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SECTION I

SUMMARY

The original CINDA computer program, coded in FORTRAN-II
and FAP for the IBM-7094 computers, is documented as Chrysler
Corporation Space Division Technical Note TN-AP- 66-15, dated
April 30, 1966. It has gained wide acceptance and usage through-
out the Thermodynamic community and in fact become a standardized
program at several installations. However, the original program
was unsuitable for standard operation on third generation computers.
Therefore, the National Aeronautics and Space Administration's
Manned Spacecraft Center awarded a contract to Chrysler to produce
the version described herein. This new version entitled CINDA-
3G is coded in FORTRAN V for the Univac-1108 computer. Minor
portions are coded in the Sleuth II assembly language in order
to achieve bit manipulation and shifting operations where required
and also to allow certain user subroutines to have a variable
number of arguments. Problem data decks prepared for the old
version require only a few changes in order to run under the new
version. Although numerous comparisons will be made to TN-AP-66-15,
this document is intended to be complete and self-contained.
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SECTION Il

INTRODUCTION

The compute: program described herein, Chrysler Improved
Numerical Differencing AnE.iyzer fc.r 3rd Generation computers
(CINDA-3G), was developed by the Thermodynamics Section of the
Aerospace Physics Branch of Chrysler Corporation Space Division
at the National Aeronautics and Space Administration's Michoud
Assembly Facility. Programming and systems integration for the
Univac-1108 computer was performed by the CCSD Computation Services
Group at the NASA Central Computer Facility, Slidell, Louisiana.
A major portion of this wort; was done under contract NAS9-7043
from the Manned Spacecraft Center, Houston, Texas.

This program appears virtually identical to its predecessor
(CINDA, CCSD-TN-AP-66-15) but has been almost completely rewritten
in order to take advantage f the improved systems software and
machine speeds of the 3rd generation computers. The entire
programming approach has changed. Whereas CINDA was virtually a
self contained program having its own Update, Monitor and Compiler;
the CLNIDA-3G foundation consists of a preprocessor (written in
Fortran) which accepts the same user input data and converts it
into advanced Fortran language subroutines and block data input
which is then passed onto the system Fortran Compiler. While this
requires a double pass on data where previously only one was required,
the increased speed and improved software of the 3rd generation,
machines more than compensates. Transient thermal analysis solutions
realize the increased machine speeds and in addition, perform fewer
operations which further reduces solution times.

The CINDA-3G program options offer the user a variety of methods
for solution of thermal analog models presented to it in a network
format. The network: representation of the thermal problem is unique
in that it has a one-to-one correspondence to both the physical
model and the mathematical model. This analogy enables engineers
to quickly construct mathematical models of complex thermophysical
problems and prepare them for program input. In addition, the program
contains numerous subroutines for handling interrelated complex
phenomena such as sublimation, diffuse radiation within enclosures,
simultaneous 1-D incompressible fluid flow including valving and
transport delay effects, etc. The optional combination of these
capabilities in conjunction with model size allowable ( > 4000 nodes
for a linear 3-D system on 65K core) makes CLMA-3G an extremely
potent analytical tool for thermal systems analysis, in the hands
of a competent engineer analyist.
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DISCUSSION

Lumped-Parame ter Representation

Ma F,py Lc utilizing a network type analysis program lies in the
users ability to develop a lumped parameter representation of the
physical problem. Once this is done, superimposing the network mesh
is a mechanical task at most and the numbering of the network elements
is simple although perhaps tedious. It might be said that the network
representation is a "crutch" for the engineer, but, it does simplify
the data logistics and allow easy preparation of data input to the
program. In addition, it allows the user to uniquely identify any
element in the network and modify its value or function during the
analysis as well as sense any potential or,current flow in the network.
Another feature of the network is that it has a one-to-one correspondence
to the mathematical model as wall as the physical model.

Perhaps the most critical aspect of the lumped parameter approach
is determining the lump size. There are methods for optimizing the
lump size but they usually involve more analytical effort and computer
time than the original analysis. One must also keep in mind that for
a transient problem, time is being lumped as well as space. Of prime
importance is what information is being sought frcm the analysis. If
spot temperatures are being sought, nodes must at least fall on the
spots and not include much more physically than would be expected to
exist at a relatively similar temperature. Nodes must fall at end
points when a temperature gradient is ;3ought. Of necessity, lumping
must be fairly fine where isotherme are sought. Lumping should be
coarse in areas of high thermal conductivity. When nonlinear properties
are being evaluated the lumping should be fine enough so that extreme
gradients are not encountered. The lumping is also dependent on the
severity of the nonlinearity.

In order to reduce round-off error the explicit stability criteria
of the lump (the capacitance value divided be the summation of conductor
values into the node) should be held fairly constant. The value (C/,E G)
is directly proportional to the square of the distance between nodes.
Although refining the lumped parameter representation will yield more
accurrte answers, halving the distance between nodes decreases the
stability criteria by a factor of four and increases the number of nodes
by a factor of two, four or eight depending upon whether the problem
is one, two or three dimensional. For the explicit case, halving the
distance between nodes increases the machine time for transient analysis
by a factor of eight, sixteen or thirty-two respectively. The increase
in solution time for the implicit methods is somewhat less but propor-
tional.



When lumping the time space, consideration must be given to the
frequency of the boundary conditions. A time step must notstep over
boundary excitation points or they will be missed. Don't step over
pulses, rather, rise and fall with them. Generally the computation
interval for the explicit methods is sufficiently small so that
frequency effects can be ignored. However, care must be exercised
when specifying the time step for implicit methods. If only a small
portion of a transient analysis involves frequency considerations the
time step used may be selectively restricted for that interval. By
setting the maximum time step allowed as a function of time, an
interpolation call may be utilized to vary it accord"ugly.

One must also realize that the problem being solved is linearized
over the time step. Heating rate calculations are usually computed for
a time point and then applied to a time space. If the rates are non-
linear a certain amount of error is introduced, particularly so with
radiation. These nonlinear effects may cause almost any method of
solution to diverge. A brute force method for forcing convergence is
to limit the temperature change allowed over the time space. Considera-
tion of the factors mentioned above coupled with some experience in
using the program will aid the observant analyst in choosing lump
sizes :hat will yield answers of sufficient engineering accuracy with
a reasonable amount of computer time.

The following diagram displays the lumped parameter representation
and network superposition of a one dimensional heat tranafer problem.

Ql	 Tl^_ G1	 T2 G2	 T3 G3	 T4	 G4	 T5

T" i Tc2 1	 TC 1t	 5
(Fl)

The "node' , points are centered within the lumps and temperatures at the
nodes are considered uniform throughout the lump. The capacitors hung
from the nodes indicate the ability of the lump to store thermal energy.
Capacitance values are calculated as lump volume times density times
specific heat. The conductors (electrical symbol G) represent the cap-
ability for transmitting thermal energy from one lump to another.
Conductor values for energy transmission through solids are calculated
as thermal conductivity times the energy cross sectional flow area
divided by path length (distance between nodes). Conductor values for
convective heat transfer are calculated as the convection coefficient
times the energy cross sectional flow area. Conductors representing
energy transfer by radiation are usually indicated by crossed arrows
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over the conductor symbol. Radiation transfer is nonlinear, it is
proportional to the difference of the absolute temperatures raised to
the fourth power. Utilization of the Farenheit system allows easy
automation_ of this nonlinear transfer function by the program and
reduces tha radiation conductor value to the product of the Stephan-
Boltzman constant times the surface area times the net radiant
interchange factor (script F).

Basics of Finite Differencing

The concept of network superposition on the lumped parameter
representation of a physical system is east, to grasp. Describing
the network to the program is also quite straight forward. Having
described a network to the program, what information have we really
supplied and what does the program do with it? Basically, we
desire the solution to a simultaneous set of partial differential
equations of the diffusion type; i.e.,

z	 z	 s

T = 
40t CST + S , C2 = a X z + a^ +	 (1

That the diffusivity (at = k/p Cp )ray be temperature varying or
nonlinear radiation transfer occuring is immaterial at this point.
Of importance is how equation, one is finite differenced and its
relationship to the network and energy flow equations more commonly
utilized by the engineer. The partial of the T state variable with
respect to time is finite differenced across the time space as
follows;

8 T	 TL-T	 (2)8 t	 At

where the prime indicates the new T value after passage of the At
time step.

The right side of equation one could be writt•:n with T primed
to indicate implicit "backward" differencing or unprimed to indicate
explicit "forward" differencing. The following equation is illustra-
tive of how "backward" and "forward" combinations may be obtained.

T = 13 is V2T + S) + (1 — p)(CI' 02 T' + S^)	 (3)

0 :5

10
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Any Value of (3 less than one yields an implicit set of equations
which must be solved in a simultaneous manner (more than one ulknown
exists in each equation). Any value of P equal to or less than
one half yields an unconditionally stable set of equations or in other
words, any time step desired may be ::Red. Values of a greater than
one half invoke stability criteria or limitations on the magnitude
of the time step. A value of P equal to one half yields an uncond-
itionally stable implicit set of equations commonly known as "forward-
backward l, differencing or the Crank-Nicholson method. Various
transformations or first order integration applied to equation one
generally yield an implicit set of equations similar to equation
three with P equal to one half. The following finite difference
approach generally applies to transformed equations.

Let's consider the right side of equation three with P equal
to one and rewrite it as follows;

2	 a (.P-T T a (^_ 8T	 a	 _ T
apT+S~^1dx-- V^+ T 1 ey- 8y+^ + A z (_P 8z- 	z+ +S

(4)

The minus or plus signs on the first partial terms indicate that
they are taken on the negative or positive side respectively of
the point underconsideration and always in the same direction. If
we consider three consecutive points (1, 2 and 3) ascending in the
X direction we can complete the finite difference of the X portion
of equation four as follows;

	

a ( 8 T2 8 Tz 1	 a 	 - T2 + Ta^^

	

TX_ t Cox- - $x+!	 AX 
( Ti
\ Ax-	 A x+

Applying the above step to the y and z portions of equation four
yields the common denominator of volume (V = Ax* Ay* Az). Using
equation three with rp equal to one, finite differencing with the
steps used for equations three, four and five, substituting
a = k/ P Cp anu multiplying both sides by P VCp yields

P1lt 
(.r
	 — ITS-T4) + ©—	 (T2-T°)

+ k©Y- (T2'To) +	 +y+y (T;-T°)

+	
(Ts_ TO ^.
	 .. ( T6 _To} t QAZ+

(5)

(d)
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where Ax = AY-Az, Ly = Ax -Az, Az = Ax-Ay and Q = pVCpS

The numbering system corresponds to the following portion of
a three dimensional network

•

T,

+y

+Z

+x	 (F 2)

Ax

+x

Ax-	 Ax+

It should be obvious that the network capacitance valu; ' is PVC-P-.,-
that the G1 value is kAx/ Ax--, etc. Equation six may then be written
as

Ce,(TJ-To)/At = G i( Ti-'To)+G2(T2-To)-" 3(T3-To)+Ga(fii-'To)
17)

+G3 (Ts -To )+06 (T8 -To )4Qo

or in engineering terminology the rate of change of temperature wi
respect to time is proportional to the summation of heat flows int
the node.

It should be noted that Figure F2 is essentially superimposed
on a lumped parameter cube of a physical system and is the network
representation of equation one. Since equation seven is written in
explicit form, only one unknown (To ) exists and all of the informa-
tion necessary for its solution is :ontained in the network description.
If it had been formulated implicitly it would have to be solved in
a simultaneous manner. No matter what method of solution is requested
of the program, the information necessary has been conveyed by the

t



network description. When an implicit set is used with P greater
then zero, the energy flows based on old temperatures are added to
the Q term and the equations are then treated in the same manner as
for P equal to zero.

a VT +  s = o	 (8)

Tile solution of Poisson's equation_ (eight) is the solution
utilized for steady state analysis. It is extremely important
because virtually all of the unconditionally stable implicit methods
reduce to it. If equation seven had all the right side values primed
and the left side was subtracted from both sides, we could think
of Co/At as a Go term and To (old) would then become a boundary
node. In a manner of speaking, the capacitor we look at in 3-}
becomes a conductor in 4-D. We could draw a four dimensional network
but since there is no feedback in time it is senseless to take more
than one time step at a time. However, various time-space transforma-
tions can be utilized such that a one-dimensional "transient" yields
the solution to a two dimensional steady state problem, etc. This
is analogous to the "Particle in Cell" method developed in the
nuclear field for following shock wave propagation.

Iterative Techni'?aas

Now that we have discussed the correlation between tbephysical
model, network model and mathematical model, let t s investigate the
commonality of the various methods of solution. By describing the
network of Figure Fl to the program we have supplied it with five
temperatures, five capacitors, five sources (four not specified and
therefore zero), four conductors and the adjoining node numbers of
the conductors. An explicit formulation such as equation six has
only one unknown. It's solution is easily obtainable as long as any
associated stability criteria are continously satisfied. A more
interesting formulation would be a set of implicit equations as
follows:

(Tit -T, )CI / At = Q; +G, (TJ -T,t )
(TJ-T2 )C2/ At = Q1+G 1 ( T,t -TI )+G2 (T3t -Ts' )
(TI-T3)C3/ At = Q4+G2(T1-T1)+G3(T1 W	 (9}
(T4-T4 )C4 / At = QJ+G3(T1-T4)+G4(Ti-W
(Tye -T5 )Cs / At = QJ+Gs ( T4 -TJ )

If the above had been formulated as a combination of explicit and
implicit, the known explicit portion would have been calculated and
added to the Q terms, then the P factor divided into the Q terms and
multiplied times the At term.

f

i

3.6
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If we divide the _At tern into the C terms and indicate this by
priming C we can reformulate equation nine as follows:

(gt-Gt )	 Tit = W+CntT, +G1 7^1

(CJ+G, +G2 )Ti _ Q1+C1 T2+G1 Ti +G:Ti
(CI+G1+G3)TI - 

t4
^t^T3+'3Ti+G3TJ

(C1+G3+G4)T1 `r+Q1T4+G3Ti+-4TT5
(C3 a-G4) Tit = QJ4qT5+G4TU

(10)

This equation can be generalized as

Tt = Cl Tt + ,;Gam+'
^-., + XG. sub a for ad joining(11}

where the sub a'indicates connection to adjoining nodes. A Ct
value of zero yields the standard steady state equation, the conductor
weighted mean of all the surrounding nodes. We see here that the Ct
can be thought of as a conductor to the old temperature value and
therefore equation eleven, although utilized to obtain transient
solutions, can be considered as a steady state equation in 4-D. By
rewriting equations ten in the farm of equation eleven we are in a
position to discuss iterative techniques. By assuming all old values
on the right hand side of ten we could calculate a new set of tempera-
tures on the left which, although wrong, are closer to the correct
answer. This single set of calculations is termed an iteration.
By replacing all of the old temperatures with those just calculated
we can then perform another iteration. This process is called "block"
iteration. A faster method is to utilize only one location for each
temperature. ThiE way, the newest temperature available is always
utilized, otherwise old. This method is termed ' , successive point"
iteration and is generally 25% faster than "block" iteration_. lbe
iterative process is continued a fixed (set by user) number of times
or until the maximum absolute difference between the new and old-
temperature values is less than some prespecified value (set by user).

Although the above operations are similar to a relaxation procedure
there is a slight difference. We are performing a set of calculations
in a-fixed sequence. k relaxation procedure would continously seek
the node with the maximum temperature difference between old and new
and calculate it. Programming wise, as much work is required in the
seeking operation which must be consecutive as in the calculation.
For this reason it would be wasteful to code a true relaxation method.

3.7
M
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In addition to the iterative approach, several solution subroutines
utilize an acceleration feature and/or a different convergence criteria.
Once it can be determined that the temperatures are approaching the
steady state value, an extrapolation is applied in an attempt to
accelerate convergence. This convergence criteria is the maximum
absolute temperature change allowed between iterations. This criteria
however is ger_erally one sided and any associated errors are accumula-
tive. In order to obtain greater accuracy, some subroutines are
coded to perform an energy balance on the entire system (a type of
Green's function) and apply successively more severe convergence
criteria until the system energy balance (energy in minus energy
out) is within some prespecified tolerance.

Pseudo-Comte Sequence

When working with a simultaneous set of equations such as
equations ten, they are quite often treated by matrix methods and
formulated as follows:

[A] IT 11 = JBI

Where

	

(C, +G,) -G,	 0	 0	 0
-G^ (C2+Gl -'G2 ) -G2 	0	 0

JA
I =	 0	 -G2 (C j+G2 +G3 )-G3	 0
 0	 0	 -G3	 i Q+t'T3 "^'^'T4 'Z'T4

0	 0	 0	 -G,	 (Cg+G4 }	 {13)

and
T;	 Q; +C^ T,
T7 Q4 +C1

IT'^= T
	

JBI =	 Q	 T3
T^	 Ql.+C' %
T1	 i	 Q2 +CW Ts

The inverse of [A] is then calculated and the solution obtained by
matrix multiplication.

T	 I A] JBI

(12)

(14)

0

3,E
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It should be noted that the one dimensional problem has no
more than three finite values in any row or column of the coefficient
matrix [A]. A three dimensional problem would generally have no
more than seven finite values in any row or column. It is easy to
see that a one thousand node three dimensional problem would require
one million data locations of which approximately 993,000 would
contain zero. The inverse might require an additional one million
data locations. Aside from exceeding computer core area, the computer
time required to calculate the inverse is proportional to the cube
of the problem size and large problems soon become uneconomical to
solve.

The explicit and iterative implicit methods previously discussed
are well suited for optimizing the data storage area required. Note
the adjoining node numbers associated with the conductors of Figure F1

1,1,2 — G1 between nodes 1 and 2
2,2,3 -- G2 between nodes 2 and 3	 (15)
3,3,4 — s3 between nodes 3 and 4
4,4,5 — G4 between nodes 4 and 5

Note also the row and column position of conductor values off the
main diagonal in the [A] coefficient matrix, equates on 13; By
retaining the adjoining node numbers for each conductor we are
able to identify their element position in the coefficient matrix.
As a consequarce we need store only the finite values. The main
diagonal term is a composite of the node capacitance and conductor
values off of the main diagonal.

The program operates on the adjoining node numbers to form
what is termed the pseudo-compute sequence (PCS). The nodes are
to be calculated sequentially in ascending order so the adjoining
nodes are searched until the number one is found. When this occurs
the conductor number and other adjoining node number are stored as
a doublet value. The search is continued until all ones are located
and the conductor number for the last receives a minus sign. The
process is then continued for node two, etc. until all the node
numbers have been processed. The pseudo-compute sequence formed is
shown in Figure 16A. A slight variation to this operation. is to
place a minus sign on the original other adjoining node number so
that it is not recognized when it is searched for. The resulting
pseudo-compute sequence thus formed is shown in Figure 16B.

4
3.9
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LPCS SPCS
-1,2 -1,2
1,1 -2,3

-2,3 3,4
2,2 -4,5
3,4 -0,0	 (B)	 (16)
3,3
-4,5
-4,4	 (A)

The above pseudo-compute sequences are termed long (LPCS) and short
(SPCS) respectively. By starting at the top of the pseudo-compute
sequence we are operst' on rode one. The two values identify the
conductor into the rodelthe position of the conductor value in an
array of conductor values) and the adjoini"g node (the position of
the temperature, capacitor and source values in arrays of temperature,
capacitor and source values respectively). The node beinng operated
on starts as one and is advanced by one each time a negative conductor
number is passed.

It is easy to see that the long pseudo-compute sequence identifies
the element position and value locations of all the off diagonal
elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited
for "successive point" iteration of the implicit equations because
all elements in a row are identified. When a row is processed and tYn
new T value obtained, the new T can then be used in the calculation
procedure of succeeding rows.

The short pseudo-compute sequence identifies each conductor only
once and in this manner takes advantage of the symmetry of the
coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the
adjoining node number reveal their temperature value locations and
their source value locations. The explicit solution subroutines
calculate the energy flow through the conductor, add i.t to the sonrce
location of the rode bein g worked on and subtract it from the source
location for the adjoining node. However, if the short pseudo-
compute sequence were utilized for implicit methods of solution
they would require the use of slower "block" iterative procedures.
The succeeding rows do not have all of the elements defined and the
energy rates passed ahead were based on old temperature values.

3

U-
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Data Logistics

The pseudo-compute sequences formulated as shown above allow
the program to store only the finite values in the coefficient matrix
thereby taking advantage )f its sparsiiy. In addition, the short
pseudo-cumi;,,te sequence takes advantage of any symmetry which may
exist. Multiply connected conductors which wa11 be covered in the
next section also allow the user to take advantage of similarity
as well. The foregoing is fairly easy to follow, especially if the
nodes and conductors start with the number one and continue
sequentially with no missing numbers. This restriction is too
limiting for general use on large network models. To overcome this
restriction the program assigns relative numbers (sequential and
ascending) to the incoming node data, conductor data, constants
data and array data in the order received. Any numbers missing in
the actual numberiuzg system set up by the user are packed out
thereby requiring only as much core space as is actually necessary.

All solution (Execution) subroutines require three locations
for diffusion node data (temperature, capacitance and source) and
one location for each conductor value. -
	

o may require from
zero to three extra locations per node so: 	 ;.-mediate data storage.
Each node in a three dimensional network has essentially six.conducto
connected to it but only three are unique; i.e., each additional
node requires only three more conductors. Hence, each node Ll a
three dimensional system requires rom six to nine storage locations

t for data values (temperature, capacitance, source, three conductors
and up to three intermediate locations). The two integer values
that make up a doutlst of the pseudo-compute :sequence are packed
into a single core location. Hence, for a three dimensional network,
each node requires approximately three locations for data addressing
for the short and six locations for the long pseudo-compute sequence.
The number of core locations required per node can vary from nine
to fifteen.

The program requires the user to allocate an array of data
locations to be used for intermediate data storage and initialize
array start and length indicators. Each subroutine that requires
intermediate storage area has access to this array and the start
and length indicators. They check to see that there is sufficient
space, update the start and length indicators and continue with
their operations. If they call upon another subroutine requiring
intermediate storage, thesecondary subroutine repeats the check
and update process. Whenever any subroutine terminates its
operations it returns the start and length indicators to their
entry values. This process is tend "Dynamic Storage Allocation"
and allows subroutines to share a common working area.

3.11
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OPERATION DESCRIPTION

GTS Calculate time step

VARB^.1 Variables 1 operations

FSN--1 Solve Network

FVTFI-21 Variables 2 operations

WT—CATLI Output calls operations

MTC Modify time control

U ;rase iteration

Check Reverse direction if

® Backup nonzero

I> Relaxation criteria not net

Time or temp change to large

Backup nonzero

Not time to print

Problem stop time not reached

BASIC FL M CHART FOR NETWORK SOLUTION SUBROUTINES

(F3)

3. 12
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Order of Computation

A problem data deck consists of data and operations "blocks" which
are preprocessed by CINDA-3G and passed on to . the system FORTRAN compiler.
The operations blocks are named EXECUTION, VARIABLES 1, VARIABLES 2
and OUTPUT CALLS. The FORTRAN compiler constructs these blocks as
individual subroutines with the entry names EXECTN, VARBLI, VARBL2 and
OUTCAI respectively. After a successful compilation, control is passed
to the EXECTN subroutine. Therefore, the order of computation depends
on the sequence of subroutine calls placed in the EXECUTItH block by
the program user. No other operations blocks are performed unless called
upon by the user either directly by name or indirectly from some subroutine
which internally calls upon them. The network execution subroutines
listed in Section 5.1 internally call upon VARBLI, VARBL2 and OUTCAL.
Their internal order of computation is quite similar, the primary
difference being the analytical method by which they solve the network.
Figure F3 represents a flow diagram of all the network solution sub-
routines; the subroutine writeups contain the comparisons made at the
various check points and the routings taken.

Systems Programming

CINDA 3G is actually an operating system rather than an applications
program. The more one studies and uses the program the more apparent
this becomes. In order for the program to accomplish the desired
operations with regards to overlay features, data packing, dynamic
storage allocation, subroutine library file and yet be written in Fortran,
it was necessary to program CINDA-3G as a preprocessor. This preprocessor
operates in an integral fashion with a large library of assorted subrou-
tine which can be called in any sequence desired yet operate in an
integrated manner. It reads all of the input data, assigns relative
numbers, packs it, forms the pseudo—compute sequence and writes it on
a peripheral unit as Fortran source language with all of the data values
dimensioned exactly in name common. It then turns control over to the
system Fortran compiler which compiles the constructed subroutines and
enters execution. The Fortran allocator has access to the CINDA 3G
subroutine library and loads only those subroutines referred to by
the problem being processed.

Due to this type of operation, CINDA 3G is extremely dependent on
the systems software supplied. However, once the program has been
made operational on a particular machine, the problem data deck prepared
by the user can be considered as machine independent. The user need
only consult the section in this document on "Control Cards and Deck
Setup" to switch his problem from one machine to another.
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SECTION IV

DATA INPUT REQUIREMENTS

A CINDA-3G problem data deck consists of both data and instruction
cards. The card reading; subroutines for CINDA-3G do not utilize a
fixed format type of input; they use a free form format quite similar
to the old SHARE decimal data read routine. The type of data is
designated by a mnemonic code in columns eight, nine and ten. This is
followed by the data field which consists of columns twelve through
eighty oM the instruction field which consists of columns twelve through
seventy-two. Although blanks are allowed before or after numerical data
they may not be contained within. The number 1.234 is fine, but 1. 234
will cause the program to abort. The program processes the problem data
into FORTRAN common data and reforms instructions into FORTRAN source
language which are then passed on to the system FORTRAN compiler.
Instruction cards which contain an F in column one are passed an exactly
as received. Any instruction card with or without an F in column one
may contain a statement or sequence number in columns two through five
which is passed on to and used by the FORTRAN compiler.

The most frequently used mnemonic code was the old DEC designation
which has been replaced by three blanks. The data following this blank
mnemonic code may be one or more integers, floating point numbers (with
or without the E exponent designation or alpha-numeric words of up to
six characters each. The reading of aword or number continues until a
comma'is encountered and then the next word or number is read. As many
numbers or words as desired may be placed on a card but they may not be
broken between cards. A new card is equivalent to starting with a comma
and therefore no continuation designation is required. All blanks are
ignored and reading continues until the terminal column is reached or a
dollar sign encountered. Comments pertinent to a data card may be placed
after a dollar sign and are not processed by the program. If sequential
commas are encountered, floating-point zero values are placed between them.

The next most frequently used code is BCD (for binary coded decimal.)
which must be. followed ;,y an integer one through nine in column
twelve. The integer designates the number of six character words
immediately following it. Blanks are retained and only the designated
number of six character words are read from the card. The mnemonic

r
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code END is utilized to designate the end of a block of input to
the program. The code RFC! serves the same function as a FORTRAN
comment card; , it is not processed by the program but allows the user
to insert non-data for clarification purposes. The code OCT may be
utilized and allows the input of a single octal word starting in
column twelve. The special codes CGS, CGD and GEN will be discusc,Id
later in this section.

The data deck prepared by a program user consists of various input
"blocks t, containing either data or instructions. A fixed sequence
of block input is required and each block must start with a BCD 3
header card and terminate with an END card (mnemonic codes). Specific
details about these blocks follows:

Title Block

The first card of a problem data deck is the title block header
card. It conveys information to the program as to the type of problem,
which data blocks follow and how they should be processed. The three
options presently available are:

Col 8
BCD 3GE ERAL

or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

The COAL indicates that a non-network problem follows and therefore
no node or conductor data is present. The THERMAL cards indicate that
a conductor-capacitor (CG) network description follows Lnd that either
a short (SPCS) or long (LPCS) pseudo-compute sequence should be con-
structed. The title block header card may be followed by as mart' BCD
cards as deeirec!. u^ever y to first twenty words (six characters
each) are retained by the program and used as a page heading by the
user designated output routines. The block must be terminated by an
END card and is then followed by node data for a CG network problem
or constants data for a non-network problem.

Node Data Block

As discussed in section three, there are three types of nodes;
diffusion, arithmetic and boundary. Diffusion nodes are those nodes
with a positive capacitance and have the ability to store energy.
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Their future values are calculated by a finite difference representat.on
of the diffusion partial differential equation. Arithmetic nodes are
designated by a negative capacitance value, they have no physical
capacitance and are unable to store energy. Their future values are-
calculated by a finite difference representation of '^ Ioisson t s partial
differential equation. This is a steady state calculation which always
utilizes the latest diffusion node values available. Boundary nodes
are designated by a minus sign on the node number; they refer to the
mathematical boundary, not necessarily the physical boundary. Their
values are not changed by the network solution subroutines but may be
modified as desired by the user.

A diffusion node causes three core locations to be utilized, one
each for temperature, capacitance and a source location. An arithmetic
node receives core locations for temperature and source only and a
boundary node only receives a temperature location. The program user
is required to group his node data into the above three classes and
submit them in that order. Node data input with the three blank nu_^,nonic
code always consists of three values; the integer node number followed
by the floating point initial temperature and capaciatance values. A
negative capacitance value is used to designate an arithmetic node while
a negative node number designates a boundary node. Although the capaci-
tance value of a boundary node is meaningless, it must be included so
as to maintain the triplet format.

All nodes are renumbered sequentially (from one on) in the order
received. The user input number is termed the actual node number while
the program assigned number is termed the relative node number. This
relative nuTM:oering system allows sequential p=:-^king of the data and does
not regi:ire a sequent^idl numbering system on the part of the program
us%.-r. It is worth noting that the pseudo compute sequence is based on
the relative numbering system. Hence, the computational sequence of
the nodes is identical with their input sequence. If a user desired to
reorder the computations in order to aid boundary propagation, he needs
merely to reorder his nodal input data.

The mnemonic codes CGS, CGD and GEN may be used. The CGS and CGD
codes are used when one or two materials respectively with temperature
varying properties are to be considered. For a single material the
node number and initial temperature remain the same but instead of a
capacitance value, the user may input the starting location (integer
count) of a doublet array of the temperature vam ng property followed
by the actual (literal) multiplying factor value to complete the
calculaticn or a constants location containing it. For .i node consisting
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of two materials, the node number and initial temperature remain the
.same but the user would use two array addresses and multiplying factors
with a CGD code. These codes would look as follows:

Col 8
CGS N#,Tz,,A1,Fl

or CGD N#,Ti,A1,F1,A2,F2

where N# is the integer node number and Ti is the floating point initial
temperature. The A arguments refer to doublet arrays of temperature
varying Cp or P *Cp and the F arguments may be or refer to a constant
location containing the weight or volume respectively. The CGS code
causes the product of the interpolated value times the F factor to be used
as the capacitance value. The CGD code uses the sum of the separate
interpolation times factor products as the capacitance value.

To input a sequential group of nodes, the following code is available,

Col 8
GEEN N#,#N,IN,Ti,X,Y,Z,W

where N# is the starting node number.
#N is the total number of nodes desired (integer).
IN is an increment for the generated nodes ( integer).
Ti is the initial temperature for all nodes,

and the capacitance values is calauiated as the product, of X times Y
times Z times W. If this product is negative, arithmetic nodes will
be generated. If N# is negative, boundary nodes will be generated. A
sample node data block could be as follows:

r

Col 8 12
BCD 3NODE DATA

1,60.,1.292,80.,1.3
CGS 3,SO.9A1,4.63

CGD 4,60.,A102.310A2,4.76
GEN 5,10,1,80.,4.63,1.,1.,1.

15,80.,-1,16,80.,-1
-18,-460.,0

END

$TKO DIFFUSI9N NAM
$^IhZLE MATERIAL NPbE
$DJBLE MATERIAL N9DE
$GENERATE 10 NPO, 5-14
$TWO ARITHMETIC NKM
$OM BOJNDARY NODE

The above does not correspond to a problem; it Just represents data
Input. Note that the nodes are input in the order: diffusion,
arithmetic and boundary. The factor portion of the CGS and CGD codes
may be a literal (actual value) as shown or reference a constants
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location conta i ni ng the value. Either one (rot both) of the array
Arguments on the CGD code may be a literal if the property is constant.
Both codes set up linear interpolation calls which utilize the node
temperature as the independent variable and interpolate a dependent
value which is then multiplied by the factor to obtain the capacitance
value. The CGD call causes two interpolations and multiplications to be
performed and sums the products to obtain the capacitance value. These
interpolations are performed each iteration during the transient analysis.

The GE4 code expects values in the following order; start" no
number, number of nodes to be generated, an increment for indexing the
generated node numbers, the initial temperature 	 for all nodes and four
floating point numbers the product of which is the capacitance value.

Condactor Data Block

Two basic types of conductors may be used, regular or radiation,
and either may utilize temperature varying properties in calculating
the conductance value. When utilizing the blank mnemonic code a
regular conductor consists of the integer conductor number followed by
two integer adjoininr, node numbers and the floating point conductance
value. If more than one conductor has the same constant value, they may
share the same conductor number and value. This is accomplished by
placing two or more pairs of integer adjoining node numbers between the
conductor number and value. The CGS and CGD mnemonic codes may also be
utilized for conductors. They w-yuld appear as follows,

Col 8
CGS G#,NA,NB,A1,F1

or CGD G#,NA,hB,A1,Fl,A2,F2

where G# is the integer conductor number
YA is one adjoining node number
NB is the other adjoining node number.

The A arguuments refer to doublet arrays of temperature varying thermal
conductivity k(T) and the F arguments may be or refer to a constant
location conta ini ng the cross sectional area divided by path length.

For CGS with F1 positive

G = kl(Tm)*F1,Tm = (Ta + Tb)j2.0

For CGS with F1 negative

G = kl(Ta)*IFl

0
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For CM
i

G = 1.0/[1.0/(kl(Ta)*Fl) + 1.0/(k2(Tb)*F2)1

The CGS mnemonic c-rde may be utilized for either regular or radiation
conductors. The data consists of the integer conductor number, one pair
only of integer adjoining node numbers and is followed by an array addres's
and multiplying factor. A regular conductor would normally utilize the
CGS code where the addressed array would be thermal conductivity versus
temperature and the multiplying factor would consist of the cross-sectional
area divided by path length. A surface radiation conductor would utilize
the CGS code for a temperature va-rying array of emissivity with the
multiplying factor being the product of surface area times the Stephan-
Boltzman constant (F = 1.0).

The CGD code may be utilized for regular conductors passing through
two materials. In this case two temperature varying property arrays and
multiplying factors are input. Two conductance values are calculated
and one over the summation of their inverses is returned as the conductor
value. Either of the array addresses may be a literal if one of the
properties is a constant. The GEN code is also available for conductors
and is input as follows:

Col 8
GEN G#,#G,IG,NA,INA,NB,INB,X,Y,Z,W

where G# is the starting conductor number.
#G is the total number of conductors desired (integer).
IG is an increment for the generated conductors (integer).
NA and NB are initial adjoining node numbers (integers).
INA and INB are increments for the generated adjoining nodes

(integers),

and all generated conductors receive the same conductance -slue of
f times Y times Z divided by W. A negative G# will cause radiation
conductors to be generated.

The CM code may be used to generate sequential conductors, either
radiation or re,Rular. The data consists of the integer conductor number,
integer number of how many conductors to be generated, an integer
increment for indexing the generated conductors, the first integer
adjoining rude number ,, an integer increment for indexing the first
adjoining node number, the second integer adjoia4r¢ node number, an
integer increment for indexing the sec= .a adjoining ncde number and

i
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finally four floating point numbers, the product of the first three
divided by the fourth is th6 constant conductance value. For exp-^ple:

Col 8
GEN 112,1,111,2,1,2.,2.,2.,2.
GEN

is equivalent to

Col 12
1,1,2,4.,2,2,3,4.
3,1,10,2,10,3,10,1.E-15

An additional feature of the program is the one way conductor.
This is a conductor value which enters into the temperature calculation
of only one of its adjoining nodes and is indicated by placing a minus
sign on the uneffected node. The CGS, GGD and GEN codes may be used
for one way conductors. Physically this occurs in incompressible fluid
flo% and therefore, the upstream node would receive the minus sign.

A program idiosyncrasy which should be mentioned is that while a
single valued cc.^ductor with as many adjoining node pairs as desired
may be used, extending several cards if necessary, an adjoining node
pair must not be split between cards. In addition, the CGS, CGD and
GEN card may have more than one set of data on a card but a set of
data may not be broken between cards. All regular conductors must be
input prior to any radiation conductors. The following is illustrative
of the various conductor input options.

Col 8
BCD 3COMCVR DATA

1,1,2,1.2,2,2,3,1.7
30,4,4,5,5,6,1.5
4,--7,8,--8,9,7.6

CGS 5,10,11,A3,4.6
CGD 6,12,13,A3,4.1,A4,7.6
GEN 7,3,1,1,1,9,1,1.6,4.0,1.,1.

20,1,99,1.E-15
CGS -ll,2,9Q,A5,1.E-14
GEN -12,4,1,3 ,1,99,0,1.E-14,1.,1.,1.
END

$TkJf REGULAR CONDUCW
$TRIFLE PLACED CONDUCTOR
$DOUBLE PLACED ONE-WAY COND.
$VARIABLE CONDUCTOR, SINGLE
$VARIABLE CO MCTOR, DOUBLE
$GENERATE MM CONDUCTORS
$RADIATION COMCTOR
$VARIABLE EMISSIVITY RADIATION
$GEh-ERATE F'O JR RADIATION COND .

e
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The first GEN card is equivalent to the following:

Col 12
7,1,9,6.4,812,10,6.4,9,3,1116.4

and the second GEN card is equivalent to

Col 12
-12,3,99,1.E-14,-13,4,99,1.E-14
-14,5,99,1.E-14,-15,5,99,1.E-14

If the second GEN card had incremented the conductor number by zero,
it would have been equivalent to:

Col 12
-12,3,99,4,99,5,99,6,99,1.E-14

Once the node and conductor data have been read by the program,
construction of the pseudo-compute sequence is performed. Any errors
encountered cause an appropriate error message to be printed and a "do
not execute" switch to be set. However, the program will continue to
process input data and attempt to discover any and all recognizable
errors. Items checked for are; no duplicate node or conductor numbers,
all conductor adjoining nodes must have been specified in node data
and all diffusion and arithmetic nodes must have at least one conductor
into them. A missing comma will dislocate the data input sequence
causing pages of error messages. If over two hundred error messages
are printed, the program gives up and immediately terminates.

Constants Data Block

Constants data are always input as doublets, the constant name
or number followed by its value. They are divided_ into two types,
control constants and user constants, and may be intermingled within
the block. Control constants (- 50) have alpha-numeric names while
user constants receive a number. User constants are simply data
storage locations which may contain integers, floating point numbers
or up to six character alpha-mameric words. It is up to the program
user to place data in user constant locations as needed and supply the
location addresses to subroutines as arguments.

Contrai constant values are cominunicated through program common
to specific subroutines which require them. However, any control
constant name desired can be used as a subroutine argument. Wherever
possible, control constant values not specified are set to some accept-
able value. If a required control constant value is not specified an

Z
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appropriate error message is printed and the program terminated.
It is up to the user to check the writeups of subroutines he is using
to determine control constant requirements. A list of control constant
names and brief description of each follows, check subroutine writeups
for exact usage.

ARLXCA The maximum arithmetic relaxation change allowed.
ARIXCC The maximum arithmetic relaxation change calculated.
ATPPCA The maximum arithmetic temperature change allowed.
ATMPCC The maximum arithmetic temperature change calculated.
BACKUP If non—zero, the just done time step is erased and redone.
BA ENG User specified system energy balance to be :-,a.intained.
CS}FAC Stability criteria multiplication/division factor.
CSCMAX Maximum stability criteria for the network.
CM ITN Minimum stability criteria for the network. (C/EG) max and 

mi+7.

CSGRAL Stability criteria range allowed.
CSGRCL Stability criteria range calculated.
DAMPA	 Arithmetic node damping factor.
DAMPD	 Diffusion node damping factor.
DRLXCA The maximum diffusion relaxation change allowed.
DRLXCC The maximum diffusion relaxation change calculated.
DTIlMEH Highest time step allowed (maximum).
DTIMEI Input time step for implicit solutions.
DTIMEL Lowest time step allowed (minimum).
DTIMEU Time step used for all transient network problems.
DTMPCA The maximum diffusion temperature change allowed.
DTMPCC The maximum diffusion temperature change calculated.
ENGBAL The calculated energy balance of the system.
LINECT A line counter location for program output.
L#PCT Program count of iteration loops performed (Integer).
NEAP	 User input number of iteration loops desired (Integer).
OPEITR Causes output each iteration if set non—zero.
OUTPUT Time interval for activating OUTPUT CALLS.
PAGECT A page counter location for program output.
TIMEK	 Mean time for the computation interval.
TI MEN	 New time at the end of the computation interval.

-'r TIMEND Problem stop time for transient analysis.
TIMES Old time at the start of the computation interval, also used

as problem start time, may be negative.

ITEST,JTEST,KTEST,LTEST,MTEST

Dummy control constants with integer names.

RTEST,STEST,TTEST,UTEST,VTEST

Dummy control constants with non—integer names.
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The following is representative of a constants data block.

Col 8
BCD 3CONSTANTS DATA

TIMEND,10.0 'OUTPUT,1.0 	 $CONTROL CONSTANTS
1,10,2,3,3,7,4,8	 $INTEGERS
5,1.,6,1.E3,7,1.E-3 	 $FLOATING POINT
8,TEMP,9,ALPHA	 $ALPHA—NUMERIC

END

Array Data Block

Array data is exceedingly simple to input. The user inputs
an ar-°ay number, sequentially lists his information and terminates
it with an END (data END, not mnemonic). Nwmerous subroutines
(interpolation, matrix, etc.) require that the exact number of values
in an array be specified as an integer. In order to reduce the number
of subroutine arguments and chance of error, the CINDA-3G preprocessor
counts the number of values in an array and supplies this integer
count as the first value in the array. The writeup of any subroutine
whose array arguments require the array integer count will list the
array argument as A(IC). Subroutines whose array arguments regxire
the first data value rather than the integer count vill list the
array argument as A( T)V). Wh3 n a user inputs the array number as
positive, the integer count is calculated by the preprocessor and
supplied as the first value in the array. For example:

Col 12
1.1.6,2.4,3.8,END

Array 1 above contains three data values and was input as a
positive array. By addressing Al as a subroutine argument the integer
count 3 would be the first value followed by 1.6,2.4 and 3.8. If
the user wantea the 1.6 data value to be addressed the argument should
be A1+1. The user has the option of placing a minus sign on the input
array number. In this event the integer count of data values in
the array is not calculated or stored and addressing the array as Al
obtains the first data value for example;

Col 12
—211.6,2.493.8,END

Inputing the argument A2 would address the 1.6 data value; the
integer count is not available. The following is an example of
various types of arrays.
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Col 8
BCD 3ARRAY DATA

1,1.6,2.40.8,END
2,TEMP1,TEMP2,END
3

BCD 3TE PERATURE STUDY
END
-4,SPACE,100,END

STD

$FLOATING POINT NT7MBERS
$ALPHA NUMERIC
$ALPHA-4NMERIC

$S PACE OPTIVN

Two types of alpha numeric input are shown above. The first allows
each word to be separated by a comma, requires each word to start with a
letter and does not allow the use of blanks. The second requires use of
the BCD mnemonic code and the integer word count. It allows use of
letters, numbers or characters anywhere and retains blanks. The space
option is an easy way for the user to specify a large number of locations
which are initialized by the preprocessor as floating point zeros. The
space option requires the word SPACE followed by the number of locations
to be initialized. It may be used anywhere in an array and as many times
as desired as long as total available core space is not exceeded.

5

Program Control

Aside from the title block, there are either two or four data
blocks depending upon whether the problem is GENERAL or THERMAL
respectively. No matter which, there are also four operations blocks
entitled EXEC7UTI9W, VARIABLES 1, VARIABLES 2 and OUTPUT CALLS. The
operations or instructions called for in these blocks determine the pro-
gram control. They are preprocessed by CINDA-3G and passed on to the
system FOTRAN compiler as four separate subroutines entitled EXECTN,
VARBLI, VARSL2 and 9UTCAL respectively. When the FORTRAN compilation
is successfully completed, control is passed to the EXECTN subroutine
which sequentially performs the operationzi in the same order as input

by the user in the EXECUTION block. Nors of the operations specified
in the other three blocks will be performed unless they are called for,
either directly by name in the EXECUTION block or internally by some
other called for subroutine.

No operations will be performed unless requested }-,f the user and
no control. constants will be utilized unless some subroutine calls
upon them. Network solution subroutines internally call upon VARBLI,
VARBL2 and OMAL (see Figure F3, page 3.12). They also use numerous control

0
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constants but their individual writeupe in Section 5.1 must be
consulted in order to determine which ones and their exact usage.
Network solution subroutines require no arguments but most others do.
These arguments may be addresses which refer to the location of data
or they may be literals; i.e., the actual data value. All of the
input data can be addressed by using alpha-numeric arguments of the
following form.

' TN for the temperature location of node N
CN for the capacitance location of node N
QN for the source location of node N
GN for the conductance location of conductor N
KN for the value location of constant N
AN for the starting location of array N
and control constants utilize their individual names.

When addressing arrays the user must be. cautious as to the use
of positive or negative arrays and address them accordingly. However,
the user may uniquely address any item in an array. For instance,
the one hundredth value in a positive array ten could be uniquely
addressed as A10+100., The above plus option is only available for
arrays. If perhaps a user desired to address the twenty BCD words
for the title block which were retained for output page headings,
he could do so by using the argument Hl.

Dynamic Storage Allocation is a unique featureof the LINDA-3G
program. Although not carried to the ultimate, all subroutines which
require working space generally obtain it from a connon working
array. However, it is up to the user to specify information about
this array to the program. To do so the user must place three ORTRAN
cards at the start of the execution block, for example,

	Col 1	 7

	

F	 DIMENSI$N X(100)

	

F	 NDIM =

	

F	 NTH = 0

The names used must be exactly as shown and in the above would cause
a working array of 100 locations to be created. If more or less
locations are needed the integer 100 may be changed as desired (both
first and second cards). If no working locations 'am required the
cards may be omitted. The program user must cheek the writeups of
subroutines he is using in order to determine if, when and how much
of a working array is required.
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An F in column one indicates +o the preprocessor that the card is
FORTRAN and should be passed on as receiv d. This F option allows the
user to program FORTRAN operations directly into the operations
blocks. However, the CINDA-3G arguments listed above are not FORTRAN
compatible with the exception of the control constant names. Therefore,
it is recommended that the program user utilize CINDA-3G subroutine
calls wherever possible. This is impossible however when logical
operations are required. In this case it is recommended that the user
place CINDA-3G data values as needed into the available dummy control
constant names allowed for that purpose. Then, F9(RTRAN logical
operations can we utilized with the di-- y control constant names as
arguments. FORTRAN statement numbers for routing purposes may be
placed in columns two through five on any operations cards.

The data field for node, conductor, constant and array data consists
of columns twelve through eighty. Ho :rever, the data field of operations
cards ends with column seventy—two. In a manner of speaking, a CINDA-3G
subroutine call is a special array and should terminate with a data
END. In order to simplify input for the user, the operations read
subroutines recognize two special characters; the left and right
paranthesis. The left paranthesis iz accepted as a comma while the
right paranthesis is accepted as a comma followed by a data END. This
allows what would have been this

Col 12
ADD,KI,K2,K3,END

to be more esthetically formatted as this

Col 12
ADD(K1,K2,K3)

which is almost identical to a FORTRAN subroutine call.

Execution Operations Block

An execution operation block might be as follows:

	

Col 1	 g 12
BCD 3EXECUTION

.	 F	 DIMENSION X(25)

	

F	 NDIlM=25

	

F	 NTH
F 10 TI?GND-TIWD+1.0

CNFRWD	 $EXPLICIT FORWARD DIFFEMMCING
STFSEP(T20,TMST) $PLACE T1O INTfJf DUM CC

	

F	 IF(TTEST.IE.100.) GO TO 10
END
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The above indicates a transient thermal problem in which the user
desires to terminate the analysis when the temperature at node 20
exceeds one hundred degrees. The problem must have been fairly small
because only ^Wenty five working locations were dimensioned and CNFRWD
requires one per node. It does demonstrate the use of both CINDA-3G
calls and FPRTRAN operations and that control constants are referred
to by name in either. Another example might be

	

Col 1	 8 12
BCD 3EXECUTIOIN

	

F	 DIMENSION X(500)

	

F	 NDINh=500

	

F	 NTH
CINDSL $STEADY STATE (USES LPCS)

	

F	 TIMEND=10.0
CNFRWD $TRANSIENT ANALYSIS (USES SPCS)

END

In this case the user desires to have a steady state analysis performed
on the network and then a transient analysis performed utilizing the
steady state answer as initial conditions. However, the two network
solution subroutines referred to are incompatible in their pseudo—
compute sequence requirements and the program would be terminated with
an appropriate error message. A further example might be::

Col 8 12
BCD 3EXECUTION

INVRSE(Al,A2)
MULT(A2,A3)
LIST(A2,K1,17)
LIST(A3,K2,17)

END

$SEE MATRIX SUBROUTINE
$WRITEUPS FAR OPERATIONS
$FERFORMED

The above problemv consists entirely of matrix operations and therefore
is run as a GENERAL. The subroutines do not require any working space
so none has been dimensioned. Furthermore, no reference, direct or
indirect, is made to VARBLI, VARBL2 or OUTCAL and those operations
blocks should be empty. Even though they may be empty or not
referred to, their blockheader and mneuuonic END cards must still be
input.

There is no end to the variety of examples that could be generated.
In reality, the program user is actually programming although it is
somewhat disguised as data input. However, the program does simplify
the task of data logistics and automates overlay, tape library, and
other systems features thereby greatly lessening the programing
knowledge which might otherwise be required of a user.
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A point well worth considering is proper initialization. All
instructions contained in the other three operations blocks are perform-
ed each iteraticn or on the outnut interval. If an operation being
performed in Variables 1 is utilizing and producing non changing
constants, it should be placed in the Execution block (prior to the
network solution call) so that it will be performed only once.
Input arrays requiring post—interpolation multiplication for units
conversion only could be prescaled, thereby deleting the multiplication
process. Com^lex functions of a single independent variable requiring
several inter pc-.ation values which are then combined in a multiplicative)
fashion can be z:recalculated versue the the independent variable.
Such a precalcuiated complex function reduces the amount of work
performed during the transient analysis. A great many operations of
this type can be performed in the Execution block prior tr. ^" for a
transient analysis. Also, output operations to be perform. u..ce the.
transient analysis is completed may be placed directly into the
Execution block following the transient network solution call.

Variables 1 Operations Block

The statement that this program bolves nonlinear partial different-
ial equations of the diffusion type is not quite accurate. In
reality the program only solves linear equations. However, nonlinear-
ities are evaluated. at each computation interval and in this manner
generally yield acceptable answers to nonlinear problems. This
method is more properly termed quasili.nearization. The Variables 1
operation block allows a point in the computational sequence at which
the user can specify the evaluation of nonlinear network elements,
coefficients and boundary values (see Figure F3). The CGS ane CGD
mnemonic codes utilized for node and conductor data cause the construc-
tion of various subroutine calls which are placed in this block by
the CINDA 3G preprocessor. The user must specify any addit onal
subroutine calls necessary to completely define the network prior to
entering the network solution phase.

Prior to inclusion of the CGS and CGD mnemonic codes, the Variables
1 operations block primarily consisted of linear interpolation subroutine
calls input by the user for the evaluation of temperature varying
properties. While these linear interpolation calls are automated
through use of the CGS and CGD codes, it is up to the program user to

s
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specify any required bivariate or trivariate interpolations or other
functional evaluations necessary. Just prior to performing the
Variables 1 operations, all network solution subroutines zero out
all source locations. Therefore, the user is required to specify
constant as well as variable or nonline>sr impressed sources in this
block. A Variables 1 operations block could be as follows:

	

Col 1	 8 1.2
BCD 3VARIABLE5 1

STFSEP(10.0;Ql7)
D1DW1(TIM' I,A8,Q19)
D2D1WM(T18,TIMEM,A19,7.63,G18)

	

F	 TTEST=11.6

	

F	 IF(TIM.GT.10.) TTEST-0.0
STFSEP(TTEST,Q27)

END

$CONSTANT IMPRESSED SOURCE
$TIME VARYING SOURCE
$BIGARIATE FUNCTION

$VARIABLE SOURCE

The first call above places a constant heating rate of 10.0 into
the source location of node 17. The second call causes a linear
interpolation to be performed on array 8 using mean time as the indepen-
dent variable to obtain a time varying k. ,,ating rate for node 19.
The third call uses mean time and the temperature at node 18 as
independent variables to perform a bivariate interpolation. The
interpolated answer is then multiplied by 7.63 and placed as the
conductance value of conductor 18. The next two cards are ORTRAN
and allow a value of 11.6 to be placed into control constant TTEST
until TIMEN exceeds 10.0 after which a value of 0.0 is placed into
TTEST. This amounts to a single step in a "stair-case" function.
The last card places the value from.TTEST into the source location
for node 27. Another sample Variables 1 block might look as follows:

Col 1	 8 12
BCD 3VARIABLES 1

BLDARY(Al2+1,T1,T7,T3,T4)
D1DEG1(T7,A19,A13+2)
IRRADE(A7,A13,A10,Al2)
BRKARY(Al2+1,Q1,Q7,Q3,Q4)
D1D1WM(T"DI,A9 0.35,TTEST)
ADD(TTEST,QI,Q1^

END

$CONSTRUCT VECTOR
$INTERPOI,ATIO
$IR RADIOSITY EXPLICIT
$DISTRIBUTE Q RATES
$INTERPjft ATE
$ADD TWO RATES

The first call above causes the construction of an array of four
temperature values necessary as input to an infrared radiosity
subroutine (third card). The second call causes the linear interpolation
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of a temperature varying property from array 19 to be placed into
array 13 + 2 which is the second array argument for the radiosity call.
This second argument must be an array of surface emissivities for the
surfaces under consideration; therefore array 19 must be an array of
temperature varying emissivity. The BRKARY call takes data values
from array 12 + 1 2 2, 3 and 4 and places them into the source locations
for nodes 1, 7, 3 and 4 respectively. The fifth call performs linear
interpolation on array 9 using TDO4 as the independent variable,
multiplies the result by 0.35 and places it in control constant TTEST.
This might be a time varying solar heating rate where 0.35 is the
solar absorbtivity. The ADD call adds this rai.e to what is already
contained in the source location for node 1. Each node has one and
only one source location. If a user desires to impress more than one
heating rate on a node, he must sum the rates and supply the value to
the single source location available per node.

The Variables 1 operations block is the logical , point in the
network computational sequence for the calculation of impressed sources
whether they are due to internal dissipation of powered components,
radiation depositation, aerodynamic heating or orbital heating. If a
desired subroutine is not available, the user may always add his own;
data ccmmxmication is obtained through subroutine arguments as.-in any
other subroutine.

Variables 2 Operations Block

In regard° to the network solution, the Variables 1 operations
may be thou of as pre-solution operations and the Variables 2
operations as post-solution operations. In Variables 1 the network was
completely defir;°d with respect to nonlinear elements and boundary
conditions. Variables 2 allows the user to look at the just solved
network. He may meter and integrate flow rates, make corrections in
order to account for material phase changes or compare just calculated
answers with test data in order to derive fmperical relationships.
A simple Variables 2 operations block might be as follows:

Col 8 12
BCD 3VARIAB ES 2

QM^R(Tl,T2,Gl,Kl)
QufrZG(K1,DTIlM,K2 )
RD7NQS(T5,T1,GS,K3)
QDMG(K3,DTnm,K4)
ADD(K2,K4,K5)

END

$ M HEAT FLOW
$INTEGRATE HEAT F14d
$METER RADIATI* FIOU
$IMGRATE RADIAFT "
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The first call measures the heat flow from node one to node two
through regular conductor one and stores the result in constant location
one. The second calI performs a simple integration with respect to
time and sums the result into constants location two. Tile third call
measures heat flow through a radiation conductor which is then integrated
by the fourth call. The sum of,the two integrations is obtained
by the fifth call. Another Variables 2 operations block might be as
follows:

Col 8 12
BCD 3VARTABLES 2

ABIATS(A1,1.76,K8,A7,T15,C15) 	 $ABLATIVE O)Ri NODE 15
END

Phase change subroutines such as the above are unique in that they
perform automatic corrector operations. Node 15 has been solved by
the network solution subroutine as though no ablative existed. The
ABLATS subroutine then corrects the temperature at node 15 to account
for the ablative material. It does this by calculating the average
heating rate to node 1.5 over the time step just performed and utilizes
it as an inner surface boundary condition for the internally constructed
1-D network representation of the ablative material. The correctness
of this analytical approach can be rigorously substantiated for use
with explicit network solution subroutines. However, when used with
large time step implicit methods it yields a controlled instability
and the results may be questionable. It is up to the user to determine
the solution accuracy by whatever means available. A more complicated
Variables 2 operations block could be as follows:

Col 1 5 8 12
BCD 3VARIABLES 2

D1DEG1(TIlKEN,A10,K8)
SUB(T8,K8,TTEST)

F	 IF(TTEST.LE.2.0) GO T¢ 10
MLTPLY(G7,0.99,G7)

	

5	 STFSEP(i.0,BACKUP)
F	 C4 20
F 10 IF(TTTEST.GE.-2.0) GO TO 15

MLTPLY(G7,1.01,G7)
F	 GO TO 5

	

15	 QM',TER(T8,T15,K9)
QMTEG(K9,DTIIEU,K10)

F 20 CONTINUE
END

$GET TEST TEMPERATURE
$OBTAIN TEMP DIFFERENCE

$REDUCE CONDUCTANCE
$SET BACKUP NON-ZERO

$INCREASE CONDUCTANCE
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This corresponds to a portion of a ne^141ork as follows:

-460

3-d
NETWORK	

Ts c,

T 25

Array lU is a time-temperature test history of node 8 and node
15 is a kno•.en boundary reference temperature. The problem is to
calculate the value of conductor seven which will yield a calculated
temperature at rode eight that is within +2.0 degrees of the test
history. The above Variabl? = :.perations will attempt to modify
conductor seven so that it will meet the constraints on temperature
eight. it is quite "brute-force" and unsophisticated. However, the
corrector op_entLons are at the descretion of the user. If the tolerances
were too severe or the correctionn, operations too strong the correction
for one tolerance could lead to dissatisfaction of the other and an
impasse result. If the reference temperature at node 15 were incorrect,
possibly no value of conductor seven would satisfy the constraints.
The end result of such a study would be to pr-duce a plot of conductance
seven versus time which could be used to derive an emperical relation-
ship with other parameters. Too wide a tolerance would cause the
plot to resemble a stair-case _+^:^^ction. Please note that either
condition being unsatisfied causes control constant BACKUP to be set
non-zero and the iteration to be redone with the corrected conductor
seven value. Only when all criteria are met are the metering and
integration operations performed.

Output Calls Operations Block__

This operations block could have been entitled Variables 3 but
Output Calls seemed more appropriate. In it a user may call upon
any desired subroutine. However, its contents are performed or. the
output interval (see Figure F3) so it is only logical that it would
primarily contain instructions for outputing information. There is
a variety of output subroutines offering the user several format
nptions. A very simple Output Calls block would be as follows:

Col 8 12
BCD ATPUT CALLS

PRNTKP
END
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The above call will output certain time control information and the
temperature of every node in the network under consideration. The node
temperatures will correspond to the relative node numbers set up by
the preprocessor, not the actual node numbers set by the user. The
preprocessor lists out all of the input . data. Immediately after the
input node data a dictionary of relative node numbers versus actual
node numbers is listed. By utilizing it a user can correlate the
relative node temperatures with his actual numbers.

In addition to the ;carious subrou tines for printing output, there
are several plotting subroutines available. However, the plotting
subroutines require that the information to be plotted exist as arrays.
In order to plot transient temperatures versus time it is necessary
for the user to store the information until the transient is completed
and then perform plotting. The operations to do this could be as
follows:

Col 8 12
BCD 39ftUTPUT CALLS

PRNTMP
INDEX(K10,1)
STVARY(K10,A1,TIKM)
STVARY(K10,A2,T1)

END

The Output Calls will be performed at problem start time and on
the output interval until problem stop time is reached. A 100 minute
transient with an output interval of 5 minutes would cause the Output
Calls operations to be performed 21 times. With constant ten initially
at zero, the INDEX call will add an integer one to it each time it is
performed. The STOARY call causes the third arguments (TIMM and Tl)
to be stored into the K10th location of array one and two respectively.
Therefore, Al and A2 must contain at least as many data locations as
required to accommodate the STOARY operations. When the transient
analysis is completed, Al and A2 contain array data suitable for
plotting or printing in a columnar format. Such operations are easily
called for in the Execution Operations Block immediately following the
network solution call.

The above data and operations blocks constitute a problem data
deck which must be terminated by the following card:

Col 8 1.2
BCD 3END OF DATA
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Parameter Runs

Parametric analysis which do not involve network or operations
changes to the original problem may be performed on the same computer
run. Only data values such as output page heading, temperatures, capacit-
ances, conductances, constants and arrays may be changed. The data
change blocks must all be specified whether changes occur in the block
or not and the data input is identical to the preceeding discussion with
the exception of conductors. When specifying new conductances the
adjoining node information is deleted; only the conductor number and
value are required.

Two parametric run options are available, INITIAL and/or FINAL, and
they may be used several tines within the problem data deck. The
problem data deck as initially input is preferred to as the original
problem. Any and all INITIAL parameter runs refer to it exactly as it
was input. The FINAL parameter run refers to the just completed problem
exactly as terminated. When two INITIAL parameter runs are attached to
the end of a problem data deck, they both refer to the original problem
at start time. However, when two FINAL parameter runs are attached to
the end of a problem data deck, the first refers to the original as
terminated,and the second refers to the first FINAL parameter run as
completed. The CINDA-3G control cards necessary to specify a parameter
run as follows:

Col 8 12
BCD 31NITIAL PARAMETERS

or BCD 3FINAL PARAMETERS
END
BCD 3NODE DATA
END
BCD 3CONDUCTOR DATA

END
BCD 3CONSTANTS DATA
END,

BCD 3ARRAY DATA
END

The parameter run decks are inserted in the problem data deck immediately
preceeding the BCD SEND OF DATA card. After the BCD parameter card, the
user may insert additional BCD data to replace the original problem outpu^
page	 heading. When changing an array, the entire new array must be
input and be exactly the length of its original. Parameter runs conserve
machine time mainly due to not having to reform the pseudo-compute sequence.
If a user desires, he may accomplish FINAL parameter runs by calling the
network execution subroutine twice in the EXECUTION block and inserting
the necessary calls to modify data values between them.
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Store and Recall Problem Options

The capability to store complete problems on and recall them from
magnetic tape is a useful feature of CINDA 3G. While the parameter run
capability is useful for performing parametric analysis in the same run,
the store and recall capability allows an indefinite time lapse between
parametric analysis. In addition, long duration problems may be broken
into several short duration runs. If a parametric analysis is such that
the first portion of the runs are identical, then the problem can be
run for the constant portion, stored and then recalled as many times as
necessary.

The store problem feature is achieved by a user initiated subroutine
call which is as follows:

Col 12
STOREP(KX)

where KX refers to a constant location containing an alphanumeric identi-
fication name for the stored problem. The call may be used as many times
as desired but the user must insure that each activation references a
unique name. It is up to the user to insu-e that the stored problem
tapes have been mounted with the "write" ring in, are properly positioned
and that the computer operator has been instructed to save the tapes.
The user should check Section V, Control Cards and Deck Setup, to
determine which tapes his problem is being stored on and the control cards
if any for assigning it within the system.

The recall problem feature is a CINDA 3G preprocessor option which
is activated by the following card:

Col 1	 13
RECALL	 AAAAAA

where AAAAAA is the alphanumeric identification name of tie stored problem.
This single card replaces the blank card preceeding the problem data
deck and must be followed by initial parameter and block data change cards
exactly as shown for parameter runs, including the first BCD 3 parameter
and END.cards and also the BCD SEND OF DATA card. The stored problem
identified will be searched for and brought into core from the two storage
tapes. Any data changes specified will be performed and then control is
passed to the first subroutine call in the EXECUTION block. The user
must remember that the recalled problem contains the STOREP call. The
user is again advised to consult Section V for the tape unit designations,
control card requirements and operator instructions necessary for mounting
the stored problem tapes.

a
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SECTION V

CONTROL CARDS AND DECK SETUP

UNIVAC-1108 Deck Setup NASA Houston

The EXEC-II, CUR and FORTRAN V systems software for the UN'CIAC-1108
are well suited for operation of the CINDA-3G program. The two portions
of the program, Preprocessor and Variables, are contained in binary on
magnetic tape as files one and two respectively. The user must instruct
the operator to mount the tape on drive G. The V symbol indicates a
seven and eight punch in the card column. The deck setup is as follows:

Col 1	 b	 12
V	 RUN
V	 ASG G=RXXXXX

V	 ASG J=J,K=K

V	 XQT CUR
TFW G
IN	 G

V	 XQT C00045
-- blank card unless RECALL

problem data deck through END OF DATA
V	 XQT CUR

ERS
IN	 G
TRI	 G

VN	 FOR ,K LINkO

V 	 FOR ,K EXECTN
V N	 FORK VARBLI
V NFt,K VARBL2

V N	 FORK OUTCAL
"load and go" subroutines if any, with V FOR

V	 XQT LINKO
V	 EOF

It is recommended that the CINDA 3G user acquaint himself with the
CUR operating system and the basics of POTRAN V, in particular, logical
IF statements.

The operator instruction ticket accompanying the job r--st have the
RXXXXX designated as input on v and request K as a scratch tape. This
job's eompatable with all the various 3.318 systems at NSC and is
required to be run under the 1TRAN V system.

NOTE: The latest CINU-3a reel nuWw W be obtained f-m R. L. Dotts,
Phone 483-2378.

5.1.1.1



CINDA 3G

UNIVAC-1108 Tape Usaae NASA Houston

UNIT FORTRAN PROGRAM
DESIGNATION NUMBER VARIABLE FUNV ION

B 2 LUT3 Copy of oririnal problem data.
C 3 LUT4 Parameter c'.iange data.*
D 4 LUT1 Data number definitions.
F 8 LUT2 NA-NB pa':rs; data number definitions

from parameter changes.
G 9 ---- CUR(IN) CINDA3G Master tape.
H 10 ---- CUR(OUT), if any.*
J 12 LB3D Data tape (original problem and all

parameter changes).
K 13 LBl,P Program tape (contains generated

Fortran routines; LINKO,EXECTN,
VARBLI,VARBL2,OUTCAL)

M 15 LUT7 Variables 1 calls generated from
node and conductor data blocks.*

N 16 INTERN Data conversion scratch tape
17 System plot tape (Restricted use)

R 21 ---- Problem recall data tape.*
S 22 ---- Problem store data tape.*
Reread 30 KRR Fortran reread unit.

*These tapes need not be assigned if the particular options are not
used. The SURE? option requires assigning and saving tapes 4 and 22.
The RECALL options requires assigning and mounting the above tapes on
4 and 21 respectively.

s
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UNIVAC-1108 Deck Setup NASA Michoud

The EXEC-II, CUR and F9MTRAN V systems software for the UNIVAC-1108
are well suited for operation of the CINDA 3G program. The two portions
of the program, Preprocessor and Variables, are contained in binary on
magnetic tape as files one and two respectively. The user must instruct
the operator to mount the tape on drive F. The V symbol indicates a
seven and eight punch in the card column. The deck setup is as follows:

	

Col 1	 6	 12
V RUN
V TPR

	V 	 ASG D=D,F=F,I I,K=K, L = L
V XQT CUR

TRW F
IN F

	

V	 XQT CO--0015
— blank card unless RECALL

problem data deck through END OF DATA
V XQT CUR

ERS
IN	 F
TRI F

VN FjbR,K LIMO
VN FORK EXECTN
VN F*,K VARBLI
VN FOR,, K VARBL2
VN FO,K OUTCAL

^"load and go,, subroutines if any, withV FAR cr rds
VN XQT LIMO
V FIN

It is recommended that the CINDA 3G user acquaint himself with the
CUR operating system and the basics of POTRA,N V, in particular, logical
IF'statemsnts.

The operator instruction ticket accompanying the job must have the
RX MM designated as input on F. The job is compatible with all the
various 3.108 systems at Mehoud and is required to be run under the
FORTRAN V system.

NOTE: The latest CINDA-3G reel number may be obtained from R. L.
Thompson, phone 255-61M.
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DRUM 2 LUT3

DRUM 3 LUT4
D 4 LUT1
DRUM 6 LUT2

F
	

9
G
	

10	 ----
I
	

12	 LB3D
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13
K
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L
	

15	 LUT7

DRUM
	

27	 INTERN
R
	

21	 ----
S
	

22
Reread
	

0	 17,̂ R

UNIVAC-1108 Tate Usage NASA Michoud

UNIT	 FORTRAN	 PROGRAM
DESIGNATION NUMBER	 VARIABLE
	

FUNCTION

Copy of original problem data.
Parameter change data.
Data number definitions.
NA-NB pairs; data number definitions
from parameter changes.
CUR(IN) CINDA 3G Master tape.
CUR($UT), if any.
Data tape (original problem and all
parameter changes).
System plot tape (restricted use).
Program tape (contains generated
Fortran routines; LINKO,EXECTN,
VARBLI,VARBL2,OUTCAL)
Variables 1 calls generated from
node and conductor data blocks.
Data conversion scratch tape.
Problem recall data tape.
Problem store data tape. *
Fortran reread unit.

# These tapes need not be assigned if the particular options are not
used. The STW option requires assigning and saving tapes 4 and
22. The RECALL options requires assigning and mounting the above
tapes on 4 and 21 respectively.

5.1.2.2
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Alphabetic Listing of Available Subroutines

NAME	 PAGE	 NAME	 PI'.GE	 NAME	 PAGE	 NAME	 PAGE

AABB 6.5.7 CINDSR 6.1.3 D1D2WM 6.2.3 ENTRO INTERN
ABLATS 6.6.4 CINDSS 6.1.1 Dl'MDGl 6.2.2 EOF 6.4.7
ABVRT CINSIN 6.3.14 D1MDG2 6.2.3 EXPARY 6.3.16
ACSARY 6.3.15 CINTAN 6.3.14 D1M1DA 6.2.2 EXPNTL 6.3.16
ADARIN 6.3.10 CMPXDV 6.3.18 D1MM 6.2.2 FILE 6.5.13
ADD 6.3.3 CMFXMP 6.3.18 DIMIWM 6.2.2 FILTER
ADDALP 6.5.7 CMPXSR 6.3.17 D1M2DA 6.2.3 FITIT
ADDARY 6.3.3 CMPYI 6.3.18 D1M2 D 6.2.4 FIX 6.3.1
ADDFIX 6.3.3 CNBACK 6.1.E DiM2WM 6.2.4 FLIGHT
ADDINV 6.3.10 CNEXPN 6.1.6 D11CYL 6.2.5' FLIP 6.3.1
AERO INTERN CNFAST 6.1.5 D11DAI 6.2,1E rl$AT 6.3.1
ALPHAA 6.5.7 CNFRWD 6.1.4 D11DIM 6.2.4 FORM INTERN
AMAT CNFWBK 6.1.7 D11MCY 6.2.5 VRPM INTERN
ARCCOS 6.3.15 COLMAX 6.5.2 D11NDA 6.2.2 FRAMEV 6.4.3
ARCS IN 6.3.15 COLMIN 6.5.2 D11MI 6.2,4 FRMFAC INTERN
ARCTAN 6.3.15 COLMLT 1 6.5.6 D12CYL 6.2.5 FUDGE
ARINDV 6.3.10 CANE D12MCY 6.2.5 GARZAM
ARYADD 6.3.3 *MC D12MDA 6.2.3 GENALP 6.5.1
ARYDIV 6.3.6 COPY INTERN D2DEG1 6.2.8 GENARY 6.3.7
ARYEXP 6.3.16 COSAR,Y 6.3.14 D2DEG2 6.2.8	 - GENCOL 6.5.1
ARYINV 6.3.10 COSD INTERN D2D!WM 6.2.8 GENM INTERN
ARYMNS 6.3.2 CRESS INTERN D2D2WM 6.2.8 GENST INTERN
ARYMPY 6.3.5 CSGDMP 6.1.5 D2MXD1 6.2.8 GsiQfpE 6.2.6
ARYPLS 6.3.2 CSQRI 6.3.17 D2MXD2 6.2.8 HANTIM IN'T'ERN
ARYSTO 6.3.11 CVQIHT 6.2.6 D2MX1M 6.2.8 HEDCOL INTERN
ARYSUB 6.3.4 CVQIWM 6.2.6 Dam 6.2.8 HONM,
ASNARY 6.3.15 DATEUP INTERN D3DEG1 6.2.9 IEXPAN INTERN
ASSMBL 6.5.6 DAl1CY 6.2.5 D3D1WM 6.2.9 INDEX
ATAND INTERA DA11MC 6.2.5 EFACS 6.5.4 INGRAT
ATNARY 6.3.15 DAl2CY 6.2.5 EFASN 6.5.4 INTRFC 6.3.1
BCONE DAl2MC 6.2.5 EFATN 6.5.4 INVRSE 6.5.8
BENDIT DECAY INTERN EFCCS 6.5.4 IRRADE 6.6.2
BIVLV 6.6.5 DIAG 6.5.6 EFEXP 6.5.5 IRRADI 6.6.2
BKARAD 6.3.7 D339AS 6.5.6 FFFEMS 6.3.21 ITERAT INTERN
BLDARY 6.3.7 DIVARY 6.3.6 EFFG 6.3.21 ITRATE INTERN
BRKARY 6.3.7 DIVFIX 6.3.6 EFI$G 6.5.5 JACOBI 6.5.10
BTAB 6.5.7 DIVIDE 6.3.6 6.5.5 JOIN 6.3.12
BVSPDA 6.2.7 DOT INTERN EFAIN 6.5.4 KERNEL
BVSPSA 6.2.7 DOUINT INTERN EFSQR 6.5.5 MAT
BVTRNI• 6.2.7 DlMG1 6.2.1 EFASN 6.5.4 LAGRAN 6.2.1
BVTRN2 6.2.7 DIX-02 6.2.3 ELEADD 6.5.3 LGRNDA 6.2.1
CALL 6.5.13 D1DGII 6.2.4 ELEDIV 6.5.3 LINAT
CAP INTERN D1DiM 6.2.1 ELEINV 6.50 LIKE
CDIVI 6.3.18 D1DlIM 6.2.4 ELEMUL 6.5.3 LININT
CHANGE DIDIMI 6.2.4 ELESUB 6.5.3 LINRES
CINCOS 6.3.14 DiD1WM 6.2.2 ENDFIL 6.4.3 LIST 6.5.13
C INDSL 6.1.2 D1D2DA 6.2.3 END#P 6.5.13 I$GE 6.3.16

O
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Alphabetic Listing of Available Subroutines (Continued)

NAME PAGE NAME PAGE NAME PAGE NAME PAGE

LOGEAR 6.3.16 PLYNML 6.3.19 SETUP INTERN SYSTEM
L#GT 6.3.16 PNCHMA 6.4.6 3HADOX INTERN SYST2A
LJGTAR 6.3.16 PNTABL 6.6.4 SHFTV 6.3.1 SYST2B
LQDVAP 6.6.5 P%!MLT 6.5.9 SHFTVR 6.3.1 SYST4A
LRMAT POLRES SHIFT 6.5.2 SYST4B
LSTAF'E 6.5.14 POLSOV 6.5.9 SHOCK INTERN SYST
LSTSQU 6.6.1 POLVAL 6.5.9 SHOC

SHOCZ
INTERN TABLE

MARGN SC4020 PRAND INTERN INTEist TANARY 6.3.14
MASS 6.5.11 PRESS 6.3.21 SHUFL 6.5.2 TDVEE INTERN

MASSES PRINT 6.4.1 SIGMA 6.5.1 TEMPO INTERF
MATRIX 6.5.5 PRINTA 6.4.2 SIMEQN 6.6.1 TOPLIN INTERN
MATVCA PRINTL 6.4.1 SIMP T%RBIT INTERN
MATVCC PRNTMA 6.4.2 S7NP.RY 6.3.14 TRANS 6.5.8
MAXDAR 6.3.9 ;hidTMP 6.4.1 SIND INTERN TRAP
MLTPLY 6.3.5 PSINTR 6.2.6 SKPLIN INTERN TRNBVI INTERN
MODES 6.5.10 PSNTWM 6.2.6 SLDARD 6.3.11 TRNBV2 INTERN

MPYAPY 6.3.5 PSOFTS SLDARY 6.3.11 TRNFRM INTERN
MPYFIX 6.3.5 PUNCH 6.5.13 SLICE TRNPRT
MULT 6.5.8 PUNCHA 6.4.6 SLRADE 6.6.3 TRPZDA 6.3.20
MXDRAL 6.3.9 PUMLTI INTERN SLRADI 6.6.3 TRPZD 6.3.20
NBIANK SC4020 QCONE INTERN SMOPAS INTERN TSOFP
NEWRT4 ;.3.19 4RCE 6.3.13 sMPTNT 6.3.20 UNPAK INTERN
NEWTRT 6.3.19 QINCID INTERN SPLIT 6.3.12 UPDI4P INTERN
ODDTIM INTERN QINTEG 6.3.13 SPREAD 6.3.12 UNITY 6.5.1
ONES 6.5.1 QINTGI 6.3.13 sPRESS 6.3.21 VAh:;CM 6.2.10
OPNPLT 6.4.3 =TER 6.3.13 SQROT 6.3.17 VARCCM 6.2.10
ORBHET QMTRI 6.3.13 SQROTI 6.3.17 VARC1 6.2.10
ORBHT INTERN QUAD INTERN SRSM1. INTERN VARC2 6.2.10
OR9VFC_ INTERN RDTNQS 6.3.13 SRSM.. INTERN VARGCM 6.2.10
ORIENT INTERN READ 6.4.7 STAGHT INTERN VARGCM 6.2.10
PARCEL READAB STAGP INTERN VAR,G1 6.2.10
Pl;fT 6.5.13 RECtOVL INTERN STATE VARC2 6.2.10
PL$TLL REC VT INTER? STAT1 INTERN VIRLAM INTERN
PLOTLl 6.4.5 REFLCT 6.5.2 STAT2 INTERN VISCTY INTERN
PLOTL2 6.4.5 REWIND 6.4.7 STFSEP 6.3.8 WEIGHT
PL$TMr4 RIGID STFSEQ 6.3.8 WIND
PloTl-,L T STFSQS 6.3.8 WNDIT
PLOTXI 6.4.4 FmT

STIFF 6.5.12 WRITE 6.4.7
PWTX2 6.4.4 6.5.6 STNDRD 6.4.7. WRTARY INTERN
PIOTX3 6.4.5 RTPOLY INTERN STOARY 6.3.11 WRTL INTERN

PLO= 6.4.5 SCALAR 6.5.5 STOREP 4.22 XMATCH INTERN
PLpZ SCALE 6.3.8 SUB 6.3.4 XX

PI#T6D SCLDEP 6.'.11 SUBARY 6.3.4 ZERO 6.5.1
PLTBIV SCLIND 6.3.11 SUBFix 6.3.4
PLTND 6.4.3 SCRPFA 6.6.3 SMRY 6.3.9
PLYARY 6.3.19 SETT s 6.3.2 SYMIldV 6.6.3
PLYEVL 6.5.9 SETPLS 6.3.2 SYMLST 6.6.3

6.0.1



s..a oM	 pit1MERcow►owarw.e
CINDA 3G

Execution Subroutines

Nam
	

Page

CINDSS (Steady state, block iteration)
CINDSL (Steady state, accelerated)
CINDSR (Steady state, radiation dominated)
CNFRWD (Explicit forward differencing)
CNFAST (Accelerated forward differencing)
CSGDMP (Network criteria and linkage)
CNF"N (Explicit exponential prediction)
CNFWBK (Implicit forward backward diff.)
CNBACK (Implicit backward differencing)

r

e

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.5
6.1.5
6.1.7
6.1.8
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EXECUTION SUBROUTINE NAME:

SPAN orw.-M I& W w . W.

CINDSS

PURPOSE:

This subroutine ignores the capacitance values of diffusion nodes to cal-
culate the network steady state solution. Due to the SPCS requirement,
diffusion nodes are solved by a "block" iterative method. However, if
all diffusion nodes were specified as arithmetic nodes they would be
calculated by a "successive point" iterative method. The user is re-
quired to specify the maximum number of iterations to be performed in
attempting to reach the steady state solution (control constant NI$0P)
and the relaxation criteria which determines when it has been reached
(DRLXCA for diffusion Nodes and/or ARIXCA for arithmetic nodes). The
subroutine will continue to iterate until one of the above criteria is
met. If the iteration count exceeds NII/OP an appropriate message is
printed. Variables 1 and Output Calls are performed at the start and
Variables 2 and Output Calls are performed upon completion. If not
specified, control constants DAMPD and TAMPA are set at 1.0. They are
used as multipliers times the new temperatures while 1.n minus their
value is used as multipliers times the old temperatures in order to
"weight' the returned answer. This weighting of so much new and so
much old is useful for damping oscillations due to nonlinearities.
They may also be used to achieve over relaxation.

If a series of mdy state solutions at various times are desired it
can be accompli .—d by specifying control constants TIMEND and OUTPUT.
4UTPUT will be used both as the output interval and the computation
interval. In this case appropriate calls would have to be made in
Variables 1 to modify boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the
transient solution subroutines which has the same SPCS requirement.
In this manner the steady state solution becomes the initial conditions
for the transient analy sis. However, since C IRDSS utilizes control
constants TIMEND and XITPUT the user must specify their values in the
execution block after the steady state call and prior to the transient
analysis call.

RESTRICTIONS: The SPCS option is rcluired. Diffusion ncdpa receive a
"block" iteration while arithmetic ncdns receive a "successive point"
iteration, no acceleration features are utilized. Control constants
NLO#P and DRLXCA and/or ARLXCA must be specified. Successive steady
state solutions can be obtained by specifying control constants
TIMEND AND OUTPUT. Other control constants which are activated or
used are; LWPCT, DRLXr1J and/or ARLICC, TIlON, TDM, TIlO, DAMPD,
DAMPA, DTM , LINECT and PAGECT. Control constant 9PEITR is checked
for output each iteration.

CALLING SEQUENCE:
	

CINDSS

*This subroutine utilizes one dynamic storage core location for each
diffusion node.'

6.1.1
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EXECUTION SUBROUTINE NAME: 	 CINDSL

PURPOSE: This subroutine ignores the capacitance values of diffusion
nodes to calculate the network steady state solution. Since this sub-
routine has the LPCS requirement, both diffusion and arithmetic nodes
receive a "successive point" iteration. In addition, each gird itera-
tion a linear extrapolation is performed on the error function plot of
each node in an attempt to accelerate convergence. The user is required
to specify the maximum number of iterations to be performed in attempt-
ing to reach the steady state solution (control constant NI$OP) and the
relaxation criteria which determines when it has been reached (DRLXCA
for diffusion nodes and/or ARLXCA for arithmetic nodes). The subroutine
will continue to iterate until one of the above criteria is met. T_f the
iteration count exceeds N1WP an appropriate message is printed. Varia-
bles 1 and Output Calls are performed at the start and Variables 2 and
Output Calls are performed upon completion. If not specified, control
constants DAMPD and DAMPA are set at 1.0. They are used as multipliers
times the new temperatures while 1.0 minus their value is used as multi-
pliers times the old temperatures in order to "weight" the returned
answer. This weighting of so much new and so much old is useful for
damping oscillations due to nonlinearities. They may also be used to
achieve over relaxation.

If a series of steady state solutions at various times are desired it
can be accomplished by specifying control constants TDMgD and {OUTPUT.
OJTPUT will be used both as the output interval and the computation
interval. In this case appropriate calls would have to be made in
Variables 1 to modify boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the
transient solution subroutines which has the same LPCS requirement. In
this manner the steady state solution becomes the initial conditions for
the transient analysis. However, since CINDSL utilizes control constants
TIMEND AND OUTPUT the user must specify their values in the execution
block after the steady state call and prior to the transient analysis
call.

RESTRICTIONS: The LPCS option is required. Diffusion and arithmetic
nodes receive a "successive point" iteration and an extrapolation
method of acceleration. Control constants NIP and DRLXCA and/or
ARLXCA must be specified. Successive steady state solutions can be
obtained by specifying control constants TIKEND and $WPUT. Other
control constants which are activated or used are; IOPCT, DF=C, and/or
ARLXCC, TIlMEN, MM, TDWU DAMPD, 11WA, DTDM, LIlMT and PACECT.
Control constant OPEITR is checked for output each iteration.

CALLING SEMIENCE:	 CINDSL

*This subroutine utilizes two dynamic storage core locations for each
diffusion and arithmetic node.
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EXECUTION SUBROUTINE NAME: 	 CINDSR

PURPOSE: This subroutine is designed to calculate the network stead"•
state solution of moderately radiation dominated problems. It is similar
to CINDSL in that the LPCS option is required and that all nodes receive
a "successive point" iteration and the same extrapolation method of
acceleration. Other execution subroutines evaluate the nonlinear radia-
tion conductor each time they are encountered during an iteration.
CINDSR differs in that it linearizes the problem by calculating effective
radiation conductors and solves the linearized problem. It then re-
evaluates the effective radiation conductors, solves the linear problem
and continuously repeats the process. The user must specify the maximum
number of iterations to perform in attempting to reach the steady state
solution and the energy balance of :he system to be satisfied as a
criteria. This system energy bal, se is the difference between all
energy into the system and all energy out and'is specified as control
constant BALENG. CINDSR internally calculates the iterative relaxation
criteria damping factors and loopings to be performed in solving the
linearized problem. It continuously increases the severa` of the
relaxation criteria until the BALENG criteria is met for two successive
linearized problems with virtually no temperature change between the two.
Systems with small energy transfer rates to the boundaries are difficult
to solve. A reasonable rule is to set BALENG at 1% of the rate in or
out. Successive steady state analysis may be performed and CINDSR may
be followed by a call to a transient analysis routine with the same
LPCS option requirement.

RESTRICTIONS: The LPCS option is required. Control cc--ants NL$OP and
BALENG must be specified and greater than zero. Successive steady state
solutions can be obtained by specifying control constants TIMM and
OJTPUT. Other control constants which are activated or used are:
WA PCT, ENGBAL, DRLXCC and/or ARLXCC, TIMEN, TIlMEM, TINIEV, DTIMU, LINECT
and PAGECT. Control constant QJPEITR is c l^ecked for output each iteration.
Caution: Each radiation conductor must have a unique conductor number.

CALLING SEQUENCE:	 CINDSR

;This subroutine utilizes 3 dynamic storage core locations for each
diffusion and arithmetic node and one more for each radiation conductor.

L
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EXECUTION SUBROUTINE NAME:	 CNFRWD

PURPOSE: This subroutine performs transient thermal analysis by the
explicit forward differeencing method. The stability criteria of each
diffusion node is calculated and the minimum value is placed in control
constant CSGMIN. The time step used (control constant DTIMEU) is cal-
culated as 95% of CSGMIN divided by CSGFAC. Control constant CSGFAC
is set at 1.0 unless specified larger by the user. A "look ahead"
feature is used when calculating DTIPM . If one time step will pass
the output time point the time step is set to come out er ctly on tine
output time point, if two time steps will pass the output time point
the time step is set so that two time steps will come cut exactly on
the output time point. DTIMEU is also compared to DTIMEH and DTIMEL.
If DTIMEU exceeds DTIMEH it is set equal to it, if DTIMEU is less than
DTIMEL the problem is terminated. If no input values are specified,
DTIMEL is set at zero and DTIMEH it is set at infinity. The maximum
temperature change calculated over an iteration is placed in control
constant DTMPCC and/or ATMPCC. They are compared to DTMPCA and/or
ATMPCA respectively and if larger cause DTII4EU to be modified so that
they compare as equal to or less than DTMPCA and/or ATMPCA. If
DTMPCA and/or ATMPCA are not specified they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic
nodes. The user may iterate the arithmetic node solution by specify-
ing control constants NL$0P and ARLXCA. If the arithmetic node itera-
tion count exceeds NIMP the answers are accepted as is,and the sub-
routine continues without any user notificAtion. In addition the
user may specify control constant DAMPA in order to dampen possible
oscillations due to nonlinearities. The arithmetic nodes may be used
to specify an incompressible pressure or radiosity network. In this
manner they would be solved implicitly each time step but evaluation
of temperature varying properties would suffer a one time step lag.

RESTRICTIONS: The SPCS option is required and control constants
TIMEND and OUTFUT must be specified. Problem start time if other than
zero may be specified as TD EV. Other control constants used or activp.t.ed
are: TIMEN, TDEM, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA,
DT14PCC, ATMPCA, ATMPCC, NL VP, L9VPCT, DAMPA, ARLXCA, ARLXCC, OPEITR,
BACKUP, LINECT and PAGECT.

CALLING SEQUENCE:
	

CNFRWD

*This subroutine utilizes one dynamic storage core location for each
diffusion and arithmetic node.

b.i.
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H: ECTITTON SUBROUTTNE NAME: 	 CNFAST

PURPOSE: This subroutine is a modified version of CNFRRD which allows thf:
user to specify th(: minimum time step to be taken. The time step calcula-
tions proc-ed exactly as in CNFRWD until the check with DTTMF.L iz mode.
If DT IM -IJ it; less than DT U&L it is set equal to 'it.  A s (:rich nod(: i s c'al -
culat) d 'its  CSGMIN it; obtained and compared to DT LMEU . If equal to or
grater, the nodal calculation is identical to CNFRrJD. If the C;JGM 11d for
a node- is less than LTTMEU the node rec l :iv(:s a stead; state calcu)ation.
If only a small portion of the nodes in a system receive the steid! ct-itr,
calculation the answers are generally r , asonable. Howev,.r, as thw ntunt,(:r
of nodes receiving steady state calculations increases, so do th(; :;()lution
inaccuracies.

RFSTRTCTTONti: The SPCS option is required and control constants TIMEND
•sno AITPUT must be specified. The checks on control constants DTMPCA,
ATMPCA and HACKUP are not performed. Other control constants which ar(:
used or activated are: TIMEN, TIMEM, TIMEt , CSGMIN, CSGFAC, DTMU,
DTIMI',L, DTTMEH, DTMPCC, ATMPCC, DAMPA, ARLXCA, ARLXCC, NLMP, WOPCT,
LTNECT and PAGECT.

CALLING SEQUENCE:
	

CNFAST

"This subroutine utilizes one dynamic storage core location for each
diffusion node.

I'MCUTION SUBROUTINE NAME:	 CSGDMP

PURPOSE: This subroutine is designed to aid in the checkout of thermal
problem data decks. It calls upon Variables 1 and Output Calls and then
prints out each relative diffusion node number with the capacitance and
CSGMIN value of the node. For each node it identifies the attached
conductors by relative conductor number, lists the type and conductance
value and the relative number and type of the adjoining nods. Either the
SPCS or LPCS option may be used. While the LPCS option allows every con-
ductor attached to a node to be identified, the SPCS option only identi-
fies conductors for 'tie first relative node numbtn on which they occur.
After the diffusion ,,odes are proces,ed the connection infor: tion for
the arithmetic nodes is listed. After listing the above informatian
control passes to the next sequentially listed subroutine.

RESTRICTIONS• This subroutine is generally called in the Execution block
and possibly in Variables 2 but not in Variables 1 or Output Calls.

CALLING SEQUENCE:
	

CSGDMP
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EXECUTION SUBROUTINE NAME: 	 CNEXPN

PURPOSE: This subroutine parforms transient thermal analysis by the
exponential prediction method and the solution equation is of the
following form:

E Gj Tj Qi	 _ zgat	 _ Zqjat
i	 1-e i	 + Ti e CiTi =	 F Gj

J

The reader is referrer. to page 5.1.3 of CCSD TN-AP-66-15 for the deriva-
tion. The above equation is unconditionally stable no matter what size
time step is taken and reduces to the steady state equation for an
infinite time step. However, stability is not to be confused with
accuracy. Time steps -larger than would be taken with CNFRWD remain
.stable but tend to lose or gain energy in the system. For this reason
this subroutine is not recommended where accuracy is sought. However,
it is suitable for parametric analysis where trends are sought and a
more accurate method will be utilized for a final analysis.

The inner workings of the subroutine are virtually identical to CNFF&M
with the exception of the solution equation and the use of CSGFAC. The
time step used (DTIMEU) is calculated as CSGMIN times CSGFAC. The look
ahead feature for calculating the time step is ident-ir,ai as are the
checks with DTIMEH, DTD EL and DTMPCA. The diffusion nodes are cal-
culated prior to the arithmetic nodes and the arithmetic nodes utilize
NLWP, ARLXCA and DAMPA exactly the same as CNFRWD.

RESTRICTIONS: The SPCS option is required and control constants TIMM
and OUTPUT must be specified. Problem start time if other than zero
may be specified as T DW. Other control constants used or activated
are: TIM, TIlMEM, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA,
DTMPCC, ATMPCA, ATMPCC, ARLXCA, ARI.XCC, DAMPA, OPEITR, BACKUP; LINECT
and PAGECT.

CALLING SEQUENCE:	 CNEXPN

*This subroutine utilizes one dynamic storage core location for each
diffusion and arithmetic node.
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EXECUTION SUBROUTINE NAME: 	 CNFWBK

PURPOSE:

This subroutine performs transient thermal analysis by implicit forward-
backward differencing. The LPCS option is required and allows the
simultaneous set of equations to be solved by "successive point" itera-
tions. During the first iteration for a time step^the capacitance
values are doubled and divided by the time step and the energy transfer
rates based on old temperatures are added to the source locations.
Upon completing the time step the capacitance values are returned to
their original state. The iteration looping, convergence criteria and
other control constant checks are identical to CNBACK. The time step
checks and calculations and look ahead feature are identical to that
used for CNBACK.

The automatic radiation transfer damping and extrapolation_ method of
acceleration mentioned under the CNBACK subroutine writeup are also
amployed in th;.s subroutine. Diffusion and/or arithmetic temperature
calculations may be damped through use of DAMPD and/or DAMPA respectively.
Control constants BACKUP and VPEITR are continuously checked. CNFWBK
internally performs Forward-backward differencing of boundary conditions.
For this reason the user should utilize T D EN as the appropriate inde-
pendent variable in Variables 1 operations.

It is interesting to note that CNFWBK generally converges in 25% fewer
iterations than CNBACK. The probable reason for this is that the.
boundary, of the mathematical system is better defined. 4hile every
future temperature node under CNBACK is connected to its present temper-
ature, under CNFWBK ever •1ture temperature node is also receiving an
impressed scarce based on he present temperature.

RESTRICT _-ONS :

The`LPCS option is required. Control constants TIMEND, OUTPUT, DTIMEI,
NWVP and DRLXCA and/or ARLXCA must be specified. Other control constants
which are used or activated are: TIMEN, TIME, TIMEM, CSGMIN, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or
ARLXCC, L#OPCT, BACKUP, VPEITR, LINECT and PAGECT.

CALLING SEQUENCE: 	 CNFWBK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each ar?thmetic and boundary node.

f
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EXECUTION SUBROUTINE NAME:	 CNBACK

PURPOSE:

This subroutine performs transient thermal analysis by implicit backwar-I
differencing. The LPCS option is required and allows the simultaneous
set of equations to be solved by "successive point" iteration. Each
third iteration,diffusion node temperatures which trace a continuous
decreasing slope receive an extrapolation on their error function curve
in an attempt to accelerate convergence. For convergence criteria the
user is required to specify NIWP and DRLXCA and/or ARLXCA. If the
number of iterations during a time step exceeds NLOOP a message is
printed but the problem proceeds.

Variables 1 is performed only once for each time step. Since this sub-
routine is implicit the user must specify the time step to be used as
DTIMEI in addition to TIMEND and OUTPUT. The look ahead feature for
the time step calculation in CNFRWD is used as are the checks for
DTIMEH, DTMPCA and ATMPCA but not DTIMEL. Damping of the solutions can
be achieved through use of control constants DAMPD and/or DAMPA. Control
constants BACKUP and OPEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary
step changes when radiation conductors are present. CNBACK contains an
automatic damping feature which is applied to radiation conductors.
The radiation transfer to a node is calculated for its present tempera-
ture and a temporary new temperature is calculated. Then the radiation
transfer is recalculated and the final node temperature is calculated

based on the arithmetic mean of the two radiation transfer calculations.
This automatic radiation damping has proven to be quite successful and
lessens the need for use of DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, OUTPUT, DTIMEI,
NI1OP and DRLXCA and/or ARLXPA must be specified. Other control con-
stants which are used on activated are: TWN, TIME, TIlMEM, CSGMIY,
DTIMEV, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC
and/or ARLXCC, LO$PCT, BACUP, OPEITR, LINECT and PAGECT.

CALLING SEQUENCE:

CRACK

'ghis subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.

A I A
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Interpolation Subroutines

Names	 Pace

LAGRAN,IZWA,D1DEG1,D1D1DA 6.2.1
D1D1Wr4.Dl3lMA,DlMG1,DlMDA,D]M1WM,D1MlW 6.2.2
D1DEG2,D1D2DA,DID2WM,DIMA,DlMDG2,D1MMA 6.2.3
DIM2WM,D1MZM,D1DG1I,DlD7SM,D1DIM ODluw,DllDIM,D11MI 6.2.4
D11CYL,DA11.CY,DI2CYL,DAI2CY,DIIMCY,DA11MC,D12MCY,DAI2NC 6.2.5
CVQIHT,CVQIWM,GSI$PE,PSINTR,PSNTWM 6.2.6
Bivariate Array Format 6.2.7
BV3PSA,BVSPDA,BVTRNI,BVTRN2 6.2.7
D2DEG1,D2DEG2,D2D1WM,D2D2WM,D 	 ,DOW2,D2M7C1M,DZU12M 6.2.8
Trivariate Array Format 6.2.9
D3DEG1,D3D1WM 6.2.9
VARCSM,VARCCM,VARC'Al.,VARC2,Vp.RGSM,VAIY'^CM,VARGI,VARG2 6.2.10

C#
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SUBROUTINE NAMES:	 IAGRAN or IGRNDA

PURPOSE:

These subroutines perform L^,rangian interpolation of up to order 50. The
first requires one doublet array of X, Y pairs while the second requires
two singlet arrays, one of X's and the other of Y's. They contain an
extrapolation feature such that if the X va gue falls outside the range of
the independent variable the nearest dependent Y variable value is
returned and no error is noted

	

n	 n	 v - Xi-
Y = Pn (X) = E Yk	 q 	 Xk - Xi	 , n = 1,2,3,. .900max.

	

k-0	 i=O
i#k

RESTRICTIONS

All values must be floating point except N which is the order of interpola-
tion plus one and must be an integer. The independent variable values
must be in ascending order.

CALLING SEQUENCE:	 IAGPj►N X,Y,A(IC) N)
or ,GRNDA^X,Y,AX(ICj,AY(IC),N)

NOTE:

A doublet array is f ormed as follows:

IC,X1,Y1,X2,Y2 X3,`3, ... ,XN,YN
where IC = 5N ``.:;, by program)

and singlet arrays are formed as follows:

IC,X1,X2,X3,...,XN
IC,Y1,Y2,Y3,...,YN

and IC = N (set by program)

SUBROUTINE NAMES:	 DIDEG1 or D1D1DA

PURPOSE:

These subroutines perform single 'Variable linear interpolation on doublet
or singlet arrays respectively. They are self-contained subroutines that
are called upon by virtually all other linear interpolation subroutines.

RESTRICTIONS

All values must be floating point numbers. The X iz_iependent variable
values must be in ascending order.

CALLING SEQUENCE:	 DlMG1(X,A(IC) Y)
or D1D1DA(X,AX(IC52AY(IC).'Y)

1
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SUBROUTINE NAMES:	 D1D1WM or D11MDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling on
D1DEGl or D1D1DA respectively. However, the interpolated answer is multiplied
by the value addressed as Z prio -r to being returned as Y.

RESTRICTIONS:

Same as D1DEG1 or DlD1DA and Z must be a floating point number.

CALLING SEQUENCE:

D1D1WM(X,A(IC) Z,Y)
or D11MDA(X,AX(ICJ,AY(IC),Z,Y)

SUBROUTINE NAMES:	 DIM1 or D1M1DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two
singlet arrays respectively.

RESTRICTIONS:

See D1DEG1 or D1D1DA as they are called on respectively.

CALLING SEQUENCE:

DlMl(X1,X2,A(IC) Y)
or D1M1DA((X1,X2,AX(ICj,AY(IC),Y)

SUBROUTINE NAMES:	 DlM1W or D1WM

PURPOSE:

These subroutines use the arit1mtetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is mul-
tiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIM1 or t,1M1DA and Z moat be a floating point number.

CALLING SEQUENCE,:

DlM1WM(X1,X2,A(IC) Z,Y)
or D1M1MD(Xl,X2,AX(ICi,AY(IC),Z,Y)

6.2.2	 '
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SUBROUTINE NAMES:
	

DlM2WM or D

PURPOSE:

These subroutines use the arithmetic mean of two input values as to independ-
ent variable for parabolic interpolation. The interpolated answer is ndti-
plied by the Z value prior to being returned as Y.

EESTRSCTIONS:

Same as DINDG2 or D1X2DA and Z must be a floating point mober.

CULM SEA:

D1MM(Zl,12,A(IC) Z,Y)
or D1XMXI .,I2,AX(ICj,AY(IC),Z,Y)

5tT8 'flNg Nl[I : : 1 DGII or DMIN or D1DIJU

PURFDSEc

These subroutines perform single variable linear interpolation on a array of
I ts- to obtain an array of Y's. D1D11M multiplies all interpolated values by
a constant Z value while D1D1MI allows a unique Z value for each I value.
They all tall on DI1.

IONS: 

The number of input Z's must be supplied as the integer N and agree with the
number of T and Z locations where applicable. Z values must be floating
point nunbers.

DIWII (N,%(DV),A(]E),Y(DV) )
or D1Dl.IM(N,X(DF),A(IC),Z,Y(DQ))
or D1DlMI(N,I(DV) ,A(IC),Z(DV),Y(DV))

SUBROUTINE NAMS: 	 D11DAI or D11DIN or DIMI

PURPOSE:

These subroutines are virtually identical to DIDGII, D1DUK and DID1W
respectively. The difference is that they require singlet arrays for
interpolation and call on DIDIDA.

RESTRICTIM :

-SZF as III=,--DIDITM and DOW.

CALLING SBQMCE :

D11SAI(N,Z(DV),AX(IC),AY( IC),y(DV) )
or DM33@(N,X(DV),AX(IC),AY(I-C),Z;Y(^V))
or D11MDI(N,%(DV),AX(IC),AY(IC),Z(DV),Y(DV))
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;UBROUTIIFE NAMES: 	 D11CYL or DA11CY

PURPOSE: ':'hese subroutines reduce core storage requiremetits for cyclical
interpolation arrays. The arrays need cover one period only,and the period
(PR) must be specified as the first argument. Linear interpolation is
perform=-d,and the independent variable must be in ascending order.

RMTRICTIONS: All values must be floating no-int. Subroutine INTRFC is
call,-=d on by both D11CYL and DA11CY, then DiDE-G1 or D1D1DA respectively.

CALLING SEQUENCE: 	 D11CYL(PR,Y.,A(IC) ,Y )
or DAl1CY(PR,X,AX(IC),AY(Ir),Y)

2TIBROUT7N3IE HANES:	 D12CYL or DAl2CY

MUPOSE: These subroutines are virtually idrnti cal to D11CYL and DA11CY
xecpt that parabolic interpolation is performed.

RF3TRICTIGIM: See D11CYL and DA11CY. Subroutines LAGRAN and LGIUIDA
respectively are called on.

CALLING SEQUENCE: 	 DlZCYL(PR,X,A(IC),Y)
or DAl2CY(PR9X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: 	 DlIMCY or DA11MC

PURPOSE: These subroutines are virtually identical to D11CYL or DAl1CY
except that the interpolated answer is multiplied by the floatingpoint
Z value prior to being returned as Y.

RESTRICTIONS: Call on subroutines DlDEG1 and D1D1DA respectively.

CALLING SEQUENCE:	 DllWL(PR,X,A(IC),Z,Y)
or DA11MC(PR,X,AX(IC)',AY(ICj,Z,Y)

SUBROUTINE NA)9 :	 D12MCY or DAl2MC

PURPOSE- These subroutines are virtually identical to DIIMCY and DA1IMC
except that parabolic interpolation is performed.

RESTRICTIONS: Call-- on subroutines LAGRAN and LGRNDA respectively.

CALLING SEQUENCE: 	 D12MCY(PR,X,A(IC),Z,Y)
or DAlZC(PR,X,AX(IC),AY(lC),Z,Y)0
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SUBROUTINE NAMES: 	 CVQIHT or CVQIWM

PURPOSE:

These subroutines perform two single variable linear interpolations. The
interpolation arrays must have the same independent variable X and dependent
variables of lets say R(X) and S(X). Additional arguments of Y. Z and T
complete the data values. The post interpolation calculations am respec-
tively.

Y - S(X)*(R(X)-T)
or Y = Z*S(X)(R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common independ-
ent variable. All values must be floating point numbers.

_	 CALUNG SEQUENCE
CVQ 1HT(X,AR(IG),AS(IC),T,Y)

or CVQ1-iM(X,Ap{IC},AS(IC),T,z,Y}

SUBROUTINE NAMES: 	 GS PE

PURPOSE.-

This subroutine will generate a slope array so that point slope interpla-
tion subroutines can be used instead of standard linear interpclation sub-
routines. The user must address two singlet type arrays and a singlet
slope array will be produced.

RESTRICTIONS•

The X independent variable array must be in ascending order. All arrays
must be of equal length and contain floating point numbers.

CALLING SEQUENCE:

GSLOPE(AX(IC),AY(IC),AS(IC) )

SUBROUTINE NAMES: 	 PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays-of-the Y
points and slcpes which correspond to the independent variable X array.
All values trust be floating point numbers. PSNTKK multiplies the interpolated
answer by Z prior to returning it as Y.

RESTRICTIONS:

The independent X and dependent Y and slope arrays must be of equal length.

CALLING SEJTENCE
PSINYR(X,AX(rc ),AY(IC),AS(IC),Y)

or PSNTWK(X,AX(XC)AY(IC),AS(IC) Z,Y)
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BIVARIATE ARRAY UR'riAT 	 Z = f X Y

Bi.variat,. arrays must be rectangular, full and input in the following
row order:

IC,N ,X 1,X 2,X 3, . . . , X N
Y1,Zll,Z12,Z13, . . . , ZIX
Y2,Z21,Z22,Z23, . . . , UN

YM,ZMI,ZM2,ZM3, . . . , ZMN

where IT is the integer number of X variables. All other values must be
flC"iLting point numbers,and the X and Y values must be in ascending order.

?JAROUTINF: NKMES : 	 BVSPSA or BVSPDA

PURPOSE: These subroutines use an input Y argument to address a bivariate
array and pull off a singlet array of Z's corresponding to the X's or pull
off a doublet array of X. Z values, respectively. The integer count for
the constructed arrays must be exactly N or 2*N respectively. To use
the singlet array for an interpolation call the X array can be reached
by addressing the N in the bivariate array.

RE3TRICTIONS: As stated above and all values must be floating point.

CALLING SEQUENCE:	 BVSPSA(Y,BA(IC),AZ(IC))
BVSPDA(Y,3A(IC),AXZ(IC) )

SUBROUTINE NAMES: 	 BVTRNI or BVTRN2

PURPOSE: These subroutines construct a bivariate array of Y's versus
X and Z from an input bivariate array of Z's versus X and Y. BVTP111
should be used when the Z values increase with increasing Y values and
BVTRN2 when the Z values decrease with increasing Y values.

RFSTRICTTONS: The user mast appropriately place the X and Z values and
spaces for Ys in the array to be constructed. These subroutines will
fill in the Y spaces. The new array can differ in size from the old.
Subroutine D1DEG1 is called and its linear extrapolation feature applies.

CALLING SEQUENCE:	 BVTRNI(BA$(IC),BAN(IC))
or BVTRN2(BAO(IC),BAN(IC))



SUBROUTINE NAMES:	 D2DEG1 or D2DEG2

PURPOSE: These subroutines perform bivariate linear and parabolic inter-
polation respectively. The arrays must be formated as shown for Bivariate
Array Fo rma.t .

RESTRICTIONS:	 For D2DEG1 , N > 2,M t2	 See page 6.2.7
for D2DEG2	 N ?1 

.4  3	 array format

CALLING SEQUENCE:

	

	 D2DEG1(X,Y,BA(IC),Z)
or D2DEG2(X,Y,BA(IC),Z)

SUBROUTINE NAMES: 	 D2DLdR or D2D2WM

PURPOSE: These subroutines perform bivariate linear cr parabolic inter-
polation by calling on D2DEG1 or D2DEG2 respectively. The interpolated
answer is multiplied by the W value prior to being returned as Z.

RESTRICTIONS: Same as D2DEG1 or D2DEG2 and W must be a floating point
value.

CALLING SEQUENCE:

	

	 D2DIWM(X,Y,BA(IC),W,Z)
or D2D2WM(X,Y,BA(IC),W,Z)

SUBROUTINE NAMES: 	 D2MXD1 or D2MXD2

PURPOSE: These subroutines are virtually identical to D2DEG1 and D2DEG2
except that the arithmetic mean of two X values is used as the X independ-
ent variable for interpolation.

RESTRICTIONS: Same as D2DEG1 or D2DEG2.

CALLING SEQUENCE:

	

	 D2=1(Xl,X2,Y,BA(IC),Z)
or D2MXD2(Xl,X2,Y,BA(IC),Z)

SUBROUTINE NAMES: 	 D2MX1M or D2MX2M

PURPOSE: These subroutines are virtually identical to D2D1WM and D2D W
except that the arithmetic mean of two X values is used as the X independ-
ent variable for interpolation.

RESTRICTIONS: Same as D2D1WM and D2DZ M.

CAILIWSFQMCE:

	

	 D2MXIM(Xl,X2,Y,BA(IC),W,Z)
or D2M=(Xl,X2,Y,BA(IC),W,Z)
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T f ^X Y,Z)

Trivariate arrays may be thought of as two or more bivariate arrays, each
bivariate array a function of a third independent variable Z. Trivariate
arrays must be input in row order and be constructed as follows:

IC,NXI,NY1,Zl,X 1,k 2,X 3, X N
Y1,T11,T12,T13, , T1N
Y2,T2.1,T22,T23, , T2N

YM, TM1, TM2 , T:•'3 , TM

NX2,NY2,Z2,X 1,X 2,X 3, 	 . .	 .	 , X J

Y 1,Tll,T12,T13,	 . .	 .	 ,	 T1J
Y2,T21.T22,T23,	 . .	 .	 , T2J

YK,TKI,TK2,TKl,	 . ...	 TKJ
rrx3,NY3,Z3, .

Th r- triva.riate array ma ,T consist of as many bivariate "sheets" as desired.
`i'h ,: numhcr of X and Y values in each sheet must be specified as integers
(NI-MO. The "sheets" must be rectangular and full but need not be identi-
c 711 in size.

:SUBROUTINE NAMES:
	

D3DEG1 or D3DDJM

MR.K( ;E:

These subroutines perform trivariate linear intepolation. The interpolation
must be constructed as shown for Trivariate Array Format. Subroutine

ir?P,l;G1 is called on which cells on D1DFG1. Hence, the linear extr•:polation
f(! ture of these routines applies. Subroutine D3D1WM multiplies the inter-
polated answer by F prior to returning it as T.

UT STRTCTIONS :

,I ,- Trivariate Array Format. F must be a floating point value.

GALLING SEQUENCE:

D3DEG1(X ,Y, Z ,TA (IC) , T )
D3D1WM(X,Y,Z,TA(IC),F,T)

0
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SUBROUTINE NAMES:	 VARCSM or VARCCM or VARC1 or VARC2

PURPOSE: These are linear interpolation subroutines which are set up as
Variables 1 calls by the preprocessor when processing the CGS and CGD
mnemonic codes in the nodal data block. 71"IMSM is utilized for the CGS code.
VARCCM is utilized for the CGD code whin t-._ array arguments appear. VARC1
and VARC2 are used for the CGD code when either the first or second respec-
tive array arguments are input as a constant. The following mnemonic codes
in the nodal block

Col 8	 :'G--, 1, 	 Al, 10.2
CGI; , SO., Al, 10.2, A2, 1.6
CGD 3, 80., 1.4, 5.1, A2 1 1.6
CGD 4, 80., Al, 5.1, 6.3, 8.7

would cause the construction in Variables 1 of

Col 12	 VARCSM (T1, C1 1 Al, 10.2)
VARCCM (T2, C2, Al, 10.2, A2, 1.6)
VARC?. (T3, C3, 1.4, 5.1, A2 1 1.6)
VARC2 (T4, C4, Al, 5.1, 6.3, 8.7)

The second call causes the sum of two interpolations with multiplications
to be used as the C2 value. The later two calls on3,y perform one inter-
polation, but use the sum of the two products as the C value.

RESTRICTIONS: The array arguments must address the integer count.

CALLING SEWENCE:

VARCSM (T, C, A(IC), F)
or VARCCM (T, C, Al(IC), F1, A2(IC), F2)
or VARCl (T, C, X, F1, A2(IC), F2)
or VARC2 (T, C, A1(IC), Fl, X, F2)

SUBROUTINE NAMES:	 VARGSM or VARGCM or VARG1 or VARG2

PURPOSE: These are linear interpolation subroutines which are set up as
Variables 1 calls by the preprocessor when processing the CGS and CGD
mnemonic codes in the conductor data block. They are similar to the pre-
ceeding four calls for the nodal data block except that the conductor argu-
ment is first followed by two temperature arguments. VARCSM is used for the
CGS code. If the F value is positive the mean of the two addressed tempera-
tures is used for interpolation. If it is negative only T1 is used for
interpolation and the absolute value of F is used as a multiplier. The
VARGCM, VARG1 and VARG2 perform the one or two interpolations required, mul-
tiply by the F values to obtain G1 and G2 components and then calculate G as

G = 1.0/(1.0/G1 + 1.0/G2)

RESTRICTIONS: The array arguments must address the integer count.

CALLING SEQUENCE: 	 VARGSM (G, T1, T2, A(IC) F)
or VARGCM (G, T1, T2, A1(IC$, Fl, A2(IC), F2)
or VARG1 (G, T1 0 T2 0 X, F1 A2(IC), F2
or VARG2 (G, Tl, T2, A1(IC$, Fl, X, F2^
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Arithmetic Subroutines

Kame	 Pa Re

FLAT .,FIX,INTRFC,SHFTV,SHFTVR,FLIP 6.3.1
SETPL:;,ARYPLS,SETMNS,ARYMNS 6.3.2
ADD,ADDFIX,ADDARY,ARYADD 6.3.3
SUB,SUI3FIX,SUBARY,ARYSUB 6.3.4
MLTPLY,MPYFIX,MPYARY,ARYMPY 6.3.5
DIVIDE,DIVFIX,DIVARY,ARYDIV 6.3. 6
GENARY, MARY, 3RKARY,BKARAD 6.3.7
STFSEP,SCALE,STFSEQ,STFSQS 6.3.8
SUMARY,MkXDAR,MXDRAL 6.3.9
ARYIIW,ARINDV,ADDINV,ADARIN 6.3.10
ST^ARY,ARYSTO,SCLDEP,SCLIND,SLDARY,SLDARD 6.3.11
SPLIT,JOIN,SPREAD 6.3.12
QMETER,RDTNQS,QMTRI,QFORCE,QINTEG,a,INTGI 6.3.13
CINSIN,SINA.RY,CINCOS,COSARY,CINTAN,TANARY 6.3.14
.ARCSIN,ASNARY,ARCCOS,ACSARY,ARCTAN,ATNARY 6.3.15
EXPNTL,ARYE,T,EXPARY,W,T,LOGTAR,LOGE,L$GEAR 6.3.16
SQROOT,SQRO1'I,CMPXSR,CSQRI 6.3.17
CMPXMP,CMPYI,CMPXDV,CDIVI 6.3.18
NEWTRT,NEWRTI',PLYNML,PLYARY 6.3.19
SMPINT,TRPZD TRPZDA 6.3.20
PRESS,SPRESS,EFFG,EFFEMS 6.3.21
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SUBR( L`TINE NAMES:	 FLgAT or FIX or INTRFC

PURPOSE:

Subroutine FLAT will convert an integer to a floating point number. Sub-
routine FIX will convert a floating point number to an integer. Subroutine
INTRFC will fracture a floating point number to yield the large.t integer
value possible and the remainder or fractional portion as a floating point
number. Their respective ,-)verations are:

X 
or 	 X
orN=X

Y = N
F=XY

RESTRICTIONS:

X and F arguments must address floating point values and the N argument
address an integer.

CALLING SEQUENCE:

FLtiT(N X)
or FTX(X,Nj
or !NTRFC(X,N,F)

SUBROUTINE NAMES:	 SHFTV or SHFTVR or FLIP

PURPOSE:

Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place
it in another array in reverse order. Subroutine FLIP will reverse an
array in its own array location. Their respective operations are:

A(i) = B(i)	 , i = 1,N

	

or A(N-i+l) = B(i)	 , i - 1,N
or A(i)new = A(N-i+2) old , i = 2,N+1
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SUBROUTINE NAMES: 	 SETPLS or ARYPLS

PURPOSE:

SETPIS will set the sign positive for a variable number of arguments
while ARYPLS will set the sign positive for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers.
"'he number (N) of data values in the array waist be specified as an
integer.

CALLIM SEQUENCE:

SETPIS(A,B,C...)
or ARYPLS(N,A(DV))

where N may be a literial integer or the address of a location contain-
ing an integer and A(DV) addresses the first data value in the
array.

SUBROUTINE NAMES • 	 SETMNS o c ARYM<i1S

PURPOSE:

SETMNS will set the sign negative for a variable number of arguments
while ARYMNS will set the sign negative for every data value in a
specified length array.

RESTRICTION3:

The values addressed may be either integers or floating point numbers.
The number (N) of data values in the array must be specified as an
integer.

CALLING SEQMCE :

SETMS(A,B,C,.. )
or ARYMS(N,A(DV))

where N may be a 7.iterial integer or the address of a location contain-
ing an interger and A(DV) addresses the first data value in the
array.
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SUBROUTLTE NAMES: 	 ADD or ADDFIX

PURPOSE:

To stun a variable number of floating point or integer numbers respectively.

	

S= E Xi 	 i= 1,2,3,...,N	 N> 2

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subroutine ADDFa
is for integers.

CALLING RQUENCE:

ADD(Xl,X2,X3,...,XN,S)
or ADDFIK(Xl,X.2,X3 .... XN,S)

	

SUBROUTINE NAMES:	 ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified
length arrays to form a third array. Subroutine ARYADD will add a
constant value to every element in an array to form a new array. Their
respecthre operations are:

Ai=Bi+Ci , i=1,N
or Ai=Bi+C	 i=1.N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N mist be an integer.

CALLING SEQUENCE:

ADDARY(N,B(DV),C(DV),A(DV))
cr ARYADD(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE 14AMES:	 SUB or SUBFIX

PURPOSE:

To subtract a variable number of floating point or integer
numbers respectively.

R = Y - E Xi , i = 1,2,3,...,N , N > 1

RESTRICTIONS:

Subroutine SUB is for floating point numbers while subroutine SUBFIX
is for integers.

CALLING SEQUENCE: -

SUB(Y,Xl,X2,X3,...,XN,R)
or SUBFIX(Y,X1,X2,X3,...,XN,R)

SUBROUT IPZE NAMES:
	

SUBARY or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a
constant value from every element in an array to form a new array. Their
respective operations are:

Ai=Bi -Ci	 , i=1,N
or Ai = Bi - C	 , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:
SUBARY(N,B(D'J),C(DV),A(DV) )

or ARYSUB(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.

r
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SUBROUTINE NAMES: 	 MLTPLY or MPYFIX

PURPOSE:

To multiply a variable number of floating point or integer numbers
respectively.

P = Xl*X2*X3# ...*XN , N ? 2

RESTRICTIONS:

Subroutine MLTPLY is for floating point numbers whi?e subroutine MPYFIX
is for integers.

CALLING SEQUENCE:

IILTPLY(X1,X2,R3, ... ,XN, P)
or M,YFI1(X1,X2,X3,...,XN,P)

SUBROUTINE NAMES: 	 MPYARY or ARYMPY

PURPOSE:

Subroutine MPYARY will multiply the corresponding elements of two arrays
to form a third. Subroutine ARYMPY..will multiply a constant value times
each element of an array to form a new array. Their respective operations
are:

Ai = Bi * Ci , i = 1,N
or Ai = Bi * C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:

MPYARY(N,B(DV),C(DV),A(DV))
or ARYMPY(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE NAMES:	 DIVIDE or DIVFIX

PURPOSE:

To perform a division of floating point or integer numbers respectively.

Q = Y/ E Xi , i = 1,2,3,...,N , N > 1

RESTRICTIONS:

Subroutine DIVIDE is for floating point numbers while DIVFIX is for
integers.

CALLING SEQUENCE:

DIVIDE(Y,X1,X2,X3,...,XN,Q)
or DIVFLv(Y1Xl,X2,X3,...,)N,Q)

SUBROUTINE NAMES:	 DIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the corre-
sponding.elements of another array to produce a third array. Subroutine
ARYDIV will divide each element of an array by a constant value to pro-
duce a new array. Their respective operations are:

Ai = Bi/Ci , i = 1,N
or Ai = Bi/C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING :-)EQUENCE:

4

DIVARY(N,B(DV),C(DV),A(DV))
or ARYDIV(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE NAME:	 GENARY

PURPOSE:

This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number
of values in the array to be generated and the space for the generated
array.

RESTRICTIONS•

All numbers must be floating point.

CALLING SEQUENCE:	 GENARY(B(DV),A(DV))

where	 B(1) = minimum value
B(2) = maximum value
B(3) = length of array to he generated (floating point)

SUBROUTINE NAME:	 BLDARY

PURPOSE:

This subroutine will build an array from a variable number of arguments
in the order listed. The operation performed is:

Ai = Xi	 ,	 i=1,N

RESTRICTIONS•

Data may be of any form. The subroutine obtains the integer array length
N by counting the arguments.

CALLING SEQUENCE:	 BLDARY(A(DV),X1,X2,X3,...,XN)

SUBROUTINE NAME: 	 bRKARY or BKARAD

PURPOSE

These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value
into the location while the second adds it to whats in the location.
Respective operations are:

Xi = Ai	 ,	 i=1,N

	

or Xi = Xi+Ai	 ,	 i=1,N

RESTRICTIONS:

Floating point numbers must be used for BKARAD. The integer array length
N is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE:	 BRKARY(A(W),Xl,X2,X3,...,XN)

or BKARAD(A(DV)),Xl,X2,X3,...,XN)-

Sj	 5
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SUBROUTINE NANS:	 STFSEP or SCALE

PURPOSE:

Subroutine STFSEP will place a constant value into a variable number of
locations. Subroutine SCALE will utilize a constant value to multiply a
variable number of arguments, each having a location for the product. The
respective operations are:

Xi = Y	 ,	 i = 1,2,3,...,N
or Xi = Y*Zi	 ,	 i = 1,2,3,...,N

RESTRICTIONS:

STFSEP may be used to move any desired value but SCALE can only be used
for floating point numbers.

CALLING SEQUENCE:

STFSEP(Y,X1,X2,X3,...,XN)
or SCALE( Y,XI,Zl,X2,Z2,...,XN,ZN)

SUBROUTINE NAMES:
	

STFSEQ or STFSQS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant
data value to be in the first array location while STFSQS requires it to
be supplied as an additional argument. The respective operations per-
formed are:

Ai = Al , i = 2,N

	

or Ai =	 i = l,N

RESTRICTIONS:

N must be an integer but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE:

STFSEQ(A(DV),N)
or STFSQS(B,N,A(DV))
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SUBROUT THE NAME:	 SUMARY

PURPOSE:

To sum an array of floating point values:

S = E Ai , i = l,N

RESTRICTIONS:

The values to be summed must be floating point numbers and the array
length N must be an integer.

CALLING SEQUENCE:

SUMARY(N,A(DV),S)

SUBROUTINE NAMES: 	 MAXDAR or MORAL

PURPOSE:

These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array values
must be floating point numbers. The operation performed is

D = Ai — Bilm,Y , i = 1,N

Subroutine MORAL also locates the position P between 1 and N where the
maximum occurs.

RESTRICTION:

The N argument must be an integer. The D and P arguments are returned as
floating point numbers.

CALLING SEQUENCE:

MAXDAR(N,A(DV),B(DV),D)
or MXDRAL(N,A(DV),B(DV),D,P)
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SUBROUTRE NAMES:	 ARYNDV or ARINDV

PURPOSE:

Subroutine ARYINIT will invert each element of an array in its own location.
Subroutine ARINDV will divide each element of an array into a constant
value to form a new array. Their respective operations are:

Ai = 1.0/Ai	 i = 1,N
or Ai = B/Ci	 , i = 1,N

RESTRICTInNS:

All data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE:

ARYM (N,A(DV))
or ARINDV (N,C(DV),B,A(DV))

the ARIOV answer array may be overlayed into the input array area.

SUBROUTINE NAMES:	 ADDINV or ADARIN

PURPOS3 :

Subroutine ADDINV will calculate one over the sun of the inverses of a
variable number of arguments. Subroutine ADARIN will calculate one
over the sum of inverses of an array of values. These subroutines are
useful for calculating the effective conductance of series conduct.)rs.
Their respective operations are:

Y = 1.0/(1/X1+1./X2+...+1./XN) , N ? 2
or Y = 1.0/Z(1./Xi) , i = 1,N

RESTRICTIONS:

All data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE:

ADDINV(X1,X2,X3,...XN,Y)
or ADARIN(N,X(DV),Y)



s..et nwfroM 0 C.1imIf ER
CINDA 3G	 CO^^o^^ ^ "

SUBROUTINE NAMES:	 ST ARY or ARYST

PURPOSE:

These subroutines will place a value into or take a value out of a
specific array location respectively. Their respective operations are:

Ai = X	 ,	 i =N	 ,	 N >0
or X =Ai	 ,	 i = N	 ,	 N>0

RESTRICTIONS•

The values may bt, anything but N must be an integer.

CALLING	 UENCE:	 STOARY(N,X,A(DV))
or ARYST0(N,X,A(DV))

SUBROUTINE NAMES:	 SCLDEP or SCLIND

PURPOSE:

These subroutines will multiply the dependent or independent variables of a
doublet type interpolation array respectively. Their respective operations
are:

Ai = X#Ai	 ,	 i = 3,5,7,...,N+1
or Ai = X#4i	 ,	 i = 2,4,6,...,N

RESTRICTIONS

All values must ba floating point. The arrays must contain the length
integer count as the first value which must be even.

CALLING SEQUENCE:	 SCLDEP (a(IC),X)
or SCLIND(A(IC),X)

SUBROUTINE NAMES:	 SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation arrays
during a transient analysis. The array data values are moved back one or
two positions, the first one or two values discarded and the last one or
two valor updated respectively. The "sliding array" thus maintained can
then be used with standard interpolation subroutines to simulate transport
delay phenomina. Their respective operations are:

Ai=Ai+1	 ,	 1=2,N
and Ai � X	 ,	 i =N+1
or Ai = Ai + 2	 ,	 i = 2,N=1
and Ai = X and Ai+1 = Y,	 i = N

RESTRICTIM:

The addressed arrays must have the array integer count N as the first value.
For SLDARD, N must be even.

CA^WUENCE=.	 SLDARY (X,A(IC))
SLDARD(X,Y,A(IC)}

i
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SUBROUTINE NAM:S: 	 SPLIT or JOIN

PURPOSE:

These subroutines separate a doublet array into two singlet arrays or
combine to singlet arrays into a doublet array respectively. Their
respective operations are:

Bi = A2i-1 	,	 i = 1,N
Ci. = A2i	 ,	 i = 1,N

or A2i-1 = Bi	 ,	 i = 1,N
A2i = Ci	 ,	 i = 1,N

RESTRICTIONS:

The arrays may contain any values but N must be an integer. N is the
length of the B and C arrays and the A array must be of length 2N.

CALLING SEQUENCE:	 SPLIT(N,A(DV),B(DV),C(DV))
or JOIN(N,B(DV),C(DV),A(DV))

SUBROUTINE NAME:	 SPREAD

PURPOSE:

This subroutine applies interpolation subroutine D1D1DA to two singlet
arrays to obtain an array of dependent variables versus an array of
independent variables. It is extremely useful for obtaining singlet
arrays of various dependent variables with a corresponding relationship
to one singlet independent variable array. The dependent variable arrays
thus constructed can then be operated on by array manipulation subroutines
in order to form composite or complex functions. Doublet arrays can
first be separated with subroutine SPLIT and later reformed with subroutine
J$IN.

RESTRICTIONS:

All data values must be floating point except N which must be the integer
length of the array to be constructed. The arrays fed into D1D1DA for
interpolation must start with the integer count. X is for independent

and Y is for dependent. I is for input and 0 for output.
CALLING SEQUENCE:	 SPREAD (N,X(IC),Y(IC),XI(DV),YO(DV))
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SUBROUT12E NAMES: 	 QMETER or RDTN S or QMTRI or QFOCE

'PURPOSE:

These subroutines are generally used for calculating flow rates. Their
respective operations are:

A = B*(C-D)	 4	 4
or A = B*((C+460.) -(D+460.) )

or Ai = Bi*(Ci-Ci+l) , i = 1,N
or Ai = Bi*(Ci-Di) , i = 1,N

RESTRICTIONS:

All values must be floating point numbers except the array length N which
must be an integer.

CtiT,LING SEQUENCE:

QMETER(C)D,B,A)
or R.DTNQS(D,C,B A)
or QXTTRI(N,C(DVj B(DV) A(DV))
or QF$RCE(N,C(DVj,D(DVj,B(DV),A(DV))

SUBROUTINE NAMES:	 QINTEG or QINTGI

PURPOSE:

These subroutines perfona a simple integration. They are r geful for obtai
the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI or QPJRCE
Their respective operations are:

S = S4-Q*DT
or Si = Si+Qi#DT , i - 1,N

RESTRICTIONS:

All values must be floating point numbers except N which must be an integer.
Control constant DTIMEU should be used for the step size when doing an
i.nt;gration with respect to time. These subroutines should be called in
Variables 2.

CALLING SEQUENCE:

QINTEG Q,DT,S)
or QIMI(N, Q(DV),DT,S(DV))
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SUBROUTINE NAMES:	 CINSIN or SINARY

PURPOSE:

These subroutines obtain the sine function of ar. angle or array of angles.
Their respective operations are

A = sine (B)
or Ai = sine (Bi)

RESTRICTIONS:

All angles mast be in radians. All values must be floating point numbers
except N which must be an integer.

CALLING SEQUENCE:	 CINSIN(B,A)
or SINARY(N,B(DV) ,A(DV) )

SUBROUTINE NAMES:	 CINGOS or COSARY

PURPOSE:

These subroutines obtain the cosine function of an angle or array of
angles. Their respective operations are:

A = cosine (B)
or	 Ai = cosine (Bi)	 ,	 i = 1,N

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALIX G SEQir:`XE:	 CT_NCOS(B,A)
or COSARY(N,B(DV),A(DV))

SUBROUTINE NAMES: 	 CINTAN or TANARY

PURPOSE:

These subroutines obtain the tagent function of an angle or array of
angles. Their respective operations are:

A = tangent (B)
or	 Ai = tangent (Bi) ,	 i = 1,N

RESTRICTICNS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQUENCE:	 CINTAN(B,A)
or	 TANARY(N,B(DV),A(DV))

6.3.11
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SUBROUTINE NAMES:	 A_RCSIN or ASNARY

PURPOSE

These subroutines obtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are:

A = sine '4 (B)
or Ai = sine 4 (B-i)	 ,	 i = 1,N

RESTRICTIONS:

171h,- angles are returned in radians with the following limits, — 7rf2 <_ A <_ 7rf2.

All values must be floating point except for the array length N which
must be an integer.

CALLING SEQUI.NCE: 	 ARCSIN (B,A)
or ASNARY(N,B(DV),A(DV))

SUBROUTINE NAMES:	 ARCCOS or ACSARY

PURPOSE:

These subroutines obtain the angle corresponding to a cosine function
value or array of cosine values. Their respective operations are:

A = cosine ''(B)
or Ai = cosine -'(Bi)	 ,	 i = 1,N

RESTRICTIONS

The angles are returned in radians with the following limits, 0 5 A <_ Tr .
All values must be floating point numbers except for the array length
N which must be an integer.

CALL NG SEQUENCE:	 ARCC$S(B,A)) 	
/Or ACSARY(N,B(DV),A(DQ))

SUBROUTINE NAMES:	 ARCTAN or ATNARY

PURPOSE:

Thses subroutines obtain the angle corresponding to a tangent function
value of array of tangent values: Their respective operations are:

A = tangent  (B)
or	 Ai = tangent (Bi) 	 ,	 i = 1,N

RESTRICTIMS:

The angles are returned in radians with the following limits,
All values must be floating ;point numbers :xcept the array length N which

f	 must be an integer.

CALLING SEQUENCE:	 ARCTAN(B,A)
or	 ATNARY(N,B(DV),A(DV))
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SUBROUTINE NAMES:	 EXPNTL or ARYEXP or EXPARY

PMPOSE:

These subroutines perform an exponential operation. Their respective
operations are:

or	 Al = Ail -	, 	 1 = .l,h

or	 Ai = Bi'	 ,	 I=1,N

RESTRICTIONS•

All values must be positive floating point numbers except N which must
be an integer

CALLING SEQUENCE:	 EXPNTL(C,B,A)
or ARYEXP(N,C,B(DV),A(DV))
or EXPARY(N,C(DV),B(DV),A(DV))

SUBROUTINE NAMES: 	 UM-7 or LIGTAR

These subroutines obtain the base 10 log function of a number or array
of numbers. Their respective operations are:

A = logic (B)
or	 Ai = log 10 (Bi)	 ,	 i = 1,N

RESTRICTIONS•

All values must be positive floating point numbers except N which must
be an integer.

CALLING SEQUENCE:	 LOGT(B,A)
or WTAR(N,B(DV),A(DV))

SUBROUTINE NAMES: 	 I 29 or LOGEAR

PURPOSE:

These subroutines obtain the base a log function of a number or array of
numbers. Their respective operations are:

A = log . (B)
or	 Ai = log. (Bi)	 ,	 i = 1,N

RESTRICTIMS

All values must be positive floating point numbers except N which mast be
an integer.

GALLING ME:

or LOGEAR(N)B(DV),A(DV))

6.3.16
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SUBROUTINE NAMES:	 SQROOT or SQJWI

PURPOSE:

These subroutines obtain the square root of a number or array of numbers
respectively. Their respective operations are:

A =+V
or	 Ai = +	 ,	 i = 1,N

RESTRICTIONS:

The A and B values must be floating point numbers. The N must be an
integer.

CALLING SEQUENCE: 	 SQRM(B,A)
or SQROTI(N,B(DV),A(DV))

SUBROUTINE NAMES:	 CNPXSR or OW_
PURPOSE:

These subroutines obtain the complex square root of a complex number
or ar array of complex numbers respectively. Their respective operations
are:

A + iB = C + iD
or Aj + iBj = V+ IDj	 ,	 j = Z,N

RESTRICTIONS•

All numbers must be floating point except N which must be an integer.

CALLING SEQUENCE:	 CMMR(C,D,A,B)
or CSQRI(N,C(DV),D(DV),A(DV),3(DV))

t	 6.3.11
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SUBROUTINE NAMES:	 CMPXMP or CMPYI

PURP0.5E :

These subroutines will multiply two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + iB = (C + iD)*(E + _L) 	 ,	 i = V 1
or Aj + iBj = (Cj + iDj)*(Ej + iFj) , 	 j = 1,N

RESTRICTIONS•

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: 	 CMPXMP(C,D,E,F,A,B)
or	 CMPYI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

SUBROUTINE NAMES:	 CMPXDV or CDIVI

PURPOSE:

These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + iB = (C + iD)/(E + iF)	 ,	 i = V —1
or Aj + iBj = (Cj + iDj)/(Ej + iFj)	 ,	 j = 1,N

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE:	 CMPXDV(C,D,E,F,A,B)
or CDIVI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))
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SUBROUTINE NAMES:	 NEWTRT or NEWRT4

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic
or quart--c equation respectively. The root muat be in the neighborhood
of the supplied ir ttial guess and up to 100 iterations are performed
in order to obtain an answer within the specified tolerance. If the
tolerance is not met, an answer of 10 38 is returned. The respective
equations are:

f(X) = Al+A2*X+A3#X2+A4*X3 = O.O+T
or g(X) = Al+A2*X+A3#X2+A4#X3+A5#X4 = O.O+T

where X starts as the initial guess RI and finishes as the final answer
RF. T is the tolerance.

RESTRICTIONS•

All data values must be floating point numbers.,

CALLING SEQUENCE: 	 NEWTRT(A(DP),T,RI,RF): 3
or NEWRT4(A(DV),T,RI,RF)

SUBROUTINE NAMES:	 PLYNML or PLYARY

PURPOSE:

These subroutines calculate Y from the following polynomial equation:

Y = Al+A2*X+A3#X'+A4#X3+ ... +AN*XN-1

The number of terms is variable but all the A coefficients must be
input no matter what their value.

RESTRICTIONS:

All values must be floating point numbers except the number of coefficients
N which must be an integer.

CALLING SZ Ur, MCE:	 PLYNML(X,Al,A2,A3,...,AN,Y)

or	 PLYARY(N,X,A(DV),Y)

I	 Q.3 .19
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SUBROUTINE NAMES:	 SWINT or TRPZD

PURPOSE:

These subroutines perform area integrations by Simpson's rule and the
trapezoidal rule respectively. Simpson's rule requires that an odd
number of points be supplied. If an even number of points is supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but
Simpson's rule elsewhere. The respective operations are:

A = DX#(Y1+4Y2+2Y3+4Y4+...+YN)/3
or A = DX#(Y1+2Y2+2Y3+2Y4+...+YN)/2

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values
must be floating point except N which must be an integer.

CALLING SEQUENCE:

SMPINT(N,DX,Y(DV),A)
or TRPZD(N,DX,Y(DV),A)

SUBROUTINE NAME:	 TRPZDA

PURPOSE:

This subroutine performs area integration by the trapezoidal rule. It
should be used where the DX increment is not uniform between the Y
values but the corresponding X value for each Y value is known. The
operation performed is as follows:

A = j E(Xi-Xi-1)*(Yi+Yi-1) , i = 2,N

RESTRICTIONS:

All values must be floating point numbers except the array length N
which must be an integer.

CALLING SEQUENCE:

TRPZDA(N,X(DV),Y(DV),A)

6.3.20
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SUBROUTINE NAMES:
	

PRESS or SPRESS

PURPOSE: These routines are useful for impressing nodal pressures in one
dimensional flow paths once the entry pressure P1, path conductance G and
flow rate W are known. The respective equations are:

P2 = P1--W/G
or P7.(i + 1) = P1(i) W/G(i), i = 1,2,3,•••N

RESTRICTIONS: For SPRESS, the pressures and conductors must be sequential
and in ascending order, the number of pressure points to be calculated must
be supplied as the integer N.

CALLING SEQUENCE: PRESS(P1,W,G,P2)
SPRESS(N,Pl(DV),W,G(DV))

SUBROUTINE NAME: 	 EFFG

PURPOSE: For a pressure network of the following type

G1	 P3

P1	 P2

G	 P4

where the values of the identified elements are known, this subroutine will
calculate the effective conductance GE from Pl to P2. Any interconnections
may occur in the space but only P2, P3 and P4 may be on the boundary and
no elements may cross it. The equation utilized is:

GE = (G1#(Pl-P3) + G2*(Pl-P4))/(P1-P2)

RESTRICTION: See above. May not bs used where capacitors appear on the
internal nodes.

CALLING SEQUENCE: EFFG(Pl,P2,P3,P4,Gl,G2,(E-)

SUBROUTINE NAME:	 EFFEMS

PURPOSE: This subroutine calculates the effective emissivity E between
parallel flat plates by the following equation.

E = 1.0/(1.0/El + 1.0/E2 - 1.0)
where El and E2 are the emissivities of the two surfaces under consideration.

RESTRICTIONS: Arguments must be floating point numbers.

CALLING SEQUENCE: EFFENS(E1,E2,E)
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OUTPUT SUBROUTINES

NAME	 PAGE

STNDRD, PRNTMP, PRINT, PRINTL 6.4.1
PRNTMA, PRNTMA 6.4.2
SC-4020 Plotting Subroutines and Symbols 6.4.3
'PNPLT, PLTND, ENDFIL, FRAMEV 6.4.3
PLVTX1, PI$TX2 6.4.4
PWTX3, PLOTX4, PWTLI, PWTL2 6.4.5
PUNCHA,PNCHMA 6.4.6
READ, WRITE, REWIND, E0 6.4.7

6.4
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SUBROUTINE NAMES:	 STNDRD or PRNTMP

PURPOSE:

Subroutine STNDRD causes a line of output to be printed giving the present
time, the last time step used, the most recent CSGKIN value, the maximum
diffusion temperature change calculated over the last time step and the
maximum relaxation change calculated over the last iteration. RNN refers
to the relative node number on which something occurred. The line of out-
put looks as follows:

TIME	 DTIMEU	 CSGMIN(RNN)	 DTMPCC(RNN)	 ARLXCC(RMT)

Subroutine PRN'IMP internally calls on STNDRD and also lists the tempera-
ture of every node in the network according to relative node number. The
relative node number - actual node number dictionary printed out with the
input data should he consulted to determine temperature locations on the
thermal network model.

RESTRICTIONS:

No arguments are required or allowed. These subroutines should be used
with network problems only.

CALLING SEQUENCE:

STNDRD
or PRNTMP

1	 S

SUBROUTINE NAMES:
	

PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed out.
The arguments maj reference, temperature, capacitance, source locations, con-
ductors, constants or unique array locations. In addition, subroutine
PRINTL allows each value to be preceeded or labeled by a six character
alphanumeric word. The number of arguments is variable but the "label" array
used for PRINTL should contain a label for each argument.

RESTRICTIONS:

These subroutines do not call on STNDRD. The user may call on it if he
desires time control information. Any control constant may be addressed
in order to see what its value is, integers must first be floated.

CALLING SEQUENCE:
PRINT(T,C,Q,G,K,...,A+)

or PRINTL(IA(DV),T,C,Q,G,K,...,A+)

6.4.1
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SUBROUTINE NAME:	 PRINTA

PURPOSE:

This subroutine allows the user to print out an array of values, five to
the line. The integer array length N and the first data value location
must be specified. Each value receives an indexed label, the user must
supply a six character alphanumeric word L to be used as a common label
and an integer value M to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers.

CALLING SEQUENCE:

PRINTA(L,A(DV),N,M)

If the label was the work TEMP, N was 3 and M was 6 the line of output
L:culd look as follows:

TEMP ( 6) valueTEMP ( 7)value TEMP ( E)value

SUBROUTINE NAME: 	 PRNTMA

PURPOSE:

This subroutine allows the user to print out up to 10 arrays in a column
format. The individual element, are not labeled but each column receives
a two line heading of 12 alphanumeric characters each. The two line head-
ing must be supplied as a single array of four words, six characters each.
The user must supply the starting location of each label array and value
array. The number of values in each value array must agree and be
supplied as the integer N. The value arrays must contain floating point
numbers.

RESTRICTIONS:

Labels must be alphanumeric while values must be floating point. All
floating point value arrays must contain the same number of values.

CALLING SEQUENCE:

PRNTMA(N,LA1( DV),VA1(DV),LA2(DV),VA2(DV), ... )
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SC-4020 PLOTTING SUBROUTINES AND SYMULS

CINDA-3G contains an integrated package of SC-4020 plotting subruutinfa
may be used to produce a variety of plotted output. Thesc plots are out-
put by the computer onto magnetic tape which when processed by the SC-4020
yields the plots on 35 mm. film which may then be processed to produce
Zerox or some other type of hard copy.	 The plotting symbols (IS) availr.ble
are as follows:

Decimal Plot	 Decimal Plot Decimal Plot	 Decimal Plot
Integer Char.	 Integer Char. Integer Char.	 Integer Char.

0 0 16 + 32 - 48
1 1 17 A 33 J 49
2 2 18 B 34 K 50 S

^ 3 19 C 35 L 51 T
4 20 D 36 M 52 U
5 21 E 37 N 53 V

6 6 22 F 38 0 54 W
7 23 G 39 P 55 X

8 8 24 H 40 Q 56 Y
9 9 25 I 41 R 57 Z

10 8 26 7r 42 58 °
11 = 27 43 $ 59
1=' 28 ) 44 " 60
13 29 f3 45 y 61 .l
14 6 30 I 46 62 E
15 a 31 ? 47 d 63 0

SUPROUTINE NAMES: 	 VPNPLT or PLTND or ENDFIL or FRAMEV

PURPVSE: These subroutines perfo= the following operations:
PNPLT This call rewinds th y: plot output tape. It should be the first

plot call within any job and appear only once. A "job" may con-
sist of one or more stacked problem runs.

PL77M This call Empties the plot buffers. It should appear in every
problem run within a job and after all the quick plot calls.

ENDFIL This call writes an end of file on the plot output tape. It
should be used only once in a job as the last call of the last
problem run in the job.

FRAMEV The plot frames produced on 35 mm. film are quite close together.
This call places a blank frame on the film thereby allowing the
good frames to be cut large enough for mounting as projector
slides.

RESTRICTIONS: Check Section V. Control Cards and Deck Setup, for tape
usage and control earls necessary.

CALLING SEQUENCE:	 JPNPLT
or PLTND
or ENDFIL
or FRAMEV(3)

subroutines are not re( . 'red on the UNIVAC --1108 system.

6.4.3
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SUBROUTINE NAILS:

PURPOSE:

PLOTXI or PLOTX2

These are WIF_nN coded quick plot subroutines for the SC-4020 which call
upon a large package of undocumented subroutines specifically for the SC-
4020. They will produce up to three XY graphs per frame and several vari-
ables may be plotted per graph. A suitable grid will be drawn with cer-
tain lines emphasized. The grid lines will have reasonable numerical in-
dicia and a centered title will be printed for both axes and at the top
of the graph.

PIt'TX1 computes the minimum and maximum values of the stored X and Y arrays
to be plotted and calls upon PIOTX2 which uses the values as grid limits
for the graph. The user may set the grid limits by calling PWTX2 directly.
The X, Y and top titles (X rf, YT and TT respectively) must consist of 12
alphanumeric words of six characters each.

RESTRICTIONS:

Tae uses should consult SPCti.-)n 5, Control Cards and Deck Setup, to check
tape des_gnat_.on requirements. The X and Y values must be floating point
numbers.

CALLING SEQUENCE:

PI#T-^l(N,IS,TX(DV),TY(DV),TT(DTJ),NP,AX(DV),AY(DV))
or PI$T-Q(N,xL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV))

where N is the integer number of graphs per frame (1, 2 or 3). If
negative, the frame is advanced end a new grid produced; if
zero, the grid from the previous plot call is used and if
positive, the second or third graph for the frame is produced.

XL is the floating point X axis left limit
XR is the floating point X axis right limit
YB is the floating point Y axis bottom limit
YT is the floating point Y axis top limit
IS is an integer identifying the plotting symbol to be used
TX is the address of the X title
TY is the address of the Y title
TT is the address of the top title
NP is the integer number of XY values or points to be plotted,

if negative the points will be connected by straight lines.
AX is the address of the X array
AY is the address of the Y array

6.4.4
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SUBROUTINE NAMES:
	

PLOTX3 or PL(6TXL

PURPOSE •

These subroutines are similar to PL#TX1 and PIOTX2 but have 6 additional
arguments which allow the user to modify the grid as desired.

RESTRICTIONS:

See PL$TXl and PL¢TX2.

CALLING SEQUENCE:
PI$TX3(N,IS,TX(DV),TY(DV),TT(DV),I'P,AX(DV),AY(DV)

DX,DY,L,M,I,J)
or PI$TX4(N,XL,XR,YB,YT,IS,TX(DV),`:Y(DV),TT(DV),IIP

AX(DV),AY(DV),DX,DY,L,M,I,J)

where the arguments are identical to PIPU and PL$TX2 except for

DX,DY these floating point values are used for spacing the grid
lines which are centered on the zero -alues. If zero, no
grid lines will be drawn.

L,M	 these integers cause every Lth vertical and Mth horizontal grid
line to be rsdrawn for emphasis. If zero, no grid lines will
be emphasized. If negative, a square grid brill be produced.

I,J	 these integers cause every Ith vertical and A horizontal grid
r	 line to be labeled with its value. if zero, no grid lines

will be labeled. If negative, the labels will be placed outside
the grid, otherwise they will appear on the zero axis.

SUBROUTINE NAMES: 	 P10TLl or P14TL2

PURPOSE:

These subroutines are similar to Pi$TX1 and 11 TX2 but produce log-semi,
log-log or semi-log plots. The arguments are identical to PI$TXl and
PL$TX2 except for one additional one which sets the plotting mode.

RESTRICTIONS:

See PLOM and PIPX2. No limit may be zero.

CALLING SEQUENCE:
PI$TL1(N,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),

AY(DV),LM)
or PI$TL2(N,XL,XR,YB,YT,IS,-iY(DV),TY(DV),TT(DV),

NP,AX(DV),AY(DV),LM)

where the arguments are identical to PL$TX1 and PLOTX2 c-,xcept for LM
which is an integer for identifying the plotting mode as follows:

IM < 0 produced plot w ►i31 be log X versus linear Y
IM = 0 produced plot will be log X versus log Y
LM > 0 produced plot will be linear X versus log Y.
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SUBROUTINE NAME: 	 PUNCHA

PURPOSE: This subroutine enables a user to punch out an array of data
values in any desired format. The F argument must reference a FATRAN
FO tMT which has been input as an array, including the outer parenthesis
but deleting the word FOWT. The second argument must address the first
data value of the array of sequential values. The third argument, N, must
be the integer number of data ;slues in the array. The output is written
onto logical tape 15, the user must provide the necessary control cards
and processing information for the operator.

RESTRICTIONS: The user should check Section V for the appropriate control
card requirements. Punched output is written on logical tape 15, operator
processing instructions should be supplied.

CALLING SE	 : PUNCIR(F(DV), A(DV),N)

SUBROUTINE NAME:	 PNCHMIL

PURPOSE: This subroutine is similar to PUNCHA, but up to 10 equal length
arrays of data values may be punched. Again the first argument must
reference a FORTRAN c	 T which has been	 input as an array, including
the outer parenthesis, but deleting the word FgRMAT. The integer number
of data values in an array must be supplied as the second argument N.
The array starting locations then follow as arguments three up to twelve.
The first values in each array is punched, then the second, etc.

RESTRICTIONS: The user should check Section V for the appropriate control
card requirements. Punched output is written on logical tape 15, operator
processing instructions should be supplied.

CALLING SEQUENCE: PNCH "&(F(DV),N,Al(DV),A2(DV),••.)

6.4.6
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SUB UTIM NAMES :	 READ or i ,TE

SSE: These subroutines enable the user to read and write arrays of
data as binary information on magnetic tape. The first argument L must
be the integer number of the logical tape being addressed. The second
argument X must address the first data value of the array to be written
out or starting location for data to be read into. The third argument
N must be an integer. For WRITE it is the number of data values to be
written on tape as a record. For READ it is the number of data values
to be read in from tape from the next record, not necessarily the entire
record.

RESTRICTMNst The user should check Section V to determine which logical
tape are available and control card requirements. All processed infor-
mation must be in binary.

CALLING SEQUF—=: READ(L,X(DV) N)
or WRITE(L,X(DVI,N)

SOU NAM:	 E& or

P-MM: These subroutines enable the user to write end of file marks
on magnetic tape and to rewind them. They are generally used in con-
junction with, subroutines READ and MRITE discussed above. The single argu-
ment L must be the integer logical tape number of the unit being activated.

$MSTR: The user should check Section V to determine available
logical tapes.

CALLING SMTEME: ZO (L)
or AEA ND (L)
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MATRIX SUBROUTINES

NAME

ZERV, QfitE S ,UNITY ,SIGMA , GENA LP, GENC0L
SHIFT,REFLCT,SHUFL,C4LMAX,CVIMM
ELEADD,ELESUB,ELEMUL,ELEDIV,ELEINV
EFSIN,EP'ASN,EF(#S,EFACS,EFTAN,EFATN
EFL$G,EFSQR,EFEXP,EFP*,MATRIX,SCALAR
DISAS,ASSMBL,DIAG,C0INLT1H*MLT
ADDALP,ALPHAA,AABB ,BTAB
INVRSE,MULT,TRANS
PAMLT, POLYAL, PLYEVL, POL04V
JAC91BI,M9D2,S
MASS
STIFF
LIST,PW,PUNCH
Matrix Data Storage and Retrieval
CALL, FILE, ENIIOP, LSTAPE

PAGE

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.14

Note: All of the above subroutines require that matrices be
input as positive numbered arrays having the integer
number of rows and columns as the first two data values
followed by the floating point element values in row
order. The above package of subroutines is often re-
ferred to (within CCSD) as MOPAS, for Matrix Oriented
Production Assembly System.

6.5
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SUBROUTINE NAMES:	 ZERY or

PURPOSE: These subroutines generate a matrix [Z] sach that every ele-
ment is zero or one respectively.

RESTRICTIONS: The matrix to be generated must contain exactly enough
space in addition to having the integer number of rows and columns as
the first two data values. The NR and NC arguments are the integer
number of rows and columns respectively.

CALLING SEQUENCE:	 ZERV(NR,NC,Z(IC))
or VNES(NR,NC,Z(IC))

SUBROUTINE NAMES:	 UNITY or SIGMA

PURPOSE : These are square matrix generation subroutines. UNITY
generates a square matrix such that the main diagonal elements are
one and all other elements are zero. SIGMA generates a square matrix
such that all elements on and below the main diagonal are one and the
remaining elements are zero.

RESTRICTIONS: The matrix [Z] to be generated must contain exactly
enough space in addition to having the integer number,of rows and
columns as the first two data values. The integer number of rows and
columns are equal and must be input as the argument N.

CALLING SEQUENCE:
	

UNITY(N,Z(IC))
or SIGMA(N,Z(IC))

SUBROUTINE NAMES:
	

GENALP or GENC L

PURPOSE: These are special matrix generation subroutines. GENALP will
generate a matrix such that every element is equal to a constant C.
GENC#L will generate a column matrix such that the first element is
equal to X1 and the last element is equal to X2. The intermediate
elements receive equally incremented values such that a linear relation-
ship is established between row number and element value.

RESTRICTIONS: The NR and NC arguments refer to the integer number of
rows and columns respectively. X1, X2 and C must be floating point
values. The generated matrices must .ontain exactly enough space in
addition to having the integer number of rows and columns as the first
two data values.

CALLING SEQUENCE:	 GENALP(NR,NC,C,Z(IC))
or GENC0L(r 1,X2,NR,Z(IC))

4	 6.5.1
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SUBROUTINE NAMES: 	 SHIFT or REFLCT

PURPOSE: These subroutines may be used to move an entire matrix from
one location to another. SHIFT moves the matrix exactly as is and
REFLCT moves it and reverses the order of the elements within each
column. The last element in each column becomes the first and the first
becomes the last, etc.

RESTRICTIONS: The matrices must be of identical size and the integer
number of rows and columns must be the first two data values. The [Z]
matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE:	 SHIFT(A(IC),Z(IC))
or REFLCT(A(IC),Z(IC))

*REFLCT uses three dynamic storage locations plus an additional one for
each row.

SUBROUTINE NAME: 	 SHUFL

PURPOSE: This subroutine allows the user to reorder the size of a
matrix as long as the total number of elements remains unchanged. The
row order input matrix [A) is transposed to achieve column order and
then reformed as a vector by sequencing the columns in ascending order.
This vector is then reformed into a column order matrix by taking a
column at a time sequentially from the vector. The newly formed column
matrix is then transposed and output as the row order matrix [Z].

RESTRICTIONS: The matrices must be identical in size and have their
respective integer number of rows and columns as the first two data
values. The number of rows time columns for [A] must equal the number
of rows times columns of [Z].

CALLING SEQUENCE:
	

SHUFL(A(IC),Z(IC))

SUBROUTINE NAMES:
	

C IMAX or CVIMIN

PURPOSE: These subroutines search an input matrix to obtain the maximum
or minimum values within each column respectively. These values are
output as a single row matrix [Z] havi-ig as many columns as the input
matrix [A).

RESTRICTIONS: Each matrix must have its integer number of rows and
columns as the first two data values.

CALLING SEQUENCE:	 COIMAX A(IC),Z(IC))
or CVIMIN(A(IC),Z(IC))
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SUBROUTINE NAMES:	 ELEADD or ELESUB

PURPOSE: These subroutines add or subtract the corresponding elements
of two matrices respectively.

m,n	 min	 m*n
[Z ]	 _	 [A]	 ±	 [B]	 31	 zij	 = aij	 ±	 bij

RESTRICTIONS: All matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] or [B] matrix.

CALLING SEQUENCE:	 ELEADD(A(IC),B(IC),Z(IC))
or ELESUB(A(IC),B(IC),Z(IC))

SUBROUTINE NAMES: 	 ELEMUL or ELEDIV

PURPOSE: These subroutines multiply or divide the corresponding elements
of two matrices respectively.

m'tn	 m*n	 m*n
[Z]	 _	 [A]/	 [B]	 zij	 — aij  	 bij

RESTRICTIONS: All matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] or [B] matrix.

CALLING SEQUENCE:	 ELEMUL(A(IC),B(-C),Z(IC))
or ELEDIV(A(IC),B(IC),Z(IC))

SUBROUTINE NAME:	 ELEINV

PURPOSE: This subroutine obtains the reciprocal of each element of the A
matrix and places it in the corresponding element location of the [Z]
matrix.

zij = 1.0/aij

RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix.

CALL7DTG SEQUENCE: 	 ELEINV(A(IC),Z(IC))

6.5.3



SUBROUTINE NAMES: 	 MY or EFASN

PURPOSE: These subroutines perform elementry functions on all of the [A]
matrix elements as follows:

zij = --ine (aij) 	 or zij = aresine (aij)

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [L] matrix
may be overlayed into the [A] matrix.

CALLING SEQUENCE:	 EFSIN(A(IC),Z(IC))
or EFASN(A(IC),Z(IC))

:SUBROUTINE NAMES:	 EF S or EFACS

74JRPOSE: These subroutines perform elementary functions on all of the
j,tT matrix elements as follows:

z ij = cosine (a i j) or z i3 = arccosine (aij)

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SF&TI iCE :	 EFCOS (A (IC) , Z(IC) )
or EFACS(A(IC),Z(IC).)

SUBROUTINE NAMES:	 EFTTN or EFATN

PURPOSE: These subroutines perform elementary functions on all of the [A]
matrix elements as follows:

z i3 = tangent (a id ) or zi3 = arctangent (a 13)

RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and columns as the first two data valves. The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SEQUENCE:	 EFTAN(A(IC),Z(IC))
or EFATN(A(IC),Z(IC))

6.5.1
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SUBROUTINE NAW3: 	 EFLOG or EFSQR

PURPOSE: These subroutine p perform elementary functiors on all of the [A]
matrix elements as follows:

zij = loge(aij) or zij =	 aij

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. All elements
ir. the [A] matrix must be positive.

CALLING SEQUENCE:	 EFLOG(!. (IC) , Z (IC) )
or EFSQR(A(IC),Z(IC))

SUBROUTINE NAMES:	 EFEXP or ME

PURPOSE: These subroutine perform elementary functions on all of the [A]
matrix elements as follows:

ai3	 tx
zij = e	 or	 zij = aij

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix. The exponent at may be an integer
or floating point number. However, if any elements in [A] are negative
then ct must be an integer.

CALLING SEQUENCE:	 EFEXP(A(IC),Z(IC))
or E"(A(IC),Ct,Z(IC))

SUBROUTINE NAMES:	 MATRIX or SCALAR

PURPOSE:  Subroutine MATRIX allows a constant to replace a specific
matrix element and subroutine SCALAR allows a specific matrix element
to be placed into a constant location. The integers I and J designate
the row and column position of the specific element.

zij = C	 or	 C — zij

RESTRICTIONS: The matrix must have the integer number of rows and
columns as the first two data values. Checks are made to insure that
the identified element is within the matrix boundaries.

CALLING SEQUENCE:	 MATRIX C I,J,Z(IC))
or SCALAR ZtIC),I,J,C)

6.5.5
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SUBROUTINE NAMES:	 DISAS or ASSMBL

PURPOSE: These subroutines allow a user to operate in matrices in a par-
tioned manner by disassembling a submatrix [Z) from a parent matrix [A]
or assembling a submatrix [Z] into a parent matrix [A].

RESTRICTIONS: The I and J arguments are integers which identify (by row
and column number respectively) the upper left hand corner position of the
submatrix within the parent matrix. All matrices must have exactly enough
space and contain the integer number of rows and columns as the first two
'sta values. The NR and NC arguments are the integer number of rows and
columns respectively of the disassembled submatrix. If the submatrix
exceeds the bounds of the parent matrix an appropriate error Message is
written and the program terminated.

CALLING SEQUENCE:

	

	 DISAS(A(IC) I,J,NR NC Z(IC))
or ASSMBL(Z(ICj,I,J,_,(IC^)

SUBROUTINE NAMES:	 DIAG

PURPOSE: Given a 1*N or N#1 matrix [V] this subroutine forms a full square
N#*? matrix [Z]. The [V] values are placed sequentially on the main diagonal
of [Z] and all off diagonal elements are set to zero.

RESTRICTIONS: Both matrices must have exactly enough space and contain their
integer number of rows and columns as the first two data values.

CALLING SEQUENCE:	 DIAG(V(IC),Z(IC))

SUBROUTINE NAMES: 	 COLMLT or ROWMLT

PURSE: To multiply each element in a column or row of matrix [A] by its
corresponding element from the matrix [V] which is conceptually a diagonal
matrix but stored as a vector; i.e., 1*N or N#1 matrix. The matrix [Z] is
the product.

RESTRICTIONS: The matrices must have exactly enough space and contain the
integer number of rows and columns as the first two data values. The ma-
trices being multiplied must be conformable.

CALLING SEQUENCE:

	

	 C"T(A(TC),V(IC),Z(IC))
or R0WMLT((V(1C),A(IC),Z(IC))

^g
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zij = C1*ai3 + C2*bi3

SUBROUTINE NAMES:	 ADDALP or ALPHAA

PURPOSE: To add a constant to or multiply a constant times every 71ement in
a matrix.

z ij - C+aij or zij = r*aij

RESTRICTIONS: The matrices must have exactly enough space and contain the
Integer number if rows and columns as the first two data values. C and all
elements must be floating point rembers. The [Z] matrix may be overlayed
into the [A] matrix.

CALLING SEQUENCE:	 ADDALP(C,A(IC),Z(IC))
or ALPHAA(C,A(IC),Z(IC))

SUBROUTINE NAME :	 AABB

PURPOSE: To sum two scaled matrices.

m*n	 m*n	 m*n
[Z]	 C1 [A] + C2 [B]

RESTRICTIONS: All matrices must be of identical size, contain exactly
enough space and contain the integc- number of rows and columns as the
first two data values. The output matrix [Z] may be overlayed into either
of the input matrices.

CALLING SEQUENCE:	 AABB(Cl,A(IC),C2,B(IC),Z(IC))

SUBROUTINE NAME:	 I	 BTAB

PURPOSE: To perform the following matrix operation:

n*n	 n*m mfm m*n
[Z]	 [B] t	 [A]	 [B]

RESTRICTIONS: The matrices must be conformable, contain exactly enough space
and contain the integer number of rows and columns as the first two data
values. Subroutines MULT and TRANS are called on.

CALLING SEQUENCE:	 BTAB(A(IC),B(IC),Z(IC))

NOTE: This subroutine (due to MULT and TRANS) uses 2x:+6 dynamic storage
locations.
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SUBROUTINE NAME • 	 DWRSE

PURPOSE: To invert a square matrix.

n*n	 n*n	 n*n
given [A]	 ,	 [Z]	 _	 [A] -I

RESTRICTIONS: The mairices mast be square, identical in size and contain
the integer number of rows and columns as the first two data values. The
output matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE:	 DWRSE(A(IC),Z(IC))

NOTE: This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME:	 MULT

PURPOSE:  To multiply two conformable matrices together.

m#n M*P
[Z]	 _ [A]	 JBI	 ,	 z ip =	 aik*bkJ

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
If [A] and [B] are square, [Z] may be overlayed into either of them.

CALLING SEQUENCE:	 MULT(A(IC),B(IC),Z(IC))

NOTE: This subroutine required n*m dynamic storage locations.

SUBROUTINE NAME:
	

TRANS

PURPOSE:
m*n	 n*m

Given a matrix [A] form its transpose as [Z]

RESTRICTIONS: Both matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
Theoutput matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE:	 TRANS(A(IC),Z(IC))

NOTE: This subroutine requires n*m dynamic storage locations.
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StBROUTINE NAME: 	 JkCVBI

PURPOSE: This subroutine will find the eigenvalues [E] and eigenvector
matrix TZI associated with an input matrix [A] .

n*n n*n	 n*n n#1
[A]	 [Z]	 _	 [Z ]	 [E]

RESTRICTIONS: The matrices mast have exactly enough space and contain
their integer number of rows and columns as the first two data- values.

CALLING SEQUENCE: 	 JACgBI(A(IC),E(IC),Z(IC))

NOTE: This subroutine requires 2xn*n+6 dynamic storage locations.

SUBROUTINE NAME:	 MODES

PURPOSE: This subroutine solves the following dynamic vibration equation

n-Y-n On	 n'-n n*n n*l
[A]	 [Z]	 -	 [B]	 [Z] [^-1

where [A] is the input inertia matrix associated with the kinetic energy
and [B] is the input stiffness matrix associated with the strain energy.
[Z] is the output eigenvector matrix associated with the frequencies of
vibration Wi which are output in radians/sec as [R] and in cycles/sec
as [C] , both [R] and [C] are n*l matrices.

RESTRICTIONS: The matrices mast have exactly enough space and contain
their- integer number of rows and columns as the first two data values.
Subr(-utine JACOBI is called on.

CALLING SEQUENCE: 	 MODES(A(IC),B(SC),Z(IC),R.(IC),C(IC))

NOTE: This subroutine requires 3*n*n+ -9 dynamic storage locations.
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SUBROUTINE NAME: 	 MASS

PURPOSE:

If a d7namic vibration problem is referred to a set of coordinates
consisting of the deflections, ;;, and the rotations, 8;, at N
collocation points along the beam under consideration, then this
subroutine generates the 2N by 2N inertia matrix [A] which appears
in the following expression for kinetic energy:

T ={^ N g^ . 	 [A] ^f

RESTRICTIONS:

The mass and inertia data input to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of
arbitrary size and different in length from each other. The number
of collocation points, N. which determines the ultimate size, 2N by
2N, of the output inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE:	 N&SS(X(IC),DMPL(IC),RIPL(IC),CM(IC),A(IC))

where X	 is the matrix (N X 1) of collocation points referred
to an arbitrary o_ig:n.

DMPL is the matrix (NDM X 4) of distributed mass per unit
length slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col. 4 is the mass value at the front of the slice.

RIPL is the matrix (NRI X 4) of distributed rotary inertia
per unit length slices. The columns here are similar
to DMPL.

CM	 is the matrix (NCM X 4) of concentrated mass items, where
Col 1 is the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location of its center of gravity.
Col 4 is the moment of inertia about the C. of G.

A	 is the output (2M X 2N) inertia matrix.

Nft:

Having application to DMPL, RIPL and CM, it is noted that the location
of the values may not go beyond the limits of the collocation points
in either direction.
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SUBROUTINE NANE:	 STIFF

PURPOSE:

If a dynamic vibration problem is referred to a set of coordinates
consisting of the deflections, S „ and the rotations, 8; , at N
collocation points along the beam under consideration, then this
subroutine generates the 2N by 2N stiffness matrix [K] which
appears in the following expression for the strain energy:

U =^ ^^	 ^N 91 ... Oj[K]

6,

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be
supplied as piecewise continuous slices; however, these arrays may
be of arbitrary size and different in length from each other. The
number of collocation points, N, which determine the ultimate size,
2N by 2N, of the output stiffness matrix, is also chosen arbitrarily.

CALLM SEQUEtdCE:	 STIFF(X(IC),EI(IC),a ICj,K(IC))

where X is the matrix (N X 1) of collocation points referred to
an arbitrary origin.

EI is the matrix (NEI X 4) of bending stiffness slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice.

GA is the matrix (NCA X 4) of shear stiffness slices, where
the columns here are similar to those for the EI
distribution.

K is the output stiffness matrix size 2N by 2N.

NOM:

Having application to EI and GA, it is noted that the location of the
values may not go beyond the limits of the collocation points in either
direction.
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SUBROUTINE NAME: 	 LIST

PURPOSE: This subroutine prints out the elements of a matrix A and iden-
tifies each by its row and column number. The user must supply an alpha-
numeric name ALP and integer number NUM to identify the matrix. This is to
maintain consistency with subroutines FILE and CALL.

RESTRICTIONS: The matrix must have its integer number of rows and columns
as the first two data values.

CALLING SEQUENCE:
	

LIST(A (IC) ,ALP,NUM)

SUBROUTINE NAME:

PURPOSE: This subroutine produces SC--4020 plots of the columns of a matrix
A , s-4.ze (n*m) versus a column matrix X , size (rr*l). It order the data
internally and then calls on subroutine PL$TX1 (page 6.4.4). Each column in
A requires as 12 word label for the Y axis title (YT) which must be entered
sequentially as an array. The X axis title (XT) and top title (TT) must
each consist of 12 work arrays.

RESTRICTIONS: The matrices must have exactly enough space and contain the
integer number of rows and columns as the first two data valuej. The titles
must have been input a$ positive arrays.

CALLING SEQUENCE:	 PLOT(A(IC),X(TC),TT(IC),YT(IC),XT(IC))

NOTE: This subroutine requires m+3 dynamic storage locations.

SUBROUTINE NAME:	 PUNCH

PURPOSE: This subroutine punch y out a matrix A , size n*m, one column
at a time in any desired format. The argument R must.reference a
WRAN format statement that has been input as a positive array. It must
include the outer parenthesis but not the word FVRMAT. The argument HEAD
must be a single BCD word used to identify the matrix. Each column is
designated and restarts use of the FORMAT statement.

RESTRICTIONS: The matrix A must have exactly enough space and contain
the integer number of rows and columns as the first two data values.

CALLING SEQUENCE:	 PUNCH(A(IC),HEAD,FVR(IC))

NOTE: This subroutine requires n+3 dynamic storage locations.

Cr}
s
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MATRIX DATA STORAGE AND RETRIEVAL

The ability to store and retreive matrices from tape is easily achieved
thru the use of the FILE and CALL subroutines. Matrices are identified by
an alphanumeric name, integer problem number and the core address of or
for the matrix. The CALL subroutine searches the matrix storage tape on
logical 13 and brings the desired matrix into core. The FILE subroutine
writes a matrix onto the logical 12 tape. Subroutine ENDWP causes all
matrices from the logical 12 tape to be updated onto the logical 13 tape.
In case of duplicate matrices the one from logical 12 replaces the one on
logical 13. A matrix which has been filed cannot be called until an
ENDWP operation has been performed. To create a new tape the user merely
sets control constant NXCVPY nonzero and has a scratch tape mounted'on
logical 13. The user should check the section on control cards and deck
setup to determine control card requirements.

SURROMNE NAMES:	 CALL or FILE

PURPOSE: To allow the user to retrieve or store matrices on magnetic tape,
stye above. The H argument must be a six character alphanumeric word and
N must be an integer number, both of which are used to identify the matrix.

RESTRICTIONS: See above. The matrix must have exactly enough space and
contain the integer number of rows and columns as the first two data values.

CALLING SEQUENCE:	 CALL (H,N,A(IC))
or FILE (A(IC),H,N)

SUBROUTINE NAMES:	 ENDW	 or ISTAPE

PURPOSE: Subroutine ENDRVP should be used in conjunction with subroutines
CALL and FILE, see above. It causes matrices which have been filed by
FILE on logical 12 to be updated onto logical 13. A call to subroutine
LSTAPE will cause the output of the name, problem number and size of every
matrix stored on tape on logical Zvi.

RESTRICTION: See above.

CALLING SE 1gUENCE:	 ENDNOP
or LSTAPE

6.5.1x+
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Special Subroutines

Name 	 Pte.

SIMEQN,LSTSQU 6.6.1
IRRADE,IRRADI 6.6.2
SLRADE,SLRADI,SCRPFA 6.6.3
ABLATS 6.6.4
LQDVAP, BIVLV 6.6.5

6.6
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SUBROUTINE NAME:	 SIMEC^IN

PURPOSE:

This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output
values are communicated as a single specially formatted positive input array.
The array argument must address the matrix order (N) which is input by
the user. The first data value must be the integer order of the set
(or size of the square matrix) followe y the coefficient matrix [A]
in cols} Qrder, the boundary vector JBI and space f or the solution
vector IS I .

[A]	 IS' = JBI

RESTRICTIONS

The integer count and matrix size must be integers, all other values must
be floating point. T e coefficient matrix is not modified by SIMEQN.
Hence, changes to JBI only allow additional solutions to be easily
obtained.

CALLING SEQUENCE:	 SIMEQN(A(N ))

where the array is formatted exactly as follows:

IC,N,A(1,1),A(1,2),...,A{IJ,N),Bl,...,BN,S1,...,SN

PURPOSE:

This subroutine performs a least squares curve fit to an arbitrary number
of X, Y pairs to yield a polynomial equation of up to order 10. Rather
than using a double precision matrix inverse, this subroutine calls on
subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS:

All values must be floating point numbers except N and M which must be
integers. N is the order of the polynominal desired and is one less than
the number of coefficients desired. M is the array length of the independent
X or dependent Y values.

CALLI.".m SEQUENCE:	 LSTSQU(N,M,X(DV),v(DV),A(DP))

*This subroutine requires 2#M dynamic storage core locations.

6.6.1



SUBROUTINE NAME:	 IRRADI or IRRADE

PLRPOSEt These subroutines simulate a radiosity network* within a
.t..dtiple gray surface enclosure containing a non-absorbing media. The
input is identical for both subroutines. However, IRRADE utilizes
explicit equations to vLLain the solution by relaxation and IRRADI initially
performs a symmetric matrix algebra inverse and thereafter obtains the
exact solution implicitly by matrix multiplication. The relaxation
criteria of IRRRADE is internally calculated and severe enough so that
both routines generally yield identical results. However, IRRADE should
be used when temperature varying emissivities are to be considered and
IRRADI should be used when the surface emissivities are constant. Both
subroutines solve for the J node radiosity, obtain the net radiant heat
flow rates to each surface and return them sequentially in the last array
that was initially used to input the surface temperatures. The user
need not specify any radiation conductors within the enclosure.

RESTRICTIONS: The Fahreheit system is required. The arbitrary number
of temperature arguments may be constructed by a preceeding BLDARY call.
The emissivity, area, temperature-Q and upper half FA arrays must be
in corresponding order and of exact length. The first data value of
the FA array must be the integer number of surfaces and the second the
Stephan Boltzman constant in the proper uiuts and then the FA floating
point values in row order. The diagonal elements (even if zero) must
be included. As many radiosity subroutine calls as desired may be used.
However, each call must have unique array arguments. The user should
follow the radiosity routine by SCALE, BRKARY or BKA.RAD to distribute
the Q's to the proper source locations.

CALLING SEQUENCE:	 IRRADI(AA(IC),AE(IC),AFA(IC),ATQ(IC))
or I.RR4DE(AA(IC),AE(IC),AFA(IC),ATQ(IC))

where the arrays are formatted as follows:

AA IC ,A1,A2,A3,A4,. 	 AN,END
AE(IC) el 0e2 Af3 Ie4	 EN,END
AFA(IC ,N,G,FA(l..l .FA(1,25,FA(lo3),FA(l.4),FA(1,5), . . . FA(12N)

FA(2,2),FA(2,3),FA(2,4),FA(2,5), . . .'FA(2,N)

FA(N-2,N-2),FA(N-2,N-1),FA(N-2,N)
FA(N-I,N-1),FA(N-1,N)

FA(N,N),END
ATQ(IC),T1,T2 2 T3, . . .TN,END

where FA(1,2) is defined as A(1) #F'(1 5 2). After the subroutine is performed
the ATQ array is ATQ(IC),Q1,Q2,Q3, . . . QN,END.
Since N(1 2 2) m FAj(2,1) only the upper half triangle of the full 'A matrix is
require . L%RADI everts this half matrix in its own area, hence approximate
ly 300 surfaces may be considered using CINDA 3G on a 65K core machine.

*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction
of the ASME, May 1956, pp. 725-735•

6.6.2
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SUBROUTINE NAME:	 SLRADI or SLRADE

PURPOSE: These subroutines are very similar to IRRADI and IRRADE but
are designed to solve for the solar heating rates within an enclosure.
SLRADI inverts a half symetric matrix in order to obtain implicit solutions
while SLRADE obtains solutions explicitly by relaxation. SLRADE should
be used when temperature varying solar emissivities are to be considered.
The second data value of the AFA array must be the solar constant in
the proper units. The AT array allows the user to input the angle (degrees)
between the surface normal and the surface--sun line. The AI array allows
the user to input an illumination factor for each surface which is the
ratio from zero to one of the unshaded portion of the surface. The
solar constant (S), AT and AI values may vary during the transient
ibr both routines. No input surface temperatures are required. The absorbed
heating rates are returned sequentially in the AQ array. the user may
utilize SCALE, MARY or BKARAD to distribute the heati g rates to the
proper source locations.

RESTRICTIONS: These routines are independent of the temperature system
being used. All of the array arguments must reference the integer count
set by the CINDA 3G preprocessor and be of the exact required length.
As many calls as desired may be made but each call must have unique array
arguments.

CALLING SEQUENCE:	 SLRADI(AA(IC),AE(IC),AFA(IC),AT(IC),AI(IC),AQ(IC))
or	 SLRADE(AA(IC),AE(IC),AFA(IC),AT(IC),AI(IC),AQ(IC))

SUBROUTINE NAME:	 SCRPFA

PURPOSE: To obtain the script FA value for radiant transfer within an
enclosure. The input arrays are formated as shown for subroutines IRRADI
and IRRADE. The s-icond data value in the AFA array is used as a final
multiplier, if 1.0 the script FA values are returned, if O then script or
FA values are returned. Tle script FA values are returned in the ASFA
array which is formatted identical to the AFA array and may overlay it.

RESTRICTIONS: All array arguments must reference the integer count set
by the CINDA 3G preprocessor and all arra;;s must be exactly the required
lengtl-..

CALLING SEQUENCE:	 SCRPFA(AA(IC),AE(IC),AFA(IC),ASFA(IC))

NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1) may be called to list
the matrix values and identify them by row and column number. This routine
and the implicit radiosity routines finalize the half symetric coefficient
matrix and call on SYMIW(AFA(IC)+3,AFA(IC)+l) to obtain the symetric

inverse.

6.6.
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SUBROUTINE NAME:	 ABLATS

PURPOSE: To provide a simple ablation (sublimation) capability for the
CINDA 3G user. The user constructs the 3-D network without considering
the ablative. Then in Variables 2 he simulates 1-D ablative attachments
by calling ABLATS. ABLATS constructs the 1-D network and solves it by
implicit forward-backward differencing (Crank-Nichols:;n method) using
the time step set by the execution subroutine. Separate ablation arrays
(AA) must be used for each ABLATS call. Required working space is obtained
from unused program common. Several ABLATS calls thereby share unused
common. The user must call subroutine PNTABL(AA) in the OUTPUT CALLS to
obtain the ablation totals and temperature distribution.

RWM CANS: ABLATES must bo called in VARIABLES 2 and may be used with
any execution subroutine. Subroutines D1DEG1, NEWTR4 and INTRFC are
called. All units must be consistent. The Fahrenheit system is required.
Temperature varying material property arrays must not exceed 60 doublets.
Bivariate material properties ia^_y be simulated by calling BVSPSA prior
to ABLATS. Cross-sectional area is always considered unity. Thermal
conductivity, Stephan-Boltzman constant and density units must agree in
area and length units.

CALLING SEQUENCE: 	 ABLATS(AA(IC),R,CP,G,T,C)

where C is the capacitance location of the 3-D noda attached to.
T is the temperature location of the 3-D node attached to.
G is the lstiation of the material thermal conductivity or the

starting location (integer count) of a doublet G vs T array.
CP is 'he location of'tre material specific heat or the starting

location (integer count) of a doublet Cp vs T array.
R is the location of the material density or the starting location

(integer count) of a doublet 	 :s T array.
AA(IC) is the otarting location of the ablation arra7,which must be

formatted as follows:
AA(IC)+l the ablative link number. a user specified identification

integer.
2 integer number of sublayers (NSL) desired, ABLATS subtracts

from this the number of sublayers ablated.
3 the initial temperature of the material, ABLATS replaces this

with the outer surface temperature, always in degrees F.
4 tr y+ impressed outer surface heating rate per unit area,

radiation rates not included.
5 material thickness, this is replaced by the sublayer thickness.
6 surface area of the 3-D node attached to, need not be unity.
7 ablation temperature, degrees F.
6 heat of ablation
9 Stephan-Boltzman constant in consistent units.

10 surface emissivity
11 space ''sink' temperature, degrees F.
12 SPACE,N,END where N equals NSI + 4.

NOTE: The outer surface radiation loss is integrated over the time step.
*This subroutine requires 3*(NSL+l) dynamic storage core locations.

6.6.4
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SUBROUTIM NAND:	 =VAP

PURPOSE: This subroutine allows the user to simulate the addition of
liquid to a node. The network data is prepared as though no liquid exists
at the node and is solved that Way by the network execution subroutine.
Then LQDVAP, which angst be called Variables 2, corrects the nodal sol+ition
in order to account for the liquid. If the nodal temperature exceeds the
boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is cal-
culated and considered as absorbed thru vaporization. If the liquid is
completely vaporized the subroutine deletes its operations. The method
of solution holds very well for explicit solutions, but may introduce
some error when large time steps are used with implicit solutions.

RFSTRICTIDANS: This subroutine must be called Variables 2.

CALLING SEQUENCE: LQDVAP(T,C,A(IC))

	

where	 T is the temperature location of the node.
C is the capacitance location of the node.
A + 1 contains the initial liquid weight.

2 contains the liquid specific heat.
3 contains the liquid vaporization temperature.
k contains the liquid heat of vaporization.
5 receives the liquid vaporization rate (weight/time)
6 receives the liquid vaporization total (total weight)
7 contains the liquid initial temperature.

	

SUBROUTINE NAME:	 BIVLV

PURPOSE: This subroutine allows the user to spec-ify the percentage flow
ra^hrough two parallel tubes with coamnon end points. One tube must
consist of a single flow conductor (Gl) while the other tube may consist
of one or more sequential flow conductors (G2(I), I = 1,N). The ratio of
tlaEw through Gl divided by the total flow may be calculated in arty desired
.canner and must be supplied as the argument W. The conductor values of
either one tube or the other are reduced in order to achieve the desired
percentage flow rates irregardless of the pressure drop.

RESTRICTIONS: N must be an integer. G2 must address the first of the
sequential conductors in that tube.

(GALLING SEQUENCE: BIVLV(N,W,G1,G2(DV))

-s
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SECTION VII

EPROR MESSAGES

Due to the variety of subroutines available and the variable number
of arguments which some of them have, no check is made to determine if a
subicutine has the correct number of arguments. An incorrect number of
arguments on a subroutine call will generally cause job termination im-
mediately after successful compilation, usually without any err-Dr message.
If the above occurs, the user should closely check the number of arguments
for his subroutine calla.

Numerous error messages can be output by the preprocessor. These
error messages are listed below and grouped according to various pre-
processor functions. All error messages are preceeded by three asterisks
which have been deleted below. Self-explanatory messages are not enlarged
upon.

1. Processing Data Blocks

DATA BLOCKS IN "PER MER ^ ILLEGAL BLOCK DESIGNATION ENCOTERED.

AN IMBEDDED j%V: HAS BEEN ENCOUNTERED IN THE LAST LINE.

INTEGER FIEIT% EXCEEDS 10.

REAL NUMBER FIELD EXCEEDS 20.

ALPHAMERIC FIELD EXCEEDS 6.

MULTIPLE DECIMAL PVINTS HAVE BEEN ENCAMTERED.

NODES MUST BE ORDERED - DIFFUSION, ARITHMETIC, BAJNDARY.

CONDUCTORS MUST BE ORDERED - REGUU.R, RADIATION.

NODE NUMBER, XXXXX, IS THE DUPLIC I - 0" THE XXXXXTH NODE.

CONDUCTOR NUMBER, X=, IS THE DUPLICATE OF THE XXXXXTH CO WU-TVR.

COSTANT NUMBER, XkXXX, IS THE DUPLICATE OF THE XXXXXTH CO.4ST_4NT.

ARRAY NUMBER, XXXXX. IS THE DUPLICATE OF THE XXXXXTH ARRAY.

FIXED COSTANT NAIVE IS NOT IN LIST.

7.1
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2. Forming Pseudo Compute Sequence

NODE, XXXXX, HAS NO MATCH IN THE NA-M PAIRS.

ADJOINING NODE, XXXXX, VF NA-4,,,B PAIR HAS NO MATCH IN THE NODAL BUCK.

3. Processing Program Blocks

EXECUTION BLOCKS IN INLF FER 0= OR ILLEGAL BLACK DESIGNATION

ENCOUNTERED.

VARIABLE DESIGNATOR, AAAAA, NOT DEFINED FOR GMF41 PROBLEM.

Explanation: Some alpha character other than K or A has been used
to reference a data block. In a thermal problem a
designator other than G, K, or A is assumed to be
referencing the nodal block.

MISSING NODE NUMBER, XXXXX.

MISSING CONDUCTOR NUMBER, XXXXX.

MISSING CONSTANT NUMBER, XXXXX.

MISSING ARRAY NUMBER, XXXXX.

FIXED Co,STANT NAME,.4AAAA, NOT IN LIST.

NUMBER OF SUBROUTINES REQUESTED EXCEEDS 75.

Explanaticn: More than 75 unique subroutines have been called.

4. Processing Parameter Changes

The first five parameter change error messages are prefaced with the
words: PARAMETER CHANGE rERVk.

NODE NUMBER, X7QGQC, WAS NOT DEFINED IN THE ORIGINAL PROBLEM.

CONDUCTOR NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PF4BLEM.

CONSTANT NUMBER, XXXXX, WAS NOT DEFIlW IN THE ORIGINAL PROBLEM.

AIWY NUIMBER, XXXICI, WAS NOT DEFINED IN THE ORIGINAL PROBLEK.

CONSTdNTS BUCK WAS EMPTY IN THE ORIGINAL PROBLEM.

ARRAY B7-$CK WAS EMPTY IN THE t"Ihkt PHOHLEM.
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5. Te-tmi;nations Due to Errors (no preceeding asterisks)

THE ABOVE PARAMETER CHANGE WILL NAT BE EXECUTED.

FAR TERMINATION - LOADING IS SUPPRESSED.

73
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SECTION VIII

CINDA 3G OPERATING SYSTEM DESCRIPTION

The increased rate of change in machine characteristics of digital
computers requires a corresponding change in the design of large,
flexible programs. The cost of conversion of machine dependent programs
exceeds their worth in many cases. The Fortran V version of CINDA 3G
is an attempt to minimize conversion efforts to succeeding machine
generations by providing primarily Fortran coded routines capable of
linking the engineering problem with the Fortran compiler. In general,
the effectiveness of this method is limited only by the capability of
the operating system to allow automatic selective composit'on of a
program from a large file of subprograms. The functions performed by
the UNIVAC Fortran V compiler, allocator, and CUR facility provides an
efficient, flexible method of program maintenance and execution.

I. The Fortran V version of CINDA 3G exists logically as a pre-processor,
processor, and library. The operational continuity of these portions
is made possible by the UNIVAC 1106 software.

A. The function of the pre-processor is to operate on A user
supplied problem and produce the following:

1. Processor Main Program
This small routine acts primarily as a communications link
is providing addressing relationships between the operational
user program and user data.

f

2. User Program
These Fortran source programs are operational equivalents
of the users Execution, Variables 1 and 2, and Output Calls
blocks.

3. User Data
Binary data generated consists of definitions of parameters
referenced in the various user data blocks and their
corresponding values.

The pre-processor and appropriate use of the UNIVAC 1108
system control cards allows construction of the above from
tape when the RECALL option is utilized.

1°

n
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B. The processor performs reading of the user data values prepared
previously and calls the user program (i.e. Execution Block).

C. The CINDA-3G library contains a large number of various types
of subprograms to accomplish most user requirements. UNIVAC
software provides simple, flexible methods for the maintenance
of this library. In addition, ,it is not necessary that a
subroutine be updated to the library prior to availability
in the user problem.

II.	 Preprccessor

A. Operation of the pre-processing phase.
The main program (PREPRO) accomplishes the initialization of
data values and tape units and defines the order of processing
which is carried out by seven overlay links:

1. If the problem being processed is a RECALL problem, SPLIT
is called to read the recalled problem data and number
definitions from the input tape and write these on the
appropriate work tapes. SPLIT calls SKIP if the input
tape is not positioned at the problem being recalled.
(Section II. C.)

2. CODERD reads the title block and the block title cards.
DATARD reads the free-form,data cards in the 4 (or 2,
if General Problem) data blocks and any parameter change
data. Each card is read, a format constructed for it,
and then re-read. The data from each block is written
on the data tape as one record. The number definitions
of the data and the NA-NB pairs are written on work tapes.

3• PSEUD reads the node number definitions and NA-NB pairs
from work tape. The pseudo compute sequence (Long or
short) is constructed ., packed by PACW (Slueth), and
flagged-by ORMiN (Slueth), and written on the data tape,
(Section II. B.)

k. GMLNK constructs the main program of the processor
including CODON and DIMSION information. On the UNIVAC
1108, routines which are $to be compiled from tape must
have a particular format. BLKCRD, STFFB, and WRTBLK (Slueth)
generate records in this format. (Section H. D.)
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5. PRESUB reads the title cards of the four program blocks
and initiates the construction of each new subroutine.
CINDA4 converts the CINDA 'calls" in the program blocks
into Fortran subroutine calls. Data referenced by input
number definition is changed to refer to its relative
location in COMV,011, data arrays.

6. INITAL combines the original set of data and the initial
parameter changes and writes the updated set of data on
the data tape.

7. FINAL converts final parameter change data (number defini-
tions and values) to relative array locations and values
and writes number value records on the data tape.

B. Construction of the Pseudo Compute Sequence
The pseudo compute sequence is a string of paired integers,
the first consisting of a sign and 13 bits, the second of a
sign and 12 bits. Four of these 27 bit composite words
are packed into 3 machine (36 bits) words by PACK43.

The formation of the string takes place in PSUEDO according
to the following rules:

Ni are the diffusion and arithmetic mean node number definitions
input in the BCD 3NODE DATA block. ?,Trbj is the relative
location of node number NBj . NAj-NB• are the node pairs
joined by conductors input in the Bd 3CONDUCTOR DATA block.
m is the conductor number of the NAj-NB • under consideration.
LKNm is the relative location of conductor number m. The
occurrence of NAj and NBj may be reversed throughout.

1. Short

a. Nif diffusion nodes, and

Ni = NAj

(1) if NBj > 0 1 and
NBj E diffusion nodes

— Mm, LTNB j , and

NBj = - INBjI

Ll
"
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(2) if NBA < 0, or

NB3 not E diffusion nodes

— LKNm., -LTNB3

b. Ni E arithmetic mean nodes, and

Ni = NA3

(1) if NB3 > 0; and

NB3 E diffusion nodes

i Lam, LTNBJ., and

NB3 MEJ

(2) if NB3 not E diffusion nodes

LKNm,o LTNBj

2. Long
Same as short, except the NB3 is not set negative in any
case.

C. Store and Recall Options
The purpose of the store acid recall options is to provide the
user with the means to interrupt his program at any point,
store tde current data values, and continue processing. The
tapes saved from the above run can then be used in conjunction
with a RECALL card and a BCD 31NITIAL PARAMETERS data deck
to make necessary data changes and restart the saved problem
at point of the interrupt.

Fortran logical tapes 22 and 13 are saved when running a store
problem option; they are mounted on 21 and 13 when running
the recall option.

The data tape 21 contains a six character identification,
specified in the users call to STOF-P, the problem type
(ORAL or THERMAL), the data number definitions from LUT1,
and the data values from core.

The program tape, LB4P, contains the Fortran'routinesz LINK©,
EKECTN, VAMI, VARBL2, and $UTCAL.

0
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D. Format of Subroutines to be Compiled from Tape.
Routines must be written on tape (a non-Fortran write routine
must be used to omit the Fortran control word on each record)
in 507 word blocks with a maximum of 36 1!*-word card images
per bloc.k. Each block contains three signal words, for
example,

Word #	 Brock 1
1	 Subroutine Name
2	 Integer (Fortran) number of card images in

block
3-16	 lst card image
1730	 2nd card image

etc.
507	 +0 (denotes morf blocks of same subroutine

to follow)
Block 2

1	 0 (denotes continuation of above subroutine)
2	 same as block 1

card images
507	 -0 (7777777777778) (denotes last block of

subroutine)

NOTE: Only the last block of a subroutine may be a short block
(less than 36 card images) in which case no fill is
needed.
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SAMPLE PROBLEM IA

A perfectly insulated one dimensional bar has a constant 1%.aating rate ap-
plied to one end. Obtain the ten minute transient temperature response, at
half minute intervals, of the bar ends and at points 1/4, 1/2 and 3/4 of the
way along the bar. The bar is initially at 80°F and receives a constant
heating rate of 3.0 BTU's/min. The length of the bar is four inches and it
has a cross-sectional area of one square inch. It has the following material
properties:

density = 172.8 lbs./ft3
specific heat = 0.35 BTU/lb°F
thermal conductivity = 0.2 BTU/in min°F

Below is a schematic of the physical problem with the nodes appropriately
placed and the dashed lines indicating the lumping of the system for capaci-
tance purposes.

The network representation is as follows:

q	 T1	 T2	 T3	 T4	 TS
1

T 
	

G	 G4

	

2 T 03 T 	
T

Capacitors receive the Same —— nuinlier as the -'Eemperatures but with a C prefix.
From the above information, we immediately calculate:

C2=C3=CL=P+V•Cp=0.035 BTU/°F
Cl-C5-C2/2.0-0.0175 BTU/°F
G1-G2-W-G4 k*Ac/4 = 0.2 BTU/minOF

inhere V = !*Ac, length times cross-sectional area.

To apply explicit forward differencing to this problem, we must utilize the
CNMdD execution subroutine which requires the short pseudo-compute sequence.
Hence, the title block is as follows:

Col 8
BC:) 3THERMAL SPCS
BCD 9SAMPLE PROMM N0.1A
END

9.1 - --
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The conauctor block requires that each conductor number be listed with
the node numbers at either and and the conductor v41ue.

Col 8
BCD 30ONDUCTA DATA
CEN 1,4,101,1,2,1,.2,1.,1.,1.
END

The only control constants required for CW WD are as follows:

Col 8
BCD 3CONSTANTS DATA

TIMEND,10.,YkJTPUT 9CSGFAC12.
END

There is no array data and only one execution call, hence:

Col 1 Col 8
BCD 3ARRAY DATA
END
BCD 3EXECUTION

F	 DIKENSION %(100)
F	 NDIK =,100
F	 1UR = 0

CNFRWD
END

There are no sAcond variables operations but we nLwt apply the heating
rate in the first variables.

Col 8
BCD 3VARIABIES 1

STFSEP (3.,Q1)
END
BCD 3VARSABI&9 2
END

Our actual node numbers will have a one to one correspondence with the
relative node numbers so the following completes the data input.

Col 8
BCD 30UTPUT CAISS

PR.NTW
END
BCD 3END OF DATA

The above problem data deck prrcessed by the CINDA-3G program on the Univac
11M as a standard run produces the following oufpu;;

MDTE: The only option to the BCD 3END 0 DAT4 card is a patameter change.
A now job would require another set of control cards.
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CINDA -3G

SAMPLE PROBLEM 1B

Sample problem IA was linear and can be rigorously solved by means of the
Laplace transform. However, the introduction of nonlinearities makes rigor-
ous solutions virtually impossible and makes the use of finite difference
techniques mandatory. To demonstrate, apply the following nonlinearities
to sample problem lA and obtain the solution.

1. Both ends of the bar are uninsulated and allowed to radiate to absolute
zero. The Stephan Boltsman constant is T = 1.991E-13 BTU/min in 2°R 4 and
the emissivity varies linearly with temperature as follows:

e = 0.4 at -100°F
e = 0.8 at 30OPF

2. The thermal conductivity of the bar varies with temperature as follows:

k = 0.15 at -100°F-(BTU/in min °F)
k = 0.25 at 100°F
k = 0.40 at 200°r
k = 0.60 at 300°F

3. The density remains unchanged but the specific heat varies with tempera-
ture as follows:

Cp = 0.3 at =l00°F-(BT'J/lb ^F)
= 0.39 at 100°F

0.49 at 200°F
= 0.65 at 300°F

4. The heating rate is a function of time as follows:

q = 3.0 at 0 rrzn4BTU/min)
q=4.0at3.min
q=4.0at7.min

q = 3.0 at 10.min

In addition, obtain the rate of heat loss and integral of the radiation
transfer from the unheated end of the bar. The network representation of
this problem differs only slightly from ]A.

41
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Now however, the capacitances are a function of temperature. We therefore
require multiplying factors such that:

C = P VCp(T), MFG PV

MF = 0.1 for capacitors 2,3 and 4
MF = 0.05 for capacitors 1 and 5



CINDA-3G

The conductors are now:

G = k(Tm)Ac/t ,MF = AC /1 , TM is the mean of the end T's
MF = 1.0 for conductors 1, 2, 3 and 4

A radiation conductor requires the input value Q f FA, however FA = 1.0, hence

Grad =r E(T), MF — 1.991 BTU/min °F. Also, q = q(T)

The capacitors and conductors will be specified with CGS and CGD calls,
the problem data deck m--  be constructed as follows:

	

Col 1	 8
BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM 1B
FI1D
BCD 3NODE DATA
CCU, 1 , 80. , A3, •05,2,80•,A3,.1,3,80...I ^,.1
CGS 4,80.,A3,.1,5,80.,A3,.05

-10,-460.,0
END
BCD 3CONDUCTOR DATA
CGS 1,1,2,A2,1.,2,2,3,A2,1.,3,3,4,A2,1.,4,4,5,A2,1.
CGS -11,1,10,A1,-1.991E-13,-12,5,10,A1,-1.991E-13
END
BCD 3CONSTANTS DATA

TIMEND,10.,OUTPUT,I5,CSGFAC,2.,4,0,5,0
END
BCD 3ARRAY DATA

1,-100.,.4,300.,0.8,END $ EPSILON VS T
2,-100.,.15,100.,.25,200.,.4,300.,.6,END 	 $ K VS T
3,-100.,.3,100.,.39,200.,.49,300.,,,.65,END	 $ CP VS T
4,0.,3•,3.,4•,7•,4.,10.,3.,END 	 $ Q VS TIME
-5,QRATE,QT0TAL,END 	 $ A LABEL ARRAY

END
BCD 3 EXECUTION

	

F	 DIMENSION X(100)

	

F	 NDIM = 100

	

F	 NTH = 0
CNFRWD

END
BCD 3VARIABLES 1

D1DEG1 (TIMEM,A4,Q1)
END
BCD 3VARIABLES 2

RDTNQS(T10,T5,G12,K4)
QINTEG(K4,DTIMEU,K5)

END
BCD 30UTPUT CALLS

PRNTMP
PRINTL (A5,K4,K5)

$APPLY HEATING RATE

$OBTAIN HEAT FLOW RATE
$INTEGRATE SAME

END
BCD 3END OF DATA

The above problem data deck processed by the Univac 1108 version of CINDA 3G
produces the following output.
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