

SOLUBILITY AND DIFFUSION OF OXYGEN IN TANTALUM

by M. Parkman, R. Pape, R. McRae, D. Brayton, and L. Reed

Prepared by VARIAN ASSOCIATES San Carlos, Calif. for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1969

SOLUBILITY AND DIFFUSION OF OXYGEN IN TANTALUM

By M. Parkman, R. Pape, R. McRae, D. Brayton, and L. Reed

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 3-7626 by EIMAC Varian Associates San Carlos, Calif.

for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – CFSTI price \$3.00

Abstract

The solubility of oxygen in tantalum between $600\,^\circ$ and $900\,^\circ\text{C}$ was determined to be

 $\log(ppm 0) = 4.130 - \frac{1279}{T'K}$

using a resistivity technique. Carefully reproduced pulses of oxygen were admitted to a high vacuum quartz tube furnace containing a tantalum wire. During each pulse, oxygen was maintained in contact with the specimen for a standard reproduced time after which the oxygen was pumped out and the resistance measured. A plot of change in resistance from the starting value versus number of oxygen charges resulted in a linear curve followed by one or more parabolic curves. The end of the linear section was interpreted to be the phase boundary. Specimens were analyzed by neutron activation to relate change in resistance to oxygen content.

Changes in slope of the resistance versus temperature curve for Ta containing between 0.007% and 0.12% oxygen were found at about 450°C and 750°C. An anomoly in the curve of resistance versus temperature for oxygen-doped Ta was found at about 900°C. Both of these effects were found in the 2-phase region and appear to be associated with the oxides.

Preliminary solubility data were obtained with columbium and Ta-10W alloy. $_{\rm J}$

A trial run was made to test a proposed method of measuring diffusion of oxygen in refractory metals,

FOREWORD

The research described herein, which was conducted by EIMAC, Division of Varian Associates, was done under NASA Contract NAS 3-7626. The Project Manager was Mr. Russell A. Lindberg, Space Power Systems Division, NASA-Lewis Research Center. The report was originally issued as EIMAC Report No. APO 68-1101.

and interviewership light Blank

Page Intentionally Left Blank

TABLE OF CONTENTS

				Page No.
	Abst List List	tract	· · · · · · · · · · · · · · · · · · ·	ii vii ix
I.	Intr	roduction		l
II.	Equ	ipment & Experimental Procedure	es	3
	A.	Method of Approach 1. Solubility 2. Diffusion		3 3 7
	в.	Apparatus 1. Vacuum System 2. Furnace and Temperature Co 3. Oxygen Feed System 4. Specimen Materials and Gen 5. Resistance and Temperature	ontrol System ometry e Measuring System	10 10 11 11 11 23
	с.	Apparatus Calibration 1. Thermocouples 2. Furnace Temperature Profi 3. Reproducibility of Resista Precision Between Ranges	le ance Measurement and	23 23 26 29
	D.	Operating Procedures 1. Solubility Runs 2. Diffusion Run	• • • • • • • • • • • • • • • • • • •	32 32 35
III.	Res	ults		36
	Α.	Solubility of Oxygen in Tanta 1. Calibration Data 2. Solubility Data 3. Run Ta20	lum	36 36 44 50
	в.	Solubility of Oxygen in Colum	bium	60
	с.	Trial Runs 1. Ta-10W 2. Cb-1Zr 3. Diffusion of Oxygen in Ta	ntalum	60 60 65 65
IV.	Con	clusions and Recommendations .	• • • • • • • • • • • • • • • • • • • •	68

			Page No.
v.	Ref	erences	71
VI.	App	endix	
	Α.	Materials Specifications and Analysis	72
	в.	Raw Data From Individual Runs	77
	с.	Calculations	139
	D.	Discussion of the Shape of the Oxygen Pressure Curve During a Cycle in the Isothermal Pulse Method (Run Ta21)	141
	E.	Other Data	146

LIST OF TABLES

No.	Title	No.
1	Analysis of Oxygen Used in Solubility Runs	. 12
2	Effect of Bridge Ratio on Precision of Measuring Resistance	. 30
3	Effect of Bridge Current on Specimen Resistance	. 30
4	Effect of Resistance Asymmetry in Bridge Arms	• 31
5	Calibration Data for Tantalum	• 37
6	Summary of Tantalum Solubility Data	• 48
7	Correlation Between Cooling Rate and Temperature of Resistance Offset	• 59
8	Intercept of Initial Linear and First Parabolic Sections of Curves of Resistance vs. Number of Oxygen Pulses for Columbium	• 63
9	Resistance Data from Trial Run with Ta-10W	• 63
10	Microhardness Data from Trial Diffusion Run	. 66

NER DAL VIENNESSE

Page Intentionally Left Blank

LIST OF FIGURES

No.	:	Page No.
1	Expected Method of Obtaining solubility Data With the Isothermal Pulse Technique	. 4
2	Corrected Interpretation of Data from the Isothermal Pulse Technique	• 6
3	Form of Data from the Isothermal, Isobaric Technique	• 8
4	Diffusion Specimen and Electrical Hookup	. 9
5	Solubility Apparatus	• 13
6	Solubility Apparatus, Overall View	. 14
7	Solubility Apparatus, Front View	• 15
8	Solubility Apparatus, Rear View	• 16
9	1600°C Double Vacuum Furnace	17
10	Alumina Tube for 1600°C Double Vacuum Furnace	18
11	Heater Elements for 1600°C Double Vacuum Furnace	19
12	Solubility Specimen	21
13	Specimen Assembly	22
14	Resistance Measuring Circuit	24
15	Thermocouple Calibration Data	25
16	Furnace Temperature Profile at Start of Program	27
17	Furnace Temperature Profile for Run Ta20	28
18	Linear Plot of Resistance Change vs. Oxygen Charge Number for Tantalum Calibration Runs	38
19	Calibration Curve for Tantalum	40
20	Linear Plot of Resistance Change vs. Oxygen Charge Number for Tantalum	41
21	Parabolic Plot of Resistance Change vs. Oxygen Charge Number for Tantalum	45

F	igure No.		Pa N	ge io
	22	Solubility of Oxygen in Tantalum	••	47
	23	Change in Resistance vs. Time for Tantalum at 700°C Run Ta22	-	49
	24	Resistance vs. Temperature of Tantalum	••	51
	25	Anomoly in Resistance vs. Temperature Curve for Tan- talum Containing Oxygen	•••	53
	26 •	Change in Resistance vs. Number of Oxygen Charge and Temperature for Tantalum - Run Ta20	••	54
	27	X-Y Recorder Plots of Resistance vs. Temperature Off set for Oxygen-doped Tantalum	-	55
	28	Change in Resistance vs. Number of Oxygen Charges fo Columbium)r 	61
	29	Intercept of Initial Linear and First Parabolic Sect ions of Curves of Reduced Resistance Change vs. No. of Oxygen Charges as Function of Reciprocal Temper- ature	:-	62
	30	Change in Resistance vs. No. of Oxygen Pulses for Ta-10W Alloy		64
	31	Hardness Profile of Tantalum Diffusion Specimen		67
	32	Manifold Pressure During Oxygen Pulse Cycles From Ru Ta21	un 	142
	33	Intercept of First and Second Parabolic Sections of Curves of Reduced Resistance Change vs. Number of Oxygen Charges as Function of Reciprocal Temperature	e	147

х

I. INTRODUCTION

Space power systems and components made from refractory alloys must be tested for long periods on earth before being used in space. High vacuum systems are used to protect the alloys from air. Although vacuums of the order of 10^{-8} torr and higher are used, some oxygen-containing species remain in the chamber, or leak in, and can react with the alloys, altering their properties. Also, start up, or accidents, can permit a larger amount of impurities to contact the alloys.

Engineers need to know the rate that such impurities arrive at the alloy surface, react with it, and diffuse inward. They also need to know the effects of the impurities thus dissolved. The rate of diffusion of impurities and the capacity of the alloy to react with impurities are a function of the solubility. If the solubility and diffusion coefficients were known, then engineers could better estimate the consequences of exposure of power system components to given environmental conditions.

This program is a part of the attack on the overall problem and is to measure oxygen diffusion and solubility in commercially pure refractory metals and advanced alloys of interest for space power system components. The limits of oxygen solubility were to be determined commercially pure tantalum and columbium, and in the alloys Cb-1Zr, Ta-10W, FS-85 (Cb-28Ta-10.5W-0.9Zr), and T222 (Ta-9.8W-2.4Hf-0.01C), at five temperatures in the temperature range of 1000° F to 2400°F. This report is an account of activity to determine the solubility of O₂ in Ta and Cb. In addition, preliminary solubility runs were made with alloys. A run to evaluate the method of measuring the diffusion coefficient was also made.

Existing information on the solubility and diffusion of oxygen in refractory metals was summarized in several papers presented at the AGARD Conference on Refractory Metals held in Norway in 1963. The proceedings were published as a book.¹ Poor agreement exists between investigators of the solubility of O_2 in Cb and Ta. Reasons for this include the complexity of the systems, uncertainty as to the type of oxide in equilibrium in some cases, and differences in purities of the materials and qualities of test apparatus. The uncertainty of the analysis of O_2 in Ta and Cb may also have contributed, but it is not considered responsible for a major part of the confusion. Measurements have been largely confined to temperatures above $800^{\circ}C$ where the solubilities reported are largely above 1 atomic per cent. Discrepancies are much larger than the available analytical accurac-

The oxidation characteristics of Ta and Cb have been extensively studied.¹ A proper discussion of solubility should consider this

information, because 1) the methods used to form metal-oxygen alloys are similar to the oxidation studies, and 2) the treatment of raw data from which solubility values are derived (from some methods) involves interpretation of what is essentially an oxidation process.

Various methods have been used to derive solubility data, including 1) metallography, microhardness, x-ray diffraction, and chemical analysis of alloys of varying composition so as to detect the first presence of a second phase; 2) internal friction (at low temperatures); and 3) the change in electrical resistance of an alloy at the phase boundary.

A method was proposed for this program wherein an attempt was made to minimize some of the problems of previous workers while being able to obtain data reasonably rapidly. An ultra high vacuum, ion-pumped apparatus was used to minimize contamination. The phase boundary was determined by the difference in electrical resistivity characteristics in the single and 2-phase regions.

Diffusion of O_2 in Ta and Cb has been calculated from oxidation rates, and from concentration gradients as determined by microhardness.¹ It was proposed herein to deduce the diffusion coefficient by observing the change in resistance with time as oxygen diffused along a wire.

II. EQUIPMENT AND EXPERIMENTAL PROCEDURES

A. Method of Approach

1. SOLUBILITY

Two procedures for phase boundary determination from resistivity measurements were considered at the start of the program:

1) Isothermal Pulse Technique

Measure room temperature resistance of wire specimen with the 4-wire Kelvin bridge method. Heat specimen to temperature in ultra high vacuum furnace and add carefully reproduced charges of O_2 . Measure the resistance at the end of the charge after the specimen has reacted with the O_2 . Add O_2 until the phase boundary is crossed. Detect the boundary from the difference in slopes of the resistance change versus number of oxygen charges data corresponding to the single phase and 2-phase regions (Figure 1a).

Conduct calibration runs with the same charge cycle to relate the oxygen content to the resistance change in the wire. This was to be done by charging the wire with oxygen to a given change in resistance (shown as α in Figure 1b after 5 charges), then analyzing the wire by neutron activation for oxygen content. A calibration curve was then to be constructed (Figure 1c) from analysis of calibration specimens charged with different numbers of oxygen charges. The calibration curve would relate change in resistance to oxygen content. It was found late in the program that the change in resistance had to be normalized by dividing by the room temperature starting resistance to eliminate the effect of geometric differences between samples. The oxygen content corresponding to the critical change in resistance ΔR^* at the intersection of the curve in Figure la was then to be obtained by interpolation from the calibration curve.

The method depended upon the applicability of Nordheim's rule and the constant absorption of oxygen during each pulse.

2) Isoconcentration Technique

Heat specimen to temperature in ultra high vacuum furnace. Expose specimen to oxygen until a given ΔR is reached. cool the specimen in steps, measuring resistance of the specimen at each step. The coefficient of resistance was thought to be slightly different above and below the solubility limit so that the phase boundary between the single phase region, and the 2-phase region could be

FIGURE 1 - Expected Method of Obtaining Solubility Data with the Isothermal Pulse Technique.

4

determined by the intersection of the slopes. The specimens would be analyzed for O_2 after the run.

The method depended on a reasonably rapid precipitation process and different temperature coefficients of resistance in the two regions.

Experimental work was started using Technique 2) because this appeared to be the faster way to obtain data; however, no change in slope was detected during any trial run. Runs with commercially pure Ta and Cb were then made with Technique 1). A "reasonable looking" solubility curve was obtained for Ta. The data for Cb, however, could not be interpreted.* At this time, an extended shutdown of the project took place because of personnel changes. On restarting the program, it was decided to conduct a run with Ta using a third technique to verify the earlier data and to re-examine the isoconcentration technique over a wider temperature range. An outline of this third procedure follows:

nique.

3) Combined Isothermal Pulse, Isoconcentration Tech-

Measure resistance of specimen at room temperature and at 50°C intervals between 500°C and 950°C in the ultra high vacuum furnace. At 950°C, add one charge of oxygen. Measure resistance versus temperature between 950°C and 500°C. Repeat previous two steps, obtaining a series of R versus T curves, from which the phase boundary is determined from changes in slope as with Techniques 1) and 2). Changes in slope were found, but these apparently were associated with oxide transitions rather than the formation of a second phase. This method was therefore thought to be unsuitable for the main purpose of the program.

The interpretation of the Technique 3) data led to the re-examination of earlier runs with the result that some assumptions associated with the first two procedures were found to be erroneous. The 2 linear regions shown in Figure la were found actually to be a linear region followed by one or more parabolic regions as shown in Figure 2. This finding is similar to results from oxidation studies and suggests that a constant amount of oxygen was not absorbed in each charge as was required for procedure 1). In fact, the amount decreases in a manner controlled by the oxidation characteristics. This infers that the solubility was greatly exceeded in all runs. Independent verification of this was found in another run made with Technique 1). At this time the solubility limit was interpreted to occur at the start of the first parabolic region. Recalculation of

*They were interpreted at a later time, but found to be more inaccurate than desired.

Figure 2 - Corrected Interpretation of Data from the Isothermal Pulse Technique

the data produced a "final" curve. Only the "final" curve, and calculations and interpretations thereof, are included in this report.

This final curve disagreed with the data of Gebhardt and Seghezzi², which we regarded as most reliable. A final run with Ta was made using the method of these investigators, as outlined below.

4) Isothermal, Isobaric Technique

Measure resistance of specimen at room temperature and at selected temperature in the ultra high vacuum furnace. While at selected temperature, adjust oxygen pressure to constant value and measure resistance versus time. A linear region followed by a parabolic region is obtained (Figure 3). The first departure from linearity is interpreted as the phase boundary. Results of our run agreed with an extrapolation of the data of Gebhardt and Seghezzi, but disagreed with the data from Technique 1).

Although four approaches to determining solubility from resistivity data were tried, ambiguous interpretation of these data left the best approach unproven. It was clear that independent verification of the phase or solid solution changes associated with resistivity changes required independent verification. Specimens were examined by metallography, and a preliminary diffusion experiment was conducted to obtain further evidence of the proper interpretation so that a best approach could be recommended. Results of these experiments leave our final interpretation in doubt as well as those of other workers. Further work is needed to support the proper interpretation of data and to select the best approach to obtaining the solubility.

2. DIFFUSION

Several procedures for measuring diffusion were considered. The one finally selected for trial was devised to make use of the method for measuring resistance. Leads were attached to a wire specimen as shown in Figure 4. The resistance of regions between D and G could be measured independently as in the solubility studies. The following procedure was used.

Measure starting resistance of all regions at room temperature and at elevated temperature in the ultra high vacuum furnace. With specimen at room temperature, and with O_2 in the furnace, pass current through Region A - B until the temperature of this region is above 1000°C. Hold until resistance of Region A - B has increased to value corresponding to the desired concentration

Figure 3 - Form of Data From the Isothermal, Isobaric Technique (after Gebhardt and Seghezzi²)

couple between Regions A - B and A - C. Stop current and heat entire specimen to desired temperature with the furnace. Follow diffusion by changes in resistance of regions between D and G. Verify concentration gradients with a microhardness traverse along the wire after the run.

The one trial run showed the above procedure to be useful, but diffusion proved to be too slow to see any change in resistance. A microhardness traverse after the run showed the concentration gradient quite well, however.

B. Apparatus

The apparatus (Figures 5-8) consisted of a quartz tube furnace to contain the wire specimen and suitable auxilliary apparatus to measure resistance and control the atmosphere in the furnace. The auxilliary apparatus included an ultra-high vacuum, ion pumped vacuum system with a residual gas analyzer; the temperature measuring and control system; the resistance measuring system; and the oxygen feed system.

The investigation required measurements to be made to 1500° C. The existing quartz tube furnace was limited to about 950° C. It was used while a large, double pumped, alumina tube furnace capable of 1600° C was constructed (Figure 9). An oil diffusion pumped chamber outside the Triangle RR alumina tube (Figure 10) containing W hairpin resistance heaters (Figure 11) was capable of about 1 x 10^{-6} torr. This permitted much lower pressures inside the tube and protected the W heaters. The 1600° C furnace was checked out, but was not used. The 950°C system was used for all data reported herein and is described in the following sections.

1. VACUUM SYSTEM

A conventional ion-pumped system (Figure 5) was used having a base pressure in the 10⁻⁹ torr range. Rough pumping was accomplished with a liquid-nitrogen-cooled sorption pump. High vacuum was achieved with a Varian Vacion pump of 40 liters/sec capacity. A one liter/sec orifice was located above the ion pump to provide pumping speed measurements, if desired. A valved bypass was usually used during runs. Pressure was measured in the manifold above the limiting orifice with a Bayard-Alpert nude ionization gauge. The Diatron for the C.E.C. 21-612 residual gas analyzer was also located above the pump. A manifold was used to connect the pump, the furnace and a Millitorr ionization gauge. A Mosely chart recorder monitored the output of the Millitorr gauge. (At the time the photographs for Figures 6 and 7 were taken, the Millitorr gauge was mounted in the expansion volume of the O_2 feed system. Later, the gage was moved to the manifold, and thermocouple gages were installed on the O_2 feed system.)

The l2-in.-long quartz reaction tube was attached to the manifold bottom flange by means of a graded glass section three in. long and a Kovar tube. The specimen support assembly was attached to the top flange as described in Section II,C.

2. FURNACE AND TEMPERATURE CONTROL SYSTEM

The 1000°C resistance-heated furnace was mounted on tracks (Figure 8) below the manifold. The furnace could be raised to surround the quartz reaction tube. The furnace was 16 in. long, 6 in. diameter, and had a 1-1/4 in. bore. The temperature profile is described in Section II,D.

A Chromel-Alumel thermocouple at the middle of the hot zone outside the quartz reaction tube was used with a Leeds and Northrup Series 60 3-action C.A.T. control (Model C-1) to control the temperature and determine the nominal furnace temperature. The correction signal and a chart recording of temperature was supplied by a Leeds and Northrup Speedomax H A.Z.A.R. recorder. In practice, the control system was capable of holding the temperature within $\pm^0.1^\circ$ C.

3. OXYGEN FEED SYSTEM

The purpose of the oxygen feed system (Figure 5) was to provide a precisely reproducible quantity of oxygen for injection into the furnace volume at a controlled rate. This was done by filling the measured volume with O₂ to a known pressure and then admitting this to the furnace through a Granville-Phillips variable leak valve.

The O₂ supply was 99.999% research grade purchased from the Liquid Cafbonic Division of General Dynamics. Analysis is shown in Table 1.

4. SPECIMEN MATERIALS AND GEOMETRY

All specimens were made from 0.020-in.-dia. wire obtained from commerical sources. Commercial purity was used as specified in Appendix B. Analysis is also reported in Appendix B. The following wire was obtained:

TABLE 1

ANALYSIS OF OXYGEN USED IN SOLUBILITY RUNS

IMPURITY	CONTENT, ppm
Nitrogen	<4
Hydrogen	< 3
Water	1
со	0.8
co ₂	0.2
Halogenated Hydrocarbon (probably trichlorethylene)	0.1

Liquid Carbonic Reagent Grade Oxygen. Cylinder #3710. 99.999% 02.

Figure 5 - Solubility Apparatus

13

Figure 6 - Solubility Apparatus

Figure 7

Figure 8

Figure 9 - 1600°C Double Vacuum Furnace

Figure 10 - Alumina Tube for 1600°F Double Vacuum Furnace

Figure 11 - Heater Elements for 1600°C Double Vacuum Furnace

Material	Quantity, ft.	Supplier
Tantalum	260	Fansteel
Tantalum - 10% Tungsten	225	
T-222 Allov	170	11
Columbium	200	
Columbium - 1% Zirconium	215	н
FS-85 Alloy	200	п

a. Solubility Specimen

Three lengths of wire were braided together to form a specimen having about 0.2 ohm resistance at room temperature. The specimen was then coiled into a helix and spot welded under methanol to Mo rods as shown in Figure 12. Platinum sheet was placed between the specimen and rods to permit a ductile weld area. Two Ta leads for measuring voltage drop were spot welded to the top and bottom coils. The part of the specimen between these two leads was thus the length over which measurements were made. A Pt-Pt/10Rh thermocouple (5 mil wire) was attached to the center of the specimen by pinching the bead between a pair of the braided wires. This thermocouple was abandoned after Run Tal9 when it was found that the other furnace thermocouples had the same output.

The specimen, leads, and thermocouple were held in the top flange as shown in Figure 13. Ceramic-to-metal feedthroughs using the thermocouple wire were used to make connection to external leads.

Two additional thermocouples were located as shown in Figure 12, being freely suspended in the furnace volume. In general, readings from the three thermocouples were insignificantly different except above 900°C (see Section II,C,l and tables of data, Appendix C).

b. Diffusion Specimen

A coil specimen (Figure 4) was made from two 0.020in.-dia. Ta wires twisted together and coiled around a 0.7-in.-dia. mandrel. The center turn was flattened for spot welding to the longer Mo rod. The upper coil was attached to the shorter Mo rod, and the bottom turn attached to a single lead of 0.020-in.-dia. Ta wire which was insulated with quartz tubing.

The specimen was positioned as for the solubility specimen. The resistance leads were connected through an octal feedthrough to a rotary switch which allowed a selection of leads

Figure 12 - Solubility Specimen

Figure 13 - Specimen Assembly

D-E, E-A, A-F, F-G, E-F, and D-G to be connected into the bridge circuit while the bridge current was passed the entire length of the specimen (leads C-B).

5. RESISTANCE AND TEMPERATURE MEASURING SYSTEM

Specimen resistance was determined by the 4 wire Kelvin bridge method. A Leeds and Northrup #4300 Adjustable Standard, #4320 ratio box and #2430-C galvanometer having a sensitivity of 5.02 microvolt/cm were the components of the bridge (Figure 14). The solubility specimen was included in the circuit by passing the bridge current through the heavy Cu posts and Mo rods attached to the ends of the specimen. Twenty gauge OFHC Cu wire was used to connect the Ta leads and the bridge. The bridge current was supplied by two 6-volt automotive type batteries in series. The bridge current was controlled by two 10-ohm variable resistors in series and read by a zero-to-1.0 amp D.C. ammeter. A reversing switch was situated between the power supply and the bridge. Precision of better than <u>-01%</u> was achieved in reading the resistance.

The temperature of the specimen was measured with Pt-Pt/10Rh thermocouples and a Leeds and Northrup Model K-3 Potentiometer. The thermocouple wire was joined to Cu wire in an insulated, distilled water ice bath. The same potentiometer and the bridge circuit galvanometer were used to measure the output of the thermocouples through a Leeds and Northrup Model 31-3 thermocouple switch. In general, temperatures could be read to _0.1°C. Accuracy of temperature readings varied as discussed in the following section.

C. Apparatus Calibration

1. THERMOCOUPLES

Runs with Cb and runs with TaOl through Tal9 were made with uncalibrated thermocouples. A standard couple, from the same coils of wire, was made against which the thermocouples used for the runs listed above were planned to be calibrated against the EIMAC NBS-certified standard. Both were destroyed by a melt-down in the calibration furnace when a controller failed.

Prior to the above accident, a new thermocouple, used in Runs Ta20 - Ta22, was calibrated against the EIMAC standard. The correction found is shown in Figure 15 as that marked TC 1. This new thermocouple was heated in the solubility furnace with the other two working couples. The hot junctions were placed together in a Nichrome cylinder covered with asbestos. All three couples read within $1/2^\circ$ to $1-1/2^\circ$ C of each other, with the wider variation at the highest temperatures.

Figure 14 - Resistance Measuring Circuit

Uncorrected Temperature, °C

Figure 15 - Thermocouple Calibration Data

25
At the start of Run Ta20 it was decided to use the average of the outputs of TC 1 and TC 2, hanging free at the top and bottom of the specimen, respectively, as the specimen temperature. The final correction curve was then formed as shown in Figure 15 from data in Appendix B, Table Cl4, Event 3.

The calibrated TC l was in the calibration furnace for post-test calibration when it too was destroyed in the furnace melt down. Temperatures for the remaining test were measured with uncalibrated thermocouples.

It is noted that the correction for much of the temperature range is outside the normal variation for thermocouple wire. Since new, unworked wire is usually within calibration, the standard thermocouple was suspect. Other lots of wire were found to be equally far out of calibration. The standardization run that resulted in destruction of the relevant thermocouples was being conducted to obtain reference curves prior to having the standard recertified.

Considering the uncertainties, we regard the data accurate only within the usual variation of thermocouple wire $(\frac{1}{3}/4\%)$. It is noted that this error is small compared to the oxygen analysis data so that the solubility data were negligibly affected.

2. FURNACE TEMPERATURE PROFILE

The temperature profile of the furnace was determined (Figure 16) at the start of the program by sliding a thermocouple up and down the furnace. Prior to Run TA20, the profile was determined by the following procedure:

The length of the furnace was 16 inches. The bottom of the 1-1/4-in.-dia. working volume was filled to 1-1/2 in. with Fibrefrax. The quartz tube was inserted so that its bottom was 2-1/2 in. below the center. The annulus between the quartz tube and the furnace was filled with Fibrefrax to a depth of 1 in. The calibrated thermocouple (TC-1) was inserted to the bottom of the quartz tube and connected to the ice bath. The top of the quartz tube was sealed to the thermocouple insulator with Fibrefrax. A scale was attached to the thermocouple holder.

After thermal equilibrium was reached at approximately 690°C, the thermocouple was withdrawn in steps of 1/4 in. and the temperature measured at each position. The results are plotted in Figure 17, along with a similar plot at 890°C. The uniform temperature zone shifted downward somewhat at the higher temperature.

Distance From Top of Furnace, cm.

Figure 16 - Furnace Temperature Profile at Start of Program

3. <u>REPRODUCIBILITY OF RESISTANCE MEASUREMENT AND PRECISION</u> BETWEEN RANGES

Tests were conducted with a dummy specimen at room and liquid nitrogen temperatures to determine the resistance measurement characteristics.

The effect of changing the resistance ratio is shown in Table 2 to be negligible. No change in resistance by changing the bridge current (Table 3) indicates negligible heating of the specimen in air. Later evidence indicated a slight effect which was associated with the specimen in vacuum at room temperature.

The effect of resistance asymmetry in the bridge arms is shown in Table 4 (see Section II.D.l.d).

Ratio:	10,000	0/100	10,000	/300	10,000/400		
Temperature,	Resistance	e, ohms	RSTD	RSPEC	RSTD	RSPEC	
C	Standard	Specimen	oh	ms	oł	nms	
26	.002243	.2243	.006741	.2247	.008999	.2245	
-195	.002091	.2091	.006278	.2093	.008370	.2093	
26	.002246	.2246	.006733	.2244	.008975	.2244	
-195	.002092	.2292	.007280	.2093	.008372	.2093	
26	.002244	.2244	.006732	.2244	.008974	.2244	

Table 2. Effect of Bridge Ratio on Brecision of Measuring Resistance.

Table 3. Effect of Bridge Current on Specimen Resistance.

Bridge Current,	Resistance, ohms						
amp	Standard (1)	Specimen					
0.64	.006732	.2244					
0.80	.006732	. 2244					
1.00	.006732	.2244					
1.3	.006732	.2244					

(1) 10,000/300 ratio

Table 4. Effect of Resistance Asymmetry in Bridge Arms.

	RESISTANC				
R _X , ohms	Equal Resistance in Arms	Add R. to Arm A	Add R to Arm B	% Erron to uner Resista	r due ven ance
10	.006732	.006723	.006734	13	+.03
47	.006732	.006690	.006741	62	+.13
100	.006732	.006639	.006740	÷1.5	+.25
330	.006732	.006452	.006804	-4.2	+1.1

D. Operating Procedures

1. SOLUBILITY RUNS

a. Specimen Preparation

The specimen was formed by braiding three 15-in. lengths of 0.020-in.-dia. wire and coiling this into a helix on a 7/16-in.-dia. mandrel. Approximately 7 turns were made. The coil was chemically cleaned in a HNO3 + 10% HF etchant and rinsed with de-ionized water. The initial weight was then recorded to 0.0001 g. The specimen was spot welded at the top near the end of a .075-in.dia. Mo rod and at the bottom to a similar Mo rod which passed down the center of the helix. These rods supported the specimen and provided current leads for resistance heating of the specimen and current for the resistance measurements. The security of the spot welds was assisted by an intermediate layer of platinum foil. The two 0.020-in.-dia. Ta resistance measuring leads (potential leads) were attached, one turn from each end of the specimen, by separating the braid, inserting the lead, crimping, and spot welding. The thermocouples were attached in a similar manner by inserting the hot junction in the braid but securing it only by closing the braid behind the bead. The thermocouples were inserted one or two turns above and below the center of the specimen and below the center of the specimen and on opposite sides. Both the potential and thermocouple leads were quartz insulated and were brought down inside the helix.

The Conflat flange which contained the feed throughs for the temperature and resistance circuits and also the mounting posts to which the Mo rods were attached was bolted in place before the start of the run.

b. Pump out, Bake out, and Anneal

Roughing down was performed through the oxygen metering system to 100 torr or less. The roughing valve (V5) was closed and the Varian bakeable valve (V6) opened, Figure 5.

The system pumped rapidly to the 10^{-5} torr scale unless a general bake out of the system was necessary. If this was required, heating tape was used to raise the metal surfaces to 200° to 300°C for 1 to 5 hours as necessary. The heat was then removed. After a few hours the vacuum in the specimen chamber was on the 10^{-6} torr scale.

In all runs except Ta20, 21, and 22 the specimens were heated slowly with a current through the specimen until the annealing temperature (usually 1400°C) was reached and held for one hour. For the final three runs, the specimen was heated with the furnace in steps of 100° C. The pressure was monitored and the heating discontinued if a reading of greater than 5×10^{-5} torr was encountered. After thermal equilibrium was achieved at each 100° C, a resistance measurement was taken and a scan made with the residual gas analyzer. When 900°C was reached, the specimen was heated to 1400° C by means of a current through the specimen for the annealing interval of one hour. Some specimens were not heated as much because of insufficient power capacity.

The specimen was cooled to room temperature for a resistance measurement to be used for normalizing the subsequent resistance measurements. Base pressure at this time was about 10^{-8} torr with only H₂, CO and CH₃ showing on the residual gas analyzer scan. In some extended runs, base pressure dropped into the 10^{-9} torr range.

c. Engassing, Isothermal, Pulse Method

The method depended on precisely reproducable quantities of oxygen being added to the wire in pulses. A run consisted of measuring the resistance at room temperature, raising the specimen to temperature, repeating the resistance measurement, and then adding pulses of oxygen. Resistance was measured after each pulse or group of pulses, as seemed prudent.

The furnace temperature was monitored continuously on the controller chart. The sample temperature was read with the potentiometer at regular intervals. Once set, it usually remained essentially constant. The pressure in the manifold and furnace was measured with the Millitorr gauge, with the output continuously recorded on a logarithmic chart.

A pulse cycle was conducted as follows. Evacuate the entire oxygen fill system (Figure 5) through a liquid nitrogen trap with a mechanical pump. Fill the 300 cc volume to the desired pressure (0.5 or 2 torr) by cracking VI and again evacuating the system to the exact pressure. Admit oxygen into the sample chamber through the variable leak, (VI).

Start cycle shortly before t = 0 and after the sample resistance is read, by closing V6 and V2. At t = 0, open V5 and V4 admitting oxygen to the system. Open calibrated leak to permit rapid equalization of pressure. At t = 3-3/4 min. and t = 7-1/2 min., fill the 300 cc volume with oxygen by cracking V1. Evacuate the oxygen fill system by opening V2. This completes the valving cycle which repeats every 7-1/2 minutes. The times were selected because each division on the pressure chart (from which time was measured) happened to correspond to 3-3/4 min.

The resistance readings were plotted and the cycling continued until the desired oxygen level was achieved.

d. Details of Resistance and Temperature Measurement

A reversing switch was installed in the bridge current circuit and was used for the following: 1) to test the Kelvin bridge circuit for unequal resistance in the potential leads, 2) to test for thermoelectric errors, 3) to test for interference between the bridge current and the thermocouple leads.

In the first case, since the Kelvin circuit is not a null circuit except in the galvanometer leg, a resistance asymmetry of an order comparable to the resistances in the ratio box will cause an erroneous reading and will be dependent on bridge current. For example, if the ratio is 10,000/400 and the resistance asymmetry amounts to 1 ohm, the ratio for sample resistance will be roughly (1/10⁻) x 100% or 0.01% in error. Errors of this type may be reduced but not eliminated by averaging the two readings.

A thermoelectric error may arise in the potential leads by the temperature gradient and chemical or cold work gradients. Both of these are secondary effects and are apt to be small but can be eliminated by averaging the two readings.

Any difference in the temperature readings when the bridge current is reversed indicates that the leads near the junction are in contact with the wires at different points in the potential gradient along the braid. The error involved can be eliminated by averaging the two temperature readings.

e. Isoconcentration Run

The isoconcentration run was performed with an engassed specimen simply by starting at a high temperature (in the single phase region) and taking resistance and temperature readings there and at every 50°C as the temperature was lowered stepwise to a point in the two phase region.

f. Ta20 Procedure

The procedure for Run Ta20 was a series of closely spaced isoconcentration runs, one of which was performed after each oxygen pulse. This was continued for 19 pulses after which an isoconcentration run was performed after each four pulses to a total of 38 pulses.

g. Ta22 Procedure

The procedure of Gebhardt² was followed as closely as possible. The oxygen was admitted so as to maintain a constant pressure over the specimen. The temperature was held constant and the resistance measured as a function of time. The oxygen rate of absorption changed with time, therefore, the flow rate into the sample chamber had to be changed. Flow rate was adjusted both by adjusting the pressure behind valve V5 and by adjusting V5.

2. DIFFUSION RUN

After the specimen was baked out at 900°C, it was cooled to room temperature. The segment A-B between the Mo rods (Figure 4) was heated to 900°C for engassing. The amount of oxygen was calculated to reach approximately the solubility limit. Eight 0.5-torr, 300 cc pulses were admitted to the specimen chamber. Only the hot half of the specimen absorbed the oxygen, as determined from resistance measurement.

The specimen was cooled to room temperature and the lowered furnace brought to 600°C. At time zero, the furnace was raised to enclose the specimen area. The specimen thermocouple output was continuously recorded, and resistance readings taken at one minute intervals once thermal equilibrium was established. This was reduced to 5 minute intervals after 15 minutes.

The specimen segments over which resistance was measured were D-E and F-G. Resistance asymmetry between the Mo rod and tantalum wire leads made the E-A and A-F readings inaccurate as explained in section 1d. No change in resistance was noted after 3 hours so the temperature was raised to 700°C. After 3 hours the furnace was shut down overnight.

The next day the furnace was heated to 800°C in the lowered position. It was then raised and readings taken as before for 3 hours. There was no change, so the temperature was again increased to 900°C, where it remained for 6 hours. After 3 hours the readings were reduced to one every half hour. No resistance change was noted so the run was terminated.

The specimen was removed and subjected to microhardness tests.

III. RESULTS

Twenty-two runs were made to obtain data on the solubility of oxygen in Ta (Section A). Of these, five were to obtain calibration data and six were used to plot a solubility curve.

Ten runs were made to obtain data on the solubility of oxygen in Cb (Section B). These data were not accurate enough to be useful.

Single trial runs were made with Cb-lZr and Ta-lOW alloys (Section C). A single run was completed to measure diffusion of oxygen in Ta (Section C). Data were obtained useful to plan further runs.

Other data were obtained from a special run with Ta. Results are useful beyond the contracted scope of the program (Section A3).

A. Solubility of Oxygen in Tantalum

1. Calibration Data

Runs Tal0 to Tal4 were intended as calibration runs. Samples were charged with oxygen in pulses at 900°C as shown in Appendix B, Tables B5 to B9. The samples were then analyzed for oxygen by the neutron activation method by General Atomics with other samples as shown in Table 5. Results were plotted in the quarterly reports as a calibration curve of R/R_0 at 900° versus oxygen content. The solubility points given in the quarterly reports were calculated from this graph. It was later found that R/R_0 varies with temperature, resulting in an error if R/R_0 calibration data taken at 900°C are used at other temperatures without correction. The method for determining and using the corrected calibration curve is described below.

The resistance data from Runs Tal0, 11, and 12 (given in Tables B5, B6, and B7) are plotted in Figure 18. Other data in this figure will be discussed later. The sample from Run Tal3 was not charged with oxygen. The run was intended to show the blank change in resistance due to the outgassing and annealling step. Essentially no blank correction was needed. This conclusion appears to be at odds with the data in Table 5 which show about a 70 ppm difference between as received wire and the Tal3 sample. As shown later, this difference is not necessarily significant. More data are needed to resolve the discrepancy. Linear, Coinciding plots of R vs. N are shown in Fig. 18 for Runs Tal0, 11, and 12 suggesting that the solubility had not been exceeded and indicating excellent reproducibility between runs.

A plot of the oxygen concentration vs. $\triangle R$ reached at the end of the calibration runs for Runs Tal0-13 is shown in

	Prerun Data								
Sample No.	R, Ohms	Temp., °C	R° ₃₀ (1), Ohms	R [°] 900(2), Ohms	Weight, g				
As rec'd	_	-	-	-	3.1523				
Tal0	.0642	41.9	.0625	.2077	2.4341				
Tall	.0702	53.3	.0666	.2207	2.6425				
Tal2	.0689	33.1	.0684	.2270	2.7401				
Tal3	.0686	38.1	.0673	.2238	2.6639				
Ta 05	.0619	32.0	.0615	.1912	2.5182				
Ta07	.0700	25.3	.0709	-	2.8456				
Tal4	.0742	36.3	.0731	-	2.6231				

Table 5. Calibration Data for Tantalum

	1	Post Ru	un Data	Oxy	Std.			
R,	Temp.,	R ^f ₃₀ .	R ^f 900.	ΔR_{900} (3)	∆R ₉₀₀	ppm by	Dev.	
Ohms	°C	Ohms	Ohms	Ohms	R°_{30}	1	2	ppm(5)
-	-	-	-	-	-	159	133	20
.0922	49.0	.0894	.2324	.0247	.396	1350	1300	50
.0785	42.4	.0765	.2318	.0111	.167	817	764	50
.1110	32.0	.1107	.2679	.0409	. 598	1640	1710	60
.0708	48.7	.0678	-	0	0	206	225	20
-	-	-	-	.073(6)	1.19	4370	4370	40
-	-	-		.034(6)	.48	2450	2430	10
-	-	-	-	.0882(6)	1.21	2440	2490	50
	R, Ohms - .0922 .0785 .1110 .0708 - - - -	R, Temp., Ohms °C .0922 49.0 .0785 42.4 .1110 32.0 .0708 48.7 	Post R R, Temp., Rf Ohms °C Ohms - - - .0922 49.0 .0894 .0785 42.4 .0765 .1110 32.0 .1107 .0708 48.7 .0678 - - - - - - - - - - - -	Post Run Data R, Temp., Rf30, Rf900, Ohms °C Ohms Ohms Ohms - - - - - .0922 49.0 .0894 .2324 .0785 42.4 .0765 .2318 .1110 32.0 .1107 .2679 .0708 48.7 .0678 - - - - - - - - - - - - - - - - -	Post Run Data R, Temp., Rf Rf ΔR ₉₀₀ , ΔR ΔR ΔR ΔR ΔR Δ<	Post Run Data R, Temp., °C Rf 30, Ohms Rf 900, Ohms ΔR_{900} , Ohms ΔR_{900} , Ohms ΔR_{900} , R°30 -<	Dest Run Data Oxy Concentry ppm by Concentr	Oxyun Data: Oxyun Data: R, Temp., R_{30}^f $30,$ R_{900}^f Ohms ΔR_{900} Ohms ΔR_{900} R_{30}° ΔR_{900}

(1) Prerun resistance at room temperature corrected to 30°C.

(2) Prerun resistance at engassing temperature corrected to 900°C.

(3) Difference between prerun and post run resistance at 900°C.

(4) Determined by activation analysis at General Atomic, San Diego, California. Each specimen was run twice.

(5) Determined from counting statistics by General Atomic.

(6) Determined by graphical extrapolation in Figure 18.

Figure 18 - Linear Plot of Resistance Change vs. Oxygen Charge Number for Tantalum Calibration Runs.

Fig. 19. Also shown are points from Runs Ta05, 07, and 14. Various interpretations of the data are possible. These are described below, with reasons for selecting a preferred interpretation for use in calculating solubility points. First, however, a discussion of the data from Runs Ta05, 07, and 14 is given.

1) Data from Runs Ta05, 07, and 14.

Of these 3 runs, Ta05 was a trial run to test the solubility technique, Ta07 was a solubility run, and Tal4 was a calibration run. There was no reason to invalidate the data from any of the 3 runs, so all must be interpreted. All are included in the calibration analysis because the final samples were all analyzed for oxygen after the run. Data from all 3 runs are also used to estimate the solubility curve, as described in a later section.

The linear sections of the TaO5, TaO7 and Tal4 curves from Fig. 20 are reproduced in Fig. 18. It is apparent from the differing slopes that different amounts of oxygen were taken up by the samples in each charge. The amount per charge was nearly identical for Runs Tal0, 11 and 12. Although charged under essentially identical conditions, a greater amount of oxygen per charge apparently was taken up in Tal4. The only difference in pre-engassing procedure was that the Tal4 sample was held at 900° for 3 days rather than overnight for Runs Tal0-13. The lower rate of oxygen uptake for Runs TaO5 and 07 can be accounted for by the fact that they were engassed at lower temperatures, and the charge pressure was one half that of the calibration runs.

Extrapolations of the linear sections of the Ta05, 07, and 14 curves to the total number of charges are shown because of the following reasoning. The interpretation of the calibration data involves the slope of the $\Delta R/R_{30}$ vs. oxygen concentration curve (Fig. 19). We knew of no a priori reason why the slope should be constant over the entire oxygen content range. In particular, the slope below the solubility might be different from that above. Gebhardt⁽¹⁾ shows the resistance vs. oxygen content curve at 10°C to be linear from 0 to 5 atomic %. However, to get the curve, he engassed at a high temperature and quenched to 10°C. All his data are thus equivalent to $\Delta R_{10}/R_{10}$, where the R is always measured on the 2-phase quenched structure. Our data are all $\Delta R_{00}/R_{30}$ where R is measured on the 1-phase structure above the solubility limit. The nearest direct comparison is between our $\Delta R_{30}/R_{30}$ at the end of each run and his $\Delta R_{10}/R_{10}$ at an equivalent oxygen concentration. More will be said on this later.

Another factor leading to the possibility of 2 (or more) slopes is the fact that the oxygen in solution is in

Figure 19 - Calibration Curve for Tantalum

40

Number of Oxygen Charges

Figure 19 - Linear Plot of Resistance Change vs Oxygen Change Data for Tantalum.

equilibrium with different oxides at different temperatures. Thus, engassing above 750° where the stable oxide is Ta₂O₅ might result in a slightly different slope than if engassed below that temperature where other oxides appear to be the stable species. Gebhardt's work would not show this type of slope change. The two Runs TaO5 and TaO7 in our work, in comparison with runs engassed at higher temperature, might disclose a slope change.

The solubility was exceeded during the engassing on all 3 Runs, TaO5, O7, and 14, (again, explained in the next section) with parabolic portions of the curves resulting from scale formation above the solubility limit. If a constant oxygen pickup per charge is assumed (see Appendix F), then if the oxygen had been able to go into solution at the same rate for the total number of charges, the $\triangle R$ that would have resulted is shown as the extrapolated points in Figure 18. These $\triangle R$ values, converted to values of $\triangle R/R_{30}$, are also plotted in Fig. 19. The significance of the extrapolated points is covered in the following interpretation paragraphs.

2) Interpretation 1 - Curve A.

A smooth logarithmic curve can be drawn through the data from the first 4 calibration runs and the extrapolated Tal4 point. Although this gives the best fit to the data, the curve would appear to have no theoretical significance and is grossly deviant from Gebhardt's curve. This interpretation is rejected.

3) Interpretation 2 - Curve B.

The next best fit to the data is shown by curve B. The arguments in the section 1) above apply to this interpretation. The break in the curve at 1150 ppm corresponds approximately to the solubility at 900°C, the temperature of engassing of the calibration runs. The extrapolated Ta05 and Ta14 points also fall approximately on the two parts of the curve as postulated in section 1). The extrapolated Ta07 curve falls below the curve. We can postulate no likely reason for this. If some of the scale fell off the wire before it was analyzed it would have the effect of placing the point to the left of where it should be rather than to the right.

The slope of neither part of the curve is similar to Gebhardt's. Despite the interesting coincidences pointed out, the data are not numerous enough to support this interpretation or refute the data of Gebhardt. The assumptions required to support the validity of the extrapolated points are also tenuous. In particular, despite the evidence given in Appendix F, it is difficult to believe that the amount of O₂ taken up in each charge by the specimens remains constant after the solubility point is passed. We reject this curve also, recognizing that a break in the curve could still exist.

4) Interpretation 3 - Curve C.

If data from Runs Ta05, 07, and 14 are rejected because the solubility was exceeded and the chemical analysis was conducted on an imperfectly characterized and understood 2phase structure, one can draw a best straight line through the 4 remaining points. To do this, one must accept a between-samples analytical error substantially larger than the within-sample error.

If this curve is extrapolated to intersect with the ordinate, one could then renumber the ordinate to reflect change in resistance from zero oxygen concentration rather than the oxygen concentration of the starting material. If we also assume that Gebhardt's degassing process also reduced his starting O₂ content to near zero, then his % change in resistance data correspond to our $\Delta R/R_{30}$ data (after dividing by 100). If we do the above, we find that curve C is identical to Gebhardt's curve.

Because we have insufficient data and reasoning to support any other interpretation and to refute Gebhardt's data, we adopted this curve for calculating the solubility points discussed in the next section. The total uncertainty in $\Delta R/R_{30}$ value taken from curve C is seen to be of the order of $^+100^{\circ}$ ppm.

2. SOLUBILITY DATA

Runs TaOl to TaO4 were exploratory runs and data were not used. Data from Runs TaO5 - TaO9, Tal4, Tal6, and Ta21 were used to calculate solubility points. The curve published in the quarterly reports was found to be in error when assumptions used in interpreting the data were found to be incorrect. This was discovered during Run Ta21, as outlined below.

Run Ta2l was conducted at 700°C with the procedure used for Runs Ta0l through Ta19. Data from this run resulted in important evidence concerning the metallurgical phenomena which determine the nature of the ΔR versus number-of-oxygen-pulse curve. An initial linear portion was found as expected from prior similar runs; also, after 6 oxygen pulses, the slope began to decrease as before. The run was continued to 48 pulses. The unexpected feature was that the slope never became constant as was thought to occur earlier.

The data from the curved portion of the curve were fitted to various functions and found to be parabolic. Furthermore, the curve contained 4 parabolic regions: first, from pulse 5 to pulse 14; second, pulse 14 to pulse 32; third, 32 to 42; fourth, 42 to 48. In the Cb-O system, a similar effect was found by Hurlen(3) by measuring the weight gain versus time at constant temperature and oxygen pressure. He found an initial linear segment followed by several parabolic regions. He interpreted the linear region to indicate a boundary-controlled rate, while a parabolic region indicated that diffusion through a growing layer controlled the rate.

The implication is that the solubility limit is reached at the end of the linear region, and not at the intersection of the extrapolated lines from the initial linear and a later linear region, as we previously thought.

As a result of the above implication, we re-examined the data from the prior Runs Ta05 - Ta08 and Tal0 - Tal6. Furthermore, since R/R_0 is dependent on temperature, the basic parameter was changed to $\triangle R$. For each run, $\triangle R$ was plotted against the number of oxygen pulses (Figure 20) and again versus the square root of the number of oxygen pulses (Figure 21) in order to identify the parabolic

Figure 21 - Parabolic Plot of Resistance Change vs. Oxygen Charge Data for Tantalum.

regions. From these, the equation $R = a + b N_O$ was determined for the initial linear segment and the equation $N_O = a + b(\Delta R) + c(\Delta R)^2$ was determined for the first parabolic region. The simultaneous solution of these two equations resulted in the first departure from linearity, designated as ΔR^* . See Appendix C for details of the calculation.

Values of ΔR were divided by the room temperature resistance to normalize geometric variations. The resulting number was then correlated to ppm oxygen content with Figure 19. This was done for the prior Runs Ta05 through Ta08, Tal4, and Ta21, and the results replotted as log of solubilities versus reciprocal temperatures in Figure 22. Data are summarized in Table 6.

Tal4 was planned as the highest oxygen content calibration point, but was questionable as a calibration point because the engassing was found to have entered the first parabolic region. However, a solubility limit point could be derived from the data.

Before the recalculation of the solubility for Figure 22, we reported our curve in the quarterly reports to be much higher. We were unable to account for the large difference between our data and that of Gebhardt⁽²⁾. Run Ta22 was conducted using the latter's method to investigate this difference.

Preparations and samples were the same as for Run Ta21. The O_2 pressure in the furnace was adjusted as closely as possible to 0.02 torr (same as Gebhardt), and the resistance change measured as a function of time (Table B15, Figure 23).

The data were interpreted in the same manner as for Ta21, by plotting $\triangle R$ versus both time and the square root of time. Since there is such a sharp decrease in slope, a $\triangle R^*$ was obtained by visual estimate and divided by the room temperature starting resistance to obtain the solubility point from Figure 19. The temperature of the run was 700°C. Gebhardt's⁽²⁾ lowest temperature was 900°C. The Ta22 point is shown in Figure 22 to coincide with an extrapolation of Gebhardt's data.

After the steep linear section, two parabolic regions are shown in Figure 23. The first one is very short and may indicate a transition from the linear to a parabolic region rather than

Temperature, 10000/°K

Figure 22 - Solubility of Oxygen in Tantalum

Table	6.	Summary	of	Tantalum	Solubility	Data

Run No.	∆R*(1)	^R [°] 30	<u>∆R*</u> R° 30	т°с	Oxygen Concentrat- ion ppm	Method (1)
Ta05	.0130	.0615	.212	780	780	E G E G G E E
Ta06	.0265	.0738	.372	880	1190	
Ta07	.0060	.0709	.085	600	470	
Ta08	.0166	.0500	.332	920	1080	
Ta14	.0233	.0731	.319	900	1050	
Ta16	.0219	.0977	.224	780	820	
Ta21	.0081	.0488	.166	700	670	
Ta22	.0068	.0630	.108	700	530	

(1) Intercept between linear and parabolic sections of $\Delta R^*/R_{30}$ vs. number-of-oxygen-charge curve determined by simultaneous solution of slope equations (E) or by visual estimate from a graph (G).

Figure 23 - Change in Resistance vs. Time for Tantalum at $700\,^\circ\text{C}$ - Run Ta22.

49

be a separate parabolic region.

3. RUN Ta20

Under the procedure used in prior runs, the determination of five points along the solubility versus temperature curve for a material required at least ten separate runs: Five isothermal runs to determine solubility versus reduced resistance and five or so runs to calibrate reduced resistance versus oxygen content.

The extended program shutdown had occurred after Run Tal9. Because of the change in personnel, it was decided to conduct a trial run to check out the apparatus thoroughly and gain experience with the operating technique. It was also decided to conduct the run in a way, which, if successful, would greatly shorten the time to obtain a solubility curve for a material. With this new technique, resistance of the starting wire was to be measured at 500, 600, 700, 800, and 950°C. Increments of oxygen were to be added at 950°C as in the isothermal pulse method. However, after each increment, the resistance was to be measured at the four other temperatures. The experiment was to be shut down daily to obtain the room temperature resistance. A series of parallel R versus T curves was expected in which a change of slope was expected at a phase boundary.

Two changes in slope were found immediately in the R versus T curves (Figure 24), one at about 450°C and the other at about 750°C. Because of these breaks, resistance was measured at additional temperatures to clarify them. Twenty charges were completed after which the R versus T determination was reduced to once every 4 charges to a total of 38 charges. A plot of the raw data, resistance versus temperature, resulted in parallel lines for each charge, confirming Nordheim's Rule. This rule, simply stated, is that the change in resistance for a given change in oxygen content is independent of temperature. The major features of this set of data are outlined below.

> 1) A series of R versus T curves was obtained which were roughly parallel, as would be expected from Nordheim's rule (e.g., see Figure 24). The large amount of data taken are listed in Table Bl4 in the order taken. To extract the maximum value from the data, they must be plotted on a scale of at least 100°C = 4 in. versus .01 ohm = 4 in. The resulting figure

Figure 24 - Resistance vs. Temperature of Tantalum - Run Ta20

51

was much too complex to reproduce on a page smaller than 2 ft. x 3 ft. so only the principal features are illustrated by figures in this report. A detailed evaluation of the data was beyond the scope of the program.

2) The breaks at about 450° C and 750° C were found to persist as oxygen was added, with no significant change as a function of O₂ content. The breaks varied around average values in a more or less random fashion between oxygen charges. The lower values varied $\pm 30^{\circ}$ C and the upper values $\pm 45^{\circ}$ C. The presence of the break at 750°C became uncertain after 11 charges because of the obscuring effect of the following result.

3) A shift in resistance was found to occur after 7 charges. This varied in a systematic, but complex way (Figure 25). At the same time the change in resistance resulting from a charge of oxygen became a function of temperature when previously it was independent of temperature (Figure 26). The resistance shift at 900°C (Figure 25) could be made to disappear and reappear by a suitable heat treatment. This shift was found later to be a part of an offset in the R versus T curve similar to that for α, γ and δ Fe (Figure 27). However, the offset amounted to only about .3% change in resistance. These phenomena are described in more detail later.

4) Reproducibility of the resistance and temperature was about 0.0001 ohm (in a 0.2 ohm sample) and $0.2^{\circ}C$ respectively.

5) Although the temperature range from 300° C to 950° C, and oxygen content range from about 250 ppm to about 1200 ppm O₂ was covered in this run, no series of breaks that could be interpreted as a solubility curve was found.

6) The breaks that were found are interpreted as transitions between Ta oxides, since the temperatures approximately correspond to transitions reported by others in oxidation studies. If this interpretation

Figure 25 - Anomoly in Resistance vs Temperature Curve for Tantalum Containing Oxygen.

53

Figure 26 - Change in Resistance vs. Number of Oxygen Charges and Temperature for Tantalum - Run Ta20.

54

Figure 27 - X-Y Recorder Plots of Resistance vs Temperature Offset for Oxygen-doped Tantalum - Run Ta20. is correct, then the presence of oxides indicates that the solubility had been exceeded. This indicated to us that the solubility was lower than previously reported and led to our reinterpreting the previous data as outlined in the preceding section.

7) Although two significant changes were found in the slope of the curve of ΔR versus number of changes (Figure 25), these occurred after an overnight shutdown. Further work is required to learn whether this was coincidence.

The data from Run Ta20 were reduced to ΔR versus the number of charges of oxygen for each temperature (Figure 25). Overnight shutdowns are indicated by the vertical arrows. Nordheim's Rule is demonstrated by the equal slopes (ΔR vs O₂ pulse) for each temperature through the 7th pulse. Between the 7th and 8th pulses (an overnight room temperature shutdown), the resistance dropped at all temperatures except room temperature. The same slope, after this disturbance is carried to pulse 26 after which (again an overnight shutdown) the slope decreases for all temperatures; the data also show more scatter. We are uncertain whether the very slight divergence of slopes at different temperatures after the 8th pulse is significant.

Figure 25 includes the solubility curve from Figure 21 plotted at the left. We partially interpret the data as follows: The first 7 pulses show a consistent increase in ΔR according to Nordheim's Rule, even though the solubility at 500°C (the lowest temperature reached during the R versus T traverse after each pulse) appears to have been exceeded at about the 2nd or 3rd pulse. Even the shutdown to room temperature after the 3rd pulse had no effect on the data, although the uncertainty in the calibration curve is such that possibly we had not reached the solubility limit by the third pulse. We interpret the data as showing that oxygen remained in solution until the room temperature shutdown after the 7th pulse. Thereafter, some fraction of the precipitated oxide failed to redissolve upon heating.

It is reasonable to expect that precipitation reactions will be sluggish around 500°C. Gebhardt has demonstrated that days

are required to fully precipitate the metallic oxide in the Cb-0 system at 500°C. If the solubility is exceeded in this temperature range, there will be a set of cooling rates and excess concentration at which precipitation can be detected. Apparently, we did not reach these conditions until after the 7th pulse when the oxygen content corresponded to a solubility limit near 600°C. An unexplained aspect is that the precipitates which (presumably) formed overnight between the 7th and 8th pulses could not be redissolved on heating to 1200°C. Also unexplained is why the $\triangle R$ at 900°C did not drop to its "normal" position during the 8th through 11th pulses, as it did for pulse 12 and beyond. This may be related to the resistance shift at 900°C mentioned earlier because the amount of the discrepancy is about the same as the offset. After pulse 12, the curves lie in the order of temperature with the lowest temperature (ambient) showing the highest $\triangle R$. This departure from Nordheim's Rule appears to be about inversely proportional to absolute temperature, so, possibly, represents a thermally activated precipitation process.

No further discontinuities appear although the data become more irregular after the slope decreases at pulse 26. The change in slope corresponds to a solubility limit at 850° to 900°C. Possibly a stable oxide coating is forming and is interfering with the dissolution of oxygen after this point.

There were two additional features which remain unexplained:

1) In the later pulses of both Ta20 and Ta21, the resistance changed more rapidly during the first one quarter or one third of the oxygen exposure part of the pulse, and, in fact, completed approximately 90% of the change during this time (see Appendix D).

2) It was observed in Ta20 on pulses 27, 31 and 35 (those after a temperature traverse to 500° C) that the resistance at 950° was higher than before the excursion to 500° C and would drop when oxygen was admitted rather than rise as usually occurred.

The resistance shift at 900° C was found after the 7th pulse when the 950° C resistance point was found to be displaced from a line extrapolated through the 800° and 875° C points. Assuming at

first that a new slope had been established somewhere above 875°C, a series of readings were taken at 10°C intervals downward from 950°C to determine the break point.

A shift was found between the 906° and 896°C points. Resistance was measured at increasingly smaller increments with the results shown in Figure 25. It was first thought that a hystersis effect was being shown, but later the true nature of the shift was found. The resistance shift for a tiny change in temperature was as much as .0006 ohms. Moreover, the shift was very rapid, much faster than could be followed by the galvanometer.

At the end of the run, further investigation was made with an x-y recorder hooked to the specimen thermocouple and in place of the galvanometer in the bridge circuit. The specimen was heated and cooled so that a resistance versus temperature curve was plotted. Many traverses were made but the series shown in Figure 27 is most illustrative of the results.

Curve A traces the heating of the specimen from room temperature to 950° C. The series of traverses is outlined in the figure. After heating from room temperature, no shift was found. After annealling at 1400°C, however, a downward shift was noted at about 920°C. In 7 traverses, the downward shifts fell within a temperature range of 3.2° C.

An attempt was made to relate the temperature at which the downward jog occurred to cooling rate. The furnace control current was manually set lower than that required to maintain the sample temperature above 900°C. The control currents are shown in the figure. The lower selected currents produced, of course, the faster cooling rates. The actual cooling rates were not measured, but varied between about 0.5 and 5°C per second. It might be expected that the lower shift temperatures might be associated with the higher cooling rates. A poor correlation was found (Table 7).

Trace I was to be the shutdown run to room temperature. The cooling rate was the fastest obtainable with the furnace in place. The downward jog occurred as expected, but an upward jog occurred on further cooling at approximately 878°C. This was the first time this upward jog had been seen. No jog was seen on reheating. After cooling once more from 950°C (Trace J), only the slightest

Temperature of Offset (highest to lowest)	С	F	Е	D	G	Н	J
Cooling Rate (slowest to fastest)	H	С	D	Ε	F	G	J
Furnace Controller Current, amps.	3.5	3.0	3.0	2.0	1.0	0.0	0.0

Fable 7 .	Correlation	between	Cooling	Rate	and	Temperature	
	of Resistan	ce Off se t	in Curv	res of	Fig	ure 27.	

suggestion of an offset is visible. Presumably the effect could be fully recovered by heating to 1400°C for ten minutes as had been done between Trace B and Trace C.

No reference to such a phenomenon was found in the literature investigation that followed. The characteristics of the offest are similar to effects observed in diffusionless transformations such as Fe to martensite and metastable β brass to martensitic brass. It is possible that at 1400°C some oxide is taken into solution. Upon cooling, a metastable metallic phase is formed at 940°C. Its disappearance at 878°C indicated by another precipitous change in resistance suggests another diffusionless transformation to the stable oxide.

The above hypothesis is only tentative and serves only as a guideline in planning further research.

B. The Solubility of Oxygen in Cb

Ten runs were made in an attempt to obtain solubility data (Tables B18 to B26, Appendix B). Data from four runs were selected for reduction because the runs started with unengassed Cb and showed an initial linear segment: runs Cb04,03, 09 and 08, which were performed at 909, 906, 800 and 700°C, respectively. The data were plotted as ΔR versus number of oxygen pulses, and ΔR versus square root of number of oxygen pulses (Figure 28). The first departure from linearity was determined as outlined for tantalum. These values are listed in Table 8 and plotted in reduced form in Figure 29. Results were too inaccurate to warrant obtaining a calibration curve.

C. Trial Runs

1. Ta-10W

One trial run was made with Ta-10W alloy to determine the engassing characteristics of this alloy. The data for this run are tabulated in Appendix B, Table B27. Engassing was done at 900°C using 2.00 torr pulses. The first 10 pulses and resistances are reported in Table 9. These data are plotted as ΔR versus number of oxygen pulse in Figure 30. The remaining pulses gave erratic readings, and ultimately an open circuit developed in the bridge at the specimen.

Figure 28 - Change in Resistance vs Number of Oxygen Charges for Columbium.

Figure 29 - Intercept of Inital Linear and First Parabolic Sections of Curves of Reduced Resistance Change vs. Number of Oxygen Charges as Function of Reciprocal Temperature.

Table 8. Intercept of Initial Linear and First Parabolic Sections of Curves of Resistance versus Number of Oxygen Pulses for Columbium.

Run No.	Temp. °C	∆ R *	Estimated Error	R ₃₀	$\Delta R^*/R_{20}$
Cb05	909	.0108	.0009	.0643	.168
Cb03	906	.0145	.0337	.0619	.234
СЪ09	800	.0067	.0017	.0585	.114
Ср08	700	.0088	.0051	.0610	.142

Table 9. Resistance Data from Trial Run with Ta-10W.

Pulse Number	R, Ohms	$\Delta \mathbf{R}$, Ohms	
0	.1232	0	
1	.1253	.0021	
2	.1273	.0041	
3	.1310	.0078	
4	1334	.0102	
5	.1372	.0140	
6	.1423	.0191	
7	.1477	.0245	
8	.1521	. 0489	
9	.1622	.0590	
10	.1739	.0707	

Figure 30 - Change in Resistance vs. Number of Oxygen Charges for Ta-10W Alloy.

The resistance pattern was different from that of Cb and Ta. More preliminary work is required with this alloy.

2. Cb-1Zr

An isothermal pulse run was performed with Cb-lZr but the data provided no information due to its erratic nature.

3. DIFFUSION OF OXYGEN IN Ta

(4) The prior work on the diffusion of oxygen in Ta by Gebhardt using a technique similar to ours, showed a very small change in slope at the interface after 3 hours at 1010°C. The general oxygen level in the unengassed half had risen from approximately .03 to .10 atom percent during this time. The maximum time used by Gebhardt to obtain a measureable gradient between the two halves of the specimen was 278 hours. The longer time specimens contained progressively higher general oxygen levels in the unengassed end. The 278 hour specimen contained approximately 0.2 atom percent oxygen in this region. This suggested either a much more rapid diffusion at low oxygen concentration or gradual contamination from the furnace atmosphere.

On the assumption that the former was true, Ta22 was designed to detect and measure this rapid low oxygen concentration diffusion. The six hours at 900°C did not show any change in resistance in the specimen segments D-E and F-G. Neither could the microhardness gradient be unambiguously interpreted as representing oxygen diffusion.

The microhardness readings are tabulated in Table 10 and plotted in Figure 31. Although a definite diffusion gradient is shown, the data must be compared to those from a run which was shut down immediately after engassing to determine whether the gradient is different from the starting gradient.

Results demonstrated the feasibility of the approach, and useful data should be expected from the technique, particularly at higher temperatures.

Interference by the attached leads might be expected, but the use of Pt barriers between the sample and leads was expected to minimize this.

Distance Along Wire(1)	INDENTATION LENGTH, MICRONS ⁽²⁾				
Microns	Transverse	Axial	Average		
0	67.0	58.6	62.8		
200	67.1	58.2	62.6		
400	65.9	60.7	63.2		
600	86.3	62.3	64.3		
800	66.0	61.9	63.9		
1,000	66.3	59.1	62.7		
1,200	67.0	63.2	65.1		
1,400	64.5	59.6	62.0		
2,200	69.0	56.0	62.5		
2,375	62.5	59.8	61.2		
2,575	54.1	63.3	58.7		
2,955	60.2	55.8	58.0		
3,805	65.0	64.8	64.9		
6,485	61.4	57.3	59.3		
9,642	60.1	53.0	56.5		
9,787	60.2	47.3	58.7		
11,780	58.0	51.5	54.7		
12,885	54.7	46.5	51.6		
13,885	54.3	46.3	50.3		

Table 10. Microhardness Data from Trial Diffusion Run.

(1) Measured from center line of Mo lead # F (see Figure 4).

(2) Indenter is square, but because of wire curvature, indentation

lengths are unequal. Distances measured across diagnals.

(3) Scatter due in part to rough as-received surface.

Figure 31 - Hardness Profile of Tantalum Diffusion Specimen

IV. CONCLUSIONS AND RECOMMENDATIONS

1. An apparatus was constructed in which resistance of wire specimens could be measured up to 950°C. Principal features follow:

a) Base pressure: <1 x 10⁻⁸ torr

b) Temperature stability: ±0.02°C

c) Precision of resistance measurement: 0.02% at 0.2 ohm level.

d) Temperature control precision: if the resistance of a specimen has been measured at a temperature and the furnace then cooled to room temperature, the resistance could be reproduced within \pm 0.0001 ohm by dialing the previous temperature setting in the controller and waiting for the temperature to stabilize (provided no metallurgical change occurred in the sample).

e) Determination of partial pressure of gases contributing to the furnace pressure.

2. A method was developed for determining the location of phase boundaries in a metal-oxygen system. With this method, a metal wire sample is exposed to reproducible pulses of oxygen and the resistance of the wire measured after each pulse or group of pulses. Phase boundaries are located from changes in slope of the resulting curve of change in resistance vs number of pulses.

3. The ΔR vs number-of-pulse data for commercially pure Ta showed an initial linear relationship followed by up to 4 parabolic sections. By interpreting the intersection of the linear and first parabolic sections as the phase boundary, a curve was derived for the solubility of oxygen in Ta. The equation for this curve is

log concentration (ppm) = $4.130 - \frac{1279}{T^{\circ}K}$

4. Similar data were obtained for Cb but accuracy was not thought to be sufficient to warrant obtaining the calibration curve necessary to convert the data to solubility values.

5. An anomoly in the resistance vs temperature curve for oxygen-doped Ta was found at about 900°C.

6. Changes in slope of the resistance vs temperature curve for oxygen-doped Ta were found at about 450°C and 750°C. These slope changes persisted as oxygen was added, up to about 0.12 wt.%. They correspond roughly to transition of the metal suboxides reported by others.

7. Analysis of Ta specimens by neutron activation analysis resulted in data about 1 order of magnitude less precise than desired. This was largely caused by the coil shape of the specimen. A more compact form of the sample should result in a smaller error.

8. Because of erroneous interpretation of the data through most of the program, most of the data were taken in the 2 phase region. The limited single phase data often resulted in a higher than desired uncertainty in the intersection of the curve segments mentioned in conclusion 3.

9. Although the method appeared to produce rapid and very precise data, further work should include the following improvements:

a) Independent verification of the presence of a second phase. A hot stage x-ray diffraction unit should be used because of the extremely rapid transitions observed. More liberal use of metallographic analysis is also recommended.

b) Use of a method of oxygen analysis capable of rapid answers. A replicate sample suspended from a recording micro-balance is suggested.

c) Inclusion of very pure specimens for reference purposes.

d) Use of the 1500°C furnace.

10. Certain discrepancies and unexplained phenomena should be resolved.

a) The difference in "solubility" points obtained by the isothermal pulse and isothermal, isobaric methods.

b) The reason for oxygen entering the specimen only in the early part of the pulse. This phenomenon may be tied in with a).

c) The rapid entry of oxygen into the specimen in the linear region and the slow diffusion rate observed in the trial diffusion run.

d) The anomolies in the R and $\bigtriangleup R$ vs T data for the Ta-O system.

V. REFERENCES

- 1. Promisel, N., ed., <u>Science and Technology of Selected</u> <u>Refractory Metals</u>, <u>McMillan</u>, New York, 1964.
- Gebhardt, E., and Seghezzi, H.D., Plansee Proc, Ruette, Austria, 1958, p. 280, also see Ref. 1.
- 3. Hurlen, R., J. Inst. Metals, 87, 235 (1958).
- Gebhardt, E., Seghezzi, H.D., and Stegherr, A., Z. Metallkde 48, 624 (1957).
 - Vaughn, D.A., Stewart, O.M., and Schwartz, C.M., <u>Trans AIME 221</u>: 937 (1961).
 - Gebhardt, E. and Preisendanz, H., Z. Metallkde 46: 560 (1955).

APPENDIX A

MATERIALS SPECIFICATIONS AND ANALYSIS

I. CHEMICAL SPECIFICATIONS FOR TEST MATERIALS

- 1) Columbium (Niobium)
 - 1. FORM Wire
 - 2. <u>COMPOSITION</u> The chemical composition of wire shall be as follows:

ELEMENT	WT. 9	6	ELEMENT	WT.	%
Ch.	00 0	Nin	Mo	0.2	May
CD	99.0	MIII.	MO	.02	Max.
С	.005	Max.	Ni	.02	Max.
02	.03	Max.	W	.02	Max.
N2	.015	Max.	Zr	.02	Max.
H ₂	.0005	Max.	V	.01	Max.
Fe	.01	Max.			
Si	.01	Max.			
Ta	.05	Max.			
Ti	.02	Max.			

- 3. CONDITION Fully recrystallized
- 2) Columbium 1Zr
 - 1. FORM Fully recrystallized wire
 - <u>COMPOSITION</u> The chemical composition of the wire shall be as follows:

ELEMENT	MAXIMUM		MINIMUM
Zirconium	1.2%		0.8%
Carbon	100	p.p.m.	-
Oxygen	300		-
Nitrogen	300		-
Hydrogen	10		
Tantalum	1000	u	-
Tungsten	500		-
Iron	500		-
Silicon	300		-
Titanium	500		-
Molybdenum	1000		-

ELEMENT	MAXIMUM	MINIMUM
Boron	1	-
Cadmium	5	~
Cobalt	30	-
Hafnium	100	-
Lead	50	~
Manganese	100	-
Nickel	200	-
Vanadium	200	~
Columbium	Balance	

3. <u>CONDITION</u> - All wire shall be in the fully recrystallized condition.

3) FS-85

- 1. FORM Fully recrystallized wire
- 2. COMPOSITION FS-85 (Cb-28Ta-10.5W-0.9Zr) Alloy

ELEMENT	MINIMUM CONTENT MAXIMUM C	
	ppm	ppm
Carbon	-	100
Nitrogen	-	75
Oxygen	-	300
Hydrogen	- 10	
Molybdenum	-	200
Nickel	-	50
Cobalt	-	50
Iron	-	50
Tantalum	26 w/o 29 w/	
Tungsten	10 w/o	12 w/o
Zirconium	0.6 w/o 1.1 w/o	
Columbium	Remainder -	

3. <u>CONDITION</u> - All wire shall be in the full recrystallized condition.

Tantalum

- 1. FORM Wire
- 2. <u>COMPOSITION</u> The chemical composition of the material shall be the following:

ELEMENT	MAXIMUM WT %	MINIMUM WT %
Tantalum		99,90
Carbon	.010	
Oxygen	.010	
Nitrogen	.005	
Hydrogen	.002	

- 3. CONDITION Material shall be in the recrystallized state.
- 5) Tantalum 10 Tungsten
 - 1. FORM Fully annealed wire
 - 2. <u>COMPOSITION</u> The chemical composition of the material shall be as follows:

ELEMENT

Carbon	50	PPM	Max.
Oxygen	70	PPM	Max.
Nitrogen	30	PPM	Max.
Hydrogen	6	PPM	Max.
Columbium	1000	PPM	Max.
Iron	70	PPM	Max.
Molybdenum	30.0	PPM	Max.
Nickel	70	PPM	Max.
Tungsten	8.5-11	wt.	%
Tantalum	Ba	Lance	2

3. <u>CONDITION</u> - All material will be in the fully recrystallized condition.

6) T-222

1. FORM - Fully recrystallized wire

2. COMPOSITION - T222 (Ta-9.8W-2.4Hf-0.01C) Alloy

ELEMENT	MINIMUM CONTENT	MAXIMUM CONTENT
	ppm	ppm
Carbon	80	175
Nitrogen	-	50
Oxygen	-	100
Hydrogen	-	10
Columbium	-	1000
Molybdenum	-	200
Nickel	_	50
Cobalt	_	50
Iron	-	50
Vanadium	-	20
Tungsten	9.6 w/o	11.2 w/o
Hafnium	2.2 w/o	2.8 w/o
Tantalum	Remainder	-

3. <u>CONDITION</u> - All wire shall be in the fully recrystallized condition.

II.	MATERIALS	LOT	ANALYSIS
		and the second se	Statements and an other statements and an other statements and

MATERIAL		Cb-lZr	FS-85	Ta - 10W	T-222	Ta
Mfg	Lot No .:	80 B 2341	85D695	60B901	22D1002	MG 41
		808781				
	С	20	20	10	139	10
	0	50	40	10	10	52
	N	60	20	10	10	10
	Zr	0.90%	0.97%	10	500	5
	Ta	600	28.0 %	bal.	bal.	bal.
	Ti	50	-	10	10	5
	Fe	70	50	10	10	50
	Ni	70	-	10	10	5
А	W	260	10.25%	9.5%	8.9%	5
N	Si	100	100	-	10	5
A	Mo	200	-	50	10	30
L	Cb	bal.	bal.	90	500	470
Y	V	-	-	10	10	5
s	Co	-	-	10	10	5
I	Mn	-	-	-	10	5
S	Pb	-	-	-	10	-
	Cu	-	-	-	10	5
Ρ	Cr	-	-	-	10	5
Р	H	-	-	-	3.7	-
M	Hf	-	-	-	2.21%	-
	Mg	-	-	-	10	5
	Ca	-	-	-	-	5
	Al	-	-	-	-	5
	Sn	-	-	-	-	5

APPENDIX B

RAW DATA FROM INDIVIDUAL RUNS

Run TaO5 Data Isothermal Pulse Run at 780°C

Sample Wt.: 3.689 g Pre run resistance = 0.0619 ohm at 32.0°C Post run resistance = 0.1056 ohm at 33.3°C Oxygen charge size = 300 cc at 1 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.1912	0
1	.1919	.0007
2	.1920	.0008
3	.1932	.0020
4	.1947	.0035
5	.1962	.0050
6	.1978	.0066
7	.1982	.0070
8	.2000	.0088
9	.2016	.0104
10	.2034	.0122
11	.2052	.0140
12	.2069	.0157
13	.2087	.0175
14	.2104	.0192
15	.2120	.0208
16	.2136	.0224
17	.2152	.0240
18	.2167	.0255
19	.2182	.0270
20	.2196	.0284
21	.2210	.0298
22	. 2223	.0311
23	.2237	.0325
24	.2249	.0337
25	.2259	.0347
26	.2269	.0357
27	.2280	.0368
28	.2290	.0378
29	.2299	.0387
30	.2308	.0396
31	.2316	.0404
32	.2324	.0412
33	.2330	.0418
34	.2337	.0425
35	.2343	.0431
36	-2348	.0436
37	.2353	.0441
38	.2358	.0446
39	.2361	.0449
40	.2366	.0454
41	.2370	.0458
42	.2373	.0461
43	.2377	.0465
44	.2380	.0468

Run TaO6 Data Isothermal Pulse Run at 880°C

Sample Wt.: 4.231 g Pre run resistance = .0738 ohm at 29.8°C Post run resistance = .1139 ohm at 24.8°C Oxygen charge size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS_	RESISTANCE, OHMS
0	.2468	0
1	.2503	.0035
2	.2544	.0076
3	.2587	.0119
4	.2631	.0163
5	.2676	.0208
6	.2719	.0251
. 7	.2758	.0290
8	.2798	.0330
9	.2836	.0368
10	.2871	.0403
11	.2906	.0438
12	.2940	.0472
13	.2969	.0501
14	.2995	.0527
15	.3017	.0549
16	.3036	.0568
17	.3052	.0584
18	.3067	.0599
19	.3079	.0607
20	.3089	.0617
21	.3100	.0632
22	.3108	.0640
23	.3116	.0648
24	.3124	.0656
25	.3130	.0662
26	.3137	.0669
27	.3141	.0673
28	.3147	.0679
29	.3153	.0685
30	. 3158	.0690
31	.3161	.0693
32	.3166	.0698
33	3171	0703

Run TaO7 Data Isothermal Pulse Run at 598°C

Sample Wt.: 4.0131 g
Pre run resistance = .0700 ohm at 25.3°C
Post run resistance = Not Recorded
Oxygen charge size: 300 cc at 1 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.1838	.0008
1	.1847	.0009
2	.1859	.0021
3	.1872	.0034
4	. 1885	.0047
5	.1899	.0061
6	.1906	.0068
7	.1912	.0074
8	.1920	.0082
9	.1924	.0086
10	.1931	.0093
11	.1937	.0099
12	.1942	.0104
13	.1947	.0109
14	.1952	.0114
15	.1960	.0122
16	.1965	.0127
17	.1969	.0131
18	.1974	.0136
19	.1979	.0141
20	.1983	.0145
21	.1987	.0149
22	.1992	.0154
23	.1997	.0159
24	.2002	.0164
25	· 2006	.0168
25	.2012	(1)
25	.2049	(2)

(1) Recorded temperature 596.4°C

(2) Recorded temperature 601.1°C

Run Ta08 Data Isothermal Pulse Run at 921°C

Sample Wt: 3.418 g Pre run resistance = Not recorded Post run resistance = .0957 ohm at 39.2°C Oxygen charge size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN	
OXYGEN PUL	SE SAMPLE, OHMS	RESISTANCE, OHMS	
0	.1734		(1)
0	.1706	0	(2)
1	.1738	.0032	
2	.1770	.0064	
3	.1810	.0104	
4	.1850	.0144	
5	.1886	.0180	
6	.1924	.0218	
7	.1953	.0247	
8	.1973	.0267	
9	.2012	.0306	
10	.2039	.0333	
11	.2067	.0361	
12	.2089	.0383	
13	.2110	.0404	
14	.2129	.0423	
15	.2145	.0439	
16	.2158	.0452	
17	.2169	.0463	
18	.2178	.0472	
19	.2186	.0480	
20	.2192	.0486	
21	.2197	.0491	
22	.2203	.0497	
23	. 2207	.0501	
24	.2211	.0505	
25	.2215	.0509	
26	.2219	.0513	
27	.2222	.0516	
28	. 2225	.0519	
29	.2229	.0523	
30	. 2233	.0527	
31	. 2237	.0531	
32	.2240	.0534	
33	. 2244	.0538	
34	. 2247	.0541	
35	. 2250	.0544	
36	. 2254	.0548	
36	. 2236	.0530	
36	.2245	.0539	

(1) Temperature 943.7°C
(2) Temperature 921.4°C

Run TalO Data Isothermal Pulse Run for Calibration Curve Run Temperature 900°C

Sample Wt.: 3.660 g
Pre run resistance = .0642 ohm at 41.9°C
Post run resistance = .0922 ohm at 49.0°C
Oxygen charge size: 300 cc at 2 torr

NUMBER	OF	RESISTANCE OF	CHANGE IN
OXYGEN	PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0		.2080 (1)	0
1		.2113	.0033
2		.2154	.0074
3		.2195	.0115
4		.2236	.0156
5		.2277	.0197
6	(2)	.2321	.0241
6	(2)	.2322	.0242
6	(2)	.2321	.0241
6	(2)	.2323	.0243
6	(2)	.2324	.0244
6	(2)	.2324	.0244
6	(2)	.2325	.0245
6	(2)	.2325	.0245
6	(2)	.2326	.0246

(1) At 902.2°C.

(2) Resistance after 6 pulses monitored over 3 hour period

Run Tall Data Isothermal Pulse Run for Calibration Curve Run Temperature 901°C

Sample Wt.: 3.919 g Pre run resistance = .0702 ohm at 53.3 Post run resistance = .0785 ohm at 42.4 Oxygen charge size: 300 cc at 2 torr

NUMBER OF OXYGEN PULSE	RESISTANCE OF SAMPLE, OHMS	CHANGE IN RESISTANCE,	OHMS
0	.2207	0	
1	.2240	.0033	
2	.2279	.0072	
3	.2318	.0111	(1)
3	.2319	.0112	(1)
3	.2319	.0112	(1)

(1) Resistance after 3 pulses monitored over 2 hour period.

Run Tal2 Data Isothermal Pulse Run for Calibration Curve Run Temperature 900°C

Sample Wt.: 4.042 g
Pre run resistance = .0689 ohm at 33.1°C
Post run resistance = .1110 ohm at 32.0°C
Oxygen charge size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.2271	0
1	.2305	.0034
2	.2344	.0073
3	.2386	.0115
4	.2429	.0158
5	.2473	.0202
6	.2517	.0246
7	.2558	.0287
8	.2598	.0327
9	.2637	.0366
10	.2678	.0407
10 (1)	.2680	.0409
10 (1)	.2681	.0410
10 (1)	.2672	.0401
10 (1)	.2671	.0400
10 (1)	.2678	.0407
10 (1)	.2679	.0408
10 (1)	.2679	.0408

(1) Resistance after 10 pulses monitored over 4 hour period

Run Tal3 Data Isothermal Pulse Run for Calibration Curve Run Temperature 901°C

Sample Wt.: 4.026 g Pre run resistance = .0686 ohm at 38.1°C Post run resistance = .0708 ohm at 48.7°C Oxygen charge size: Not Applicable

OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
NUMBER OF	RESISTANCE OF	CHANGE IN

0

.2238

Run Tal4 Data Isothermal Pulse Run at 901°C

Sample Wt.: 4.037 g Pre run resistance = .0742 at 36.3°C Post run resistance = .1271 at 44.9°C Oxygen pulse size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	. 2483	0
1	.2542	.0059
2	.2602	.0119
3	.2661	.0178
4	.2717	.0234
5	.2769	.0286
6	.2814	.0331
7	.2854	.0371
8	.2892	.0409
9	.2921	.0438
10	.2950	.0467
11	.2977	.0494
12	.2997	.0514
13	.3019	.0536
14	.3032	.0549
15	.3045	.0562
15	.2991 (1)	.0508
15	.1628 (2)	-
15	.3135 (3)	.0652

After 12 hours at 900°C.
 After 1000°C 15 min. and 1200°C 1 hour at 63°C.
 After 1200°C 45 min. and 1350°C 30 min. and 900°C overnight.

Run Tal5 Data Isothermal Pulse Run at 781°C

Sample Wt.: 3.6891 g Pre run resistance = .0619 (temperature no recorded) Post run resistance = Not Recorded Oxygen pulse size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.1941 (1)	
0	.1932 (2)	
0	.1785 (3)	
0	.1756	0
l	.1774 (4)	.0018
1	.1770	.0014
1	.1773	.0017
2	.1811	.0055
2	.1811	.0055
2	.1814	.0058
3	.1843	.0087
3	.1847	.0091
3	.1847	.0091
4	.1883	.0127
4	.1883	.0127
4	.1882	.0126
5	.1912	.0157
5	.1918	.0163
5	.1918	.0163
6	.1959	.0203
6	.1962	.0206
6	.1963	.0207
7	.1988	.0232
7	.1984	.0228
7	.1989	.0233
8	.2019	.0263
8	.2022	.0266
8	.2021	.0265
9	.2046	.0290
9	.2045	.0289
9	.2045	.0289
9	.2066 (5)	.0310
9	.2067	.0311
9	.2067	.0311
9	.2078	.0322
-		

(1) (2) Temperature = $899^{\circ}C$ Temperature = $903^{\circ}C$

Temperature = 901°C (3)

30 minute cycle with 3 resistance readings. (4)

(5) Remaining readings unrecorded. Taken over unknown time. Terminated in sample short circuit.

Run Tal6 Data Isothermal Pulse Run at 781°C

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.061	
1	.1578	0
1 (1)	.1598	.0020
1	.1599	.0021
1	.1600	.0022
2	.1630	.0052
2	.1631	.0053
2	.1632	.0054
3	.1665	.0087
3	.1667	.0089
3	.1667	.0089
4	.1698	.0120
4	.1699	.0121
4	.1702	.0124
5	.1731	.0153
5	.1732	.0154
5	.1732	.0154
6	.1764	.0186
6	.1764	.0186
6	.1765	.0187
7	.1790	.0212
7	.1790	.0212
7	.1790	.0212
8	.1807	.0232
8	.1809	.0234
8	.1810	.0235

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
9	.1828	.0250
9	.1828	.0250
9	.1828	.0250
10	.1844	.0266
10	.1844	.0266
10	.1845	.0267
11	.1860	.0282
11	.1860	.0282
11	.1860	.0282
12	.1873	.0295
12	.1873	.0295
13	.1881	.0303
13	.1883	.0305
13	.1883	.0305
14	.1895	.0317
14	.1895	.0317
14	.1895	.0317
15	.1904	.0326
15	.1904	.0326
15	.1905	.0327
15	.1914	.0336
15	.1921	.0343
15	.1922	.0344
15	.1922	.0344
15	.1929	.0351
15	.1930	.0352
15	.1932	.0354
15	.1932	.0354
15	.1939	.0361
15	.1940	.0362
15	.1946	.0368
15	.1947	.0369
15	.1954	.0376
15	.1954	.0376

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
15	.1959	.0381
15	.1964	.0386
15	.1964	.0386
15	.1970	.0392
15	.1971	.0393
15	.1971	.0393
15	.1975	.0397
15	.1977	.0399
15	.1981	.0403
15	.1982	.0404
15 (2)	.1987	.0409

(1) 30 minute cycle with 3 resistance readings(2) Taken after 2 days at 780°C

Run Tal7 Data Isothermal Pulse Engassing at 900°C and Isoconcentration Runs

Sample Wt.: 3.655 g Pre run resistance = .0617 at 28°C

Oxygen charge size: 300 cc at 2 torr

NUMBER OF	RESISTANCE OF	CHANGE IN
OXYGEN PULSE	SAMPLE, OHMS	RESISTANCE, OHMS
0	.1995	0
1		
2	.2077	.0082
3	.2093	.0098
4	.2151	.0156
5	.2213	.0218
6	.2246	.0251
7	.2283	.0288
8	.2314	.0319
9	.2352	.0357
10	.2394	.0399
11	.2429	.0434
12	.2455	.0460
13	.2487	.0492
TEMPERATURE		
°C		
924.7	.2487 (1)	.0492
"	.2486	.0491
908.1	.2460	.0465
	.2459	.0464
891.7	.2434	.0439
	.2434	.0439
875.0	.2409	.0414
	.2412	.0417
858.4	.2392	.0397
"	.2385	.0390

TEMPERATURE	RESISTANCE OF	CHANGE IN
°C	SAMPLE, OHMS	RESISTANCE, OHMS
841.7	.2362	.0367
"	.2362	.0367
825.0	.2339	.0344
"	.2339	.0344
801.9	.2328 (2)	.0333
809.0	.2309	.0314
792.0	.2278	.0283
792.9	.2297	.0302
	.2257	.0262
771.0	.2276	.0281
771.0	.2260	.0265
756.5	.2251	.0256
733.0	.2225	.0230
742	.2238	.0243
726	.2214	.0219
725.6	.2213	.0218
725.8	.2213 (3)	.0218
821.5	.2364	.0369
822.0	.2362	.0367
808.0	.2346	.0351
808.2	.2345	.0350
791.4	.2321	.0326
791.5	.2321	.0326
775.7	.2295	.0300
775.8	.2297	.0302
741.0	.2242	.0247
751.6	.2243	.0248
726.0	.2218	.0223
н	.2218	.0223
699.5	.2173	.0178
700.0	.2176	.0181
700.0	.2169 (4)	.0174
927	.2488	.0493
950	.2500	.0505
900	.2455	.0460
893	.2436	.0441

TEMPERATURE	RESISTANCE OF	CHANGE IN
°C	SAMPLE, OHMS	RESISTANCE, OHMS
873	. 2427	.0432
850	.2390	.0395
842	.2371	.0376
823	.2354	.0359
791	.2306	.0311
774	.2275	.0280
755	.2253	.0258
725	.2207	.0212
740	.2226	.0231
720	.2198	.0203
704	.2171	.0176
950.9	.2533 (5)	.0538
н	.2532	.0537
927.3	.2496	.0501
н	-2496	.0501
910.0	.2469	.0474
11	.2469	.0474
889.5	.2443	.0448
889.7	.2443	.0448
874.7	.2426	.0431
"	.2426	.0431
858.0	.2400	.0405
"	.2400	.0405
841.3	.2372	.0377
	.2373	.0378
825.3	.2351	.0356
	.2352	.0357
808.0	.2325	.0330
701 2	.2326	.0331
/91.3	.2303	.0308
774 7	.2303	.0308
//4./	.2279	.0284
750 4	.2279	.0284
/58.4	. 2253	.0258
	. 2253	.0258

TEMPERATURE	RESISTANCE	OF CHANGE IN
°C	SAMPLE, OHM	S RESISTANCE. OHMS
741.7	.2228	-0233
742.1	.2229	.0234
726.0	.2204	.0209
726.2	.2204	.0209
710.0	.2178	.0183
669.0	.2159	.0164
950.3	.2550 (6	6) .0555
924.7	.2510	.0515
924.9	.2510	.0515
901.5	.2480	-0485
900.6	.2480	.0485
874.7	.2442	.0447
п	.2442	.0447
850.6	.2406	.0411
	.2406	.0411
825.4	.2366	.0371
	.2366	.0371
800.6	.2329	.0334
801.5	.2329	.0334
773.9	.2287	.0292
774.1	.2287	.0292
751.6	.2255	.0260
752.4	.2255	.0260
724.1	.2210	.0215
	.2210	.0215
702.9	.2174	.0179
	.2174	.0179
950.4	.2536 (7) .0541
925.2	.2507	.0512
900.8	.2476	.0481
874.1	.2437	.0442
850.8	.2401	.0406
823.0	.2364	.0369
802.9	.2333	.0338
776.4	.2295	.0300

°C	RESISTANCE OF SAMPLE, OHMS	CHANGE IN RESISTANCE, OHMS
749.3	.2252	.0257
725.3	.2217	.0222
703.8	.2181	.0186

 Isoconcentration run: readings taken 15 minutes and 25 minutes after resetting temperature.

(2) Remaining data appeared erratic in both resistance and temperature. T.C. interference with I_B.

(3) Resistance heat to 1400°C for 1 hour

(4) After 700°C overnight

(5) New isoconcentration run

(6) 1450°C for 1 hour

(7) 1450°C for 1 hour

Run Ta 19 Data Isothermal Pulse Run at 800°C

Sample Wt.: 3.666 g
Pre run resistance = .0635 at 29.2°C
Post run resistance = Not Recorded
Oxygen pulse size: 300 cc at 2 torr

NUMBER OF OXYGEN PULSE	RESISTANCE OF SAMPLE, OHMS	CHANGE IN RESISTANCE, OHMS	
0	.1933		
0	.1933 (1)		
0	.1932 (2)		
0	.1923	0	
l	.1934	.0011	
2	.2148	0125	
3	.2174	.0151	
4	.2189	.0166	
5	.2200	.0177	
6	.2203	.0180	
7	.2208 (3)	.0185	
8	.2237	.0214	
9	.2254	. 0231	
10	.2268	.0245	
11	.2285	.0262	
12	.2296	.0273	
13	.2314	. 0291	
14	.2319	.0296	
15	.2329	- 0306	
16	.2344	.0321	
17	.2356	.0333	
18	.2361	.0338	
19	.2375	0352	
20	.2385	.0362	
21	. 23 92	.0369	
22	.2404	.0381	
23	.2412	.0389	
24	.2420	.0397	
25	.2428	.0405	
NUMBER OF	RESISTANCE OF	CHANGE IN RESISTANCE.	OHMS
--------------	---------------	--------------------------	-------
OXYGEN PULSE	SAMPLE, OHMS	indid initial j	01410
26	.2436	.0413	
27	.2451	.0428	
28	.2460	.0437	
29	.2466	.0443	
30	.2471	.0448	
31	.2474	.0451	
32	.2480	.0457	
33	.2487	.0464	
34	.2495	.0472	
35	.2509	.0486	
36	.2515	.0492	
37	.2516	.0493	

(1)	After 1	hour	at	1400°C	resistance	heating
(2)	After 1	hour	at	1400°C	resistance	heating
(3)	Operati	onal d	erro	or pulse	es 1 throug	h 7, air
(0)	in puls	e not	oxy	ygen		

Run Ta20 Data Combination Isothermal Pulse, Isoconcentration Run

					SAMPLE	SLOPE,	INTER	POLATED	DATA
Т	EMPERA	TURE,	°C (1)		RESIST-	OHMS/°C	RESIS	STANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$\times 10^4$	TEMP		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
EVENT	<u>1 - P</u>	reannea	al Data	a, 1/2	0/67				
36.3	-	37.8	-	37.0	.0517	1.1	-	-	1.01
407.5	8.0	406.4	8.0	416.2	.1102	-	- 1	-	1.02
604.0	9.3	604.2	9.3	613.4	.1375	1.4	600	.1356	1.03
701.9	9.9	_		711.8	.1510	1.4	700	.1493	1.04
EVENT	<u>2 - M</u>	easure	Slope	of R	vs T Near	500°C,	1/23/6	7	
503.8					.1241			Г	2.01
505.3					.1243				2.02
501.3	1	1	1		.1238		1	1	2.03
503.8					.1241				2.04
501.5					.1238				2.05
500.9					.1237				2.06
						1.3	500	.1236	
EVENT	3 - M	easure	R vs	r At I	ncreasing	Tempera	tures	After A	nneal
100	A	± 1350°	C, 1/2	4/67					
496.	8.6	495.4	8.6	504.3	.1242	1.40	500	.1236	3.01
539.5	8.9	538.8	8.9	548.0	.1304	1.40	550	.1307	3.02
584.2	9.3	588.2	9.3	598.0	.1373	1.40	600	.1376	3.03
639.0	9.6	637.8	9.6	648.0	.1442	1.40	650	.1445	3.04
689.5	9.2	688.4		698.7	.1510	1.40	700	.1512	3.05(3)
790.7	8.7	788.4		799.4	.1643	1.32	800	.1644	3.06(3)
841.8	8.5	839.3		850.3	.1712	1.32	850	.1712	3.07
892.9	8.3	890.8		901.2	.1778	1.32	900	.1776	3.08(3)
942.6	8.1	940.1		950.7	.1842	1.32	950	.1841	3.09(3)
738.0	9.0	737.5		747.0	.1575	1.32	750	.1579	3.10
EVENT	4 - Me	easure	R vs 1	at De	creasing	Tempera	tures	After A	bove,
0.40		24/67							
942.3	8.1			950.4	.1842	1.32	950	.1841	4.01(3)
893.3	8.3			901.6	.1779	1.32	900	.1777	4.02(3)

TABLE B14

					SAMPLE	SLOPE,	INTERPO	DLATED	DATA
TF	MPERAT	URE, °	C (1)		RESIST-	OHMS/°C	RESIST	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$x 10^{4}$	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
	. ,						то,°с		
790.9	8.7			799.6	.1644	1.32	800	.1645	4.03(3)
690.9	9.2			699.5	.1509	1.40	700	.1510	4.04(3)
589.4	9.3			598.7	.1370	1.40	600	.1368	4.05(3)
494.7	8.6			503.3	.1235	1.40	500	.1231	4.06(3)
393.8	7.2			401.0	.1087	1.40	400	.1086	4.07(3)
29.7	2			29.5	.0507	1.4	30	.0508	4.08(4)
EVENT	<u>5 - Cl</u>	neck R	VS T	slope 1	Jear RT,	1/30/67			
29.6					.0506				5.01
26.2				1	.0500	1.1			5.02
28.4					.0507	±.1			5.03
31.3					.0509				5.04
EVENT	<u>6</u> – <u>M</u>	easure	R vs	T Upwar	td After	Furnace	Off Fo	r 5 Day	ys and
	S	pecime	h Unde:	r High	Vacuum	<2 x 10	<u>1°), 1/</u>	30/67	
				546 0	1200	1 1 10			6 01
538.0	8.9			546.9	.1298	1.40	600	1272	6.01
588.0	9.3			597.3	.1368	1.40	600	13/2	6.02(3)
637.8	9.6			647.4	.1437	1.40	700	1510	6.03
687.9	9.2			090.1	.1505	1.40	/00	1510	6.04(3)
/36.5	9.0			145.5	.1572	1.40	000	1642	6 06 (3)
/8/./	8.7			197.4	.1039	1.32	800	1043	6 07
837.6	8.5	1	1	840.1	.1705	1.32	000	1776	6 09(3)
888.1	8.3			024 2	.1//1	1.32	900	1//0	6 09
916.1	8.2	1	1	924.5	1047	1 22	950	19/1	6 10 (3)
946.4	8.1			502 2	122/1	1.32	500	1231	6 11 (3)
493.0	0.0	+		1502.2	.1234+	1.40	500	1231	10.11(3/
FUENT	7 _ P	Vg T	After	I 55A	(Charge o	f 02, 1/	30/67		
946 1	$\frac{1}{8}$			954.2	1851	1.32	950	1845	7.01
791.2	8.7			799.9	.1649	1.32	800	1649	7.02
691 1	9 2			700.3	.1515	1.40	700	1515	7.03
501 2	9 3			600.5	1376	1.40	600	1375	7.04
496.9	8.6			505.5	.1243	1.40	500	1235	7.05
945.8	8.1			953.9	.1850	1.32	950	1845	7.06

TABLE B14

					SAMPLE	SLOPE,	INTER	OLATED	DATA
T	EMPERA	TURE,	°C (1)		RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$ x 10^{4} $	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
EVENT	8 – R	vs T	fter	Add 2	Charges,	1/30/67			
945.7	8.1			953.8	.1855	1.32	950	.1850	8.01
866.8	8.4			875.2	.1753	1.32	875	.1753	8.02
790.6	8.7			799.3	.1653	1.32	800	.1654	8.03
690.4	9.2	l		799.6	.1518	1.40	400	.1519	8.04
590.1	9.3			599.4	.1380	1.40	600	.1381	8.05
496.1	8.1			504.2	.1247	1.40	500	.1241	8.06
EVENT	<u>9 – R</u>	VS T.	After i	dd 3	Charges W	↓ith Over	night	Shutdo	vn
	Be	tween	2nd &	3rd C	harge, 1,	/31/67			
948.4	8.1			956.5	.1858	1.32	950	.1849	9.01(5)
948.8	8.1			956.9	.1865	1.32	950	.1856	9.02(6)
896.6	8.4			878.0	.1763	1.32	875	.1759	9.03
793.6	8.7			802.3	.1663	1.32	800	.1660	9.04
693.5	9.2			702.7	.1529	1.40	700	.1525	9.05
593.1	9.3			602.4	.1390	1.40	600	.1387	9.06
499.4	8.1			507.5	.1257	1.40	500	.1246	9.07
949.7	8.1			957.8	.1866	1.32	950	.1856	9.08
EVENT	10 - 1	VS T	After	Add 4	Charges,	1/31/67			
949.3	8.1			957.4	.1872	1.32	950	.1862	10.01
869.9	8.4			878.3	.1770	1.32	875	.1766	10.02
793.8	8.7			802.5	.1670	1.32	800	.1667	10.03
693.9	9.2			703.1	.1536	1.40	700	.1532	10.04
593.6	9.3			602.9	.1400	1.40	600	.1396	10.05
499.6	8.1			507.7	.1265	1.40	500	.1254	10.06
949.2	8.1			957.3	.1872	1.32	950	.1862	10.07
EVENT	11 - 1	vs T	Decrea	sing,	After 5	Charges,	1/31/	67	
949.0	8.1			957.1	.1879	1.32	950	.1870	11.01
869.8	8.4			878.2	.1777	1.32	875	.1773	11.02
793.8	8.7			802.5	.1677	1.32	800	.1674	11.03
694.0	9.2			703.2	.1543	1.40	700	.1539	11.04
593.5	9.3			602.8	.1404	1.40	600	1400	11.05

TABLE B14

					SAMPLE	SLOPE,	INTERP	OLATED	DATA
TE	MPERAT	TURE, °	C (1)		RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	x 104	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
499.8	8.1			507.9	.1272	1.40	500	.1261	11.06
949.5	8.1			957.6	.1879	1.32	950	1869	11.07
EVENT	12 - F	vs T	Decrea	asing .	After 6 (harges,	1/31/6	7	
949.6	8.1			957.7	.1885	1.32	950	1875	12.01
870.2	8.4			878.6	.1783	1.32	875	1778	12.02
793.7	8.7			802.4	.1684	1.32	800	.1681	12.03
694.1	9.2			703.3	.1550	1.40	700	.1546	12.04
593.7	9.3			603.0	.1412	1.40	600	.1408	12.05
499.8	8.1			507.9	.1278	1.40	500	1267	12.06
949.8	8.1			957.9	.1886	1.32	950	.1875	12.07
EVENT	13 - 1	vs T	Decre	asing	After 7 (Çharges,	1/31/6	7	
949.5	8.1	1		957.6	.1892	1.32	950	1882	13.01
870.2	8.4			878.6	.1789	1.32	875	.1784	13.02
793.8	8.7			802.5	.1689	1.32	800	.1686	13.03
693.4	9.2			702.6	.1555	1.40	700	.1552	13.04
593.1	9.3			602.4	.1417	1.40	600	1414	13.05
499.1	8.1			507.2	.1283	1.40	500	.1274	13.06
379.9	7.3			405.2	.1135	1.44			13.07
297.6	6.1			303.7	.0981	1.44	1		13.08
236.9	4.7	1.1		238.6	.0887	1.44			13.09
281.4	6.0		2	287.4	.0995	1.44			13.10(7)
204.1	4.0			208.1	.0833	1.44			13.11(7)
	1		1	1					
EVENT	14 -	Planne	to b	e R vs	T After	8th Char	ge.		
		at 9	50 was	subst	antially	differer	nt from	previ	dus event
		o chai	nged o	bjecti	ve to me	asuring I	vs T	Pownwa	rd to
	1	ompare	acurv	es.					
28.1					.0550	1.44			14.01(4)
948.9	8.1	957.0			.1874	1.32	950	.1864	14.02
871.1		-			.1775	1.32	875		14.03
793.0		1 1 M 1			.1674	1.32	800		14.04
692.4				1	.1541	1.40	700		14.05
592.6					.1404	1.40	600	· · · · ·	14.06

TABLE B14

					SAMPLE	SLOPE,	INTERP	OLATED	DATA
Т	EMPERAT	TURE,	°C (1)		RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	x 104	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
498.6					.1273	1.40			14.07
398.3					.1127	1.44			14.08
377.1					.1096	1.44			14.09
340.6					.1040	1.44			14.10
EVENT	15 - F	vs T	Increa	asing	to More C	losely I	efine	New	
	F	vs T	Curve	. 2/1/	67				
359.7	-				.1070				15.01
379.0					.1101				15.02
379.9					.1130				15.03
417.7					.1160				15.04
437.6					.1190				15.05
457.1					.1220				15.06
478.4					.1249				15.07
499.4					.1279				15.08
519.6					.1308				15.09
560.7					.1366				15.10
581.4					.1395				15.11
693.6					.1550				15.12
794.5					.1684				15.13
870.3					.1783				15.14
949.0					.1885				15.15
EVENT	16 – R	After	High 7	Tempera	ature Ann	eals			
	- 1								
949.0					.1882	1.32			16.01
949.0					.1886	1.32			16.02
949.1	8.1			957.2	.1890	1.32	950	. 1881	16.03(8)
949.1	8.1			957.1	.1888	1.32	950	.1879	16.04(9)
949.0	8.1			957.1	1889	1.32	950	1880	16.04(9)
51500	0.1				12001				
EVENT	17 – B	vs T	Decre	asing.	Determin	e Curve	After	Anneal	, 2/1/67
869.8	8.4			878.2	.1778	1.32	875	.1774	17.01
793.1	8.7			801.8	.1678	1.32	800	.1676	17.02
691.7	8.2			700.9	.1543	1.40	700	.1542	17.03

	and the second				SAMPLE	SLOPE,	INTERPO	DLATED	DATA
TI	MPERAT	TURE, °	C (1)		RESIST-	OHMS/°C	RESIS	FANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$ x 10^{4} $	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
	(=)		(-)				TO,°C		
501 0	0 7			600 5	1406	1 40	600	1405	17.04
591.8	0./			000.5	1362	1.40	000	1405	17 05
539.5					1205				17.05
519.1				106 E	.1305	1 40	500	1266	17.00
4/8.3	8.2			480.0	.1247	1.40	500	1200	17.09
418.6					.1100				17.00
379.5					.1102)			17.09
340.4					.1043				17.10
330.9					.1008				1/.11
			_		7.7-			2/2/6-	Į I
EVENT	18 - 1	vs T	Increa	ising.	warmup 1	for stn E	ngass,	2/2/0	10 01
28.7					.0553				10.01
420.4					.1168				18.02
501.5					-1284				18.03
595.5					.1414				18.04
695.9					.1555				18.05
795.0					.1687				18.06
871.4			1		.1784				18.07
950.8					.1889				18.08
EVENT	19 - 1	R vs T	Decrea	ising	After Add	3 8 Charg	es, 2/	2/67	
]				0.50	1.001	10.01
951.1	8.1			959.2	.1893	1.32	950	1881	19.01
866.3	8.4			874.7	.1773	1.32	875	1//3	19.02
788.7	8.8	1)	797.5	.1673	1.32	800	16/6	19.03
687.1	9.2			696.3	.1538	1.40	700	.1543	19.04
								I	
EVENT	20 -	R vs T	To Se	arch F	'or Resis	tance Off	set Fo	und in	
		Preced	ing Ev	ent, 2	/2/67	1			
938.3					.1876				20.01
928.0					.1863				20.02
917.8					.1850				20.03
907.5					.1837				20.04
863.4					.1770				20.05
907.2					.1833				20.06
917.3					.1848				20.07

TABLE	Bl	4
-------	----	---

TEMPERATURE,	SAMPLE	DATA	TEMPERATURE,	SAMPLE	DATA
°C (1)	RESISTANCE,	POINT	°C (1)	RESISTANCE,	POINT
	OHMS (1)	NUMBER		OHMS (1)	NUMBER
906.6	.1834	20.08	890.8	.1805	20.36
896.5	.1821	20.09	891.1	.1806	20.37
886.6	.1800	20.10	891.2	.1806	20.38
888.4	.1802	20.11	891.3	.1807	20.39
890.5	.1805	20.12	891.6	.1806	20.40
892.5	.1813	20.13	891.8	.1807	20.41
894.4	.1816	20.14	892.4	.1807	20.42
891.4	.1810	20.15	892.2	.1808	20.43
891.1	.1813	20.16	892.5	.1808	20.44
890.9	.1812	20.17	892.9	.1808	20.45
890.6	.1811	20.18	893.0	.1808	20.46
890.3	.1811	20.19	893.2	.1812	20.47
890.2	.18105	20.20	893.6	.1809	20.48
889.8	.18105	20.21	893.8	.1809	20.49
889.5	.1810	20.22	894.4	.1810	20.50
889.3	.1804	20.23	894.8	.1811	20.51
889.1	.1807	20.24	895.4	.1812	20.52
888.6	.1803	20.25	896.0	.1818	20.53
888.2	.1802	20.26	896.5	.1819	20.54
887.2	.18005	20.27	898.0	.1821	20.55
888.2	.1802	20.28	862.9	.1770	20.56
888.9	.18025	20.29	786.4	.1670	20.57
889.2	.1803	20.30	684.8	.1535	20.58
889.5	.1804	20.31	584.9	.1398	20.59
889.8	.1804	20.32	488.8	.1262	20.60
890.0	.1805	20.33	416.7	.1158	20.61
890.3	.1805	20.34	338.9	.1042	20.62
890.5	.1805	20.35			
EVENT 21 - R	vs T Increa:	sing. Sea	Irch For Offset	, 2/3/67	
28.9	.0553	21.01(4)	886.8	.1811	21.08
860.6	.1777	21.02	888.2	.1813	21.09
868.5	.1787	21.03	889.5	.1814	21.10
873.8	.1793	21.04	890.8	.1816	21.11
880.0	.1802	21.05	892.0	.1818	21.12
884.0	.1807	21.06	893.4	.1819	21.13
885.7	.1809	21.07	894.8	.1822	21.14

TABLE B14

TE	MPERAT	TURE,	°C (1)		SAMPLE RESIST-	SLOPE, OHMS/°C	INTER	OLATED	DATA PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE.	x 104	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
896.1					.1823				21.15
897.5		l			.1825				21.16
898.9					.1827				21.17
900.3					.1829				21.18
EVENT	22 – F	vs T	Decrea	asing.	2/3/67				
938.3					.1878				22.01
864.5					.1782				22.02
788.1					.1673				22.03
EVENIO	22 5		Trance		10.050°G				
TOO O	<u>25</u> - r	VS 1	Increa	asing	LO 950 C	For Enga	ss, 2/	3/6/	
000 0					.1684				23.01
010.9					.1699			ł	23.02
019.2					.1/1/				23.03
023.3					• 1724				23.04
020.5					• 1730				23.05
033.0					.1739				23.06
930 0		l			.1/45				23.07
866.1					1792				23.08
000.1					.1/02				23.09
EVENT	24 - F	vs T	After	9 Cha	rges				
939.9	8.1			948.0	.1880				24.01 (5)
940.6	8.1			948.7	.1883	1.32	950	.1885	24.02(0)
866.1	8.4			874.5	.1779	1.32	875	.1780	24.03
789.7	8.8			798.5	.1678	1.32	800	.1680	24.04
688.1	9.2			697.3	.1545	1.40	700	.1549	24.05
588.1	8.7			596.8	.1408	1.40	600	.1412	24.06
492.1	8.2			500.3	.1273	1.40	500	.1273	24.07
939.5					.1884		950		24.08
EVENT	25 - 1	VS T	After	10 Ch	arges 2	3/67			
938.1	8.1	101	meet	946.2	1887	1.32	950	1892	25.01
863.6	8.4			872.0	.1783	1.32	875	1787	25.02
787.1	8.8			795.9	.1683	1.32	800	.1688	25.03

						SAMPLE	SLOPE,	INTERP	OLATED	DATA
T	EMPERA	TURE,		°C (1)		RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	2	CORR.	AVE.	ANCE,	x 10 ⁴	TEMP.		NO.
	(2)			(2)	CORR.	OHMS(1)		CORR.	OHMS	
								TO,°C		
685.3	9.2				694.5	.1548	1.40	700	.1555	25.04
586.2	8.7	ļ			594.9	.1412	1.40	600	.1419	25.05
491.7	8.7				499.4	.1277	1.40	500	.1278	25.06
398.1	8.2					.1145	1.44			25.07
EVENT	<u> 26 - I</u>	vs vs	Т	Increa	ising .	After Ov	ernight S	hutdow	h, 2/6	/67
30.0						.0569		30		26.01(4)
391.9						.1134		400		26.02
485.2						.1275		500		26.03
584.0		1				.1411		600		26.04
684.2						.1555		700		26.05
785.4						.1691		800		26.06
861.9						.1791		875		26.07
936.6						.1888		950		26.08
EVENT	<u> 27 - E</u>	vs	T	After	11 Ch	arges, 2	6/67			
937.0	8.1				945.1	.1892	1.32	950	.1898	27.01
862.9	8.4				871.3	.1788	1.32	875	.1793	27.02
786.6	8.8				795.4	.1689	1.32	800	.1695	27.03
685.3	9.2				694.5	.1554	1.40	700	.1562	27.04
585.6	8.7				594.3	.1418	1.40	600	.1426	27.05
489.7	8.2		1		497.9	.1283	1.40	500	.1286	27.06
905.0						.1853				27.07
922.6						.1875				27.08
938.0						.1895				27.09
							1			
EVENT	28 - 1	vs	T	After	12 Ch	arges, 2	6/67			
938.6	8.1				946.7	.1892	1.32	950	.1896	28.01
864.3	8.4				972.7	.1797	1.32	875	.1800	28.02
787.9	8.8				796.7	.1698	1.32	800	.1702	28.03
686.3	9.2				695.5	.1563	1.40	700	1569	28.04
586.4	8.7				595.1	.1426	1.40	600	.1432	28.05
489.7	8.2				497.9	.1289	1.40	500	1292	28.06
542.8						.1365				28.07
938.5						.1900				28.08

TABLE B14

	SAMPLE	SLOPE,	INTERPO	DLATED	DATA
TEMPERATURE \sim °C (1)	RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1 CORR. TC 2 CORR. AVE.	ANCE,	$\times 10^4$	TEMP.		NO.
(2) (2) (2) CORR.	OHMS(1)		CORR.	OHMS	
			то,°с		
189 7	1355				
507 0	1492				41.04
607.2	1627				41.05
	1627				41 06
061 0	1055				41 07
001.0	1010				41 08
937.0	.1949				41.00
936.2	.1902				41.09
944.7	.19/1				41.10
TVENT 42 - R vs T After 26 C	harges, 2	/13/67			
944 7 8 1 952.8	1963	1.32	950	1959	42,01(25)
944 7 8 1 952.8	1968	1.32	950	1964	42.02
944 9 8.1 952.6	.1974	1.32	950	1971	42.03(27)
944 5 8 1 952.6	.1980	1.32	950	1977	42.04(28)
869 2 8.4 877.6	.1884	1.32	875	1881	42.05
	1782	1.32	800	1783	42.06
	1649	1.40	700	1652	42.07
	1503	1.40	600	1515	42.08
	1381	1.40	500	1381	42.09
	1453	1.10	500	1001	42.10
542.4	.1433				
EVENT 43 - Search for Resi	stance And	maly, 2/	(13/67		
590.6	.1519				43.01
588.2	.1516				43.02
588.8	.1512			{	43.03
583.5	.1508				42.04
581.0	.1504				43.05
578 7	.1499				43.06
576.2	.1495				43.07
573 9	.1492				43.08
573.6	1491				43.09
5/3.0	1485				43.10
567 1	1/92				43.11
567.1	1475				43.12
562.2	1469				43.13
55/.0	.1400				

TABLE B14

					SAMPLE	SLOPE,	INTERP	OLATED	DATA
TE	MPERAT	FURE,	°C (1)		RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	x 10 ⁴	TEMP.		NO.
	(2)		(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
938.					.1899				28.09(10)
938.2					.1891			1	28.10(11)
863.2					.1795				28.11
	1	1							
EVENT	29 -	R vs	T Inci	easin	g After (vernight	Shutd	own, 2,	/7/67
31.6	5				.0585				29.01(4)
395.0					.1154				29.02
491.0	5				.1298				29.03
									29.04
689.3	3				.1568				29.05
789.3	3				.1706				29.06
865.2	2				.1797				29.07
938.2	2				.1898				29.081
938.2	2				.1893				29.082(12)
938.2	2				.1890				29.083(13)
938.2	2				.1890				29.084(14)
					1				
EVEN	1 30 -	Rvs	T Afte	r Ann	eal at 12	00°C for	15 Mi	nutes,	2/7/67
938.4	1				.1896				30.01
938.2	2				.1895				30.02(15)
938.2	2				.1894	2			30.03(16)
938.2	2				.18935				30.04(17)
938.2	2				.1893				30.05(18)
EVEN	I 31 -	R vs	T Aft	er 13	Charges,	2/7/67			
938.2	2 8.1				.1898				31.01(15)
									(19)
938.2	2 8.1				.1899				31.02(20)
938.	2 8.1				.1899				31.03(21)
937.	8.1			945.6	.1896	1.32	950	.1902	31.04
862.	8.4			871.3	.1802	1.32	875	.1807	31.05
786	8.8			795.6	.1702	1.32	800	.1708	31.06
685.	9.2			694.2	.1568	1.40	700	.1576	31.07
585.	2 8.7			593.9	.1432	1.40	600	.1441	31.08

					SAMPLE	SLOPE,	INTERP	OLATED	DATA
TE	EMPERA'	TURE,	°C (1)	RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$ x 10^{4} $	TEMP.		NO.
	(2)	{	(2)	CORR.	OHMS(1)		CORR.	OHMS	
							TO,°C		
489.2	8.2			497.4	.1294	1.40	500	.1298	31.09
937.9					.1897				31.10
EVENT	32 -	R vs	T Aft	er 14	Charges,	2/7/67			
937.9	8.1			946.0	.1902	1.32	950	.1907	32.01
863.8	8.4			872.2	.1809	1.32	875	.1813	32.02
787.6	8.8		1	796.4	.1710	1.32	800	.1715	32.03
686.3	9.2			695.5	.1576	1.40	700	.1582	32.04
586.2	8.7			594.9	.1439	1.40	600	.1446	32.05
490.1	8.2			498.2	.1304	1.40	500	.1306	32.06
939.2	4				.1905				32.07
939.0					.1904				32.08
EVENT	33 -	R vs	T Aft	er 15	Charges,	2/7/67			
939.0	4		1		.1911				33.01
939.0	8.1			947.1	.1910	1.32	950	.1914	33.02(20)
863.8	8.4			872.2	.1814	1.32	875	.1818	33.03
787.4	8.8			796.2	.1715	1.32	800	.1720	33.04
686.5	9.2			695.7	.1581	1.40	700	.1587	33.05
586.8	8.7			595.5	.1445	1.40	600	.1451	33.06
490.3	8.2			498.5	.1310	1.40	500	.1312	33.07
398.2	1				.1176				33.08
						(
EVENT	34 -	R vs	T Inc:	reasin	g After (vernight	Shutd	own, 2	/8/67
30.0					.0603	1.44	30	.0603	34.01 (4)
397.3	(.1176				34.02
493.5					.1317				34.03
590.6					.1453				34.04
690.4					.1588				34.05
791.2					.1722				34.06
866.7	1				.1818				34.07
941.0					.1912				34.08

TABLE B14

					SAMPLE	SLOPE,	INTER	POLATED	DATA
TE	MPERA	TURE,	°C_(1)	RESIST-	OHMS/°C	RESI	STANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	$ x 10^{4} $	TEM	P.	NO.
	(2)		(2)	CORR.	OHMS(1)		CORI	R. QHMS	
							то,	°,C	
EVENT	35 -	R vs	T Aft	er 16 (harges,	2/8/67			
941.0	8.1			949.1	.1919	1.32	950	.1920	35.01
866.3	8.4			874.7	.1824	1.32	875	.1824	35.02
789.5	8.8			799.3	.1724	1.32	800	.1725	35.03
687.8	9.2			697.0	.1589	1.40	700	.1593	35.04
588.2	8.7	1		596.9	.1454	1.40	600	.1458	35.05
491.7	8.2			499.9	.1319	1.40	500	.1319	35.06
545.4					.1395				35.07
941.0					.1919				35.08
EVENT	36 -	R vs	T Aft	er 17 C	harges,	2/8/67			
941.1	8.1			949.2	.1925	1.32	950	.1926	36.01
866.4	8.4			874.8	.1830	1.32	875	.1830	36.02
789.9	8.8			798.7	.1731	1.32	800	.1733	36.03
688.4	9.2			697.6	.1597	1.40	700	.1600	36.04
588.2	8.7			596.9	.1460	1.40	600	.1464	36.05
544.8					.1400	1.40			36.06
492.2	8.2			500.4	.1325	1.40	500	.1324	36.07
680.4					.1586	1.40			36.08
720.4					.1639				36.09
941.1					.1925				36.10
EVENT	27	D		10	1	2/0/67			
Q11 1	9 1	<u>R VS</u>	T ALLE	010 2	narges,	2/8/6/	0.50	1000	
866 0	Q 1			949.2	.1931	1.32	950	.1932	37.01
790 3	0.4			700 2	.1835	1.32	875	.1836	37.02
699 7	0.0			109.2	.1/3/	1.32	800	.1/38	37.03
500.0	9.2			697.9 507 F	.1603	1.4	700	.1606	37.04
545 2	0./			231.5	.1407	1.4	600	.1470	37.05
192 0	9 2			501 1	.1407	1.4	500	1000	37.06
645 0	0.2			501.1	.1332	1.4	500	.1330	37.07
710 2					.1545				37.08
030 /					.1644				37.09
333.4					.1929				37.10

TABLE B14

						SAMPLE	SLOPE,	INTERPO	LATED	DATA
TE	MPERAI	URE	,	°C (1)		RESIST-	OHMS/°C	RESIST	TANCE	PT.
TC 1	CORR.	TC	2	CORR.	AVE.	ANCE,	$x 10^4$	TEMP.		NO.
	(2)			(2)	CORR.	OHMS(1)		CORR.	OHMS	
								TO,°C		
EVENT	38 -	R v	s	T Afte	r 19	Charges,	2/8/67		1005	20.01
939.3	8.1				947.4	.1934	1.32	950	1937	38.01
864.2	8.4				872.6	.1829	1.32	875	1842	38.02
787.7	8.8				796.5	.1740	1.32	800	1/45	38.03
685.9	9.2				695.1	.1606	1.40	700	1613	38.04
586.4	8.7				595.1	.1470	1.40	600	1477	38.05
490.0	8.2				498.2	.1335	1.40	500	1338	38.06
398.0						.1202				38.07
30.3	3					.0630				38.08
	20					7 Ftor	wornicht	chutd	Jum 2	/10/67
EVEN	1 39 -	RT	/S	I Inci	easing	AIter (vernight	3nutda	0626	39.01(4)
30.						1204		50	0020	39.02
398.						1204				39.03
491.						1475				39.04
588.	5					.14/5				39.05
688.						.1010				39.06
790.						1020				39.07
864.	5					.1033				39.08
938.	4					.1933				39.09
946.						.1942				
EVEN	T 40 -	R	vs	T Aft	er 22	Charges.	2/10/67			
946	1				954.2	.1948	1.32	950	1942	40.01(22)
945	9				954.0	.1954	1.32	950	1948	40.02(23)
946	0 8.1				954.1	.1958	1.32			40.03 (24)
869	7 8 4				878.1	.1862	1.32	875	1858	40.04
792	2 8.8				801.0	.1762	1.32	800	1761	40.05
689	5 9.2				698.7	.1630	1.40	700	1632	40.06
583	5 8.7				592.2	.1485	1.40	600	1496	40.07
487	4 8 2				495.6	.1350	1.40	500	1356	40.08
540	8				1	.1426				40.09
		+								
EVEN	т 41 –	R	vs	T Inc	reasin	g After	dvernigh	t Shutd	lbwn, 2	13/67
26.	7				26.7	.0646	1.73	30	0651	41.01
384.	1					.1216				41.02

TABLE B14

	SA	MPLE	SLOPE,	INTERPO	DLATED	DATA
TEMPERATURE, $^{\circ}C$ (1)	RE	SIST-	OHMS/°C	RESIST	TANCE	PT.
TC 1 CORR. TC 2 CORR. AT	VE. AN	CE,	x 10 ⁴	TEMP.	1.6	NO.
(2) (2) (2)	ORR. OH	MS(1)		CORR.	OHMS	
				TO,°C		
552.8		1462				43.14
548.0	.	1455				43.15
545.6		1452				43.16
543.4		1449				43.17
541.0		1443				43.18
538.6		1442				43.19
536.2		1439				43.20
534.0		1435				43.21
529.4		1429				43.22
508.3		1400				43.23
491.9		1377				43.24
436.4		1298				43.25
		<u></u>	· · · · ·			1/107
$\frac{\text{EVENT}}{20}$ $\frac{44}{100}$ $-\frac{\text{R}}{100}$ $\frac{\text{Vs}}{100}$ $\frac{\text{T}}{100}$ $\frac{100}{100}$	asing A	iter Q	vernight	Shutde	$\frac{1}{2}$	14/6/
	30.6	100/1	1./3	30	0670	44.01(4)
398.0	· · ·	1247	1 40	500	1205	44.02
	02.2	138/	1.40	500	1500	44.03
	01.6	1524	1.40	600	1522	44.04
		1054	1.40	700	1702	44.05
	. 12.5	1000	1.32	800	1002	44.06
	/9.4 ·	1001	1.32	8/5	1006	44.07
945.4 8.1 95	53.5	1991	1.32	950	1980	44.08
EVENT 45 - R vs T After	30 Cha	rges,	2/14/67			
945.3 8.1 95	53.4 .	1979	1.32	950	1975	45.01(29)
945.3 8.1 95	53.4 .	1980	1.32	950	1976	45.02(30)
945.0 8.1 95	53.1 .	1991	1.32	950	1987	45.03(31)
945.0 8.1 95	53.1 .	1993	1.32	950	1989	45.04(32)
868.9 8.4 87	77.3 .	1886	1.32	875	1883	45.05
790.6 8.8 79	99.4 .	1784	1.32	800	1785	45.06
690.3 9.2 69	99.5 .	1653	1.40	700	1654	45.07
589.8 8.7 59	98.5 .	1516	1.40	600	1518	45.08
492.4 8.2 50	. 0.00	1381	1.40	500	1380	45.09
492.4		1380				45.10(15)
492.5		1384				45.11(33)
942.7 8.1 95	50.8	1992	1.32	950	1991	34 12

TABLE B14

					SAMPLE	SLOPE,	INTERP	OLATED	DATA
TE	MPERAT	FURE.	°C (1))	RESIST-	OHMS/°C	RESIS	TANCE	PT.
TC 1	CORR.	TC 2	CORR.	AVE.	ANCE,	x 10 ⁴	TEMP.		NO.
	(2)		(2)	CORR.	OHIMS (1)		CORR.	OFIMS	
							TO,°C		
EVENT	46 -	R vs	T Afte	er 34 (Charges,	2/14/67			
942.4	8.1			950.5	.1980	1.32	950	.1980	46.01(34)
942.2	8.1			950.3	.1982	1.32	950	1982	46.02(35)
942.2	8.1			950.3	.1984	1.32	950	1984	46.03(36)
942.1	8.1			950.2	.1986	1.32	950	1986	46.04(37)
870.2	8.4			878.6	.1896	1.32	875	1891	46.05
792.2	8.8			801.0	.1796	1.32	800	1795	46.06
692.9	9.2			702.1	.1664	1.40	700	1661	46.07
592.7	8.7			601.4	.1529	1.40	600	1527	46.08
497.0	8.2			505.2	.1399	1.40	500	1392	46.09
943.7	8.1	[951.8	.2001	1.32	950	.2000	46.10
943.3					.2000				46.11
EVENI	47 -	R vs	T Afte	er 38 (Charges,	2/14/67			
942.9	8.1			951.0	.1987	1.32	950	.1986	47.01(38)
942.7	8.1			950.8	.1992	1.32	950	.1991	47.02(39)
942.8	8.1			950.9	.1995	1.32	950	.1994	47.03(40)
942.4	8.1			950.5	.1998	1.32	950	.1997	47.04(41)
869.0	8.4			877.4	.1905	1.32	875	1902	47.05
790.5	8.8			799.3	.1804	1.32	800	.1805	47.06
690.3	9.2			699.5	.1671	1.40	700	.1672	47.07
590.0	8.7			598.7	.1535	1.40	600	.1536	47.08
284.7	8.				.1096			1 4 9 9	47.09
493.2	8.2			501.4	.1404	1.40	500	- 1403	47.10
30.1					.0690				4/.11
DITIN	10	D	TT TT		D Et an	Dave Chu	 	2/16/	67
EVENT	48 -	R VS	T Inc.	reasing	g Alter	a Day Shu	caown,	2/10/	49.01
200 6	1	1		1	1266				40.01
100 5	0 2			507 7	1/12	1.4	500	1401	40.02
499.3	0.2			507.7	.1412	1.4	500	- 1401	48.04
593 3	97			601 9	1541	1 4	600	1538	48.05
692 3	a 2			701 5	1674	1.4	700	1672	48.06
792.5	8.2			801 5	.1812	1.32	800	1810	48.07
870	8.4			878 8	.1917	1.32	875	1912	48.08
943.0	8.1			951.1	.2010	1.32	950	2008	48.09

									SAMPLE	SLOPE,	INTERP	DLATED	DATA
		TE	MPERA	1]	TURE,	0	C (1)	RESIST-	OHMS/°C	RESIS	TANCE	PT.
1	TC	1	CORR		TC 2	C	ORR.	AVE.	ANCE,	$ x 10^{4} $	TEMP.		NO.
			(2)				(2)	CORR.	OHMS(1)		CORR.	OHMS	
L											TO,°C		
<u> </u>	EVE	NT	49 -	-	Effe	qt	of .	Anneal	ing at 9	50°C on	R, 2/16	67	
	942	- 8							.2013				49.01(42)
	943	.0							.2004				49.02(43)
19	942	.0							.2000				49.03(44)
	942	.6							.2005				49.04(45)
9	943	. 2							.2015				49.05(46)
9	943	.2							.2017				49 06 (46)
9	943	. 7							.2020				49 07(46)
9	42	. aĺ		1		1		ĺ	2015	1 1		1	40.00(46)
9	42	. 9							2015				49.00(40)
				t		+			12010				49.09(40)
E	VEI	TI	50 -		R vs	Т	Incr	l easing	After C	vernight	Shutdo	wm 2	117/67
_	31.	. 7		ľ					.0699	(ornight	Dilucuo	WII 9 27	50.01
4	00.	. 5							.1277				50.01
5	97.	. 5						596.5	.1559				50.02
6	96.	.9						696.5	1693				50.03
7	95.	9				1		794.8	1822			1	50.04
8	76.	7						866 3	1977				50.05
9	44.	8						943 0	2016				50.06
9	44	1						7-3-0	2010				50.07
-		-		t		\vdash			• 2014				50.08(46)
E	VEN	т	51 -	1	Effec	+	of A	nneall	ing and	Hold on			122162
9	44.	5		1-		-	01 1	mearr	2019	nora on i	K at 93	J C, 2	/1//6/
9	44.	5							2019				51.01(45)
9	44	4							2019				51.02(46)
9	44	4							2010				51.03(46)
9	44	4							2018				51.04(46)
9	44	2							.2018				51.05(46)
9	41	6							.2017				51.06(46)
9		1							.2016				51.07(46)
-	-												

Footnotes

Most readings taken 10 minutes apart. Resistance and tempera-(1)ture measured near end of 10 minute cycle. Temperature change and equilibrium usually complete in first 3-5 minutes of cycle. Correction factor taken from Figure 25. (2)Interpolated value of resistance used to calculate Ro. Table B15. (3)Measured after overnight cool to room temperature. (4)(5)Precharge Postcharge (6)Resistance measured while sample cooling. (7)After heating specimen to 1050°C for 5 minutes with current (8)through specimen. After heating specimen to 1200°C for 5 minutes with current (9)through specimen. After 10 minutes. (10)(11)After 35 minutes. After 5 minutes. (12)(13) After 25 minutes. After 50 minutes. (14)After 3 minutes. (15)After 7 minutes. (16)(17) After 11 minutes. (18) After 24 minutes. (19) Taken during the engassing. (20) After 4 minutes. (21) After 8 minutes. (22) After charge 20. (23) After charge 21. (24) After charge 22. (25) After charge 23. (26) After charge 24. (27) After charge 25. (28) After charge 26. (29) After charge 27. (30) After charge 28. (31) After charge 29. (32) After charge 30. (33) After 30 minutes. (34) After charge 31.

(35) After charge 32.
(36) After charge 33.
(37) After charge 34.
(38) After charge 35.
(39) After charge 36.
(40) After charge 37.
(41) After charge 38.
(42) After heating specimen to 1050°C for 10 minutes with current through the specimen.
(43) After heating specimen to 1100°C for 10 minutes.
(44) After 1.25 hour.
(45) After heating specimen to 1200°C for 10 minutes.
(46) After periods of scanning R vs T with x-y recorder.

TEMPERATURE,	RE	SISTANC	E, OHM	
°C	EVENT	EVENT	EVENT	AVERAGE
	3	4	6	
500		.1231	.1231	.1231
600		.1368	.1372	.1370
700	.1512	.1510	.1510	.1511
800	.1644	.1645	.1643	.1644
950	.1841	.1841	.1841	.1841

Average Values of $R_{\rm O}$ For Run Ta20

Run Ta2l Data Isothermal Pulse Run at 700°C

Sample weight: 3.1019 g Pre run resistance = .0488 ohm at 29.0°C Post run resistance = .0792 ohm at 24.7°C

TEMPERA	TURE, °C	SAMPLE	NOMINAL	DATA	BRIDGE
		RESISTANCE,	TEMPERATURE	POINT	CURRENT
TC 1	TC 2	OHMS	°C	NUMBER	
EVENT 1	- Bake O	ut, 2/23/67			
29.0	23.8	.1488	R.T.	1.01	
30.1		.0488	R.T.	1.02	
102.0		.0601	100	1.03	
104.5		.0606	100	1.04	
	102.4	.0606	100	1.05	
	189.8	.0742	200	1.06	
195.6		.0749	200	1.07	
	193.0	.0749	200	1.08	
293.7		.0900	300	1.09	
	290.2	.0900	300	1.10	
399.1		.1057	400	1.11	
	395.8	.1057	400	1.12	
494.1		.1193	500	1.13	
	490.4	.1193	500	1.14	
595.3		.1330	600	1.15	
	589.5	.1330	600	1.16	
498.4		.1197	500	1.17	
	492.5	.1197	500	1.18	
494.9		.1197	500	1.19	
	493.5	.1197	500	1.20	
119.7		.0757	200	1.21	
	196.0	.0757		1.22	
EVENT 2	- Contin	ue Bake Out A	fter Overnight	at 200°	c, 2/27/67
197.3		.0756	200	2.01	+.45
	195.6	.0756	200	2.02	+.45
292.2		.0899	300	2.03	+.45
	289.8	.0899	300	2.04	+.45
292.4		.0899	300	2.05	45

TUDDE D.	TA	BLE	Bl	6
----------	----	-----	----	---

TEMPERAT	URE, °C	SAMPLE	NOMINAL	DATA	BRIDGE
		RESISTANCE,	TEMPERATURE	POINT	CURRENT
TC 1	TC 2	OHMS	°C	NUMBER	
398.7		.1057	400	2.06	+.45
	396.3	.1057	400	2.07	+.45
494.2		.1193	500	2.08	+.45
	491.2	.1193	500	2.09	+.45
491.9		.1193	500	2.10	45
	491.0	.1193	500	2.11	45
494.2		.1193	500	2.12	+.45
594.0		.1329	600	2.13	+.45
	589.6	.1329	600	2.14	+.45
695.5		.1464	700	2.15	+.45
	689.9	.1464	700	2.16	+.45
688.4		.1464	700	2.17	45
796.1		.1596	800	2.18	+.45
	789.7	.1596	800	2.19	+.45
788.2		.1596	800	2.20	45
	789.7	.1596	800	2.21	45
895.2		.1723	900	2.22	+.45
	889.6	.1723	900	2.23	+.45
895.8		.1724	900	2.24	+.45
	890.2	.1724	900	2.25	+.45
889.6		.1723	900	2.26	45
	890.2	.1723	900	2.27	45
948.0		.1789	950	2.28	+.45
{	941.9	.1789	950	2.29	+.45
941.2		.1788	950	2.30	45
	941.9	.1788	950	2.31	45
951.6		.1790	950	2.32	+.90
	942.4	.1790	950	2.34	90
393.2		.1790	950	2.35	90
EVENT 3	- Establ	ish Base Line	(R vs T), 2/2	7/67	
947.9		.1789	950	3.01	+.45
	933.6	.1778	940	3.02	+.45
	943.2	.1791	950	3.03	+.88
946.5		.1791	950	3.04	+.88
947.3		.1791	950	3.05	+.88
	943.1	.1791	950	3.06	+.88

TEMPERATURE, °C		SAMPLE	NOMINAL	DATA	BRIDGE
	,	RESISTANCE,	TEMPERATURE	POINT	CURRENT
TC 1	TC 2	OHMS	°C	NUMBER	
	943.1	.1791	950	3.07	88
943.3		.1791	950	3.08	88
874.2		.1700	875	3.09	+.88
0,1,1	869.8	.1700	875	3.10	+.88
	869.8	.1700	875	3.11	88
879.6		.1700	875	3.12	88
795.7		.1600	800	3.13	+.88
	791.2	.1600	800	3.14	+.88
	791.2	.1600	800	3.15	88
721.2		.1600	800	3.16	88
695.2		.1468	700	3.17	+.88
	690.3	.1468	700	3.18	+.88
	690.3	.1468	700	3.19	88
691.8		.1468	700	3.20	88
594.0		.1333	600	3.21	+.88
	588.6	.1333	600	3.22	+.88
	588.6	.1333	600	3.23	88
591.0		.1333	600	3.24	88
496.2		.1198	500	3.25	+.88
	490.5	.1198	500	3.26	+.88
	490.5	.1198	500	3.27	88
493.6		.1198	500	3.28	88
EVENT 4	- Warm u	p After Overn	ight at R.T.,	2/28/67	
	27.0	.0510	30	4.01	+.45
	24.0	.0488	30	4.02	+.45
30.1		.0488	30	4.03	+.45
	25.0	.0488	30	4.04	+.45
	25.0	.0488	30	4.05	+.45
	25.0	.0488	30	4.06	+.45
500.9		.1205	500	4.07	+.90
	497.1	.1205	500	4.08	+.90
	497.4	.1206	500	4.09	90
500.1		.1206	500	4.10	90
601.8		.1342		4.11	+.90
598.8		.1342		4.12	90
	597.2	.1342		4.13	+.90

121

TEMPERATURE, °C		SAMPLE	NOMINAL	DATA	BRIDGE
		RESISTANCE, TEMPERATURE		POINT	CURRENT
TC 1	TC 2	OHMS	°C	NUMBER	
	597.2	.1342		4.14	90
701.8		.1475		4.15	+.90
	697.4	.1475		4.16	+.90
	697.4	.1475		4.17	90
698.4		.1475		4.18	90
799.8		.1603	800	4.19	+.90
	795.3	.1603	800	4.20	+.90
	795.3	.1603	800	4.21	90
796.2		.1603	800	4.22	90
693.8		.1467	700	4.23	+.45
	690.8	.1467	700	4.24	+.45
	690.8	.1467	700	4.25	45
692.1		.1467	700	4.26	45
692.1		.1467	700	4.27	+.45
	690.0		700	4.28	+.45
	690.0		700	4.29	45
691.8			700	4.30	45

TABLE B16

TABLE	Bl	6
-------	----	---

NUMBER OF	TEMPERA-	SAMPLE	NOMINAL	DATA
OXYGEN PULSE	TURE, °C	RESISTANCE,	TEMPERATURE	POINT
(1)	TC 2	OHMS	°C	NUMBER
EVENT 5 - Iso	thermal Ru	n at 700°C, 1	3/1/67	
0	688.4	.1466		5.00
1(2)		.1472		5.01
2	688.3	.1488		5.02
3	688.3	.1504		5.03
4	688.3	.1520		5.04
5(3)	688.3	.1546		5.05
6	688.3	.1560		5.06
7	688.3	.1570		5.07
8	688.3	.1581		5.08
9	688.3	.1591		5.09
10	688.3	.1599		5.10
11	688.3	.1609		5.11
12	688.3	.1617		5.12
13	688.2	.1626		5.13
14	688.2	.1634		5.14
15	688.2	.1642		5.15
16	688.3	.1650		5.16
17	688.6	.1658		5.17
18	688.6	.1665		5.18
19	688.5	.1672		5.19
20	688.7	.1679		5.20
21	688.7	.1686		5.21
22	688.7	.1692		5.22
23	688.7	.1698		5.23
24	688.7	.1704		5.24
25	688.7	.1709		5.25
26	688.7	.1715		5.26
27	688.7	.1720		5.27
28	688.7	.1725		5.28
29	689.0	.1728		5.29
30	689.1	.1735		5.30
31	688.9	.1740		5.31
32	689.0	.1744		5.32
33	689.0	.1749		5.33
34	689.1	.1753		5.34
35	688.8	.1758		5.35

NUMBER OF	TEMPERA-	SAMPLE	NOMINAL	DATA
OXYGEN PULSE	TURE, °C	RESISTANCE,	TEMPERATURE	POINT
(1)	TC 2	OHMS	°C	NUMBER
36	688.6	.1762		5.36
37	688.6	.1766		5.37
38	688.6	.1770		5.38
39	688.6	.1774		5.39
40	688.6	.1777		5.40
41	688.6	.1781		5.41
42	688.6	.1784		5.42
43	688.6	.1789		5.43
44	688.6	.1792		5.44
45	687.8	.1795		5.45
46	687.8	.1799		5.46
47	687.8	.1802		5.47
48	687.8	.1806		5.48
EVENT 6 - Shut	down After	Isothermal I	Run, 3/1/67	
	638.4	.1735	650	6.01
	587.0	.1661	600	6.02
	538.0	.1590	550	6.03
	490.3	.1520	500	6.04
	444.1	.1435	450	6.05
	398.3	.1385	400	6.06
	342.8	.1300	350	6.07
	295.9	.1228	300	6.08
	24.9	.0792	R.T.	6.09

Oxygen charge size 1000 µ at 300 cc.
 500 µ charge, experimental error.
 Oxygen Burst, unknown quantity.

Run Ta22 Data Isothermal-Isobaric Run (after Gebhardt)

Sample Weight: not recorded Pre run resistance = .0612 ohm at 51.2°C Post run resistance = not recorded

TEMPERATURE, °C	SAMPLE	NOMINAL	DATA	BRIDGE
	RESISTANCE,	TEMPERATURE	POINT	CURRENT
TC 1 TC 2	OHMS	°C	NUMBER	
EVENT 1 (Data	taken before s	specimen was re	ewelded)	3/6/67
EVENT 2 - Bake	Out After Repa	r of Short Cir	cuit, 3/	7/67
51.2	.0612	R.T.	2.01	+.45
51.4	.0611		2.02	+.45
51.4	.0611		2.03	45
50.7	.0611		2.04	45
188.4	.0853	200	2.05	+.45
188.4	.0853		2.06	+.45
188.4	.0854		2.07	45
188.4	.0853		2.08	45
286.2	.1034	300	2.09	+.45
188.4	.1034		2.10	+.45
188.4	.1034		2.11	45
286.2 .1034			2.12	45
392.0	.1213	400	2.13	+.45
392.2	.1213		2.14	+.45
486.6	.1372	500	2.15	+.45
487.2	.1372		2.16	+.45
586.1	.1530	600	2.17	+.45
586.6	.1530		2.18	+.45
685.7	.1686	700	2.19	+.45
686.3	.1686	700	2.20	+.45
685.6	.1686		2.21	+.45
685 4	.1686		2.22	+.45
685 3	1686		2.23	45
685.6	.1686		2.24	45
685.7	.1686		2.25	+.45

TEMPERATURE °C		SAMPLE	NOMINAT		DDTDCE
	DECICENCE NOMINAL		DATA	BRIDGE	
TC 1	TC 2	ALDIDIANCE,	°C	POINT	CURRENT
	10 2	UTIMS	C	NUMBER	
EVENT 3	- Establ	ish Base Line	R vs T after	Anneal 13	300°,
	<u> 15 Min</u>	utes, 3/9/67			
935.9		.2060	950	3.01	+.90
	935.9			3.02	+.90
935.6		.2061		3.03	+.90
862.6		.1956	875	3.04	+.90
784.4		.1842	800	3.05	+.90
735.3		.1769	750	3.06	+.90
685.5		.1695	700	3.07	+.90
636.3		.1619	650	3.08	+.90
585.2		.1540	600	3.09	+.90
536.6		.1464	550	3.10	+.90
486.0		.1383	500	3.11	+.90
439.2		.1309	450	3.12	+.90
391.8		.1233	400	3.13	+.90
338.5		.1144	350	3.14	+ 90
288.4		.1059	300	3.15	+.90
245.6		.0989	250	3.16	+.90
41.6		.0681	R.T.	3.17	+.90
26.2		.0624	R.T.	3.18	+.90
EVENT 4	- Warm u	p For Run Afte	er Overnight R	.т. 3/10	/67
26.2		.0630	R.T.	4.01	/ 01
	25.4	.0630	R.T.	4.02	
692.8		.1700	700	4.03	
	693.1	.1700	700	4.04	
690.5		.1699	700	4.05	
	690.9	.1699	700	4.06	

TABLE	B17	
-------	-----	--

TIME (MINUTES)	(TIME) 1/2	SAMPLE RESISTANCE, OHMS	CHANGE IN RESISTANCE, OHMS
EVENT 5 -	Isothermal-	I Isobaric Run	at 700°C
0	0	.1699	.0000
2.25	1.50	.1700	.0001
4.67	2.16	.1725	.0026
7.50	2.74	.1755	.0056
8.00	2.83	.1756	.0057
9.00	3.00	.1757	.0058
11.00	3.32	.1757	.0058
18.00	4.24	.1763	.0064
33.00	5.74	.1767	.0068
39.00	6.24	.1768	.0069
49.00	7.00	.1770	.0071
60.00	7.75	.1771	.0072
93.00	9.65	.1775	.0076
103.00	10.15	.1777	.0078
128.00	11.32	.1779	.0080
138.00	11.75	.1780	.0081
152.00	12.33	.1781	.0082
160.00	12.65	.1781	.0082

TABLE B17

Run CbOl Data Isothermal Pulse Run at 906°C

Initial Weight: 1.6453 g
Pre run resistance = .0570 ohm at 36.2°C
Post run resistance = not recorded
Oxygen charge size: 300 cc at 2 torr

	NUMBER OF	2	TEMPERATURE	Ξ		SAMPLE
	OXYGEN		°C		R	ESISTANCE,
	PULSE	-		_	_	OHMS
-	0		36.2			.0570
	0		905.5			.1752
	1		905.7			.1753
	2		905.7			.1762
	3		905.8			.1794
	4		905.8			.1811
	5		905.8			.1827
	6		905.8			.1844
	7		906.0			.1948
	8		906.0			.1972
	9		906.0			.2016
	10		906.0			.2025
	11		906.0			.2025
	12		906.0			.2022
	13		906.0			.2018
	14		906.0			.2014
	15		906.0			.2010
	16		906.0			.2005
	16		906.0			.1993
	16		906.0			.1993(1)
	16		906.0			.1983(1)
	16		906.0			.1979(1)
	16		906.0			.1960(1)
	16		906.0			.1975(1)
	16		906.0			.1965(1)
	16		906.0			.1973(1)
	16		906.0			.1972(1)
	16		906.0			.1972(1)
	16		906.0			.1971(1)
(-)	16		906.0			.1969(1)
(1)	Resistance	readings	taken one	every	7-1/2	minutes.

Run Cb02 Data Isothermal Pulse Run at 906°C

Cb02 Speciman From Run Cb01 Oxygen charge size: 300 cc at 0.5 torr Final Weight: 1.698 g

NUMBER OF	TEMPERATURE	SAMPLE	
OXYGEN	C°	RESISTANCE,	
PULSE		OHMS	
0	906.0	.1950	
1	905.4	.1955	
2	905.3	.1960	
3	905.0	.1969	
4	905.0	.1974	
5	905.0	.1978	
6	905.2	.1983	
7	905.6	.1987	
8	905.7	.1989	
9	905.7	.1991	
10	905.7	.1991	
11	905.8	.1991	
12	905.7	.1990	
13	905.7	.1989	
14	905.7	.1989	
15	905.7	.1988	
16	905.7	.1987	
17	905.7	.1988	
18	905.7	.1989	
18	905.7	.1990 (1)	
18	905.7	.1979 (1)	
18	905.7	.1975 (1)	
18	905.7	.1972 (1)	
18	905.7	.1969 (1)	
18	905.7	.1965 (1)	
18	905.7	.1965 (1)	
18	905.7	.1965 (1)	
18	905.7	.1965 (2)	
18	905.7	.1913 (3)	
18	905.7	.1956 (4)	
18	905.7	.1956 (5)	
18	905.7	.1956 (5)	
18	905.7	.1957 (5)	
18	905.7	.1916 (5)	

Readings every one-half hour.
 Reading after 1-1/2 hour.

(3) Reading after overnight. Bridge contacts dirty.(4) Reading after one hour. Bridge contacts cleaned.

(5) Readings every hour.

Run Cb03 Data Isothermal Pulse Run at 902°C

Initial Weight: 1.654 g
Pre run resistance = .0619 ohm at 30.9°C
Post run resistance = not recorded
Oxygen charge size: 300 cc at 0.25 torr

NUMBER OF	TEMPERATURE	SAMPLE		
OXYGEN	°C	RESISTANCE,		
PULSE		OHMS		
0	30.9	.0619		
1	906	.1900		
2	905.6	.1904		
3	905.6	.1910		
4	903.9	.1914		
5	903.9	.1918		
6	903.7	.1923		
7	902.9	.1928		
8	904.3	.1934		
9	902.5	.1940		
10	903.1	.1948		
11	903.7	.1950		
12	903.1	.1955		
13	901.6	.1963		
14	903.1	.1969		
15	903.1	.1972		
16	903.0	.1980		
17	903.1	.1986		
18	902.5	.1994		
19	902.5	.1996		
20	902.5	.2002		
21	900.0	.2006		
22	900.1	.2012		
23	900.1	.2017		
24	901.6	.2023		
25	899.8	.2028		
26	901.7	.2035		
27	901.5	.2040		
28	901.5	.2045		
29	904.7	.2050		
30	904.2	.2057		
31	905.5	.2060		
32	908.0	·2065		
33	907.4	.2067		
34	903.8	.2072		
35	905.0	.2077		
20	904./	. 2082		

Run Cb04 Data Isothermal Pulse Run at 902°C

Cb04 Specimen From Run Cb03 Oxygen charge size: 300 cc at 0.5 torr Final Weight: 1.633 g

NUMBER OF OXYGEN PULSE	TEMPERATURE °C	SAMPLE RESISTANCE, OHMS
0	904.9	2064
1	902.7	.2004
2	902.7	2085
3	902.7	2005
4	902.7	.2105
5	903.7	.2117
6	902.0	.2124
7	902.0	. 2133
8	902.0	. 2142
9	902.0	.2148
10	902.0	.2155
11	903.7	.2161
12	903.7	.2164
13	902.5	.2172
14	901.6	.2176
15	901.6	.2176
16	901.6	.2177
17	901.5	-2175
18	901.5	2176
19	901.9	2176
20	901.9	2175
21	901.9	.2167
21	901.9	,2160(1)
21	901.1	,2146(1)
21	901.9	,2135(1)
21	901.9	,2137(1)
21	901.9	, 2121 (1)
21	901.9	,2110(1)
21	901.9	2095(2)
21	901.9	,2105(3)
21	903.4	.2108(4)
21	904.4	.2108(5)
21	903.4	.2100(6)
21	903.4	.2097(6)

Readings approximately every 20 minutes.
 After 1450°C for 1 hours.

- (3) After 20 hours

- (4) After 1 hour.
 (5) After 5 hours.
 (6) After 24 hours.

Run Cb05 Data Isothermal Pulse Run

Initial Weight: 1.661 g
Pre run resistance = .0643 at 30.5°C
Post run resistance = not recorded
Oxygen charge size: 300 cc at 0.5 torr

NUMBER OF	TEMPERATURE	SAMPLE
OXYGEN PULSE	C°	RESISTANCE, OHMS
1	908.1	.1853
2	908.6	.1863
3	908.6	.1874
4	908.7	.1884
5	908.7	.1894
6	908.8	.1905
7	908.8	.1917
8	908.7	.1928
9	908.7	.1940
10	909.0	.1951
11	908.7	.1963
12	908.7	.1975
13	908.7	.1986
14	908.7	.19 9 6
15	908.7	.2006
16	908.7	.2018
17	908.7	.2030
18	908.7	.2042
19	908.7	.2053
20	908.8	.2065
21	908.8	.2073
22	908.8	.2081
23	909.0	.2088
24	909.0	.2093
25	909.1	.2097
26	909.2	.2098
27	909.3	.2101
28	909.3	.2103
29	909.3	.2106
30	909.2	.2107
31	909.2	.2106
32	909.3	.2104
33	909.3	.2103
33	909.2	.2077
33	909.2	.2070

Run Cb06 Data Isoconcentration Run

Cb06 Specimen From Cb05, Engassed. Final Weight: 1.699 g

NUMBER OF	TEMPERATURE	SAMPLE
OXYGEN	°C	RESISTANCE,
PULSE		OHMS
33	906.0	.2049
33	963.4	.2178
33	953.0	.2164
33	943.2	.2150
33	933.9	.2135
33	924.3	.2117
33	914.3	.2103
33	904.2	.2122
33	894.4	.2098
33	885.0	.2089
33	875.0	.2077
33	864.3	.2055
33	855.2	.2054
33	845.2	.2044
33	835.5	.2021
33	826.1	.2003
33	814.4	.1992
33	804.7	.1977
33	795.2	.1960
33	784.9	.1947
33	774.8	.1936
33	905.1	.2081
33	951.7	.2153
33	942.0	.2139
33	931.2	.2125
33	921.6	.2109
33	911.8	.2096
33	902.0	.2071
33	890.7	.2067
33	881.0	.2048
33	870.6	.2034
33	860.1	.2019
33	850.0	.2003
33	839.8	.1990
33	829.8	.1976
33	820.0	.1961
33	809.7	.1947
33	801.0	.1935
33	790.4	.1921
Run Cb08 Data Isothermal Pulse Run

Initial Weight: 1.6487 g
Pre run resistance = .0607 at 27.5°C
Post run resistance = not recorded
Final Weight: 1.7138 g
Oxygen charge size: 300 cc at 0.5 torr

NUMBER OF OXYGEN PULSE	°C	SAMPLE RESISTANCE, OHMS	
0	27.5	.0607	
0	92.1	.0741	
0	699.6	.1577 (1)	
0	696.0	.1570	
0	93.4	.0921	
0	696.8	.1575	
1	696.4	.1578	
2	695.3	.1583	
3	698.0	.1592	
4	698.0	.1599	
5	698.0	.1607	
6	701.7	.1616	
7	703.8	.1628	
8	704.0	.1635	
9	704.1	.1644	
10	704.3	.1652	
11	704.7	.1659	
12	704.7	.1667	
13	704.6	.1676	
14	704.6	.1683	
15	704.6	.1692	
16	705.0	.1699	
17	703.5	.1709	
18	702.6	.1717	
19	702.7	.1724	
20	703.8	.1732	
21	704.4	.1742	
22	705.2	.1750	

TA	BLE	B24

NUMBER OF		TEMPERATUR	E	SAMPLE
OXYGEN		°C		RESISTANCE,
PULSE				OHMS
23		705.1		.1759
24		705.1		.1767
25		702.5		.1777
26		705.3		.1785
27		705.2		.1794
28		706.0		.1805
29		705.0		.1813
30		705.7		.1820
31		705.7		.1830
32		703.8		.1837
33		703.8		.1848
34		704.8		.1860
35		704.8		.1869
36		704.8		.1878
37		704.8		.1887
38		704.8		.1894
39		703.8		.1904
39		701.0		.1765 (2)
40		700.0		.1772
41		700.5		.1777
42		700.7		.1783
43		701.0		.1788
44		700.6		.1792
45		700.7		.1797
46		700.7		.1799
47		700.8		.1804
48		700.5		.1808
49		700.5		.1810
50		701.0		.1815
51		701.3		.1818
52		701.9		.1820
53		701.4		.1822
54		701.3		.1822
55		701.4		.1822
56		701.5		.1822
57		701.9		.1823
After 1400°C f	or one	hour. (2)	After	700°C overnight.

(1)

135

Run Cb09 Data Isothermal Pulse Run

Initial Weight: 1.6477 g
Pre run resistance = .0583
Post run resistance = not recorded
Final Weight: 1.702 g

NUMBER OF	TEMPERATURE	SAMPLE
OXYGEN	°C	RESISTANCE,
PULSE		OHMS
0	27.8	.0583
0	100.9	.0704
0	798.9	.1639(1)
0	791.8	.1638
0	799.7	.1668
1	798.8	.1674
2	798.8	.1679
3	796.4	.1687
4	798.0	.1695
5	798.5	.1702
6	798.5	.1711
7	797.0	.1719
8	796.4	.1726
9	798.0	.1734
10	797.5	.1725
11	798.7	.1750 .1735(3)
12	798.7	.1738 .1741(3)
13	799.4	.1767 .1751(3)
14	800.0	.1773 .1759(3)
15	800.0	.1767(4)
16	800.0	.1775
17	801.2	.1785
18	801.2	.1794
19	801.5	.1804
20	801.4	.1826
21	801.5	.1837
22	801.6	.1845
23	799.2	.1855
24	798.2	.1864

.

NUMBER OF	TEMPERATURE	SAMPLE
OXYGEN	C	RESISTANCE,
PULSE		OHMS
25	798.2	.1855
26	801.0	.1882
27	801.0	.1892
28	801.0	.1901
29	801.0	.1909
30	801.0	.1916
31	801.0	.1926
32	801.0	.1934
33	801.0	.1942
34	799.2	.1950
35	797.5	.1956
36	800.1	.1940
37	800.1	.1942
38	799.2	.1964
39	799.7	.1940
40	799.7	.1941
41	799.2	.1942
42	799.2	.1942
42	797.3	.1815(5)

(1) After 1425°C for one hour and overnight at temperature.

(2) After 24 hours.

(3) Second reading after 4 minutes.

(4) Second readings taken for each pulse showed no change.

(5) After overnight.

Run TalOWO1 Data Isothermal Pulse Run

Initial Weight: 2.8962 g Pre run resistance = .0458 ohm at 44.6°C Post run resistance = not recorded Final Weight: not recorded Oxygen charge size: 300 cc at 2 torr

NUMBER OF	TEMPERATURE	SAMPLE
OXYGEN	C°	RESISTANCE,
PULSE		OHMS
0	44.6	.0458
0	902.9	.1236
0	1375	1737(1)
0	1200	1537(1)
0	915	1282(1)
0	1200	1560(1)
0	920	1304(1)
0	707	1072
0	506.4	.1072
0	900.9	1247
0	1425	1736(1)
0	1195	1520(1)
0	900.9	.1330(1)
0	706.5	.1245
0	899.1	.1077
0	900	.1220
1	900	.1252(2)
2	900	• 1255
3	900	.1273
4	900	.1310
5	900	.1334
6	900	.1372
7	900	• 1423
8	900	• 14//
9	900	.1521
10	900	.1022
10	900	.1/39
10	900	.1/45
10	900	.1/68
10	900	.1806
10	900	.1821
10	900	.1852
10	900	.1888
10	900	.1934
10	900	.1970
10	900	.2050(3)

Self-heated
 Approximately ⁺1.5°C
 Resistance leads deteriorated.

APPENDIX C

CALCULATIONS

METHOD OF SOLVING GRAPHICALLY FOR SOLUBILITY POINT

1) Determine equation for linear segment

$$\Delta \mathbf{R} = \mathbf{a}_{1} + \mathbf{b}_{1} \mathbf{N}_{0} \tag{1.1}$$

from graph of data plotted $\triangle R$ vs N, where N = no. of pulses. Choose 2 points on initial straight line $(\triangle R_1, 0_1)$ and $(\triangle R_2, 0_2)$ $(\triangle R_1 = 0 \text{ and } \triangle R_2 = \text{large})$

then
$$b_1 = \frac{\triangle R_1 - \triangle R_2}{0_1 - 0_2}$$

and $a_1 = \frac{0_1 \triangle R_2 - 0_2 \triangle R_1}{0_1 - 0_2}$

2) Determine equation for parabolic segment

$$N_{0} = a_{2} + b_{2} (\Delta R) + c_{2} (\Delta R)^{2}$$
(2.1)

from graph of data plotted $\triangle R$ vs N₀^{1/2}. Choose 3 points $(\triangle R_1, 0_1)$ $(\triangle R_2, 0_2)$ $(\triangle R_3, 0_3)$. Since the above parabolic equation can be written

$$\frac{N_0 - 0_1}{\Delta R - \Delta R_1} = a'_2 + b'_2 (\Delta R), \qquad (2.2)$$

find a' and b', where

$$b'_{2} = \frac{X'_{2} - X'_{3}}{\triangle R_{2} - \triangle R_{3}} \text{ and } a'_{2} = \frac{\triangle R_{2} X'_{3} - \triangle R_{3} X'_{2}}{\triangle R_{2} - \triangle R_{3}}, \text{ and }$$

where

$$X'_{2} = \frac{O_{2} - O_{1}}{\Delta R_{2} - \Delta R_{1}}$$
 and $X'_{3} = \frac{O_{3} - O_{1}}{\Delta R_{3} - \Delta R_{1}}$.

Having equation (2.2), cross multiply to get equation (2.1).

3) Solve linear and parabolic equations by substituting equation (2.1) into equation (1.1) such that

$$\Delta R = a_{1} + b_{1} \left[a_{2} + b_{2} (\Delta R) + c_{2} (\Delta R)^{2} \right].$$
(3.1)

Rearrange to the form

zero =
$$a_3 + b_3(\Delta R) + c_3(\Delta R)^2$$
. (3.2)

Find the roots from the quadratic formula:

$$\Delta R^* = \frac{-b_3}{2c_3} \pm \frac{b_3^2 - 4a_3c_3}{2c_2}$$
(3.3)

4) Divide $\triangle R^*$ by the room temperature initial resistance and find the equivalent oxygen in ppm by means of the calibration curve.

Note on part 3)

If the two segments meet but do not cross there will be only one root. That is, the radical will be zero. If they cross, the two roots will be₂real; if not, they will be imaginary. The difference $b_3^2 - 4a_3c_3$ is a good indication of the precision of the data. The intersection (and, therefore, the solubility point) is taken as the average of the 2 roots. For example, this was done in the two runs below 750°, TaO7 and Ta21.

This method is not intended to be rigorous, but was used later after finding that the visual estimates for the position of the break depended on whether the data were plotted linearly or parabolically. The accuracy is still very sensitive to the scatter in the data.

APPENDIX D

DISCUSSION OF THE SHAPE OF THE OXYGEN PRESSURE CURVE DURING A CYCLE IN THE ISOTHERMAL PULSE METHOD (RUN Ta21)

The timing of the oxygen charges in the isothermal pulse method was controlled from the pressure recording of the O_2 in the manifold as measured by the Millitorr gage. The recording was made with a Moseley Model 680 recorder with a chart speed of 8 in./hr. A cycle length of 7-1/2 min. was selected because this coincided with the major lines on the chart from which the opening and closing of valves could be easily judged. Oxygen exposure occurred during 3-3/4 min. followed by 3-3/4 min. equilibration hold in vacuum. The output of the Millitorr gage was converted within the control unit so that a pressure range of about 6 orders of magnitude (log pressure) was recorded linearly on the 4-in.-wide chart.

During Run Ta21 a gradually changing shape of each cycle of the pressure recording was noticed. Careful study revealed a systematic change in the shape that correlated with other observations. The curve for every fifth charge is reproduced in Figure 32, superimposed so that the start of each cycle exactly coincides. Before discussing and interpreting the curve, a review of the cycle will be given.

Referring to Figure 5 and the procedure in section II,D,l,c, the cycle consisted of expanding a 1 torr charge of O_2 contained in the 300 cc volume into the furnace and manifold (1700 cc), holding for 3-3/4 min., then evacuating for 3-3/4 min. while the 300 cc volume was being refilled.

The highest curve in Figure 32 is a trace of the pressure with the furnace and specimen at room temperature. This is thus a $no-O_2$ -consumption reference. The correlation of this curve with the cycle steps follows:

1) The base pressure in the furnace at the start of the cycle (A) was less than 1 \times 10^{-6} torr.

2) Valve 2 was opened at the start of the cycle (B), coinciding with the line on the chart.

----- time

Figure 32 - Manifold Pressure During Oxgyen Pulse Cycles From Run Ta21.

3) The pressure in the manifold and furnace tube rose very rapidly to .01 torr at C and then rose more slowly to about .045 torr, nearly reaching equilibrium at the end of 3-3/4 min. at (D). This slow rise during most of the cycle was the result of the low pressure gradient between the 300 cc volume and the manifold, and of the small tubing (1/4 in. 0.D.) between them. Slow response of the gage could also have contributed, but, as indicated later, we believe this contribution was small.

4) As Valve 2 was closed at (D) and the bakeable valve opened, the pressure dropped rapidly as the O_2 was pumped out. The slow change between (D) and (E) was caused by a slow opening of the bakeable valve to keep from swamping the ion pump. This usually was not necessary when the furnace was hot, as shown by the remaining curves.

The equilibrium pressure of 1 torr of gas in 300 cc being expanded into a connecting 1700 cc volume is about .15 torr. Some of the difference between .15 torr and the observed .045 torr can be accounted for by adsorption of O_2 on the walls. However, it is more likely that the gages were not in calibration. (The method did not require that they be calibrated; it required only good reproducibility, which is demonstrated in Figure 32.)

When the sample was at temperature, the cycle and the recorded pressure were similar except for differences caused by absorption of some of the oxygen by the sample. Of the 48 cycles in Run Ta21, 9 are plotted in Figure 32. The features of this set of curves are discussed below:

1) The maximum equilibrium pressure reached after 3-3/4 min. of O_2 exposed to the specimen was about .0030 to .0042 torr. Comparing this with the .045 value in the no-consumption run, we find that more than 90% of the oxygen was consumed during the cycle.

2) The shape of the curves indicates a changing competition in the rate at which O_2 entered and the rate at which it was consumed. Moreover, this competition changed significantly between the 6th and 7th charges. This change coincided with the passage of the solubility limit as determined from the resistance data.

a) For charges 1 to 6, the pressure rose rapidly to about .003 torr, then increased slowly to about .0042 torr. At this point (F), the remaining oxygen was pumped out. The slight differences in the curves for charge 1 and 6 were caused by slight differences in the time and speed that the bakeable valve was opened. It was apparent that nearly identical amounts of O2 were consumed during charges 1 to 6. Moreover, the \overline{O}_2 was consumed very rapidly at the start of the pulse, and little or no O_2 was consumed after the first 30 sec. (G). The pressure rise from (G) to (F) appears to be one of pressure equalization between the volumes, as between (C) and (D). (Since the pressure gradient is lower for charges 1 to 6, the rate of equalization would be lower.) There were confirming indications in the resistance measurements that O_2 was consumed only early in the cycle. Because of the slow moving galvanometer, this could not be traced accurately, but the change was essentially complete within the first minute.

The questions arise as to why (1) there was no reaction between the specimen and the O_2 at a pressure of .0025 torr and below, and (2) once the oxygen was pumped out, the specimen freely reacted with the new charge of gas in the same manner as before.

b) For charges 7 and afterward, the rate of O_2 input to the manifold was increasingly greater than the rate of consumption. In each case the pressure reached a peak (H) until the consumption rate exceeded the input rate. At this time the pressure fell until at (I) the inlet rate was once again greater than the consumption rate. The same final pressure was reached after each charge indicating that a constant amount of O_2 was consumed during each charge. Moreover, the amount consumed was slightly greater than during charges 1 to 6. The same questions arise as listed earlier.

The conclusion reached from the resistance data was that the parabolic sections of the ΔR versus number-of-charge curve resulted from a decreasing amount of oxygen entering the specimen. This conclusion is incompatible with the above observation. Further work is

needed to resolve this discrepancy. The following observations must also be taken into account.

1) Some of the O_2 reacted with the Mo rods forming MoO_3 . The yellow oxide was found in the bottom of the furnace tube after the program. The amount was small and accumulated over Runs Tal9 to 22. No more than a minor effect can be attributed to this cause.

2) Even though O₂ entered the specimen rapidly while in the single phase region, we have no evidence to indicate that the O₂ is evenly distributed in the lattice. Micrographs of a few specimens disclosed the typical platelet oxide formation along favored crystal directions in the grains. Although substantial amounts of the oxide were observed, the precipitation was uniform across the wire and there was no build up of a scale on the outside of the wire.

APPENDIX E

Other Data

In figure 21 it can be seen that values of $\Delta R/R_{30}^2$ corresponding to the transition between the first and second parabolic regions can be obtained. These were calculated and are given in Figure 33.

The project ended before proper correlation of these data with the Ta oxidation literature could be made. However, the following features are noted:

1) The lower part of the curve is identical to the solubility curve (Figure 22) if oxygen concentration values corresponding to values of $\Delta R/R_{30}^{\circ}$ are taken from Figure 19. This results because the first parabolic section for runs Ta07 and 21 (Figure 21) is very short (or possibly non-existent. We note that the slope increases for the first parabolic region for runs above 750°C, and decreases for the second parabolic region. The slope decreases after the linear section for runs under 750°C; however, a suggestion of a very short section of increasing slope is shown. For figure 33, we interpreted this very short section as being real and interpreted it to be the first parabolic region region so that all curves are consistent).

2) The transition between the upper and lower curves is consistent with the anomolies in the Arrhenius plots of linear oxidation rates as compiled by Ong^1 .

Run No.	Temperature °C	∆ R**	<u>▲R**</u> R ₃₀	Equivalent Oxygen Concentration, ppm
Ta14	900°	.065	.89	2700
Ta08	920°	.045	.90	2740
Ta06	880°	.062	.84	2570
Ta05	780°	.041	.66	2070
Ta21	700°	.008	.16	680
Ta07	600°	.006	.086	480

Figure 33 - Intercept of First and Second Parabolic Sections of Curves of Reduced Resistance Change vs. Number of Oxygen Charges as Function of Reciprocal Temperature.

147