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ABs'rAACT 

Current sheets propagating in a parallel-plate accel­

erator are found to arrest their motion at an electrode··in­
sulator junction, and there to lap~e into stable, quasi-steady 

discharges. Kerr-cell photography, magnetic and electric 
probing and terminal voltage measurements indicate that these 

stabilized discharges accelerate gas through themselves as long 
as gas from the prefilling of the discharge chamber is avail­

able, after which enhanced erosion of insulator and electrode 
material appears. To supply fresh gas to the stabilized cur­
rent zone with a minimum of delay, a shock tube gas injection 

technique is used. EVen with this procedure, it is found that 
the current must be driven for hundreds of microseconds before 

a quasi-steady gas flow can be established in contrast to the 
tens of microseconds required for electrodynamic stabilization. 

This quasi-steady flow mode, characterized by both current pat­

tern and gas flow stabilization is again observed to provide 

substantial acceleration of the inlet flow. 

A similar steady state acceleration phase can be achieved 

in a coaxial electrode geometry by synchronized application of 
t&ilored pulses of mass flow and current. This diffuse dis­

charge, characterized by a stabilized current distribution, con­

stant voltage and current, and a steady argon mass flow rate of 

up to 50 g/sec, is of considerable interest as both a pulsed 
thruster and as a simulator of the self-field MPD arcjet over a 

power range from 100 kW to 100 MW. Kerr-cell photographs and 

experimental maps of the current distribution in the exhaust 
plume and interelectrode region clearly show the rapid transi­
tion to this steady configuration, as well as characteristic 

arc behavlo~ for mass starvation and mass overfeed. Terminal 

voltage measurements, taken over a wide range of power and mass 
flo\oI rate, are sufficiently precise to allow discrimination 
among several theoretical models of the acceleration process. 

The process of energy transfer from a pulse network to 
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ABSTRACT-contd. 

a propagating current sheet is studied experimentally and 
analytically in a linear pinch configuration. The efficiency 
of this process is related to the ratios of pulse ljne imped­

ance/average discharge impedance, and current pu~se duration/ 

characteristic acceleration time. Experiments in hydrogen, 

argon, krypton, and nitrogen at a conunon ambient mass density 

and impedance ratios near unity yield efficiencies that exhibit 

the same qualitative variation with these ratios as those pre­
dicted, but only the hydrogen data show good qU<lntitative agree­
ment with the theoretical values. This failure of the theo­

retical model for the higher molecular weight gases is traced 

to the existence of diffuse current patterns flowing in the 
region behind the propagating current sheet, contrary to the 
theoretical "snowplow" assumption that all of the current flows 

in a thin sheet. 

The structure of the current sheet in a similar pinch dis­

charge is studied with a specialized high-speed piezoelectric 
pressure transducer, which is capable of determining profiles 

of both axial and radial pressure. Correlation of these data 
with electric and magnetic field profiles, along with luminosity 

and voltage records, indicate three distinc~ zones within the 
sheet: in sequence, regions of electron current conduction (I), 
mass accumulation with ion current conduction (II), and induced 
flow of un swept gas (111\ are dominant. Profiles of particle 

density, velocity, and temperature can be evaluated, and the 
current sheet is found to entrain a large percentage of the gas 

encountered. A momentum balance across the sheet is in approxi­

mate agreement with snowplow predictions, but the distributions 
of current and mass density do not agree with piston-shock 
wave models. 

Studies continue on the structure of the anode attach­

ment portion of high-current discharges, and its effect on 
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ABSTRACT-contd. 

the overall voltage. A new series of experiments probe a 

similar regime near the cathode. Laser techniques have been 

extended to search for population inversions in the outflow 

plasma from the quasi-steady parallel-plate accelerator. 

Finally a 105 joule pulse network is under construction to 

extend by an order of magnitude the available test times of 

all quasi-·steady discharge equipment. 
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I. INTRODUCTION 

The reporting period just past has encompassed the 
completion of no less than four Ph.D. programs. Each of 

these studies has been presented in detail in the usual 
Ph.D. thesis format, [55,58,60,66] and each is the subject 
of an oral presentation and preprint at a technical society 

meeting [62 to 70}. It scill seems appropriate, however, 
that this semi-annual report should contain concise reviews 

of these researches, particularly to emphasize the relation 

among them, and to define the perimeter of progress of the 
project as a whole. 

The programs of the four younger men in our labcI­
ratory are now in transition from exploratory phases to the 
detailed experiments which will constitute their Ph.D. 

theses. Hence, there has been considerable design, assembly, 
and testing of new equipment, but less acquisition of hard 

data in these topic areas. Brief reviews of these efforts 

pr- ~ide some flavor of the laboratory programs which will 

grow in the coming months to complement the continuing 
studies in the well-established facilities. 
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II. CURRENT PATTERN AND GAS FLOW STABILIZATION 
IN PULSED PLASHA ACCELERA'l'ORS (Eckbreth) 

Two phases of stabilization have been identified in 
pulsed plasma accelerators: (1) current pattern stabiliza­
tion, in which formerly convecting current distributions 

cease to propagate, and (2) gas flow stabilization, wherein 
an externally supplied gas flow achieves a steady accelera­

tion profile through the stabilized current pattern. These 
stabilization processes are of interest in pulsed plasma ac­

celerators both because of the fundamental questions they 

pose and because of their practical implementations. For ex­

ample, one may inquire about the effect of current pattern 
stabilization on the plasma ejection losses of a pulsed accel­
erator. or about the details of the plasma acceleratic.l pro­
cess in a quasi-steady plasma accelerator, i.e., an accel­

erator in which both current pattern and gas flow stabiliza­

tion coexist. On the other hand, one may employ such a 

quasi-·steady accelerator to simulate a high-power, steady 
electromagnetic thruster, such as a magnetoplasmadynamic arc, 

for a short time. In this way one could, using transient in­

strumentation techniques, perform detailed interior diagnostic 
studies on an arc-accelerator environment which in the steady 
state would be too hostile for probing. Operation of an ac­

celerator in the quani-steady mode is of interest in its own 

right since this may well be the regime of operation in which 

electromagnetic acceleration processes'are optimized. The 
quasi-steady regime shares many of the advantages of short­

pulse operation and several of the advantages of steady state 

operation, while apparently possessing less of the disadvan­

tages of either pulsed or steady operation alone. 

Current Pattern Stabilj.zation 

Current pattern stabilization was first observed in 

connection with a series of pulsed exhaust experiments on a 
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linear pinch fitted with an anode containing a large circular 
orifice [57]. Stabilization of the current contours projecting 
out through the orifice occurred when the device was driven 

with rectangular current pulses of duration greatly in ex­
cess of the "pinch" time of the cylindrical current sheet 

formed inside the pinch ".:hamber. In order to study these 
phenomena in a simpler geometry, a parallel-plate accelera­
tor [57,58} was constructed. Stabilization of the propagating 
current sheets in this device was achieved by partially in­
sulating the electrode surfaces with thin mylar sheets from 
a position several inches downstream of the discharge initi­
ation location to the front end of the accelerator as shown 

schematically in Fig. 1. These initial studies, which estab­
lished that spatial stabilization of the propagating current 

sheets occurred at the electrode-to-insulator junction, have 
now been supplemented by more detailed diagnostic studies 
performed with a pair of permanently insulated electrodes. 

The "electrodes" consist of 5 l/4-in. lengths of alu­
minum surface followed by 42 3/4-in. lengths of nylon inlaid 
insulator surface. The discharge chamber formed by the two 
electrodes is 48-in. long, 6-in. wide, and has a 2-in. inter­
electrode spacing maintained by a rectangular plexiglas 
housing which forms the side walls of the apparatus. A switch 
electrode is mounted 2 in. below the bottom electrode in a 
separate plexiglas switch chamber. In operation, the switch 

electrode is connected to the capacitor bank, charged to 
-10 kV. The top electrode of the accelerator is grounded and 

the middle electrode is maintained at ground potential during 

the charging process by means of a ballast resistor, Ra' 
connecting the top and middle electrOdes. The switch is 
triggered by injecting argon into its initially evacuated 
chamber. As the gas pressure increases, the Paschen curve 
is crossed and the switch discharge initiates, transferring 
the voltage across the electrodes of the main chamber, result-
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ing in the desired test gas breakdown, sheet formation, prop­
agation, and eventual stabilization processes. The test gas 
in the main chamber may be set in advance at a given pres­
sure--the "ambient mode"--or may be injected by a shock tube, 
a process to be described in detail in connection with the 
establishment of the quasi-steady mode of operation. 

The capacitor bank consists of 40 x 3.2 pf capaci tors 
arranged in various LC ladder network configurations to de­
liver rectangular current pulses ranging from 120,000 amperes 
for 20 psec, hereafter designated 120/20, to a nominal 5,000 
amperes for 500 psec, i.e., 5/500. In the current pattern 
stabilization studies to be discussed, the 120/20 pulse is 
employed and discharged into 100 p. argon, the ambient mode. 

50 nanosecond Kerr-cell photography is used to view 
the luminosity associated with various phases of the discharge. 
The character of the propagating sheet may. be seen in Fig. 2 
which is a sequence of photographs taken normal to the direc­
tion of propagation through the side wall. In these illus­
trations, 6X is a streamwise coordinate referenced to the 
metal-to-insulation boundary such that ~ > 0 is downstream 
along the insulator, and ~ < 0 is upstream along the metal 
electrode portion of the accelerator. The luminous sheet is 
observed to be nearly one-dimensional at the time of break­
down near the back wall of the apparatus, but to become highly 
two-dimensional as it propagates down the channel. Of interest 
is the development of a diffuse "anode foot" which enlarges 
and grows as the sheet propagates. Inception of such a foot 
has been observed in other experiments of this type [4~51,5,4L but 
here it progresses nearly to the point that it completely 
dominates the entire luminous pattern, tilting it substan­
tially with respect to the axis and diffusing it over a large 
dimension. 

When the propagating luminous front reaches the end of 
the exposed electrode, Fig. 3, the luminosity pattern continues 
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to propagate into the insulated channel unrolling, as it 

were, the stabilized pattern of two broad, nearly axial, and 

highly luminous bands emanating from the electrode discon­

tinuity. One may speculate that these bright bands are anal­

ogous to the anode and cathode jets commonly seen in the 

magnetoplasmadynamic arcjet. 

Confirmation that the current-carrying region has in­

deed ceased to propagate is best supplied by maps of enclosed 

current contours at a succession of times d&rived fro~ mag­

netic field probing of the entire discharge volume. These 

maps are displayed in Fig. 4 where the individual contours 

conform to local current streamlines and their numeral indi­

cates the cumulative current passing everywhere downstream. 

The slight tilt of the propagating current sheet, its broad 

anode attachment region and its abrupt arrest at the electrOde 

discontinuity are ~gain evident, in agreement with the lumi­

nosity studies. The stabilized pattern bows downstream in a 

hairpin fashion with the bulk of the current conducted across 

the midplane in the Q<.6J«6 in. region, Le., within three 

channel heights downstream of the metal-to-insulation junction. 

Additional confirmation of current pattern stabilization 

and valuable indication that the pattern indeed continues to 

accelerate gas through itself in its stabilized phase is pro­

vided by a sequence of terminal voltage measurements made with 

an inner divider. This device is simply a voltage tap which 

passes through an insulated port in the anode to electrical 

contact with the cathode and enables one to separate the re­

sistive and inductive voltage drops in the plasma. Should the 

current sheet come to rest and start accelerating gas through 

itself at a speed u, the probe will also record the correspond­

ing motional emf, regardless of its location. In Fig. Sa the 

response of the inner divider at .6J( = -2 1/4 in., along the 

metal electrodes, is shown. Before the current sheet sweeps 

by the prope position, only the resistive drop, here about 
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60 V, is monitored. This rorresponds to a plasma resistance 

of approximately 0.0005 n. A s the sheet sweeps by the 

probing location, the inductance change due to the motion of 

the sheet is added bringing the total voltage to about 700 V. 

As the sheet stabilizes, however, this changing inductive 
contribution should vanish. Note, however, that the voltage 
signature remains nearly constant. It is hypothesized that 

the declining flux change contribution is supplemented by the .... .... 
generation of a back u x B emf as the stabilizing current be-

gins to accelerate gas through itself. This hypothesis is 

verified by monitoring the voltage at the far downstream end 

of the accelerator where it is impossible; to enclose any flux 

change contribution. The response of the voltage probe at 
this position is shown in Fig. Sb; initially only the resistive 

drop is recorded but as stabilization of the current sheet 

occurs, the back emf contribution is also added. 

It thus appears that a new and rather powerful elec­

tromagnetic inertial mechanism is operating, i.e., that when 
the motion of the convecting current sheet is arrested at the 

electrode discontinuity, the back emf generated in opposition 

to this change is just sufficient to maintain the terminal 
voltage at its previous level. The impressive feature of 
this effect is that the gasdynamic processes involved in its 

accomplishment are fundamentally quite distinct; that is, 

there has been a transiti.on from the familiar unsteady mode 

of gas "sweeping" in a propagating sheet to the equally fa­

miliar but rather different steady mode of gas "blowing" 
through a fixed current pattern, with no observable change 
in terminal voltage. 

Although the current has ceased to propagate, accel­
eration of the gas by the stabilized current distribution 

appears to continue. The most vivid demonstration of flow 

acceleration is a photographic sequence of the luminous 

patterns over small 15° half angle wedges set in 3 planes, 
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1/4 in. off the anode and cathode and in the midplane, at 

various axial positions along the channel. For example, the 

state of the inlet flow to the stabilized current zone can 

be observed by placing the wedges upst.ream of the current 
stabilizatic·.l region, Ax < O. Such a series of pictures 

taken at lU, 14, and 18 psec, respectively, is shown in Fig. 6 

where the wedge tips are located at approximately Ax = - I 3/8 

inches. Shocks are visible at each of these times indicating 

that the inflow is supersonic over the stabilized portion of 
the current pulse. The luminosity of these shocks, however, 

decreases with time suggesting that the mass flow into the 
stabilized zone is decreasing. This is to be expected since 
no external source of mass is available to the discharge. 
Figure 7 displays the flow over the wedges at ~ = + 2 3/8 in., 
+5 5/8 in., and + 8 3/8 in. at 14, 16, and 18 p.sec into the 

pulse. Comparing these positions with the patterns of enclosed 

current shown in Fig .. 4 one sees that the above positions cor­
respond respectively to the middle of the stabilized zone, to 

the downstream edge of the zone and to a completely exterior 

position. At the three times shown, it is apparent that the 
l-1ach number of the flow increases downstream through the 
stabilized current zone.. At the first position, the shocks 

are somewhat detached; at the second, the shocks are attached, 

a~d at the third, they are yet more inclined to the flow.. Fur­
ther interpretation is somewhat ambiguous since either a flow 
acceleration or a decrease in local sound speed could produce 

the observed Mach number increase. Howev~r, since the effect 

of joule heating in the current zone wculd tend to raise rather 

than lower the sound speed, and since the similarity in probe 
responses at the three transverse positions speaks against 

major transverse gradients and excessive wall cooling, a valid 

flow acceleration through the current zone seems the more 
likely alternative. 

In an effort to unravel a bit more of the mechanisms of I 
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gas acceleration in the two phases, the patterns of stream­
wise and transverse electric field, E and E , respectively, x y 
within the current-carrying region of the plasma are mapped 
using floating double electric field probes. The E fields x 
are monitored using a coaxial-lead, conically shaped probe 
similar to that of Burkhardt and Lovberg. The transverse 
fields, E , are measured with a twisted or coaxial lead, 

y 
straight-tipped probe. 

The strcamwise probe response along the metal electrode 
portion, shown in Fig. 8a corresponds to that commonly ob­
served for a propagating current sheet [42,A-IJ namely a "spike" 
of forward facing electric field. In contrast, E probe x 
signatures obtained within the stabilized current region, 
downstream of the metal-to-insulation junction, Figs. 8b, c,d 
consist of a vestige of the current sheet spike followed by 
a null. period, followed by an abrupt rise to a plateau which 
lasts nearly to the end of the pulse. The amplitudes of the 

vestigial spike and of the plateau decrease with distance 
downstream of the electrode discontinuity. Th~ former tends 
to decelerate once beyond the discontinuity but the leading 
edge of the plateau seems to maintain a uniform speed or even 
to accelerate somewhat as displayed in the trajectories of 
Fig. 9. 

One may speculate that the first spike of Ex recorded 
by the probe annou~ces the arrival of the snowplowed plasma 

accumulated by the propagating sheet upstream in the con­
ducting portion of the accelerator, now continuing on its own 
inertia as the current sheet is arrested at the discontinuity 
and diffuses into the stabilized current conduction pattern. 
The plateau of electric field prevailing over the latter por­
tion of the response presumably reflects the quasi-steady flow 
acceleration process in operation, possibly as a Hall voltage 
component of the total electric field. The rather well-defined 
null time between these two signals is somewhat puzzling, 

I 
\ 

1 

I 
~ 

! 
! 

I 
! 

r-"-.1~---'-- ._- ',"'.; .... " ...... -~.'. · 'W -', ... - v'" --"----, 

L.J,.'';';;;';;;·:''''Z:~='i;;l~~~~;=:::Z;,;;;,''~:·;\r;,;:;.);~i~,;4J;1;iYk:;':\~:;.r.;;i+m :>sa=..~~~~ • • '~"'i .. ...w ...... ,;."",;,j 



18 

2 fL sec IDIV 
A 876 A744 

120 KA 

20 Vlcrn 

ok::.x= -3.3 ". MI DPL ANE b)6x= 2.8". MIDPLANE 

A746 A 747 

20 Vlcm 

chx= 3.8". MI DPL ANE d)6X= 4.8". MIDPLANE 

A 762 A 755 

20 Vlcm 20 V/cm 

ehx= 0.75". 0.25" FROM ANODE ·fbx=0.75': Q25" FROM CATHODE 

ELECTRIC PROBE SI GNATURES OF CURRENT SHEET STABILIZATION; 

STREAMWISE ELECTRIC FIELD. Ex ' 

FIGURE 8 

------_. 



I 
I 
i 
i , I 
f . 
I 

I 
1 
j 

. i 

19 

16--~---------------------------------. 

-
u 
Q) 

12 

CJ) 8 

--

4 

t SPIKE ..... 6t 

t PLATEAU 

2 

... 

.... 

llX ( INCHES) 

t PLATEAU 

t SPIKE 

4 

TRAJECTORIES OF CHARACTERISTIC FEATURES 
OF ELECTRIC PROSE SIGNATURES 

6 

FIGURE 9 

I 

I 
I 
1 
I 
I 
f 
j 

! 
r 
I 
i 

~ 
I 
I, 

I·.~ ;1.; 

{ 

)
,1. 

\ , 

I ! , , 
i 

f
' 1. . ~ 

j 
.~ " 



20 

particularly since no correspondingly abrupt processes are evident in the development of the discharge current distri­bution in this region. 

Figure 8e/ f display records of E obtained by a probe x immersed in the conduction bands near the anode and cathode surfaces. Here the E field is essentially parallel to the x current vector and hence is primarily a resistive component, nearly constant over the lifetime of the steady current pat­tern and opposite in sign near the anode and cathode. In the stabilized conduction bands, t :> 10 psec, E virtually y vanishes as seen in Fig. 10a/b. 

In Fig 10c1d E traces along the metal &lectrodes are y shown; these traces rise as the sheet sweeps by and then fall off gradually during the remainder of the pulse. Figure 10e shows the E signal in the stabilized zone which, excepting y 
fluctuations, remains relatively constant. The magnitude of Ey in the stabilized zone falls off with distance from the electrode discontinuity going to zero at the end of the stabilized current zone, Fig. 10f. 

Magnetic and elect~ic field data like that shown above can be employed in a simplified, but self-consistent one-dimensional model to yield estimates of the salient properties of the flow passing through the stabilized current zone. De­tails of this analysis are available in Ref. 59: briefly, it is found that the degree of ioniza~ion is about 80 percent, the outlet to inlet velocity ratio is somewhat greater than 2, and the mass flow rate over the stabilized phase integrates to about 15 percent of the ambient gas density in the interelec-trode gap. The last figure is important in indicating a possible source of mass for the stabilized accelerator, namely gas which has escaped complete entrainment by the propagating current sheet. Current sheets of this intensity, with large anode feet, are known from earlier studies [501 to be "imperfect sweepers" a fact confirmed by the observed magnitude of the 
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E spike too small to account for full acceleration of the x 
ions to sheet velocity. Thus, it a~pears that the propa-

gating sheet only partially accelerates tl,e ambient gas it 

passes over, which later surges into and is accelerated by 

the stabilized current pattern. 

Clearly this particular source of mass flow can suffice 

for only a limited time before ?ecoming exhausted. For longer 

driving pulses, evidence of a decay in this source should ap­

pear in t}-,e outflow, and such a tendency is indeed observed in 

wedge f1 ..... \· studies of a 30/80 current pulse. As this supply 

is deplet.~d, the discharge impedance sho\: ld rise and/or new 

sources of mass must be activated. Evidence is presented be­

low that under these circumctances Lhe discharge increases its 

voltage to a point where it r.an ablate sufficient electrode and 

insulator material to sustain itself on these vapors. 

To relieve this mass starvation condition, one natu­

rally turns to an external gas supply of some sort, but here 

one encounters the inherently slow gasdynamic time scale. 

Figure 11 displays the shock tube gas injection system de­

veloped for the parallel-plate accelerator. Despite the sub­

stantially superior rise time of such a system over any mechan­

ical gas valve, it is incapable of getting significant mass to 

the discharge zone until well over 100 psec. For example, al­

though discharges driven by 30/80 current pulses show clear 

evidences of mass starvation toward the end of their flows, 

no convincing differences in voltage signatures can be ob­

served between discharges in 100 p. ambient argon, and those 

provided with shock tube gas injection at the same initial 

pressure. The interpretation is simply that the available 

time scale (80 psec) is too short for the injection flow to 

become properly established. Before the externally supplied 

gas can provide a quasi-steady inflow to the acceleration zone, 

it must first fill the channel void created by the sweeping 

current sheet as it propagates to its stabilized position. 
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This filling process must require a time of the order of the 
channel length involved divided by the sound speed of the in­

jected gas, i.e., hundreds of microseconds. 

In other words, while it appears that the electrody­
namic aspects of steady plasma acceleration, i.e., current 

p-ttern stabilization, can be simulated on a time scale of 

:.s of microseconds, attainment of the correEponding quasi­

~teady gas flow from an external source will require an order 

of magnitude longer test time. Experiments directed toward 
achievement of this quasi-steady mode of plasma acceleration 

are described in the following 3ection. 

QU.asi-steady Plasma...t\cceleration 

Prior to selecting a pulse shape and shock tube cunfig­

uration for detailed quasi-steady acceleration experiments, a 

serins of tests was performed to determine the minimum time 

scale over which the appearance of externally injected gas in 

the discharge could be established. To reduce the interelec­

trade cavity upstream of the discharge, the electrodes were 

shortened from 5 1/4 to 2 in. , and downstream terminal volt­

age signatures were recorded for various current pulse lengths 

in both the a~ient fill and injection modes. Figure 12 com­

pares typical ambient and injection responses for three pulses, 

20/125, lO/2S0 and 5/500. The voltage signatures for the 

20/125 pulse in the shock tube and ambient cases are nearly 

identical# indicating that while the shock tube is properly 

simulating 100 p initially, it does not succeed in supplying 

additional mass to the discharge over the balance of the pulse 

time. Fer the 10/250 case, however, a difference in the volt­

age level between the aniliient and shock tube cases can be 

not:iced over the latter half of the pulse. The effect is more 
evident for the 5/500 pulse where the shape of the entire sig­

nature is markedly different, and near the end of the pulse 
the shock tube voltage is nearly 50 percent lower than the 
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ambient value. It seems qualitatively reasonable that the 

ambient signals should increase with time due to a mass star­

vation of the discharge, while the shock tube signatures de­
crease as the injected flow increases the pressure in the dis­

charge region. Based on a series of such studies, it is con­

cluded that an ext8rnally supplied gas flow from the existing 

shock tube injection system can be established at the dis­

charge region for pulse times of 150 p.sec or greater. 

To verify that the external flow, which on the basis 
of the voltage measurements appears to be feeding the discharge, 

is indeed being accelerated, a small 150 half angle wedge is 

again placed 2 1/4 in. downstream of the metal-to-insulation 

discontinuity, hopefully to generate visible bow shocks. Now, 

however, for the relatively low discharge current amplitudp.s 

predicated by the long pulse requirement, the flow luminosities 

are much less intense, and this technique becomes marginal, at 

best. For the 5/500 pUlse, the luminosity of the flow is too 

weak to be photographed even with a 5 Jlsec Kerr-cell shutter. 

For the 10/250 waveform, visible bow shocks are found, but 
only for a narrow range of injected mass flow rate. Above and 

below this range, and even with 100 Jl ambient prefill, no 

shocks are observed. At their best, the shock waves are rather 
diffuse, suggesting that the flow is quite rarified in this re­

gion. Using highly sensitive piezocrystal pressure transducers 

and a simple volume filling procedure the mass flow rate to the 

discharge for which shocks are most discernible is estimated 

to be 3.6 grams/sec. 

It is apparent from these results that the relatively 

low current amplitudes available from the fixed energy bank for 

the long pulse times required for flow establishment are really 
inadequate to drive this size accelerator in the desired mode 

and density range. That is, as the injected mass flow, and 

corresponding gas density in the discharge region are increased 

into the desired range of operation, the mass overload becomes 
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too great for the prevailing ionization and electromagnetic 
acceleration mechanisms, and no viable supersonic outflow is 

achieved. Various narrower breadth channels have been tried 

in attempts to increase the discharge current densityz but 
these introduced undesirable field fringing and discharge con­

striction effects which more than counterbalanced their dis­
charge intensification. Clearly an order of magnitude larger 
energy source is needed to conduct this experiment properly, 
and this is presently under construct:ion. 

Nevertheless, in the one particular range of mass flow 

mentioned above, the desired effect has been demonstrated; 

namely, the device has succeeded in accomplishing the tran­

sitions from its initial propagating sheet phase, through an 
interim phase where it accelerates overrun ambient gas and/or 

electrode-insulator material, to the quasi-steady phase where 

it accelerates an externally injected gas flow. To examine 
this latter phase in more detail, a series of electric and 
magnetic probe studies have again been performed to map the 
prevailing field and current distributions. Details of t.his 

work, and of the analysis based on it are available in Ref. 59 
briefly, it is found that unlike the high-current patterns, 

which are bowed far downstream, the 10/250 current distribution 
is nearly one-dimensional, and the streamwise electric field 
falls to zero upstream of the current density maximum. The 

analysis then indicates a velocity ratio of about 2.5 acr.:>ss 
~ 

the acr~leration zone, and a degree of ionization of about 
20 percent within it. 

One interesting by-product of the otherwise meager 
Kerr-cell results of the long pulse discharges has been the 

revela~ ion of greatly increased l:'minosity in the anode and 

cathode jets emanating from the electrode-insulator discon­
tinuities as the mass flow decreases (Fig. 13). It is hypoth­
~~sized that a.s the mass flow decreases, the discharge is 
starved for mass and ablates electrode and/or insulator 
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t = 200 f-L sec 

3.6 g ARGON /sec 

I. 4 g ARGON /sec 

KERR - CELL PHOTOS SHOWING INCREASE IN 
INTENSITY OF ANODE AND CATHODE JETS 

WITH DECREASING MASS FLOW 

FIGURE 13 
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material to feed itself, with a resulting intensification of 
the luminosity near the electrode discontinuity. To check 
this hypothesis, the discharge has been examined spectro­

scopically for the various mass flow rates available. As the 

external flow is reduced, there is observed to be a major in­
crease in the intensity of the molecular carbon bands, an in­
crease in the intensity of aluminum lines, and a decrease in 
the argon line radiation. If one associates the carbon with 

the organic insulator material, the hypothesis seems at least 

qualitatively confirmed. 

Sununary 

Based on the experiments described here, the detailed 
. analyses developed in Ref. 59 and earlier work, we may piece 

together the following picture of the metamorphosis of the 
plasma acceleration process in the parallel-plate, partial­

electrode channel driven by a long current pulse: At break­

down a current sheet is formed near the upstream end of the 

electrode channel, of width and intensity determined by the 

rise time and amplitude of the driving pulse. Driven by its 

own magnetic field, this sheet propagates into the ambient 
gas, entraining a large fraction of it, but leaving some pro­

file of slower gas in its wake. Upon reaching the electrode­
insulator discontinuity, the sheet decelerates rapidly to a 
stabilized discharge configuration, while some of the gas 

originally entrained on it continues down the channel on its 
own inertia. The stabilized discharge, whose particular con­
figuration again depends on the amplitude of the driving cur­

rent, is now fed from the upstream side by the slower gas left 

behind the current sheet, whi~h gas it accelerates through it­

self in the classical self-field Lorentz mode to a velocity 

that maintains the terminal voltage the same as the transient­
phase value. In the absence of another source of mass, the 
discharge eventually exhausts this reservoir of overswept gas, 
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and begins to vaporize insulator and/or electrode material to 

maintain itself, much like a "vacuum arc." This phase is 
characterized by increased luminosity of the anode and cath­

ode jets, and an increase in acc voltage. If an external 

mass source is provided, it must first refill the channel up­

stream of the stabilized discharge before any quasi-steady 

inlet flow to the discharge region can be established. This 

is a relatively slow process, and depending on particular 
channel dimensions and injection procedures, may take 100 psec 
or more. Once such inlet flow is established, however, the 

discharge voltage drops, erosion luminosity is sharply re­
duced, and the accelerator operates on the injected mass flow 

in the same quasi-steady, self-field mode. 

", 
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III. QUASI-STE.~Y PLAS~~ ACCELERATION (Clark) 

Stabilization of the discharge current patterns of 

pulsed pla~ma accelerators into steady diffuse phases for 
pulse lengths above a few microseconds has been demonstrated 

for several electrode geometries both in this laboratory, and 

elsewhere [57,A"'2]. Study of this "quasi-steady" phase for an 
electrode configuration resembling the steady state magneto­

plasmadynamic arcjet is attractive from several pOints of 

view. First, such quasi-steady operation permits application 
of transient diagnostic techniques within the arc chamber and 

exhaust plume, environments normally too hostile for detailed 

study in the steady state. Second, the quasi-steady experi­

ment permits extension of MPD cperation to multi-megawatt 

power levels inaccessible in steady state experiments because 

of heat transfer, power supply, and gas handling limitations. 
Such high power operation is of basic interest because the 

overall efficiency of the MPD arc has been observed to improve 
as the power level is increased, and n~ay also be instructive 
for advanced mission studies. For example, certain projections 

of manned missions to the near planets favor propulsion sYJtem 
power in the range of 1 10 MW; quasi-steady MPD studies may 

provide an initial hint on the feasibility of single thruster 
operation in this range. Finally, and perhaps most important, 

the quasi-steady acceleration mode may prove to be an interest­

ing propulsion technique in its own right. In particular, it 
is possible that intermittent long-pulse operation may combine 

the benefits of high power MPD operation with tolerable average 
power consumption and simple variable thrust capability via 
duty cycle adjustment. 

,li,xpe t: itn!.!'!..t a 1 De s i 9.n 

Proper quasi-steady operation requires rather precise 

correlation of the injected mass pulse with the applied current 
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pulf.e. With reference to Pig. 14 the injected mass pul~e 

must rise quickly (tR) to a steady value, and remain as that 

value until after the current pulse has been completed ('M). 

The current pulse cannot be initiated until the chamber pres­

sure has reached a steady value corresponding to the injected 
mass flow rate, (rA), but this time must be sufficiently short 

that the vacuum tank back pressure is not compromised by the 

pre-discharge flow. After the appropriate delay ('D) the cur­
rent pulse is triggered, rising quickly <t;) to some steady 

value, and lasting for a time characteristic of the current 
source (~). Before the arc discharge can be considered to 
be operating as a true quasi-steady accelerator, the chamber 

pressure must readjust to its "hot" operating condition, (rp)' 

the exhaust plume must reach some stabilized current density 
pattern < r) and the cathode must attain steady thermionic 

s 
emission (~). If these several time constants are of com-

mensurate magnitudes and the various events are properly syn­

,:j,.!ronized, there remains an interval (10) during which reason­

able simulation of steady operation should prevail. 

In the experiment described here, the driving current 

pulse is provided by a bank of 40 x 3.2 pP capacitors arranged 
in an LC ladder network. Varying the interstation inductance 

yields a variable amplitude, variable length pulse covering 

the range from 140 kA x 20 psec to 4.4 kA x 600 psec. A sepa­
rate gas-triggered, closed-chamber discharge switch [161 trans­

fers the 10 kV bank voltage to the electrode assembly. 

A shock tube is used to provide the tailored mass in­

j~ction pulse. As seen in Pig. 15 this tube is mounted di­

rectly behind the arc chamber with six interchangeable in­

jection tubes connecting the end ofi.:he Plexiglas driven 

section to the discharge chamber. The tube is not operated 
Inthe conventional manner in the sense that the driven section 

is not maintained at a continu~m pressure level, but is pumped 
out to the back pressure of the vacuum tank (about 10-5 torr). 
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The driver section is normally pressurized to 35 psia. Upon 

rupturing the diaphragm, the pressure history at the driven 

section end wall and thus the mass injection history, is 

formed by the superposition of the initial diffuse compression, 

the rear portion of the initial rarefaction wave which is con­

vected downstream, and the reflection of the rarefaction head 

off the driver end wall. The tube length is therefore kept 
relatively short to reduce the time to attain steady end wall 

pressure. The particular configur~tion shown, consisting of 

a driven section 30-in. long by 2 3/8-in. i.d., and driver 

section 6-in. long by 4 3/4-in. i.d. is capable of providing 

mass flow rates up to 50 g/sec for 3 m5ec, with a rise time 

of about 1 msec. 

A piezoelectric pressure sensor is mounted in the driven 

section end wall to monitor end wall pressure time hi.story and 

to provide a time. mark for synchronizing the mass and current 

pulses. The gas-triggered switch is supplied ~y a bleeder 

tube from the upstream portion of the :.hock tube channel. Ad­

justing the length and size of this line controls the discharge 
delay time (T

D
). 

Figure 16 shows a typical trace. of the end 'wall pressure 

history compared with the arc current. In this particular case, 
the mass flow rate reaches a level of about 36 g/sec after 

1 msec. The discharge is triggered at roughly 1.3 msec, a time 

verified to be sufficiently lon9 to allow the chamber pressure 

to reach an equilibd.um value. Although the capacitor line 

rings down in a fashion characteristic of its mismatch to the 

load, only the first half-cycle is employed in this experiment. 

Proper simulation of steady MPD operation also involves 

replication of the essential features of the arc chamber ge­

ometry. Based on the typical configuration of a central, CO.l­

ically-tipped cathode, a pierced anode slightly downstream and 

coaxial with it, and axial gas injection upstream of the elec­

trode gap, there remains only the choice of absolute dimensions 
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. 
P m 

20 gh:ec 
DIV 

(0.6 atm/DIV) 

~~~=~~~ 

J 

-11.3 msec~ 

t (500 fL sec/DIV) 

SYCHRONIZAT\ON OF CURRENT PULSE 
TO INJECTED MASS PULSE 

FIGURE 16 
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on the basis of some appropriate scaling criterion. For this 
purpose, one might require duplication of the thrust density, 
which for a given specific impulse implies equal power den­
sity arid mass flux density, or, alternatively, a magnetic in­
teraction parameter might be invoked. Actually, these two 
approaches yield essentially the same conclusion, by virtue 
of the familiar relation between the arc current and the 

total electromagnetic thrust [53J 

where T = 
J == 

ra,rc = 

. 
m = 
I = 
g = 

thrust 
total current 
effective radii of discharge attachment 

on anode and cathode 
mass flow rate 

specific impulse 
. sea level gravitational acceleration 

(3-I) 

That is, for a given specific impulse, the thrust density, mass 
flux density, and power density all scale as (J2/A) ~ (r ,r ). a c 
Presuming the insensitive logarithmic factor to be approxi-
mately matched by retaining the same ratio of anode orifice 
to cathode diameters, the absolute values of these radii should 

thus be scaled linearly with the discharge current. Since we 
choose to cover the current range from 4,000 to 140,000 amp, 
compared to the 2,000 to 4,000 amp range of steady devices, 
their typical anode orifice radius of 1/4 in. should here be 
iucreased by about one order of magnitude. The selected value 
of 2 in. actually permits study of substantially higher ranges 
of thrust density than attainable in the steady accelerators. 

The thrust relation (3-1) is plotted in Fig. 17 in a 
slightly different form to display the corresponding mass flow 
rates required to achieve the interesting specific impulse 

range for these large currents. For the chosen anode radius, 
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these transcribe into mass flux densities from 0.10 to 4.30 
kg/m2 sec, a range which overlaps and extends the steady flow 
range of 0.15 to 2.00 kg/m2 sec. 

The outer face of the anode is allowed to extend almost 
to the vacuum tank wall, a radius of 17 in., so as not to in­
hi~it the exhaust plume growth and thus raise the anode fall 
voltage [54). The 2 percent thoriated tungsten cathode has a 
3/4-in. diameter base and extends 1 in. into the arc chamber. 
A photograph of the chamber showing the cathode, injector 

plugs, and part of the anode is displayed in Fig. lB. The 

assembled chamber and mass injection system are installed in 
a 3-ft. diameter x 6-ft. long Plexiglas vacuum tank [40} 
Before each shot the tank is evacuated to less than 10-5 torr, 
at which pressure the mean free path of the resident particles 
is considerably larger than the tank dimension. 

The operation sequences of the system begin with pres­
surization of the shock tube driver to 35 psia, and charging 
of the capacitor line to 10 kV. The diaphragm is then rup­
tured with a springloaded blade. The pressure wave propagating 
down the tube is first sampled by the small bleed tube which 
begins filling of the gas-triggered switch, and then is re­
corded by the end wall piezocrystal.This signal triggers an 
oscilloscope to display the delay time until switch break 
down and discharge initiation on a record of the integrated 
response of a Rogowski coil enclosing the chamber as ~hown in 
Fig. 19. A typical oscillogram is shown in Fig. 16. The Rogowski 
coil also triggers a second oscilloscope which sweeps at a 
much faster rate and monitors other diagnostic measurements, 
such as the electrode voltage, magnetic probe signatures, etc., 
during the first half-cycle only. To prevent spurious electro­
magnetic noise from distorting these traces, the oscilloscopes 
are enclosed in a screen room which is grounded to the anode 
by a 3-ft. wide by IS-ft. long copper ground plane. All leads 
from the Rogowski coil, voltage probe, and piezocrystal are 
dressed closely to this ground plane. 
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Luminosity Patterns 

Sample photographs of quasi-steady discharges in argon 
are shown in Fig. 20. These photographs, taken through a 5 psec 

Ke~r-cell shutter, display luminosity patterns for three dif­
ferent mass flow rates at a common current level of 17.5 kA. 
With ref3rence to Fig. 17 these discharges represent conditions 
of mass starvation (~ = 1.2 g/sec), mass overfeed (m = 36.0 

g/sec), and mass flow approximately appropriate to the antici­

pated specific impulse for argon (m = 5.9 g/sec). Just as in 
these photographs, over the entire range of conditions test.ed 

(mass flow rate from 1.2 glsec to 36.0 glsec and current from 
4.4 kA to 138 kA)1 the discharge is invariably axisymmetric 
with no evidence of spoking. Note also the sharp demarcation 
between dark: and light at the upstream edge of the luminous 
patterns, particularly in the tightly confined portion near 

the cathode tip. The effect is most pronounced for the low 

mass flow rate, and is not readily correlated with any features 
of the current density patterns discussed later. In general, 

it is found that the characteristics of such photographs are 
typical of the mass starvation or overfeed conditions, regard­
less of the cu~rent level, i.e., it is the combination of cur­
rent and mass flow rate which influences the discharge app~ar­

ance rather than either separately. 

Terminal Voltage 

The measurement of total voltage across the discharge 
chamber is instructive for several reasons: 
tiveness of the electromagnetic acceleration 

... ...a. 

first, the effec­
process should be 

reflected in a u x B or back: emf component. Second, little is 

known about the resistive component of discharge voltage at 
4 current levels above 10 amp. In the past, voltage measure-

menta have been used extensively in steady state experimentation 
to. compare arc performance with theoretical acceleration models. 
Figure 2ldisplay~ a typical voltage-current trace for the 17.5 kA 
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pulse and an argon mass flow rate of 3.8 g/sec. The slight 

droop in the current is due to the time constant of the in­
tegrating circuit: larger time constants yield perfectly flat 
profiles, but have less sensitivity. Note the sharp drop in 
the voltage signal at the beginning of the pulse from the 
applied 10 kV to about 180 volts. This is interpreted as 
signifying the attainment of thermionic emission by the cath­
ode, since any other mechanism would require substantially 

higher voltages to support this current density. Steady volt­
age traces of this sort are observed over the entire range of 
current and mass flow operation. Figure 22 summarizes these 

data. The reproducibility for each point is indicated by a 
small vertical line, if this exceeds the symbol size. 

These raw voltage data show t~e general trends of de­
crease with mass flow, anJ increase with discharge current 

anticipated from the electromagnetic thrust model. Precise 
correlation it:. difficult becaui.~e of inadequate knowledge of 
the various power loss mechanisms acting in the discharge. 
Specifically, the measured voltage must reflect not only the 
electromagnetic acceleration process, but also the energy trans­
f~r to the electrOde surfaces via their respective falls, and 
the electrothermal deposition into the gas stream via joule 
heating in the b"dy of the discharge, i.e., 

(3-2) 

where Vb = stkc.tromagl"E:tic thrust J20wer = discharge current 

T2 p2J 3 ( 2 
ra 

+ t) 2ffiJ = 2- /At. rc 32rr m . 
(3-3) 

Va = l20wer to anode 
discharge current 

Vc = .J2..ower to cathode 
discharge current (3-5) 
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v = electrothermal power to gas 
t discharge current 

(3-6) 

The magnitudes of Val Ve' and Ve and their depend-. 
ence on m and J are poorly known. It seems reasonable that 
Vc should be slightly higher than the work function of tung­

sten, say ~ 5 volts, a value ~onsistent with electric probe 

studies of similar dischar'J'_''<; in this laboratory (cf. Sec. VI) • 
These same studies indicate anode =alls in Lhe vicinity of 

15 volts up to currents of 300 kA. l'he depende',lc~ of Va and 

Vc on rn and J, although not yet studied in dl~tail, app('ars 

to be weak. 

The electrothermal power input encompasses the ioni­

zation of the flow, and all internal excitation, random 
thermal, and radiation processes which attend it. Some of 

this input may be recovered as useful thrust by electro­

thermal conversion in the exhaust plume and the remainder 
constitutes a frozen flow loss; the distinction is i~aterial 
so far as the contribution to the terminal voltage is con­

cern~d. It is common practice in estimating the electro­

thermal voltage to assume that the ionization potential ef­
fectively limits the temperature of the particulate species 
in tbe plasma, and even to make the approximation that the 

sole significant energy sink is the single ionization of each 
incomjng particle: 

(3,-7) 

where M is the atomic mass, e the electronic char.ge, and €I 

the first ionization potential. A second approximation to 

this approach inserts a constant factor to cover th~ excita­
tion, l'adiation, and random f-hermal modes that accor .• pany this 
ionization level. The significant element in either formula­
tion is the linsar coupling of Vt to '::'he mass flow, and this 

feature is clearly denied by the total voltage data of. this 

experiment. 

,~ . 
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Figure 23 shows the experimental data for J :::: 17.5 kA 

compared to cCilculated values of \lb· I correctod by V + V = 20 a c 
volts. The difference curve, which must be Vt , rather than . ".. 
increasing linearly wi th :-::, reaches a constant asymptote, V t 

implying no further therm<.ll input regardless of the increase 

in mass flux. Similar behavior is found at all other cur~ents 
/'-

studied, with Vt increasing linearly with current at a slope 

of 4.5 volt s/kA, 1. e., in this domain the plasma has become 

ohmic, with a fixer:l resistance of 0.0045 ohm • 

..9:!rrent Density D.istribut:i.on 

Enclosed current contours in the exhaust plum(' arid 

discharge chamber are mapped with standard magnetic probes of 

·ff38 Formvar wire, oriented in the r,z plane. Their integrated 

signatures present local time hjstories of the azimuthal mag­

netic field: cross plotting then yields the spatial distribu­

tion of the field at any given time, which, presuming azimuthal 

symmetry, is directly proportional to the fraction of the dis­

charge current enclosed by a circle at the given radius. In 

operation, four probes, mounted on a movable carriage within 

the exhaust tank, are positioned l"l.:;motely between each of a 

sequence of discharges to accumulate the necessary matrix of 

data. Figure 24 displays a typical map of the enclosed cur­

rent contours in the chamber and near-exhaust for a quasi­

steady condition. Although all of the stabilized current dis­

tributions closely resemble that shown in Fig. 24 a few char­

acteristic tendencies arc noted~ First, for conditions of 

mass overfeed, regardless of the level of current or mass flow 

rate individually, given contours are withdrawn slightly up­

stream into the chamber: for mass starvation, the contours 

are slightly m~re extended downstream into the plume. Second, 

no more than 50 percent of the total current ever projects 

outside the orifice: except for starvation cases, only ahout 

2S percent extends out the orifice. In all quasi-steady con­

ditions, no significant amount of current extends farther than 
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one orifice diameter outside of the orifice, either radially 
or axially. Third, the bulk of the current does not coin-

·cide with the luminosity p<lttelns, such as those shown in 

Fig. 20. This is in contrast to most pulsed plasma accel­
erators where the luminosity provides a very yood indication 
of the maximum current density location. Fourth, in all 

caseo st.udied, the current attachment on the cathode com­
pletely covers the surface, i.e., the effective radius of 

attachment for purposes of relation (3-1) is the maximum ma­

tel'ial radius. Fi.nally, for all cases of normal mass flow 

or mass overfE~d, the current distribution on the cathode 
is approximately uniform; for: conditions of mass starvation, 

this distributi~n becomes more peaked toward the cathode tip. 

I 
1 
! 
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IV. ENERGY TRANSFER FROM A PULSE NETWORK 
TO A PROPAGATING CURRENT SHEET (Wilbur) 

The purpose of this study is to identify and examine 

certain factors affecting the efficiency of conversion of 
electrical energy into thrust energy for a pulsed plasma ac­
celerator. Within the scope of this investigation, no attempt 
has been made to deal wj th rea11.stic space hardware, or to 

optimize overall system performance. Rather the effort has 
been confined to matching a particularly simple and well 

understood accelerating discharge, the large radius linear 
pinch, with a pulse power source of conveniently variable 
characteristics, in this case a lumped element, low i~pedance 

pulse line. 

In most conventional power systems, optimum energy 
transfer efficiency is achieved when the impedance of the 
load is equal to that of the power source. For example, con­
sider the transfer of energy from an ideal transmission line, 

initially charged to a voltage Vo ' to a resistance connected 
across its terminals. The transmission line may be charac­
terized by an impedance ZL =VL'/C', and a pulse duration 
r= 21~, where L' is the inductance per unit length and 

C' the capacitance per unit length of a line of total length 
1. The qualitative behavior cf the current through and volt­
age across the resistor is sht)wn in Fig. 25 for three l"elative 
magnitudes of resistance and characteristic line impedance. 

For ZL :> H, current oscillates back and forth through the 
load. and several characteristic times are required to achieve 
substantial energy transfer to the load. For ZL"' H, charge 
is only incompletely removed from the line in the first pulse 
increment, and several additional wave reflections from the 

line terminals are needed to complete the energy transfer. 
Only in the matched case, ZL H, is all of the energy ini­
tially stored in the transmission line transferred to the 

resistor in one pulse time t. 

; 1 
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If the simple resistive load is repluced by a pulsed 

plasma accelerctor, one might similarly exp~ct optimum energy 
transfer when::he discharge impedance is equal to the driving 

line impedance, provided also that the pulse duration is prop­
erly matched to some characteristic acceler.ation time. How­

ever, the impedance implicit in the dynamical df.welopment of a 

gas-accelerating discharge is not adequately represented by 

an equivalent resistance, and this complication refle·-::ts it­

self into substantial distortion of the simple impE:dance­

match criterion • 

. Theoretical Analysis 

The dynamics of the curl~ent sheet motion can be most 

simply dE\scribed by a "snowplow" relation which expresses a 
-a. 'Itt .. ' 

balance between the j x B body force and the time rate of 

change of momentum associated with the accumulation and accel­

eration of mass on the current sheet. For example, the 
equation in linear pinch geometry takes the form 

d [ (2 2) dr] r dt r l - r dt = (4-1) 

where Po is the permeability of ~ree space, 1 is the total cur­

rent flowing through the discharge chamber, and f is the am­
bient gas density in the discharge chamber of radius r

1
• The 

radius of the cylindrical curre11t sheet, r, through which I 

is assumed to flow, also defines an inductance of the dis­
charge through the relation 

L = ~,tm.. ....Q. ph (r) 
D 2fT r (4-2) 

The voltage drop across the discharge is given by: 

(4-3) 

D""'»"'40 .. 'jWN&j:..tifiWii.ioll.j'l0nh1··i::r~·~.&'(*,,, )'.f~lIl1l)6 ilI1HC~~ '.' ,_" •. ,._, . 
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where ~ is the resistance of the discharge, ~ is the mag­
netic flux linked by the dis!':'harqe, and LD is the inductance 
defined by Eg. (4-2}. 

In these experiments the circuit also contains a switch, 
which to a good approximation may be represented a~, a fixed re­
sistance and inductance, Rand L. The switch and discharge s s 
chamber comprise the total load driven by the pulse line, and 
the voltage across this load may therefore be written: 

(4-4) 

The pulse line power source may be described by Kirchoff's 
equations applied to each loop and node in the pulse network 
(Fig. 26). 

and 

dQl == 
dt 

dQ. 
--..!. :::: 
dt 

dQ 
-..Jl = dt 

S! 
dt 

• 
• 

dl. 
..J. 
dt 

d1n-l 
dt 

1 - I 1 

1. - 1i - l l. 

- In-I 

V -T .. 
L 

°I/C 

= 
Qi+1 - °i 

LC 

(n equations) (4-5) 

(n equations) (4-6) 

where 0i represents the electrical charge on the ith capacitor. 

'. ! 
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This n station LC ladder network may also be describe~ by a 

nominal line impedance and a pulse duration co:c:cesponding to 

those given for the ickal t.ra!1smis~)ion line, Le., ZL = Vf7C 
and· to;; 2n ILC. 

Equations (4-1) I (~2), r (4-4), (4-5) and (4-6) ~rE:: 2n + 3 
equations in 2n + 3 dependt:!llt variables (n pulse line CUl.'­

rents, n pulse line capacitor charges, VT, r, and Ln) and 
the independent variable time which describe the behavior (\f 

the pinch discharge-pulse line system. T~1ey have been solved 

here on the digital computer using a Runge-Kutta technique. 
r'igure 27 shows current and voltage waveforms and the current 

sheet trajectory C~)lTIputed for a set of input parameters typ­

ical of those prevailing in the experiments. Figure 27a shows 

the total current flcwing through the switch and pinch cham­

ber as a function of time, compared with that for an i'1eal 

pulse line discharged through a matched resistance. The time 

t"e' shown on all of the ordinates of Fig. 27 is the charac­
J 

teristic time over which the accelerat.ion of the current sheet 

occurs. In an a~tual thruster t , w~uld be the time of ejec-
e) 

tion of the plasma, determined by the length of the thruster, 

but for the closed chamber geometry considered here the ,plasma 

is considered "ejected" when the sheet reaches a I-in. radiu",. 

One inch was selected because accurate experimental investi­

gation is difficult at lesser radii and yet the acceleration 

process should be allowed to occur over as large a distdnce 

as possible in order to prevent the initiation effects from 

dominating the behavior of the system. Figure 27b shows the 

volt~ge across the end of the paIse line (i.e., across the 

switch and discharqe chamber) as a function of time comparE-d 
with tne corresponding matched impedance voltage waveform for 

a purely resistive load. 

The evident distortions of the current and voltage 
waveforms from the idealized case can be assigned t~ the 
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following causes: 

1. The initial inductance associated with the switch 

and discharge configuration constrains the current to a 

finite rise time. 

2. Unlike the constant resistive load, the impedance 

of the discharge varies with time. An expression for this 

discharge impedance can be obtained by dividing the voltage 

developed across the discharge chamber CEq. (4-~1 by the total 

current flowing through the discharge. 

VCH dLD LD dI 
ZD = I = l1J + dt + T dt .(4-7) 

Since the plasma resistance is small and the current pulses 

are nearly flattopped, the second term dominates this expres­

sion, yielding, from Eq. (4-2), . 

poh dr 
2trr dt (4 .... 8) 

The current sheet tr.ajectory of Fig. 27c shows an increasing 

velocity with decreasing radius, both of which contribute to 

an impedance that increases with time. This effect causes 

the voltage to rise and current to drop once the initial rise 

time has elapsed. 

3. Since the inductance of the discharge, which is 

small initially, increases to a relatively large value as the 

discharge proceeds, a considerable amount of energy is stored 

in the magnetic field of the discharge at the time the pulse 

begins to decay. This causes the current to continue to flow 

after the voltage c~ross the discharge chamber reverses. If 

the characteristic ejection time, r., is long compared to 
eJ 

the pulse length, t, the energy stored in this field will be 

transferred, in part at least, back into the pulse network 

and will later produce a negative current through the dis­

charge charr~er. Even under conditions where the average 
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impedance of the discharge is much greater than that of the 
line, the negative current is observed. In such cases the 
current pulse is protracted far beyond the pulse duration 

time, 1'" somewhat reminiscent of the stepwise decay of the 
overdamped resistive load (Fig. 25b), but the large inductive 
effects eventually force sufficient negative voltage onto 

the pulse line to cause tho current reversal. 

The analysis used to obtain the current and voltage 
also yields the distribution of energy in the pulse network, 
switch, and discharge chamber. This energy may appear in 
the €ollowing forms: 

1. Energy stored capacitively in the elec­
tric fields and inductively in the magnetic fields 
of the pulse network. 

2. Energy stored inductively in the magnetic 

field associated with the switch discharge. 

3. Energy stored inductively in the magnetic 
field of the main discharge. 

4. .Kinetic energy of the mass accumulated "n 
the propagating current sheet. In the spirit of this 
study, it is this organiz~d streamiDu motion of the 
propellant mass which represents the thrust energy of 
the accelerator, and is the component to be optimized. 

5. Energy invested in ionization, dissociation, 
excitation, and random thermal modes of the plasma. 
Energy input of this category can enter the theoretical 
model via the following two mechanisms: (a) the resis­
tive heating input due to the plasma resistance ~I and 
(b) the gasdynamic loss associated with acceleration of 
particles i~itially at rest to the current sheet veloc­
ity as a result of collisions with particles already 
collected. This loss, which is required to satisfy 
energy conservation under the constraint of momentum 

.j 
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conservation as expressed by the snowplow equation, 
is discussed in Ref. 22. 

6. Thermal energy deposition in the switch 
plasma. 

Although it is quite possible that thermal energy in 
an accelerated plasma may be converted into thrust energy by 
a suitable exhaust configuration, the efficiency of the 
pulsed plasma accelerator is defined conservatively here as 

the ratio of the organized kinetic energy measured at the 
characteristic tJ.me, KE " to the initial energy stored in 

e) 
the pulse line, E. The efficiency so defined is found to o 
be a function of both the relative impedance match between 
the line and the load, and of the relative magnitudes of the 
pulse duration t' and the ejection time r,. For example, 

e) 

variation of the pulse duration by changing the number of 
stations in the pulse line while helding the line impedance 
constant (ZL = 11.3 m1l) results in the efficiency curve shown 
in Fig. 28. The quantity Zo shown as a parameter is an average 

discharge impedance calculated using Eg. (4-9) and the sheet ve­
locity at midradius. '1'he time avera~J(: of the impedance is 

approximately equal to the impedance at this radius, except 
for very short pulse durations, iiT. ~ 0.5, which are out-

e) 
side the range of primary interest. 

For current pulse lengths substantially less than the 
optimum value of Fig. 28 the magnitude of the current is less 
than the maximum value over a large fraction of the accelera­
tion time and hence the current sheet accelerates less vigor­
ously and a proportionately smaller fraction of the initial 
line energy is transferred into kinetic energy of the sheet. 

As the pulse length is increased the current remains high for 
a larger fraction of the acceleration time and the current 
sheet acquires a larger fraction of the initial energy. In­
creases in pulse length beyond the optimum value result in a 
decrease in efficiency because a considerable fraction of the 
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initial line energy remains in the pulse line and in mag-' 
netic fields associated with the switch and the di~charge 
at r .. 

eJ 

For very short pulse lengths, the current waveform 
may 90 through two or more half cycles before r " and the 

eJ 
efficiency will go through corresponding local maxima and 
minima. This analysis is not extended to the very short 
pulses producing these subsequent maxima because the theo­

retical model used here is known to break down when current 
reversal occurs because of the generation of secondary cur­
rent sheets. 

If one allows both the pulse length and the charac­
teristic impedance of the pulse line to vary, a series of 
curves similar to Fig. 28 is obtained. A typical set vf such 
curves is shown in Fig. 29 from which the optimum pulse 
length is seen to decrease as the characterist.ic impedance 
does. Of primary interest, however, is the locus of the 
maxima of the set of curves, shown in Fig. 30 as a function 
of the driving line impedance. Also plotted for comparison 
is the efficiency of energy transfer from a transmission line 
to a pure resistance within a time equal to the pulse duration 
of the line. 

Note that while the maximum efficiency for the resis­
tive load is achieved when the impedance of the line is equal 
to the resistance of the load, the efficiency of transfer to 
the pinch discharge load shows no such maximum as a function 

of driving line impedance. Rather there is a monotonic in-
crease of efficiency with reduction of ZL. This effect is 
attributable to the more vig'orously accelerating current 
sheets produced by the lower impedance, higher current sources. 
Rapidly accelerating sheets are known to sustain less energy 
loss to thermal modes as a result of gasdynamic effects [22] 
and this gain more than balances the electrical inefficiency 
associated with the increasing impedance mbmatch. The large 
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diffel~ence in magnitude of the two curves of Fig. 30 is 

due primarily to the method of defining efficiency for the 

accelerator, and maybe somewhat misleading. Much of the 
energy not transferred to directed kinetic motion of the 

plasma has been deposited in it in thermal form so that, in 
this sense, a major portion of the initial line energy has 

indeed been delivered to the "load." In addition, no effort 
has been made here to optimize the efficiency through selec­

tion of the discharge and switch characteristics; rather the 

calculations presented are those corx'esponding to the experi­

mental conditions encountered in the laboratory equipment. 

In this equipment the losses in the switch are quite large, 

and they account for a significant reduction in the magnitude 
of the efficiency. 

Experim~~ Behayior 

In order to verify the mathematical description and 

characteristic properties of the pulse line without the com­
p1icati.on of the pinch discharge, typical pulse line config­
urations were discharged through a resistor capable of with­

standing the high currents and voltages produced when such a 

line is discharged from 10 kV. The mathematical model des­

cribed.in the preceding section was modified by substituting 
a resistance and fixE::d inductance for the equations describing 

the dynamics of the discharge. The extent of the agreement 

between the mathematical model and the actual pulse line is 

shown in Fig. 31. The waveforms differ from those of the 
ideal resistor discharging a transmission line (Fig. 25c) 

first because this line has lumped elements, rather than 
distributed parameters, and second because the included in­
ductance associated with the resistor and switch restrain the 
rate of rise and decay of the current at the beginning and 

end of the pulse. 

The measured capacitance and inductance of the average 

.. "'ti1)·'f'.rQ:i'_~~Ii·.3'Mliiit"'f'.~""' __ Ati";ii1II'I\I.i1)QJi· ••• , lr,~ ·f,i¥~ ... ··Ii'~';'i""lk.d t'.' 

'w"'-""'. __ ,. __ .• J . .;.. ... ;.c., ...• :~, .• ...;." . .;.;..,~;,.~., ... ;", ~ ., •. :, •. ", .. "., •. , •• ;.", .. ,.> •.• ~' 

}f 
] 
".f 

j 
;~ 
! 

'4 
t 1 

{ . . , 
.~ 
J 
.~ 
r. 
$ 
! 
,~ 
'1 
.4 
" ~ 
j 
,; 
;:~ ,,. 
,i 
1 
,1 
-< 



r 160 ka 
z 
w 
0:: 
0:: 
:::> 
'''; 

67 

1.0 2.0 3.0 4.0 
TIME (fL sec ) 

1.0 2.0 3.0 4.0 
TIME (fL sec) 

(a) THEORETICAL RESULTS 

f- 160 kc­
z 
l.LJ 
a:: 
a:: 
::) 

u 0-
4.8 kv-

0.5 fL sec/DIV 

( b) EXPERIMENTAL RESULTS 

L.-SIO 

THEORETICAL AND EXPERIMENTAL WAVEFORMS 
FROM MATCHED CAPACITOR LINE 

FIGURE 31 



; 
I 

) 
! .. 
f 

68 

unit used in these experiments are 6.35 ± 0.05 microfarads 

and 7.5 + 0.4 nanohenries.+ 'fhey are designed to permit low 

inductance connection of a~jacent units thereby facilitating 

variation of the pulse duration and the ("haracte:cistic line 

impedance. Pulse duration is varied by changing the number 

of stations in a line of capacitors (i.e., the number of 

units connected in tandem). Line impedance is varied by 

changing the number of these lines connected in parallel a­

cross the di scharge chamber. Figure 32 shows a typical ·:;on­

figuration with 12 of the units arranged around the discharge 

chamber to produce a pulse three times the length (three units 

in tandem) and one-fourth the impedance (four lines of units 

in parallel) of the single unit pulse. 

Experi:'1ental €valuation of the efficiency (KEej/Eo) 

requires the determination of organized kinetic motion of the 

current sheet mass, in ratio to the initial line energy, which 

is sin~ly the product of cha~ging voltage and total capacitance. 

Since direct measurement of the energy in organized kinetic 

motion of the CLlrrent S}~I''''·t is not feasible in a closed dis­

charge chamber, this determination is based on the assumption 

that all of the mass the current sheet encounters is collected 

and occelerated, i.e., that the snowplow model is a valid rep­

resentation of t~e physical process. This reduces the problem 

to measurement of the velocity of the mass associated with the 

current sheet as discussed in Sec. V of this report, the 

arrival of the current sheet as sensed by a magnetic field 

probe, precedes very slightly the arrival of the associated 

mass motion, sensed by the pressure probe, and this separation 

remains essentially COT'''; <.?lnt over most of the trajectory. In 

view of this correlatichll 1:he physically smaller and simpler 

magnetic field probes were used to determine current sheet 

+ These prototype low inductance capacitors were developed in 

conjunction with the Corson Manufacturing Corp. 
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velocities and these are assumed to be the same as those of 

the mass trajectori~s. Probes were located along a common 
radius because errors in the measurement of current sheet 
velocity associated with probing in the wdke of another probe 

were found to be far less than those Que to azimuthal current 

sheet irregularities over sufficient angular separation to 

keep probes out of each other's wake. 

The experimental measurements discussed above have 
been made in argon at an ambien'::; density of 2.2 x 10-4 kg/m3 

for various pulse durations a:ld pulse line impedances l and 
efficiencies based on these meapurements are presented in 

Fig. 33a. The corresponding theoretical curves are shown in 
Fig. 33b. The points o~ the theoretical curves correspond to 

'data points siMilarly located on the experimental curves. 

Although 'he snowplow model used in the theoretical 
calculations requires only the gas density as an input, it 

may be that other gas properties such ao ionization potential, 
molecular weight, or conductivity play an important role in 
the acceleration process under the efficient energy transfer 

conditions at which these experiments were performed. In 

order to investigate possible effects due to gas properties, 

measurements were also made in nitrogen, krypton I and hydro­

gen.These measurements were made at the same ambient mass 

density as those in argon, and therefore the efficiency 

curves presen .. ~d in Figs. 34a1 b and c should also corre­
spond to the theoretical curves of Fig. 33b. 

The following qualitative agreements between the ex­
perimental and theoretical results can be identified: 

1. For a pulse line of a given impedance there is 
one length of line which gives an optimum efficiency. 

2. As the impedance of the pulse line is decreased 

the corresponding optimum pulse length for the line also de­

creases. 
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The following differences between the theoretical and experi­
mental results obtained in argon, nitrogen, and krypton are, 
however, also apparent: 

1. Rather than showing the theoretically predicted 
increasing optimum efficiency with decreasing pulse line im­
pedance, the experimental curves show n leveling of thi~ locus 

of the efficiency maxima near an impedance ratio of one. 

2. The optimum pulse lengths for lines of given im­
pedance are lower than the corresponding theoretical values. 

3. Because the experimental velocities are somewhat 
lower than the calculated values, impedance ratios ZL/Zo 
specified on the experimental curves are higher than those 

on the corresponding theoretical curves. 

4. The magnitudes of the measured efficiencies are 
significantly less than those predicted theoretically. 

The hydrogen data of Fig. 34c, unlike those of the other 
gases, show good agreement in both magnitude and qualitative 
behavior with the theoretical results. The improved corre­
lation reflects the fact that current sheet velocities mea­
sured in hydrogen correspond much more closely to the theo­
retical velocities than the velocities measured in the heavier 
test gases. The greater experimental scatter in the hydrogen 
data occurs because dB/dt peaks used to determine current 
sheet velocities are not as reproducible or well defined in 
hydrogen as they are in the other test gases. 

The discrepancies between theoretically predicted and 
meas~red velocities in the heavier gases which result in the 
lower experimental efficiencies can be assigned to a failure 
of all of the current flowing through the discharge chamber 
to concentrate in a thin sheet as the snowplow model assumes. 
Any current which flows in the region behind the advancing 

current sheet reduces the inductance [Eq. (4-2)] and the imped­
ance [Eq. (4-8)] of the discharge, thereby predicating a lower 
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ve10city sheet. Evidence that the current flowing in the 
discharge chamber is not confined to a thin sheet can be 
presented in the form of discharge chamber current and volt­
age oscillograms obtained in hydrogen, the corresponding the­
oretically p.redicted waveforms and the oscillograms obtained 
in a heavy gas (argon) shown in Fig. 35. The theoretical 
curves of Fig. 35a display the increase of discharge imped­
ance with current sheet progress which forces the cur.rent 
magnitude to decrease and the discharge chamber "lolcage to 

rise after the initial characteristic current rise time. The 
experimental waveforms obtained in hydrogen (Fig. 35b) ex­
hibit this same type of behavior, but the corresponding wave­
forms obtained in argon (Fig. 35c) show the discharge chamber 
vo1tage decaying and the current co·-tinuing to rise at a 
lesser rate, long after the charact~ristic rise time. Such 

behavior can exist only if the net load impedance is de­
creasing. Since measured trajectories show the current sheet 
is accelerating inward during this period (increasing load 
impedance), parallel current paths must exist which cause 
the decrease in net impedance observed in the argon wave­
forms. 

This effect may be illustrated more directly by re­
writing Eqs. (4-2) and (4-4) in the form 

t 

1; (VCH(S) - l(~)~)~~ 
LD(t) = let) (4:-9) 

ret) = r [2nLD(t) ] 
exp -

0 poh (4-10) 

and applying them to the voltage and current data of Fig. 3S 
together with the measured resistance of the discharge 
(Rn = 10-4 ohms), to obtain first the net inductance seen by 
the pulse line and then the trajectory of the mean current 
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flowing in the discharge chamber which corresponds to this 

net inductance. These trajectories, which are shown in 
Figs. 3Gb and c for hydrogen and argon are labeled "mean cur­

rent." The trajectory of the high-current density sheet, on 

the other hand, is determined experimentally by sensing. the 

time of arrival of the peak of current density with a mag­

netic probe and is shown in Figs. 3Gb and c as "dB/dt tra­
jectory." For the ideal snowplow model the mean current and 
peak current density trajectories are clearly identical (Fig. 

36a) and for the hydrogen data they show a close correspond­

ence, but for the typical argon discharge the mean current 
trajectory lags behind the trajectory of the maximum current 

density. This implies that the experimental inductance and 
time derivative of inductance are less than the ideal snow­
plow model predicts and thus that the discrepancy between the 

theoretical ana experimental efficiency is due to the failure 

of the model to account for the diffuse current pattern set 
up in the discharge ch~,~er behind the propagating high cur­

rent density sheet. Additional evidence for the existence 

of a diffuse current pattern can be found in the magnetic 

probe records, but quantitative interpretation of these rec­

~rds is difficult because the probes produce local perturba­

tions in the magnitude of the magnetic field under near im­
pedance match conditions. 

Summary 

The efficiency of energy transfer from a current pulse 

network into organized motion of the mass associated with the 

propagating current sheet of a pulsed plasma accelerator has 

been studied theoretically and experimentally. The theory, 
which is based on a "snowplow" model, predicts maximum ef­

ficiency when the current sheet is driven by a pulse line 
that (1) has an impedance significantly below the average dis­
charge impedance and (2) produces a pulse which exhibits cur-
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rent reversal near the time when the mass would be expelled 

from the accelerator. The experimental results suggest the 

optimum efficiency will be realized when the line impedance 

is near the discharge impedance, but otherwise confirm the 

predicted qualitative variation of efficiency with pulse line 
impedance and pulse duration. The magnitudes of efficiencies 

in argon, krypton, and nitrogen are observed to be considerably 

less than the theoretical values, and these quantitative dis­

crepancies have been related to the failure of the snowplow 

model to account for a fraction of the current which does not 

flow through the propagating high-current density sheet. Hy­

drogen data which correlate more closely with the theoretical 

results manifest a larger fraction of the current flow through 

the sheet. 
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V. PRESSURE DISTRIBUTION IN THE STRUCTUR3 
OF A PROPAGATING Ci.JRHENT SHEET (York) 

In a properly designed and operated pulsed plasma ac­

celerator, the propagating current s~eet entrains a large 

fraction of ambient gas, but the details of the entrainment 

process and the mass distributlon within the sheet have so 

far evaded direct observation. This section describLG a 

series of experiments to probe the interior of a current 

sheet in argon with a high-speed, high-reRolution pressure 

transducer, correlated with other diagnostics, to determine 

the profile of gas-kinetic pressure and thereby to infer the 

distributions of mass density and related properties. 

Apparatus and Current Sheet Observations 

The propagating current sheet is gener~ted in the 

closed-chamber linear pinch djscharge device shown in Fig. 37 

driven by a 50-pf pulse-forming network charged to 10 kV •. 

The discharge chamber is 8-in. in diameter, has a 2-in. elec­

trode spacing and is initially filled with argon of a uniform 

pressure of 0.1 torr. The circuit current waveform, shown in 

Fig. 38a is tailored empirically to provide a constant veloc­

ity, constant current density sheet over its radial incursion. 

Also shown in Fig. 38b,c,d is a series of radial-view Kerr­

cell photographs, taken through the sidewall Pyrex insulator. 

via an opening in the outer return conductor. Magnetic pLobe 

records taken simultaneously with such data indicate that the 

visible luminous fronts correspond closely to the positions 

of the current sheet. Departur~ from the ideal cylindrical 

sheet configuration is evident, both as a diffusion of the 

structure near the anode and to a lesser extent near the cath­

ode, and as a slight inclination of the sheet with respect to 

the axis. However, the current sheet in the mid-eiectrode 

region between radii of 3 in. and 1 1/2 in. is found to be 
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well-defined and stable, with a current density of about 108 

amp/m2• a thickness of about 1. 5 cm, and a constant radial 
. 4 

velocity of about 3 x 10 m/sec. All of the subsequent ex-
periments are confined to this mid-electrode portion of the 

sheet. 

Pressure Probe Development 

An ideal probe for the designed measurement would 
faithfully respond to the profile of gas-kinetic pressure in 

the passing current sheet with a linear output, free of spu·­

rious signal, while negligibly disturbing the local sheet 

structure. For the sheet intensity, width, and velocity in­

volved here, this translates into requirements of millime,ter 

~patial resolution, tenth-microsecond (real-time) rise time, 
and a linear sensitivity of at least 0.1 mV/torr, uncompromised 
by the electromagnetic noise from the adjacent discharge. 

The state-of-the-art performance of various existing 

pressure probes applicable to plasma studies, as recently sur­

veyed by Jones and Vlases (A-3) does not meet the above re­

quirements. Several attempts have been made to probe tran­

sient discharges of the present type with direct-contact pi­

ezoelectric devices (A-4,A-S) but these served only to define 

nominal time-of-arrival of relatively large pressure pulses. 
To follow exactly the pressure profiles on a submicrosecond 

time scale requires the development of a new, highly special­
ized probe. 

Briefly, the probe concept found to be optimum for this 

application involves a piezoelectric ceramic separated from the 
plasma by a minimum of insulation, and suitably supported by a 

structure of ,backing rod, coaxial electrode connections, and 

an insulated housing as shown in Fig. 39. The most critical 

aspect of probe design affecting the linearity of its response 

is the proper matching of the backing rod to that of the piezo­
ceramic. The common practice of matching the acoustic impedance, 
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Z :: [E (Youngs modulus) x e (density) ] 1/2, of the two ele­

ments to minimize the thickness oscillations was found to be 

inadequate. Specifically, using PZT 5-A ceramic elements 
(Clevite Corp., Cleveland, Ohio) with brass, tin, and n6npo­

larized PZT 5-A backing elements, the internal thickness oscil­
lations changed little while the radial mode oscillations dom­
inated the probe reaponse. An analytical and experimental 
study of the stress conditions across the crystal-backing rod 

interface (61) indicated that the lateral strain, €R oc ~ 
(Poisson's ratio)/E(Youngs modulus) would be critical, and 

that the radial wave distortion could be reduced by specifying 

£R(backing rod) ~< !R(ceramic), i.e., the backing rod should 

serve to damp the radial oscillations. Stainless steel was 
found to be the best common material from this standpoint. 

The prototype transducers use ceramic elements O.OlO-in. 

thick, 5/32-in. (4 rom) in diameter, encased in the insulated 

coaxial arrangement shown in Fig. 39. A 5/l6-in. o.d. Pyrex 
encased unit is used for radial probing and a 1/2-in. o.d. , 

nylon encased unit for axial probing. The electrical insula­
tion on the crystal face consists of 1 layer of 1 mil thick 
Scotch #74 insulating tape covered with one thin layer of 
Zapon Aquanite (Glidden) lacquer. The response of this type 

probe to head-on reflection of a shock wave in a shock tube 

is presented in Fig. 40. The hi~h-frequency oscillations are 

due to thickness mode stress propagation but do not inhibit 

evaluation of the real-pressure mean response. The onset of 

the more critical lower frequency radial mode oscillation is 

delayed until about 1.5 psec, allowing reasonable measurements 

of pressure to be made within that interval. Calibration was 

carried out over a range of reflected shock waves in 0.5 torr 
to 1.0 atm argon, producing pressure differences up to 5.2 atm: 

over the entire range the probe response was linear with the 
pressure increase. To preserve the frequency response, the 

probing unit is coupled with a battery powered cathode follower 

when used \'Iithin the discharge. 

, 
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fressure Probe - Current Sheet I~ction 

To examine the current sheet away from the electrode 

surfaces, for the reasons discussed above, it is necessary 

for the body of the probe to project into the chamber. In­

terpretation of its response thus must be based on some under­

standing of the interaction of the current sheet with the 

probing body. Figure 41 displays Kerr-cell photographs of the 
luminosity patterns developed over the radial probing shape 

at R = 2", mid-plane. After the passage of the well-defined 

rear surface of sheet luminosity, a form of detached "bow 

wave" appears shrOUding the bluff probe end, perhaps indica­
tive of a residual gas flow behind the sheet. Similar lumi­

nous waves are observed on the upstream (stagnation) side of 

the axial probe body. In the hope of reducing spurious dif­

fraction signals on the sensing surface of the axial probe, 

it was fitted with a sharp-leading edge annular collar. Photo­

graphs of the sheet-induced flow over this configuration are 
shown in Fig. 42. Note that a luminous wave is still visible 

over the sensitive probe surface, and further, that the wave­
surface angle is distinctly different for the probe mounted on 

the cathode than for that mounted on the anode. Such behavior 

suggests that flow deflection occurs at the leading edge in 

each case and is perhaps indicative of a flow inclination 
associated with the slightly tilted sheet. 

A complementary fa·ctor to be considered is the effect 

~ .. 

of the probe body, and any appendages to it, on the distribution 

of current density within the sheet. Figure 43 shows simulta­
neous records of axial pressure and magnetic induction change, . 
B9,--here essentially proportional to local current density--

taken with several different probing shapes. Note that the 

distortion in current density profile caused by a "flow iso­
lator" far outweighs any improvement in the pressure response, 

indicating that a bare probe, without isoldtor, is the optimum 

arrangement for obtaining undistorted, well-correlated mea­

surements. 
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Experimental Determination of Current Sheet Pr.ofiles 

The current sheet structure is probed with the pres­

sure sensing instruments described above, with magnetic in­

duction coils, and with double electric field probes. Cir­

cuit current is measured with an external Rogowski loop. The 

magnetic probes of Formvar-coated copper wire, 2.4 mm diame­

ter, are mounted on the pressure probe Lody, directly adjacent 

to the pressure-sensing surface to insure exact time correla­

tion. The el~ctric field probes are conically shaped with a 

2.5 rom diamett:r ring electrode separate·1 by a 1. 85 mm gap 

from a tip electrode of equal area. Data are recorded with 

the axial pressure probe mounted on the anode and on the cath­

ode (Fig. 42). The axial and radial probes are separated by 

a 300 azimuthal angle to aV0id mutual distortion; tests made 

with the probes arranged in several different relative posi­

tions confirmed that such a configuration allowed exact time 

correlation of the data. Three separate discharges are re­

quired to acquire complete data at a~y one poi .. _ in the chamber; 

the magnetic probe measurement is repeated as a control: . 
Discharge 1: PR, EZ' I, Be . 
Discharge 2: Pz(C), ER, Be' Be 

• Discharge 3: Pz (.~) , E
R

, Be' Be 

TYVical results, time-correlated using the common Be signal, 

are presented in Fig. 44. 

On the basis of such data, we identify three segments 

of the current sheet structure: 

~gion I, characterized by intense current 

conduction, isotropic pressure rQ~ponse of rel­

atively small magnitude, and finite a).J.al and 

radial electric fields. 

Region II, characterized by relatively small 

current density, a strong, discontinuous radial 
[ 
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pressure response, and different magnitudes 

of axial pressure depending on the probe 

orientation. 

Region III, characterized by negligible 
current density and radial pressure response, 

approximately equal axial pressures, and strong 

axial electric field and azimuthal magnetic 

fields. 

Two features of this structural pattern are of particular 

significance: (1) there is a distinct delay (~0.2 psec) . 
between the Be peak and the sharp pressure rise, implying 

a corresponding spatial separation of 0.6 em between the 
position of maximum current density, and the leading edge 

of the accumulated mass. (2) The ~brupt pressure rise is 

quickly followed by a rapid expansion, implying that the 

accumulated mass is confined to a narrow layer, -- 0.1 cm 

thick. 

Similar data obtained at other radii between 3 in. 

and 1 1/2 in. indicate that all measured properties in each 
"'" of the three regions remain virtually constant as the sheet 

implodes, with the exceptions of the radial pressure in 

Region II which increases with sheet progression, and the . 
separation between Be peak and pressure discontinuity, which 

inc,reases. 

Reduction of magnetic and electric probe records to 
profiles of current density and electric field proceeds in 

standard fashion, but extraction of gas-kinetic pressure pro­

files from the piezoelectr:k signatures involves consideration 
of both electrostatic sheath and gasdynamic effects [61). Re­

garding the sheath effect, a momentum analysis of particles 

~treaming between the plasma and the probe surface indicates 
that the pressures sensed by the piezo-element are equal to 

the gas-kinetic pressure in the plasma. An exact analysis 
of the gasdynamic interaction is not possible because of the 
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transient nonequilibrium nature of the event, but these ef­
fects can be estimated to establish approximate relation­
ships. The transient character of the interaction, along 
with estimates of local plasma properties, indicate that 
effective "cold wall" conditions prevail, Le., the charac­
teristic time £1 . thermal transport is of the order of that 
for fluid dynamic adjustments, suggesting that NewtonJ.an 
analysis may be applicable. At worst such an approach should 
serve to correlate first-order effects. In this spirit, for 
example, in Region I, where PR ~ Pz(C} ~ PZ{A} implying 

negligible gasdynamic interaction, then PSTAT ~ PZ• For 

Region II, where PR »Pz(C) »PZ(A) I PR -= nInAVs 2 
while 

Pz(C) ::::::::. PSTAT + nInA(V
s sin </»2 when </> is the angle of sheet 

tilt and Pz{C) is corrected for the effects of zone (II) thick­
ness relative to the element size. In Region III, PR > Pz(C) 
~ Pz(A), and so PSTAT ~ Pz • The sheet pressure profiles 

computed from these relations are presented in Fig. 45. 

Current Sheet Structure and Dynamics 

The degree of ionization within the current sheet can 
be estimated from measurements of voltage drop across the 
sheet discharge. Presuming electron current carriers, the 
corresponding energy increment is balanced with energy loss 
by inelastic collision to indicate a mean electron temperature 
of about 4 eV - a value compatible with an assumption of full 
single ionization near the sheet, leading edge. 

The intense current conduction in Region Ii can be 
described by a generali.zed Ohm's law, 

...,\ 

j = [~ ...,\ ... P j x B] G' E+vxB+~---one n e e e 

From experimental data, the electron pressure gradient is 

....... I I. k. ., ~ 4; .L .z * "SHiRr ::::c_wu === 

(5-1) 
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negligible, and further jR ~ 9' j z «jz' so that 

(5-2) 

estimating radial ion veJocity from radial electric field 
ensrgy arguments, and using measured values of ER, Be it is 
found that the bulk of the current in Region I is carried by 

electrons: 

(5-3) 

The radial electri~ field in Region I appears to be the mech­
anism for transfer of j x B force density from the electrons 
to the ions. 

The pressure data can be incorporated into the sheet 
structure analysis in the following manner: the radial pres­
sure is related to heavy particle number density (n) by 
PR = nmAvR

2 and the axial (st~tic) pressure is related to the 

gas-kinetic temperature (T) through the equation of state 

Ion velocities in Region I may be estimated from collisionless 
energetics through the radial electric field: the tadial ve­
locityof the particles in the entrained zone (II) is defined 
as the measured sheet speed, vR = Vs; in Region III with negli­
gible current density and an estimated moderate conductivity, 
vn ~ Ez/Be • The density profile estimated by the above pro­
cedures is' presented in Fig. 46: the temperature profile in­

dicated by combining the pressure and density in the equation 
of state is presented in Fig. 47. The particle density pro­
file is related to a sweeping parameter, S, defined as the 
ratio of entrained mass to that originally in the volume swept 
by the sheet, in the form 

(5-5) 
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where r is the thickness of Region II with density nIl' 
n is ambient density, and R is chamber radius; G is de-o 0 
termined from the reduction of axial pressure response time 
during the sheet sweeping event. Typically, V = 3xl04 m/sec, s 

G = 1.2 rom, nIl = 1.6 x 10-16 cm-3, and S = 0.90 indicating 

a very efficiently sweeping sheet. 

A radial momentum balance across the current sheet 

profile results in the relationship, 

(5-6) 

Taking typical values, the particle kinetic pressure of 

the entrained gas, PSTAT' roughly equals P jB1 the electro­
magnetic pressure supporting the sheet system. Further, 

typical values imply S > 1, an indication that a correct 
momentum balance must include wall (electrode) momentum 
,losses. 

The sheet tilt angle, ", can be related to the 
axial pressure increment with the relationship Pz(C) - PSTAT 
= nllmAvZi2 defining a value of VZi ; this value is in good 
agreement with the axial sheet velocity component, V sin 9'. s 
This fact, along with a Larmor radius of the order of sheet 

thickness, would appear to indicate that ion turning by the 
sheet magnetic field produces the characteristic sheet tilt 
angle • 

The radial variation of nIl' 6, and S provides another 
indication of the nature of the acceleration process and is 

presented in Fig. 48. It can be seen that the density of the 
entrained gas increases with sheet incursion, while the thick-

. ness (S) remains constant, in complete contrast to the behavior 

[J of the shock-heated gas in a classical shock-piston system. 
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VI. POTENTIAL DISTRIBUTIONS IN A PINCH CHAMBER (Oberth) 

In the last report [54) we discussed a drastic asym­

metry which was found to exist between the anode and cathode 

sheaths of the pinch discharge. This asymmetry was demon­

strated by an experiment in which portions of the anode and 

cathode were insulated by circular discs of mylar and the arc 
voltage was monitored for each situation. We observed that in­

sulation of the anode caused the arc voltage to increase sig­
nificantly (from 50 to 160 volts), whereas cathode insulation 

had only a minor effect. 

In an effort to examine the structure of the anode sheath 
and adjacent discharge region, a single tip electrostatic probe 

has been designed to measure local plasma potential (less a 

small sheath correction around the probe tip). In its first 

application, the probe has been used to map plasma potential 

in the slightly ionized r~gion ahead of the propagating current 
sheet. With no insulation on either electrode, and the current 

sheet at a radius of about 3 in., it is found that almost all 

of the voltage drop occurs across a region within 1/2 in. of 

the anode surface (Fig. 49). The gradient attains its strongest 

value of about 2 v/cm right at the anode surface. No comparable 

re.gion of strong electric field is found near the cathode. 

Similar' series of experiments are now in progress for 

cases where the anode and/or cathode are insulated with circu­
lar mylar discs. It is noted that anode insulation causes a 

threefold increase in arc voltage, even before the current sheet 

arrives at the insulated portion, suggesting that it may not be the 

high-current density conduction processes in the sheet itself, 
but those in the ambient plasma ahead of the sheet which deter­
mine the arc voltage. Details of this possibility should be 
clarified by maps of the potential contours throughout the 

pinch chamber, such as that shown in Fig. 50 for various 
anode insulated discharges. 
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VII. POPULATION INVERSION IN A PULSED DISCHARC8 (B.:.:uckner) 

The laser interferometry of the pinch discharge has 

been brought to a conclusion, ".".,ith the feeling that the tech­

nique is now sufficiently developed to jU$tify application to 

our more advanced accelerators. The first application will 

be to the parallel-plate device in the configuration use·] by 

Eckbreth for his studies of transition to quasi-steady accel­

eration modes [59 J. The first phase of thi -; study is not 

strictly interferometric in nature, but consists of examining 

the effe:cts of the argon discharge plasma on the radiation 

produced by an argon ion laser. It is hoped in this manner 

to determine whether there exists in this discharge an in­

version in the relative populations of certain argon ion 

energy levels, as ind~cated by negative absorption of certain 
wavelengths of light. 

~be work of Eckbreth on this parallel-plate device re­

vealed evidence of conditions favorable to the vnset of popu­

lation inversion, i.e., CI.lrr~nt densities of the order of 

hundreds ·of amp/cm2 at particle densities of 1014 - 1015 cm-3 

In addition, Hertzberg and Leonard have recently reported the 

existen=eof inversion in the plume of a long puIs€:! (10 r.\sec) 

MPD arc operating on argon [A-6 J • 

On the basis of these encouraging indications we have 

acquired a TRW Model 71-A pulsed ar:gon-ion laser and are in 

the process of setting up the ancillary equipment and carrying 

out preliminary tests. Initial operations will be confined to 

the 4880 i wavelength component of tha laser because of the 

wealth of information available in ~he literature on this 
particular line. 

The probing of an ionized gas with radiation from a 

laser using the same ionized gas should prove to be a highly 

useful diagnostic tecunique because the absorp"i:ion (be it 

positive or negative) of radiation is closely related to the 
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density and temperature, and to the relative populations of 

the energy levels involved. Combined with our previously 

reported interferometric techniques it. may lead to compilation 

of previously irlaccessible data on the structure of the 

accelerating zone. The broader implication of population 

inversions to plasma propulsion resides in the associated 

frozen flow losses for monatomic-ionic species, which may 

not be insignificant in view of the relatively high electronic 

energy levels involved. 
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VIII. CATHODE JET STUDIES ('rurchi) 

A variety of processes can contribute to gas accel­

eration in a high-current discharge. In addition to several 

combinations of crossed-field interactions, electrothermal 

heating of a magnetically constrained jet and electrostatic 

action may be involved. In coaxial discharges of the MPD 

class, the cathode jet region of the plasma flow is of par­

ticular interest. It is in this region that the intensity 

of magnetic forces is greatest and that the most violent 

plasma and electrode heating phenomena occur. 

The goal of the research program to be described is 

to delineate and understand the processes involved in the 

cathode jet that contribute to the high specific impulse 

capability of magnetoplasmadynamic arcs. This includes not 

only the various gas acceleration mechanisms, but also the 

processes whereby the cathode can sustain extremely high-cur­

rent densities. For example, we may possibly have some sort 

of magnetic shielding effect, or perhaps a virtual cathode 

that spreads the current out along the jet or entrains ions 

before they reach the cathode. The approach to this problem 

involves detailed interior study of the structure of a very 

large cathode jet by means of magnetic and electric probes, 

pressure probes, detailed photography and perhaps a new gen­

eration of floating double probes. 

To be able to perform these investigations in the nec­

essary detail requires some modification of the situation 

usually found in actual thruster operation. The rather small 

initial cross section of the cathode jet in such situations 

must be altered so that the introduction of probes does not 

radically distort the ~ischarge, or substantially obstruct 

the flow of current. Any alteration will inevitabl,i' com­

promise some of the physical characteristics of the actual 

situation. For example, in a coaxial configurRtion, the mag­

netic field near the cathode tip is quite intense and possesses, 
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in addition, a st.rong gradient and curvature. While the in­
tensity and variation of the magnetic field may be simulated 
with a different geometry, the field curvature is rather dis­
tinctive. Any phenomena associated with such curvature will 
be lost in transformation to another configuration. Neverthe­
less, to obtain at least some information about cathode jet 
phenomena, we propose to ~acrifice such thing~ as field cur­
vature effects by transforming to a parallel-plate type geom­
etry. Now, by spreading the total discharge current over the 
width of the cathode plate, we may probe a region of the jet 
without substantially affecting the overall discharge mode 
and, by proper approach to the point of measurement, ~ithout 
greatly disturbing the local current and plasma flows with 
the probe structure. 1'0 comp:ensate for the expansion of the 
discharge geometry~ we shall operate at much higher current 
levels than are found in steady-state MPD arcjets, so that 
the field intensity and (to a lesser degree) the current den­
sity levels are quite similar. If we fashion the cathode tip 
in such a way that the discharge attachment thickness is .simi­
lar to the attachment radius normally found, then we may even 
recover some of the field gradient effects. 

At pr.esent, preliminary studies are being conducted in 
a modified version of the parallel-plate accelerator used for 
several other studies [59]. Here the channel has been altered 
by the addition of a cathode plate over the original cathode 
surface (Fig. 51). This plate has a l/4-in. radius at the 
discharge attachment edge and serves to initiate the cathode 
jet away from the insulator surface (the initial separation 
was calculated on the basis of a thermal boundary layer re­
sulting from the balance of ohmic heating with electronic heat 
conduction). In this way, a simple modification of existing 
equipmellt allows us to carry out necessary preliminary invest~ 
igations prior to the design of a more appropriate system in 
which the cathode jet will project symmetrically between two 
anodes. 
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Magnetic probe studies at two current levels (17 and 

42 kA) and two values of initial pressure (50 and 100 p of 

argon) indicate that the discharge in this device has no 

tendency to "spoke" but spreads rather uniformly over most of 

the cathode width. The cathode jet appears to extend several 

inches downstream of the cathode edge with higher current and 

lower initial pressure levels exhibiting the greater down­

stream extension. The electric and magnetic field distribu­

tions within the cathode jet are presently being mapped out 

in detail. The results obtained from this series of investi­

gations and the experience gained from the design and opera­

tion of various probes in this environment will be applied to 

the design of experiments and apparatus to be conducted at 

higher current levels, with longer pulse times to allow gas­

dynamic, as "!ell as electromagnetic, stdbilization of the 

discharge (see Sec. IX). 
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IX. A 100 KILOJOULE PULSE-FORMING NEl'WORK POlER SUPPLY 
FOR A QUASI-STEADY PLASMA ACCELERATOR (Di Capua) 

Proper study of the phenomenon of current sheet sta­
bilization in pulsed plasma accelerators, previously observed 

in this laboratory and elsewhere [57,59,A-2} requires obser­

vation over a millisecond time scale, rather than the micro­

second scale more common inmost pulsed plasma work. The gas­

dynamic processes in quasi-steady accelerators are governed 

by the sound speed, and for useful device dimensions predicate 

current pulse lengths of hundreds of microseconds if both cur­
rent pattern and flow stabilization are to be achieved simul­

taneously. Moreover, this pulse length cannot be achieved at 

the expense of current amplitude; for vigorous electromagnetic 

acceleration the current level in these pulses must be retained 

in the order of 100,000 amperes. The composite requirement is 
< 

thus for an energy storage facility substantially larger than 

the 6400 joule bank presently in use in this laboratory. 

Recently we have obtained on long-term loan a set of 
128 26-microfarad capacitors rated at 10 kV, from which we are 

constructing a 105 joule pulse line. The configuration chosen 

consists of four LC ladder networks each assembled from 30 

equal sections. Each network will deliver, when charged to 

8 kV, a flattop current pulse of 62.5 kA for 200 Msec into a 
short circuit load. The following table summarizes the cur­
rent pulses available from the network. 

Length Short Cir-
Conne~n~ _________________ o~f~P_u~l~s~e~ ______ ~c~u~i_t~C~u~r~r~e~n~t~._ 

4 lines in seriaR •••••••• 800 psec 
4 lines in saries-parallel • 400 psec 
~ lines in parallel ••••••• 200 psec 

62.5 kA 

125.0 kA 

250.0 kA 

Each section of the ladder network will consist of a series in­

ductor of 500 nH and a shunt capacitor of 27.1 pfd. To obtain 
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i a flattop current pulse this inductance should be larger than I 

the self-inductance of each individual capacitor. A diagram 
of the ladder network is shown in Fig. 52. 

The capacitance,self-inductanc~ and resistance of the 
capacitors were determined by testing five units chosen at 
random. The capacitance of each one of these units was mea­

sured directly with a capacitance bridge. The ringing fre­
quency and resistance of the units were obtained by loading 
each capacitor to 180 volts and discharging it through a low 
inductance switch, monitoring the current in the circuit with 
a Rogowski coil. The switch utilizes the mechanisl'l of a large 
mouse trap to close the circuit. The self-inductance was cal­
culated from the ringing frequency while the resistance was 
obtained from the envelope of the decay. The results;averaged 
for the five units, are as follows (It'ig. 52) = 

Capacitance. • • 

Self-inductance. 
Resistance • • • • . . 
Ringing Frequency. • • 

27.1 pF 

280.0 nH 
25.0 mn 
58.0 Kc/sec 

There are two additional limitations on the design of 
the network: (1) the maximum current tolerable to each capac­
itor and (2) the maximum peak-to-peak voltage allowed on the 
capacitors. The specified maximum allowable current in each 
capacitor is 52,000 amperes. Tests performed on a prototype 
network show that each capacitor delivers at most 1/3 of the 
total current, i.e., 20 kAwhich is well below the maximum 
value. The maximum peak-to-peak voltage on the capacitors 
should not exceed 12 kV if the lifetime of the capacitors is 
not to be seriously compromised. Therefore the capacitors, 
thovgh rated at 10 kV, will be operated only at 8 kV, and re­
versal will only be allowed to -4 kV, by utilizing a crow­
barring resistor at the back end of the network. This re­
sistor, whose value is equal to the cha~acteristicirnpedance 
of the line, will be switched into the lir.~ by al'l ignitron 
when the current pulse reaches the end of the network. 
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Due to the large amount of energy stored in the net­

work,each capacitor must be adequately fused since a fault 

in one of the units when the bank is fully loaded will re­

lease enough energy within the faulted unit to rupture the 

capacitor case. For this purpose, each capacitor will be 

connected to the series inductor through a fuse which con­
sists of 4 in. of #16 AWG tinned copper wire surrounded by 
Tygon tubing. For additional protection, each unit in the 

bank will be surrounded by 3/4 in. of plywood. 

The fuse was tested experimentally in the laboratory 
by switching a prototype network across it at 4700 volts. 

The results of the test are shown in Fig. 53. The top 
trace in each oscillogram shows the voltage across the fuse 

while the bottom trace shows the current in the circuit. 

The top oscillogram was obtained by replaci.ng the fuse by a 

4-in. long, 0.064-in. thick, I-in. wide aluminum strip and 

shows the usual ringdown decay of the current in the bank. 
The bottom oscillogram shows a marked rise of the voltage 

across the fuse after 220 psec and the current is actually 
interrupted after 520 psec. 

The energy released in a capacitor when a fault occurs 

is given by 

(9-1 ) 

This fault will typically be an arc with a resistance RF in 

the order of 10 mU. If we assume this resistance to be con·­
stant, a maximum value of Of of 2000 joules will require that: 

t 

J 5 2 2 x 10 A sec (<)-2) 

o 

The experimental results shown in the bottom oscillogram 
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of Fig. 53 show that the fuse wire interrupts the current 
when [,. 

(9-3) 

The fuses were then incorporated into each unit of a 

prototype of the transmission line and preliminary ,tests in­
dicatethat a pulse of the desired characteristics can be 

obtained from such a configuration. We are, therefore, pro­
ceeding with the construction of the permanent line. 
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