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ABSTRACT 

Equations a r e  derived for  maximizing payload capability for  nonplanar boost trajec- 
tories arising from range safety considerations. The assumed range safety constraints 
a r e  satisfied by requiring a fixed vehicle azimuth heading during the initial par t  of the 
trajectory. This azimuth (attitude) constraint is removed a s  soon a s  certain land areas  
have been avoided. An attitude rate  limit is also imposed to prevent discontinuous atti- 
tude changes.. The calculus of variations is used to formulate and solve the mathematical 
problem. 
terminal conditions associated with f ree  end conditions. 
for sun-synchronous and planetary missions. 

A simplified method is also presented for obtaining the auxiliary variational 
Sample results a r e  presented 
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OPTIMAL THREE DIMENSIONAL LAUNCH VEHICLE TRAJECTORIES 

WITH ATTITUDE AND ATTITUDE RATE CONSTRAINTS 

by Fred Teren a n d  Omer  F. S p u r l o c k  

Lewis Research Center  

SUMMARY 

Equations are derived for maximizing payload capability for  nonplanar boost trajec- 
tories arising from range safety considerations. The assumed range safety constraints 
are satisfied by requiring a fixed vehicle azimuth heading during the initial part  of the 
trajectory. This azimuth (attitude) constraint is removed as soon as certain land areas  
have been avoided. An attitude rate limit is also imposed to prevent discontinuous 
attitude changes. The calculus of variations is used to formulate and solve the mathe- 
matical problem. A simplified method is also presented for obtaining the auxiliary vari- 
ational terminal conditions associated with free end conditions. Sample results are pre- 
sented for sun-synchronous and planetary missions. 

INTRODUCTION 

Injection conditions for  most earth orbital and planetary missions a r e  achieved by 
using essentially planar steering throughout the entire launch vehicle-powered flight t ra-  
jectory. A planar trajectory results from selecting the launch azimuth heading which 
gives the desired orbital inclination o r  declination and right ascension of the outgoing 
asymptote without yaw steering. However, range safety instantaneous impact point (IIP) 
restrictions sometimes do not permit the use of the launch azimuth required for a planar 
trajectory. In such cases, the required injection conditions may be achieved by employ- 
ing a nonplanar trajectory and steering the vehicle so  that the probablility of impacting 
land masses is eliminated or  at least minimized. 

The rigorous optimization of trajectories with IIP constraints requires a detailed 
specification of the IIP restrictions. These restrictions must then be formulated mathe- 
matically and included along with the vehicle equations of motion and mission constraints 
and requirements. This problem can be solved by using the calculus of variations. How- 
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ever, the IIP restrictions result in an extremely tedious mathematical formulation. 
Therefore, a simplified solution procedure is presented in this report. A launch azimuth 
heading is chosen which allows the initial portion of the trajectory to avoid all land 
masses. The thrust direction is restricted to be parallel to the launch azimuth plane (the 
direction within the plane is optimized) until the IIP has passed the protected land masses. 
Then, the planar steering constraint is removed and optimal three-dimensional steering 
is used to satisfy the required injection conditions at powered flight termination. 

At the switching point between planar and unrestricted steering, the optimum trajec- 
tory requires a discontinuous change in vehicle attitude, if  no attitude rate limits a r e  
imposed. Since a discontinous attitude change is not physically possible, an attitude rate 
limit is added to the problem formulation. 

The calculus of variations has been used extensively in the past to solve both two- 
and three-dimensional trajectory problems. Reference 1 derives equations for optimal 
two-dimensional ascent trajectories and also includes equations for optimizing stage pro- 
pellant loadings. Equations for optimal three-dimensional interplanetary trajectories a r e  
derived in reference 2. Equations have been developed by Johnson and Winfield (ref. 3) 
for rate limited optimal trajectories. In that report, the rate limit problem arose because 
of constraints on initial and/or final thrust direction. 
phases (referred to as regular arcs)  occur at the beginning and/or end of the trajectory. 
Intermediate attitude rates a r e  used throughout the rest of the trajectory. These inter- 
mediate attitude rates result from the existence of singular a rcs  in the optimal trajectory. 
The equations a r e  derived by using the maximum principle, and a possible solution pro- 
cedure is discussed. However, no numerical examples are solved. 

The present report extends the analysis of reference 3 to include constraints on 
vehicle attitude, as well as attitude rate. Also , the problem solution requires regular 
a rcs  in the center, rather than at the ends, of the trajectory. The calculus of variations 
is used to obtain the mathematical problem formulation. A simplified method is also 
presented for deriving the auxiliary variational boundary conditions associated with free 
trajectory injection conditions. 

missions which require nonplanar trajectories of the type described. An Atlas-Centaur 
launch vehicle is assumed for both of these missions with an Eastern Test Range (ETR) 
launch. The first mission is a high altitude (1110 km) sun-synchronous orbit, with a 
required orbital inclination of 99.9'. 
Venus probe with a declination of the outgoing asymptote of -45'. 

Consequently, the rate-limited 

In order to illustrate the use of the equations, solutions are presented for two typical 

The second mission presented is a typical Mars  o r  

ANALYSIS 

The problem to be solved is to determine the optimal thrust direction profile for a 
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trajectory satisfying certain boundary conditions. The thrust direction is constrained to 
lie in a fixed inertial plane during the initial part of the trajectory; later, the thrust direc- 
tion is completely free in three dimensions. However, the attitude rate is constrained to 
be less than o r  equal to a prespecified limit throughout the variational portion of the tra- 
jectory. At the transition point between the constrained and unconstrained attitude por- 
tions, a discontinuity in thrust direction occurs in the optimum trajectory if no attitude 
rate limit is imposed. However, a maximum turning rate is specified in the present 
problem so  that the vehicle will  rotate at the maximum rate (regular arc) in this region. 
The boundary value discussion presented in this report does not consider the possibility 
of regular arcs occurring in other regions of the trajectory. Generally, the maximum 
turning rate is large enough so  that additional regular a rcs  are not required. If additional 
regular a rcs  do occur, the boundary value problem must be altered accordingly. 

Problems of this type can be formulated as a Bolza problem (ref. 4). Specifically, 
the functional to be minimized is written as: 

J = g + At' F dt 
0 

where 

and 

f g = t  

subject to the following constraints: 

* . _  I Gm- - 
b - v + - r - a f = O .  1 -  

- - - -  
b - r - v = O  2 -  

- L . - * . -  

b g = f - w X f = O  

- -  
b 4 -  - w - w - w ~ = O  

* . A  

b 5 = G X f ) -  n = O  
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All symbols used herein are defined in appendix A. 
Equations (2a) and (2b) are the vehicle equations of motion written in three- 

dimensional rectangular coordinates. The thrust acceleration,profile, a, is assumed to 
be a definite function of time. The unit vector f defines the thrust direction. Equa- 
tion (2c) determines the rotation rate P as a rotation of f about the vector z. Since 
f is perpendicular to f ,  the magnitude of f is constant (as required) and is set equal to 
unity as an initial condition. The optimum vehicle turning vector, w, will be determined 
by the variational analysis. However, the magnitude of 3 must not exceed the maximum 
turning rate, wm. This constraint is satisfied by equation (2d), which states that the 
magnitude of E is equal to Om. From equation (2c), the magnitude of i is equal to 

wm 
restriction has been placed on the direction of G, equations (2c) and (2d) are equivalent 
to an inequality constraint on f . 

Equation (2e) is used only when the planar attitude constraint is in effect. (The unit 
vector n is the normal to the required thrusting plane.) When the attitude is uncon- 
strained, p is set equal to zero. Equation (2e) requires the component of f along h to 
be zero (i. e.  , E fi is constant). The value of f - ii is se t  equal to zero as an initial 
condition. 

The variables X, p, 0, y, and p are undetermined Lagrange multipliers which are 
functions of time since the constraint equations must be satisfied at all points of the tra- 
jectory. The Euler-Lagrange equations for this problem (ref. 4) are 

A 

* 

A A 

if 7Z is perpendicular to ?; otherwise, the rotation rate is less than om. Since no 

,c 

A 

- - -  

2yG - E x a+ pf x ii = 7s ( 3 4  

The turning rates for the planar and unconstrained attitude cases must be considered 
separately. For the unconstrained attitude case (p = 0), combining equations (3d) and (2d) 
results in 

Thus, the optimal turning rate has been determined, except for sign. The proper choice 
of sign will be determined later. Since G - 1 = 0 (from eq. (4)), the maximum turning 
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rate (regular arc) is always used, unless T X a  = U in which case Ts is indeterminate. 
It will be shown later that f^ X a = 3 corresponds to the singular a rc .  

For the planar attitude case, equations (2d) and (3d) give: 

The value of p is determined by combining equations (2e) and (3d). This procedure 
results in: 

A -  

If f X u is expressed in the orthonormal T ,  ;, f^ x ;; coordinate system, 

L A. 

and since (f X u) T = 0, 

2 x a -  R fxZ ) .  (Txi ; ) lTxi ;=pxa).  qi; 
or  

Therefore, 

Since w - ? = 0, the maximum turning rate is used on the regular planar a r c ,  - just as on 
the regular unconstrained arc .  The singular planar a r c  occurs when (3 X a) fi = 0. 

Weierstrass Condi t ion 

The uncertainty in sign in equations (4) and (5) can be resolved with the aid of the 
Weierstrass E-test (ref. 5), which can be stated as 

E 2 0 for  a minimum 
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where 

The xi correspond to the minimizing values of the problem variables 6, 7, f ,  and w), 
which differ from the xT by a finite but admissible amount. For the present problem, 
only w is subject to such a variation, and equation (6) can be written explicitly as 

Since ;* = -w, this equation becomes 

for  a minimum. 
For the unconstrained attitude case, combining equations (4) and (7) results in 

or  

* -  
*wmlf x GI 2 0 

which requires that the plus sign be chosen in equation (4): 

For the planar attitude case, equations (5) and (7) are combined to give: 

'Om sign@i+xZ) - gii- ( ~ ~ 0 . 0  

or  

Again, the plus sign must be chosen. Therefore, 
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Singular Arcs 

Singular a rcs  occur when the Weierstrass E-function is identically zero for some 
finite time interval. From equations (4) and (7), this occurs for the unconstrained atti- 
tude case when f X u = g. I€ 2 X 7 = 5 for  some finite time, then (d/dt)(? X a) must also 
be zero. But from equations (2c) and (3c) (with p = 0), 

c . -  

which implies that 

x f = * -  x 

for the singular arc .  This is the same solution as obtained in reference 2 ,  where no rate 
limit is imposed. It is shown in reference 2 that the Weierstrass E-test requires that 
the plus sign be chosen in equation (11). Therefore, 

- 
h f = -  
x 

- 
is the singular solution, which takes effect when equation (12) and 1 X a  = 0 are satisfied 
simultaneously. 

For the planar attitude case, the singular a r c  and corresponding indeterminacy in 
w occur when (f xa) - 0 (eq. (9)). The required thrust direction for the singular 
a r c  is obtained from 

- 
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Since 2 is normal to and h X i ,  f^ may be written 

o r  

where the sign choice in equation (14) has again been made by using the Weierstrass E- 
test on the unrestricted rate, planar attitude solution. 

Weierstrass-Erdma nn Corner Condition 

The boundary conditions on the Lagrange multipliers at corner points of the trajec- 
tory can be derived with the aid of the Weierstrass-Erdmann corner condition (ref. 4). 
This condition requires that the i3F/aXi be continuous at all corner points of the trajec- 
tory, where the xi a r e  the problem variables as defined earlier.  For this problem, 
corners occur at transition points between regular and singular arcs  and at the switchover 
point between planar and unrestricted attitude. The i3F/i3Xi a r e  A,  p ,  and a; therefore, 
these variables must be continuous throughout the entire trajectory. 

- -  

Trajectory Description 

A list of major trajectory event times is presented in table I, along with a brief 
description of each event. The trajectory starts with a short vertical rise, followed by 
a rapid pitchover phase in the desired azimuth direction, which determines the amount 
of trajectory lofting during the atmospheric phase of the trajectory, as well as the vehicle 
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azimuth heading. The rest of the atmospheric phase (which is assumed to be terminated 
at booster stage burnout) is flown with a near-zero angle of attack steering program(such 
as described in ref. 6) ,  in order to minimize vehicle heating and aerodynamic loads. The 
thrust direction is maintained perpendicular to 6 throughout the booster portion of the 
trajectory. 

The variational problem begins after the sensible atmosphere has been traversed. It 
is assumed herein that this occurs at fixed time, position, and velocity. This implies 
that the magnitude of the initial pitchover is fixed. However, the degree of freedomavail- 
able when the pitchover magnitude is free for optimization can also be handled by varia- 
tional methods, as shown in references 1 and 6. It is also assumed that the desired 
initial thrust direction for the variational phase can be achieved prior to the start of this 
phase, so that an initial regular a r c  is not required. This assumption is reasonable since 
the attitude discontinuity at this point is generally small (see Results). The equation 
modifications required to handle an initial regular a r c  a r e  straightforward and are 
described in reference 3. 
trajectory is constrained to be normal to G, as in the booster trajectory. Thus, a 
singular, planar a r c  is used. 

which the planar steering constraint is removed. At this point, a regular planar a r c  is 
used. This a r c  is not forced by saturation (i. e . ,  the variational commanded planar turn- 
ing rate does not exceed wm). However, a regular unconstrained a r c  is forced at the 
junction point between the planar and unconstrained portions of the trajectory, because 
the conditions for singularity are no longer satisfied at this point. The regular planar 
arc is therefore used in order to shorten the forthcoming regular unconstrained arc .  In 
addition, the use of the regular planar a r c  supplies an additional degree of freedom(start 
time of regular planar arc) which will  be needed to satisfy the boundary conditions to be 
discussed later. A second degree of freedom results from the fact that f X a  is not com- 
pletely specified on the planar arc. Johnson and Winfield (ref. 3) discuss the fact that no 
additional degrees of freedom are available for regular a rcs  forced by saturation. How- 
ever,  two additional boundary conditions must be satisfied for each regular a r c  intro- 
duced, and these boundary conditions can only be satisfied by anticipating the forthcoming 
regular a rc ,  thus allowing two additional degrees of freedom. 
a rcs  forced by saturation only exist as limiting solutions. 

by referring to a two-dimensional analogy, as illustrated in sketch a. 

The thrust direction during the initial portion of the variational 

The initial singular, planar a r c  continues until a short time prior to the time at 

For this reason, regular 

The need for introducing a regular a r c  prior to saturation may be better understood 
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A Curve 

a, n 3 
c 
c c 
m 
r U 

a 
4-4 .- 

Suppose the optimal pitch attitude history for a nonrate-limited trajectory is given by 
curve 1. If a rate limit is introduced, the trajectory may be modified by using a regular 
arc starting at the saturation point (curve 2) and terminating when the attitude coincides 
with curve 1. The performance loss associated with curve 2 is approximately propor- 
tional to the integral of the absolute attitude difference between curves 1 and 2. This 
integral can be decreased by initiating the regular a r c  earlier (curve 3),  thereby improv- 
ing performance. The use of curve 3 also introduces a degree of freedom (time of regu- 
lar a r c  initiation), which is needed to satisfy a variational boundary condition introduced 
because of the regular a rc .  

When the attitude constraint is removed, the trajectory switches from a regular 
planar a r c  to a regular unconstrained arc .  This arc is then continued until the required 
boundary conditions for a singular a r c  are satisfied. At this point, a singular uncon- 
strained a r c  is used and is continued until the desired end conditions are achieved. It is 
assumed that the final attitude is unconstrained; therefore, no final regular a r c  is 
required. Again, the equation modifications required to include a final regular a r c  are 
straightforward and a r e  discussed in reference 3.  

TRANSVER SALlTY EQUATION 

The relation between changes in boundary values and changes in J (eq. (la)) is 
expressed by the general transversality equation (ref. 4). 
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where dJ has been set equal to zero for an optimum solution. For the present problem, 
dJ is evaluated to give 

where C is a constant, the first integral of the Euler-Lagrange equations (ref. 4). 

Since it has been assumed that the initial position, velocity, and time a r e  specified, 
dTo = dv = dt = 0 and equation (16) becomes 

0 0 

The final time is not specified so that C = -1 for an optimal solution. Since the Euler- 
Lagrange equations a r e  homogeneous in the multipliers, C = - 1  can be satisfied by the 
proper choice of multiplier scale factor. In any case, C does not appear in any of the 
equations used to optimize the trajectory. 

The final attitude is not specified, hence 6 - df) = 0 must be satisfied for  an opti- 
tf 

mal solution. 
is given by 

The allowable variation in ? (perpendicular to ^f since ? is a unit vector) 

where 7 is an arbitrary vector. Therefore, 

- - (G * di)t = (G - T x2)tf = (G x i )  * E = 0 
f tf 

Since 7 is arbitrary, 

- 
(G x2) = 0 

tf 

is a required boundary condition. 
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At to, f^ has only one degree of freedom since f - f; must be zero. This degree of 
freedom is given by 

where a! is arbitrary. Combining this result with the last te rm in equation (17) gives 

for a required boundary condition. Equations (18) and (19) are  also necessary conditions 
for singular unconstrained, and singular planar a rcs ,  respectively. 

Boundary Conditions on  Position and Velocity 

There exists an auxiliary variational boundary condition to be satisfied for each free 
trajectory end condition. By satisfying this auxiliary equation, the Fesulting value of the 
free  end condition will minimize flight time. The auxiliary equations are obtained from 
the position and velocity terms in equation (17). 

Suppose the final orbit is specified in terms of arbitrary independent variables qk 

qk = qk, d k = 1 , 2 , .  . . , n  5 6  

If n is less than six, there are free end conditions. The set  qk is completed by addi- 
tional independent variables, if necessary, to give a complete specification of the tra- 
jectory state in terms of the s. 
of the s, and differentiating, equation (20) becomes 

By expressing the components of 7 and 7 in terms 

For each free qk, the corresponding auxiliary boundary condition is obtained by setting 
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This procedure, although straightforward, can be very tedious if the q's are com- 
plex functions of r and v. For this reason, a simplified approach is presented for cal- 
culating the required auxiliary final conditions. With this approach, the d? and d7 are 
interpreted as allowable variations in 7 and 7. Given a set of qk, the allowable vari- 
ations a r e  such that all other boundary values remain constant, while the free end condi- 
tion is allowed to vary. In other words, the allowable variations correspond to partial 
derivatives of injection position and velocity with respect to the free end conditions, as in 
equation (21). To illustrate the use of this procedure, the auxiliary boundary equations 
will be derived for the two missions considered herein. 

mission call for a circular orbit at a specified altitude (radius) with a specified orbital 
inclination. This is equivalent to the specification of four orbital parameters: 

Sun-synchronous orbit. - The required orbit conditions for the sun-synchronous orbit 

q1 = r = rd 

. - -  
q 3 = r = v -  r = O  

Two additional independent orbital parameters must be added to complete the set  of qk, 
and these additional % are  free for optimization. The free orbital parameters may be 
considered to be 

q5 = longitude of ascending node 

q6 = argument of injection latitude 

For free ascending node, the trajectory plane may be rotated about a vector (2) 
pointing at the North Pole. Such a rotation changes the ascending node but leaves 
all other orbit parameters fixed. 
corersponding to this rotation a r e  

The allowable variations in position and velocity 
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where a! is the arbitrary magnitude of the rotation. Combining these variations with 
equation (20) yields 

- a ( X .  v x ~ + ~ . . x x ) = a ~ x ~ t - 1 _ x ’ ) .  8 = 0  

Since LY is arbitrary, 

for optimum ascending node. 

f rom a rotation of the trajectory about the angular momentum vector, E. Hence, 
For free argument of injection latitude, the allowable variations in r and result 

and the auxiliary variational end condition is 

Interplanetary transfer. -~ - The required heliocentric transfer trajectory may be spec- 
- 

ified in terms of the required hyperbolic excess velocity vector, v,, at Earth injection. 
This vector, in turn, may be specified in terms of three variables: 

q1 = injection energy (or equivalently, hyperbolic velocity magnitude) 

q2 = declination of outgoing asymptote 

q3 = right ascension of outgoing asymptote 

In addition, the perigee radius of the geocentric hyperbola is specified. 

As in the sun-synchronous mission, there a re  two free end conditions. These cor - 
respond to 

q5 

q6 

I = injection true anomaly, rl 

= a free rotation of the trajectory plane about the hyperbolic 
excess velocity vector, V, 
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For free true anomaly, the allowable d? and d i  may be obtained as changes result- 
ing from coasting along the geocentric hyperbola at the injection point. Hence, 

where 

and CY is arbitrary. Combining these variations with equation (20) results i n  

for optimum true anomaly. 

equations (22) and (23). 
The auxiliary variational end condition for q6 is obtained in a manner similar to 

This equation is 

NUMERICAL ITERATION 

An optimum trajectory requires the simultaneous integration of equations (2a), (2b), 
(2c), (3a), (3b), and (3c). As initial conditions, these equations require the initial posi- 
tion and velocity, as well as the multipliers 5; and I-. Since the variational trajectory 
begins on a singular a rc ,  the value of f X is not needed at this point. The trajectory 
is then uniquely specified until the transition time to the regular planar a r c  (tl). This 
transition time, as well  as the component of f^ X 0 along f^ X fi (? X a * fi must be zero 
while on the singular planar arc) ,  must be supplied as initial conditions at this point. 
The trajectory then proceeds along the regular planar a r c  and into the regular uncon- 
strained a r c  (at t2). On the converged trajectory, the transition to the unconstrained 
singular arc (t3) will occur when the equations for singularity a r e  satisfied. During the 
iteration process, however, this transition occurs at a specified time (varied during the 
iteration process) and jump discontinuities in f and ? XF to the singular values are 
permitted. The trajectory integration then proceeds uniquely to final injection. 
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With the initial conditions as given above, the trajectory is uniquely specified. It 
remains to find the values of the unknown initial conditions which result in the trajectory 
satisfying the required final conditions. The initial and final conditions for the two point 
boundary value problem are as follows: 

Unknown initial Desired final 
conditions : conditions : 

Six orbital and/or auxiliary 
final conditions 

f^ X a = 

h 

h 

(two conditions) 
- 
- .  f = 1  

c = - 1  J 
The boundary value problem may be simplified by using the initial value of one of the 
multipliers to satisfy C = -1. Also, the trajectory can be terminated on one of the final 
orbit conditions, thus eliminating tf and one final orbit condition from the problem. The 
resulting iteration size is eight by eight, and the iteration variables are 

Unknown initial 
conditions : 

Desired final 
conditions : 

Five orbital and/or auxiliary 
Five of final conditions 

(i x 5) 
I-1 (to) 

(i x k)(t1) f x 0 = 3 (two conditions) 

tl 

t3 

- 
h 

h 
- .  f = 1  

J 
The iteration process is carried out by using a multivariable Newton-Raphson 

method. This method is described in detail in references 1 and 6 and will not be dis- 
cussed here. The only difference between the procedure described in these references 
and that used herein is the method of obtaining the required partial derivatives of final 
conditions with respect to initial conditions. In references 1 and 6 this was accomplished 
by using finite differences. This procedure was also attempted on the present problem. 
However, because of the sensitivity of the derivatives and the size of the iteration loop, 
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convergence was  very difficult to attain. For this reason, it was  decided to use integrated 
partial derivatives. With this procedure , convergence was easily obtained. The equations 
used in obtaining the required partial derivatives a r e  presented in appendix B. A com- 
plete list of equations required to optimize the trajectory is also presented in this 
appendix. 

Choice of Init ial  Conditions 

In order to facilitate convergence of the two point boundary value problem, it is 
desirable to start the iteration with initial conditions which are as close as possible to 
their converged values. With this in mind, initial conditions have been chosen which have 
more intuitive significance than x and z. The initial conditions chosen are presented 
in appendix C,  along with the equations for calculating x and from these values. The 
rationale used for selecting initial guesses of the other unknown initial conditions is also 
presented in appendix C. 

RESULTS AND DISCUSSION 

The solution to the limited thrust attitude rate problem is most interesting in situ- 
ations where a significant period at maximum rate is required. One area where this 
occurs is when the instantaneous impact point (IIP) constraints are factors in determining 
an acceptable trajectory. For launches from the Eastern Test Range (ETR), near polar 
orbits and hyperbolas with certain combinations of declination and right ascension of the 
outgoing asymptote require launch azimuths for planar trajectories which appear to be 
unacceptable because of the IIP traces.  Dog-legged trajectories may be used to try to 
improve the traces by launching at a nonoptimum azimuth and constraining the thrust 
attitude to be parallel to the launch azimuth plane until some later time in the trajectory. 
Two cases were chosen to demonstrate that solutions could be obtained with the analysis 
described even though the eight-by-eight iteration required appears formidable. The 
procedures used to alter the IIP traces in the cases are examples of techniques which 
might be used to improve the traces.  
satisfy range safety constraints. 

propelled by two booster engines and one sustainer engine. 
jettisoned at a predetermined acceleration level. 
(sustainer solo). The Centaur insulation panels and then the payload fairing are jetti- 
soned in this phase. The sustainer solo ends at propellant depletion and the Atlas stage 

However, the traces presented do not necessarily 

The vehicle used in these demonstration cases is the Atlas-Centaur. The Atlas is 
The booster engines a r e  

The sustainer engine continues to burn 
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is jettisoned. After approximately 10 seconds, the Centaur engines ignite and burn con- 
tinuously until the desired injection conditions are reached. 

As mentioned in the section TRAJECTORY DESCFUPTION, the trajectories consist 
of a short vertical rise followed by a rapid pitchover phase determining the amount of tra- 
jectory lofting during the near zero angle-of-attack atmospheric phase. This near zero 
angle-of-attack phase lasts until the booster engines are jettisoned. Then the steering is 
determined by the variational solution. 

The first mission is a sun-synchronous circular orbit at 1110 kilometers altitude. 
An inclination of 99.9' is required to take advantage of precession due to oblateness to 
maintain sun synchronization. A launch azimuth of about 193' would be required for a 
planar trajectory to the required orbit. Atlas-Centaur trajectories from ETR at that 
launch azimuth present severe,  if not insurmountable, range safety problems because 
scheduled hardware drops (booster engines, insulation panels, payload fairing, Atlas 
stage) as well as the IIP trace endanger land areas. Hence , a launch azimuth of 108' was 
chosen for the demonstration trajectory to avoid these hardware impact problems. The 
thrust attitude is constrained to be parallel to the launch azimuth plane until 5 seconds 
after Centaur igpition (268 s e c  after lift-off) after which the attitude is unconstrained. 
The rate of change of attitude is constrained to be less than or  equal to 1.6' per second. 
The free parameter during the atmospheric portion, the pitchover, is optimized. The 
thrust attitude from booster jettison to injection is optimized using the analysis and tech- 
niques described in this report. The IIP trace for this trajectory is presented in figure 1. 
A spherical earth model with no drag is used to calculate the IIP trace. The injected 
payload weight is 800 kilograms. A trajectory with the same ground rules , but with no 
attitude rate constraint , achieved an injected payload weight of 820 kilograms. Thus , 
the payload loss due to the attitude rate limit is 20 kilograms. The two IIP traces are 
virtually identical. The thrust attitude in pitch (q) and yaw (p )  (see fig. 2) are presented 
in figures 3 and 4 ,  respectively. The thrust attitude rate is discontinuously increased 
to the limiting rate of 1.6' per second 0 .07  second before the thrust attitude is freed 
from the planar constraint and remains at that level for  the following 34 seconds. Fig- 
ures 3 and 4 show that during the planar portion of the trajectory the thrust vector is 
directed such that altitude is gained at the expense of horizontal velocity. It is the hori- 
zontal velocity which must be turned to satisfy the final inclination. After the planar 
constraint is removed, the thrust attitude rapidly approaches the horizontal to accumu- 
late the required circular velocity. The total rate of change of thrust angle, altitude, 
inertial flight path angle, and velocity as functions of time a r e  presented in figures 5, 6, 
7, and 8, respectively. 

Launch trajectories f rom ETR to sun-synchronous orbits unavoidably present range 
safety problems because the instantaneous impact point traces will  always cross popu- 
lated land areas in the Caribbean and/or South America. It is impossible to avoid over- 
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fly for any practical trajectory regardless of the method used to alter the IIP trace. The 
trajectory chosen in this report does not necessarily reflect the best choice from a range 
safety standpoint. I t is  used only to demonstrate an application of the analysis to a mis- 
sion where significant attitude and attitude rate constraints are present. 

The second demonstration case is characteristic of another range safety problem 
whereby the IIP trace can be moved to avoid all land masses. For certain combinations 
of declination and right ascension of the outgoing geocentric asymptote, planar inter- 
planetary trajectories possess impact point traces which cross South America, in parti- 
cular Venezeula and Brazil. It is possible in some of these cases to move the IIP trace 
north to avoid all land masses. This is demonstrated in the trace presented in figure 9. 
The declination and right ascension of the outgoing asymptote a re  -45' and 190.5' east of 
the launch site meridian, respectively. The injection energy is 4.0215 square kilometers 
per square second with a perigee altitude of 167 kilometers. The planar trajectory would 
require about a 200' launch azimuth. A planar trajectory at this launch azimuth would 
be unacceptable because the hardware impact points and IIP traces impinge land. How- 
ever, land masses are completely avoided by choosing a launch azimuth of 108' and by 
constraining the thrust attitude to be parallel to the launch azimuth plane until 150 seconds 
after Centaur ignition. 
second. 
tinuously to the limiting value 0 .4  second before the planar constraint is removed and 
continues at the maximum rate for  the following 17 seconds. The injected payload weight 
for this case is about 227 kilograms. A similar trajectory without the attitude rate limit 
constraint achieved about a 2 kilogram increase in payload weigfit. 
show the thrust angles in pitch and yaw, the total rate of change of the thrust angle, the 
inertial flight path angle, and the velocity and altitude, respectively, as functions of time. 

The rate of change of thrust attitude is again limited to 1.6' per 
The thrust attitude rate is increased discon- The pitchover phase is optimum. 

Figures 10 to 15 

CONCLUDING REMARKS 

The problem of obtaining the required terminal conditions for orbital and planetary 
missions while satisfying typical range safety constraints has been considered. To 
simplify the mathematical problem, a planar attitude constraint was imposed for the 
initial portion of the flight in order to avoid overflight of certain land areas. Later in 
flight, the attitude constraint is removed in order to allow the required terminal condi- 
tions to be achieved. An attitude rate limit is also imposed in order to prevent discon- 
tinuous attitude changes. 

The mathematical problem is formulated by using the calculus of variations. Euler- 
Lagrange equations are obtained which determine the optimum thrust direction profile 
subject to the problem constraints. A simplified procedure is also presented for obtain- 
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ing the auxiliary variational boundary conditions required for free end conditions. 

which require nonplanar trajectories of the type discussed. These missions are a sun- 
synchronous orbit and a typical interplanetary probe. An Atlas -Centaur launch vehicle 
is assumed, launched from the Eastern Test Range. 

To illustrate the use of the equations, results are presented for two typical missions 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 3, 1969, 
128-31-30-02-22. 
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APPENDIX A 

SYMBOLS 

a 

bj - 

bj 
C 

d( ) 

E 

e 

F 

f 
G 

G 

g 

H 

h 

I 

J 

m 

n 
L. 

P 

qk 
r 

S 

2 thrust acceleration, m/sec 

constraint equations 

constraint equations 

first integral of Euler -Lagrange 
equations 

differential of ( ) 

Weierstrass excess function 

eccentricity 

defined in eq. (lb) 

thrust direction vector 

Earth gravitational constant, 
3 2  m /sec 

2 
gravity acceleration vector , 

m/sec 

function of initial and final con- 
ditions to be minimized, sec 

2 2  energy, m /sec 
2 angular momentum, m /sec 

orbital inclination, rad 

functional to be minimized by 
variational methods, sec 

mass, kg 

unit normal to attitude con- 
straint plane 

semilatus rectum, m 

generalized state variables 

radius, m 

constant vector in eq. (B6) 

sign (i? x G) . ii 
time, sec 

velocity vector, m/sec 

problem variables 

constant vector 

unit vector pointing at North Pole 

arbitrary scalar 

yaw attitude, deg 

Lagrange multiplier, sec 

jump discontinuity in variable 

denotes linearized variable 

arbitrary vector 

true anomaly, rad 

commanded attitude discontinuity, 
rad 

unit tangential vector 
Lagrange multipliers, sec 2 /m 

Lagrange multipliers, sec/m 

Lagrange multiplier, sec 

magnitude of f X Z at tl, sec 

Lagrange multipliers, sec 

angle from injection to outgoing 

A 

asymptote, rad 

pitch attitude, rad 

maximum rotation rate, rad/sec 

rotation vector, rad/sec 
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Subscripts: 

A 

av 

d 

f 

h 

I 

i 

P 

r 

t 

e 
0 

asymptote 

average value 

de sired 

final 

normal 

injection 

problem variables 

perigee 

radial 

fixed time 

tangential 

initial 

1 

2 start of unconstrained phase 

3 start of singular unconstrained 

start of regular planar a r c  

arc 

00 hyperbolic excess 

Super scripts : 

derivative with respect to time 

finite, but allowable variation of * 
the variable 

A unit vector 

- vector 

+ evaluated after switching point 
- evaluated before switching point 
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APPENDIX B 

EQUATIONS FOR PROBLEM SOLUTION 

The variational portion of the trajectory is divided into four phases, as discussed 
earlier.  These phases , along with the definition of switching times , are presented in 
table I. 

trajectory (eqs. (2a), (2b), (3a), and (3b)). 
The following equations must be integrated throughout the variational portion of the 

& Gm- A -  

v c - r - a f = O  
3 r 

- - -  
r - v = O  

-- - J  p - - x + 3 - ( T ; .  Gm- Gm r )r=O 

r 5 3 r 

These equations are linearized, and the linearized equations are also integrated through- 
out the trajectory in order to obtain the partial derivatives required for the Newton- 
Raphson iteration. The linearized equations obtained from equations (Bl) a r e  

where 6 is used to indicate a linearized variable. As noted in the Numerical Iteration 
section, ? X 0 is not required until phase 2.  It wil l  be shown later that a closed form 
solution is available for  f^ X during phase 3. Also, T X o  is identically zero during 
phase 4.  The differential equation for f^ must be integrated during phases 2 and 3, while 
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the singular solution is used during phases 1 and 4. The additional equations to be inte- 
grated are (from eqs. (2c) and (3c)) 

Phase 2 

- 
where w = om sign [(? X a )  . I;]. (eq. (9)). 

Phase 3 

I - *  
f = w X f  

where (from eq. (8)) 

and  

J 

During phase 3, f X a  can be calculated in closed form by using the fact that 

035) 
- - - -  x x v + p x r - f x a  = constant 

Equation (B5) can be verified by differentiation and using equations (2), (3), and (10). 
Therefore, f^ X a can be calculated from 
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A -  - - - -  
f x a = X x v + p ~ r - S  

where 

- - - -  s = (1 x v + p x r - f^ xG) 
t2 

Taking the variations of equations (B6) and (B7) results in 

6(f x 5) = ( 6 1  x v  + x x 6 7  + 6F x r +F x si; - 6 s )  

and 

Calculation of Thrust Direction 

During phase 1, the thrust direction is calculated from equation (14): 

The variation of equation (B10) is 

where 

x3 

During phase 4,  ? is calculated from equation (12): 

P = $  
and 
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- -  
A s h  h - -  6f =- - - (6h - h)  

h3 

I 

The thrust direction is integrated during phases 2 and 3, as indicated earlier. 

Init ial  Conditions 

The choice of initial conditions is discussed in appendix C, and the variable initial 
conditions a r e  +, $, p,  p ,  and i. In addition, the switching times tl and t3 a r e  used 
as variable initial conditions along with the value of cr 
derived for the linearized changes in the initial values of A ,  p ,  and f^ X 0, obtained as a 
result of linearized changes in the variable initial conditions. 

at tl. Equations must be m a g  - 

The initial variations in and I. are obtained by linearizing equations (C5b) and 
(C5c): 

sx = h6X 

The initial value of h is always equal to unity, and the initial values of c ,  8 ,  and fi are 
fixed because the initial position and velocity are specified. Also, the initial value of i? 
is fixed because $ is a function only of position and velocity and not thrust direction. 
Therefore, the variations of equations (C5a) and (C6) a r e  

and 

i i A A 

6: = 6hr; + 6hr; + S h e $  + shoe + hebe  + 6hhh + 6hhh + Xh66 

Equations (Cl), (C2), and (C3) a r e  linearized to give 

6hr = -sin p sin +6p i- cos p cos +6+ 

6hg = -sin p cos +6p - cos p sin + S +  

6hh = cos psp 
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I 

6 i r  = -sin p sin +sB + cos p cos +61t/ - (b  cos p sin + + sin p cos +)6p 

where 6f is calculated by using equation (B11). 

the allowable variation in this time. These jumps occur when the derivative of the vari- 
able is discontinuous at this time and a r e  calculated from equations of the form 

Some of the linearized variables have jump discontinuities at a definite time due to 

where 6xt is the linearized change at fixed time and the minus and plus superscripts 
denote evaluation of the variable before and after t ,  respectively. 

The derivative of f is discontinuous at tl. The derivative after tl is given by 
equation (9). 

and (i); is evaluated by differentiating equation (B10): 
1 

where 
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Therefore, by using equation (B12), 

The derivative of f X a is also discontinuous at tl, but the situation is somewhat 
different than for 8, since T X o  is initialized at tl. When ? X E  is initialized at t l ,  
the value is (from eq. (27)) 

The value of ? X o  at a later time (tl + 6tl) is obtained by using equations (2c), (3c) ,  
and (9). 

d * * -  
(f O)(t + 6 t  ) = amag(f x a +- dt (i x &tl 1 1  

where 

When f^ X 0 is initialized at a later time (tl + 6tl ) ,  the value is 

where, by using equations (2c) and (9) 

(i x qtl + 6tl) = (f x + (w x f3 x G6tl 
1 

= (i x f;)tl + wms(;; x t) x &tl 
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Then f X a  becomes 

(T x-  q t 1  + 6tl) = 

The jump discontinuity in 2 X a is 
(B12): 

u mag ( ? x i )  + u  mag w m s ( i x g  X&tl (B13) 

given by the difference between equations (B13) and 

A(? X T )  = -a6 x &tl 

and the variation of X a at tl is given by 

C I A  

~ ( f  XZ) = 6umag(f x n) + ama,(6T x ii) -a(X x &tl 

During the iteration, the value of 
results in a jump discontinuity in 6;. 

2 is allowed to be discontinuous at t3. This 
The total 6 7  is given by 

Final Conditions 

The variational final conditions for the sun-synchronous mission a re  (see eq. (27)). 

- (f X G )  = 0 
t3 

A - -  
( T ; x v + p x F )  - z = o  

tf 

For the interplanetary mission, the variational final conditions are 

- 
(? xa), = 0 

3 
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- - -  (X a G + 1-1 * v ) ~ ~  = 0 

In addition, there are three final conditions on state variables for both of the missions 
(energy is used for termination of the trajectory). The final state variable end conditions 
for the planetary mission are 

(1) Perigee radius 
(2) Declination of outgoing asymptote 
(3) Right ascension of outgoing asymptote 

Conditions 2 and 3 are equivalent to specified Gm. For the sun-synchronous mission, the 
state variable end conditions a r e  

(1) Radius 
(2) Radius rate 
(3) Inclination 
In order for the iteration to converge on these final conditions, the linearized changes 

in final conditions are required. The changes in the variational end conditions at t3 are 
obtained by using equations (2c), (3a), ( lo),  and (B12). 

where w is evaluated by using equation (8). The changes in the variational final condi- 
tions at tf are 
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The 6 r ,  67, SX, and 611- at tf in the preceding equations have been modified to be 
variations at constant energy rather than constant time. The following equations are used 
to modify these variables : 

6 7  = (67) + v  6 t  
tf tf 

where H is the injection energy 

The 6; in the last of equations (B14) is zero if  x is Tm o r  2. If x corresponds to 5, 
then 

In order to determine the linearized changes in final state conditions, these final 
conditions must first be expressed in terms of F and 7. The perigee radius is expres- 
sed as follows: 
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where 

1 

and 

The direction of the outgoing asymptote is given by 

ja3 = 1 cos <p + 6 sin <p 

(see sketch b), where <p = qA - qI and the true anomalies are given by (ref. 7) 

--. "m 
Injection -. 1 

-Outgoing 
asymptote 

qA = cos-l(-f) 

The radius rate and inclination (for the sun-synchronous mission) may be calculated 
from 
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. * -  
r = r -  v 

The linearized changes in the state variable end conditions are then given by 

where 

ST; - (T; - sX)X sfi =- 

h h3 

The linearized changes in k and I are given by 
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APPENDIX C 

CHOICE OF INITIAL CONDITIONS 
c 

Solution of the two point boundary value problem requires initial guesses for eight 
variables, six of which are Lagrange multipliers. These variables are listed in equa- 
tion (27). In order to eliminate the difficulty in guessing at values of these multipliers, 
equations are derived which express four of the multipliers in terms of pitch and yaw 
attitude and rate. In addition, equations are presented for deriving reasonable first 
guesses of the other multipliers and switching times. 

not constrained to be planar, the vehicle attitude would be along the x^ vector. There- 
fore, the guesses of +, $, p,  and correspond to the optimum values for the uncon- 
strained attitude case. The coordinate axes in figure 2 correspond to a unit radial, tan- 
gential, normal coordinate system defined by 

The pitch attitude + and yaw attitude p a r e  defined in figure 2. If the attitude were 

The following equations are easily obtained from the figure: 

1 
L . L .  

h = h a  r = c o s p s i n +  r 

i he = i 8 = cos p cos lp 

J h C I  

Ah = h - h = sin p 

Equations (C2) are differentiated to give 

7 Xr  = -j sin p sin + c 4 cos p cos + 

i Xe = -j sin p cos + - rl/ cos p sin + 
ih = j cos p J 
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The coordinate system defined in equations (Cl) is not inertial. The derivatives of 
equations (Cl) are given by 

J ii=--h,B ar 
h 

where 

The values of 5; and can now be calculated from 

- 
h = h i  

where 1 is calculated from equations (C3) and (C4) by using 

. .  

It remains to supply values for  h and x in order to completely determine 5; and F .  
Recalling that the Euler Lagrange equations a r e  homogeneous in the multipliers, X can 
be set equal to unity without loss of generality. In order to estimate k ,  it is first noted 
that if there is no planar attitude constraint, the vector 

is a constant of the motion. This can easily be verified by differentiating and using 
equations (2) and (3). Both of the missions discussed herein contain required final con- 
ditions of the form 
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(see eq. (20) and (22)) where y is some fixed vector (E or  im). Also, i f  the initial and 
final attitudes are not specified, a X f =5 at the beginning and end of the variational 
problem. Therefore, under these restricted conditions, equation (C8) can be satisfied at 
the beginning of the trajectory, thus reducing the iteration size.  Equation (C8) is satisfied 
by the proper choice of the initial value of i. Combining equations (C5) and (C8) results 
in 

X = X  ( i x v - i x ' ) ' y  
(i xF) 7 

Because of the attitude constraint during part of the trajectory, the vector in equa- 
tion (C7) is not constant throughout the trajectory. Therefore, equation (C9) is not exact 
and the iteration size cannot be reduced. However, equation (C9) still supplies a reason- 
able f i rs t  guess for  i. 

at t2 for the nonrate-limited case and dividing by the maximum vehicle turning rate: 
A reasonable guess for t3 may be obtained by estimating the angular discontinuity 

t3 = t2 + ~~ 

Om 

The value of tl is more difficult to estimate, but (t2 - tl) should generally be an order 
of magnitude smaller than (t3 - t2).  

in the 
equation 

mag 
An additional multiplier remains to be estimated, which is the value of CJ 

starts by noting that 
mag The estimating procedure for CJ 

and l ? x a l  must be zero at t3. Also, 

- - d g x 0) = -a2 x x  
dt 
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between t2 and t3. Since the time interval (tl, t2) is much shorter than (t2, t3), amag 
may be estimated as 

During the interval (t2, t3), the motion of f is essentially toward h, while 5; remains 
nearly constant. Therefore, the direction of 2 X x  is essentially fixed, so that 

and 

The value of h in this integral may be assumed to be unity, since X = 1 at to and 6 
becomes is very small. If a is assumed constant (equal to its average value), (T mag 

where 

and aav is the average acceleration between t2 and t3. 

37 



REFERENCES 

1. Teren, Fred; and Spurlock, Omer F. : Payload Optimization of Multistage Launch 
Vehicles. NASA TN D-3191, 1966. 

2. MacKay, John S. ; and Rossa, Leonard G. : A Variational Method f o r  the Optimization 
of Interplanetary Round-Trip Trajectories. NASA TN D-1660, 1963. 

3. Johnson, G. W. ; and Winfield, D. H. : On a Singular Control Problem in Optimal 
Rocket Guidance. Paper 67-582, AIAA, Aug. 1967. 

4. Bliss, Gilbert A. : Lectures on the Calculus of Variations. Univ. Chicago Press, 
1946. 

5. Leitmann, G. : On a Class of Variational Problems in Rocket Flight. J. Aero/Space 
Sci . ,  vol. 26, no. 9, Sept. 1959, pp. 586-591. 

6. Spurlock, Omer F. ; and Teren, Fred: A Trajectory Code f o r  Maximizing the Payload 
of Multistage Launch Vehicles. NASA TN D-4729, 1968. 

7. Dobson, Wilbur F. ; Huff, Vearl N. ; and Zimmerman, Arthur V. : Elements and 
Parameters of the Osculating Orbit and Their Derivatives. NASA TN D-1106, 1962. 

38 



TABLE I. - TRAJECTORY PHASES AND SWITCHING TIMES 

3vent time 

Liftoff 

t2 

t3 

tf 

Description 

Vertical r i s e  

Pitchover and near-zero 
angle of attack booster 
trajectory 

Start of singular planar 
a r c  (phase 1) 

Start of regular planar 
a r c  (phase 2) 

Start of regular uncon- 
strained a r c  (phase 3) 

Start of singular uncon- 
strained a r c  (phase 4) 

Powered flight termin- 
ation 

trajectory trajectory 

Time of occurrence, sec  
_ _ ~ _ _  

0 

20 

156.00 

267.73 

267.80 

301.76 

706.54 

. -  

0 

20 

155.27 

405.44 

405.86 

422.45 

710.06 
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Figure 1. - Instantaneous impact point trace. Sun-synchronous trajectory 
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r 

Figure 2. - Vehicle pitch and yaw attitudes. 
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Figure 4. - Vehicle yaw attitude as funct ion of t ime 
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Sun-synchronous trajectory. 
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Figure 5. -Total vehicle t u r n i n g  rate as function of time. Sun-synchronous trajectory. 
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Figure 6. - Altitude as funct ion of time. Sun-synchronous trajectory. 
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Figure 7. - Inert ial  f l ight path angle as function of time. Sun-synchronous trajectory. 
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Figure 8. 
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Inert ia l  velocity as function of time. Sun-synchronous trajectory. 
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Figure 9. - Instantaneous impact point trace. Interplanetary trajectory. 
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Figure 10. - Vehicle pitch attitude as function of time. Interplanetary 
trajectory. 
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Figure 11. - Vehicle yaw attitude as funct ion of time. Interplanetary trajectory. 
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Figure 12. -Total vehicle t u r n i n g  rate as funct ion of time. Interplanetary trajectory. 
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Figure 13. - Inert ial  f l ight path angle as function of time. Interplanetary trajectory. 
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Figure 14. - Inert ial  velocity as function of time. Interplanetary trajectory. 
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Altitude as function of time. Interplanetary trajectory. 
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