a beacon
telemetry synchronization signal. At present, we envision seven of the data
inputs to be digital in nature, and eight of them to be analog. However, the
instrumentation is such that this grouping can be changed readily to accord
with the final definition of the data points that are required to be handled by
this telemetry data link. The multiplexer is controlled by the beacon word
,counter which simply counts sequentially through all possible positions of
the multiplexer in synchronization with the beacon transmitter output.

The pulse interval controller (flip-flops 55 through 57) is activated only in
the "main" mode. It controls the operation of the last seven stages of the
basic countdown chain (flip-flops 23 through 29)*so as to determine the actual
transmitted pulse rate for the main transmitter. The pulse interval controller
is a reversible counter permitting eight possible output states with a conse-
quent eight possible pulse repetition rates. Modification of the content of
this counter can occur only at the end of a complete data frame.

The pulse position modulator (flip-flops 43 through 46) determines which
one of two possible time slots shall be used for the main transmitter pulse.
In this way the telemetry data is superposed on the main transmitter by
pulse position modulation. A data bit of zero is distinguished by transmitting
the main transmitter pulse in the first of two possible time slots. A data bit
of one is distinguished by transmitting the main pulse in a time slot that is
200 ms later,
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The requenee generator (nip-flops 47 through 54) is responsible for the phase
modulatiiun of the main transmitter pulse. The group of seven flip-flops, 48
through 54, form a seven- stage shift register with linear f- Fndbnck used to
generate a 127-bit maximal length pseudo-noise code.

The bit counter and parallel- to- serial converter, (flip-flaps Sts through 64)
is responsible for converting the quantized data representation to a serial
form and assembling this with ward synchronizing pulses into the required
output telemetry data format. Flip-flops 50 through 63 form the equivalent
of a ton-stage shift register which sequentially selects one of the quantized
data input bits or word synchronizing kits.

The quantized data bits may be obtained directly from an eight-bit digital
input, or from the output of an eight-bit analog- to- digital converter. This
quantized data is stored in flip-flops 70 through 77. The data are quantized
in this register by allowing this group of nip-flops to act as a c() ,anter for a
time interval that is proportional to the magnitude of the analog data.

Selection of the main input data is controlled by the main data multiplexer,
which is a group of 32 gates activated sequentially under control of the main
word counter. At present, we envision two digital input channels, one of
which will be used to transmit the status of the beacon word counter as an
additional synchronizing signal, and one of which accepts an eight-bit digital
word from an external source. The other main data inputs are analog in
nature. Again, this grouping of digital and analog data sources can be changed
readily to accord with the final selection of telemeti v data inputs.

4. 6. 3 Pulse Format
The pulse forrnat is shown by sheet 1 of Drawing No. E- 106-400018. In the
"beacon only" mode, pulses are transmitted at a fixed repetition interval of
107 seconds. A group of 16 sequential pulses forms a data frame. One
pulse in each frame is deleted to provide telemetry synchronization. Each
of the other 15 pulses is used to represent one data point by pulse duration
modulation. The duration is related linearly to the magnitude of the analog
data point such that 0 volts is represented by a 50-me pulse, and 5 volts is
represented by a 150- ms pulse. Digital data are represented by a pulse with
a duration of either 60 or 120 me.

In the "main" mode, the beacon pulse duration is increased to range from
5 to 7 seconds, again proportional to the magnitude of the data point that is
to be transmitted. These pulses are interleaved relatively infrequently with
the main transmitter pulses. The longest frame duration is controlled by
the time required to cycle completely through the sixteen beacon pulses.
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The sixteen segments corresponding to the beacon words are defined as
If kjor frames". Each major frame is divided into two "minor frames"
di-qtinguished only by weird zero. In one minor frame the beacon trans-
,, itter is activated in this time interval; in the other minor frame word zero
to left blank. This provides telemetry frame synchronization for the main
communication channel.

The remainder of each minor frame comprises 31 data -ords. Each word
is formed by ten bits. Two of theme are transmitted at 73 MHz. The remain-
ing eight are transmitted alternately at the two extreme carrier frequencies
of 70 and 80 MHz, The encoded 75- Mtlz pulses are used in the initial acqui-
sition of frequency synchronization in the receiver, to permit a direct measure
,3f the frequency perturbations induced by the medium, and to serve the func-
tion of telemetry data word synchronizing pulses. The coded pulses trans-
mitted at 70 and 80 MHz form the backbone of the experiment. These are
the pulses that permit the relative delay time experiment to be conducted.
Additionally the pulses are coded by pulse position modulation to form the
main telemetry data link.

Ordinarily, the pulse repetition interval for the main transmitter pulses is
1. 6 seconds. Thus, the wort duration is 16 s, the minor frame duration is
514 s, the major frame duration is 1024 s or 17 minutes, and the beacon frame
duration is 272 minutes or 4 1/2 hours.

These "normal" rates are chosen so as to utilize fully the average power
available from the solar cell array when the spacecraft is i astronomical
units distant from the f • i. As the spacecraft approaches closer to the gun,
however, the average available power also increases. The pulse interval
controller then moves to double the pulse rate so as to take full advantage of
the extra power.

As a safety precaution, the pulse interval controller also can reduce the
average pulse repetition rate by successive factors of two. If, for example,
5016 of the solar cell array should fail, the rate would be reduced from one
pulse every 1. 6 s to one pulse every 3. 2 s; the experiments and the reception
of telemetry data could thus continue, although at a lower data rate. In this
mode, the beacon frame duration would extend to nine hours. This may be
longer than the observation period available in one day, so it may not be
p,Lmstble to see a complete frame of beacon telemetry data. To circumvent
this problem, the content of the beacon word counter is transmitted as one
word of the main telemetry frame so that beacon telemetry synchronization
still can be achieved.
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The pulse interval controller is actually implemented to make possible
increase of the pulse repetition interval by successive factors of two, up to
as much as 107 seconds. This emergency backup made requires very little
extra hardware and permits at least some experimental data to be obtained
evert if the power source degrades to about 516 of the nominal value.

4. 6. 4 Hardware Implementation
The spacecraft programer uses the Fairchild 9040 series of low power
diode-transistor logic integrated circuits. This series provides the best
combination of low power, logic flexibility, and space-qualified reliability
that is available today. This integrated circuit family is being used exten-
sively in many other NASA oriented equipments and is the subject of contin-
uing and close scrutiny by NASA Goddard Quality Assurance.

Recent production runs have shown serious reliability problems. However,
the production process responsible for this has been identified by NASA
Goddard Quality Assurance and by Fairchild. Our information is that Fair-
child is now modifying the production process and that qualified units will be
available again in early 1969. Since this matter is of considerable moment
to many NASA programs, it is attracting a great deal of attention and we
are confident that the problems will be solved completely long before the
Sunblazer flight hardware has to be committed.

Should this hope not be realized, however, there is a recourse available.
Amelco is now starting production of a second source copy of the Fairchild
units. On the basis of contacts with NASA Goddard Quality Assurance, it
is understood that the Amelco units avoid the questionable production process
and are, therefore, likely to be qualified in the very near future. If even
this recourse should fail, the next alternative would be to redesign the pro-
gramer to use the nearly equivalent Texas Instrument family of low power
TTL circuits. The modifications required would not be extensive. The
major problem would be a slight increase in total subsystem power
consumption.
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CHAP'T'ER 5

5.0 GROUND ARRAY

5.1	 Function of the Ground Array

From a systems point of view, the Sunblazer ground array may be considered
a lineaivactive transducer. Regarded as such, the array provides coupling
between an incident radiation field, originating from the spacecraft, and
earth -station data-processing equipment. Thus the array must interface with
the on-board electronics system and the correlation receiver, both of which
are described in other sections of this document. The antenna itself is char-
acterized by its effective area or gain, frequency response, polarization,
noise characteristics and tracking capability. The interrelationship of these
quantities with the on-board electronics and the correlation receiver is given
below, followed by a brief description of additional uses and capabilities of
the array system. Section 5. 2 presents a systems analysis of the array;
Sec. 5.3 is a detailed description of the Sunblazer array electronic organi-
zation and hardware.

5.1.1 Relationship to the Sunblazer Spacecraft

To be compatible with the Sunblazer communications system, antenna char-
acteristics such as gain and noise figure must be maintained at the frequen-
cies radiated by the on-board transmitter, plus an allowance for modulation
bandwidths and dispersion due to Doppler, attenuation and plasma effects.
Three specific frequency bands are of primary interest:

Table 5-I

Signal frequency bands.

69.72 MHz f 500 KHz

74.70 MHz f 500 KHz

79. 68 MHz t 500 KHz

t
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Since it is impractical to provide separate band-tuning networks for each of
the frequency bands, the array system is being designed to operate over the
range 69. 2 MHz to 80.2 MHz.

In addition to bandwidth considerations, the polarization of the transmitted
signal from the spacecraft is of some importance. The on-board antenna is
linearly polarized, but the radiating elements rotate at a mean angular ve-
locity of about 1 rpm with respect to a fixed direction in the plane of the
receiving array. The resulting polarization of the received energy varies
with time, In addition, expected Faraday rotation effects will cause dis-
placement of the received electric field vector. 'Therefore, to insure a
maximum received signal and to estimate the effects of Faraday rotation,
the ground array must be capable of receiving two orthogonally polarized
waves. For the remainder of this paper, a dual cross-polarized array is
assumed unless explicitly stated otherwise.

5.1. 2 Relationship to the Correlation Receiver

The output of the array must interface with the correlation receiver. This
interface may be considered a low noise mixer which coherently translates
the received and amplified RF signals to video. At this point the signal is
again amplified and made available to the correlation receiver. In order to
preserve the accuracy of the propagation experiment data, the energy-signal-
to-noise ratio of the signal supplied to the correlation receiver must be
maintained as high as possible. This requirement implies the following con-
straints upon the array for all frequencies and view-times of interest.

1. The array gain must be maintained as high as possible (50 dB) ,
2. The overall noise figure must be as low as possible (approxi-

mately 5 dB) .
3. Intermodulation and cross-modulation products must be held to

a minimum, and system dynamic range must be high.
4. All losses, regardless of origin, e.g., mutual coupling, mis-

match or attenuation, must be held to a minimum.
5. Pattern grating lobes and side lobes must be held to a minimum.

More quantitative values will be given in Sec. 5. 2 and 5. 3 for these system
parameters. For the present, it should be noted that every design com-
promise which reduces the array gain or increases its system noise con-
tribution reduces the accuracy of the data output of the correlation receiver.

5.1. 3 Other Uses for the Ground Array

Because of the stringent requirements imposed upon the array by the propa-
gation experiment, the antenna system is not limited to data acquisition and
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tracking of the Sunblazer, but is a sensitive radio telescope in its own right.
The additional advantages of the array have been detailed elsewhere (1). The
following is a summary of the additional array uses:

i .	 It can serve as radiometer for the observation of the newly-discovered
pulsars.

2. By the addition of power amplifiers at each element the array would
become a radar telescope for a future uplink station to Sunblazer.

3. As a solar radar, improved sensitivity and resolution would make it
possible to resolve quadrants of the solar disk in Doppler and Doppler
brooding radar observations.

4. As a planetary radar, this instrument could detect the planet Jupiter,
and could make observations of venus an Mars at a much lower
frequency than has been used in the past i1).

5.2	 System Considerations

5. 2. 1 Antenna Gain and Number of Elements

An overall antenna gain (G) of 50 dB (resulting from communication system
considerations such as "free-space-attenuation loss" and propagation-delay
measurement accuracy) is the primary design goal of the Sunblazer ground
array This specification implies an effective collecting aperture, Aeff, of

2
greater than 10 5square meters (Aeff = G 4.0  , 710 • 4 meters). The beam

width, which depends upon element spacing, is less than 0.6 0 . An aperture
having these characteristics obviously implies the use of an array of elements.
The exact array dimensions and beam characteristics are dependent on the
latitude of the site selected for the final array. The system outlined in tail
paper will be suitable for either El Campo, Texas site (latitude 29 0 N) or
Saint Croix, V. I. (latitude 17. 5 0 N).

In considering the problem of synthesizing a phased array to satisfy the con-
flicting requirements of high gain, wide bandwidth and low noise, two con-
cepts are of fundamental importance: 1) the superposition principle, and
2) the pattern- multiplication rule. The superposition principle requires
that, in the far field of an array of elements, the resulting field at a point
is the vector sum of the fields due to the individual elements. The pattern-
multiplication rule, as applied to an array of identical elements, states
that the resulting antenna pattern of an array is the product of the element
pattern and a polynomial characteristic of the array. The polynomial is
commonly referred to as the array factor. In general terms the beam-
pattern function E(8 , m ) may be expressed as a product of the form:

E (e, O )' E e A (0,0)	 (5.1)
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where E  is the element factor, and A is the array factor. When the array
geometry is symmetric, Eq (5. 1) may be used in simplified form, and per-
mits a straightforward presentation of the salient features of the array.

However, the pattern-multiplication rule must be applied with caution since
its use includes the implicit assumption that mutual coupling between ele-
ments may be neglected. The pattern of an element, in general, will change
when it is brought in close proximity to other elements. "The fact that all
elements are physically identical does not insure that all elements of the
array have the same pattern. " (2) When the array elements are spaced
"far enough" apart and are highly directive, the superposition principle re-
quires that the resultant array power-gain is merely the pt ,:,duct of the num-
ber of elements in the array and the gain per element. In general, however,
the array gain is a function of the element factor, the number of elements
and the element spacing, as has been shown by several authors. (3, 4)

To a first-order approximation their, the gain of the proposed array is:

NG E M 10 5	(5. 2)

where N is the number of elements in the array and G E is the power gain
per element. If N is now restricted to values of the form 2 q where q is an
integer, the element gain is also specified. Table 5-II gives the values of
the total number of elements N as a function of the gain per element.

Table 5-II

Gain per element.

G E (d B) N

23 512
20 1024
17 2048
14 4096
11 8192

The value N n 4096 and GE s 14 dB have been selected as a compromise be-
tween a very large number of elements and high gain per element. (In the
final array N is made somewhat larger than 4096.)

The selection of the 14-dB element is of 1. imary importance to the array
design since it determines the general level of complexity of the
electronics system. The actual description of array electronics
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is g i ven in Sec. 5. 3. However, there is a fundamental question of the physi-
cal realisation of the 14-dH element: "Of the many types of element avail-
able in this frequency range, which element exhibits the desirable properties
of low cost, wide bandwidth and high gain?" During the course of this pro-
gram many antenna types were evaluated, and each was found to have limita-
tions for array use. A detailed description of the evolution of the element
design and selection is given in Sec. 1. 3 of this report and in the document
entitled "History and Design Summary, Sunblazer Phased Array"" In
summary, a system parametric study was made for each of the element
types, including a cost evaluation of mechanical and electrical array com-
ponents. These cost-performance studies led to the following fundamental
conclusion concerning the element:

"The best method, in terms of satisfying the Sunblazer
tracking requirements (both engineering and science)
at minimum overall cost (initial installation, operation
and maintenance) is to construct a cross-polarized wide-
band dipole array at El Campo, Texas. "(5)

Details of the various costs are given in Ref. 5. Basically, it has beeen de-
termined that a 14-dB antenna element arrayed through electronic means is
less expensive and has better performance when constructed by connecting
6 dipole elements, as opposed to employing single or multiple backfire,
yagis or helices. A detailed description of the 14-dB dipole element is given
in Sec. 5.3. 2. Figure 5-4 shows the physical lay-,it of the 6-dipole (double
tee) 14-dB element.

5. 2. 2 Frequency Sensitivity

Because of the relatively wide bandwidth of the array, system performance
will, in general, exhibit frequency-dependent effects. Both the dipole ele-
ments and the overall array dimensions (as measured in wavelengths) are
frequency-sensitive. However, both these frequency variations are of a
second-order nature and will not be discussed in detail. There is a first-
order frequency-sensitive effect associated with the beam steering that re-
quires additional discussion since it is of fundamental importance to the
method by which the electronic-phasing system is organized.

The general method of beam scanning is obtained as shown in Fig. 5-1. This
figure indicateb that properly choler, phase delays located at each 14-dB
element will permit beam scanning to some desired angle. Consider now
only the array elements along the x-axis with an energy incident at some
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anLY .c E x . If it is desired to steer the beam in the direction E x , then a phase-

delay taper, 0, from element to element (progressive phase), must be sup-

plied to r .ich element where:

Q • 2rD sin c  n 2r xf sin c 	 (5.3)
c

If the first element is the reference, the phase delay required at the second

element is 0, at the third element 20, etc. Therefore, the required phase

term at each element is linearly dependent upon frequency. To accomplish

this frequency dependence, the device used to affect the phase change must

have a linear phase-frequency characteristic over the frequency band of in-

terest. A non-dispersive delay line exhibits this property, and its use as a

phasing element will insure that the array beam will point in the same di-

rection for all frequencies. The resultant system configuration is termed

a delayed array as distinguished from a phased array in which frequency

sensitivity is not important. (6) The Sunblazer ground array is a delayed

array, and details of its electronic system organization are given in Sec. 5. 3.

5. 2. 3 Noise Considerations

The concept of total system gain was of fundamental importance in the array

aperture design since it set limits on the array electronics, dimensions,

number of elements and element type. In an almost completely analogous

way, the concepts of receiver noise temperature, T r, and sky brightness tem-

perature, TB, are characteristic of the array system noise performance.

There are several factors which contribute to these temperatures. Some of

these, such as amplifier noise figure, are under the control of the system

designer; while others, such as external man-made interference are not. This

section will define some of the factors which contribute to the total system noise.

In the final array each 14-dB element will have its own amplifier. However,

for noise-analysis purposes, it is sufficient to consider the entire array as

one antenna followed by a single amplifier (as shown in the array system

noise model of Fig. 5-2). Noise may enter the system or be generated by

each of the components, the antenna, connecting cables and receiver. The

major contributions to the system noise follow:

1.	 Background sky noise, characterized r)y the brightness

temperature T B. The intensity of this quantity is primarily

a function of the system operating frequency. For the Sunblazer

ground array an average value of 1850° is characteristic.
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if

2, Noise due to antenna side lobes and grating lobes pointing a.c
galactic hot spots. An estimated value of this quantity is 200 0 ,

3, Noise due to antenna element losses, cable losses, impedance
mismatches and mutual coupling. These have been estimated
as 1 dB or 750 .

4, Front-end amplifier noise. For the design under consideration
a value of 3 dB or 290° is typical.

5.	 Spurious man-made noise entering the antenna at and near the
desired signal frequencies. Additional noise may be added by
intermodulation products due to high-level signals entering
the amplifier. The exact specification of intermodulation de-
pends upon local conditions, but as an example: for competing
TV signals of the order 50µV, intermodulation products should
be down by 80 dB for satisfactory system performance. It is
clear that system dynamic range and low intermodulation dis-
tortion are related, and both are required for system linearity.

Neglecting the noise contribution due to intermodulation, the total receiver
noise temperature is 565°, Therefore, the total equivalent system noise
temperature is Tr + T B	2400° = Ts . Because TB is relatively large
compared to T r , improvements in T r will have only second-order effects
upon Ts . System noise performance will not substantially be improved by
a reduction of T r, but rather by the selection of a site in which local RFI is
at a minimum.

Although discrete sky-noise sources may contribute to total system noise,
they are useful in a practical way for antenna-calibration purposes. In the
50-dB array, the near field of the antenna ( X 2)extends to an altitude of ap-
proximately 100 kilometers above the surface of the earth. This distance is
so large that only a system utilizing a satellite could be expected to perform
conventional far-field pattern measurements. However, a radio star such
as Cassiopeia A provides a solution for this measurement problem. The
measurement is performed by directing the beam of the array toward a
source of known intensity and spectral distribution. As the beam is allowed
to pass through the source, the output of the array is a measure of the gain
of the antenna elements, the electronics and the beamwidth of the antenna.
This test is also an indication of the accuracy with which the beam may be
steered. A similar method was used to test an experimental dipole re-
ceiving-array constructed at El Campo.
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5, 3	 Description of the Pro posed Arrays

In this section, the individual dipole design is shown. Following this de-
scription, there is a discussion of the element and how it is constructed,
mounted in the ground, connected with its five neighbors to form a 14-dB
antenna element, etc. Then, an outline of the electronics system necessary
to form these individual 14-dB element into a 29-dB pilot array is presented.
Section 5. 3.4 indicates how the 29-dB pilot arrays are electronically joined
to form an expanded 43-dB array. Section 5. 3.5 briefly describes the final
50-dB antenna system concept.

5.3. 1 The Individual Dipole Element

The individual dipole element is to be constructed from 3/4-inch OD alu-
minum tube, mounted on a treated wooden post by wax-impregnated wooden
dowels. The wooden post is suitably held in the clay ground of El Campo,
without the necessity for a concrete footing, by using sand poured around
the post as shown in Fig. 5-3.

0.61 METER--	 11/2' Al TUBE

O

"PRESS FIT"
BOLT

CENTER CONDUCTOR
SHIELD	 1.1 METER

 

SAND

LAY-CLAY

Fig. 5-3 Individual dipole element.

From the experience with the 38 MHz solar-radar dipole array, as well as

the Sunblazer 75 MHz (narrowband) dipole array at El Campo, it has been

demonstrated that the feed cable may be connected to the dipole without the

use of a balanced - to-unbalanced matching network (balun) as shown.

5.3.2 The Six-Dipole, 14-dB Antenna Element

Figure 5 -4 shows some details of the proposed connection pattern of six di-

poles to form a 14-dB antenna element. Dipoles 1, 2, and 3 are connected
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Fig. 5-4 Six-dipole configuration.
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by 7552 cables at point a, as are dipoles 4, 5, and 6 at point b. Summing

points a and b, therefore, have a 25 n impedance which is transformed to

100 52 levels by a 3 /4 wavelength 5052 cables to summing point c. Point c,

consequently, may be properly terminated with a 5052 cable.

The six,.dipole configuration of Fig. 5-4 yields a gain of approximately 14 dB

with an EW beamwidth (3 dB) of 400 and a NS beamwidth of 28°, This "double

T" interconnection pattern was selected over several possibilities, namely

"four-dipole square", "four-dipole line element", and "four-dipole zizgag",

because it results in relatively high gain, and requires that only two of the

six dipoles be manually phased about four times per year in declination, yet

affords about two hours of daily viewing time. Also, this configuration is

easy to match, utilizing our standard cables, and the RF power-summing is

accomplished without electronic components.

The manual phasing for a six-dipole set can be accomplished by utilizing

switched delay lines, physically located on posts 3 and 6. The necessary

time delay (phasing loops) can be switched with mercury switches connected

as shown in Fig. 5-5.

X/4 - SECTION

V

I1	 1X

Fig. 5-5 Mercury-switched phased loops (schematic).

Based on several years experience .with manually-phased 1000-dipole, 38 MHz

El Campo solar radar, the estimated phasing time with this concept is about

0.005 hours/switch location. For a 40-dB array (3072 dipoles with 124

phasing locations) the array can be phased in 8 man hours.

The mercury switches are inexpensive, exhibit excellent RF performance

(insertion loss 0.04 dB, isolation 30 dB), and are Judged to be more reli-

able than connectors which must be plugged and unplugged. Also, these

switched delay line systems may in the future be made fully automatic by

replacing the manual switches with mercury relays.
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Operating Frequencies

Total Array Gain
Element Type
Realized Gain Per Dipole
Number of Dipoles
Dipole Grouping
Dipole Spacing
Array Area
Grating Lobes
Polarization
Beamwidth
Phasing

5. 3. 3 The Pilot Array

t	 5. 3. 3. 1 General Description

Thirty-two of the 14-dB dipole subsets of Fig. 5-4 combine to form a 192-
dipole array as shown in Fig. 5-6. This pilot array measures 142 x 100
feet.

Each of the six-dipole subsets is connected to an electronic phase-shifter
box located at the geometric center of the pilot. The functiun of the central
electronic box is to shift the phase of the signals from each of the six-dipole
subsets so that the RF signals may be summed to form one output per polar-
ization. To interconnect the pilot array requires about 8300 feet of cable

(including both polarizations), of which 3000 feet are used in the subset and
5300 feet to connect the subsets to the central electronics. To insure
relatively-constant operating temperature and a resulting phase stability,
all cables are buried in shallow trenches.

Table 5-III summarizes the characteristics of the pilot antenna.

Table 5-III

Design summary 29-dB pilot array.

69.72 MHz, 74.7 MHz, 79.68 MHz
28. 9 dB
A/2 dipole, A/4 above a ground plane

6 dB
192
6 per group in double T interconnection
0. 63,X echelon
10. 68 A by 7. 65 X (142! by 1001)
None in Zenith pointing array
Two independent polarizations NS and EW
60 x 80

Hybrid system: rapid electronic scan
for short-term tracking, manual phasing
using mercury switches for long-term
(declination) scans.
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5.3.3.2 Electronics for Pilot Array

The governing design philosophy for a 50-dB array has been to design v pilot-
array module which contains all of the system compromises and trade-offs
regarding performance and cost, and then to construct a large array by
joining these self-contained pilots to obtain the required overall antenna ap-
erture.

There are several feasible organizations of a pilot model. For example, the
RF outputs of individual dipoles could be returned to a central point at which
all time-delay and control circuits are located; however, this would be pro-
hibitively expensive. On the other extreme, the electronics could be more
or less evenly distributed over the array aperture and the combining and
control performed at many points in the pilot array. The solution of pro-
viding phasing by manually-switched delay lines at the 14-dB element level,
and connecting these points directly to a centrally located electronic control
point as outlined by Fig. 5-4, 5-5, 5-6 yielded good performance and re-
duced both cable and electronic cost.

The block diagram of Fig. 5-7 shows the centrally located electronics re-
quired to combine the signals from each of the 32 six-dipole elements. To
trace a signal path, consider, for example, the energy arriving from the
14-dB element designated as point 1. The signal is first amplified in a low-
noise broadband amplifier, and then supplied to network W. The signal from

-x	 point 2, which is adjacent to point 1 in the first column, is also amplified
and supplied to network W. In this circuit the amount of signal delay is de-
pendent upon the desired array look-angle, and then summed. A second
level of combining is performed by network X, which delays and sums the
output from two adjacent W networks. The output of network X is a com-
plete column output of the pilot array. There are eight such column out-
puts in the array. These outputs are delayed and combined in a way similar
to the above by the operation networks Y, Z, and T. The RF output of net-
work T represents the sum of all 192 dipoles. All of the combining networks
are of the same design, and there are only two types of RF circuits used in
the entire system: 1) a broadband amplifier, and 2) a time-delay summation
network. There is only one amplifier per 14-dB element per polarization.
The noise figure of the amplifier is an important design consideration; for
an overall pilot system noise-figure of 5 dB, the front -end noise figure
must be about 3 dB. This in turn requires a transistor with a noise figure
of somewhat less than 3 dB to allow for some mismatch and attenuation
losses in the coupling circuit between the RF input and the device. Fortu-
nately, however, the gain required in the front end is relatively low. The
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amplifier can then be designed with a minimum-noise, rather than a maximum-
gain criterior, anI is therefore readily realizable.

The amplifier frequency response and linearity have also been carefully con-
sidered, for it is somewhat impractical in a low-cost, high-volume produc-
tion to provide independent RF pass bands for each of the design frequencies,
Accordingly, the amplifier has been designed with a 3-dB bandwidth covering
the frequency range from 60 Mliz to 90 MlIz. But since this frequency band
is a region of high RF interference, due to local TV and other commercial
services, the linearity, dynamic range, crossmodulation and intermodulation
of the amplifier are of prime importance and have been carefully considered
in the design.

The time-delay circuit for shifting the RF signal phase (for example network
W) shown in simplified form in Fig. 5-8, is composed of sections of RF
cables which are switched in and out of the circuit via diodes to obtain the
required time delay. At each level, in both the intracolumn and inter-
column combining, the time-delay function is performed in a similar way
with the exception that the dealy lines are made longer as the summation
progresses toward the system output.

Table 5-IV gives a summary of the total number of circuits for the pilot
along with pertinent characteristics.

5.3.3.3 Testing Considerations

The primary reason for the construction of a pilot array is to obtain engi-
neering data on design and performance problems such as amplifier and
phaser uniformity, mutual coupling effects, precise antenna gain, losses,
etc. that cannot be accurately anticipated. A search for such effects will
be made as the array is constructed and tested. The theoretical perfor-
mance including gain and effect of grating lobes and mutual coupling will be
experimentally verified. The reliability of the field electronics will be de-
termined under actual weather and working conditions. Accurate cost and
construction techniques for the final array will also be determined.

After the array is constructed, an overall evaluation will be made by using
known celestial sources. Cassiopeia, Cygnus, and the Sun may be use.l
for the pilot array; Virgo, Taurus, and several others, including pulsating
sources, may be used to test the 40-dB array.
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5.3.4 The Expanded Array

5.3.4. 1 General Comments

Since the pilot array is completely self-contained, i, e, it is designed as a
"module", an increase in array-effective aperture may be obtained by adding
pilot array modules to realize the desired gain, Two pilot modules will
yield a gain improvement of 3 013, four modules will result in 6 dB improve-
ment, etc. For the Sunblazer engineering payload, the required minimu. a
receiving system gain which will provide satisfactory telemetry and tracking
data is judged to be about 40 dB, which may be realized by expanding or add-
ing -the 15 pilot arrays as indicated in Fig. 5-9, A summary of the antenna
system characteristics for the expanded array is given in Table 5-V,

Table 5-V

Design summary of 40-dB array.

Operating Frequency
Total Array Gain
Gain Per Dipole
Total Number Dipoles
Dipole Grouping
Dipole Spacing
Array Area
Beamwidth

69. 72 MHz, 74. 7 MHz, 79. 68 MHz
40. 9 dB
6 dB
3072
Double T
0.63X
568' x 400'
1.30 x 1.90

5.3.4.2 Expanded 40-dB Array Electronics

Each of the pilot array outputs is returned to a central building. The elec-
tronic circuits for each of the 16 proposed pilot arrays are identical to the
system described above; but, of course, electronics must be constructed to
shift the phase of the RF signal from each pilot and sum the results.

Figure 5-10 shows a block diagram of the electronic system to shift the
phase and sum the signals. As for the pilot, the signal energy from adja-
cent segments is summed in pairs, the two pairs are then summed, and
finally the columns are treed together to form one output per polarization.

The time-delay network W', X', Y", and Z' is identical in design to that of
the pilot array (W, X, Y, and Z), except that extra stages of cable 1'3ops
are added to accommodate increased delay resulting from the fact that the
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Fig. 5-9 Expanded 40-dB array.
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signals come, from phase centers which are more widely separated in physi-
cal distance.

5.3.4.3 Testing

Each segment of the expanded array will be tested individually as an antenna
in a manner similar to the original pilot section. The resulting sum will
then be charaotterized for gain, noise figure, beamwidth, bandwidth, etc.
The central building (control center) for the array will contain the necessary
equipment to operate, i, e. steer the array, receive and record signals, etc.
from the Sunblazer engineering spacecraft.

5. 3. 5 The 50-dB Array

A 50-dB array may be realized by continuing the expansion philosophy out-
lined in the discussion of the pilot and 40-dB arrays. Essentially, a 50-dB
array results from adding the signals from 140 pilot arrays. The electronics,
construction techniquefi, trenches, cables, etc. are all the same type.

Technical difficulties encountered in expanding the 40-dB array into a 50-dB
array should be virtually non-existent. In fact, one may realistically view
the modular and orderly growth procedure outlined here as minimizing the
likelihood of any fumdamental problem remaining undiscovered prior to
construction of the final antenna.

Figure 5-11 shows the proposed plan for the 50-dB array, and Table 5-VI
gives some characteristics.

Table 5-VI

Design summary of 50-dB array.

Operating Frequencies
Total Array Gain
Gain Per Dipole
Total. Number of Dipoles
Dipole Grouping
Dipr,le Spacing
Array Area
Beamwidth

69. 72 MHz, 74. 7 MHz, 79. 68 MHz
50.4 dB
6 dB
26880
Double T
0. 63 ;k
1400' y 1400'
0.5 0 x 0. 50 (Zenith)
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CHAPTER 6

6.0 =CEECRAFI CONSTRAINTS

The concept of using a relatively small, unguided launch vehicle to provide
the escape velocity required for a solar-orbiting scientific experiment im-
plies the use of a very small spacecraft as the payload. The standard four-

0

stage Scout vehicle has been selected to launch the Sunblazer spacecraft; and
to provide the escape velocity required, a BE-3 motor has been added to the
vehicle as the fifth stage.

6.1	 Distribution of the Payload Weight

The Scout User's Manual Fig.5-43, reproduced here as Fig.6-1, shows a
performance curve of a five-stage Scout, which indicates the capability of
placing a 57-pound payload into 0.65 astronomical unit inferior solar orbit.
The approximate distribution of this payload weight for the initial Sunblazer
experiments is:

Table 6-I

Distribution of Payload Weight

Spacecraft 28.00lbs
58.5%

Sunblazer Adapter 5.41

Upper F Structure 3.25
Ignition Timer 4.13
Balance Weights 1.00	

41.50/6
Despin System 0.95
Telesponder System 8.37
Performance T/M 5.89

Total 57.00 lbs

The initial system engineering launches, which will monitor the performance
of the modified Scout vehicle and the Sunblazer spacecraft, limit the engineer-
ing model spacecraft's weight to 28 pounds.
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6.2	 Dimensional__Limita,_ ti_o_

'I'he standard Scout heat shield for the payload hits been increased in length
by 15 inches to accommodate the additior. of the fifth stage and the space-
craft. In Fig. 6-2 the relative positions of the payload configuration and the
envelope of this extended heat shield are snown . The adapter (transtage)
used to position the spacecraft de rives its height from a spacecraft sail con-
figuration option, which allows a geometric flexibility in the design of these
do-vices.

One of the basic requirements of the spacecraft design is to provide a solar
cell-mounting area which is capable of delivering about 18 watts of power at
1 astronomical unit. This requirement establishes the initial dimension of
the spacecraft at about 20 inches diameter. Since the volume in which the
spacecraft is placed is a truncated cone, the upper positional limit of the 20-
inch diameter has been calculated to be Station -21. 94.

The separation plane of the spacecraft and adapter is located at Station -15. 00,
and the total height of the spacecraft is 6.501 inches, which locates the solar
cell platform flanges at Station -21. 50,

The cylindrical launch geometry of the spacecraft is, therefore, approximately.
defined by a 20-inch diameter and a 6.5-inch height, or a total of 2042 cubic
inches, with a maximum weight of 28 pounds.

	

6.3	 Spacecraft - Adapter Inter_ face

The orientation of the spacecraft to the yaw and pitch axes of the launch
vehicle is generally predetermined by the interfacing bolt pattern provided
by the design of the LTV Sunblazer Adapter.

The LTV drawing of this assembly, J23-003691 (View A-A) shows two of the
interface bolt holes diametrically aligned in the launch vehicle yaw axis.
Since these holes are dioplaced from the geometric centerlines of the space-
craft by 22.5 degrees, the resultant orientation of the spacecraft to the launch
vehicle is shown in Fig. 6-3.

The spacecraft is mounted to the adapter so that Enerf„j Storage Capacitors
1 and 5 lie in the yaw axis, with Capacitor 1 located on the range side and
Capacitor 5 on the tower side.

6.3. 1 Attachment Method

To permit the attachment of the spacecraft to the adapter without requiring
a disassembly of a portion of the spacecraft, the following procedure is
proposed.

The separation springs of the adapter are compressed and secured by the
mounting plate and pyrotechnic bolt.
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The spacecraft has the nails and antennas in the stared (launch) position.
The separation trigger mechanism, which initiates despin, is retained by a
temporarily installed inhibitor device.

The :spacecraft is axially oriented to th y► vehicle. The mounting screws are
inserted through clearance holes in the upper ring flange, and seated on the
mounting plate by screwing into the hub of the spacecraft. Due to the close

proximity of upper-ring sidewall stiffeners in this area, Allen-head screws

will most likely be used in association with a specially-designed right-angle
ratchet wrench,

When the eight interface screws are properly torqued, the inhibiting devices
on the separation trigger will be removed. The mechanical interface will

then be complete.

6. 3.2 Des pin -Deployment Actuator
Mechanical separation sensors are mounted on the exposed portion of two

vertical members of the electronic compartment, and are referenced to a

,small pad which is mounted on the sides of the upper ring-assembly of the

adapter.

The two separation sensors used are basically push-rods which will have a
radial force of five pounds or less acting upon each of them.

6.4	 Environmental Testing Prior to June 1968

6.4.1 Vibration

The first vibration testing of the Sunblazer vehicle took place February 3,

1966. It was foreseen then that the vehicle would be changed, but it was
desirable to test the principle of a spacecraft made of aluminum sheet metal.
The results were extremely satisfactory. Brittle shellac was used in order

to have an idea of the magnitude of the safety factor. The stress level never
went above 4, 000 psi on any part. Since the vehicle interface had not been
specified at that time, the vehicle was hard-mounted to the vibrator, with
the solar cell panel facing the vibrator.
The test program was:

Thrust Axis

Run 1-4.5g sinusoidal for 120 seconds, 40 to 80 cps
2-6.Og sinusoidal for 144 seconds, 20 to 2000 cps
3-3.Og random for 284 seconds, 20 to 2000 cps
4-9.Og sinusoidal for 120 seconds, 40 to 80 cps
5-12.Og sinusoidal for 120 seconds, 20 to 80 cps
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Transverse Axes

(along the compartment and between the compartments
450 away)

Run 1-6.Og sinusoidal for 144 seconds, 20 to 2000 cps
2-3 Og random for 284 seconds, 20 to 2000 cps
3-12.Og sinusoidal for 120 seconds, 20 to 80 cps

On March 10, 1967, a test was run with the first transtage. Three sets of
electronic sections were aboard; the solar cell panel faced away from the
vibrator. There was a new input on the test levels (described below).
A sinusoidal sweep in the thrust axis was made at 2 octaves per minute for
four minutes. The level of vibration was:

20 to 50 cps 1	 g
50 to 500 cps 4 g

500-to 2000 cps 8 g

The random vibration in the thrust axis lasted 2 1/2 minutes under the follow-
ing conditions:

20 to 2000 cps, 7. 7 g rms, and 0. 03 g2 /cps power spectral
density, (This is a flight acceptance level.)

The sinusoidal sweep in the transverse axis (only one transverse axis was
vibrated because of symmetry and tirae) was made twice at two different
levels;

(Sweep speed 2 octaves per minute)

20 to 50 cps	 0.6 g
5 1, to 500 cps	 0 a g

500 to 2000 cps	 1.6 g

(This is a flight acceptance level)

5 to 10 cps 0.2 in.
10 to 50 cps 1.0g
50 to 500 cps 1.5 g

500 to 2000 cps 2.5 g

(This is a qualification level)

The random test in the thrust axis was also made at two levels, and in only
one transverse axis .

20 to 2000 cps, 4.4 g rms, 0.01 X2 /cps power spectral
density

(This is a flight acceptance level) time 4 minutes

20 to 2000 cps, 6.3 g rms, 0.02 g2 /cps power spectral
density
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(This is a qualification l evel) time 4 minutes

The test with brittle shellac showed that the trAnstage had a safety factor of
two, and that the sail, as then designed, was sound. Pollowing is a summary
of the effect of vibration on the electronics that were aboard;

1 .	 270-Watt Amplifier
Evaluation after shake revealed the presence of a nondestruc-
tive, low-frequency oscillation. This was traced to a reposi-
tioning of amplifier input circuit inductors during shake. Re-
storing these come. anents to their original positions resulted
it, normal operation. No other failures were observed. The
inductors will be replaced by a more rigid type; in future am-
plifiers.

2. 28-Volt, 5-Watt Beacon
The beacon wL^s inoperative after shake, Loss of output was
traced to two open component leads which resulted from poor
soldering practice. The beacon operated after these leads
were restored, but a tendency toward low-frequency oscilla-
tion was noted. This oscillation was traced to the pre-driver
stage, and the apparent cause isolated to coil deformation.
An epoxy base for these coils would seem to be called for.
In the future, breadboard circuits will not be expected to under-
go shake.

to
3. Low Level Stages

Operation after shake was essentially the same as before, with
slight detuning of output circuits noted.

6.5	 Structural Analysis

6. 5. 1 Introduction
Weight saving is of prime importance in spacecraft structure design, and
structures with maximum stiffness - to-weight ratio are employed, However,
Sunblazer ' s special features (oriented during flight), and their implications,
have to some extent dictated the basic configuration of the spacecraft. Max-
imizing the stiffness - to-weight ratio is thus restricted to the selection of
optimum material dimensions and placing of required stiffeners.
It is, therefore, sufficient for this analysis to verify that the selected struc-
ture design will withstand the expected loadings. This is done by computing
the stresses in models of those parts of Sunblazer expected to experience
critical loadings. By choosing a conservative (weaker than reality) model,
acceptable computation results will assume a safe structure.



A more detailed analysis is planned, applying the stiffness or flexibility
method to the entire structure along with a vibration analysis.

6.5.2 Calculations
The structure should withstand acceleration forces of 100 g. With the space-
craft mounted as shown in Fig. 6-4, the critical stresses are expected to
appear . the compartment side walls and covers, parts of the platform, and
in the vertical member supporting the electronics. A primary structure
model, Fig, 6-5 is used to represent the entire structure, except for the
electronics. In this model the weights of the platform-radiator, capacitors,
sails, etc., are assumed to be concentrated along a ring of diameter D = 15
inches. These weights are supported by four box beams mounted to the hub
which is assumed to be rigid. The assumed weights W are

W = 6150 gm

or per beam

W : 153? gm = 3. 38 lbs .

From beam theory the stress due to bending is

S = C	 (6-1)

where S -normal stress,
M =bending moment,
I =moment of inertia, and

C = distance from neutral layer to outer fiber.
Thus (see Fig. 6-6 for I and C of box beam) for 100 g loading,

S = 338 X 4 
3
.5 X 1.85 = 940 psi.

The load gives rise to a shear stress of (see Fig. 6-6 for A)

100 W
T ='—' 4 	 338 = 93usi.A	 0.365	 p

The other critical part of the structure is the vertical member in the elec -
tronics compartments. Each typically supports eight printed-circuit boards
weighing 100 gm each. Under an acceleration load of 100 g the compression
stress will be

S = 177 . = 1180 psi0.150
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Fig. 6-4 Spacecraft mounting.
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and the shearing stress at the connection to the compartment shield will be

T 0 7 " 985 psi.

6.5 .3 ®iecussion
Although the above computations oversimplify the real situation, they fulfill
the requirements set up in the introduction (6. 5. 1). The model employed
for the calculations of the primary structure iR certainly conservative in the
sense that it is much weaker than the real structure. ADo, by lumping all
the weights (excluding electronics) at the ends of the y box beams, the situation
depicted for the model is worse than the actual. With acceptable values for
the model, it must be concluded that the actual structure is safe. The same
arguments apply to vertical members. Buckling has not been mentioned at
all since buckling, in those parts where it can be expected, can be prevented
by adding stiffeners which do not change the basic structure or significantly
increase the weight.
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CIIAPTE,R 7

7.0 12ESCRIPTION OF THE SPACECRAFT

The spacecraft consists of six principal sub-assemblies:

I. Platform-Radiator
2. Electronics and Power
3. Aspect Sensor
4. Sails
5. Antennas
6. Despin - Deployment

7.1	 Platform-Radiator Sub-Assembly

The platform-radiator sub-assembly is an aluminum sheet metal structure,
which is the rmo -mechanically designed to be a mount for solar cells, sails,
and antennas, and to provide a passively-controlled thermal housing for the
electronics, energy storage, aspect sensor and sail-drive mechanism,

7. i . 1 Fabrication

The platform-radiator sub-assembly is developed from four symmetrical
segments, (Fig. 7-1), each of which consists of the following parts; segment,
radiator, left- and right-hand compartment sidewalls and gussets. These
parts are cut and bent by use of guides and stops on the shear and break,
with tolerances being held to 0.005 inch.

An assembly jig (Fig. 7-2) is used to position: she parts properly with respect
to dimensions, parallelism and/or perpendicularity. The pre-cleaned parts
are fastened by rivets, while in the assembly jig, and after post-assembly
inspection, each segment is dip-brazed.

The dip-brazing unitization of the platform-radiator segments is used to
provide a maximum thermal conductivity between parts by filling junction
voids with metal. This process has the secondary effect of increasing the
mechanical strength of the entire sub-assembly.
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Fig. ?- 1	 I'latfurr -r.tdiatur • sub- Iss"•n.1)IN, segfrclit.
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i	 7-2	 Assen , bly jig.
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7 1 ,. Area Available for Solar Cells

The total area of one 90-dro-t , e st-ginent is 70 71 ill	 or• a total pilatforrr
area of 2f'2 84 in -

2
The fr • e ► nt area „f the aspect sens()r i.,, 23 76 in.	 for• Oil. m..in ;ulal•
evil array is:

2H2 8 1 ill 2 - 23. 76 ll: 2 = 259, 08 ill 2

Converted t, ► nletr • ic, the ar • va equals 259 Oft in 2 x 6 45 2 c rlr	
- 1671 58 cm`

in 2

The nulllber of solar • cells ar: •	•1 sets e ► f •10 series-connected ('ells per S(. g-

rnent: ()r • 160 cells per segnient times 4 segruents: or • 640 cells total.	 Basic

area of the cells is 2cni 2 Y 640 = 1280cm 2 . Area required for- inter • cminec • -

t ions of t he cells = 1 280cm 2 x 1 09 = 1395. 2cm

Total me >unting area = 1671 58cm2

Total area of the
cells	 = 1:395.20crn2

NOI1 cell urea	 - 276 '38cm2

The non-cell area of the platform will have thin second-surface mirrors
mounted as all 	 in passive thermal control of the spacecraft.

Area distribution is:

cells	 =	 1395. 20cm 2	 114?'
platform = 1671.58cm"

Solar cells = 84 17n of available area for power.

Mirrors	 = 16% used for thermal control.

7. 1. 3 Platform-Radiator Drawings

MIT-CSR drawings used for the construction of the platform-radiator are:
D-106-001 Segment Assembly

D-106-202-13 Segment

D-_'06-203-I3 Radiator

D-106-217 Compartment '" all, 	 Left

D-106-218 Compartment "'all, Right

7.2	 The Electronics Sub-Assembly

The electronics sub-assembly consists of five components, the central Hub

and four electronic modules positioned at 90-degree intervals around the Hub
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"RECEDING PAGE BLANK NOT FIU, `ED.

as shown in Fig. 7-3.

This packaging configuration was Relected to establish thermal and RFI con-
trol and to provide for the elimination of standard connectors and epoxy foam
encapsulanti., while maintaining mechanical and electrical integrity.

7.2. 1 The Hub

The Hub is machined from a section of tubular NEMA LEW, retaining the
tubular form over most of its length, with the exception of the front and rear
octagonal flanges which are used for hard-mounting the electronic compon-
ents. The Flub functions as the central mechanical stiffener of the space-
craft; as the housing for the aspect sensor; as the support for intraconnecting
wiring; as the initial support of the electronic components; and as the princi-
pal launch vehicle-spacecraft mechanical interface member.

The intraconnections of the electrical system are accomplished by placing
eight epoxy-Fiberglas boards (G-10, 1/16 in. thick) around the periphery of
the Hub; these are used as mounting plates for the receptacles and their
associated flexible printed-circuit wiring. Low-level electrical power and
control signals are transferred from the electronic modules to the intracon-
nect wiring through RF filters, which mate with the receptacles due to a
compatible hard-mount of the filters in an associated Compartment Shield.

Figure 7-4 shows a sectional view of the electrical intraconnection scheme.
The module (PI, PII, PIII, or PIV) may be inserted or removed from the
intrawiring around the Hub during system checkout, due to the electro-
mechanical connections provided by the receptacle and RF filter. Prior to
flight, all of these connections are to be soldered to provide a parallel cur-
rent path through the junction and, by so doing, eliminate the necessity of
relying on a failure-prone connector in flight.

7.2.2 Hub and Module Drawings

Parts and drawings associated with the Hub are:
MIT-CSR Drawing, D-106-201-B
Amp Receptacle, part no. 380598-1
Erie Filtercon, part no. 1250-003

The Electronic Modules (Components) PI, PII, PIII, PIV
The electronic module consists of four basic mechanical parts:

1. Compartment Shield D-106-200-C
2. Vertical Member	 C-106-207-B
3. Cover	 B-106-206
4. Printed Circuit	 D-106-901

Board (Master)
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7.2.3 The Compartment Shield

The Compartment Shield is machined aluminum alloy (2024) and features two
para .le 1 flangos (front and rear) which are used for mounting to the Hub; a
longitudinal, off-center flange on the opposite side to mount the Vertical
Member; and a groove on three sides to accept Metex RFI shielding (Part No.
10-309). The fourth side of the Compartment Shield has the cover perman-
ently attached. .Erie RP Filtercons (Fart No. 1250003) are thread-mounted
into the two long edges of the Compartment S_iield in Specified locations to
transfer electrical functions in and out of the electronic compartment.

7.2.4 The Vertical Member

The Vertical Member is a 0.032-in. piece of sheet aluminum (6061). It is
used to support printed -circuit boards and to function as a thermal sink for
the electronics located in its particular compartment. RF circuit boards
are slotted one-half of their length, and are inserted into the Vertical Mem-
ber by mating with similar slots contained by that part. The aluminum parts
and the printed-circuit boards of the electronic module are unitized by sold-
ering, in order to establish an electrical ground return and a thermally-
conductive path from the printed-circuit boards. To make practicable the
soldered interface within the electronic module, all aluminum parts are

fi	 copper -plated (0.0005), and then tin - lead plated (0.0005).

(k	 The Vertics.:l Member is preheated by an induction method to eliminate its
heat -sinking capability. The printed -circuit boards are then fillet -soldered
to the Vertical Member with a standard soldering iron.

7. 2. 5 Cover

The Cover is 0.032 in. sheet aluminum (6061) and is centrally slotted within
its length to accommodate the passage of a portion of the Vertical Member
through it. The Cover's functions are; to form the sixth side of the electronic
compartment (4 fixed, 2 moveable); to heat-sink and provide thermal radia-
tion; to develop mechanical stiffening for the compartment sidewalls and RFI
shielding to the compartment. The cover compartment s idew all -closure
shielding is accomplished by a strip of RF gasketing, 0.020 in. thick,
Eccoshield SV-R.
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7.2.6 Mating ;specifications and Process

Platings of the Compartment Shield, Vertical Member, and Cover are per-
formed to the following specifications:

Copper - MIL-C-14550 Class 2
Tin-lead (solder) - MIL-F-14072-M222

The total cleaning and plating of these parts is as follows:
Caustic etch
Nitric hydrofloric pickling
Rezincating
Nitric hydrofloric pickling
Rezincating
Copper flash
Copper plate (0.0005 inch)

Bake for 1/2 hour at 375 0 F; if no blisters, then electrochemically solder
plate: (0.005 in.),

7.2. 7 Electronics Sub-Assembly Critical Parts Tests

Braid Shielding (RFI)

In order to evaluate the RFI shielding capability of various braid and mounting;
groove configurations, a mock-up compartment shield was mounted centrally
in a box which provided a variable braid compression (gap adjustment). A
75-MHz source was located 3r. oiie side of the shield and a receiver on the
opposite side. In this manner the relative attenuation of the mechanical con-
figuration could be observed.

Table 7 -I

w

Results of RFI shielding tests.

Test No. Braid,Size, Groove Size Average Gap Attenuation

1 1/8" Diam. 0. 125" X 0.012 ,., 60dB
0.093"

2 1/8" Diam. 0. 125" X 0.016 ...60dB
0.093"

3 118" Diam. 0. 125" X 0.060 6'2dB
0.040"

4 1/16"  X 1/8" 0. 125" X 0.018 23dB
flat 0.055"

5 1/16"  X 1/8" NONE 0.052 ,., 1 ldB
flat

6 1/16"  X 1/8" NONE 0.045 ,„ 37dB
flat

7 1/8" Diam. 0. 125" X 0.045 .., 43dB
0.055"
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Tests 5 and 6 indicate that a flat braid, when reasonably compressed 0.018
in. , does not provide the shi, ding capability of a round braid seated in a
groove, as shown in test 3 whiun had a compression of 0.025 in.

It can be seen from Tests 1 and 2 that a simfrarity in the cross -sectional
area of the groove and the cross - sectional area of,the braid provides an
attenvation capability which is not appreciably affected by the amount of
compression provided ,
Tests 1 and 2: Groove cross-sectional area - 0. 125 X 0.093 - 0.012 in. 2

1 /8" diameter braid cross sectional area - it x 0.06252

= 0.0123 10

Projection of braid from groove - 0. 125 - 0.093 - 0.032 in.
Test 1:	 Compression = 0.032 - 0.012 - 0.020 in.
Test 2:	 Compression = 0.032 - 0 . 016 = 0 . 016 in.

Compartment shield drawing D-106-200 shows the braid mounting groove
= 0.93 in. X 0.0 75 in.
Groove C. S. area = 0.093 X 0.075 - 0.006975 in. 2

Braid selected is Metex Part No. 10-309 (3/32 in, diam. )
Braid C. S. area = r (0. 046875 ) 2 n 0. 006902 in?
Basic mounting dimension (width) of the braid = 1.830 in.
Total Width - 1.830 + 2(0.09375) = 2.0175 in.

Compression = 0-^- = 0.008 75 in.

Gap = 2.00 2 1.98 = 0.010 in.

RFI Filters

All wiring external to the electronics compartments is exposed to the 2 kilo-
watts of radiated RF. Leads entering or leaving the electronics compart-
ments are therefore filtered to attenuate this induced signal.

This RF filtering will be provided by Erie Filtercons (Part No. 1250-003).
Manufacturer 's specifications include the following:

Weight = 1.3 grams

Minimum Insertion Loss over 1,( 2 Amp DC load 45dB
temp. range per MIL-STD -220 .1200 MHz to 10 GHz no load 50dB

Capacitance = 1500 pF

Working voltage = 100 WV do @ + 1250C
200 WV do @ + 850C

Operating temp. • -550C to + 1250C
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Max do and low freq current a 10 amperes

Samples of, this part were subjected to high-current pulses to monitor puss- 	 y
ible changes in waveforms, the voltage drop across the device, and their
high-current capability. The test pulse format was two 100 ms pulses sep-
arated by 100 ms repeated at 52-second intervals.

Table 7-II
Test results on filtercons,

Risetime	 10.04 use,	Falltime	 *0.04 usee
Pulse With Without With Without Pulse
Current Filter Filter Filter Filter Voltage Load

4.5A 0.20Ns 0.20Ms 0.16Ns 0.16Ns 34V 7.612

8.5A 0.20µs 0.20µs 0.20µs 0.20Ns 34V 4.00

13.2A 0.20ps 0.20µs 0.25µs 0.25Ns 33V 2.552

20.6A 0.20µs 0.20Ns 0.30ps 0.30Ns 31V 1.552

43.4A 0.20µs 0.20µs 0.30µs 1	 0.30µs 1	 26V 0.652

Maximum voltage drop across the filter
is 0.04 volts at 43.4 amperes.

Hub Material NEMA-LE

A comparison test of the tapped screw-thread strength of NEMA-LE was
made with aluminum and magnesium, using standard tapped holes and Heli-
coil inserts.

A stainless steel 4-40 screw was inserted in the thread to be tested, leaving
sufficient clearance under the screw head to mount the sensor of a dial-
indicator micrometer. Compression force was applied to the screw through
a Dillon force gauge.

Table 7-III
Thread strength test results (averaged) .

STD. Thread NEMA-LE Magnesium Aluminum

Force 725 lb 900 lb 1600 lb

Deflection 0.017 in. 0.014 in. 0.026 in.

Heli-coil
Insert

Force 600 lb 1000 lb 1500 lb

Deflection 0.016 in. 0.020 in. 0.029 in.

I
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Dart of the deflection indicated was, of course, due to compression of the
test screw. Most of the tests terminated in a shearing of the top two threads
of the various materials. These forces represent the thread failure: of the
material, and not the maximum allowabl y: force,

7.3

Four triangular-shaped sails are used for orientation and stabilization of the
spacecraft. Each of these has its vertex located between the electronic com-
partments, where it is attached to its associated pitch-drive mechanism. The
presently-considered sail is fabricated with aluminized mylar which is
stretched between two longerons of prestressed spring-steel tape and stiffened
by a cross-frame rod at the extremity (base).

Each sail has a vertex angle of 14 0 and an s►rea of about 0. 14 m 2 , for a
total sail area of 0.56 m 2 . With the flight position of the sails determined
by a rearward (aft) canting of 260 , (from the perpendicular to the spacecraft's
spin axis), the total projected zero-sun-angle area would be about 0.47 m2.

During the launch phase, each of the sails is stored in a tubular configuration
adjacent to the rear of the radiator. The storage of the sails during launch
is provided to insure against physical damage from centrifugal loading caused
by spinup and despin of the launch vehicle and the spacecraft. Thermal pro-
tection from aerodynamically-generated heat is provided, since all exposed
aluminized mylar is attached to the helixed longeron which will act as a heat
sink.

Sail storage is accomplished by winding the sail from the base toward the
vertex on a 1 1/4 in. diameter pipe in the rearward (aft) direction. This action
causes the longerons to form an overlapping, bifilar helix spring, which has
sufficient stored energy to deploy a test sail to the flight position against
against a 1 g load.

The aspect sensor control logic will provide a negative pitch command to the
sails when the spacecraft's spin axis approaches a small angle to the sun line,
an action that is principally provided to prevent the spacecraft's spin rate from
approaching too close to zero. The secondary benefits from the negative
pitch control are: the obviation of design concern in establishing an absolute
mechanical zero sail-pitch angle, and the necessity of maintaining a wrinkle-
free sail surface, either of which could cause residual torque errors if the
sails were to be positioned in a supposed zero-torque situation.
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7. 04.1 Sail Drive Mechanism

The design problems associated with the sail drive mechanism are centered
about its control system and the sail-pitch drive motor. Three types of con-
trol candidates are possible: one is a proportional system which provides
sail-pitch corrections in proportion to the painting and/or spin error. A
second type is the bang-bang approach, a system which delays sail motion
until a pre-set minimum or maximum angle or rate is detected, and then
applies maximum pitch movement, The third system is a combination of
the two, in which bang-bang methods are used when large angle or rate
errors are involved, and proportional control is applied when small errors
are to be corrected.

In the engineering models of the spacecraft, the design concern for control-
system reliability places a priority emphasis on the simple approach, which
would be an "on —off" concept, or the bang-bang system.

Once the spacecraft has accomplished its initial sun orientation, torques
caused by minor geometric unsymmetries could still spin-up (or spin-down)
the craft, with a resultant pointing error being induced. Rather than wait
for the pointing error to reach some pre-set maximum angle before Applying
a corrective pitch to the sail, an immediate small pitch could be applied,
which indeed, might have the effect of gene--ating an exact counter-torque
(or nearly so) that would have the general tendency of minimizing the total
number of sail-pitch adjustments required during the mission.

The combination of a bang-bang control, which is designed to override the
proportional control, seems to provide a system that is reasonably simple,
• redundancy for insurance, and has a built-in capability of autogenerating
• near -equalibe ratory spacecraft geometry.

Stepping Motor

Possible design candidates for the stepping motor which will be used for sail-
pitch motion are divided into two categories, both of which have been success-
fully utilized in space application.

The first is the type which is constructed with a permanent-magnet armature,
and has a sequentially-coded pulse format applied to the field, which incre-
mentally causes a rotation of the field, with the resultant rotation of the
magnetic armature. These motors are available in a variety of physical
sizes and output torques, but require an electronic system to provide the
various pulse-code formats for stepping the motors in either direction.

A second type of stepping motor is the solenoid-activated device which has a
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mechanical linear-to-rotary converter. Two types of converters are used,
one of which in ratchet and pawl, the other a ball and wedge-shaped dement
design. These motortt have  high torques-to-weight parameter, but are
limited to a monodirectional rotation. To compensate for this restriction,
they ball converter ran tine two motors in a back -to-back configuration to
provide the bi-directional capability, but the ratchet-und-pawl type; requires
an auxiliary solenoid to provide a (Pre ► ct-gear transfer in the driven gear
train to accomplish a rotational . ii .,ction change.

A consi9eration of the advantages and disadvantages of all these motor types
makes the back-to-back, solenoid-activated hall and detest converter to be
most favorable for selection. Typical of these motors is the 1,edeAx Size 11,
which was redesigned for space; and used can Surveyor to drive the y scalar paned
arrays and the earth-pointing antenna.

Although the gearing and bearings on the sail-drive mechanism are designed
to help prevent an accumulation of friction and space-induced cold welding,
the design simplicity of a high-torque output solenoid appears to have .a
greater, more prolonged capability of overcoming vacuum-induced stiction.

The proposed sail drive is shown in Fig. 7-5. A commercial version of the
stepper motor is shown (Ledex 213227-029), which drives a 12.44-to-1 re-
duction gear assembly through two non-slip, low-friction belts.

7.4	 The Spacecraft's Mechanical Sequence at Injection

Timing apparatus associated with the Scout's fifth stage provides the elec-
trical ignition of the HE-3, which has a 10-second burn time; and after an
appropriate delay (possibly several minutes) the central explosive: bolt is
fired and sheared, causing a spring-forced separation of about 3 ft/s velocity
between the spacecraft and the adapter-motor assembly.

The spin rate of the total assembly up to this point is in the approximate
range of 180 to 200 rpm. In order to help minimize spacecraft tip-off during
separation and to despin known moments of inertia, this spin rate is main-
tained until after separation, when the mechanical sequence of despinning and
deployment will take place.

Design calculation and demonstrative models of the separation sensors, des-
pin and deployment hardware places the initial weight of these devices in the
500 to 600 gm range. Of this total weight, about 68.2% is associated with
sail and antenna restrainers and release hardware, 22.7% with the despin
assembly, and 9.1°,'6 with the separation detectors.

179



V

Fig. 7-5 Sail Crive mechanism.
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Figure 7-6 shows a schematic representation of the separation sensors (see
6.3.2 . ), which are spring- loaded pin-pullers whose linear motion upon separ-
ation releases the despin masses. When the despin masses have moved from
a tangential to a radial position (sand of de.spin), their release is accomplished
by a combination of their outward radial force and the now-unrestrained des-
pin anchor.

The departure of the despinner is followed by the activation of the two sail
pin-pullers, which unlock the sail-restraining cables and covers, allowing
deployment of the sails to occur.

The antennas which are displaced from the sail axes by 45 0 are restrained
from deploying by a wedge of material on the despin wire. The wedge is
held in position during despin by the tangential force on that wire, which is
removed by the despinner moving radially about 45 0 before final spacecraft
despin has occurred. The time difference between the deployment of the
antennas and the sails will be small, due to the fact that, although the space-
craft at this time moves through 45 0 at a low angular rate, the despin wire
moves from the tangent to the radial position (94 0 ) with a significantly higher
angular rate.

7.4. 1 Possible Separation Dynamics Compensation Requirements

\	 The mechanical sequence outlined in See. 7.4. is based on the premise that
the booster motor-spacecraft assembly has a slow rate of cone angle build-
up during the long coast period (delay time to separation).

If the cone-angle buildup is rapid and approaches 300 during the coasting
period after the fifth-stage burnout, the mechanical sequence of initiating
despin upon separation becomes a marginal safety situation, For the danger
of collision between the deploying spacecraft sails and the coning adapter
(transtage) is increased, due to the tangential separation velocity (caused by
the coning), on the spacecraft approaches its axial separation velocity. This
action would produce a separation angle approaching 450 , and with despin and
deployment occurring in 0.5 to 0. 7 second after separation, the sail tips
could be below or in the plane of the coning transtage .

Similarly, the long-coast phase from burnout of the fifth stage to spacecraft
separation appears to be capable of causing a large deviation in the nominal
spacecraft spin axis-sunline angle.

Tentative solutions to these dynamically-produced problems include:
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More rigid control of cone-generating parameters.
Shorter coast period.
Increased separation-spring energy.
Sun-sensed activation of separation.
An immediate transfer of spin to the major moments
axis of the boost er-adapter assembly after separation
occurs.
A delay in activating despin of the spacecraft.

If engineering tolerances preclude a reasonable tightening of alignment
parameters which are involved with generating an excessive coning angle of
the final launch vehicle assembly, the sun-sensed activation of separation
may be utilized. This would be simply the logically ANDED separation sig-
nal from the timer and the amplified output of a photoelectric device to cause
separation to occur in the most favorable sector of the cone,

The transfer of spin to the major moment axis of the booster-adapter assem-
bly may be accomplished by providing a despin system which has one-half
of the despin device mounted on each side of the center of mass of the assem-
bly.

The separation-to-despin delay can be accomplished for about the same
weight (60 gm) as the direct-acting mechanical system. Power would be
supplied to an E-cell timing circuit by a separation-activated switch, with
the amplified output of this circuit providing the ignition energy to a pair of
pyrotechnic dimple-rooter activated pin-pullers which would release the
despin weights.

Initial tests of hardward built to this design concept indicate a total energy
requirement of about 0.2 joule to provide a five-minute delay, plus the
pyrotechnic release which de.nonstrate load-release capability in excess of
twenty pounds.

7.5	 Weight Distribution of Lie Spacecraft

Many of the spacecraft parts are multi-functional, therefore could be listed
in any one of several categories. But in this distribution analysis, each
part was included in an area considered representative of its primary
function;

Sub-Assembly	 Weight (gm)	 Percentage

Main Electronics	 3995. 8 gm	 31. 2
Power	 2636.0 gm	 20.6
Thermal and/or	 3259.8 gm	 25.5

Mechanical
	

b

Orientation	 2904.6 gm	 22.7

TOTAL	 12, 796. 2 gm	 100.0
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In the derivation r.')f these weights, the following contingencies were used;

Sub-assemblies considered frozen	 s 3%
	 1

Sub-assemblies partially completed	 - 10%

Sub-assemblies in design	 = 25%

The breakdown of the sub-assembly weight is as follows;

Main Electronics

RF Sub-system

Digital Sub-system

Intraconnections

Chassis

Antennas

TOTAL

1880.0 gm + 10%, = 2068.0 gm

38 3. 1 gm + 10% s 421.4 gm
351.2 gm. + 316 - 361. 7 gm

897.8 gm + 3% = 924. 7 gm

200.0 gm + 10% - 220.0 gm

3995.8 gm

Power

Solar Cells	 (calculated)	 516.0 gm

Converters	 347.6 + 25%	 434.5 gm

Storage Capacitors	 1636.0 + 3%	 1685.5 gm

TOTAL	 2636.0 gm

Thermal and/or Mechanical 	 r.

Platform-Radiator

Sail Release
Despin

Balance Weights

TOTAL

Orientation

(weighed)	 2034.8 gm

	

373.5 + 316	 384. 7 gm

	

175.0 + 316	 180.3 gm

	

600.0 + 10%	 660.0 gm

3259.8 gm

Aspect Sensor	 755.4 +2556	 944.3 gm

Sails and Drive	 1903.2 + 316	 1960. 3 gm

TOTAL	 2904.6 gm

These listed weights are shown graphically in Fig. 7-7,

7.6	 Moments of Inertia

The moments of inertia of the spacecraft have been calculated for the spin

and yaw-pitch axes for both the deployed and undeployed states . The numerical

values obtained from the use of weights given in Sec 7.5 are listed in the

table below.
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Table 7 -IV

Results: moments of inertia.

Part
:spin 010 -6 gm-em 2 )
Deploy.	 Not Deploy,

Pitch, Yaw
Deploy.

(x10 -6 gm-cm 2)

Not Deploy.

Platform 0 25190 secs deploy, 0. 19600 see deploy,
Radiator 0.39100 if 0.32050

Compart . Walls 0. 09398 ft 0, 05411 5

Compart . Cover: 0.01379 ft 0.01334

Electronics 0.64170 ff 0.39146

Hub 0.01321 see deploy. 0.01579 see deploy,
Contents of flub 0.01250 it it

Damper 0.00292 fl 0.00786 if

Capacitors 0.52036 if 0.30015 "
Antennas 0.23963 0.12696 0.09537 0.07950
Sail Drive 0.28084 see deploy. 0.15737 see deploy.
Sail 2.02748 0.32293 1.38889 0.18257
Despin Mech . 0.08000 see deploy. 0.03920 see deploy.
Sail. Depl . Mech . 0.07220 if of

TOTAL 4.642 2.824 3.011 1.789
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CHAD TER 8

8.0 ATTITUDE CONTROL SYSTEM

8. 1	 Introduction

The Sunblazer is a spinning, oriented spacecraft which faces the sun for the
purpose of transmitting a radio wave through the corona.

Orientation of the spacecraft is desirable for several reasons;

Ia. Solar cell power is maximized when all the cells are in a plane
facing the sun. Solar cell impedance matching and thermal
variations are also minimized when the solar input is nearly
static, as it would be for an oriented spacecraft.

lb. Thermal design of spacecraft experiment and electronics pack-
ages is simplified when their thermal surroundings are not
subjected to pseudo-random solar inputs.

lc . Antenna patterns can be maximized for a spacecraft with an
axis oriented toward the sun. For transmission through the
solar corona between two points in the ecliptic plane (space-
craft to earth), system performance can be improved by max-
imizing the antenna pattern in the direction of the sun. With a
spinning spacecraft, the antenna pattern would ideally by sym-
metric about the spin axis, with gain versus 0 roughly inversely
proportional to distance-squared (as a function of 9).

A s innin spacecraft is desirable for several reasons;

2a. A reliable passive mechanism which would despin the space-
craft down to a spin rate on the order of one revolution per
hour is not known. However, spin rates on the on the order of
1-10 r / min are believed feasible.

2b. Disturbances of micrometeorites, or of other momentum im-
pulses to the spacecraft spinning at 1 r/min, will be hundreds
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of times smaller than to a static spacecraft . For the Sun-
blazer, based on Pegasus data (NASA-TM-X-1316), the prob-
ability of a disturbance greater that 2° to the spinning spacecraft
is on the order of 1% (in one year).

2c. Motion of spacecraft simplifies to precessional mode for spin
rates on the order of 1 r/min, making control simpler to
achieve than for a slower spacecraft requiring description of
motion by complete equations of motion, Por the spacecraft
(w.- 1 r/min), nutational motion also simplifies (to the force-
free approximation).

2d. Rotation of the spacecraft makes possible a limited scan of a
sensor, or some other device, in a circle about the spin axis.
This rotation, and the fact that the spin axis is not pointed
exactly at the sun in the normal mode of motion, allow measure-
ment of the angular velocity by an on-board sensor.

Considering the preceding reasons for having an oriented, spinning space-
craft, a list of tentative design objectives for the Sunblazer attitude-control
system will be discussed in sections 8. 1. 1 and 8.1.2.

8. 1. 1 Orientation of Spacecraft within 10° of Sun

Twenty-five degrees would be sufficient to ensure roughly 9056 of maximum
solar-cell power, but 10° is desirable to avoid losses in antenna pattern
when spacecraft-sun-earth angle is greater than, say, 30° from conjunction.

8.1.2 Spin Rate of Spacecraft Between Two Limits

A lower limit of about 0. 1 r/min, which would make the spin; rate at least
five times larger than the libration rate (as discussed below under the equa-
tions of motion), would ensure that the motion is a reasonable approximation
to the precessional mode. A high spin rate would be desirable for reasons
2a - 2d above, in addition to the increased sensitivity of the motion to torque
imbalances at low spin rates. An upper limit of about 19 r/min would ensure
that the pseudo -equilibrim orientation of the spin axis will not exceed roughly
5° from the sun. These limits assume a precession-torque coefficient of
about X . 2 dyn-cm/deg, which would apply to the vane system described
below

Spin rates near the lower limit of 0. 1 r/min should occur after the initial
phase of acquisition, as illustrated in the solutions below. Spin rates near
the upper limit can occur as a result of four causes:
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i .	 Momentum buildup as a result of solar-pressure torque im-
balances on the sail structure (described below). For the
typical crude design considered, such motion is likely to build
to an asymptotic maximum spin rate of roughly 10 r/min within
about a year.

2. Mechanical failure of the control system, with the vanes stuck
in one position, resulting in a large spin torque. In this case,
the whole spacecraft will probably fail.

3. Failure of a despin mechanism. This could be caused by
tumbling of the rocket-payload prior to separation and/or a
faulty separation mechanism,

4. Impact of a particle with the spacecraft, followed by conversion
of axes (assuming an internal damping mechanism), resulting
in a relatively high spin rate about the spacecraft axis of max-
imum moment of inertia (and axis of symmetry), with the spin
axis, in general, not directed at the sun.

In cases 3 and 4, the vehicle would probably stabilize (assuming that the con-
trol system were properly activated), but stabilization could take a long time,
depending on the residual spin rate.

Generally speaking, spin control is not so critical as 9- control. That is why
spin rate is allowed to vary within such wide limits. In fact, for the system
described below, it is not felt necessary to control the spin rate actively
because t )the probability of a disturbance may not be great enough to justify
the complexity of an independent, active spin-control sub-system, and 2)
some disturbances can be corrected for the proposed system, with the help
of a passive mechanism, thermal damping (2). Thermal damping should help
stabilize the system at very low spin rates, and the vanes should work at
very high spin rates. These cases have been studied on a computer to
see how wide a margin of stability exists (as a function of system parameters,
error conditions, etc). (See Section B. 9)

8.1.3 Simplicity of Control System

Simplicity of the control system is desirable for the reliability of a space-
craft which is to maintain its stability for a period on the order of one year.

Ideally, the control system would be completely passive (no moving parts
and no expenditure of material), and would control both 8 and spin rate to
desired values. The control system which is described below is semi-
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p . 1.
c. (MKS)	 (8.1)

Po = 2I
c (MKS)	 (8.2)

passive (no expenditure of material) and can only be said to control 0 within
limits (it provides practically no control of spin rate),,

8.2	 Solar pressure Stabilization

The use of solar pressure as a means for stabilizing a solar-oriented sate-
llite has definite advantages;

The solar radiation flux has an inherent reference direction,
toward which the satellite is to be directed.

2.	 Solar radiation provides a practically unlimited source of
momentum. Completely passive stabilization systems based
on solar pressure have been studied before (1),(3) *
(See Section 8.3 for systems based on solar momentum.)

Solar radiation is considered to be a flux of energy parallel to the line from
the spacecraft to the sun. (The finite angular size of the sun, and the slight
convergence of the solar rays, will not be considered here. ) Solar radiation
can be considered a flux of momentum, which is absorbed and reflected
according to the laws of geometrical optics (4) Given a flux of energy of I2
watts/m in a given direction, the flux of momentum is

across a surface perpendicular to the given direction, where c = velocity
of light (MKS). If the flux of energy is reflected from a surface perpendicular
to the given direction, then the radiation pressure on the surface is

If the flux of energy is reflected from a surface with a normal making an
angle ® with the flux direction, then the radiation pressure on the surface
is (see Fig. 8-1)

pr(®) = 1 Cos 28	 (MKS)	 (8. 3)

(This expression is derived by reflecting the component of momentum per-
pendicular to the surface. )

Assuming a numerical value for I = 1380 watt/m2, (5) a numerical value
for p  can be calculated as

PO = 0.92 dyn/m 2	(8.4)
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By reflecting and absorbing this momentum at surfaces which are geometri-
cally asymmetrical with respect to a plane made by the sun line and an axis
of the spacecraft, it is passible to produce torques which act in that plane
perpendicular to that axis and along that axis. These torques can be used
to act on a spacecraft which is spinning about an axis, respectively to pro-
cess that axis toward the sun and to bhange the angular velocity about that
axis .

These torque components exist in all the systems which have beea studied
and are described below, Incidently, the force componentsr have been worked
out for the vane evetem described below, and the effect on the orbital para-
meters of the satellite can easily be estimated.

8.3	 Basic Stabilization Systems

Several stabilization systems utilizing solar pressure have been studied, and
are mentioned in the following;

i .	 Totally passive, librating system with weathercock sail, using
a thermal damper and/or a mechanical damper. Problems of
total despin and of sensitivity to disturbances eliminated this
system.

2. Semi-passive, librating system with movable sail, Problems
of control-mystern requirements and of sensitivity to distur-
bances eliminated this system.

3. Totally passive, spinning system with reradiative damper(2)
Problems of despin to a low rate and of long-term spin control
eliminated this system.

4. Totally passive, spinning system with simple, asymmetrical
sail and no spin eontrol(l) . Longterm spin control is a
problem with this system.

5. Totally passive, spinning system with a compound, asymmetri-
cal sail providing angle and spin control. Difficulty of construct-
ing this sail and instability of system for angles greater than 900
eliminated this system,( 3).

6. Totally passive, spinning system with a compound, asymmetri-
cal providing angle and spin control, and an irnproved, ring-
type, reradiative damper providing additional angle stability.
Difficulty ,of construction, instability for angles greater than
90°, and the relatively low absolute efficiency of such a system
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have eliminated this system in favor of the semi-passive vane-
type system. (At this point, absolute efficiency can be defined
as maximum erecting torque/total sail area, although it should
be realized that a final evaluation of performance should involve
total erecting tf,-.e, which is a complicated function of erecting
and spin torques, moments of inertia, and initial and final con-
ditions) .

7.	 Semi-passive, spinning system with movable vanes providing
angle control. Spin is not controlled, but is expected to stay
within reasonable limits. This system has the big advantages
of being much faster than the passive systems and of providing
stability out to large angles, near 1800 . This system has the
disadvantages of requiring a mechanical device to rotate the
vanes, which will probably have tG be activated twice (one cycle,
on-off) in a period of several weeks. It also lacks a spin-
control subsystem, which would be desirable in the improbable
occurrence of a momentum disturbance caused by a micro-
meteorite or by outgassing of a component, etc,

All of these systems have been investigated. However, only the Falcovitz
sail (5,6) and the vane-type sail (7) have been studied in sufficient detail to
show feasibility for the Sunblazer application. The Falcovitz saP has been
referenced, and the vane system is presented below(3),

8.4	 S ecial Sunblazer Conditions

Special conditions peculiar to the Sunblazer spacecraft place special con-
straints on the design of the attitude-control system. Such conditions are
initial conditions, tracking requirements, orbit conditions, and weight and
volume requirements.

8.4. 1 Initia] Conditions

Initial conditions are determined by the launch trajectory and spin history of
the rocket. In the absence of more accurate information, it is assumed that
the initial angle and spin rate are respectively 60° from the sun and 200
r/r ,l in (referred to the major axis of the spacecraft), and that the initial
ai%le between the spacecraft axis and the sun line may vary between 45°
and 90°. Another initial condition which is assumed is that the spacecraft
is also nutating with a half-cone angle of 10 0 . However, it is realized that,
because of an attempt to coast after burnout with the last-stage rocket
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motor attached to the spacecraft, this angle could increase to near g0° as the
spin of the motor-spacecraft converts to tumble; in this case, a despin mech-
anism on the spacecraft would almost certainly fail (if the spacecraft werr.

tumbling). Another uncertainty in the initial conditions could be caused by
an attempt to despin the motor-spacecraft prior to separation; because of
uncertainty in the burnout moment of inertia, a sizable error could be caused
by a yo-yo type of despin mechanism. Repeating, the nominal conditions are
assumed to be an angle of 60° from the sun, nutations with a half-cone angle
of 10°, a spin rate of 200 r/min.

The instal conditions are important to the initial phase of stabilization be-
cause, for the vanes system: 1) stabilization time increases very rapidly
as the initial angle increases; 2) stabilization time, to a first approximation,
varies linearly with the initial spin rate; and 3) nutations, or more seriously,
tumbling, can confuse a sun sensor or foul up a despin mechanism.

8.4.2 Tracking Requirements

Tracking requirements make it desirable that the Sunblazer orient toward
the sun and start transmitting as soon as possible, in order to make an esti-
mate of the orbital parameters as accurately as possible while the signal-to-
noise ratio is still relatively high. Tracking requirements should not be very
critical for the experiment, because the beamwidth of the proposed antenna
should be wide enough that the angles from the orbit to the earth should not
need to be known to better than about 0. 1°. However, accurate tracking may
be desirable to evaluate the performance of the launch vehicle.

8.4. 3 Orbit Conditions

Orbit conditions do not significantly affect the dynamical motion of the space-
craft. It can be shown that the dynamical trajectories of the spacecraft's
rigid-body motion are relatively invariant to motion around the orbit. Assum-
ing that the spacecraft is launched at 1 AU, we can neglect the
variation in initial solar intensity caused by the slight eccentricity of the
earth's orbit. The most significant effect on orbit conditions is the change
in spacecraft temperature distribution, which will not significantly affect
the spacecraft rigid-body dynamics.

B. 4.4 Weight and Volume Requirements

Weight and volume requirements place an upper limit on the size of the atti-
tude-control system. For the vanes system, it is felt that the whole system
could be built at less than 200 g and could be stowed within the available

194



nosecone space without too much loss in performance. For the Falcovitz
system (mentioned above), there are critical tolera e . , on the design of the
sail, possibly requiring a more rigid structure weighing around 500 g, prob-
ably requiring storage of the whole sail without folding and deployment. But
for the vanes system, weight and volume regr trements are not felt to be
critical.

8.5	 Basic Description of Vanes System

The vanes system is a semi-passive attitude-control system utilizing the
effect of solar pressure on the vanes to produce torques which will align the
spacecraft spin axis toward the sun. The system is called semi-passive
because 1) it does not expend any material, but 2) it does require the meth-
apical motion of the vanes to change the torques as the angle between the
spacecraft spin axis and the sun exceeds certain limits .

As presently conceived, the vanes system (shown in Fig. 8.2 below) consists
of several parts:

1. Four triangular vanes, attached to the spacecraft at points
spiced 90° around the rear of the spacecraft cylindrical radia-
tor. The vanes are to be made of mylar, attached to a furlable
structure.

2. Four stepping motors, to rotate the vanes about their longi-
tudinal a."s. For the following anglysis, the vanes are assumed
to have three positions: +35.26°, 01 (+1°), - 35.260 . The

position 35.26° was found to maximize the spin and erecting
torques. The 0° position is considered to have some error
because of imperfect design and construction of the vane and
stepping mechanism .

3. A control sub-system, to tell the vanes when to switch between
the three positions. The vanes are assumed to work synchron-
ously, because,!for a fast-spinning spacecraft, the advantages
of switching them asynchronoulsy would require switching each
vane twice for each revolution of the spacecraft (on the order
of twice per minute) instead of once every few days, which
could make the mechanical system less reliable, in addition to
requiring a more complex control logic than for the proposed
system. Such asynchronous switching would have very definite
advantages if the spacecraft were trapped in a very low-spin
mode, but the probability of this occurring is not felt to be high
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enough to justify the additional complexity,

4.	 A sensor, to measure the angle between the spacecraft axis of
symmetry and the sun line, and a sensor to measure the spin
rate of the spacecraft. These measurements are used as in-
puts to the control circuits which decide when to switch the vanes.

The vanes are controlled as a function of ate, not as a function of spin rate,
with one exception: if the spin rate decreases, heading toward the danger zone
near 0 r/min, it would be desriable to trim the vanes. Trimming by incre-
ments on the order of a fraction of a degree to provide a positive spin torque
and an increasing spin rate , will insure the normal mode of motion discussed
below and in Section 8.9.

Normal operations of the attitude-control system c+Ln be divided into two
modes: initial and long term. Both modes can be controlled by the same
logic. The common logic, which controls the vanes of the proposed system
for all modes, is very simple: If the spacecraft-sun angle is greater than an
upper limit, say 10 0, then the vanes turn to *35.26 (depending on the spin
direction). If the spacecraft-sun angle is less than a lower limit, say 2 0 ,
then the vanes go to 0°, However, if the spacecraft spin rate starts to
decrease, then the vanes should be trimmed to provide a positive spin torque.

Given this logic, the typical motion of the spacecraft is summarized as
follows: Initially, the spacecraft is at a large angle (assumed -.60 0), spin-
ning fast (it is assumed that after despin by the MIT mechanism, the . "in
rate would be about 20 r/ min) therefore, the vanes would be pitched to a full
-35.26°. It can be shown that the initial motion can be approximated by a
functional relationship between 8 and w (angle and spin rate). This relation-
ship neglects angular velocity of the spacecraft in its orbit. With the vanes
on, 8 and w will both decrease approximately along this curve until 9 is less
than a lower limit (2°). Then the vanes would be nulled (pitched to 0°).
For the initial conditions given, with four vanes each 25 cm x 100 cm canted
at 700 to the spin axis, this initial phase is estimated to take about 13. 7
days. After "nulling" the vanes, some slight error in the vanes' twist angle
is assumed, resulting in error torques in the erecting and spin directions.
To simplify matters, so that the spin rate does not go through zero, it is
assumed that the "null" error is opposite in sense to that of the initial pitch
of the vanes. In this case, the spin rate and angle of the spacecraft will
start to increase and will continue to increase until the angle exceeds the
upper limit (10°). For a pitch error of 1°, the time required for this process
will initially be several weeks; however, as a result of long term stabilizing
effects, which tend to increase the average spin rate, the spin-up period will
increase to several months by the end of a year.

er
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Another effect which has not been mentioned above is the change in the nota-
tion cone angle. Nutations can increase as a result of radiation torques, and
can decrease as a result of thermal damping and of internal dissipation,
possibly by an onboard damper (assuming a nutation about the axis of maxi-
mum moment of inertia). The effect of a static torque on nutations has
been investigated by Peterson (Section B. 11). The effects of reradiative
torques and of mechanical damping have also been investigated (8 ,11.5, 8,12).

This description of the predicted performance of the attitude-control system
is derived in part by analytical methods, in part by numerical methods,
based on the equations of motion for a rigid body, which are derived in the
following sections,

8.6	 Elementary Dynamics

A most elementary understanding of the precessional motion of a spinning,
rigid body can be obtained from the treatment given in a basic physics
book. (6) (See Fig. 8 - 3) A force couple acting on a given axis produces a
torque which tends to precess the axis about which the body is spinning in the
direction given by the torque.

For the Sunblaaer vanes system, when the vanes are pitched to ...0 0 , as shown
in Fig. 8-4, the effect of solar radiation pressure is shown as a force acting
on the vane in the plane defined by the sun line and the spin axis of the space-
craft. The force is perpendicular to the vane, which is assumed to be
pitched at 00 , such that the force is also in the plane of the sun and the spin
axis. As is well known from elementary statics, a force acting on a body
can be resolved into a force acting at the center of mass of the body (which
we can neglect at the present time, since it accelerates the body linearly)
and a torque acting about the center of mass. For the picture of the vane,
the torque is acting about an axis perpendicular to the plane of the sun and
the spin axis, with the magnitude of the torgyte given by the product of an
effective moment arm (not exactly the same as a moment arm which could
be derived by a geometric construction on the picture, which is only schematic)
times the magnitude of the force, such that the spin axis of the spacecraft
would tend to precess in a direction perpendicular to the plane of the sun and
the spin axis. The rate of precession is derived (6) to be

^f

Precession rate = torque
spin X moment of
rate	 inertia
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In the absence of any other torques, th,,.^ spin axis would simply precess
uniformly forever about the sun line. Because the torque is perpendicular
to both the spin axis and the sun line, the angle between the spin axis and
the sun line would never change, so that the spin axis would always lie in
the surface of a cone centered on the sun line. Thus this motion is some-
times described as "coning".

For the Sunblazer vanes, when the vanes are pitched to -35 . 260 , as shown
in Fig. 8-4, the effective force on the vane (assumed perpendicular to the
vane due to reflected solar radiation) is no longer in the plane of the spin
axis and the sun line, so that there are components of force (force is con-
sidered as a vector) which produce torques acting in the plane of the spin axis
and the sun line. The component of torque acting along the spin axis will
tend to change the magnitude of the ( angular velocity, while the component
of torque acting in the plane perpendicular to the spin axis will tend to pre-
cess the spin axis toward (or away from) the sun. The precession rate, or
erection rate is given by Eq (8.5).

These two components of torque are very useful in controlling the attitude
and the spin rate of the spacecraft. These torque components are present,
to some degree, in all the control systems which have been studied and are
mentioned above. The torque components for the vanes system will be derived
below.

8,7	 Vector Dynamics

A second, more satisfactory description of the precessional motion of a
spinning, rigid spacecraft, is given in terms of the vector equation of motion,

L = N	 (9.6)

where L = angular momentum vector, N a torque vector, and

L • Iw	 (8.7)
N
I is the inertia tensor. However, if the body is spinning about its axis of
maximum moment of inertia , T.,, then Fw is simply a vector of magnitude
I3 win the direction of the spin axis?)	The equation of motion holds in any
inertial frame; for a rotating frame, an additional term will be added later.

Keeping in mind the vector angular momentum L, as shown in Fig. 8-5, We
_ effect of the torque vector N acting according to Eq (8.6) is to cause L to

move along a curve whose tangent is always in the direction of ICY. The effect

201



e
(Z)

^ L
QL

~ Torque

(y)

Fig. 8-5 Angular momentum.

1
202



of the component of 9 in the direction of C is to change the magnitude of C,

while the components of 1l perpendicular to C will tend to precess C toward
(or away from) and around the sun. The component of 117 in the direction of
C will be called the min component; the component of 17 perpendicular to Lam,
and in the plane of the sun and C, will be culled the erecting component; and
the component perpenducular to the plane of the sun and C will be called the
precession component. The qualitative effect of these torques has been ex-
plained in Section 8 . 6 in reference to Fig. 8-3. One fact which will be obvious,
once the average torques 9 have been derived as a function of 0 for the vanes,
is the fact that since the ere_ cting component of 1l (0) will be shown to be pos-
itive for all 0, the spacecraft will always erect toward the si g n (showing
stability for this mode of motion).

For the purpose of obtaining a more exact description of the motion, we will
describe the motion in terms of Eul_an_ (8, (see Fig 8-6), which are
basically three angles specifying; 1) the angle, 0, between the spin axis (or
L) and the sun line; 2) a precession angle, 0 , around the sun line (for our
purposes, the reference zero for 0 will be defined to be in the plane of the
spacecraft orbit); and 3) a rotation angle, qs, about the spin axis (this angle
we will ignore, but its derivative $ will be equated to w , the spin rate).
We should like to transform the vector equations of motion for 0, 9, ^, so
that # these,quanities can be solved for as a function of time on a digital
computer.

Before deriving the individual equations of motion, it will be desirable to
add a term to the right hand side of Eq (8.6), representing the effect of a
rotating frame of coordinates (such as the rotation of the sun line during the
orbit and, more importantly, the rotation of coordinates which will be nec-
essary to refer our equations to body-centered coordinates, since our torques
N will be derived in body coordinates); and to put the equations in a com-
pletely rigorous form, so that the subsequent derivation will at least have a
firm reference set of equations as a basis.

Equation (8.6) referred to a coordinate system rotating at a vector velocity
ro is changed to (9)

L=9-roxL	 (8.8)

Now given this equation, we would like to put

r 0 = fl 
+ jj
	

(8.9)
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where rl refers the equations to body coordinates, where 0 and 0 are not
varying, and tE is the angular velocity of the spacecraft in its orbit. These
rotations essentially refer the equations back to an inertial frame of coor -
dinates . In terms of Euler angles, these vectors are given by (10)

L = il l 0 + j I 1 0 sin 0 + kI 3 (^ + 4 Cos 0)	 (8.10)

rl = 0 + j4 sin 0 + ko cos 0	 (8.11)

17	 Sl (ICos	 jcos0 sin 	 +k sin 0sin	 (8.12)
^ y y

where 1) 1, J. and k are unit vectors respectively in the precession, erec-
ting, and spin directions. These vectors are in the body; however, they do
not rotate with ^, as shown by F,; and 2) we have also assumed that the
body is inertially axi-symmetric W e. I  = I2 ); this will simplify our equa-
tions (and the solution for notations). Performing the operations indicated
by Eq (8.8) leads to the results given below;

-.
L = ii l 0 +j I l (^ sin 0 + ¢	 cos 0) + kI3 dt (^ + 0 cos 0)(8. 13)

^l x L = i [I3^ sin 0 4 + 4 cos 0) - Ili 2 sin 0 cos 01

+AI149 Cos 0-I 3 9( ►^ +	 cos 0)]	 (8.14)

-0
El  L = S2 -I(I 3 sinO cos0 G +^ cos0) + Ysin20sinOY

- j (I3 cos 6 + ^ cos 0) - I l6 sin 0 sin )

+MI, sin 0 cos 0 +I,0 cos 0 sin ^}
	

(8.15)

The important equations of motion, whi%.;ii we wanted to derive, are now
obtained from the i, j, k components of Eq (8.8) after substituting Eq (8-13),
(8.14), (8.15):

IlU-1 1d 2 sin 0 cos 0 + I 3^ w sin 0 = N 1(0) - ( SE x L ) l 	(8.16)

I l (0 sin 0 + 2^ 9 cos 0) - I 3 6 = N 2 (0) - (S2 x L )2 	(8.17)

dwI3 dt = N3 (0) - (11 x L)3 	(8.18)
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where w a ^ + ` cos 0
	

(8.19)

and (12 x L) is not transcribed, pending the following simplifications.

There are two cases in which ; , t ' 0 are of comparable magnitude: 1) when
we are studying high -frequency nutat on (as studied by Peterson, see Sec.
8.11), the notational period is so short that any coupling with titcan be neglected;
and 2) when ^ is very low. If either of these situations exists we have a near-
librational situation, and the librational period is also short enough to de-
couple Stso that in both cases we will assume (low spin rate and notations)

-►

17 X L a 0
	

(8.20)

In a case when » , 0 (precessional :r - je), we can assume fl <<
resulting in the following simplification (high spin rates):

SB x L z ft Pr1 3 ^ cose sino • T13 ^ cosOl
	

(8.21)

For the case of , highh 	4, further simplifications will be made, to Eq (8.16),
(8. 17), (8.18), (8.21!, In order to derive the precessional equations of
motion, which hold for high $, we shall be able to neglect ' ,'A so that we
have the following assumptions

0	 (8.22)

9 a 0	 (8.23)

« w	 (8. 24)

8 « w (8.25)

which, when applied to Eq (8.16), (8.17), (8.18), lead to the precessional
equations of motion for high spin rate:

I3 w; sin 0 *4 N i (0) + I3 n w cos 0 sin 0	 (8.26)

I3 w8 a -N2 (0) - I3 Stw cos 0	 (8.27)

I3 (iW a N3 (0)	 (8.28)

These equations have been solved (integrated) on a digi"al computer, and the
solution which has been obtained so far will be described below, after deriv-
ing the vane torques in the next section.
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8.8	 Vane Torques

The vanes system has four triangular vanes, assumed to be 100 cm long x 25
cm base, attached to the rear of the spacecraft radiator at four points spaced
by 900, (See Fig. 8.7). The vanes are assumed to be canted 700 up from the
spin axis, and to be pitched - 35.260 ( measured about the longitudinal axis of
the vane, with pitch = 00 when the vane is tangent to a 70 0 cone containing the
longitudinal axes of the vanes). The vanes are further assumed to be made of
mylar, aluminized on the front with absorptivity = 0. 2 and emissivity = 0. 05,
black on the back with absorptivity = emissivity = 0.9. The spacecraft radia-
tor is assumed to be black with absorptivity = emissivity = 1. (This part is
not too important because it is near the spacecraft center of mass and is rela-
tively symmetrical).

A most elementary estimate of the torques on this model is made by assum-
in that 1) there will be no shadowing of vanes, 2) no ra ,"ation will fall on
rear of vanes, and 3) torques on the central spacecr,	 ^adiator section
can be ignored. These assumptions are good for small 0 (0 < 50 0 ). In this
case, we shall first derive the torques as a function of ^ ; and then average
the torques for 0 c 4 < 29 (which will give us the average torques, indepen-
dent of ^), applied to the vanes when the spacecraft is rotating uniformly
and fast enough that variation ^in ^ can be ignored.

With the assumptions above (primarily, no shadowing), the force on a vane
can be represented as a vector acting at a point 2/3 of the distance along the
longitudinal axis of the triangular vane; this is the effective center of pressure,
given by	 I

ffa2dX

	

.t0 = -- I 	 T 1	 (8.29)

f fXda
0

The force vector has three physically -distinct components: 1) an absorbed
momentums component, in the direction of the incident radiation r; 2) a re-
flected momentum component, normal to the vane 9; and 3) a reradiated	 a;

momentum component, also normal to the vane 9. The following definitions
will be made; and, in the following derivation, because the algebraic expres-
sions are quite lengthy, sin and cos will be represented simply as s and c.

= unit normal vector to vane	 (8.30)

I0 = unit vector to sun	 (8.31)

I = solar radiat on intensity	 (8.32)
(watts /)
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c = velocity of light (MKS)	 (8.33)

abs = absorptivity of vane	 (8.34)

emirs = emissivity of vane	 (8.35)

a n cant angle of vane	 (8.36)

g = pitch angle of vane	 (8.37)

With these definitions, and with reference to Fig. 8-7,P = i (ca c R c40+ sp ski ) + j(co CO SO - sQ CO)

	

+ k (so CO)	 (8.38)

or	 P = is ap' + ja s P' + kb	 (8.39)

	

a = 1 - s2a^ - 417	 (8.40)

	

b = so co 	(8.41)

	

'/_ 4, - A	 (8.42)

	A = tan-11 cos c	 (8.43)

o = js9+ tC0	 (8.44)

Using these expressions, we can find the cosine of the angle between the nor-
mal to the vane and the incident radiation to be(See Eq 8.3):

c (0) = P • To = a s9 s;i'+ b c9 ,	 (8.45)

Using this cosine, the absorbed and reflected radiation pressure components
are given by:

F^ (^') = Area • abs • • (P . Io ) • ( -Io)
absorbed	 (8.46)

P(^') = Area • ( 1 - emiss)	 ( Io) • (-)
reflected	 (8.47)

For a reradiative force, resulting from a reradiated intensity I i assuming
isotropic radiation, according to Lambert's law,the effective normal com-
ponent of the intensity and the force are given by:
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in 8 cos t 8 d8

NR
7- 1 

n 
3-1 R	 (8.48)

Isin 8 cos 8 d8

J

F W) = Area	 (- )
reradiated	 (8.49)

I  can be separated into two parts: 1) a part which varies with 4)' (this
leads to an erecting torque, as first investigated by Peterson (2) (CSR-T -66-3));
and 2) an average value which produces a spin torque. These are relatively
small for the most important stabilization conditions (p = - 35.26°, 9 < 50°),
and therefore will be derived later.

The major torque component for these primary conditions (p = -35.26,
6 < 50°) is the reflective torque, obtained from the force by taking r x F^
in Eq (8 . 47), leading to:

1l (^') n Area • ( 1 - emiss)	 t	 Io )2 • (' x r) (8.50)
reflected

where we will take

r = center of pressure of vane	 (8.51)

r = irl ctP + jr1 sip - kz 1	 (8.52)

rl = ro + 1 0 sa	 (8.53)

z 1 = to Co.	 (8.54)

I  is given by Eq (8.29) and, for approximate results, numerical values can
be assigned to: 1 = 100 cm, r o = 20 cm, Area = 0. 125 m2 and, as before,
abs = 0. 2, emiss 0.05. So we have:
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P x r i • (az l + br 1W i ^- br 1 sA ciy'

+	 (az i + br icA) c+'- brisAs4+'

+ 16 i so .	 (8.55)

From Eq (8.45),

(F T. 10)2 • 82 0 (a2 s 2^ - b2 ) + 2ba se ce s4/ + b2 .	 (8.56)

Now, using Eq (8.50 ), (8.55 ), and (8.56 ), we are in a position to average the
reflected torque for 0 <_ ^ 'S 2f ► :

2

reflected	 N (^+') d^	 (8.57)
0	 reflected

giving

Nreflected = Area (1 - emiss) C x

- i (s2a ca c ap r i +so co (1- 8 2a c2p ) zi,se co

T ( s2a sp c 2p r1 ) Be c8

+ k (s2an$ c2p+ sp[2 -2s 2ac2p]s20) r 1	 (8.58)

This torque is the major torque acting for p n t 35.260 , 0 < 500 and could
be used in Eq (8.26), (8.27), (8.28) to give a description of the initial sta-
bilization. Two points should be noted in Eq (8.58): 1) the sign of N 2 (0)
always remains the same for 0 < 90 0; and 2) for small angles, -N 2 (0)/0

	

i N3 (0). Point 1) indicates stability for 0 < 90 0 , and point 2) will be shown 	 y

to result in a simplified description of the motion, based on these torque
components, at small angles.

The second most important torque is the absorbed torque, obtained from the
absorbed force in Eq (8.46) by taking r x I absorbed and averaging for
0 < 4+' < 29 as outlined by the following equations:

2v

11	 _	 17(^')d^'
absorbed	 f	 absorbed	 (8.59)

0

21',1•t



(8.60)Iq (^^ ^) ' A rea • abs - ^- • (174o) • (To x 76)
absorbed

From Eq. (8.38), (8,44), and (8.52):

I o X r= i(-z 1 s8 - rlcssto)

+ j r Icscto - krlsscy

Fl.  To n se (ca co 840 - sQ c40) + co (so co)

so after averaging:

r
N absorbed = 

Area - abs-	 i 
C-x

l sac Q - - cacp 
J 

sOCO
L	 J

+j 1
r	 r

-
:1 802  Be c81+ it W 829]

(8.61)

(8.62)

(8.63)

The third most important torque is the reradiative torque, mentioned briefly
above (see Eq (8. 49)), which can be differentiated into. 1) a small erecting

component, and 2) an average spin component. These will be derived
below.

The erecting component will be derived only for a = 0 because only near
g = 0 is the erecting component large enough to be comparable to the reflect-
ing component of torque. In the interest of obtaining an analytical solution,
we shall also assume 0 . 0, minimizing the temperature variations on the
vanes. Assuming that the body is spinning uniformly at an angle 0 to the
sun, as usual, the input radiation intensity into a vane is proportional to
P • I00 which is periodic in ^ ', as given by Eq (8.45). Given this periodic
input intensity, the temperature on the vane (assumed constant over the vane)
satisfies a differential equation similar to that studied by Peterson (2) which
is:

Cp dT + caT4 = abs - I • (bcs + as8s4, ^)	 (8.64)

Linearizing the equation, and assuming that:

T = To(1 + a I st, ' + b IC^ 1 )	 (8.65)

leads to the solution: 	 as9
re 3 )

a l =	 2-	 (8.66)
1 +(W 

w

opt
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and

• ab_ s I s 1/4 ' 263 1 o T o	 E-c	 I (8.71)

/ asO
b	 1 sa )	 (8.67)i	 w I + ^„^

opt ^:

wopt ' -7 (abs - I - 80)3/4 • (CO) 1/4 •	 (8.68)

For aluminum with a thickness of 0.1 mm,

CA ' CPAt . 0.0246 Joule
'	 (8.69)

cm

Assuming I ' 1380 watt /m 2 , abs ' 0. 2, a ' 700 , c ' 0. 95, a ' 5.672 x 10
-8

watt /m2 - °K4 , we get:

s 3.95 watt n 0.016 r=opt ^W	 K	 see (8.70)

This implies a reradiated Intensity distribution of approximately:

IR abs - I • bc9 + –=8I— - as9 ctb'

1 +(
71WO—Pt P 

1 w	 + ^1
 rwo t C w

(8.72)

Using this expression for the intensity of I R and averaging the torque given
by r x F (0'), with F (0') from Eq (8.49), we get:

Nreradiative " Cr -f(az l + br 1 cA)	 W as 
Wo terecting	 .j— +	 (8.73)

opt
and

(8.73)Nreradiative A' C r * r Iso c
spin

with

2 10	 emiss 1 - emiss 2)C r -y Zr Area abs P em ss 2+ em ss (8.75)



where pertinent quantities a,)pear in Eq (8.4), (8.40), (8.41), (8.43), (8.53).
and (8.54).

The erecting component of the reradiative torque (Eq (8, 73)) is only signifi-
cant near	 0 (relative to reflective torque) &ad near w n w0 Pt . where we
are studying error torques in the coast phase (see Sec 8.9). The spin com-
ponent of the reradiative torque (Eq (8.75)) is proportional to and a fraction
of (. 0.08 for abs n 0.2) the spin component of the reflected torque, for small
0. For very large 0, when the absorptive rear of the vanes is exposedsthis
component will be a major factor in causing a reversal of the spin torque.

For the initial performance, when R	 35.260 and 0 < 600 , the torque can
be mainly represented by the reflective torque, Eq (8.58). When 0 < 100,
this torque can be simplified by letting cos 0 1, sin  0 -► 0, leaving approx-
imately linear terms in 0 for the precession and erecting components of torque,
and a constant for the spin component, the constant being equal to the coeffi-
cient of the erecting torque (see discussion of Eq (8.79)).

After the initial stabilization, the vanes are "nulled" to R = 0; however, the
error in a will result in error torques in the spin and erecting directions
which will be added to the reradiative torques, causing motion of the space-
craft which, over a relatively long period, will be unstable. The reflective
error torque can be linearized for a -, 0 0 , changing Eq (8.58) to;

reflected = - isaca (r0sa + 10)so
p.- o
0-o

-jsasQrls9

	

+ it 82  s0 rl -	 (8.76)

The reradiative torque component we are primarily interested in is the
erecting component, Eq (8.73), which reduces to;

Nreradiative s Cr I (Io + roses)	
cas0	 (8,77)

erecting	 = + ^PtOw 0	 1 	 wopt

With such torques derived for 	 0, 0 -. 0, we shall be able to get some es-
timate of the long -term behavior of the spacecraft.

The simplified torques derived above are derived for the purpose of dem-
onstrating some more general features. The actual torques have been cal-

P	 +
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culated as a part of a relatively complex computer program, which includes
the effect of reflective and absorptive forces and shadowing by a geometrical
structure such as is illustrated in the figures. Such an analysis will not be
presented here, but the results are shown in Fig. 8-8.

8.9	 Dynamical Motion of Spacecraft
Given the vector torques as shown in the preceding section, it is possible to
determine the motion of the spacecraft, both short -term and long -term, from
the equations of motion derived in Sec 8 . 7. In order to get an idea of what
should happen in the initial phase of stabilization, before discussing the ex-
act solution as integrated on a digital computer, one can take Eq (8.27),
(8.28) and, neglecting terms involving Q obtain the result

dw -N (0)
n N 2 8) (8,78)

or	 9
N (^)

tn`w , n -

	

	 d E	 (8.79)
0	 f 2

00

which gives an approximate relationship between w1w0 and 0, neglecting
certain terms involving ft and w. For small 8, the integrand - d E /@ as
discussed in reference to Eq (8.58) so that 8 and w are related by a power
relationship (approximately linear), as shown in Fig. 8-9.

In addition, since the spin torque is roughly constant for small 8, as
evidenced by Fig. 8-8 and Eq (8.58) for the major component, one would
expecVhat Wow const , from Eq (8.28); so that w *s w o - K it and 0/00 ^+
(W/W0) 2 , K 2 ow 1. Actual results do not fit this explanation too well becat:ae
of deviation of the torques for large 8 and because of rotation of sun line . (at
rate M., (Compare Fig. 8-9 and 8-11.)

8. 9. 1 Actual Results
The actual results of integrating the precessional equations of motion,
Eq (8.26), (8.27), and (8. 28), for the initial stabilization period of — 13. 7
days when the spacecraft is erecting and despinning from its initial conditions
of 8 n 600 and v n 20 r/min to its final orientation of 8 n 20 and w *a 1. 1 r/min,
are shown in Fig. 8-10 and 8-11. Figure 8-10 	 plots the initial spiral
(motion of figure axis) in terms of 8 and 0 (Euler angles, as shown in Fig. 8-6.
Fig. 8-11 plots 0 and w vs time for the inittal stabilization period. An seen from
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INITIAL STABILIZATION
ALFA = 70.00
BETA = -35.26
OMEGRO = 20.00

X = THETRviCOS (PHI)

o®	 Zo.00	 30.00	 yo.w 	 so.00 /^.©o	 70.00
a

.	
S

rv̂
zHc

7

W
H	 u

f,

Y

Fig. 8-10 Initial spiral — 600, 20 r/min.
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this plot, (^ is not constant, nor does 0/0 0 = (W/W0) 2 After this period,
the investigation moves to the long .-term stabilization.	 w

Gong-term motion of the spacecraft is characterized by cycles during which
the spacecraft drifts out to 0 = 10° (as a result of spin-up and negative erec-
ting torques), at which point the vanes are to be actively switched to a pitch
angle of Q -35°. This will bring the spacecraft axis back to within 20 of
the sun in a short period. These cases have also been investigated on a
digital computer, integrating the precessional equations of motion (Eq (8.26),
(8.27), and (8.28)) as before, but switching the vanes' pitch angle between
0 = +1 0 and a a-35.26 0  when 0 exceeds the limits 2° and 10° respectively.
(In the computer program, 0 is never allowed to exceed the limits by more
than 0.001° before switching occurs . ) The long-term behavior of 0 and w
vs time is plotted in Fig. 8-12, showing approximately 6 cycles of 0 from
2° to 100 and back again. On this plot, an asymptotic increase in average
spin rate is also evident. In addition, each individual cycle from 2° to 10°
and back has been plotted to show the spiraling motion of the spacecraft axis
of symmetry in 0 -0 coordinates. Typical spirals are shown in Fig. 8-13.
For the later spirals, when the average spin rate is approaching its asymp-
tote, the motion is slower, and the center of the spiral moves hi her above
the ecliptic plane	 0°), consistent with Colombo's derivation f1i) In

addition, the spirals are unstable, of increasing amplitude. This is consistent
with the torques derived in Eq (8. 55), (8. 63), (8. 73), and (8.74) above.

Furthermore, a closer inspection of Fig. 8-12 indicates that w is not con-
stant during the drift periods (pitch angle 9 = +10 ), as might be expected by
the unsuspecting observer. This fact is simply explained by the variation in
solar intensity during the 3/4-year orbit. The final phase of the investigation
involves optimization of the vanes' constants, and sensitivity of the system
to initial conditions and error conditions. Results of this investigation are
summarized in Fig. 8-t4  to 8-21  below.

8.9.2 Optimization of Vanes' Cant Angle
The vanes' cant angle has been varied from 45° to 75°, and the initial sta-
bilization time and long -term number of limit cycles has been plotted (Fig.
8-14, 8 - 15).  These results vary significantly with the cant angle, but 70°
was chosen to give nearly the minimum initial stabilization time without
hurting the long -term stabilization too much.

1
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Fig. 8- 12 Long-term 9 and w vs time.
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Fig. 8-13a Long-term spirals (1).
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Fig. 8-13b Long-term spirals (2).
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Fig. 8-13c Long-term spirals (3).
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Fig. 8-13e Long-term spirals (33)•
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8 9, 3 Sensitivity to Initial Conditions
Comprehensive plats of initial stabilization time and initial spirals (motion
of figure axis) have been plotted vs initial theta and vs initial omega (in
r/rnin). (See Fig. 8-16, 8-17, 8-18). As expected, initial stabilization time
is approximately linear with initial spin rate; and initial stabilization time
is relatively constant for 10' < initial theta < 70°, but changes very rapidly
below 5° and above 75 ^.

8.9.4 Parametric lnve:, igation of long-Term Motion
The number of long-term limit cycles of the vanes has been taken as an index
of the long-term performance. New results in this area indicate that the
primary characteristics of the long-term motion are relatively independent
of some of the conditions investigated here.

The vanes' cant angle affects the number of limit cycles, with the results
shown in Fig. 8-15. If the area of each vane were trimmed to give. the same
initial stabilization time for each cant angle, then the number of long-term
limit cycles would be nearly constant for cant angles between 45 0 and 700 .

The vanes' pitch error angle is roughly linear with the number of limit cycles,
as expected. (See Fig 8-19).

The vanes' reradiation damping-time constant is not critical. Here a change
in time constant by 3 orders of magnitude changes the number of limi t cycles
by a factor of 3. 6, from 2. 5 to 8. 8, as shown in Fig. 8-20. In addition,
analysis of torques shows that the system with damping is unstable for pitch
angles greater than a fraction of a degree.

Initial conditions do not significantly affect the long-term performance, as
shown in Fig. 8-21. Two extreme cases (initial omega of 5 r/min and 80
r/min) show the conversion of the system (over a period of one year) from
its initial low spin state to a pseudo-equilibrium high spin state. Initial
theta affects only the long-term performance as it affects the despin ratio
from initial theta to 20 .

8.9 5 Nominal Conditions
All the preceding cases were run for fixed conditions, except for the condi-
tion of parameter which was varied:

Spacecraft moment of inertia	 4.64 x 10 6 gm-cm2

Vanes' cant angle	 70°

Vanes' pitch error angle	 1°
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SUNBLAZER INITIAL STABILIZATION
TIME IN DAYS FROM 60. 0 TO 2.0
VS. VANES CANT ANGLE IN OEG.^a
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M	 SUNBLAZER LONG-TERM STABILIZATION

	

u	 NUMBER OF LONG-TERM LIMIT CYCLES IN 1.0 YEAR
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Fig. 8-15 Optimization of cant angle - long-term cycles.
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Fig. 8-19 Long-term number of cycles vs pitch error.
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Ht' T'.A liatlot) clarnper- rate	 0.017 rad/svc

Initial Sp.4vecrat't -still a ► rgle	 (io"

hriti 'd Spill rats . 	 20. r/ note

ti i ► 6	 l'os:iible Pitfalls in Motion

A rrralor dyn,crrrics prograrrr has bet-11 riui which rntegr,ites tilt c()tr ► 1>let y -qua-

tions of n ► otio^n for . .I rigid body .urd includes tilt . following variables-

1 .	 '1'4 . 111lrerature on all four . va ► ,es

2	 'Three different rtronrerits of inertia

3	 Arbitrar y i--; • alit;ncr ► vnt between ; f ^rqut' axi:, (wilt-1-4• erecting;

torque	 0) and pr • .i — ipal axes

4.	 Arbitrar y initial conditions

`i.	 Arbitrary absorptivities and emissivities for vanes.

The results have shown that an incredibly small nutation amplitude '0.00: to

0.01 fra-tional amplitude) can result in extremely large libration-oscillation

amplitudes (20o to 76cr 1 if the error torque of the varies results forni a -1"

error in the pitch angle, in the same sense as the initial - 35 .26 o pitch, so

that the spin rate goes through 0. A further integration of the equations of

motion has shown that, with modified logic of the vanes control system, the

motion might eventually stabilize to a small. angle after a number- of wild

oscillations, btu ' it is felt that the simulation of a few special cases does not

give enough information to guarantee the stability of the system in g f-neral.

It is felt, at the present stage of development, that special precautions should

be taken to prevent the spin rate from going through 0.

A second major pitfall could result from an attempt to reverse the vanes

(to +35.26°) when the initial thuta is large (120 0 ), hoping; that the spacecraft

would despin and go to 180 0 , because of the reversal in spin torq .e of the

vanes above 80 0 , hopefully, the spacecraft would then flip around and wind

up at some small angle where the conventional control system would stabilize
0

it, A promising fact is that it takes about as long in this mode to go from 120

to 17 x3 0 as it does in the normal mode from 60 0 to 2 o, however, the problem

of going from 178 0 hopefully to a small angle through 0 spin rate is not

understood in sufficient detail to design a predictable control system.

A third major pitfall would result from an attempt to null the vanes after , sep-

aration (at 600 ), and hopefully wait for the sun line to rotate into the axis of

symmetry of the spat-.,raft. Mere, the precession of the spacecraft would

have to be taken into account; and initial results indicate that, even at an
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ir,itial rata of 160 r/ min, the angle between the spacecraft axis and the sun

would oscillate between 17 0 (which it would reach at 57. 1 days) and 1550

(at 158. 2 days) .

Nutation motion of the spacecraft (see Sec H. 11) can be derived very simply

from the complete equations of motion Eq (8. 16) and (8. 17), by assuming

= 0 = li = 4L, leading to

I,
_; w
I 1 cos 00	 (8.80)

which is basically the formula for force-free precession 0 '), and:

1',) (0 )

80	 I
3 

w	 (8.81)

The amplitude of the nutation circle, O 0 , can increase (or decrease) as a

result of direct or reradiative torques and of internal dissipation. See Sec

8. 11 for a more detailed discussion of radiative torques. Tnternal dissipa-

tion has not been determined; however, if sufficient dissipation is not avail-

able in the structure, it may be necessary to design an internal damper.

8. 10 Ancillary Problems
Some ancillary problems might be mentioned

Surfaces for the spacecraft and vanes have not been investigated in sufficient

detail. Although literature exis ij which indicated that the assumed surface

characteristics are not unreasonable, the problem still remains of fabricat-

ing a structure and measuring the surfaces.

An aspect sensor, probably based on the technique successfully developed by

the Goddard Space Center, of using multiple sensors and a mask to provide

the maximum information with the minimum electrical hardware, does not

seem to be a real problem.

Control logic consisting of a few AND and OR gates to switch the vanes, de-

pending on the angle, is not felt to be a real problem either.

Micrometeorites are not felt to be a real threat to the spacecraft, either as

momentum disturbance, or by erosion of the surfaces. (See Sec 8. 1).

A practical test of the vane torques and the effect of the control system

should definitely be made in vacuum.
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8.11	 Nutations

8. 11 . l Convention Used to Distinguish Nutational Prom Precessional Modes

There are three main types of dynamical instabilities which are of concern
in orienting the Sunblazer vehicle:

	

1 .	 [,ibrational instability for very low spin rates;
2. Precessional instability (increasing cone angle);
3. Nutational instability for , moderate and high spin rates.

Because the nominal precession rate is always more than two orders of mag-
nitude below the nominal spin rate, nutations can be analyzed dynamically as
a "torque free" precession superposes; upon a very slow and steady torqued
precession. The convention to be followed here in distinguishing a nuta.tional
mode from a precessional mode is that the former causes the vehicle's spin
axis to oscillate at an angular frequency comparable to that of the spin rate,
while leaving both the direction and magnitude of the angular momentum vec-
tor essentially unchanged during a cycle. A precessional mode, on the other
hand, causes the vehicle's axis to oscillate at an angular frequency much low-
er than the spin rate (in fact, about inversely proportional to the spin rate),
and actually changes the direction of the angular momentum during a cycle.
In gener • t1, both modes will be simultaneously present to some extent. The
problem here will be to determine whether or not the amplitude c f the nutational
mode wi,l increase or decrease with time under the various sets of circum-
stances Sunblazer might be expected to encounter.

Before proceeding to a more mathematical description of this problem, it
should be stated that, although the actual derivation to be given here differs
from others in this report, both the basic equations and the final notation are
identical to the previous treatments (see Sec 8. 7). Since the unsimplified
basic equations themselves cannot be handled analytically, an approxima-
tion will be made which can adequately account for at least the nominal
operating conditions of Sunblazer. In a few special cases, where insufficient
confidence could be expected from purely analytical techniques, an analog
computer has been used, which employs no approximations whatever.

Basic to the mathematical description will be a cascading of two uniformly-
rotating coordinate systems. The uniform rotations rates will comprise one
of the approximations, (see Fig. 8- 13). For the first, system, we will tem-
porarily use the same notation as Halfman (12 ) and then convert this to our
standard notation. However, the definitions of 0, 0, and u for the cone angle,
precession angle and spin angle respectively will be the same in both notations.
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8. 11. 2 General Dynamical Equations for an Axisymmetric Body and

Conversion into the Standard Notation

Proceeding then to page 220 of' llalfman, and also referring to the labeling

in parentheses of Fig. 8-22, we find that the most general dynamical equa-

tions for an axisymmetric body are-

dw
* 141 = I	 x

X	 h	 dt

* M y 	I,I, ` fly - (I IT S2z + Q Ix w x 	(8.82)
dt

* M z = IT df2z _ S2Y 
Ix W  + XIT (2Ydt

where in this particular case

	

* wx =	 + ^ cos 9
(8, 83)

'^ rt a ¢ coQ 9x

{	 ^ S2 : w = 0

	

Y	 y
(8. `94)

Q	 W 	 ¢ sin 0

Substituting these last three relations into Eq (8.82) one obtains:

M = I	 d wx
x	 x	

dt

^F M y = I ,I, 0 - IT ¢ 2 sir, 0 cos 0 + I x $wx sin 0
(8.85)

* M z = I,I 	sin 0 + 2I,I 	cos 0 - I x x^

Converting these equations into the standard notation so that

NI X --0 N z , My 	N x , M z Ny , Ix I 3 , IT 	I 1 , w x	 Wz, w z	 l + ^ cos 0,

* Not standard notation.
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we will eventually get Lc. f. 1 •:q. (H. 16), (8, 17), (11, IN 1

(N p)NK - I 1	I1 d2 y in )) cos )) + 13 ^ L'z sin 0	 (8.116)

(N e ) N 	 n I 1 .0 sin	 21 	 r7 cos 0 - I, ; w z H	 (8.87)

d 
(N s )	 Nz =	 I3	

dt 
z	 (8.813)

Note that now the z-axis is along the y axis of symmetry (instead of the x-axis

as before) and the x-axis is perpendicular to the vel , ' 'e-sun line (instead of

the previous ,y-axis). Because torques about certein coordinate axes are

closely associated with definite motions of the spacecraft, N x , N  and N
are commonly refer red to a s the " precession torque ' , " erecting torque'

and "shin torque" respectively (N 1) N . , and Id s ). These torques are
usually a function of 0 only. It is also important to notice that, until now,
no approximations have been !Wade, and the only assumption used has Lcaen
that of axial symmetry (about the z-axis) for the spacecraft.

In order to determine the steady rotation rates of each of the two cascaded
systems, we first must require that b _ _ 0 = w z = 0. Then if we solve

{	 Eq (8. 86) for using the quadratic formula, we get

I w	 4I cos 8 x
3	 1	 ^,

2I cos 0	 1} C 1 - ^2 2	 J	 (^,. 89)
1	 I3 wz sin 0

where the assumption of steady precession has been introduced. As usual in
such situations, the minus sign corresponds to the slower mode of precession
in which we are interested, and as long as N x , the precession torque, is
sufficiently small (i. e. ,

I3 wz2 sin 0
N <<	

1x

	

	 /
4I 1 cos 0

N
we may write	 I3 w  in 0

	 (8. 90)

This approximation corresponds to the case when the direction of angular
momentum and the z-axis nearly coincide. One now requires that the first
of the two cascaded systems rotate at the constant rate given by Eq (8. 89),
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as well as that its z-axis be aligned 1 th the angula r momentum of the vehicle
(instead of the figure axis as before). "his should work out all right, even
relaxing the requirement that ^, ^, and ^ be zero as low as the absolute value
of N  does not change much with a given range of 0 so that the angular mo-

mentum vector will precess at it nearly constant rate (recall that the angular

momentum does not change much in a nutation cycle).

The second rotating; coordinate system of x', y', and z' (see Fig. 3-23) will

rotate about the (slowly) precessing z-azis of the first system, will have its

z' - axis always aligned with the vehicle's axis of symmetry, and its x'-axis

perpendicular to the z-axis. If N x is small or does not change appreciably

within the range of any given 0 oscillation (notation), then for this 0 the net

effect of IN on the nutation amplitude will be negligible, at least in one cycle.

Also, because the nutational angular rates are much, much faster than the

precessional rates, we may solve approximately for the motion in the second

system by writing down the same equations as before but with N  = 0. Solving
for ^' (with no further approximations):

I3	 wz

= I1 coos
(1.nq

which corresponds to the "torque-free" or "wobble" mode. Also, ;' will be
the constant rate at which the x', y, z' system precesses about the more
slowly precessing z-axis.

8. 11.3 Spacecraft Motion in Terms of Energy

Two very important points can now be made. First, suppose that there are
absolutely no torques on the spacecraft and that it is both spinning at W  and
"wobbling" at ^'. Given the fact that some of the mechanical energy of such
a system can be converted into heat by non-elastic, structural damping aboard
the spacecraft (such as loose mylar in the vanes), this motion will not nec-
essarily be stable. In the absence of external torques, the angular momentum
of the spacecraft must remain constant, but its kinetic energy can change sub-
ject to this constraint and in general will tend towards a minimum. If we con-
sider the two possible extremes of the spacecraft's motion in terms of energy,
we find that it might be spinning steadily about its axis of symmetry on one
hand or a transverse axis on the other. In both cases the angular momentum,
L, will be the same so we may write

L =I 1 W 1  = I3W3	
(8.92)
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Ilowever, the kinetic energy, T, will be different in each case so that

I
11, I • 1/2I 1 w1 s I/2I1

\13w,Y , -13 113	
(f3,f1;3)

l	 1

T 3 s 1/2 I 3 w 3	(8. 94)

if we substitute for w 1 from above. Thus it is readily seen from Eq (8. 93)
that the spin axis of smallest kinetic energy depends entirely upon the ratio
of the mornents of inertia. In particular, if I 3 > I 1 , 11 1 > T 3 and a steady

spin about the axis of symmetry has the smaller kinetic energy and hence is
the stable motion.

To illustrate this result in a more rigorous manner, we find that the angular
momentum and kinetic energy of a body "wobbling" with a cone angle of 0'
are respectively;

L. 2 s I1
2 

0'	 sin 2 ©' + I3 W 2	 (8.95)

T= 1/2 1I10'2 sin  d' + I3 w2^,	 (8.96)

Eliminating w z:

. ,
T = 2I2 + 1 (1 -Ill 

2 
sin  F1' • L	 1 +(I 3 - llsin 2 9	 (8. 97)

2	 \	 /	 `	 /3	 3	 3	 1

It is clear from this last equation that if I 3 > 1 1 , then T monotonically de-
creases with decreasing 6', reaching a minimum at 8' s 0. Therefore as be-
fore, the case where A's 0 (or a pure spin about the z =axis) will be the only
stable dynamical mode. For this reason, the Sunblazer spacecraft has been
designed to have I 3 > I 1 so that rotation about the axis of symmetry will be
stable. If I 1 > I 3 , then it would be energetically possible for the properly-
spinning spacecraft to convert axes and end up tumbling instead.

The second important point to be noticed here is a possible confusion of the
aspect sensor on the front of the spacecraft. Because as we have just shown,
the spacecraft must be designed so the I 3 > I 1 , it can be seen from Eq (8.91)
that the vehicle actually precesses faster than it spins; If nutations or
"wobbling" of the spacecraft were not damped out , and if the amplitude
were large enough so that the mutational mode caused the axis of
symmetry to encircle the sun , then the aspect sensor would record
the spacecraft as spinning opposite to its true spin sense; this could
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badly affect the attitude-control system logic. In order to fix this idea a

little Illore r igo rously, if w,', is tilt' a ctual s idereal sp ill rat e, there I t can

be seen from V ig, 8-23 that the as pect sen',or actuall , measures

In the nominal operating mode w !' >> ^ so that , = W z' , However, since for

the torque-free mode m' > w r ' whenever 1 3 > I I (see F.q 03.9 M, it is a pparent
that if the sun is ever encircled by the axial projection of the nutational ii,ode,
,y' will be negative even though both w l ' and ( I are positive, 'Therefore, it is
must fortunate that, because of its rather large induced angular accelera-
tions, the nutational mode is readily dissipated by small, passive mechanical
devices; in fact, it has been demonstrated through many hours of experience
in U. S. space programs (e, g. 0. S. 0. ) that such devices can be both light-
weight and inechanically simple,

8. 11 , 4 Nutational Amplitude
Even though existing and space-tested hardware can effectively eliminate the
nutational mode, it is still desirable for the sake of completeness to deter-
mine how its amplitude will be affected by the known external torques on the
spacecraft. In order to do this, we now return to the two cascaded coordinate
systems used to derive Eq (8, 91). Recall that we had synthesized a combina-
tion of steady precession and steady torque-free modes to approximate a real
nutation caused by very weak external torques. In order to determine the
behavior of d under the influence of these torques, we now write Eq (8. 86) -
(8 88) in the x', y', z' system, and in each substitute Eq (8. 91) for 0' to get:

N x , = I 1 p '	 (8. 98)

N ye = I 1 ¢' sin V+0 1 3 W 
Z 
	 (8. 99)

N z , = w  "	 (8. 100)

where it must be kept in mind that the N x ', Ny ', and N z ' are the result of
time averaging a combination of N x , Ny , and N  resolved into the x', y, z'
system. For a more mathematical description of this, expand N x(0), Ny(0),
and N z (0) in a first-order Taylor series about 

0  (assuming that these torques
are a function of 0 only) so that:

Nx(0) ,, x  + x  (H - 00)
	

(8, 101)

N y (0)	 yo + yl ( 0 - Bo)
	

(8. 102)

N Z
 (0) ^ z  + Z  (0 - Ho)

	
(8.103)
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Then if the nutation amplitude is small (a justifiable assumption for a stability
analysis) we find that, as a direct consequence of the dynamical geometry
and definitions Nee Fig. 8-13):

0 (d') Y o - o' sin W'	 (8. 104)
0

and so

N x (O ' )	 X 0 - x 1 o' sin 0'	 (8,105)

N (d') n
Y	

YO - y 1 o' sin w 	 (8. 106)

N (d ') n
z	

zo - z 1 o f sin 0	 (8. 107)

Notice further that the resolved components of N x , Ny , and N  onto N x i, Nyi,

and N zoare such that•

N x , n - sin 0 ' N  + cos	
N 
	 (8. 108)

NY, 
n - cos Q,' N x - sin ' N 	 (8. 109)

N	 n N
z	 (8. 110)

z 

replacing N   Ny ,and N  through Eq (8. 105) - ( 8, 107):

N x	-sin 0' (x o - x  o' sin 0 ' )	 (8.111)

+ cos 0' (yo - Y1 O' sin O' )

N y , 	 cos Of (xo - x  o' sin ^)

- sin 0' (yo - y1 0' sin	 (8. 112)

N z , (0'I • z o - z  Of sin 0'	 (8. 113)

Averaging these equations over one complete nutation cycle or for 0< O'< 27r :

Nx , ! 1/2  x 1 01	 (8. 114)

Ny , = 1/2 y 1 0'	 (8.115)

N z , n Z 	 (8.116)
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(IN(0)	 e1N (0)
Re"'alling Milt x	 x	 y e ^Y	 j n 	 (0 )

1	 (10	 0	 1	 (WI)	 o	 !	 r)
c^	

0

substitute Eq. (8. 114) - (11, 116) Into Eq. (ti. 98) - (8, 100) to qet:

1 / 20'	 x 	 (8. 117)
c1H	 ^)

U

(IN (n)
1 /26'	 .._.^	 n 1 1 ;^' sin rI + r')' l3Wzi	 (8. 118)

c10
0

N z (() () ) W z'	 (8, WOO

► f 0 ' is small then, consistent with the first-order analysis, ii ' can surely
be neglected, thus eliminating 14,q (8. 117). Likewise for a stability analysis,
neglect the product, d ' sin I) ', compared to l) 'wX , and get:

(1N 
y 

(n)
1 / 20'	 n 1 3 Li	 ^'	 (8. 120)

	

ci0	 0
0

N z o 0) n w z I

or, solving Eq (8.120) for 0 : 	 I

	

0,	 (IN y(0)
0	

2l'Iwze	 (10	 0	
(8.121)

0
^	 d 	 (0)

Notice that 0 has the same sign at a given 0 as does	 y	 (if we take

W 
z

-
, 

to be positive) .
d0

In order to estimate further the effects that N y (0) will have on an initial 0

recall that N y(0) a k sin 20 for 0 < 60°. Soive Eq (8. 87) approximately for

Fl, using this value for N  (0), and including Eq (8. 125):

- k sin 20	
(8. 122)

1 3w z

0 
M k w 20 0,	

(8. 123)
I3z
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Dividing Eq (8. 123) by Eq ( 8. 122) and integrating:

d 19- (cot 2 0) • 0'
	

(8. 124)
d0

0 ,	 sn 2 2
 . ^

2
	sin 20	

(8. 125)

Thus as 0 decreases from 60 0 to 10°, 0 will increase by about a factor of
1.6 (this large value may invalidate the first-order analysis). however, this
is actually not a serious problem to cope with, especially since this increase
would oc., ur over a period of several days, during which time existing me-
chanical nutation dampers, which have time -constants that are typically less
than one hour, would effectively eliminate this mode. The preceding analy-
sis has been at least qualitatively verified by an analog computer, and 1-nore
exploration is currently being conducted in this particular area. It is
hoped that future results can confirm the conclusions of the preceding treat-
ment, as well as provide a more detailed discussion of mechanical dampers.

8. 11 .5 Reradiative Damping

In addition to the effect of a direct or static torque on a nutation amplitude,
there is the damping effect of energy reradiated from the vanes with a lag
relative to the input solar intensity. Using a method similar to the method
which was originally suggested for Peterson's thesis and which was used to
derive Eq (8. 66) - (8. 7 5), it is possible to show that the reradiative torques
stabilize nutations of the vanes system (derivation is again for small nuta-
tional amplitude and hig:, w).

Starting with Eq. (8. 64), linearizing the equation, and assuming that:

B	 O o + isin Qt
	

(8.126)

wqt
	

(8.12?)

w,P = w (1-I3/I1)
	

(8.128)

and

0 __ wI3/I1	 (8. 129)

as in Eq ( 8.91) one is led to the following expression:
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c'* `"' + 4r v T :' (T
p	 (it

abs -I . Loc 0 + 'ISO 0 S4) - hSO . 0 1 sin Q t

coo 	I 	 co o
a	

T • 01 
COS ( S2 t + 41 ) + a	 2 , r^l cos mt - 4 ')]	 (8. 130)

Expanding T in the appropriate harmonics, one can solve for the term in

sin (S2 - w41)t which directly affects the nutation amplitude:

rabs . I . acoG • 01

I
8E v To 

3

t	 -g	 (Q. - w ^) Cp	4 E a To

4 ca T 3	 (S2 - w ^) C*
P

giving an effective "mutational" torque, as in Eq (8. 121):

I3w 61 , Tnut

r
abs • I. ac9. 

0 L	
l

4 J
Tnut ^ S2 - w ^	 wopt

wopt

(8. 131)

(8. 132)

(8. 133)

where w
opt is given by Eq (8. 68) or Eq (8, 70). From this equation it appears

that this "torque" is on the same order of magnitude as the direct destabiliz-

ing "torque" which could be extracted from the similar Eq (8. 121), when

Q - 
w1^

 ;R^l wopt . For higher w in the normal range, say two orders of magnitude

above wopt , the reradiative "torque" becomes much smaller than the direct

destabilizing "torque" acting in Eq (8. 125). This is another reason why a

mechanical damper may be important for the spacecraft.
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8.12	 fleading and Cane Angle Change (Launch Through Deployment)

8.12.1 Introduction
In order to predict the y time necessary to orient the spacecraft utilizing the
radiation pressure, knowli- a ge of the initial angle between the spin axis of
the spacecraft and the sunline is of great importance, especially if this angle
should approach ilOci. In this case, the time for orientation increases rapidly.

After burn-out of the last stage of the rocket, the assembly will be in a
force-free precession i t mode, i. e. , the spin axis will precess about the
angular momentum vector at an angle 0. Events during injection (separation,
despin, etc. ) will change the angular momentum in both magnitude and direc-
tion (heading). The change in heauing is proportional to the cone angle before
the eve>>t, and will either increase or decrease the angle between the original
heading and the sunline, according to where on the precessional cone the event
occurs.

It is obvious, if the events occur successively at disadvantageous locations
on large precession cones, that the angle between heading and sunline can
increase to an undesirable (if not unacceptable) value.

Thus, to avoid large heading changes with each event, it is paramount to
reduce the cone angle preceding that event.

8.12.2 Analysis
The launch sequence during which the heading may change is as follows
(Fig. 8-24): After the successive burn-out of all five stages, it has been
recommended that the assembly of the fifth stage and Sunblazer coast for
five minutes, during which residual thrust is allowed to tail off. Separation
of the payload, ccuring next, will initiate the yo-yo despin. In separating
from the spacecraft, aftei ^ompleted de, pin, the yo-yos will trigger the
deployment of sails and an.ennas. A damper will then act to decrease the
cone angle to zero.

The contribution of each event to the final heading change will now be analyzed
separately.

1 . Rocket Performance
Due to misalignment of the separation mechanism, unbalanced mass, etc,
the cone angle after fourth-stage burn-out is expected to be 1. 5 0 (3v value)(13).
This has been substantiated by measurements during previous fligl ts. No
measurements exist for the new fifth stage. Separation of the fifth stage from
the fourth will not appreciably change the cone angle. However, it is expected
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Fig. 8- 24 Sunblazer deployment.
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that thrust misalianmPnt in the fifth stage will increase the angle by 4. `i 0 for

a spin rata of 180 r/min (13). It is not obvious from the cited reference whether

the above 4. 5 0 is a la or 3a value, such that two 3a values should be consid-

ero , d for the cone angle at fifth-stage burn-out:

a,	 0 = 1. 50 + 4.50 = 60
(8. 134)

b.	 0 = 3 x (0. 5 + 4. 5) = 15 (^ .

2. Coasting Period

If a body is in a force-free precessional made and dissipates energy it will

change to a configuration of least kinetic energy. The kinetic energy T can

be expressed in terms of the cone angle 0, or 0 as a function of T, as follows

(for an axisymmetric body)(14),

sin 
2 0 = — 

I
1 --- . (21 3 T- L2)

(I 3 - I 1 ) L
(8. 135)

where I 1 = moment of inertia about transverse axis

I 3 = moment of inertia about spin axis

L = angular momentum .

If the energy loss is so small that the rigid body motion is not affected, the

rate of change in 0 with T is obtained by differentiating Eq (8.1;35) with respect

to time:

I2sin0cos0 0	 (I 13I ) 2	 (8. 136)
	3 1 	 L

or, for small 0:

	

0 0 = (I lI3 I 
1

)	 2	 (8. 137)
3 	 L

Since T is negative, 0 will increase if I 1 > I 3 , which is the case for the assem-

bly of the fifth stage and payload.

The dissipation of energy is due to the damped motion of the structural part-

icles relative to each other. The motion can be represented by the equation

for forced vibration with damping:

mx +	 x + kx = Fo coswt

where m = mass

k = spring constant

g = structural damping coefficient

(8. 138)
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[Kg	 is called the equiva ent viscous damping coefficient for,

	

w	 structural damping
W = frequency of forcing function

F o = amplitude of forcing function .

Solving F.q (8. 138) gives:

!:
X = 2 n cos (wt- r7 )

where ri = r7(w)

n = n(w) = constant for w range considered.

The energy dissipated by the damping force is:

F,	 2

E _^ Kg x dx=rrKgCk'n)

cycle

or per unit time

F	
2

T = 2 Kgw C k n) • (8. 139)

The forcing function in this case is the inertial force (mass x acceleration)

acting on each point of the structure. The acceleration can be expressed as:
i

 2	 I	 I \ 2	 I

	x = wZ ( 'I)I 	 ztan9sin wz 1- I3 t + I3) tan 	 w z 1- I3)t - x .(8. 140)
C	 ) C	 C

	

1	 1	 1	 1

This is for a point with coordinates (x, o, z), z being along the spin axis.
The angular velocity about the spin axis is wz.

For small 9, neglecting higher orders of 8, and considering only the oscil-
latory part:

( , 3)2 	 I

)
x 	 wZ9zC 	 sin 1W  1-I3 t	 (8. 141)

C 

	

1	 1

The most important feature in Eq (8. 141) is the relation:

X = x (e)

consequently

F 	 F  (8)

and using Eq (8. 139)
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Integrating gives

01
T

0 = 0 e t /T .
0 (8. 142)

0	 = 1. 055
00,11

(8. 144)

tan 0 = Ilwt
I3wz (8. 145)

T	 T' (02)

Upon substitution of Eq (8. 1:39) into E,q (8. 1:3 i) and introduction of T, the
equation for 0 will be

Thus, the cone angle increases exponentially with the dimensionless time
t /T. T has the following expression:

T _	 2K I,2
I.	 (8. 143)

I3gwz5 1314 n 2 f2 (m. 1)
1

f (m, 1) is a function of mass and size. To evaluate 7 analytically would be
impossible; however, Eq (8.143) can be used to scale T from one configuration
to another.

This was done (14) for Sunblazer, using information transmitted by LRC. flow-
ever, this information was so sparse that the deduced T values for Sunblazer
must still be regarded as guesses. This does not mean that nothing was gained
by performing the analysis. It is felt that a range of likely T values was
established. The corresponding 0 values after five minutes coasting are
shown in Fig. 8-25.

(00/ I = 2. 7

3. Sunblazer Separation from Fifth Stage
In separating Sunblazer from the rocket, the springs will ideally impart a
linear momentum to the vehicle, leaving the angular, velocities about the
spin axis and the transverse axis, w  and w t respectively, unchanged. From
geometric considerations:

Applying Eq (8.145) to the configuration, before separation and after, with
w  and wt constant, gives
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tan 0 = m r au
Iw

(8. 148)

tan 01 n	 I 3 1 tan 6<r	 (8. 146)

\ I^/3 o
I^

where (I1 ) is the moment ratio for the combined Sunblazer anti rocket con-
3 0

figuration, and (LI) for Sunblazer alone.
.3 1

( ^) = 10. 8
3 o

( 
IIl
	 0.635
3 1

_ 101 r 17 00

Thus for small 0

(8. 147)

As mentioned above, this would be true for the ideal release. However,
design tolerances in mass unbalance, plunger cant angle, etc. , will introduce
torque impulses into the system, thus changing the angular velocities. These
were shown to be negligible (13) Another deviation from the ideal separation

introduced by a spring force unbalance.

In order to analyze this this effect, consider a symmetric disc spinning
steadily about its figure axis at a rate, w, which has an impulse delivered
to it of magnitude J, directed parallel to the figure axis. If the disc has a
mass m, and undergoes a velocity change, Au, then the magnitude of the
impulse must have been m au. However, suppose this impulse acted on the
disc at a distance r from the axis of symmetry. Then if the disc has a
moment of inertia I, the original angular momentum was Iw directed along
the figure axis. Meanwhile, the impulse has instantaneously introduced
angular momentum perpendicular to this axis of magnitude Jr = mAur.
Therefore, the angle between the original and final angular momentum
vectors, 0, is given by

If the spacecraft is not coning initially, then this angle 0 will represent the
heading error as well as the coning angle. In the more general case when
the vehicle is already coning at separation, 0 represents the maximum change
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in the existing coning angle, in this connection, r is to be computed by finding
the location of the center of force of the springs relative to the vehicle's axis
of symmetry. Suppose m n 10,000 gm, 0i.. n 100 cm/s, r	 ' cm, 1 n 3x 106
gm- cm 2 and w a 20 rad/ s, then from Eq (8. 148) :

tan 0 n 60, or 0 — 1 0	(8. 149)

Since the displacement of the force center is of the ardor of 1 mm the contri-
bution clue to the above effect is negligible, anti Eq (8. 147) is assumed to be
valid.

During this instantaneous change of cone angle the spacecraft remains fixed
in space, thus the angular momentum (i, e. , heading) must have changed by
an amount

00 - 01	 (8. 150)

4. Yo-Yo Despin
An extensive yo -yo despin analysis is given in ref 15. However, no mention
is made of the heading change. An indication of the maximum heading change
for certain despin parameters is given by idealizing the despin process.
Consider , an instantaneous despin, Fig. 8-26a, where only the angular velocity,
wz , about the spin axis is decreased. The angular velocity w is assumed to

w 
t

remain constant. Thus, the angular momentum vector L 0 before despin is
decreased by an amount AL, which is parallel to the spacecraft- spin axis,
resulting in L 1 . After the despin process the spin axis then precesses about
L 1 . The cone angle is increased to 0 1 , where:

tan 0 1 = I lit	 (8. 151)
3 zl

or in terms of the cone angle 0 0 before despin:

tan 0 1 o tan 00
zl

With appropriate values for Sunblazer ( w zo = 200r/ min , w zl = 33r/ min) this
leads to

tan 01 i 6. 06 tan 00	(8. 152)

From Fig. 8  26 it is seen that the heading has changed from the original
(before despin) by an amount

0 1 - 00
	 (8. 153)
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in the plane for•mrd by L 0 and the instantaneous position of the spin axis at

desp ► n. Figure 8- 261) is it top view of Fi g. 8- 26,1 showing the angular rno-

mcntum shift.

However. the actual despin process is not instantaneous since the precession
rate is of the order of 20 r • ad/s prior to de8pin, and the despin taker place
in about one second. Thus, ins te ad of tracing a straight line on a plane
parallel to the x-y plant- as in Fig. H- 261t I. will he displaced along a curved
line in that plane (Fig. 8-26c). Since Sunblazer • 's spin axis will prec ess
;about I, fastest in the beginning of the despin process and ::lower towards
the • ^	 when the spin is greatly reduced, the line froin 1.O to 1. 1 will have
a ;niall radius of curvature in the 1—ginning and approach a straight line
close to 1. 1 . C Ivar • ly, th- length of the line betivven I.

()

 and 1. 1 is .a measure

of Zile angular momentum reduction; therefore, if this is the same amount

for both cases (instantaneous and actual) the distance between I. I. 1 is

less in the acfnal case, i.e.. smaller coning angle and heading change. If.

in addition, she transverse angular velocity W t-. is reduced, this will reduce

the cone angle and heading change even more.

Thus, the instantaneous analysis will give the maximum heading change and

cone angle for a particular despin process. It ,till be used as an approxima-

tion to the actual process, bearing in mind that the increases in cone angle

and heading are larger than the real changes.

Curves for 0 in ref 15 show values less than the idealized values and also

indicate that Wt is reduced, confirming the above.

5. Deployment of Sails and Antennas

The primary effect of the deployment on the dynamics of motion is a reduction

in spin. This is duce to the increased moment of inertia about that axis. Since

the angular momentum is constant during this process

(I z W Z )0 = (I Z W I ) 1	 (8. 154)

With I zo = 2.8x10 6 gin-cm 2, I^ 1 = 4. 6x10 6 gm-cm 2 and Li zp = 33 r/ min,

Eq (8. 154) gives

Wz 1 - 20 r/ min

In the ideal deployment the cone angle and heading will not change (angular

momenta constant). In case the sails do not del Joy at the same time, the

following can happen:
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tan 9 = I lw 1
I wz z

(8. 159)

Consider Fig. 8- 27a. The case of one sail deploying at a time is investigated.
The rolled- up sail (m 2 ) is idealized as a mass, and the potential energy I, is
assumed to be :stored in the bent rod connecting it to the vehicle (m I ). When
t`w sail is relearned, part of that energy will be converted, through the action
of the banding moment M, hito rotational energy of the vehicle, and similarly
for the sail. However, since no net torque is applied to the combined body,
the angular momentum about the combined C. M. has to be constant. (For
convenience, it is taken to be zero. ) If both bodies are acted upon only by
moments, the angular momentum of each is due to rotation about their own
C. M.

Thus,

IIwI + I 2w2 = 0	 (8.155)

E - 
Z
I l w l + T 1 2 2	 (8. 156)

Eq (8. 155) and (8. 156) give solutions for w  and w2

_ 2E

	

w l	 I
I 1 (1 + I2)

1

2E (8. 157)w 2 =	 I
I 2 0 + 11

1

The angular momentum given to the vehicle (or sail) is

EI

	

I l w l	 I - 2EI2 = I2 w2	 (8. 158)
(1 +I1)

2

since I 1 = 0(106 )  and I 2 = 000 2 ).  For a spinning vehicle this would result
in a cone angle

ch for Sunblazer gives 9 - 1°. However, since the sail will remain
attached to the vehicle, they both cannot keep rotating indefinitely. Due to
the opposite rotations of sail and vehicle, the sail will bend the other way
after being stretched out, and accumulate potential energy until the motion
is stopped. Thus, an oscillatory motion will result. which in time will be
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Fig, 8-27 Effects of st it deployment on spacecraft dynamics.
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damped out by internal friction. This induced motio^ should not affect the

for ce•- free precession at some cone angle (angular ..oments have riot changed),

but can be regarded as a nutation (Fig. 8-27b).

The above analysis is true if energy is stored by rolling the sails as in
Fig. 8-27c. This way, the potential energy has the same sign and the r •cEult-
ing moment the same direction. If the sail is rolled as in Fig. 8-27d, the
spring constant can be adjusted so that each bend contains the same • energy
in magnitude, but with reversed signs. The total stored energy is zero and
no motion can result after deployment.

8. 12 3 Results
The analysis gave the quantitative effect of each step in the launch Sequence.
Depending on the position in which, relative to a fixed coordinate system in
space, these steps happen, different headings can result. The best and worst
positions are shown graphically in Fig. 8- 28. Although both the worst and
best cases are shown for the positions at which these steps occur only the
worst case expected for each event is shown; i. e. , the smallest T value
(Fig. 8- 25) was applied to Eq (8. 134) (3a values) resulting in cone angles
after coasting of 16 0 and 32° respectively. In despinning the vehicle, the
ideal conditions r •e d rown (Eq (8. 152)) rather than the lesser cone angle for
the actual despin.

This way, the heading can make an angle with the sunline of 100 0 and 800 in
the worst case (posi 'on-wise) (corresponding to 15° and 60 in Eq (8. 134) ,
respectively) and 20° and 40 0 in the best case.

The most optimistic result would be to take la values after rocket performance,
i. e. , 2° instead of 6 0 in Eq (8. 134). Then assume the largest T expected,
which gives a cone angle of 3. 16° after coasting. The effect of separation is
fixed, i.e. , reduction of cone angle by a factor of 17, giving a cone angle
before despin of 0. 186°. Without numerically solving the problem, only an
estimate can be made for the angle increase due to 3espin. If it is estimated
that this increase will be a factor of 3, the final heading in the best and worst
positions will be 56. 60 and 63. 4°, respectively.

8.12.4 Discussion
As stated in the introduction, the concern is about the largest possible angle
between heading and sunline. The results show that this angle can be expected
to lie between 63.4° and 100° -- a wide range. From Fig. 8-28 it is seen
that the largest contribution is due to the cone angle after coasting; subsequent
events only increase the heading error by minor amounts (i, e. , from 76° after
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ne angles are
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coasting to 80  after deployment; or X120 to 100o). Of course, the cane angle
after coasting is dependent on the angle after rocket performance.

Unfortunately, the information received from LRC on both these events is
not adequate to predict a narrow range of cones angles after coasting. How-
ever, it is felt that a 15 0 cone angle after rocket performance is quite unlikely;
this would eliminate the 32 0 cone in Fig. 8-28 and the final heading angle of
100 0 , and leave the range of he^iding between 63. 4 0 and 800.

If it is felt that this range is too close to the x)0 0 mark, and unless future
information about rocket performance and coasting effects reduce the max-
imum expected angle, there are two ways of avoiding the large heading angles:

1. Reduce the coasting period to a minimum.
2. Or, constantly monitor the attitude of Sunblazer relative to the



CHAPTER "

').0	 THERMAL BALANCE

9.1	 Discussion

This discussion of the thermal balance for the Sunblazer spacecraft system
is divided into three sections. The first section describes the overall sys-
tem requirements, the second relates the problems that must be solved in
order to satisfy these requirements, while the third section describe; the
general solutions to these problems.

The Sunblazer spacecraft is to have a retrograde launch into a heliocentric
solar orbit. Consequently, the spacecraft will experience a time-varying
solar flux which is, on the average, equal to about 1. 5 equivalent suns. It
varies in magnitude from about 0. 96 suns (July launch) to about 2. 44 suns.
This relatively large average solar flux, coupled with the long duration of
the flight, complicates the spacecraft thermal design in that the thermal-
control surfaces must be stable for an extended period 0. 5 to 3 years) in a
harsh solar environment 0. 5 suns). Early in the program it was recognized
that, .o obtain spacecraft surfaces whose parameters would remain relatively
stable for 4. 5 equivalent sun years 0. 5 suns times 3 years), was a significant
problem. Indeed, when this problem was first studied in 1964, these require-
ments were considered to be beyond the state of the art. This is probably not
true in 1968; there have been significant advances regarding surface materials
in the past four years. Nevertheless, surface stability was/is a formidable
problem which has heavily influenced many of the spacecraft design concepts
such as solar orientation, disc- cylinder (platform- radiator) construction,
wide temperature range electric design, etc.

9. 2	 Requirements of Spacecraft Thermal Design

General requirements of the spacecraft thermal design can be described as
follows. The spacecraft electro-mechanical configuration and thermal design
must be such that the utilization of currently-existing chemical and mechanical
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space components and technologies will result in a thermal system that yields
spacecraft operational-temperature extrerncs and gradients: r - ►npatible with
engineering concepts to satisfy the expermiciitid physics goals. This general
statement can in turn be translated into the following spacecraft system con-
stants which are listed in Table .,- 1. A few comments are important in order
to interpret meaningfully the data of that table,

1. The results of Table 9-I were derived from ''gross or first-order"
calculations, and are to be considered accurate to t5%. Consid-
erably more accurate calculations are possible because the Sun-
hlazer vehicle is a small (low thermal impedance) symmetrical
vehicle without complicated error inducing shapes and booms.

2. Detailed thermal calculations are not deemed important (partic-
ularly at this time) as all of the expected operating temperatures
are considerably within allowable operating limits of t1w various
electrical, mechanical, and electro-mechanical components, suh-
systems and systems.

3. The center o. the temperature (hence, the limits) range for each
individual electronic item, with the possible exception of the
solur-cell panels, can be scaled up or down if need be, by adjust-
ing the size and/or the surface coating (a ratio) of the radiating
areas,

4. The solar-cell panel will be set to operate at a minimum tempera-
ture in order to maximize energy-conversion efficiency.

5. Inasmuch as the present spacecraft is not intended to carry on-
board any sensitive (hence, uF-ually highly temperature-dependent)
scientific instruments. the actual spacecraft operating temperatures
are not critical. The general desire, therefore, is to operate at
a low temperature in order to maximize available power and extend
component life. It is especially important to start at as low an
operating temperature as feasible, in that degradation of the ther-
mal-control surface will ultimately bias the thermal balance con-
stants toward higher values,

9.3	 Problems

There are two fundamental problems associated with Sunblazer ther;-m-1 bal-
ance. The first is a large variation in solar flux, which accounts for the
rather large temperature ranges shown in Table 9-I. Second is the long
operating life required of the spacecraft. This second requirement is a
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problem because the relatively high average of :p olar flux (about 12, 700
equivalent sun hours per year) generally affects the thermal-control surfaces
so as to reduce their effectiveness, i.e. , long-term drift of ^ (the • absorp-
tivity, a, in: reuses, and the emittance, c, decreases with time). ( 1 . 2, 3,4)

The Sunblazer design concept minimizes these long-term effects because
the spacecraft is oriented toward the sun. This co,:sequently allows the
use of high-performance (low absorptivity), highly-stable (low drift) second-
surface mirrors on the sunlit portion; while oil 	 shaded (dark) ride of the,
spacecraft the surface which is made highly emissive and is unaffected by
the sun's ultraviolet. since it is in perpetual darkness. Unfortunately, the
surface properties of the solar cell areas, which necessarily represent a
large fraction of the sunlit side, will degrade in time (principally through
ultraviolet Marking of the cover shields). However, the design attempts to

minimize this degradation by utilizing .annealed sapphire covers instead of
quartz. (5' 6)

A third problem affecting thermal balance concerns control of thermal grad-
ients by adjusting the various thermal impedances. The conceptual design
calls for minimizing the thermal impedances between the solar cells and the
platform, as well as between the platform and the radiator. Additionally,
the design should maximize the thermal impedance (minimize thermal leakage)
between the platform- radiator assembly and the electronic compartments.
Low-impedance ,joints are to he constructed by brazing the platform-radiator
assembly. The high-impedance joints (shields) can be constructed by inserting
several layers of highly- reflective material between the electronics and com-
partment walls. (7 ' 8)

j. 4	 Solutions
The Sunblazer thermal balance concepts, along with the solutions to the sys-
tem problems, are described by the following; analyses.

9, 4. 1 Thermal Analysis
Referring to rig, 9-1 and 9-2, Eq (1) represents the thermal balance con-
dition. From Ed (1) the temperature may be expressed in terms of the solar
input, as shown in Eq (2). The results of Eq (2) are plotted in the upper right-
hand corner of Fig. 9-2, and we conclude that if the Sunblazer spacecraft
were an isothermal body in thermal equilibrium, the temperature range of the
spacecraft for 1 AU and 0, 635 AU would be 7 0 C to 770 C.
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A simplified calculation for' the electronic compartment tempt-rature is shown
In i .*ig. ' r -;i, 'The• values used fur • tht- s o lar-cell powi-r fth lrowcr output, and
I'adlator surface areas are t'epI'e:aentattvt- of the actual spac ce ral:t, and we

c'Aculate than the variation In the anihwnt temperature for tht . electronics,
neglectrnft Ieakage from the compartment walls, Is from - 10 o C to + 38 0 C.

F ► gur'c . ''- c shows (9) that the thermal leakage (worst cast that is evaluated
at the maxtrnu ►n tvniperature) Is ahmit 1 ''2 "' per' compartment, this when
compared to the 21 "' of Internal dissipation, is essentially negligible.

`l. 4. 2	 Sail '1'e)11her'ature

The values used for the cornputati,,n of the sail equilibrium temperature
shown in Fig, 9-5 are indicative (4 the actual sail configuration constructed
with alurn inuni- coated rnylar. The computation neglect:-, leakage from the
s pacecraft, which conceptuall y, may be made equal to zero (the sails operate
at the same temperature as the spacecraft radiator') or larger if the sails are
Utilized as additional radiation surfaces. (This technique could be used to
reduce the spacecraft temperature. )

Although the variation in sail temperature for a 0, 6:35 orbit i^ 70 c' C, a
salient feature regarding this parameter is the design ability to set this
temperature to cover almost any desired range by var yi ng the !r atio of the
front and back surfaces of the sail. The range from - 30 c' C to +40 0 C seems
to be a reasonable choice when utilizing aluminum- coated myla

9.4.3 Materials

9.4.3,1 Surfaces
The sunlit surface of the spacecraft is entirely covered (99%) with 1400 cm 
of solar cells and 425 cm  of second-surface mirrors (silver-fused silica).
Although second- surface mirrors are extremely resistant to ultraviolet and
other radiation damage (10), the solar cell covers are subjected to "ultraviolet
darkening" (browning) from prolonged exposure to space environment.

Annealed sapphire is more resistant to radiation damage than are fused
quartz, synthetic ;used silica, or the non-browning lead glasses, therefore
will yield superior performance in the Sunblazer orbit. The threshold-
integrated flixx for low-energy proton damage in fused- silica material is
apparently between 5 x 10 16 and 1 x 10 17 protons/cm 2 . A total integrated
dosage of 1.3 x 10 17 10-keV-protons/cm 2 at 2980 K results in a measurable
increase in absorptivity. The above numbers indicate that radiation damage
due to the solar wind is probably not a problem, however, little useful data
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Solar Cells Output 119-331watts
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are available regarding solar 1'laro 5, E'stttnates indicate that the • solar-flare
proton (greater than 5 MeV) flux that the spacecraft might experience is on

the order of 1 x 10 6 pt • r,t0rr5/c'111 -sec • -,r. 11	 The characteristics of flare
electron flux ar•e unknown. In :inv event, us, • of annealed sapphire and the
low- resistance (1 S2 ('tn nrater •i tl) n on 1) solar calls ,yields a desi;;n with the
least amount of time degradat ern. licyond this, as a safety factor, the
spacecraft power• system and electronics will be designed to operate with a
greatly reduced power level. 'Phis is clone by relating the average pulse rate
to the solar-cell power available.

The coatinv material for a dark (sun-shadowed surface) presents no problem.
Several surface materral^• are acceptable. Tentatively, subject to further
and more detailed investigation with surface finish, experts on such matters
as ease of application, susceptibility to handling damage, i. v. , fingerprints,
etc. , cost, etc. , the coatings such as S- 13G-type coating based on silicate-
treated zinc oxide's or IIT's Z93 (emittance greater than 0. 9) are acceptable,

The sail surfaces merit special consideration; fundamentally, from the thermal
balance and control viewpoint, the sail surface is straightforward. As indicated
in the simplified analysis, an aluminum- coated mylar with polished front (sun-
lit) side has low absorptivity, and a high-emittance dark side (painted with
zinc oxide) will yield an acceptable temperature range (7 o C to 77 0 C) over
the entire orbit. Also, if a lower a material such as polished silver (a = 0. 07)
were used on the front side, or any other material with a low a ratio, the
sail temperature can be reduced to a very low value. Ilowever, the problem
which must be solved is to maintain the integrity (performance) of the surfaces
when the sail has been deployed after having been stored for launch in a com-
pact configuration. Additionally, a surface material must be chosen with re-
gard to the stabilization torques, as discussed in Chapter 8. Aluminum-coated
mylar appears to satisfy all the requirements and is presently being used;
however, we are considering other materials.

9. 4. 4 Othc r Considerations
There do not appear to be any fundamental problems connected with the
thermal isolation of the electronics. Indeed, as the analyses indicate even
without any intention of thermally isolating the electronics, the operating
temperatures are acceptable. The problem of maintaining an acceptably
low thermal impedance, as determined from a number of tests reported in
the past, has been solved by dip-brazing the structure.

*Developed under JPL Contract NASA- 100, Sub-Contract 921737 and NASA
MSFC Contract NAS8- 5379.
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9.4.5 Results
Table 9-1I gives the expected tennperatur •es of the various parts of the space-
craft at 1 AU and 0. 635 AU.

Table 9  11
Expected spacecraft teniperatures for 3/4-year orbit.

1 AU 0. 635 AU

Solar Cells 70 C 770 C

Front Plate 00 C 650 C

Front half Cylinder -	 5 0 C 550 C

Back I lalf Cylinder - 15 0 C 380 C

Center Tube 00 C 50 C

Electronics 00 C 100 C

Sails -20 0 C 51)0 C

Aspect Sensors 00 C 300 C

Motors 00 C 200 C

Antenna -10 0 C 600 C

	

9.5	 Summary

The Sunblazer thermal-balance and control problem has been greatly sim-
plified by designing a sun-oriented spacecraft with eternally sunlit and dark
surfaces, maintaining relatively short thermal paths, optimizing the thermal
radiator dimensions (see Appendix 3 ), and thermally isolating the electronics
and electronic radiators from the main body of the spacecraft. Additionally,
the various electronics have been designed for wide-temperature operation;
and the use of highly temperature- sensitive components has been kept to a
minimum. There is much detailed work to be accomplished; but conceptually,
the overall design and analysis show that contemporary spacecraft- design
techniques, materials, and components are available to accomplish readily
the proposed scientific and engineering goals.

	

9. 6	 Spacecraft Thermal Test
A study made in June 1967 determined that, if the spacecraft did not orientate
into position within a day, the total temperature balance could be below - 7 0 C.

This was corrected by increasing the radiator's len.gth, which then gave the
Spacecraft an average temperature above - 7 0 C no matter what its orientation.
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ited from each

A test chamber then was built using; infrared radiation as an energy source.
The cold wall reached -313 0  F and the vacuum was 10- 5 torr. Although the
source did not match the solar spectrum, it did match its energy flux and
was a good ''in-house'' test chamber. There is only one chamber that will
give a true picture of what the vehicle will see, and that is outerspace. Every
earth-bound chamber has its shortcomings. The information obOined from
the test chamber was correlated with that which had been calculated. The
information received from the test, which would have been very difficult to
calculate was:

1. The electronic side wall runs, on the average, 6 0 C higher than
the radiator.

2. The electronic radiator, with a simple rubber insulator , will
produce a 250 C gradient with the electronics side wall at 0. 6:3 AU.

Calculations were made to determine the size of the electronic radiators
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10. 0 ASPECT SENSOR AND CONTROI.

The use of an active solar pressure orientation and stabilization system on
the spacecraft requires a device which is capable of measuring the angle
formed between the sun line and the spacecraft's major (spin) axis. A sub-
system capable of performing this function, which is independent of the space-
craft's main electrical systern, consists of a detector, signal-processing
electronics, photo-electric transducers, energy storage and an RF trans-
mitter. This sub-system is called the Aspect Sensor.

The Aspect Sensor has two principal functions, which are of about equal
importance. The first is to process information concerning spin rate and
sense with respect to sun angle, and to provide electrical pulses to the sail-
drive stepping motors to cause a properly sensed pitch of the sails to occur.

The second function of the Aspect Sensor is to provide basic engineering
telemetry data during the time interval between launch and initial spacecraft
sun aquisition.

10. 1 The Detector Mechanical Configuration

The detector design consists of photo-electric diodes which have their light
source interrupted (chopped) by means of mechanical apertures which are
sequentially exposed to sunlight due to the spacecraft's rotation and sun-
alignment error.

The detector is mounted on the spacecraft's spin axis at the forward end of
the Hub, and projects beyond the main solar-cell array by about 1. 5 inches.
In Fig, 10-1 the detector configuration is shown. It is essentially a truncated
cone which has a central tubular compartment surrounded by six radially
isolated compartments. A photodiode is positioned in each of the seven
compartments, and is thereby provided with an individual view angle deter-
mined by an aperture which ranges from a pin hole to a nearly full-length
slot.
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he th-ee full- lent,Rh slots ar •e used to 'leler • rrcine the spi ► , r • nte (,,) and sense,

"	 and tilt , photocliodes IssOci;rtv o I Stith these ., ry iderrtifie(i as wl, w2 and :1.

The cent ral pill hole and the three sl)ta ^^ith varied side position and length

are used to obtain rrleasurenrc-nts t,f still 	 (t)), and their associated

photodiodes are identified :rs ()1, 02, 03, an(l 04.

10. 1. 1 The !)etec • tm . Design

The ow , w2, and w:3 1) h ot (), I I () de Iperture• slots ;rre mechanically situated to

provide light to their associated diode Minn the sun angle is greater than 0, 5c'

and less than ' p l c'. potation c r the sp;rc • ecr • aft will sequentially allow sun-

light to illuminate wl, w2, anci u ! 3 when the spacecraft rotation is counter-

clockwise: as viewed frorrr the solar- c ell array (normal rotAiorral sense during

launch). The three electrical pulses generated by the photodiodes are digitally

processed to provide a measurement of rata, since the time between each

pulse represents one third of a revolution; and the sense of rotation b y rrroni-
toring whether the sequence is 4A, w2, w3 or • w3, w2, w 1.

The apertures provided for the measurement of 9 are designed logaritrrrnical-

ly to provide four incremental steps below 12 0 of sun angle, and three steps

het %,veen 12 0 and 900,

):F igure 10-2 shows this logarithmic progression of 8 diode view angles:

091 observes between 00 and 3, 50

92 observes between 1. 8 0 and 12c'

93 observes between 6, 50 and 440

04 observes between 24 0 and 900

The overlap of view angles provides seven distinct measurement steps, which

are:

01 = 0 0 t o 1. 80

91 92=1. 80 to 3. 50

02 = 3. 50 to ti, 50

92 03 = 6. 5 0 to 120

93 = 12 0 to 240

03 '	 94 = 24 0 to 440

04 = 44 0 to 4)00

The pulses generated by the w and 0 photodiodes are shown in Fig. 10-3, The

seven distinct pulse formats generated by the 9 diodes can be processed and

stored in a three-bit digital register as the numbers one through seven.
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11.0	 Sl .\BI.AZKH SPACI-X11AFT I'tMER til'S'I'ENI

	11.1	 Introduction
The fundamental consideration regarding, the 5unblar.er splic(-d r aft paver
system is to generate at all tinrea s as much "useful" power per 1111it f,f mass

as passible. In order- to do this, the spacecraft is designed so that Ih(- so-

lar cell panels are oriented towards the sun and operate at as law a tenipera-

ture as practicable (sere Chapter tt). The solar-call energy conversion e ffi-
cieney is maximized by adequately shielding the solar cells to prevent ex-
cessive degradation with time, and by operating the panels at the maximum
power point throughout the orbit.

	

11.2	 System Description
A simplified diagram of the power system appears in Fig. 11-1. The 640

0 x 2 cm) n on p blue-shifted 1- Q-cm solar cells will deliver approximately
113 W at O°C (1 AU), and 33 W at 70oC (0.635 All), if the solar-cell panel is
operated at the maximum power point WPM!

There are two "I," converter units:':():(nits: one low-power, which operates the
tracking beacon and circuits that musi be energized during the spacecraft
orientation phase; and a high-power unit, which is switched on to supply the
high-power pulsed transmitter when the spacecraft is oriented towards the
sun.

A set of nickel-cadmium batteries, which is continually recharged from the
low power "L" converter, is used as a source of initial energy to activate
the solar-sail stepping motors and to run the tracking beacon. There are
several different spacecraft operational modes which depend upon the amount
of solar-cell power available (pointing angle with reference to the sun).
These modes are controlled by the sensing power available, and

*State-of-the-art with matched selected cells.
**See Appendix 2
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by selection of the prober mode.

11.2. 1 Solar-Cell Panels

Plate 2 shows how the individual solar cells are placed to farm the

Sunblazer solar panel. Since so much well-detailed material has been doc-

umented regarding sol " r-cell panel design, manufacture, operation, and

testing for many different space applications, it is riot necessary to delineate

a set of solar-cell panel specifications in this report. "'lien the Sunblazer

panels are manufactured the specifications will be su.rh that: l) state-of-

the-art cells will be used; and, 2) strict compliance with acceptable manu-

facturing practices (materials and workmanship), as described in various.;

I^ASA documents, will be enforced.

Special aspects of the Sunblazer panels and mission are:

1. Tire relatively small number of solar cells per space-craft (640)

should s nable the panel manufacturer to select cells from the

upper portion of the distribution curve in order to obtain Higher

energy efficiency than is feasible with large arrays, and still

maintain adequate yields.

2. Better control over initial cell selection and matching is possible

(that is, tighter selection limits can be set on various cell char-

acteristics), with fewer cells, thereby decreasing the mismatch

loss of this array.

3. Flat arrays, where the sun angle to all cells on the array is the

same, further decreases the mismatch loss when compared to

cylindrical arrays.

The Sunblazer array is made up of 16 parallel strings with 40 cells per string.

Table 11-I shows the nominal current and voltage output of the array.

Table 11-I

Nominal current and voltage output

of Sunblazer array

1 AU 0.635 AU

TAU I V P
TA iJ

I V P

50
C 0. 96A 20V 19. 2 watts 75 0

C 2. 3A 14. 1V 33 watts
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11. 2. 2 Power C onverters

11.2.2. 1 "L." Converter

The problem of utilizing the maximum available power from a power-limited

source such as a solar-cell array can be solved by providing an adaptive

do-to-dc converter, which automatically adjusts its input parameters so ;+.s

to take the maximum power from the source.

There are several possible approaches to the problem of providing an adapt-

ive peak-power-seeking converter. Perhaps the most obvious approach is

to sense the power drawn from the source, and to adjust the input parameters

so as to maximize this power. If this power-sensing approach is used, the

peak-power point can be tracked by continuously varying the converter input

parameters and by reversing the sense of parameter variation whenever the

sensed power begins to drop. This scheme causes the converter to dither its

operation in a small range about the true peak-power point.

A more subtle approach is to use the principle of impedance matching. One

notable characteristic of a solar-cell array is the high degree of convexity

of its V-I characteristic. Because of this high degree of convexity, it is

possible to choose an impedance which will define a point that remains near

the peak-power point over a wide temperature and illumination range. A

theory of an adaptive converter based on this fact has been discussed in de-

tail in Appendix 2. This conversion technique has the difficulties of a

number of possible "latch-up" conditions which must be avoided, and also

of doing only an approximate job of tracking the true peak-power point. In a

study of techniques to eliminate the aforementioned latch-up conditions with

a minimum of extra complexity, an equally simple and very similar system

was developed, which would both eliminate the latch-up conditions and provide

true peak-power tracking.

It can be shown that, when the static impedance of a load is equal to the in-

cremental impedance of the source to which it is connected, the power being

transferred is at a maximum. If the dynamic V-I characteristic of a source

is equivalent to the power-determining do V-I characteristic, then the incre-

mental impedance of the source can be determined by allowing some ripple

current to flow in the source, and observing the ratio of the AV and Al pro-

duced at the source.

The static input impedance of the converter is of course determined by the
T

ratio V /I, the input voltage to the input current. If	 = I, ".hen maximum
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power is being transferred. Rearranging this equation gives the peak-lx)wer

condition as met when 
AV = D. 

This form of the equation suggests the use

of a converter in which AV and Al are controlled to be a fixed fraction of V

and I respectively.

Ry using an inductive flyback "boost" converter, in which the state of the

power switch is controlled by a flip-flop that changes state whenever the

input voltage or, current falls a fixed percentage of the pre-existing input

voltage or current, peak-point power conversion can be accomplished.

The ''L" converter that has been built (Vig. 11-2) utilizes this principle.

Q 7 is the power switch, and Q5 and QG :p ct as a high-current-gain driver to

minimize the load on the flip-flop.

Transistors Q8, Q9, Q10, and Q12 form the flip-ilop, which is set or reset

through clamped coupling networks that remove the base drive from the

flip-flop's input transistors whenever the voltage at the input to the coupling

network has fallen a given percentage of its initial value. Q1, Q2, Q3, and

Q4 form a linear amplifier, which amplifies the small voltage drop across

the current-sensing resistor R1 to a level where it can be coupled directly

to the flip-flop. A dual F ET input stage is used in this amplifier to eliminate

the need for a negative supply voltage to obtain the near-zero input voltage

offset that is required in this application. D5 and Q11 form a series regula-

tor to provide control-circuit power.

Por this converter OV = DI = 0. 1. It was found that this was a nearly opti-

mum figure, in that a smaller value would require a correspondingly larger

inductor, thus increasing the size and weight of the package; and a larger

value would result in less efficient peak-point conversion because of the

larger per-cycle variations from the true peak-power point.

It is interesting to note that this method of tracking the peak-power point of a

solar-cell array or other electrical-power source does not depend on the

source having a convex V-I characteristic or any other special nonlinear

V -I characteristic. It will seek the maximum power point and operate nicely,

for example, with a source composed of a constant emf and a resistor.

11 .2.2.2 "X" Converter

Basically, then, the "X" converter consists of two converters operated at

10 kHz, of which one is a standard Royer circuit. The primary voltage is

supplied by a battery through a series regulator. The secondary supplies

base drive to the transistors of the second converter, and a rectified do input

to a second series regulator. This provides the required 1 010-regulated voltage

at output. (See Fig. 11-3)
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Table 11-II

"L" Converter parts list.

ITEM CODE Di:ti('It1I'TION MANIIF'AC'TUltl:it MF'(i PART NO,

t itl Resistor 0.'24 S2	 3 W
for• nle-1 in hreadhoar•(1
mo ale 1 from two 0. 47 SZ
reslwtOI, !,	 in parallel,
F• ,1(	 11	 being: IRC 'I'yIn•	 14" 11

2 R2 Resistor 15K 5"' C)hnlile• It('07GF

3 113 Resistor 300K 5"', 011111ite RC07(;F

4 R4,	 I114 Resistor LOOK 5"' Ohnlite It OU;F

5 R5,	 1113
R15,	 R17
RV), R30 Resist or IOK 5'"^ Ohmite RC07GF,

6 Rtl,	 11,20 Resistor 1. 5K 5"i Ohlnite It	 OU;F

7 R7, R8 Resistor 47K 5"', Ohmite RC'07GF

8 R() Resistor 2.7K	 5 1 ", Ohmite RC20GF
r) RIO,	 R19 Resistor 0. 1  5": Ohmite It('07GF

10 1111 Resistor 9. 1K 5'", Ohrnite RC20(iF

11 R12 Resistor 4.7K 5'" Ohmite RC07GF

12 1116 Resistor 5.6 1110% Ohmite RC2OGF

13 R18 Resistor 1.8K 5 1 , Ohnlite IWO7GF

14 R21, R23
1131 Resistor 62K 5", Ohmite RC07GF

15 R22,	 R24.
R32 Resistor 18K 5";, Ohmite RC07GF

16 R25, R28 Resistor 27K 51^- Ohmite RC07GF

17 R26 Resistor 3K 5";, Ohmite RCO'iC,F

18 R27 Resistor36K 5";, Ohmite 11C'07GF

19 Q1 Transistor Texas Instr uments 2N5045

20 Q2, Q3 Transistor Solitron Devices 2N2605

21 Q4, Q8,
Q9, Q10,
Qll, Q12 Transistor Solitron Devices 2N930

22 Q5 Transistor Texas Instruments 2N718A

23 Q6 Transistor Texas Instruments 2N4000

24 Q7 Transistor Texas Instruments 2N3421

25 D1 Zener Diode Motorola 1N746

26 D2, D3 Diode General Electric 1N4444

27 D4 Rectifier Unitrode UTR4410

28 D5 Zener Diode Motorola 1N968H

29 C1, C4 Capacitor 0.022 H Cornell- Dubilier DMFIS22

30 C2 Capacitor 0.01 NF Cornell- Dubilier DMF2S1

31 C3 Capacitor 10 pF Sprague IOTCC-G10

32 C5 Capacitor 0.2'2 u Cornell- Dubilier DMFIP22

33 I	 T1 Tapped Inductor Wilmore Electronics Special
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11. 3	 Energy Storage Tests

A transistorized H kkk do switch was designed to enable capacitor-pulse-dis-

charge testing. The overall test configuration simu!:.ied the spacecraft power

system, since it incorporated a Solar Array Simulator (SAS), a prototype "1."

converter, and eight parallel-connected capacitors (9000 jA , 40 V each).

The SAS is powered by a 35-volt, 0-3 tl power supply, and biased by a 6-V

battery. The SAS uses solar cells, of the type to be used in the spacecraft,

in the feedback path of a high-power operational amplifier, such that the

amplifier's output is a scaled-up representation of the voltage-current char-

acteristics of the solar calls.

The frequency-response characteristics of this closed-loop amplifier are so

much higher than the frequencies involved in the maximum-power -se!e-king

"1." converter that the accuracy of both the de simulation and of the dynamic

simulation is excellent .

Two controls are provided to allow independent adjustment of the SAS output

voltage and current, in order to simulate spacecraft attitude and/or orbital

positions.

The "L" converter receives the SAS output power, and essentially transforms

the array into a current source, which is capable of charging the energy-

storage capacitors to any desired voltage amplitude, dependent only on the

duty cycle of the pulse format and the available solar-cell power.

This stored energy is then transferred into a resistive load, by the switch

which is driven into conduction by a pulse train similar to the spacecraft's

RP transmission format.

The load resistor used is four parallel lengths of nichrome resistance wire (zero
thermal coefficient of resistance). Resistance is measured on a General Radio

bridge, and is then rechecked dynamically by monitoring its I characteris-

tics. Test-load resistances used are generally in the 0.3 to 0.5 0 range.

With this load resistor of known value, the various parameters of the energy-

storage system can be empirically observed.

The total capacitance of the 8 paralleled capacitors can be interpreted by

observing the time required to discharge to 36.8% of the initial voltage through

the load resistor. Fig. 11-4 shows such a discharge curve, where E =5V/cm,

and T - 5 ms /cm, E 0 = 40 V, E f = 40 x 0. 368 = 14. 72 V. This occurs at

6.2 cm x 0.5 x 10
-3

 sec = 0.031 sec.

C	 R	
0.460 _ 0.06739 F = 67, 390 µF
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5 vo'Lt.s/cm

5 msec./cm

RL = 0.465

I'ig. 11-4 Capacitor discharge.
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11.;3.1 Interpret.ction of a 'Typical Pulsed Power Test

The ''I." converter is desikined to track the varying peak power of the solar-

c( . 11 arrav as the spacecraft travels nearer to the sun. To observe this

unique el ► cu r acteristic of the converter, the Sok- r Array Simulator NAS) was
energized and loaded by a variable resistor. 'I he two controls of the SAS
were advanced in position increments, and the Leak- power point of each con-
trol setting was deterrrrined by observation of the maximum voltage and

current obtainable (peal: power) at the load resistance. These data provided

the SAS output peak-power curve shown in Pig. 11- 5.

\% ith the y SAS now supplying power to the "I," converter-, which in turn charges

a paralleled capacitor bank that is pulsed-discharged by the do switch, an ob-
servation of the converter and capacitor characteristics can be made.

By setting the E and I dial controls of the SAS to positions similar to those
used in the dummy-load test, the duty cycle of the pulse: format is changed
to allow all

	 amplitude of 45V on the capacitors at the beginning
of the pulse discharge. In this manner, the data shown in 'fable 11-IV were
obtained, and the indicated power levels have been plotted in Fig. 11 - 5 with
the dummy-load power curve.

Since the load resistor ' s value has been carefully determined, the amount
of capacitance in the energy storage can be determined, and the joule dis-
tribution in the system can be examined.

The capacitance = C W	 t
V

In V x R I.
f

^, = 0.003 sec

In ^ x 0. 39
0.003 

= 67,876 µii'
0.0442

which is in agreement with the C determined previously with a different R [.
by the time-constant method.

The energy delivered by the capacitors can be determined by the difference
in the joules stored in the bank before and after the discharge pulse.

J = Cv2 = 678 x 10
-4 

x 4 52 = 68 65

	

0	 2	 2

	

J = 
678 x 10 -4 x 402

f 	 2	 = 54.24

Jo -Jf = 68.65 - 54.24 = ',4.41
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Fig. 11-5 "L" converter pulsed power tests.
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Joules in the pulse = 464 "' W x 0.003 s = 13.93.
Joules dissipated in capacitors n 14.41 - 13.93 n 0.48

Watts dissipated during pulse : 0.48J _ _ = 160W
3 x 10 ' sec

Average watts dissipated at 12-W input - 160 x 183 x 10 -5 - 0.29 W

Average watts dissipated at 27.6-W input = 160 x 468 x 10 -5 = 0. 75 W

Assuming 0.5-W average dissipation per capacitor bank, the average power
dissipated per capacitor =

	

0.5W	 = 0.062W8 capacitors

The average efficiency of the capacitors is determined by
PP and is 89. 7%

L

The discharge efficiency of the capacitors is determined by

J load _ 13.93

	Jdel	 14.41 = 97%

The recharge efficiency must then be:

Total Av. Eft,	 89.7 6 = 92.5%Discharge  v Eff	 o

Table 12-V indicates a requirement of 4370 W do input power to the RF sub-
system.
The excess pulse power It livered in test - 4642 W - 4370 W n 272 W.

The average excess power at 12-W inpu ,'. n 272 W x 183 x 10 -5 = 0.5 W.

The average excess power at 27.6-W input = 272 x 468 x 10 -5 = 1.28 W.

The average excess power for use in operating the "X" converter and low-level
power system over the test input-power range is

1.28 + 0.5 = 0.89 W2

The average power delivered to the load in this test has been plot.ed versus
a duty cycle which provides a peak amplitude of 45 volts (in Fig. 11-6). It
can be observed that a duty cycle of 3 x 10 -3 will deliver 14 W to an equiva-
lent load of 0. 3952.

With an RF sub-system requirement of 4370 W, the egvivalent load resistor
would be:
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Duty Cycle (x10-3)

Fig. 11-6  Capacitor power output vs duty cycle.
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1	 1

il,	 ,	 ^Rh 2 a 4370 0.413352

rather than the 0. 39n load used in the test.

11. 3.2 Capacitor Vacuum Test
Twelve .specially-designed capacitors were purchased from Sprague Electric
Company for evaluation as energy-storage devices for a pulsed-discharge
system operating in a vacuum.

Three of these capacitors (A, B and C) were operated in a pressure equal to
1 x 10 

5 
torr, and were delivering about 2kW pulses of 3 ms in length at a

duty cycle of U.004 from Octouer 25, 1.967 to February 29, 1968 (4 months).

After the construction of the high-power switch, ten capacitors in parallel

were tested at the 4-kW pulse amplitude, 3-ms width and a 0.003 duty cycle

at 1 x 10 -5 torn from March 8, 1968 to May 27, 1968 (2 1/2 months). Three

-f the capacitors in this group of ten were the original A, B and C which

showed no weight loss after 6 1/2 months exposure to low pressure.

11.3.3 Internal Pressure Relief Test

The Sprague capacitors were designed with the container scored, intended

to perform the venting in case of high internal pressure. ThiF, design was

selected over the standard vent, which is a thin diaphragm of plastic, usu-

ally positioned as a hole cover in the terminal plate of the capacitor.

To check the proper functioning of the scored can vent, a selected capacitor

was overcharged by 150 percent (60V), and within one hour the scoring

fractured slightly, developing a relatively small orifice which provided a

controlled exhaust of the artificially-generated internal pressure.

11.4 Power System Summary
The power system consists of 640 1 x 2 cm solar cells in 16 parallel strings

of 40 cells each. Because the spacecraft is solar-oriented, the number of

cells per spacecraft is kept to a minimum and it is economically feasible to

select only the cells of highest performance, and carefully match cell per-

formance, to maximize the energy -conversion efficiency. This design allows

minimum power per unit mass. The power converters have been designed

to track automatically the solar cell panel V-I characteristics over the en-

tire orbit (see Appendix 2). The design of the spacecraft energy-storage

system, which is based on considerable analysis (Appendix 1), utilizes eight

capacitors and has a redundancy factor greater than two. That is,
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only three capacitors in parallel are required to operate the system.

The prototype 3f the entire Sunblazer power system, utilizing a solar-cell
panel simula+ar, has Laen bench-tested, and the design proven.
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CRAPTER 12

12.0 RF SUBSYSTEM

The primary function of the Sunblazer electronics system is to generate pulse
signals which will be used to probe the Solar Carona. Three subsystems,
digital, RF, and power, are involved. (See Fig, 12-1)

The power subsystem converts the solar energy into electrical energy, main-
tains the charge on the capacitor package used for energy storage, and pro-
vides and regulates the voltages which are necessary for operation of the
transmitter and digital subsystems.

Signal generation and housekeeping information-processing are handled by
the digital subsystem.

The RF subsystem consists of a 2 kW transmitter which generates this power
at three discrete frequencies, 70 MHz, 75MHz, and 80 MHz, which are neces-
sary for the main experiment. In order to phase-lock the RF pulses and
their envelope, a common clock drives the digital and RF subsystems. The
2 kW RF power level is achieved by cascading amplifiers of progressively
higher power-handling capabilities, with the ultimate amplification being pro-
duced in the final stages by the paralleling of several single-stage amplifiers
of one type, called the basic-power amplifier.

12.1	 RF Subsystem Functional Description

The Sunblazer electronics system diagram print (see drawing No. 106-615,
Fig. 12-2) shows the relationship of the RF subsystem to the digital and
power subsystems. The power- supply delivers to the transmitter the follow-
ing required do bias voltages: 1OV, 10V regulated, 30V and 45V.

The RF ch., Ln etarts with a 5 MHz crystal oscillator (Fig. 12-5). The output
of the oscillator is fed into a two-stage feedback amplifier to provide load
isolation and to bring its microwatt level up to about 1 mW.

The feedback amplifier drives a saturated 5-MHz line driver which provides
a stable 6.0 mW with respect to variations in temperature.
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This power is divided by three, and distributed to the digital subsystem (clock

signal), to the sidebands generator (ar a-m modulating signal), and to the x 15

frequency multiplier (Fig. 12-6).

The 75 W.Hz output of the frequency inu)tiplier is further amplified to 4.0 mW

by the two-stage 2N918 RF amplifiers.

This power is divided by two: one part of it constitutes the high-frequency

component in the sidebands generator, the other makes 75 MHz available at

the diode switch input port.

The nixing of 75 MHz and 5 MHz signals is processed in the sidebands genera-

tor whose 70 MHz and 80 MHz outputs are then also fed to the diode switch

input.

Thus, three discrete frequencies, 70 MHz, 75 MHz, 80 MHz, are Uvailable

in CW mode at the diode switch input port.

The diode switch, which is normally in the "off" condition (i.e., no signals

reach the modulator), is activated through frequency-selecting gated signals

generated by the digital subsystem. In this manner, transmission through

the main chain is made possible at any of these frequencies.

The selected frequency is fed into a phase modulator where it is multiplied

by + 1 or -1 in order to generate a desired code word. The command to this

00 or 1800 phase shifter is also generated in the logic subsystem.

.	 In order to increase the overall do-to-RF efficiency of the system, the 2 kW

transmitter is turned on only when a signal is to be transmitted. This is

realized by keying (Fig. 12-8) the IOV biasing voltage of the two-stage 2N918

amplifier, which brings its own RF output power level to 30.0 mW.

The keyer also phase -locks any RF signal with its envelope.

Thus, the transmitter must operate under a pulsed condition. At the present
time, the pulse format is fixed as a 3 ms pulse occuring every second. This
corresponds to a duty cycle of

Duty cycle = 1 Mss x 100% = 0. 3%

A fact worth noting at this point is tie capability of this new Sunblazer trans-

mitter system to generate (if necessary) three different intrapulse coding

schemes by properly activating the diode switch and the modulator. We can

define these groups as follows (Fig. 12-3):

Group 1: Code words generated at one fre-
quency by means of 0 and 1800
phase shifter (binary code).
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Group 2: Code words generoated at a con-
stant phase (all 0 or all 180c^
phase shifted) by means of a
sequence of different frequencies
(ternary code).

Group 3: Code words generated from the
combination of the two previous
groups.

The 30 mW peak power at the output of the two-stage 2N918 amplifiers is con-

nected to a cascaded two-stage 2N2219 and a :saturated two-stage 2N4128, the

output of which brings the power level up to 25 W. The use of a saturated

system at this point is to preserve the output level, and consequently to pro-

vide a constant drive to the RF chain, which is thereby isolated from the fluc-

tuations in the low-level	 To establish load isolation and to prevent

amplifier oscillations, a 3 dB hybrid (Fig. 12-12) is used as a two-way power

divider. This provides 25 W RF input power, the required drive to the two

paralleled 3TE225 basic amplifiers (Fig. 12-11).

The outputs of both basic amplifiers are combined and padded down to give a

drive level of 78 W. A second paralleling of six basic amplifiers by means

of 3 dB hybrids (which have an efficiency of 97% and a minimum isolation be-

tween the two output ports of -30 dB) and three-way power combiner-divider

networks (Fig. 12-9) brings the power level up to 420 W.

In the final stage, 32 basic amplifiers are paralleled by using the same tech-

niques to provide 2200 W RF power to the antenna.

One of the major characteristics of the transmitter chain which is to be em-

phasized is the requirement of a 10 MHz bandwidth with a center frequency

of 75 MHz starting at the output of the modulator and continuing through all

the supplementary circuitry to the antenna.

12.2 Generation of the Three Discrete Frequencies

Figure 12-4 is a block diagram of the frequency-generator system. Set fm =

5 MHz as the modulating frequency and f  = 75 MHz as the carrier frequency,

with f  obtained from fm by the x 15 frequency multiplication.

Thus, cos 27rfct is made available at the output of the system. In order to

generate the Pideband frequencies, L e. , cos 2  (fc - fm)t and cos 2v (fc + fm )t,

we feed both cos 2 r fct and cos 2n fmt into two balanced modulators, as indi-

cated in Fig. 12-4. The upper balance modulator has then an output
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cos 21rfct cos 21fmt = 1/2 [coo 2r (fc + fm)t

+ cos 2 i (fc - fm)tl
	

(12.1)

The lower-balance modulator gives an output

sin 21rfct sin 21rfmt = 1/2 [cos 2- (fc -f M )t

- cos 2 - (fc + fm)t,
	

(12.2)

The addition of (12. 1) and (12.'2) delivers the lower sideband signal
cos 2fl(fc - fm)t. In order to obtain the upper sideband signal, (12.2) must be
subtracted from (12. 1). This is done by the 180 0 phase-shifter and combi-
ner networks. One should note that in this mathematical analysis, for reasons
of simplicity, the amplitudes of the signals have been deliberately assumed
to be equal to unity. In a practical case, however, one should take into con-
sideration the different amplitude levels and, therefore, design the mixer so
that an optimum cancellation of unwanted frequency components on each of the
three frequency chains can be achieved.

12.3 RF and do Power Profile of the 2 kW Transmitter

Table 12-I indicates the estimated RF and do power requirements for each
section of tht transmitter. It is assumed that:

1. Combiner-divider networks have 9510 efficiency,
2. 3 dB hybrids have 97% efficiency,
3. Basic amplifiers have 8 dB gain with 75 W RF output

45 V B+ level and 70% do-to-RF efficiency.

The sections are sequentially listed from the high RF output power level
(i. e., required power for transmission) to the low end (i. e., oscillator).

12.4 Circuit Information

It is obvious that some of the circuitry designed for the previous 650 W trans-
mitter may be useful in the present 2 kW version. With the exception of the
70 MHz and 80 MHz frequency generators, the circuitry for the low-level
power remains basically unchanged (see Fig. 12-2, drawing no. 106-615).
No major circuit modifications except broadbanding, which is present at the
output of the 2X2N4128 saturated stages, are introduced up to the 25 W level.

Generation of broadbanded higher RF power by the use of ITT 3TE225 transis-
tors and new broadband matching and paralleling techniques makes the high
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din ►ut(s)

[IF power section of the 2 kW transmitter unique.

12.4.1 5 MHz Crystal Oscillator

The following block diagram briefly explains the theory of oscillators.

• (s) and f (s) are the network functions of both the active and passive networks.
• (s) is the forward transmission; f (s) is the feedback network. 0 (s) repre-
sents the Laplace transform of the sigral, which can be either a voltage or
a current.

The following equations can be written:

Oout(s) s a (s) 01in(s)

ofin(s) - #in (s) + Oout(s) . f(s)

The overall gain of the system is:

	

A(s) -Oo-=—
	 a(s)

	

Oin(s)	
1- a(s) f(s)

Oscillations take place when A(s) - o0

a(s) f(s) - 1 therefore,

a(s) f(s) I - 1 and,

angle a(s) f(s) - 00 or 3600

p
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1Crystal	 MC621	 )c

I
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Fig. 12-5 5 MHz crystal oscillator.

Figure 12-5 shows the circuit of the MHz crystal oscillator designed ac-
cording to the principles previously presented. The variable capacitor
MC621 in the f(s) passive circuitry provides an adjustment in frequency over
a range of approximately 20 ppm. Frequency variations with temperature
are limited to 30 ppm by the crystal. Double regulation ( 10V reg. and 5.6V
zener diode) is used to do-biao the oscillator, thereby minimizing frequency
shifts caused by do voltage variations.
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12.4.2 x 15 Frequency Multiplier

{ The device used to achieve frequency multiplication is a step-recovery diode
(Fig. 12-6) which has in the off condition an abrupt recovery time (see the
characteristic curvew Fig. 12-7.).

According to the Fourier analysis of periodic functions the output of the step-
recovery diode contains several harmonics c.f 5 MIIz.

The use of the 2 dR pad at the input helps to vtabilize the operation of the
multiplier with temperature variations. The series-resonant circuit, L  CIO
provides a clean 5 MHz input to the diode which is o;aerated far below Its cut
off frequency. The operating point of the diode is defined by K b . At the out-
put, L2 , C 2 , L3 , C 3 and C 4 constitute filtering and matching networks for
75 MHz.

+10V Reg.

Input
5 MHz

r

R 	 Output
r 3 L3	75 MHz

I_0jT i
C 2	 ca

iode 	 _	 _
Recovery

L1
LZ

Step
D

Fig. 12-6 5 MHz to 75 MHz frequency multiplier.

Regular diode

Input	 Step recovery
diode	 Output

Fig. 12 -7 Comparison of the output waveforms
of regular and step recovery diodes.
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Interface

Digital Subsystem RF Subsystem

12.4.3 tOV Mas Keying Network

+10V

R3

02

R4

to keyed amplifier
Rl	

01

I	 ^ O RFR2	 Amplifi
I
Fig. 12 -8 Keying network.

R 1 through R4 are biasing resistors determining the simultaneous switching

levels of both switching transistors Q 1 and Q2 . A positive pulse fed into the

input of the keying network turns on Q 1 and Q2 and causes a lOV bias level to

appear at the keyed RF amplifiers.

12.4.4 N-Way Power Divider or Combiner Networks

Power-divider or -combiner networks differ, as their names indicate, only

in their application. Both could be represented by the same black box with

a one-port on one side and an N-port on the other. In the case of a divider

network, for example, power is fed into the box through the single port, and

an N-way power division is obtained at the output.
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X'00^ Rload

This type of network requires the following features:

1. For the designed frequency, it must introduce the same phase shift
for all N - ways. (kquiphase signals)

2. For the designed frequency, all the N-ways must be equally loaded.
(Iquiamplitude signals)

3. The network must be applicable for any value of N. (N could be
odd or even)

4. In order to minimize the effect of errors ( short circuit, mismatch,
open circuit) frot j one channel to the other, a good isolation be-
tween the individual N-way ports is necessary.

5. It must have a low insertion loss.

Figure 12-9 shows a network designed with 95 1r, efficiency and a minimum
isolation of -30 dB.

R 

R 
ti

Fig. 12 -8 N-way power-divider or combiner networks.



The tr .nsmission lines have a chara nteristic impedance of Z. and a length
of A/4. They can be synthesized with lumped LC networks in highpass (HPN)
or low pass (LPN) configurations. The analytical relations are:

R  - It load

ZQ 9^N It load

Z 2

R - Z	 - 'Rload - R
s	 input	 N	 load

12.4.5 Basic Amplifiers

Some of the major factors which prescribe limitations in designing a space-
craft transmitter are the following:

1. Weight: The weight of the transmitter must be held to a minimum
because of the limited payload capabilities of the launch
vehicle used.

2. Volume: In order to locate all the electronic subsystems in the
volume available in the spacecraft, the circuitry has to
be as miniaturized as possible.

3. Power:	 Regardless of these physical limitations, the transmit-
ter is required to deliver the maximum possible high-
frequency output power.

These arguments justify the importance of the curves RF power out vs fre-
quency (Fig. 12 - 10) for different types of transistors, and the selection of
ITT 3TE225 devices as typical for application in the basic amplifier.

Besides their high RF - output power capability, the 3T8225's assure a high
do-to-RF efficiency. This feature has two advantages. First, for a given
RF output power, the selected transistors reduce the high do power require-
-rent. Second, due to the smaller internal power dissipation of the device,
an increase in its longevity is anticipated. Several tests and measurements
on these devices show the possibility of achieving efficiencies of 80% in a
large signal, class C, pulsed operation.
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Pow

C6

Power out

—_O

Fig. 12-11 Basic amplifier.

Figure 12-11 represents the circuitry of the basic broadband amplifier. The
components C O , R 1 , L 1 , C 1 , L2 , C 2 constitute a low Q and, therefore, a
broadband matching network. Matching is done at 5052.

The components R 3 , L3 , C 3 constitute a notching filter designed for the cen-
ter frequency. Its function is to reduce the level of the RF-output power of
the basic amplifier at the center frequency to the power levels at the side-
band frequencies. The 75 MHz resonating output network is mainly consti-
tuted by L4, C 4 and the output capacitance of tiic device. C 5, L 5, C 6 repre-
sent the matching network at the output. In addition, C 7 , C 8, C 9 are bypass
capacitors and C 1 , C 5 also have do blocking functions.

The design goal is to obtain, with amplifier circuit under class C operation,
a pulsed output power of 75 W with a B+ = 45 V, and do-to-RF efficiency of
70 percent.
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12. 4. 6 3 dB Quadrature Hybrid Circuits (1)

L1 	LZ

1	 sY'Y'	 3

yCl
C 3 	 C4	 C5T =	 'f'

L3	 L4

2
	

4I C2

Fig. 12-12 3 dB quadrature hybrid.

The lumped circuit realization of the quadrature hybrid is given in Fig. 12-12.
In the figure all the inductances are equal to a value L, where L is given by

Zo

	

L - w	 (12.4)

and Z0 is the characteristic impedance of the transmission line system in
which the coupler is used and is is the design frequency. The capacitors C 1
and C2 are equal, and related to the characteristic impedance by

Z 1	 _	 1o _ 
1̂	a` 2	 (12.5)

C
The capacitors C 30 C 4 and C 5 are equal to ^.

The operation of the circuit is outlined below. If points 2, 3, and 4 are
terminated to ground by the characteristic impendance Z o, and the circuit
driven by a matched generator at point 1 to ground, power is divided equal-
ly and wilaout loss between the loads connected at points 3 and 4. Point 2 is
decoupled. On the t,}' per hand, if joint 2 is driven, point 1 is decoupled, but
again power is divided equally between the loads connected at points 3 and 4.
Since the circuit is symmetric, poi--ts 3 or 4 may be driven with similar
power-division characteristics. In any case, the voltages at the output points
are always 900 out of phase.

The design of the circuit is based on a scattering matrix representation of the
coupler. The components L 1 . L2 and C 1 form an equivalent circuit of a
quarter-wavelength transmission line of characteristic impedance Z oo The
components L 3 , L4 and C 2 form an identical circuit. If points i and 2 are
driven in phase, an equivalent circuit of a quarter-wavelength line of char-
acteristic impedance Z0 /2 results. Now, if points 1 and 2 are driven 1800
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out of phase, inductors L V L3 , and capacitors C 3 , C 4 form the equivalent
circuit of a quarter-wavelength transmission line of characteristic impedance
2Zo . Under this driving condition, there is a similar circuit formed by in-
ductors L2 , L4 and capacitors C 5 and the series combination of C 1 , C2.
Since these two identical quarter-wavelength circuits are in cascade, the
total electrical length under this out-of-phase excitation is 180 0. By satis-
fying the above impedance and phase conditions, all of the requirements (at
a single frequency) for a 3 dB quadrature hybrid have been satisfied.

An experimental circuit was constructed for a center frequency of 75 MHz,
and the observed insertion loss was less than 1 dB, the phase angle between
the equal outputs was approximately 90 0, and the output at the decouple;d port
was 20 dB below the input. A usable bandwidth of 20 MHz was observed, and
the input VSWR was 1. 1.

12.5 Construction Techniques

In order to build a transmitter capable of withstanding the shock and vibra-
tion of the launch, to keep the individual stages or sections isolated from
each other, both thermally and electrically, and to prevent oscillation and re-
duce spurious output signals, the approach generally used in the past has
been to build the individual stages into compartments which have been milled
out of a large piece of metal such as brass, aluminum, magnesium or some
other suitable material (point-to-point component mounting), then to put cov-
ers on the top and bottom to :-shield these circuits from the next black box.

The other alternative has been to build the transmitter on one or more prin-
ted circuit boards provided with shields mounted in appropriate places, then
to mount these boards into boxes, and, in some cases, to foam-encapsulate
the transmitter, then readjust the many variable components to compensate
for the effects of the foam and the proximity of the box. Either of these
methods, while proven reliable and effective, is satisfactory for a transmit-
ter consisting of a dozen or so stages, but rapidly becomes impractical for
space application because of size and weight considerations.

Consider for a moment a 2200 W transmitter consisting of 55 stages starting
with a precision oscillator producing a few µW, built by milling out com-
partments from a block of aluminum. It is not difficult to imagine the re-

maining aluminum, with no RF parts included, weighing more than our entire
transmitter, not to mention the volume taken up by a transmitter that ap-
proaches the total volume of our spacecraft. If,instead, printed circuit
boards with strategically-located shields were used and then mounted in boxes,
an improvement would be achieved; but the configuration would still be too
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large and too heavy for this application. Clearl y , a different approach is
needed.

The solution proposed is to use the printed circuit boards themselves as
shields between the various circuits. When laying out the printed circuit
boards, which are 5. 14" x 1.98" cards that mate with the approximately
5" x 5" vertical member in each plug, care is taken to keep all printed lines
on one side (component side) of the board, while the paths of ground current
(input and output) of the stage are isolated as much as possible, both to re-
duce magnetic coupling between inductors in the input and output by physical
placement and/or orientation and to keep lead lengths as short as possible.
Further, as much unbroken copper as possible is left on both sides of the
printed board, and this area is connected to ground potential. (Enough cop-
per is etched away around printed wires and terminals to make the necessary
connections, and the rest is left. ) The result is that we have left about 80%
to 90% of the copper on the reverse side of the board and a large amount on
the component side to act as a shield from the circuit below and provide low-
inductance ground paths. The vertical member upon which the circuit boards
are stacked, one above the other, forms an effective shield from the circuit
on the adjacent side of the vertical member. The result of this stacking
leaves us with a pair of compartments between each pair of printed circuit
boards, isolated from its neighboring compartment by the ground plane on
its own reverse side, the ground plane on the board above, the vertical mem-
ber, the side wall of the compartment, the end wall of the compartment, and
the compartment shield. The 34 such compartments within which the circuits
are constructed give excellent isolation between stages. This type of struc-
ture provides a common electrical ground for all cards, serves as a heat
sink, and provides mechanical strength for launch environment. (Fig. 12-13)

This construction technique, coupled with the fact that we have reduced the
number of variable components (which are heavy and large) to the bare mini-
mum (one variable capacitor in the entire system) by careful measurement
and substitution methods, taking into account the stray capacitance and lead
inductances of components, printed 'Lines and terminals, therefore makes
the circuit boards an integral part of the RF circuit (an accomplishment in
itself) and has permitted packing of VHF circuits much in the manner in
which on would package low-frequency circuits. Further, we are able to
construct these circuits with components out of stock, with a minimum of
selection and with minor trimming to compensate for gain and phase varia-
tions due to device variations.
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By the use of the above techniques we have effected a substantial reduction
in the overall size and weight requirements for the transmitter, and at the
same time preserved the mechanical integrity of the spacecraft.

12.6 The 50-Watt Beacon Transmitter

Located in the rear section of the Hub is an auxilliary 50 W, battery-powered
transmitter which provides a traF , king beacon and pertinent telemetry during
solar acquisition of the spacecraft.

The pulsed 75 MHz signal provided by this beacon transmitter is encoded by
pulse-width modulation to provide orientation data from the aspect sensor,
along with selected deployment, voltage, and temperature information.

The beacon transmitter is shown in Fig. 12-14a and consists of one class A
stage and three cascaded class C amplifiers, with the final stage producing
50 watts. The drive signal for the beacon is provided by the same oscillator
and multiplier which drives the main transmitter, and its output signal is
radiated by one pair of sails.

A single-pole, single-throw, solid-state switch, operated by a digital com-
mand, is provided to prevent damage to the beacon transmitter's final ampli-
fier due to voltage induced in the sail by the main transmitting antenna. The
switch has an isolation of 45 dB, and an insertion loss of less than 0.2 dB,
and is connected between the beacon final amplifier and the sails.

The switch-control circuitry is shown in Fig. 12-14b. The switch passes an
RF signal when zero voltage is applied to the base of Q 1 ; then transistors Q1,
Q2 , Q3 are cut off, leaving the control diode back-biased at -300 volts. In
this condition, the beacon signal is transmitted. If, on the contrary, a posi-
tive voltage is applied to the base of Q 1 , transistors Q 1 , Q2 and Q3 conduct
from the 10 V supply, forward biasing the control diode, and thus discon-
necting the sails from the beacon transmitter.
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Fig. 12 .14a Block diagram of the beacon transmitter.
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Table 12-II
Basic parameters of beacon transmitter.

Stage do Supply Drive
Level

Output n Trans-
ister
Type

Class Gain

First 12V i mW 50 mW 40% 2N918 A 17.0 dB

2nd 12V 50 mW 1/2 W 60% 2N3924 C 10.0 dB

3rd 24V 1/2 W 13 W 706 2N4128 C 14.0 dB

4th 24V 3.6 W 50 W 70%t, fair C 11.5 dB
3TE225

Switch Insertion Iso- Forward Bias Reverse Dias Voltage
Loss lation Current
< 0.2 dB 45 dB 20 ma -300V

12.7 The Spacecraft Integrated Antenna System

12.7. 1 Introduction

There are several alternatives for the spacecraft antenna system, varying
in complexity from a simple monopole to an elaborate array, each with its
own degree of complexity in deployment and feed system. For this initial
launch, however, it is desirable to use something consistent with gain and
pattern requirements of the experiment, and as simple in deployment and
feed as possible.

Figure 12-15 represents the Sunblazer spacecraft with the antenna systems
under consideration. Radiation of the pulsed 2kW main transmitter signal
at the 70 MHz, 75 MHz and 80 MHz frequencies is achieved by a pair of rods,
each with a length L, mounted perpendicular to the spin axis on each side of
the spacecraft solar-cell platform. The separation between these two links
of the dipole thus formed is shown as 2d, which is equal to the diameter of
the platform. The 75 MHz, 50 W beacon-pulsed signals are transmitted from
a pair of sails which act as dipoles, but whose major function is to stabilize
the dynamic motion of the spacecraft in conjunction with another set of sails
mounted in an orthogonal axis. In the deployed configuration, the sails are
canted forward by an angle of 70 0 with respect to the spin axis. Further-
more, sighting along the spin axis shows that any pair of sails to be used as
the beacon antenna is displaced from the main transmitter antenna by an
angle of 450.
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and	 Ve- jkro
(12.7)

12.7.2 Main Transmitter Antenna

There are two problems of major importance:

1. Matching each antenna to its
transmitter.

2. Antenna patterns over the 10 MHz
bandwidth.

These problems require the calculation of the input impedance Zs = Rs + jXs
of the antenna, the E-field, 1- field, and it pattern analysis over the 10 Mllz
bandwidth, for different rod lengths L, and the given spacing 2d.

Maxwell I z equations for electromagnetic waves varying sinusoidally in time
are

VW _ - j(jN# 	(a)

V Xff = T + jWeVO	(b)

V-# = 0	 (c)

O •	 = P	 (d)	 (12.6)

Here any vector a V( o, t1 = Re Vej(wt-kro)

The electric field it and the magnetic field 11 at each point in space are given
by the solutions of Eq (12.6) .

The solutions are

it vxX

V _ -*WX -V0	 (12.8)

where the retarded vector potential is defined as

16" y, z) _ I c T(x', y', z P )e -3kr dV #	
(12.9a)
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>.

and tale retarded electric potential is defined an

-,jkr
O (x, y, z) n 	 1	 p tx , y , x)	 dV'	 (12. 9b)rrc 4	 r

V'

One has to remark here that 0 can be o4tained from t by using the Lorentz
condition, Le.:

¢ _ ^ V. 46
	 (12.90

In calculating the solution for an antenna with a given current distribution,
one ass 3 it is composed of several very short dipoles of different con-
stant-current distributions. The scalnr and sector potentials at any point
in space, due to a very short dipole of length 21 and constant-current dis-
tribution 1  located at the origin of a coordinate system along the z-axis,
are given by the following equations:

	2110	 w	 1
w	

-JkRj 1rc 
1i CM 

+ --^- cos 0 e	 (12. 10a)

	

UI
o	

- jklt

	

A = _mo	 R z = Az i	 (12. 10b)

where 11 is the radius vector from the origin of the coordinate system to the
point in space, 0 ij the angle between the positive z-axis and the vector A,

	

C =.— I	 = 3 x 1010 cm
Sec'

and	 k =-X—

Consider the dipole system represented in Fig. 12-16. The current distri-
bution is given by

I  (z') = 1  sin k(h - Iz'l)	 (12.11)

For any point in space, Eq (12. 10) may now be written for an incremental

dipole of length dz':

dz' 1  sin k (h-z') w	
—1 ]!-"  z' - kr

d=	 jw41rc	 crl + r 
1 

2	 r 	
e	 1	 (12.12a)
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F dz' 1  sin k(h + z')	 + 1 z + z'e jkr2
,ice wE 

[I cr2 	 r2
2

9a dz' Io sin k (h-z') t,- jkr 1 + dz' 1  sin k (h + z') e - jkt,2
4w	 w ri	 4 i	 r2	 (12.12b)

By making the assumption that r 1 , r2 , ro > 2L + 2d, one obtains the fol-
lowing simplified expressions:

r 1, 2	 ro - z' cos 8	 (12.13)

z-z 	 z+z'	 z : cos 8
r 1	 r2	 ro

Equations ( 12. 12) and (12. 13) together give the expressions of the scalar and
vector potentials for a separated dipole:

h1  cos 9 e-jkro	
sin k (h - z') e^kz' cos Adz'

^E c	 ro	 S
d

-d

+	 sin k ( h + z') a jkz' cos 9 dz
-h

Io cos 9 e-jkro	 h

1 4^Ej^	
— -	 S sin k (h - z') eakz cos ®dz'

o	 d

r
- d

+ J	 sin k ( h + z') ejkz' cos 9 dz

-h

A"	 10 a
_	 h
jkro 	 jkz' cos 8 ,A	 C	 r	 sink(h- z )e	 dz
0	 Y

d

-d

+ Y sin k (h + z') ejkz cos B dz'

-h
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and finally

_j 
o(t'o) _ 

1
0
 
^^ cos 0 F(9, h, d, A)	 Fro 

+' 1" l e kr	 (12. 14a)
^ o

- jkr
X(—r	 o F (0, h, d, X) e r ° z

I	
( 12. 14b)

0	 4v 0

where

F(0, h, d, X) _ [2 {cos [kh cos 0] - cos kL cos [ Kd cos 0]

+ cos 0 sin kL sin [kd cos 0] J/ k sin 2 0	 (12. 14c)

Equations (12.8) and (12. 14), solved for a spherical coordinate system, give
Y Y

the component values for the E and H fields:

Hr (r0, 0, 0) = H0 (r OR 0 , 4) = 00
0

H^ (ro, 0,	 10 sin 0 j r F (0, h, d, l) - -^ 1 ae [F (0, h, d, A )cos 0 e Jkro ,
o	 r sin 0 il0

(12.15)
and

µ	 j- kr
Er (r O R Of ^) _ °R cos 0 F (0, h, d, X) 2 E° - ^ -	 e	 °

0	 o ro wer0

E0 (r0, 0,	 4O sin 0	 E° j r F (0, h, d, X) - g° -— a [F ( 0, h, d, X)cos 0
0	 0	 o r sin 0	 J0

+	 13 sin 0 ae
^[F(0,h,d,X) COS 0we r 0

and

E 0 (ro, 0, 0) = O f	 (12.16)

The average power density is therefore given by

tIj

S (ro, 0, 0) = 2 (E x H*)
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Thus,

a

Io sin 20
Sr (r ON 9, 6) V--- 2

0	 32n

µo k 2 F2and,A)

11 7o 	 r0

+, eo sine 80	 sinF' (9,h,d,^) + sine 88CF(0,h,d,X)cosa,
0

`
^—^ a

- 8a ^F (H, h, d, X) cos 612
wEr 0̂ 'sin"9

IO2 sin a cos a	 2kSa (r0, a, ^) =	 2	 F (0, h, d, x) j ^ 2k F (0, h, d, X)
32v	 o r0

+ 2 µo F ( 0, h, d, X) + sin 9 ae ((F (0, ii, d, X) cos 6^ • 1
o	 `	 r0

2j 	
ae (F (0, h,d,) ) cos9,

wer5 sin 9

and

S 0 (r0, ON ¢) = 0 .
	 (12.17)

Considering only the far fields one obtainer from Eq (12. 15), (12 . 16) and
(12.17)

Y

H^ (r0, ON ^) = 4O sin a j r F (0, d, h, X)
0

(12. 18a)
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E O (rot 0, ¢) _ 0 sin 
0ct

coo-jrI4'(0,h,d,,X)	 (12. 18b)
 0

and

I2 sin  0 µ	 2
Sr (rot ©t 4) so -° 	 - to k^ I,,2 ( 8, h, d, A)	 (12. 18c)

n	 o r°

Normalizing these to the peak value of the beam for a tuned dipole without
separation, i. e. for

0 = 90°, 2d = 0, kL —y, h = L

one obtains the following normalized quantities:

sin  F(0,h,d,A)H¢n(r°, 0, ¢) = F(0=90  °, h =^, 2d = 0, a) (in 0 direction)

E (rot 0, ¢) =	 sin 0 F (0, h, d, a)	 (in 0 direction)On o	 F (0 - 900, h = A 2d -0, A)

and

sin  B_ F 2 (0 h, d, ^)S	 (r _ , 0, ¢) _	 (in r direction)Sron o	 F (0= 900, h=-&, 2d =0, a)	 o	
(12.19)

Figures 12-17a, 12-17b, 12-17c, are plots of Eq (12.19) in polar coordinates
for the special case of the antenna stem length of L = 100 cm (X at 75 MHz).
The cases of 70 MHz, 75 MHz, and 80 MHz frequencies for the separation
2d = 0 and 2d = 46 cm are considered, and the electric field, magnetic field,
and power density patterns are plotted.

In addition, in Fig. 12-18 an extreme case of the spacing 2d = A = 400 cm is
considered, showing effectively the variation of the patterns as a function of
2d.

The next important quantity which varies as a function of frequency and
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spacing is the input impedance at the antenna feedpoints A-11. This im-
pedance can be defined as

ZA-B = R A-B + jxA-B	 (12.20)

and is called the radiation impedance of the antenna. In practice, the an-
tenna will be connected to its transmitter as shown in Fig. 12-19. The
1800 hybrid is necessary in order to create a dipole characteristic in the
pair of rods. Matching %A-11 at a ,,ipecific frequency to the 180 0 hybrid
output impedance (50 + JOW therefore means a notwork design which com-

xpensates the effect of fi- 2 - D , and impedance transforms R - R to 50fl .
The following equations give RA- B and XA- R as a function of frequency for
a spacing 2d = 0

-  11 = 301 2 [Si OW- 2Si (2kL) cot kLSZ

+ 4 CE + In (2kL) - Ci (2kL)1 cot  kL

- IE + In (UL) - Ci (4kL)] [cot2 kL - 111 ;	 (12. 2la)

ri
and

- 30 2[In L
C kP 

^ - E + 2Ci (2kL) - Ci (4kL) cot kL

+Si (UL) - 2S ; (2kL) cot 2 kL-1 - --2i— Si ( 2W. (12. 21b)
sin kL

Figures 12-20a (Real) and 12 - 20b (Imaginary) contain the results of Eq ( 12.21)
for the case of

L^4^=100 cm

It is possible to calculate the radiation impedance ZA-B for the more
general case of any spacing 2d and any rod length L by considering the total
driving power at the feedpoints.

From the divergence law applied to the Poynting vector it follows

§A (E x Iil) - dA = YV V- (E x IH) dV	 (12.22)

342

3



1Q
ble

343

Fig. 12 .19 Interface between transmitter and its antenna.



6c

Si

41

Id •0

110
	 L • 1►74

Id •46cm

L - 19- 0—MHO

Zd-0
L • l►74

2d 46 cm

L • ^_

2d -0

L XIONNS--- 4

2d - 46cm

L - 1 d-- 4

100

9d

RAD	 8a
Obas

9(



2d = 0
L = 117^A z

200

ISO -

140-

120

100

80

60

40

XA-® 20
OHMS

0

-20

-40

-60

-80

-100

-120

-140

-16070 71 72 73 74 75 76 77 78 79 80

f /MHz ----► ^

Fig. 12 -20b Antenna reactance as a function of rod length, rod spacing and frequency.

2d 46cm
L=X7MHz

4

2d=0
_ A 77-H z

2d 46cm
L = A75MHz_ 4

2d0

LAB—O^Z

2d=46cm
= X 8 4

345



setting

V- WxH> _ 11•vx9 - E•vxH

and using the results of Eqs (12. 6), Eq (12. 22) becomes

tr1A (ExH) dA - at Sv (H • H+E • L!) dV - SV J• E dV

Q, 1

(12.23)

Ohm's law written in the form of Maxwell's equation is

M	 w y
J a (E+Ee) (12.24)

y	 y
where a is the conductance of the material, E is the induced field, and E 
is the emf field (externally applied field).

Equations ( 12. 23) and (12. 24) solved for the total driving power P at the
feedpoints give

P = 	 J• Ee dV = at YV (H • B + E•D) dV +  a 2 dV+ (E x H) • dA
 •^ V	 ^A

(12.25)

Assuming no losses in the antenna, and because the average of the energy
contained in the volume, V, is constant in time for sinus oidally-varying
quantities, Eq (12. 23) and (12. 24) break down to

P = JV J E e	 A
dV = ^ (E x H) • dA	 (12. 26a)

and

P = - SV J-E dV	 (12. 26b)

Either Eq (12. 26a) or (12. 26b) can be used to calculate the impedance ZA-B.
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Fig. 12-21 Geometry and current distribution of a sail.

Fig. 12-22 Evaluation of the vector potential due to a current
strip of width W and height dz' .
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From (12, 26a) it follows for RA-B that

R	 (h, d, X)	 2A h	 = .7	
Y

	

 sin 'i 0 F (0, h, d, \) d0	 (12.27)o ms	 X^ sin g kL e;0

From the condition of continuity of the tangential component of E, and with
the Eq (12. 26b) and (12. 11), it follows for XA-B(2) that

XA-B (h, d, U	 15	 2kL
- -	 [S (x) sin x + S (x) cos xohms	 sing kL 0 3	 4

(12.28)

+ T3 (x) cos (2kh - x) + T1 (x) sin (2kh - x)1 dx ,

where

S 3 (x) = Si (x) - Si (2kL-x) ,

S4 (x) = In x (2kL-x + Ci (x) + Ci (2kL-x! - 2E
k p

`k

T 3 (x) = In [ k L + 2 d - x] + Ci 12k (L + 2d) - xl - Ci I2 (2L + 2d) -
J 	 J

and

T1 (x) = Si [2k (L+ 2d) - x1 - Si[2k (2L+ 2d) - xl -

RA-B and XA-B are plotted for various conditions in Fig. 12-20a (Real) and
12-20b (Imaginary).

12. 7. 3 Beacon Transmitter Antenna
For the study of the sail characteristics as an antenna set for the beacon
transmitter, one starts again from the parameters of a very short dipole
given in Eq (12, 10a) and (12, 10b). Figure 12-21 represents a sail in the
(y-z) plane, with a a small angle such that W = z'a. Furthermore, the

I (z )
current density at z is z	 . The first step is now to study the vector

W (Z")

l
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potential and the electric potential of such a narrow current strip of width W
and length dz'. This can, however, be considered as constituted of several
very short, parallel dipoles, all aligned next to each other along the y-axis

I ( z')
and each carrying a current –z— dy . This is again represented in

W (z')
Fig. 12-22.

For the small, short dipole, one may now write Eq (12. l0b):

dz' Iz ( z')	 I e - jkR n,
dA = lz	 dy —7- z4n W (z,) (12.29)

With R = R  - y cos y, it follows for the vector potential of the narroly
current strip shown in Fig. 12-22 that

dz' I  (Z')
A 

4ff W (z•)

e- jkRo n
R  Z

	 W,T ')
ejky' cos Y dy'

and finally

z I 
e

-jkRo47► o	 Ro
sin k2 cos Y n

zk2 Cosy
(12.30)

Analog considerations show that the expression for the electric potential
at any point in space for a current strip of width, W, and length, dz, is

dz'	 k	 1 z sin F Cosy
7► we Io j o + Ry	 cos y

0	 2

(12.31)

A comparison of the Eq (12. 10a) and (12. 10b) with Eq (12.30) and (12. 31)
shows that these two sets of equations differ only by the factor

sent where t = k2 cos Y
	

(12.32)
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The smaller W, the closer is t to 0 and, therefore, s-^ -1. In the worst
case, where W v 20 cm, t becomes

_	 2v	 20	 2 1► 20	 Ot 
A75 M11  'E ' 4-3 ITs 9

and

sin t	 0. 156 =
t	 0.2 157	 1 '

Therefore, Eq (12. 30) and ( 12. 31) are similar to (12. 10a) and ( 12. 10b),
hence the electromagnetic properties of a pair of sails are essentially the
same as for a pair of rods. Consequently, the sails look like a pair of
tilted rods, for which case the normalized patterns are given in Fig. 12-23
and 12-24

12. 7. 4 Mutual Coupling
The problem here is to determine how much of the 2 kW RF power of the
main transmitter is received by the beacon antenna. This power in its turn
will set the on-off characteristics (requirements) of the beacon antenna
switch (see Section 12.6). The main function of the beacon antenna switch
is to isolate the beacon transmitter from the main transmitter. Because
of the relative complexity in geometry of the two antenna systems on the
spacecraft, an analytical solution here would be quite cumbersome. The
best way to determine the mutual effect is to measure the amount of power
received by a pair of sails when the 2 kW transmitter is activated. How-
ever, in order to attain a qualitative feeling for the amount of the RF power
coupled to the beacon antenna, a very simplified system was considered,
in which the total power received by the beacon antenna was assumed to be
composed of two separate parts.

That is:

Total RF received power = RF received power due to radiation
SdA; physical aperture, + RF received power due to capacitive coupling.

For the geometry of Fig. 12-15 the radiation part of the RF received
power was found to approximately 50 watts. As to the second term, the
coupling capacity of the system was found to be about 0.52 pF. This corre-
sponds at 80 MHz to a reactance of 4 MI. Thus, the RF power received at

* Computation of those patterns was made by M. Matsushita.

.R
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the beacon in a 500 system due to capacitive coupling would be:

20 log 14. 50	 36 dB

38 dB down as the 2 kW main transmitter power. This is approximately
0. 3 W, which is essentially negligible when compared to the 50 W due to
direct radiation.

In conclusion, there will therefore be a mutual coupling of approximately

Coupling = 10 log ( 2 0 ) a - 16 dB

-16 dB between the main and beacon antenna systems; and the design of the
beacon antenna switching system has been based on the 50 W power level.

f
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CHAPTER I

1.1 Problem Stntal".t.1:1t

This investigation is concerned with optimizing an energy

storage for an input - output rolation, that appears quite frequently

in applications where the input is continuous at low level and the

output is in the fora of large energy pulses. The problem of energy

storage arises when the instantaneous power generation is lowed titan

the instantaneous power requirern ants (Pi > Po). Clearly over some

average time interval the generated energy has to be higher than the

required energy. That is

Ti ,	 Ti

P- dt >	 Pedt
j
	 To

where	 Pi • generated power

Po a required pouror

T, - To • some time interval

Exr.T:pl.es of this kind of a.ppllc ,^tion are satellite

transmitters. remote pulse transmi.tterc (wzather utations) and

stroboscopic lights. They often have the followin.,; input - output

characteristic.
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Figure 1

Pi is the power Generated (usually by solar cells, batteries or

very small reactors), Po is the required power (or received pover)

by the load, if the process has a period T, titan for

T

Pi dt >PO dt	 (for all t)
t

simple energy storages like sprinLa, capiteit.ors or Inductors

are sufficient for storing energy, but in the case of

to+Tto+T
Pd dt <	 Po dt	 for somo to

to	 to

we need storage elements with high energy capnci. ty in <<r;:i ch the

energy is stored at t < to like spinning masses, elevated masse in

a gravitational field, batteries, or high magnetic fields stored

using superconducting coils.

To evaluate -the essential factors of such a cysten. , we will

design an ov rgy storage.. oystou for a saz:elllta. It :should

}

—	 •.^~	 _	
—	 ..	 Yj\	

,..,,««, a +w—w ..-w.^..w.	 _ _	 ...-h.^.

F'.,	
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high reliability (this often me rers simplicity and redundancy in parts),

high efficiency, and a low weight. C:;cept for the tc-cluired lo.?

weight, this other requircmcnts occur in r..nny otlicr field:3 of

application. ThG following overall neLviork will he proposed:

Friers; Generator

Energy StornSe
	 Load,

Converter
	 ^^ Transmitter

Figure 2

The transmitter is modeled as resistor (uo inductivc; or cpo.citive

reactance) with two states ( R m Rd ( disc) o ge resistor) for

(T-t) < t< T	 and R s am elset•herej.
m

Rij	 LJ 
Rd

IT '^r
ftb^IN^Mw^aCp^Y.N•N^N•MIAO'wNIMMYYn^I^na^N•r {q/rN^" :1^ ^^1

T	 jr

Figu .-c 3

toter,,,
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The energy storage system will be apaunied to be a network

of batteriesq resistors or capaciturL. We 'will show that inductors are

not wall suited for this purpose because their ratio of weight to

stored energy in too large. Thin will be eha. yn in the appand • v..

Storing energy in rotating devices is very tempting and ccrtrinly

very effective for very large amounts of energy over short tis..t:r, ,

but for small amounts of energy the ratio of friction losses to

stored energy is unfavorable. The energy storage we will consider consists

of high reliability elements like capacito;o (with negligible small

Internal. resistance) , batteries (with internal resistance), or a

combination of both (linked by resistors).

I.2 Mathewatical Mode l of the ButteEL

Since we want to investigate tlse storage syr toms an^/yti c:ral ly s

ric need a r.tU010I.-Itical nodel for the batLery th:.t shovltl be

close to tits behavior of real batteries. Batteries are a gstsncrl to

have the following characteristics. (2). (3).

us	 Fff^c; +pry	

w

1	 ^ ^^ ^	 ^	
Ifs* ^^^s ^

...,.	 3 L; ._...	 --- — -^—	 ^ •

lla	 ^ ^''iLy^^ • k^i^

..,......^,^....r...^.....,.,.^.;^. fill
$	 .g	 $0	 v

1; 1., ,	 ;..	 4. t,

I.

am
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The characteristics for AS-2n, AS-Cdq NI-Cd and other types of

batteries are very similar. The charneturlatica show that we can

achieve highest efficiency when % ye dischnrge the battery at low

currents. It looks as if the losses in the battery (clue to

polarisatina and internal resistance) arc proportional to the decrease

In efficiency. Using this observation we any that the efficiency

it highest when the losses in the battery are lowest.

T

Energy lost in battery •
	

1 2 R, dt	 Min.

where R J • internal resistance

I a battery current.

We use the following model for the battery for U. >_ UB > silo

Figure S

%;here CB n vary large

R  a very large	 ••

R  n internal resistance + equivaleni. for polarization losses.

B • voltage drop.

.A	 _i wo	 _	 __.
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Instead of mi.nILAzing the loss energy we can maxivil ep the output

energy.

T

Eout n	
(U.1 - is g;) dt n MIX

Asking that the battery delivers a charge k in the tir.,a interval
4

results in the following constraint:

T

k jAh j n 	 Idt

Using variational calculus (ace apprntdix) we find that the output

energy is a maximum for I n eonst. n k/T.

1.3 Practical Enerwr  es

Since the load (in our case . g transmitter) roquires a

high po%vor we need an energy storage system 'output with vary lov

resistance. A capacitor has practically no internal resistance

but stores only small amounts of energy per pound. The bnttiery

with its very high storage capacity has internal resistance that

In not negligibl.e.

We will investigateto tv o storage sys term : one v:•i th a b.nt tc cy

only, and the other one a combination of battery, resistor and

capacitor.
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Model 01

Figure 6.a

Model #2

Figure 6.b
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Looking at Model 02 we ask if it is possible to pain

over the parformence of Model 01. Thor* is an additional. stage

In the storage system and as sho%m in the appendix, we can get out

only one-half of the energy supplied to charge-the capacitor.

This model is at best SOX efficient. First, consider Model 01

with its high current over very short tizi.%n. If ve take the total

time (N To	 N • number of pulses, t • pulse width) we might got

a vary short total discharging time (0 - 3 mintues as it turns

out later), where the battery efficiency from Figura 4b, p;ige 9 is

very low.

Medal 02 dissipates approximately the same mount of

energy that it delitiars to the load, but du, to the slr. dis-chor,,ing

of the battery, (0.05 - 2 hours) it will work in a region with much

higher efficiency.

Both proposed models (battery only and battery, capacitor,

resistor model) do not have constant disdiarge current, Morel #1

vis.0 : ty)	 pc bl-iod T for	 L'4.	 (cant:	 '< '^')

4

•mot_ _ _ ....	 qua _ ...,	 3i nJ	 ^.	 Gc w^-:	 1 R w ,tt:ea crz	 ^.	 .mac	 _	
u
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b) Model lit
h

load
current

t

a very high current. Modal 02 (battery, capacitor, re:.istor) does

the vnma, only that the high current In not delivered by the batwry,

but by the capacitor (with naeligible Internal resistance). The

capacitor in then charged by the battery with a low (exponential)

current (sae Figure 'b).
•

a) Mode 1 01

battery
current

i

7	 aT

A
battery
curent

w-^^^^1	 -w-^wfr•...w•.^r.'Z.'SS•^,Yi•.,':lR^7MM^v^^
}r^
-w- ./v.^ŷ'11 f

r	 Ii

Figure 7

Thou,-,11i nel ther Model #1 nor lit have a cc,istant battery

current, Model lit has a low battery current, when we choose Ri ' •I• Rc

(the charge resistance ,between battery and capacitor) in the appropriate

way.
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I.4 OptimalCaase Model
,

There are possibilities tv clischarga the battery with

constant currant I - k/T.

Ri

u	 C Wl•	 u ^^	 r

Figure 8

Assumes U  - cons t.

U  - Uo - IRi
I - const.

U  - cons t.
dU'	 dC

I - d * - dt jCUc^	
dtPC + Ucdt

n charge of capacitor

dU
Uc - const. --+ dt
	

0

I - u dC n 
T 

(from optirni. xation)
Bdt 

B

or

C(t) - cot	 Co - UkTB

for

t - T - T

and

T << T	 04



th

then
k(T+T )

b

Z • uC O • C^^nlf t.T+TC

where T  • R I C

- ls -

C(T) • CeT • U8

U T
US • U	 IRo	 1	 ThTc

This is a re-alizable solution. Varying the capecifor . C ( t) • COW

for 04 t < T produces a constant current. But since we need

additional (r echanical) notworks we need additional energy sources.

Therefore this solution is not practical.

R;

^	 p^r	

Co t

w	 ^r

Figure 9 '

fo1. Bt t Zr•-T

t

i'

Y
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1.5 Conclualons

We are looking for an optimal energy storage system for

given input - output relption. We say the c.ystem is optimal, when

It delivers the maximum number of pulses at u given weight.

Proposing sever.:l models we ruled out movitir; energy storages,

capacitors and inductors, because of low storage capacity end

proposed Modal Al and 02, which are investigated and compared in the

following chapters.

I
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CHAPTER 11

11.1 Analysis of Model 01 cnd 12

Both Models can be represented in the following form:

,......, 	 Mode i
P,. 	 PO

Figure lA

We want to find the number of pulses that each model con produce,

prove &-4 that certain limits within the s toraga eys tams will not

be exceeded. These limits will be that the voltage across the battery

and the voltage across the load stay above certain values.

For this purpose we 'oet P 1 0 and calculate this number
Y

N. If it turns out that the total discharge time of the batteries

(the tine for N pulaeo) is short compared with the charging time, titan

we do not ottly got the pulse efficiency (number of pulses per loaded

battery) but a number that is very close to -the maximum number that we

can send without time out for charging the batteries.

11.2 Model 01

Assumptiona: (a) all elements are linear in the `corking

range;

(b) switch S = ideal	 R • 0 S closed

R • w S open



Figure 1).

1
t ^ i

V

R,

^
Jr
^,,, uo lt1

..#.^_..

i
Mw..,.....

u.d 10	
R j

lab

L.. w#V% w..
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t

ii • 0  	 ri n 0

We model the battery as a large capacitar W th internal.

resistance. The battery emf is:

Ue(t)	 Uo(0) t1-aq(t)j

where: U® (0) n battery voltage of the charged battery,

for	 i n 0,

and	 t n 0,

U°(t)  	 UB(t)h
a - 1/QB

QB • total battery charge

q ( r) n	 tj idt • charge Oliw rcd by Ole battery

(1)



t n nT

R • R 1 + Rd

;i + Rd ) • U e (0) j1-aq(t) j.

,s then

UO (0)	 t U O (0 )
:0 Y w.w^^ L^ w n ^w b^r.w^. • t j

P.	 R

of the battery:

f t

1y	 f U®(0 )

iWdt
a	 R

:ttery in:

Un (0)

•	 V.

(3)

(4)

-19 -
M

QB • q	 idt

0

Sine the pulse width y is constant and there to no chtirging,

ii • 0, we can substitute

where n is the number of pulses (tic consider only the discharge tiv-3).

Substituting

Uo (t)	 i(Ri + R^)
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The voltago ncxor,; t.^, battery is:

UB(t.) 0 U Q	 -1(t)r i 	 (6)

	R 	 U (0)
Uu(t) • R +R Uo(0)(!:.pC-W-°^ -- t1	 (7)

i d

In order to protect the buttery fro,.-,I destruction uc Unit the

voltage drop

Uo(0)-UB(t)

The al lowab)c voltage drop B depends wry nuch on the typ c of battery,

but seldom exceeds 0 . 15 - 0.20. Usually the battery is recharged

for 0 > 0.1.

Via minimum voltage is

UB min(t)	 (1-8)t1o(u)	 (8)

inverting (8) in (7)

O	 O1-^ 	UB^tltitt^t	 .	 ^^^^/, C •r.p r-fit- ---. t	 (9)
U (U)	 2t +^1	 1	 R
o	 i d

From this equation wr.: can determine the total di-s cha.rgr_ t3ti"e t:

	

GU (0)o	 IR 
i  d
-.1-R 1,



2 1.

Inserting (2). t w Ni into ( 10) wo obtain thn number of pulsars

t	 R	 R	
1 1N	 w w ^^+awi.^ In I ^.^.^ .,L J	 (l i^

I	 aUo(0) l	 Ri+Rd 1-0

In the case where the allwazbla volts ae drop at the inad ( ►:) iss leas

than the allojod voltage drop at the battery (fit) , we set S • K.

There are the following tiro cares:

(a) < K	 choose S

(b) a t K	 set B K

22timtr ation of N

In order to have positive N it follows, frcem (11)

Rd ' 1
Ri+Rd 1- g

Where is the mpi:imum of N with respoet to Ri?

dNZ!N et.	 0
dR i	 i

since

R • R  + Rd

--^ dR a dRi

and

R
0 .,	 1......[Iq d l „ -1 • 0

dRc^Uo(a)'r 	 R 1-S^
i
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Then the raximum 	
Ps

(
	 - <0 occurs f bi

 2dRi

R	 Rd^ Q--(	 ) - J
	 (13)

where a w bone of natural. logarithm.

For most applicationn B < 0.2

Ri < - 0.54 Rd

For all

1Ri t Rd( a 1-g _ 1)

dR c 0

IV (Rd

I

f	 Rj

	

^w^.r.r	 •«.......— ...r aM•/OA...^.N.M..Lwb i +M..-1-MY ,w»w..^w•.,n....;' t

Figure 12

Therefore we cu;xclucio that the feasihl+.• waxiin—vi occurs for It n 0 ori
Ri as small es possible. In other sores the better the battery

'(R,g is small) the higher the number of pulses.
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11, 3  Mod e1 02

4

'i

UR4	 1

wrwrr.^.w^rrr;rw.^rrrwwrwrwr+rrwr^r t
r	 zr

Figure 13

Assumptions: (a) all elements are linear in the working range;

(b) switch S is idael R • 0 S closed

R W	 S open

We assume that the system has performad n periods, where one

period is the time t:

mT < t ,<_ 441) T

where the capacitor will be alts:ri ,.Aely caorged cad dutch"--reed.

U 	
Unri (°)

uec 01	
I

UC

i

^w^^^	
wwirY^rwwww«w^^w.r^t^+w.r^rwr^wa^.rw...w^+ ^wrwirr:►Mw•.+^+wrw^..^ r

Figure 14
	 .6.

I
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Let us acaume:	 II . 0

Lharge resistance •	 R • R  + Rc
battery cmf	 • U0(t) • Uo (0) 11--C/q

charge	 a q(t) 0	 t i(t)dt

0

battery constant w 	 a •

and for

nT c v < (n+1)T

let

v • nT + t

This implies

t • v(mod T)
	

(14)

Rewrite:

the battery cmf	 • U0(v) • Uo (nT+t) • Un(.t)

the battery voltage	 • UB(v) • UB (nT4 •t) • U Bn (t)	 05)

the capacitor voltage • Uc(v) a U c (nT+t) • Ucn(0

Uccn • maximim capacitor
voltage during the dth period.

II.3.1 Switch _S Apc_t

:'yen the switch S is open, we can write the following

equation for the n'th period:

t

U0 (v) » Un(t) n Un (0) 1-a,^ i(t)dt
0

t
• i (OR + 1	 i(t)dt + Ucn(0)

C 0

r .	 a

(16)
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If we solve this equation for tell current i ( t), we get the folIG.tius

resuI t:

	

Un(0)-Urn(0)	
1	

!11 (U )evp i
RC	 P1R

Assu; ►:ina that Y << T then we enn wr i t e» t r T•• Z '4 To r.ttd r nd 1:11c:

maxim", voltPge of the capacitor.

^
^ {T

Uccrt ' U,,y (T-Y) n• t1 4 (r)	 Ucr,( O N +	 i(t)dt

	

Ucn (0) + 1 q rt (T)	 (18)

F-

where q n(T) n total charge dali.v.-red by the battery Ouritig thr., n't:h

cycle.

o	
C + anUn(0)

If we substitute

	

x	 1	 Un (0 )

	

Yn	 ., ex _ ^.._ _ .^. n_._.......) ,^
	 (ZO )

F.G	 IR

wc: c*• :^ c ri tc U s,r n

U C c n '^ U^ rr (0) + 	 11-•r n ^	 (2 J. )

r, u

lnvc ri,-nce of y
n , anUn (0) G

We will chow that an  OM Yri do not c`cp::^1d on n.

..

_w
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We knt-w fro:a the definition of a n 1
Q

1On ^ `in	 n

where. Qn • total battery charge reinainint, in the battery aftor

n periods;	 .

Q n original charge.

Q  • Q-q(n)
wi th

.	 n
q (n) ' E qn(T)

nN0

then the battery voltage (tssauning we extrCct q (h) during one period

from the battery

Un(0) - U0(0)1I.-Gq(n )I

Un (o)	 U0(0)11-ctq(n)l
anUn(0) ^ - Qq fn^

1 0-0 (n)
U0 .	

Q Q-q (n)

'nUn (0) . e *U0(0)

the product anUn (0) does not depend on n and similarly 
Yn w Yo , o Y^'
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Un(0)-UCn(0)
x	 q (T)	 __._.__..-	 I l-YK !	 (23)n	

C + o(0)

II.3.2 Switch Closed

Since we assu .,uAl that r c< T. we concl.udo that the br%trery

will not contribute to the current in Rd for T-t < t I T and we have

the follo%:ing equivalent network:

R4 s

of^rh	 R

I

	

^^MwwM+wlr^.A-•	 N1AMSMrMM.1.IRYW^

Figure 15
i

for t >_ T-t

Ur„(t)UCCne Ti- t^ it
TCt	 (24)
d	 ^

r
UCII(T) . 

U c n#1 (0) w Uccn exh ^- R C	 (25)
d

substitutin”

d 	 ems`... 	,—RC

	

Ut #141 (0) 	UCC na 	(26)

11.3.3 Stc.ady State Solut ion

Now we have all the answers of the n' th period, given the

initial	 of Vic n'th rc ic, :I. We czul ,:l contA-D-kie. tid

determine the initial cunditirna for the (n+l)'th period and

ro
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enleul o te the (n+l.) I th period. H-A for very large n vto would spend

too mush ti-.:o, th:, reforo we try to detormine the canditiom; of the

n'th period, givea the initial condition tit t v -0 for n=0.

Lot us Escu me

	

Utn(0)	 fnUn(0) I	 (27)

and ..o say the systom is in steady, State for

c 	 cn+l for all n to 0 9 1, 2 0 000)	 (26)

Ut nrl (0)
We calculate cn+1	 ( with (27). (26) p (25)p (23) g (22) 9 (1)

n¢!

v (o) -u (o)
(0) + ln+ aU (0) C t i-Yr )

M

U 0 
la UU ^O U9k)O)

f aUo (0)

u^hto)file (0 )	 1_ U "(0).
__..0 1-Y )j U n 	1 + at^o (0)C0) 

U(,a(0)
1--Un (d	 s

	

1-a U (0)	 (1-Y )n t► C + aU (0 )

Before we eontin►►e we will. make another substitution 	 the product

atio(0)C.
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a • 1/Q

Q a Uo (0) CB	buttery charge

CB " cugivzlent capacitor
U (0) C

aUo (0)C a	 (----0^ - a ^	 p
o	 B	 B

Substitute

QUO (0)C a anUn(0)C a a

M

Since we assume there existe an c • e n than

UC4(0)	 UC 1##) (0) .
n ♦1

8tE + I
-C( 1-Y'I)l

C 

(30)

This given the follwroing quadratic equation in c

	

Cx + a 1---P ,--a (Y4+p) _ a	 0
a (l-^ 1	 p

p	 m

(31)

uhi eli can be sol . vad in tho. norm,-,I %fay

nr .. P ;h 	 m2	 4
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Since all terms are independent of n, c existes :md c n c  for all n.

For tic: case of cor,. 3 tcsnt battery voltrige Uo (0) " U 1 (0) n ... n Un(0),

this 11.11)lies infinite battery cheese • ► a n C, p n 00

then

^r	 aVo (0) '
Y n exp `- , 1 

R + DU ^^- • r

Y^ • exp{ RC • Y

c	 i	 (32)
^-Y

^prro7:imation for later computation:

For most applications p << 1 and we can substitute

C n i ---x
8 - Y

without making large errors.

Now we know there exists an initial condition

U ca (0) n eUo (0)	 so that	 +

Uc ►j (0) n cUn (0) for all n, but we have not found on erf;y exprensic.n for

Un (0)	 • f (Uo(0)y.

We assume there exists a f,, such that

U,(0) a Vo(0)

V,

vn(Q) n EnUo(0)
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or

Un(0) • 104,10)

	

Un (0)	 Un - x (0)( 1-%qn)

	

• Un -1 0	 Un -i 0	 1~°ngn

wi th

p • *nun (0) C

qn • (Uton -V9 0) )C

	

U6en " 19n#1 (0)	 6 Un#1(0)

U n.1(0) • On(o)

titan

^ • fang n

• 1-0,11 CUn (0)-EUn (0)I C
E

	

	 1- +	 (33)
l+W

With C we can determine all values for ony given n, provided we

start with U,. (0) 	eUo (0). But oven if we don't auxt with

U *o (0) we can use this formula; since this systet:i Itchaver, like a

dyaseiic syst am with d=.pin^;, every coluti.on wil.l cenv0=1 to the

stearly stain sol u,, on for every initi i:1. cenditira. For 1':r. f;e n we

will therefore neGiect the effect of the initiail cmidition and

assuMe thst the systom is in stoady state for all times.

1.(
	 UT:(a)	 U(1(4) fn	(:l'j)



or
R

NB 	Incin ( l-$)-1nlR 11 (1 e) + e^
^.	 c

(37)

z
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Ulu can calculate the minimu-i battery voltr►^c, rnt:vmIng that the

minitot-w occuru at the begiunin ;► of n period.

fi

U  min	 UCn + (Un-U,-'I)R 1:^
i c

R
(35)

i c

Wa limit the voltage drop at the battery to QUo(0)

UB min n (1-OU0(0)

with (35) in (36)

R
l_S n ^n R ^(1-E) + c

i c

(36)

Uniting the voltage drop at the cepecitor. ro KUo (0) loads to:

U  xzin n 
11cn(0)' w EUPW (0)	 COUo (0) n (1-•r,)11^(0)

	
(33)

or

Alc	 Inc in 1£	 C59 )

Now we have the nunber of pulac.r. w!ien U-0 U:4CII O' Ll rliihl' -W N	 k :: t; r cs:y

volt-in,- : or wren we reach the minimum  erpacitor voltnSe. CAC,-nrly,
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N a min (Ng , NL

II.4 ConcWtione

Assuming that we can model the battery nn o large cnhaci ter

with interval impedance, we were able to calculate the number of

ptilseo for Model 01 and Model #2. In order to do so for Model 02

we had to introduce
Ut1,6(0)

C n 	 Un A)	 ,

and
U„(0)

A further difficulty in determini.r.g the- rivabor of pulses for Modal #2

in that we obtained two re;oults (36), (30) and we have to choose

the snaller value of both. , Ilie tvason for theon. two results is the

one degree of freedom we have in shoo-ing a combination of battcry

and capacitor, while in Model 01 everything is fixed. The assumption

T << T is not neescoary for Model #l, but it is for f, 2. Therefore,

for some t > TO (where T  is some limit for t) the number of pulE er kor

#2 Will bt in error and should only be usted for Y = to.
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CUAPTLR III

In Chapter II we Oerivvd the nc.cohmary forrmlats to dotermtne

the number of pulses for each Model. In this chrpter we will ura

the foxnu;li+s and calculate an optimal onergy storage for the

Sttnl)la;s.!r ac ► tellite. By varying different para+netere we will fi. ►► d

the sencitiri.ty of ench storage system to these parAmvtorn. Then

we will propoue a cost function to evaluate the "goodnens" of each

modcl and to malt* a comparison between outrage syntema easier and

r jre moaningful.

111.1 Calculation of N

What are the specifications fat satellite application?

Thor* wi.1.1 be a volght limit, which we will aril 1-1 t where t stands

for total. The other specifications are the pulse period T, the

pulse width t, tho minimum and ma::irt-im. tr3113miLt:cr voltrgo U #n;,,► ,

Uo(0). Since we want to have a high nu.;:bar of pulses, we will

use high capacity elements like Ni-Cd batteries and electrolytic

capacitors. These elements are also very reliable Wch is one

of the requirements for specs application. They hnve constant

specific energy deny ity (stored oncrgy per kg) over wide voltege

rinses. Ti ►is in not truce for capacitors, certainly not of a low

voltage lovol. Therefora we eusume to havu a do - do energy

converter without losecs that shifts the voltrace lnto at rorwe, %'Ioc,re

the energy density is appxoximatruly independent of the voltage.

Vin will chooso the voltage

Uo (0)	 Yj V 1 x

e

a..
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(equals the operating voltage in the satellite),

the capacitor constant

PC a 0.111 F /kg, .

the battery constant

p 8 • 4000 As /kg

and the internal battery resistance constant

p it	 60 R & wp iq * 
Uo(0)

(0o(0) • battery emf at t a 0, Q f; • total battery charge) .

These constants are obtained by averaginZ the av ailrbla enpiricn!

data from references as 1111[ 2 1.

Necessary wires, resistors and swi . tche.; ( rrensi.stors) ore considered

F	
to be negligible in weight and tre not incladed in the weight

total. Alfa computation han been don s on a digital co:ap-. t^r. Via

program is printed in the appendix.

111.2 Model #1

We use the formula

Ri+Rd	 R
^'	 1N	 Uo(0)7 In R^ d

Specifying

Wt • total weight

Uo (0) R initial ba:.,!*s.iy a.A
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T w pulse width

0 • allowable voltage drop La the battery

R ,a a transmitter resistance

we can calculate

Q $	 Wt0b

where

QB	 total battery charge

and

a • 1 /QB

then
U0(0)

Ri
	 Q

B

i

and hence N which is in this case N,,,,..

111.2.1 Calculation of N(Wd

Constant 'parameters are: Rd, T, T, g, Uo(0).

Variables are: Wt , R j w f(Wt).

R j is small. compared to R ..( , therefore a chnn7,,o in R

produces only minor ch-ingos in N. But R i determines the rcaIon for

which N > 0.

N > 0 for 
R	

-1Q- > 1	 from (12)...	 RL+Rd 1r$ >

substituting
Uo(4)	 Ps Uo(0)

R . . Pa 
Q — P W--
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U.
wt n

Figure 16

-37 ..

Wt I 
pit Uo (0) (1-0)

oe Rd 0

for

S ft 0. 15,	 Uo (0) • 30 V,	 R d R 1.009

p% • 60 9 p b • 4000

then

Wt^	 2.55 kg

If we substitute in (11)

a	 1/Q	 l/Ps. Wt

we see that N (neglecting change in R i ) is directly proportional to

W	 Therefort, we can write

N • ko + k o tilt



• N^ r-t^^^ lr.(.l-fib

Rd
r In K-

d

wh w re

R

4r
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111.2.2 Calculrtiun of N(T)

Fixed purametore are `ti ^  Uo(0)1 R1^

then

N(t)	 No/t is a hypelbuln

wi rh

Ri+Rd	 Rd	 1
N	 Uo 0) In R; 1;.d 170

^^.1M	 ^I...rwMHAwUMO^..^w/MY^M/aI/M .^ r

Figure 17

11:1.2 . 3 Calculation of N(S)

Fixed parameters are: Wt 9 Uo (0) , Rd $ it

then

NM	 N, (r+3n1
10
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R.N _ 0 for a_.. l > ,•R`4, P.d 1-0 _ .

R
N U O for P< )ti+R d 0 R e

I	 :'I

P*
Figure 18

III.3 Model lit
We use the formulas (37) and (39)

R

N $ • ln4 ln(1-a)-Inf-R,+f:e(1-^')+e^6

and

N In
In lEK



- 40

We specify Wto Uo(0)o to O t Rd like in Model #1 and additionally

T • pu1Le period

K • allowable vultoge drop at the capacitor

C • capacitor
R t vs additional char,,(, rcfsiFit:or

From C we calculate

WC	 C/P(

where WC 
a weight of the capacitor,

W  • Wt - WC

where W t w weight of battery.

111.3.1 Calculation of N 	̂ M r.)

	We calculate and plot NB , N 4	 f(Pc)

At

At
r% ^,,:'!



R`

as 41

N^ • f (Rc ) is a monotonic incre::ning function of R e , Nc • g(R e is

monotonically decreasing

N • tit:,. n (NB , tic)

Tibet implies that

N M Alt 
• Max N

occurs for

N A • NC

By choosing an arbitrary Re , we will generally not got the maximum,

therefore we developed an algorithm that leads to the niaxi.mtmn.

We plot

Nc „ N^ 
li `
	 NC - NB • f(RC)

l9

Figure 20

The first c;AcL4ati.c.n is for an arbitrary R,. The nom-, %, we will

try is R c tic w • R C 094 + (KC . N  P. If we choose a P of right

magnitude our next approximation will be closer to t;ho taaximuta.

If the iteration diverges we have to 64or zo mother (t:sunlly s r,nl l.t•r)

P, in order to rialto the calculation convergent. We continue! until

_f

4.

L
	

rYYlll^



t o	 1vto	 Wt a.
14

l
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III.3.2 Wculation of N(C)

Since thr; total weight 1,plitt = Into the welf;tit for the 1,<<tt,!ry

and the weir lit foe the capacitor, we h.,N,c: an infinite por.eibility

to combine these two components undar the condition that the toti:1

weight remnl.ns constant. Thercforc we ra lculate 11 = N(C) for

various C. N • N(C) is not just any N(C) but NMIX(C), the maximum

possible N (that means we try all possible (R C ) as in section 111.3.1.).

We plot N w N 
max 

(C) for W t	 constant.

Figure 21

N(C) goes to zero for C -PC* and C • , 1002. For We	 100% there

In no battw y left to charge the capneitoi . For

C c Co

6 • 

eYp

(- R C ) < I. -K
then

Rd In

with

K • maximum voltar a drop at tbc , cc.,pacitc^r.



^	 w

- 4 3 • .

This implies that the voltage at Ra is smaller than the minimum voltage:

(l.—OUe during tho first pulsa; therefure, N. • 0. C O depends only

on t, Rd , r., but is independent of Wt and the othrr pr ► rentetesrs.

This explains why all N • N mj t(C' ) • 0 for all Wt

III.3 . 3 Calculation of N01t).M^
,Constant paraveters a.o: Ri p S, K, T, T.

Variables are C. R t , Wt,

Now we find the maximenn of aver), W t 1k constant from the

diagram. '!lint is

N • Max N • Nm48(C-01tc)
R` ,C

A^IYH.. yrnrr^i:^• ^,^t

I

Figurc 22

111. 3.4 CA.c ulati.on of N(,•;.)_
' 	I

i	 Cnr.stcnt parar atcrs ctra: W,, R` s O, , r,, T.

Nariables are: R c , C, To	 i

N • Max N (1)
RC,C



N

W 44 ..

mgr.
Figure 23

This curve her. a hyperbolic character. Aestming that v'e dr,w cor►st,int

power P fron the capacitor durin n rt, then

F.o • P4 per pulse.

In 14 wo can store Fmsx Thum Lhe nw iLe., of pub r cr, we can got f ro.-a

the storage system is

E	 C
tti,xN	 11;;.Y.ti- .	 - "

E 	 Pr

which is a hyperbola. For t too large N Coos to,u,r. d ::cro (14	 0).

ITno mint-, r.i capacitor ( m,-, shown i.n 111.3.2) Co * -----.-^	 ishn In (I—,-)

pi:oport: on 1 to -r. For large , t the capacitor vill vtoirh V't.

so that tho hattcry frets vrmaller and r u.allcr as 7 incrc,:zc:s .

N • 0 for 1+'` • fit • A`V.pL };lii(1 r )

So the ma rim m t Is:

t < - ^St pc Rdln(1-1:) :l

x.



N • Max N(6)
RC 1C

N

.. 45 -

with

PC • O.11, R d • 1A, K o 097

than

T MAX 
10 0.0390 nuc/kg

N
Tmax % 0.04 sec;/kg

II1.3 . 5 Calculation of N(A)

Constant parameters arc: Wt , Rd , K, To T.

Variables aces Rc , Co S.

^i..^^Mw.AAA^MY^rw/r^rw^rr1Y /Lwe
l
^^.MAU.'.MLL^ Y ^	 ,

FiFuru 2`i

For small g , H(A) Is proportional to E. Unes,	 app ,-(,,,--hc:, K

(^ ♦ r.) rnd large K (tyhen the bettcry is s1rf:rdy pr rtI.-Aly dJ.^:^h ;rF:ct)

the difference between bettery voltage rnd co- pacitor vul tnge is too

small to charge the capacitor. Thcn -tha incrense in 2;, AN • ► 0 r.a
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In the coctionn 111.2 r.nd IT 1..3 wz hcve sut.n the depend(urei

of N con cres-1 pnrrricter. It would toe JOr-ul to hcvc a functi usl 'it (of till.

prrt+n;c;term), th-It tolls uj which ccmb)rn1-Jon of pnrroetern r r►d 000i

rroctcl. is th', b(lret. 1111n fuli c tio:r vc)04- i.e a cot ft4wirtJon vhorc the

paranictora c.ve wright f-d by some fcdctorn cad r,,rcrnuvox thin, function

is an extr,•emum we would have is	 or worut mode-l.

In thoso eppllcations uonrly r1l parrv .at.cre are fixed,

like to To Wt , Rd , Uo (0) , K. Since wcy u l.-e Ni-CJ bn tter• ies the

voltage drop G is fixed too, and we ce. lcrilated to with F► a 0.15

Vaich is prLictically the upper limit. For Mudc1 Al there In no

optimizn.tion, brcatiso the battery is choisen n y lavga an posait,lu

W 8 A t-l { . But for Modal #2 we opti mircci over t+r, IJc , R C (W = r t'l^ + Wr,)

and found a maximum of N for a par.• tictilive conobination of W` , Wc , KC.

Uor.:.fcra th.- ci.O.t f raction fog Hodo l 1'02 In N. or 1;014 , nC , U1109

Since this fut i ction is no n )-irsenr rr► d not c:s:pll.ca.tly f,olvL..vle the

optimisation is not a straight forward procedure. It is done!

graphicn1ly. In the following ve will ansign N Z to N for Model #2

and N r to N for Model A1. NZ cplitn irrtc- N IB , N, its in fur.•niulas;

(37) i,nd (3ri) N	 a N 	 N t	 ZiZ ^ respectively.

I'l I.4.1	 Ch ►.1mi :::. i. ^.r^;t ov:-;^ lt e , 1J ^ r	 Zv I (1+^) .	 l^i.•r ; rr..,: 1

Gc^;;s,:ti?rtt virr-n tars trxs: Vt , C, Rde T, To 6, K e

For the optimal combinjxtion of 1-1 c and W109 N zC cr► d N .. 111:0

plotted an ftinctions of R in di ogram ( 1) pvue 47 . tt 	 Min(N = c,NZ^) .

^_	 t 	 ►t:r.: RAe the: 2^	 ^ N	 for A fai rly^ ^ i.^,^. r.. ;t^ ;c^ cif, ti,c . F.e conclude

x

._	 NX

• .
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that an error in R, is not very critical wILh respect to Nmnx AS

lon- rs RAN RoPt'

Ilia JJ;:grvm aloe shuns tiles dap.--itdr-nou of N Z	 N tt, en

R e for different i . To compare N = and N o the: dingr.- :m. R1r•o crnt• nin3 N, .

111.4.2 Optimization over C, Na a N 2 (C) . Dlagrnihn 2, 4, 6

,Constant  parameters are: Wt , R4 0 "', i , A , K .

For R c	 Ropt, diagram ( 2) page: 49 shoe#s the plot

of N t	N a (W6 ) . WC is directly proportional to C, so this

diagram also represents N 2 • - N& (C). The plot shown for all

C > Co (sec 111 . 3.2) a very strong dependence of N: on C. Small

devirtions in C from Copt result in large decreasc3 of N = , especially

for Co < C < Copt . In the shoded areas N > Na.

Diagrnm ( 3) page; SO chows W B	 f (%..I c , with Wit • Wt - WC

and the pare-mater N 2 " constant. IiIiis pTv. ►h mokr.:: it ee:si.rr to find

the optimal tJt and N for any Wj given that Rd, Of t,. T,	 K are fixed.

Di.rgratt.,:(5,7)pages 52,54 rc:prcccnt N N&(C) and

W b M 00 as described above but for different Y. As r increases

the regica vith N 2 > N, decreases, becausn the capcei . tor groe-a

lartcr and ,larger emd cuts down on the battery Pine (see 111.3.4).

III.4 . 3 Plot af Ǹ • N (Wj) . Die ram 8 ^.

Cr .rtsti:nt pnrariutexs are: I'd , is To S, r..

N i , Nz w f (W: ) fire as from M'.2.1 and 111.3.3 eypccted.

N % < N O for all W but with t Increasing then N, •.* Nz.

Of

awl
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Figure 25

^.•. "1SV,r v..ur r- L

-y(,..

111.4.4 r1.t►t 11 ^ rt('^).	 u1n:;r+ ^.

Coasti-a 1-,mvn: t rt% ar i. 	 4t! , Pi :t T, 610 0:.

'1110	 shmsr, Clio plo y: c ► f !: I r. 1!, (%) usut

Z` ^ w	 Alt:;;	 n 1t7^,1►^ ^ 1'^ )

N # and N= 0 n< T gOtt: lade. But N 
1 

ducycason faster thevi N^

(t;rr. I11.3.4). Sinvo we t-inde the as+i umpcAm dkt!t T c< To tho

enkulsti.con in v, a id only for simall 9, but it shav's the d.•pcner-nee of

N on 1:-rEr. •e. ror large: 1• ♦ II I > Nz.

IJ

I11.1..5 P7 r.t or t:	 NO	 Din; a.irt 1D

Cmistit at paran.'A.ero mre: W! , 1:G , To •r, r..

It, 111 . 2.3 WQ found that N I (a) 0 fog N	 R^•la^ .

F
For sl.ial.l ^, h' f (^') r.'fxns cpprm.Ir.:at cly l:I,wnrly b.:ra y.;c or-

S.	 hrm-i IT.?. 3.5, 07.. hvto';I th.it 1,1 6 it; .7 lfncar

ft,netio>n of 0 for smz1.1 6, but t+F 0 - 1- K, 11	 cuts-;tant.
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II I. S Concluq i onrt

We ccLablishcd firaL. the Ow.-oraicO t-ClAttLIM. for Hod::l VI

and #2, fc ► uvid Ow MAU; Lo diffc r rwit; IlArnms:terr tend asl,owerl in

ac o- ! on T11.4 thrst the valurs ohvifted by calculrt lon agreed with

the mpL ut• ad plots. It in surprisirif; that the dc► ,,u:ncic, ,iu, of V on

the various pararasters i.0 in many crrc: linear or indirectly proportional

in ao.,,c regi caw, though i.t looks from the formula's an if we

have to expect: much lest; linear dependence. The reason for this

nearly linear dependence of N on the pimli c:Lel'a is the lint-arizaLicit)

of the modt:'1 cmd the small change. of the rar!-,meterm.

'	 1

i

C
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CHAPTE.T. IV

IV.1 Conclu ,t cni::

Ill 	 III we cor.tp::rc:d llodO #1 itt:d 11-lode1, #2.	 Moc1:.: 1 1, 2

has a higher number of pulcos than #1 for rlri,;st every ciiriev of

the purr-ni atcrs, ldt , lid , T, •c, as Only in	 10 N	 11(3) ,

we fouA N I > N = ; for all other ences we f.ouod N 1 > % N o* Ui.s we g to

be expected from the ciscussion in Chapter I. Thn total di.1:e1nrgc

time (Td) for Hudel #lo T d 	 NIT it st"01.1 comilAred with the

dischnrl;e time for Model d2

T02 A NI T

Not Only is II I > 1d 1 , but t << T, so that. 7'u y +> 7c^ f . tic^csc} 1 i2

is especially advantageous for small total. weight. Due to the

relat:iva hif;h internal resist&nce of t-nu-.x1 Uc^ttu^::' ^::: t^^c 1^<.^. ► cry

voltage drops fast under the value of the	 for

Nodel trl, not so for Model #2 where the extra storiti , tan t o (cai)t-clAoi-;

can release the energy with only vcr.y small losses but. drF,trs. i.t;;clf

only a small current from the battery. Thou-1i this stv,%cc is l.e.s-s

than 50% efficlai:t:, Hooel #2 has a higher TivInc etricicncy t.hrn

Model #l.. We allow the voltage drop nt the load to be higher than

the one at the battery. Model #,2 can lianc'.le this situltion, yodel fit

cannot, this I s anothe r reason why N.
Z >
	 ti t .

Since the tov-1 dischc,rge times arc small co.ipntec: with

t! ►r charging ti-.;es (for Pi n► 1-5W tl:e cha* ge tint? fcr a 5 kg encrj;y

sic►r^.;.: i;i,tl, Q L ,- 710 11h would run to	 30



Now we see the main advantages of Model 02:

1) since the battery is smalicr, the charl ;ing time is snaller.;

2) since the pulse efficiency is larger than for Model. l ► 1, X12

does not »cwd to be cl:ai-ped as often as #1; 3) for i` > 0 we can

directly ch::rge th e. capacit.vr. In i-todol #1 we charre for 0 • t < T

the batvc-j . r and only for T-T < t < T o I, contributed to the current

in Ra. When we use Model #2 in a satellite•, the satellite cnn

transmit more informatf o4 than a sate Alite equipped with 1-todol. P1.

The first satellite in series of the Sunblazer satellites will be

equipped with a capacitor (0.072 F, 1.8 hg) as energy storage. Thin:

is sufficient because it can be guaranteed that

W.

Pj d 
t

t+T

> 
f 

Po dt
t

Further Sunblazer satellites will be equipped with more sophisticated

energy'storn;;es that store energy over 22 hours and transmit

sigr  for 2 hours per day. In that case Model #2 woO el be a good

sol.ution.

IV.2 Criticise

This is a completely mathematical investigation. Though

the assum} xna Tande are justifiable fro.-, the engi:terys:'.: point of

view, the results should be.. supported by som. ^. eAperiirvntal data.

For larger T it would seem to be worthwhile to investigate energy

st or . ;-es l.rt . o } * nnin^ 1' :^' C S vmd wny^ to inc1 e l :, Sr^ tl)1 f.:. r"t'.to
,

L LQX%,Ll C".10 i;'j % luj::e.+. Vi:4• t! th-: tot- W-1 wee. ,4 -6 its riot c- iticai, lrx.

f	 .

F	 r

t: C
x r
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the system has to be very efficicnt, magrerfe

superennductinr coils miprht be 1)..-tt(:x. '1ht,.--,v

to store energy have not been imestif-itee h

weil;ht rnd the high reliability requ: remont.
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CHAPTER V

APPS:? DIN

V.1 } f f ici L -le ofCapnc^;

Via c*pi-Acitor C will he charred %title cv;r,tImt vcl.t::^f;l

U0 over d resistor Rc.

The ctirrent is

i 
	 1-5  .

C	 c 
C

Vie input energy

F	 Ucpdt	 ttidt r.	
^ .	

c^ y r	 ;t 'ti	 K,	 ^ I. C
0	 0	 o'

1

• It — I2 cC y Uo C
C

Since the energy stored in the cnpneitor

_ `	 4

h^ ^ 2CUu

The clinrFo efficiency Is

S
.`

old

r	 ^	 ,
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V.2 ANtto 	 ent; for M:±rir• im P'.novy Ow.tiut

T

E	 M;:;:	 (t1O- ilti)idi.

0

It

where	 U 	 n battery em's assu-mc-d ce rtF.nt.	 •

Ri a interricl resistance

i a battery current

T

Conctraint: k w	 idt	 1)

0

Using; Variational Cr.lculus

Fdx	 Max

Constraints Cdx n ceastant
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then

U _A
(%s)

with (42) in (41)

i ! - 0 cot"; t vi t
0.

V.3 Corn r-,-ison of Fn(!Fyy -Aon:: f.tie,

From R) and nwc-mroti, eatnloge the energy rcnsiti.c i k1ty:

Capacitors	 up to 25 Vs3/kp

Chokes (inductors)	 up to 0.5 wv/kr,

Ni-Cd batteries	 up to 6 x 10 10 Wn /l;t,

Morctay batteriau	 up to 35 x 10 4 47u/l:g

Spinnitii; i-i;xeco ( like gyrosc.opos) up tc . 50 x 10 td: Ail

Energy to loss ratio:

Canducto n	 2 - 5

Capacitors	 less • than 0. lZ
of stored energy

Ha3stteri c ,	 less than 0.01%

Gyroscopw:	 less; than 0.5%

The m.-pacitor and bLcttnry o;iorf;y clinsi.ty urd

}l^• 1C:Cltlti L::^ i4a'e: i.iore ftwor^}ale than thoSCt of oth(.-r C'1C.' rilCll^h

-L AL



... 66 ..

VA Cu;.,p bitc"r Prt,„rr.,i for 2^^ ^	
11► ' N2 C'

( r^> r c ^•nrt a > >

it': /1',) 31:1, P rI , r0, 0T, Rk-, P..")
;U	 FUR !IA T ( 5F 10. 5 )

krAD 32 U", (;1; , 'rn, T, P.
32	 1:0	 ',T (isr1G.7,ri(i^^')

1100:-:0. 313
R(} L:: (IIr,
• r r, .

R I = ;y 0)	 R P.

vii i t: ,r 1a 2, n, 12 I

r^,r)) /(11^-r,^
50	 cP:!TI^.i^c

Pk11".'1• 51
51	 r.-m AT ( 81 l': P:,T=0 6 )

GO TO 56
55	 T] = I.G(;I : (T3 )

P,,;C- Tl *T2

5G	 GQ^+11''::r
CO-

,I•..0
5 0	j	 ''1

72	 t1 	 C!ft;. ► ^

I F C	 13U, 1 3.. b
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r ole % * ,W*voN+ .«sH .w..^ . w...w.. 0 N.1 1 w►  .N..a.. w+w.wr a..N.. s «ww.a»..N w.•
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N
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(five) (P) (S') (^' )

lAw"WN...N	 . ...w IM....Imowsm W . oft. I.AM.^....L V.

0.02 2174 4010 4934 0.6 0.11 U.1n'^
4384 4929 1.2
4527 4903 1.8
4609 4834 2.4
4674 /t 7 1' 3 3.0
4725
4776

4572
43116

3.()
4.2

4828 4200 /1 . V
4878 3986 5. /►

.^^ NM•..r1...rI.Y ► .^ yAr.lMF.ri . •^^'N..Wt^M1

0.03 1.849 2113 2R61 0.4 0.125 0.154
2446 2859 0.8

2577 2841. 1.2
2652 2 799 1. G
2704 2731 2.b
2747 2643 2.4
2784 253+i 2.S
2819 2420 3.2
2853 2293 3.6

..! .....^.^^w.w .ww.rrrwr.ww.•w rrr.wr IMN.. rnw U.NM d1 ,.. M.'.1.MNMr..r

0.04 1387 1185 161.3 0.28 0.139 0.39 `2

1495 1811 0.56
1625 1f;1 ► 0.St,
1699 17`".1 1.3?.
1748 1 V.3 1.40
17r.6 1.693
1017 16 3: 1.^^G
1644 1563 2.24
18r)9 1/')'1 ?.52

^..Iw. •#. ./M"1•NN/Iw -w"66.4r.o... ^/.M1rWw1. u.Y...Mr•w!Y.•N^.. ..r... rr.. uur a

P,i 0.15	 Rc1.1.0	 tti'tM5.0

K=-0.3

bitlerrou Is ll ai;v 41
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592 n.?.7/^ n.f;?^ 2.61 0. 117 0 ,•r, 9. 7•tom *•, .^.v.trrw«r ^3•^ wwr Mw .r.• 	.	 • • vrvr w•.r .^ •rw r• a •n • "Poo "e"wwr	 ... wMww•.w•r.rr A,•r. .. ...,..,.,.aM. 	 ,	 t

E02 0.252 0.71"', ?. • 37 n.61.7 P. 113	 ^ 11.9.5
^M.w•ilrawir. •.IMMwr1••'..•rw 3 .'•I^Yr• • -	 .. ,•`r'•r••^.wn .. •. i`M ••r.w•.+r.•r.n . ••w^w•w,w• •rr•^NU,'• +, ., • .rrMN^, Ji{•• % 7

1	 f/^• riM^^w r
0.228 0.685 2.05 0.48 9.02 9.5

M.M•r^r.^NJr r^•^61 ••N•Nr.-•,Ar•.••••..• •.•r•r.A.prtw^••.wn rr•rrr•w .	 .,•r •w.••r	 r. sw••wwt.r•

1389 0.7n4 0.613 1. R4 0.39 7. 65 P.. 04
•t11..•rbr•^.ar•L.rr•. rr•I^•^•.•u.M••r.r .•r^^.•+^rrr^r w•rw•u•.wr•wrr.r•^.^• 'VV•r^wr^r^r.M arw•^www•w .•w^.•p Mr•.►r••1%1rItY.

1645 0.18 0.5/11. 1.62 0.33 7.16 7.0
r

.4^Mr.rr^•wr w•..wrw^rrr•.rw• ^ww•r•rr.Mwr•^•M .us+^r^^.rr.^.,r .:.r.ww^rMr•ru.-...+• •.. • ..w r•^„gnan. INY.'

1855 0.1.6 0.479 1..44 o. 28p, (x.67. 6. 9 1
,'7rN•rN.•ww^w. .r^.rvr•Ywr/• ^•^.rlw•,^+fir .• J..MmAdo	 .^•'.• .MM'.fM1rb1 r^r.h•n1^^w.^wM ••'^.•.',t•RaNL».'.R i.Y'

2003 0.144 0.434 1.3n 6.21;5 6.nq 6.15
rtVr.t^•rr••r•r..rr.•. •..NY•r•r.wr•M^Ir.. r)1^wAM•.. '•hrr. •*•ns w.w.•w•ar•-, . .I •••'Nw• •r n.••r•r•. ne •••M••M.^a1'w1 r rrrrwN•hY.»t...f.C. r

2143 0.129 0.388 1..1x, 0.245 5.37 5.63
•.^r.r.w•.+r^►r .A^r.w+rwwwry .:,.wr.rr..r,..rw.. •+w..+rrrr.r►.rvw..^.r r.• u.wrr +rw. •^w•^.r•r.•rA'•7

2263 0.11/1 0.342 1.02 0.22'- 4.38 4.51
w•. *+w.wr.wr,-r•. rw.rr.r..r.u.ur..r.•nw•.r.•...r•.r•rr. +.wnw•r.••ww•.,o •..•w..r.rr.wrw.r •wrw..wwsrnr .r.•e.. ..wr: - ... . nrw twri:^Rr:•^

2321. 0.099 0.297 0. f,9 0.213 2.6fl, 2.S9
^wrwrr•^.• wr• ^•.w, ..r. ^.rwrrrr:.. rrer^n •!.•^•r•wlu^rr+ .•s •t11•w•rN.Wtt':

1978
. !•rY •'.^ :• •M wnwwY•.rr •

0.01M
rw•..w.w.•nr •••a,^rr•.•••

0.2.51
wM•M••••• AA wrw.n•

0.75
Y^.•r.: wr1^.^^^•

0.20
.^.^•rM.`Y.•.MW +•IMM.•rrM.lr

0.70
•Th.Mi1

0.96
ItTJ.r...1.1 ••AlM1.r'^ )

3060
r ,.....r..r vw.`.ar.. o.n76•.r•r. .«: v•r•w•w.r, 0.999.•r.... •r,. •.•«.r.r. n.69.r.r••«rr•.r..wr.. 0 195....r,.•+w...r•...ww.w'•sw.w ► ^n.4-.wrnwr n.r, ^.,5wrw.► •.w•rrwR..'	 .

t/

1270 O.n/O n.209 0.63 n.t.',^' 0•'3^E) 0.534
...	 ».:.	 .. •.:t.7:.	 .!St::•:tY	 , ...	 :ri:..,	 :'.t.,..•.... "'.til1rA... '7 •.... ^ .. ., it'.!'a:.'.0	 .... ..	 . •c:.....e' ..'.ti:r ...:...	 ......	 ..	 ^:	 '^ •.:,+,'C:u.;

(isn .15 T=0.02
r.^i^1. n tat-, 3. n

1\ 1^' 2 ^	 xi 170.1.5
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lI

^ G N '! ^'	 / ^1^	 ^ /•1 	!^'^,^^ ^	 s ` ^''^ `	 Cam" r ' ^	
^^ t a^• L

• flr^^tX••.'.2...:: r^N.rotoL'.'w.:SSLT.'	 ..'••,LLL..	 ! t'.	 r.•r'!...	 • .. is

	

3/4h	 0.322	 0.725	 2.9	 n. /;1	 X3.75	 9.16
vwyrYMr.^^.^	 .Mwnw	 .• rr.. N•P ... .. •►+•	 wri^....r.... ..... •ra.w^.rr°•  ♦TR!1

	

1ca60	 0.294	 0.662	 2.65	 0.33	 8.6	 8,93	 1!

	

•a..nwr...w.	 •w..MIr .wr	 - w 	 r ^ N w- rrM..	 - -.^ rw..^rs^• ... aw.rr.w^wa.•.. 1
l^

	

1970	 0.766	 0.599	 2.4	 0. ?fit	 8.3	 P,. Sit

	

2278	 0.238	 0.536	 2.14	 0.2/1	 8.1	 8.34

	

25rn	 I 0.21	 0.473	 1.89	 ( 0.21	 7fi1	 7.82

.

2 961	 1 0.182 1 0.41	 1 1.64	 I n. 1.9	 1	 7.1	 1 7.29

.3143	 0.154	 n.347	 1.39	 ( 0.17	 6..33	 ! 6.5
.n...r...., rww.r. . r .wrrw.^wwwrr.. ww^wr.rw^w •.r.	 r..w.^.n.r w.w.^r.^.u.	 raw w•wrw.^ww..^.

33800.126(l. j' 0.284	 1.13	 0.16	 5.1	 5.26.r.M.t...	 r♦1r	 .wH...w.r.r^1.^Y.••^...Y.W.. rwr.y a^Irw..Yr.r. aq ww.w rMr 3w•^r•^Pr •I UTA .w.rMr.Mt ♦ j

3496	 0.101	 0.228	 n.91	 0.3.46	 2.7	 2.85
/^.^	 MNi.r.r^llr.w^w. ^^.r./Iwr	 .1...w.^r.r	 M••. r..^rrrrlrrrrwr. .^.wUrri/ .N tY.'rw.w^Y'Jr w•1. ^

3296	 0.0924	 0.208	 0.83	 0.3.42	 1.16	 l.. 30
w .r..rwr	 •.^...vrr •A U...^r.b.......gp..^

2860	 0.0°36	 0.188	 0.75	 0.3.39	 0.536	 0.675
......r.ur...w+www• ..^...^.www..^s	 ..wr.^^.^.r...........www...w....wr^.^.•...; ww....r.orrww..^r

2157	 0.0736	 0.1616	 0.66	 0.135	 0.?l)Z	 n.433
.^RM.nww

	

	 ... rhr wwrMrY..r.rrw rsru.rMrwr .err ••r•r►^.rwwrrrrr r>♦rrrwr.H..w..r porrvr w^arr..aM^M.MMY•; fi

1545	 0.0672	 0.151	 0.6	 n.113	 0.214
...':± +iL.'. i".. :5: .4fTv?/lr'R•i4.:.': :...	 Aa•.. .:rtNwCR:.i.7t.t: Y.•^16.XAR'. .. .. .. ....., .1^.C:. ,.:'."i?..?C.	 "lYt,	 -:.M".. .. 'Sf

0-0.3.5	 'r=0.02
Kdr1..0	 wt=4.0

y 1=1650	 Ril=0.1125

Diagrams 2,3; Pages 49, 50



- 73 -

F

/V C

r► «^w C ail

1923	 0.304

351.8	 1 0.24

3fZ52	 0.208
1SIMMEMN...	 .w.fN1I.. •^

4167	 0.176

C^^	 I 1 ` ^•^ I r`

p.	
1

.•swat- •r. ^+s ..	 ^r•• : •• •^r .:•:.. :.ru••. • .^sv. .	 .^ •.•.	 .wa.	 • ..

ii	 r^•w..rl^.al/1. pr ...r+etir. w.

	0.549	 2.76	 0.1110	 R.66	 2.7
rL..^.^../. eN. '•..ter ..	 r.M._ ••^..N..^I-^...wv ..MLMN.M^M.M+. J

•

	

0.432	 2.16	 0.1.58	 F.05	 8.21,

	

0.374	 1.87	 0.144	 7.6	 7.74	 j

	

4.317	 1.58	 0.13?	 6.96 1- 7.09

4387	 0.152	 0.274	 1.37

463+	 n.12	 n.216	 1.08
NNIMY... ••..-.nw.r^^	 ...r.N1..^IN.

4684	 0.104	 0.187	 0.93

4G71	 O.lnl	 0.182	 0.91

4334	 0.092	 0.166	 0.83

3002	 •0.075	 0.134	 0.67

2230	 0.060	 0.12	 0.62

%3 •♦ .. '1 ..X *l o :xss^nt., :rt°cnl:.ai MaM :.yen f!ae^s.

f3^0.15	 TwO.02
^.a=l..n	 1.1 05.0

0.1?4	 6.25	 6.37

0.115 4.83 4.()5
w 11 .4091 1 VI...m ..•... w.•.. N,.A •K e.• .r1

0. ill 3.0 3.11

0.1In 7.51

0. 94 3

M)	 ^

0.951.0.108

t0.3.04	 n.25 0.35
.'^.......w.,NN•• ..<w^wea.nwerr•••_ .

0.28	 .0.102 n.17P

N 1=27A	 N.i18-0.01)

Diagrams ? , : x P w ,:• , 49 , 50



^Y ...^."l.:.\iT"'TT:T,4::	 7 +1.	 .F" a ;q-y. " •`	 7WP"i':i.Y:Z ,`j,...Yi:. .r: '1	 .	 ... RS 1..	 'w< •.1. .:^•".7.^L. .... ,,'.	 .1. "^.'.,

J • .

1\	 t

338] 0	 '3(.R 0.553 3.33 0. T6P ().0 9. 1 7ili.vr+w..w;o.s. .+^,^ •rw. •	 . rr.wi^w^w ww...wn.a..+.....r . w.. w.arw «.	 r war.wwnr.0 rw..•.+.7. y^}.^ly

373 c) 0.336 0.5 4 3.02 0.151 9.96 9.Ol
^.M.^Iw.w.M.w.

4091

I^w^w7••r

0.304

.^Iwwlwli^l

0.456

..w.a^•^www+

2.73

..^•d.wlw....wAlwwl'

0.138

^ww^^^r

8.64

+w.,^..r.w.w . .. ^.

8.7.1

4441 0.272 0.408 2.45 0.127 8.39 8.52
a...ar^...w.lwwr .a rrwww..www.w)M wAAI^•^ r^..w.rw^..w. ^ywr1i94:•'

4778 0.24
Iw.•..^ww.w.',._.

0.36
.iw..wwwr

2.16
.w..w.w.w...

0.117
.....w.^.......w.

8.05
r.^wrwl....w•w.

8.17
, .._....^..1/n.

7.705107 0.208 0.312 1.87 0.109 7.51)

. U 14.......

5683 0.144

....tl.1.? r1il 11.

0.21.6

Lit n 4..rw•.. w•c ww.+

5.93

r	 •.	 TIR

6.03

^,i1w.NM...

1.28

n	 nyr. .J. ^.: r..w.0

0.091

5872 0.112 0.168 1.01 0.09 3.92 4.01.
+gym..'+wr.wl.ww w.l.w^.rwww+w^^ rwwrw^.^ .ww.wlw^... r. +w ..w•ww^r:..r +ww.+ww•w.r +.i r:.lui. ^rua'wstc

5852 0.101 0.152 0091 0.088
........:.w..

2.31 2.4
,.. w.wrw..now

^ 0.775374 0.092I 0. ].39 0.833 r).087
..•..^.........

0.68
.r..Nwrlal

wl....^...M.w.O.. .FAwr.._.MM..^. +•.w.^r r.lw.r.w..lw..►

r_.M^.....^.w.^wI1V

rM . oirt•...1./..w•IYw.w

•..w.^^w..w

q...r•.•M^wla•ww.

Yf/VwYM'

.wy.wr..wn^•. N\.M •

r. ^•.I^wwMww.w. .•t'

•..r....Iw.wfw. A.i.

..,. .. ..u.	 ..	 .. .r.r.	 •.a......t. .•y.r^. ar.w.wr ...... .vww..rw.aw•rs• .sel.. -•.w. .2 • _. +'. ..:'11^^J.y1L•:T:..ri. L..'.:^JY:t,.^ ^...r:ls.:.

I
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i

.

r 74 w.

f^=0 . ] 5	 T=0 . n 2
R=1.0	 w-6.0

►d 1 = 3:379	 fiila0.07r>

Diagrams 2, 3; Pages 49, 50
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il
196	 0.1.U, 	n , P-29	 1.656	 1.. 31	 x;. 21.	 5.52

299	 0.168	 0.757	 1.5/1	 0.925	 3.53	 h.4.5
^Ye^/e.. Y.1. ^tA.^M^.r1^lY. ..n^,^.rri..^nrn 	 ••1/. •n•^.n1n.r•!M•

393	 0.152	 0.6,S5	 1.37	 0. 714	 3.10	 3. Al
•• "M^ •w	 Iry	 M.r.wYnePn . •. •^Insr•W - p I .1 Ir . .

0.136	 0.613	 1..?3	 0.5F1	 2.30	 I ?..f;8
P. am(

e 480 0.120

y

0.541

431 0.110 0.497

331 0.101. 0.454

1.70 1 0.091 1 0.411

1.03	 0.490
^.n.nw.	 rr^rrnnan

0.994	 0.44E

0.908	 0.412

0.822 1 0.382

	

1.50	 ` 1.99

0.95-1 1.40

	x.66	 1.07

	

0.46	 0.84
r

nwrn.nnrnnnaw'.w•r^e.^.►'on.r. rt♦.nr iwwnrinr°r.•..wr{►t•^

1.•ewr.nrinM^•'./ •••.n •le•n,n^.An••M,. nn u.•I^y1«nr•.•». r	 •.. IM♦ q.'nn i•^•'.

rMn^w•	 •.^.^^^wwYw.•...^.rnn1•Y.wr..w•r r.r .^.wr.r.•'A..t. _

•	 ^ .:.!'Sti7^i.W .. .i'.... «:'^!....11:'°.'^:.r ... w'^ i.71!l^N. Ytn►.

r=0. 15 	 V-:0.03
Rdn 1.0	 UTt-2.0

N1 =0	 Ri370. 225

Diagrams 4, 5; rnocs 51., 52
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A' C C C J^^ !^` ^^ ,^^
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., .	 ^^:- •awa• r.,y1r.•.•:a^ •.••:. 7exwsa +lx:c^sa ^•xw:wre!•,.- :^^wv:..rc•, rl^wsti:^:-rr' xa..•^K•s.^ •. ,,.

361 0.276 0.829 2.49 0.876 54.6 5.94
MOrwu .w

532 0.252 0.757
vw

2.27 0.617 4.76 5.38

700 0.228 0.684 2.015

.

0.476 4. 411 4.88

1015 0.180 0.541 1.62 0.326 3.44 3.77

1141 0.156 0.468 1.405 0.282 2.61 2.89

1154 0.132 0.396 1.19 0.248 1.20 1.45

1023 0.119 0.359 1.08 0.234 0.61) 0.92

B65 0.110 0.332 1.0 0.224 0.4Q x.71

0.57635 0.101 0.303 0.92 0.215 0.'35

.•M^ M!M

^^ 1^r^w.^w •rr.rr.../^.wn wY..^1gM.1w+•..v •r^^...K

',alrt^ IClrl^.ir11^li Y'.rlatt"rR7tft►Y.•:tiiC^Nfe7'.tv:•;^T ..f^/M'.'IR'tW"^'1IF:yK1

3-0.15	 sr=0.0 3
R dm l.0	 I.1t=3.0

N 1=349	 81100.13

Diagrams 4, 5; Pages 51, 52
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nww^.ww-	 w..^.•wrw .••r+..w.rwr.v • .

	

1059	 0. 294	 0.602	 1.65	 0.333	 5.03	 5.36
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0.1£•2 f 0.410
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..r...\w..^w.	 ^srur.^

0.104 I 0.235 ^ 0.94

3.90	 1 4.17

0. ].91	 3.31	 3.5n
wW...	 ..,.^,.

0.172	 2.?4	 ;^.

0.157	 0.61	 0.87
N	 www.^.• WIN . .•.wrN..M	 11:'.: 1

;

0.151	 0.38	 0051
. ww^llwNw.Il..rr•\.• vwrw ..^...^^.. r n•A....,t.il.'...I'.^. • ^: '
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r Renuirements and Self-fttimisinq Lloctronic

power Supply of a Small Poler Probe

by

Richard H. Baker

Dr. Andreas Soehringer

ABSTRACT

This reoort details tho Ansiee of the basic cover

conditioning unit for the Sunhlaaer s pacecraft. *nor light-

weight spacecraft utilising solar cells it is important to

optimise the Power. System over the full temperature and

illumination range. The design discussed utilized optimal

C,	
control techniques to match the temperature - illumination

dependent array characteristics to a battery systame, The

result is an efficient lightweight converter with a minimum

number of active comoonents.
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APPEWDIX 2

'114EURTICAL STUDY OF A M POWER

CONVERTER FOR THE POWER SUPPLY

OF A SMALL SOLAR PROBE (SUNBLAZER)

A. Performance Requirements

1. Inout

The input of the do power converter will be an array of

series-parallel connected solar cells. In contrary to the out-

put conditions the input concitions will change in a wive rage

(picture 1). As the sunblaser has to operate in an orbit with

Inca	 =sch
Picture Al Power veneration of Solar Cell Array

a) an aphelion of 1 AU and b) a perihelion of 0.625 AU the ratio

of the shortcut currents (Inc) of the solar cells is about

Inca 0.6352	1

$scb	 I'"'` 5`

so 1 -



voce , 1.9

4ocb ( see Appendix 1)

z
RID

(The solar constant is inversely proportional to the square of

the sun distance), The ratio of the open circuit vol' Iges (on

the basis of changing temperature will be about

2. output

As it can be seen today, th* uc power converter will operate

at its output on an array of series-parallel connecter) nickel-

cadmium cells with a nearly constant voltage of L • 35V.

3. Operating Conditions

Since these substantial changes, shown above in tho voltage.,

current characteristic of the solar batteries over the orbit,

due to changes in temperature and solar constant, the power con-

vertor principally has to be designed in a way, which allows

that it operates always at or close to Maximum Power Point ("P),

independent of the mcamentary power profile (1) .

4. Reliability, Weight, Efficiency

a) The reliability of the power converter has to be as high

as possible, Therefore the number of parts, especially

semiconductors has to be as small as possible.

b) The weight has to be as small as possible.

c) The efficiency has to be as high as possible, however,

efficiency is not quite as important as small weight.

- 2
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B. Principle Design

1, Main Circuit and SwitchingN^^rr

A good and simple way to mate

seams to be the following (picture
a ®I Solar Cell Arraft

Conditions

h the conditions showi under A

3).

1	 +Td	_M*- r^ .ckel

AV	 air
i	

B
'	 0.635 AV

l All

Ili

I
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Vm, Tm 	 Mean Values of Voltage ane current

V, I	 Actual Values of Irm.1taage and Currant

Vd , 'd	 Difference bmtweon actual Value and t4ean Value

Picture 3- Principle Dosign of *Main Circuit



The array of solar cells and the batterysystem are interconnected

by only three componanto in the main circuits.

The switch 8 is turned on and off by a flip-flop which is

triggered by the differences between actual value and mean value

of voltage: Vd . V -Vm and current: Id • I - Im with the follow-

ing trigger conditions:

Vd = -cI 9 AV ♦ switch is turned off

Ic = -c 2 -Al + switch is turned on

where ®V > 0 and Al > 0 are given values and cl	and c2

see C.4. For the following it shall be assumed that the solar

cell array has come up to a point a, where the switch was closed.

Then it will run down to lower voltages and higher currents.

V and herewith V  is becoming smaller. When the circuit has

reached point d, Vd has become equal to -c l • AV. Thus the switch

is turned off.

When E > Vm + (1-cl ) • &V (what must be), the current then will

decrease and the voltage increase until V and I reach the point

a, where Id becomes equal to -c 2 e el. Then the switch is closed

and the described process starts again.

2. Choice of ©V and eI

The ratio AV must be chosen so that in that situation where

the power output of the solar cell array is at its lowest (1 AI)

the power converter operates exactly at the MPP.

r.
LAL

f



ForVXP: V+ I dn 0 ♦ ^ _ V f

MPP

AV (or AI) itself will be chosen, to about 10 pct. of their mean

values, thus providing an operation always close to the idPP. To

those values (and for the same VI-characteristic) must be chosen

the according values of c l and c21 either by calculation (see CA)

or by experiment. However, this is not very important, since

those values will be both very close to 1/2 and, for the practical

design, can be taken to be exactly 0.5. Thus the power converter

will operate in this point of the sunblazer orbit (1 RU) exactly

around the MPP. In other points of the orbit, the system will

not work exactly around the 14PP, but very close to it. The

power output of the converter will even though increase because

the whole power output of the solar cell array there will be

higher and because the power-current characteristic has a flat

maximum in the IMP.

3. Principle Design of the Control Circuit

D

t	 C	 STOPprP
V-T-

-^I S t i,  c6nst

SOLAR

CELL
V

ARRAY

P

Picture 4 • Principle Design of the Control Circuit

as b —



Picture 4 shows the principle design of the measuring circuit

for Vd and Id . For an enough sensitive flip flop the value of

the shunt Rs can be kept so small, that this resistance will

cause only an unessential influence on the efficiency of the

whole system. The diode v' probably isn't necessary.

4. Start Up From Arbitrary initial Conditions

If some failure happens to the system (for example, when

the whole sunblazer turns around in space and V and I become

zero for some time), the power converter must start to operate

again properly, when the failure is over.

This can be guaranteed ) when ever an either-or circuit the

flip flop is controlled too by two absolute values Vu and Iu

(Picture 3), so that for the switching conditions must be

written:

Vd • Me  ®V
or	 ) ♦ switch is turned off

VajVu
Id = -c2 Al

or	 ) + switch is turner! on

Iglu

The value of I  must be chosen higher than the current at that

point, where the stationer characteristic E l l' of the storage

battery and load intersects the voltage current profile of the

solar cell array. But since there is concluded, that for a

- 7 -
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V

Vm

V

battery voltage less than 900 of its nominal value the load will

be 4isconnected from the battery, l u must be chosen only higher

than the current at that point, where the stationary charging

characteristic E,1 1 of the storage battery along intersects the

voltage current profile of the solar cell array (at 1 AU). Thus

it is reasonable to take lu and Vu to about 100 of IMPP and VMpp

tat 1 Au) .

S. Stability

With the Vv, Id control design the system will work stable

only between the points a and 0 (as wanted), given by the VI-

characteristic, AV and AI (and c 1 and c2 ). Assumed, the system

is out of this region and (for example) the mean values

Vm and Im, stored in the capacitors are Vm . 0 and Im . Isc

(very unfavorable conditions), the system will operate shortly

between the points y(I s I u ) and c(I = Isc - C20AI).



CELLS	 `I d .Yd t"rc,F^	 f

But operating for some time in this circle will diminish Im and

enlarge V,n , so that both points a and y walk: up on the VI-

characteristic until a anQ 8 are reached. Thus, in snort time,

the system will come to work properly between a and 0,

6. Overvoltage Protection of Switch anu Storage Battery

a) To protect the switch (transistor) against overvoltage

(when turned off) there should be a capacitor parallel

to the storage battery (picture 6). Since the inner

inductance of the nickel-cadmium cells is very small,

this capacitor can be kept small too.

Battery
4

SOLAR	 111V
LArA

Picture R • Overvoltaqe Protection of Dattery And Switch

b) To protect the battery system against overloading, the

switch (by the flap flop) can be turned on all the time

or turned off all the time (there is no important differ-

ence between these both possibilities), when the voltage

of the battery exceeds its allowable value. This may

be crone, for example, by the circuit shown in picture 6.
__----	 Vh,

	 ---.

C
	 t

at e %t iirA 7- renAcal for the simnl i fieA CA1:mIAI— $ nr

-^,.,.



C. Simplified Calculation

1. Introduction of deviations and normalized values

The differential equations for the simplified circuit

shown in picture 7 are:

switch turned on: V = L • =	 (la)

switch turned off: V = L 3r + E
	

(2a)

The circuit shall operate around a reference point PO with the

voltage V. and the current I o f Introducing the deviations of

the actual values from there reference values:

V1 = V - Vo	 (3)

I1 = I - 10	 (4)

the equations (la) and (2a) become:

switch turned on: .V1 + Vo = L • a
	

(lb)

switch turned off: ' Vl + Vo = L • d + E	 (2b)

Introducing the normalized valuesI1V1it =- and vi = V
c•	 0

they become

Switch turned on:	
dil
fit--	 vl + 1

Switch turned off: 
dil

d 	
= vl + 1 e

with the abbreviations:

VCO	 L sL=T
T7 oV^ go o

' ►̂ ' = t V " e (>1)0	 0

10

(1c)

(2c)

(5)

c

_a



2. Zxltnsion of the given VI - Characteristic Into a
c aur L n series

In the following calculation the original VI-profile of thei

solar cell array is expanded in a Maclaurin series in the refer-

ence point VO, 10. since it will always be small, it is reason-

able to break off the series behind the second term:

dv	 a2v,
V1 •-= 0 it +	 ---	 0	 112

	
(6))

1	 dil

v1 = a • iI + b • i1 2	 (7)

^	 V

	dv,	 dr-	 I

	

1	 0	 dV	 0 dv	 1where a = - 1 0 = - - 
,
Il•0 • 

31 1
1 • o a 3T ^ I	o <0

	

1	 d	
o	 o

^-
0

(8)

1 d2 Vi	 1 d2V1Cand	 b s U j4 0 i7 --r-a. I I o •w
d (yl ) z	 1

0
2

1 d 2v `	 . L.,02 	1 d2V ^	
I0 

<0	 tg)

	

7d	 _®	 v0 ^`	 IO

Thus the equations (1) and (2) become:

switch turned on: di1 „ 1 + ai
l

 bi 2	 (id)
dt	 1	 1

switch turned off: di1 + 1 - e + a + bi 2	 (2d)

	

1	 1

where	 a < 0 1 b < 0 and e > 1.

Herefrom one may get the explicit equations s = f(ii ) (Appendix II)

and with the results of this calculation there can be shown, that

11 -



of>w

pv^► ^
V

vl • a • it with a • AV 10• ..®V . 1
TO,	 ®f I

(10)

0

for the given VI profile and Jill d 0,05 (what meann 	 • 0.1)

there is only a very small difference between b • 0 and b ^ O.
Therefore it is reasonable to linearize the VI profile in Po

(i.e. to take b • 0).

3. Calculation for the Linearized VI Profile

o,

Picture 9
	 Determination of Point Po

It leads to an easy and well-arranged calculation when the

point Po for given V1 characteristic and given Al and AV is

determined by the way shown in Picture 8. (The numbers in the

small circles show the sequence in which this point is determined).

Then can be writtens

V • •A

	

1 	 ' I1

	

V1	 ®V/Vn Il

r 12 -



and	 ils	
-r 'I bi

o

0
Thus the equation (1) and (2) becomes:

di
switch turned on:	 =a = ail + 1	 tip!

di
switch turned off: ar = ai l - to - 1)	 Ucj)

and their solutions:

switch turned on:	 t • to + t an U + ail )	 tif)

switch turned off:	 t n to + a in to - 1 - ail)	 (2f)

The normalised value for the time, the system needs to get from

a to A switch turned on) is:

l	 1
l +

With (S) and (10) we get for the real time:

1 +IT'
b ^:^ = b 

Lb	 ^n ---I'^

or with an expansion into series for the logarithm:

_	 a	 0	 0



since .2 I= 4 4 1:
0

At aL' 0
(11)

Analogues we get:

i	 • i- aei
Ot a♦o 

• at+ • -a In
•- l+ aei

i+ 7V7 "l
d t+ • o LQ in	 d0 -^--

and since

T r ' 	C C
 s

0

(12)
o	 - 1

0

The time of for one cycle i s

At • et+ + ©t+ = L V- t 1 + ^r-----a
o

0

0 1 - r-
and so the frequency

V	 V

AY 1;r
	 cl3)

The voltage across the coil is

coil ' L
dI

 df I _ 	 A

0
14 -

C
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The moan valuo of this voltage for the time when tha switch is
turned ors therefore is:

to

TETta
1

^i1 + •L •A I

Analogues the man value of this voltage for the time whet, ^'te
switch is opened is:

to

L •	 dt •	 • L (I a • =a)
to

	

•	 L Al

Therefore the rectified mean value for the whole cycle is:

V .	 l - (L . AI + L • AI)

V= • f • 2 • L • Al	 (14)

or with (13)

• 2E V° 1 - V°V	 18rm	 r (
	

r)	 ( )

4. Mproximations for Time History of Current and Voltaaerr	 ni/Yi^lilrr^^iii^\ ^/^Y ^I/ rli//^^li^ ^^^^Mi///ii14^A^O^^

By taking the point Vol, 	 in the way shown in picture 8

the current will change during one cycle from Io + ^ Al to $o-CAI

and back. )wring the switch is turned on (from a to a) the

slops 3T changes in the ratio

f	
15 -

T



dI

^ 1obi
	 TO

Analogues, when the switch is turned off (from S to a) the s i :. ^ a

N changes in the ratio

^d)	 E - Vo - Vl	 Vl	 Vl	 1
W)	 - o 1	 0	 0	 Iro 1

0

o Ir - 1
0

Since 7- will be probably not bigger than about A.1 and v- >1.5,
0	 0

the current will be a saw-tooth-function with nearly constant

dIslope 3f between two switching points (Picture 9)4

Picture 9: Time History of Current

The time history of the voltage belonging to this may be taken

out of the original V,Y profile. By integrating this voltage

there can be obtained on even more exact current curve, hereto

the voltage out of the original V,I-characteristic and Boon.

- 16
ti
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C

Already the result of the first iteration will be very exact.

Herefrom there can be obtained the mean values Vm and Im and

according to V0=Vm - c1AV, the exact value for c1 and analogues,

according to Ia=I C26I the exact value for c2 (VI-characterist;ir

at aphelion, See 8 . 2). But since these values will both be very

close to 1/2, for the practical design they may be chosen to 1/2.

D. Choice of the System Parameters

1) Number of Series connected solar cells.

For the choice of the number of series connected solar cells

two points are important.

a) For the sunblazer are provided ® segments of solar cells,

where on each can be placed between N=72 and N*62 cells.

To get a simple wiring (the same in each segment) it is

reasonable to provide in each segment a series connection e

N' = N or N or p ...

b) To get a small (light-weight) power coil and small power

losses therein too, it is reasonable to keep the change

of the switching frequency (over the orbit)' as small as

possible. According to equation (14) that would make

it possible too, to get the power for load V (see A,5)

out of a second winding on the power coil.

Following equations (13):

	

V	 V

and (15 )

V = 2E V° (1 ^- ^^)	rm , ^"	 ^"

17 -



0.5

0.25

for given E, 61 and L the frequency and the rectif ied monn v,-%I iae

at the power coil are direct proportional to

^sVo (1Vo).L ^
V

F F( 0) is shown in pictuce 10.

AF

Picure 10:

i

i

1.0	 EV
P=F(I-)

^T

To get the smallest change in frequency, there should be

F (VI Max) ! F (V3 min)
i.e.

Vo max (1 - Vo max y V_olmin (1 - Vo min)

Therefrom one can get (for given Vo max)=0 min

VO _mom - 1
Vo max = Vo max Vo 	 (16)

E	 opt o in ( o max )2 1

Vo min



For the given ratio Vo max • 1.9 (See Apoendix 1)

Vo min

one gets

VO max	 = 4.65
F	 ont

and
VO min ,.	• 4.344

opt

For these both extreme cases the frequency will be the same.

The highest frequency will occur at	 V, 0 _ = 0.5.

LP

The ratio in which the frequency changes in this case

therefore iss

Finax	 = MaxF 	= 0.220	 0.912=
..	

03 r
F (V0 max)	 F `V0 min )

The rectified mean value of the voltage from a second winding

would change only within + 4,5%.
Dumber of series connected csllst

Assuming the lowest temperatures is -20•C, one gets (Annendix I)

V	 •
0 max	

10.41 - 0.0025 (-50 1603 x N volts

= 0.535 x P voltm.

With VO max l opt " 0.65 .0 = 22.8 V therefrom results a number	 a

of series connected cells!

Nopt • 22.8V	 43.

This number would require a total number of V = 2PI = 86 cells

per segment (probably too big).

- 19 -

p
r



The following table shows the o n.treme values of F (which is
proportional to the fre quency and the rectified mean value n►f the

voltage of a second winding on the rower coil) for E• 35VO

Tmax ' 72, •C, Tmin " - 286C
5

Fr^t.n
No N VO max Vo min Fmin Finax` Approximate

—-- ------ Change cP F

36 72 0.550 0v2i^L 0.206 0.250	 0.823 +98as

36 76 0.581 0.306 0.212 0.250	 0.850 +7.5%

40 80 0.606 0.322 0.218 0.250	 0.871 +6,5%

42 64 0.641 0.338 0.224 0.250	 0.898 +5%
P -

43 86 0.658 0.346 0.227 0.250	 0.909 ±4.58

However, there must be said that with changin g the number of

cells from N s 72 has planned today), there will he some change

of the temperature of the whole sunblazer and thus some change

of VO max and Vo min too.

2. A V , Al and Frequency,
Orm

The short-cut current of one string of solar calls at 1 AU

will be Isc . 0.06A.

The wholes short-cut will be

and thus

a) Inc ^l AU " 8 x 2.1sc	I A

b	 scI	 . "-	 ' " 2.5 A
l 0.635 AU	 O.L3^ 2

- 20 -
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It seems reasonable to take Al • 0.1 Tsc1Av • 0.1 A
V	

925and, according to A.3 ®V • of $IMPP, 1AU• 0 . 1 A -- 19 ..25 vV•-

• 2.0 V.

To get a small coil, but at the same time small losses in t^:e

coil and the transistor, it seems reasonable to take a frequency

of about

f : 50 KRZ.

3, Design of CoCoil c. Powe, r Transistor and Power Diode.

a)

	

	 Followinq equation (13) the inductivity of the coil

has to be,

With Fs 0.22	 fW50KRZ

E•35V	 AX  0.1A

one gets,

L s 35 V	 3.0 . 10 `3 sec. 0.22

L . 1.54 mHy

If this inductivity should be too big, Al must be increased to

about eT s 0 . 2 A and/or the frequency to about 100 (200) KHZ.

The copper of the coil has to be chosen for i max n 2.5 A and

the air gap so that Imax the coil isn't yet in saturation.



c) Diode:	 max. voltage: 35V	 }x

max. currents:: 2.5 A

mean value of current: 2.0 A

P Losses

The main losses in the suggested circuit will be:

a) Copper and iron losses in the coil

b) Switching and conducting losses in the power, transistor

c) Losses in teh drive circuit of the power transistor

d) Conducting losses in the diode.

For the final design of the coil and drive circuit there should

be considered that the losses in point b) (0.635 A.U., high current

low voltage) may be higher than in point a) (1 A.V., low current,

high voltage) because in perihelion (0.635 A.D.) the output power

will be higher than in aphelion (1 AX00

G:__ Su
mmary

 .

The proposed circuit for the do power converter is very simple

and therefore will be very reliable. In addition, it is easy to

increase the reliability for example by dividing the solar cell

array in two or four parts, each with its own converter and adding

up the power in the storage battery through the power diodes.

It seems to be very important too that this system is self-

adaptive and not a programmed one. it will work well also when the

circumstances change, for example, the output of the solar cells

as a result of mocrometeorite erosion or radiation effects.

-22- 0
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di.g
4T• ia

il
switch turned on:

-r

(if)

Ht APPENDYC88

I. Ratio of the voltages in the MPP at 1 AD and 0. 5535 .

Given is 	 Voa • (0.41 - 'tr0 (Ta - 22 0C)) volts x N

Vob • (0.41 - O-- C S (Tb - 22601 volts x N

therefrom: Voa + Vob " 10,82 - p--^5 (Ta + Tb - 44°C) :	 ^, s x N

Voa - Vob • O- -?^ (Tb - Ta) volts x N

Assuming, the mean value of the temperature will be 
Taa + 

Tb a 21 0C2

and the difference will be Tb - Ta • 100 •C, we gets

Voa + VOb a 0.82

oa ,- Vob 0'25
or

Voa n 1.9.

The ratio of the voltages for open circuit (A.1) will be nearly

the same:

Voca = 1.9.
%-C--b

11. Calculation for a Parabolical Agroximation of th e V3-Chatrne-
teristic

From C.2 equations (ld) and (2d) we gets

so 23 -
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switch turned offs dt• _0 +n i + bi i (20

when a,b r 0 and e > 1.

For the solutions is important, whether the discriminant V	 0 ), 0

or D 4 0,

switch turned ons 	 Don • 4b - az

switch turned offs Doff 4 b(1 - e) - al M

axample from "Roffman final report for Integral Glass Coatings for

Solar Cells"

Page 45, curve 2, Solar simulator

Maximum power points Vo w 420 mV, I0 n 61 mil

Table for the points a and a (with ila n - ila n I	 • -0.05)0

is n -0105 la n 57.95 mA► Va n 436 tmv I Via n 0.038

iia n +0.05 i I0 • 64.05 MA I V  a 394 MV I 
Via 

n-0.062

These points must fit the equation

V1 • ail + bi2

Point at V14  00030 w - 0.05a + 0.0025b

Point as View -00062 w + 0.05a + 0.0025b

Therefore:

a•-1, b n - 4.0

Thus we get for the discriminant, when the switch is turned offs

Doff' 4b(1 - eI- a2 w - 19.2(1 - e) - 1

-24- O



and with	 e 00  1. s, Dogf a 0

Bo we get for the solutions of (If) and (2f).-

2	 2bil+a
switch turned on: T a To - ----^ arc tan h -----	 t: g;

	t 
Don	 V- on

2bi +a
switch turned off: T = T' + -=-- are tan	 1	 (:^,

	  Doff 	 VICO,!f
The dated value for th time # the system needs to yet from a to Q

(switch turned on) is:

2 2bil +a	 2bi
AT It

	

 a* a • A T • men- -.- [arc tan h	 - arc tan h

	

V Don	 tf"Don	 "DOn

2 2b (ilo • ila)
AT + _ - ------ arc tan h a ,,+	 --- -
D1'a	 Ti_la la

	

Don	 V^	 1

Don

and with	 ils - ile • r = Ai
0

L16 + ila " 0

A T + _ ---2--.- arc tan h 2bA i	 2	 2
	

(17)
_ 	 F-"D"Ôn _ a - (bAi)
Don

"Don

and analogues:
2bi + a	 2bi + a

AT+ • - 2	 (arc tan	 la	 - are tan	 l$	 },...^._

d ff	 Doff	 ^ff

C'	 - 25 -

1'



z	 Zb 
tiid - ileaof + n -------- arc tan	 ^.._,....^._...

O"a—M"

	

Doff	 1 + az +4bZ ilail +Znb (i 3,	 -,,+.IP't
off t	 ...^. _	 ., 

doff	

61

AT+ • -=--- arc tan	
-Zbei

	

J "off	 D + as -(bAL) 2
D
off

xxosP le: ei n 0.1 a n -1	 ®off

e n 1.5 b n - 4.8
gives	 AT+ n 0.1008

et+ n 0.1989

The corresponding values frcm equations t11f and t12I (b • 0)

are:

et+ • 00100

AT+ n 0*200

As one can see, the difference is smaller than lt.

Literature: (1) Study of a Mall Solar Prone (Sunblaser) Part 11*

Spacecraft and Payload Design, PR-5255 t July It

1965.
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t	 Thermal Transfer and Radiation from a Thin Circular

Plate Source--Thin Cylindrical Shell Radiator

I.	 Introduction

For the Sunblazer satellite, it is of interest to calculate

the radiative properties of thin shells. In the configuration of

Fig. 42, which is a simplified drawing of the Sunblazer satellite,

there are two such shells. The first is the front plate, a thin

plate which is covered with solar cells. The second is the

cylinder, a thin shell which radiates excess heat into space.

c

	
II Summary

Assuming no radiative heat transfer within the cylinder, the

temperature on the shells and the rate of radiation of the shells

is determined solely by a dimensionless variable co where:

' 1/2 
CO T93 x2

c a Emissivity of shell (0.85 for aluminum)

a = 5.67 10"'12watts/cm2 -OK4

K - Conductivity of shell (2.05W/cm- O K for aluminum)

t - Thickness of shell

TO : Temperature of shell at Free end

X : Distance along shell (lenc;th on cylinder

or radius on plate)
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Figure 42

THE RADIATOR GEOMETRY
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The smaller 4 is, the closer the system approximates an isothermal

system. In terms of Cr the temperature on the cylinder is given by:

T = To (1+C+I;2+45
C3+1 131 13 5

C4+2 
50 0Cs+....).
	 (2)

The heat conducted down the cylinder is given by:

1I = K21rrt d^K==!- (C+3C2+45^ 3+415{ 
3

+ ...)	 (3)

H = 27yrZeaTo4 ( 1+3;+4502+31503+21 C
4 000) ' 	 (4)

where r = radius of cylinder.

The temperature on the plate is given by:*

T = To	 (1+P +l1p 2 C+1PC 2 +5 p 2 0+	 p{ 3 +...)
2	 3	 2

(5)

L	 To + T; PE i o (6)

where

P	 (SLY To 3r2 — ^ r2 ) •4	 Kt	 KtTo (7) 	
F.	 I

a	 Absorptivity of Front plate

Q	 Heat flux per unit area incident on front plate 	 f

1+ 	 1	 3 +...E 1=	 1C+YC 2 + I81
2	 3	 72

The heat conducted out of the plate is given by:

H = K21trt dr W 4nKtToaE 2 , (9)

where
}

E2= 1+C+3g 2 +180 3+.. (10)

r

NOTE: For this calculation we have assumed a plate 16" in diameter,
ending at the beginning of the cylinder. 	 A slightly larger plate
will have a similar temperature profile, depending similarly upon.

Moll"ol-.-- — 	 77	 .......	 ,z
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TIL )

b

Defining
1

Too = y7a
equations (6),-(7), (10) and (11) can be solvod to give

H	 SwKt +2E 1 ; (TOOT)	 (12)

and

AT * 1 22E { (Too'T) •	 (13)

By plotting H vs. T from equations ( 2), (3) and (12), the common.
operating point of the cylinder and the plate can be found, as

shown in Fig. 43.

Then the temperature rise along the cylinder and the plate can

be found from equations (2) and (13). The temperatures on the cylinder

and plate have nearly parabolic dependence on distance, as shown in

Fig. 44.

Figure 44. Temperature profiles on cylinder and 1p_ate

If the cylinder were at a constant temperature To it would radiate

heat at a certain rate R. The actual rate of radiation divided by R

C

gives an efficiency

1+4 + ?8^ `+464 3+251r 4
3 C 45	 315	 210' +.••

(T/T o) w

which is shown in Fig. 45.

( 1 4)
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If we have cylinders of given mass and wish to maximize the heat

radiated from the cylinder by optimizing the X to t ratio, we get the

following equation,

1/3 ( 1+1 T5- +a^5^ 3 + 2̂ C 4 +... )	 1151
112

r
0.422 (T/T,) 3

Thus a cylinder of any mass will radiate a zraximum amount of heat

for ;&0.20.

III Derivation of Equations

We have assumed no radiative heat transfer within the cylinder.

This is a fairly good assumption because (11 in the inside of the

cylinder contains electronic packages which obstruct heat flow,

AD

	

	 (2) the radiative heat transfer within the cylinder will be less

than the conductive heat transfer and (31 given the above solution,

we can easily obtain a good approximation to the complete solution by

(a) assumina the given temperature distribution, (b) calculating the

radiative heat inputs to the various areas of the shell, and then

(c) re-calculating the temperature distribution (keeping (b) constant).

This process could be iterated to obtain a closer approximation.

For the cylinder with no radiative heat transfer, the equation

of heat balance is

d2T	 °. T4	 (161
3X	 Kt

Assuming a solution of the form

jv^^ T : T. (1+aX 2 + bX4 + CX6 +00000)	 1171



Expanding 1161 and equating like powers of X leads directly to

equation 121. Differentiating 1171, we get

. 2TL
(aX2+2bX

4+3cX6 +... )
	

11®1

which is equivalent to 13'.

For the front plate with heat input, from the sun, the

equation of heat balance is

Xt ^ (rrr) - corT`' + aQr = O
	

1191

i.

By similar methods, we obtain Equations (5) through 113). Because

the front plate tends to equilibrium at a temperature near the

,maximum possible temperature, one of the properties of the solution

is that the rate of heat conduction out of the plate is nearly a

linear function of temperature drop.
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