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SECTION I

SUMMARY

The original CINDA computer program, coded in F@RTRAN-II
and FAP for the IBM-7094 computers, is documented as Chrysler
Corporation 3pace Division Technical Note TN-AP~-66-15, dated
April 30, 1966. It has gained wide acceptance and usage through-
out the Thermodynamic community and in fact become a standardized
program at several installations. However, the original program
was unsuitable for standard operation on third generation computers.
Therefore, the National Aeronautics and Space Administration's
Manned Spacecraft Center awarded a contract to Chrysler to produce
the version described herein. This new versicn entitled CINDA-
3G is coded in FPRTRAN-V for the Univac-1108 computer. Minor
portions are coded in the Sleuth II assembly language in order
to achieve bit manipulation and shifting operations where required
and also to allow certain user subroutines to have a variatle
number of arguments. Problem data decks prepared for the old
version require only a few changes in order to run under the new
version. Although numerous comparisons will be made to TN-AP-66-15,
this document is intended to be complete and self-contained.
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SECTION IT

INTRODUCTION

The computer program described herein, Chrysler Improved
Numerical Differencing Anziyzer for 3rd Generation computers
(CINDA-3G), was developed by the Thermodynamics Section of the
Aerospace Physics Branch of Chrysier Corporation Space Division
at the National Aeronautics and Space Administration's Michoud
Assembly Facility. Programming and systems integration for the
Univac-1108 computer was performed by the CCSD Computation Services
Group at the NASA Central Computer Facility, Slidell, Louisiana.

A major portion of this work was done under contract NAS9-7043
from the Manned Spacecraft Center, Houston, Texas.

This program appears virtually identical to its predecessor
(CINDA, CCSD-TN-AF-66-15) but has been almost completely rewritten
in order to take advantage o the improved systems software and
machine speeds of the 3rd generation computers. The entire
programming approach has changed. Whereas CINDA was virtually a
self contained program having its own Update, Monitor and Compiler;
the CINDA-3G fourdation consists of a preprocessor (written in
Fortran) which accepts the same user input data and converts it
into advanced Fortran language subroutines and block data input
which is then passed onto the system Fortran Compiler. While this
requires a double pass on data where previously only one was required,
the increaced spsed and improved software of the 3rd generation
machines more than compensates. Transient thermal analysis solutions
realize the increased machine speeds and in addition, perform fewer
operations which further reduces solution times.

The CINDA-3G program options offer the user a variety of methods
for solution of thermal analog models presented to it in a network
format. The network representation of the thermal problem is unique
in that it has a one-to-one correspondence to both the physical
model and the mathematical model. This analogy enables engineers
to quickly construct mathematical models of complex thermophysical
problems and prepare them for program input. In addition, the program
contains numerous subroutines for handling interrelated complex
phenomena such as sublimation, diffuse radiation within enclosures,
simultaneous 1~D incompressible fluid flow including valving and
transport delay effects, etc. The optional combination of these
capabilities in conjunction with model size allowable ( > 4000 nodes
for a linear 3-D system on 65K core) makes CINDA-3G an extremely
potent analytical tool for thermal systems analysis, in the hands
of a competent engineer analyist.

Tl
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DISCUSSION

Lumped-Parameter Representation

Tr:: wey wo utilizing a network type analysis program lies in the
ugers ability to develop a lumped parameter representation of the
physical problem. Once this is done, superimposing the network mesh
is a mechanical task at most and the numbering of the network elements
is simple although perhaps tedious. It might be said that the network
representation is a "crutch" for the engineer, but, it does simplify
the data logistics and allow easy preparation of data input to the
program. In addition, it allows the user o uniquely identify any
element. in the network and modify its value or function during the
analysis as well as sense any potential or ,current flow in the network.
Another feature of the network is that it has a one-~to-one correspondence
to the mathematical model as well as the rhysical model.

Perhaps the most critical aspect of the lumped parameter approach
is determining the lump size. There are methods for optimizing the
lump size but they usually involve more analytical effert and computer
time than the original analysis. One must also keep in mind that for
a transient problem, time is being lumped as well as space. Of prime
importance is what information is being sought fram the analysis. If
spot temperatures are being sought, nodes must at least fall on the
spots and not include much more physically than would be expected to
exist at a relatively similar temperature. Nodes must fall at end
points when a temperature gradient is sought. Of necessity, lumping
must be fairly fine where isotherms are sought. Lumping should be
coarse in areas of high thermal conductivity. When nonlinear properties
are being evaluated the lumping should be fine enough so that extreme
gradients are not encountered. The lumping is also dependent on the
severity of the nonlinearity.

TIn order to reduce round-off error the explicit stability criteria
of the lump (the capacitance valwe divided be the summation of conductor
values into the node) should be held fairly constant. The value (C/XG)
is directly proportional to the square of the distance between nodes.
Although refining the lumped parameter representation will yield more
accurcte answers, halving the distance between nodes decreases the
stability criteria by a factor of four and increases the number of nodes
by a facter of two, four or eight depending upon whether the problem
is one, two or three dimensional. For the explicit case, halving the
distance between nodes increases the machine time for transient analysis
by a factor of eight, sixteen or thirty-two respectively. The increase
in solution time for the implicit methods is somewhat less but propor-
tional.
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Wher. lumping the time space, consideration must be given to the
frequency of the boundary conditions. A time step must notstep over
boundary excitation points or they will be missed. Don't step over
pulses, rather, rise and fall with them. Generally the computation
interval for the explicit methods is sufficiently small so that
frequency effects can be ignored. However, care must be exercised
when specifying the time step for implicit methods. If only a small
portion of a transient analysis involves frequency considerations the
time step used may be selectively restricted for that interval. By
setting the maximum time step allowed as a function of time, an
interpolation call may be utilized to vary it accordiagly.

One must also realize that the problem being solved is linearized
over the time step. Heating rate calculations are usually computed for
a iime point and then applied to a time space. If the rates are non-
linear a certain amount of error is introduced, particularly so with
radiztion. These nonlinear effects may cause almost any method of
solution to diverge. A brute force method for forcing convergence is
to limit the temperature change allowed over the time space. Considera-
tion of the factors mentioned above coupled with some experience in
using the program will aid the observant analyst in choosing lump
sizes that will yield answers of sufficient eagineering accuracy with
a reasonable amount of computer time.

The following diagram displays the lumped parameter representation

and network superposition of a one dimensional heat transfer problem.
- )

i

1 T 1
Q1 T1 Gl T2 G2 13 1G3 T4 Gy, 15
L

Ty | T T L T L T
The "node" points are centered within the lumps and temperatures at the
nodes are considered uniform throughout the lump. The capacitors hung
from the nodes indicate the ability of the lump to store thermal energy.
Capacitance values are calculated as lump volume times density times
specific heat. The conductors (electrical symbol G) represent the cap-
ability for transmitting thermal energy from one lump to another.
Conductor values for energy transmission through solids are calculated
as thermal conductivity times thLe energy cross cectional flow area
divided by path length (distance between nodes). Conductor values for
convective heat transfer are calculated as the convection coefficient
times the energy cross sectional flow area. Conductors representing
energy transfer by radiation are usually indicated by crossed arrows

(F1)

3.2
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over the conductor symbol. Radiation transfer is nonlinear, it is
proportional to the difference of the absolute temperatures raised to
the fourth power. Utilization of the Farenheit system allows easy
automatior of this noniinear transfer function by the program and
reduces the radiation conductor value to the product of the Stephan-
Boltzman constant times the surface area times the net radiant
interchange factor (script F).

Basics of Finite Differencing

The concept of network superposition on the lumped parameter
representation of a physical system is easy to grasp. Describing
the network to the program is also quite straight forward. Having
described a network to the program, what information have we really
supplied and what does the program do with it? Basically, we
desire the solution to a simultaneous set of partial differential
equations of the diffusion type; i.e.,

2 2 2
i gx"" aay’ + <'96z2 (1

9 = avres , ¥
That the diffusivity (& = k/pCp ) way be temperature varying or
nonlinear radiation transfer occuring is immaterial at this peint.
Of importance is how equation one is finite differenced and its
relationship to the network and energy flow equations more commonly
utilized by the engineer. The partial of the T state variable with
respect to time is finite differenced across the time space as
follows;

[ L |

8t At

(2)

where the prime indicates the new T value after passage of the A\t
time step.

The right side of equation one could be writt:n with T primed
to indicate implicit "backward" differencing or unprimed to indicate
explicit "forward" differencing. The following equation is illustra-
tive of how "backward" and "forward" combinations may be obtained.

-g% = g\« VT + s) + (1—3)(0:' vViT'+ s') (3)

0= B8=<1
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Any value of B less than one ylelds an implicit set of equations
which must be solved in a simultaneous manner (more then one ‘wknown
exists in each equation). Any value of P equal to or less than

one half yields an unconditionally stable set of equations or in other
words, any time step desired may be used. Values of B greater than
one half invoke stability criteria or limitations on the magnitude

of the time step. A value of P equal to one half yields an uncond-
itionally stable implicit set of equations commonly known as "forward-
backward" differencing or the Crank-Nicholson method. Various
transformations or first crder integration applied to equation one
generally yield an implicit set of equations similar to equation
three with B equal to one half. The following finite difference
approach generally applies to transformed equations.

Let's consider the right side of equation three with P equal
to one and rewrite it as follows;

ovtese - B+ (- B+ 5 (8- £

The minus or plus signs on the first partial terms indicate that
they are taken on the negative or positive side respectively of
the point underconsideration and always in the same direction. If
we consider three consecutive points (1, 2 and 3) ascending in the
X direction we can complete the finite difference of the X portion
of equation four zs follows;

(4)

Applying the above step to the y and z portions of equation four
yields the common denominator of volume (V =Ax*Ay*Az). Using
equation three with 3 equal to one, finite differencing with the
steps used for equations three, four and five, substituting

o= k/pCp and multiplying both sides by PVCp yields

LR (u-g = ae(n-n) + i ()

+ %%_L(T;—To) + ‘Z—“;‘k (Te=To)

: +%%(T5“To)+%&“ (v-%) + @ (6)

1L
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where Ax =Ay-Az, Ly = Ax-Az, Az = Ax'Ay and Q = pVCpS

The numbering system corresponds to the following portion of
& three dimensional network

T +y
' +Z
—tx (F2)
Ax
'——-*—-—\
:L i 5‘» +X
Ax- AX+

Ts ,
It should be obvious that the network capacitance valus is pVCp,
that the Gl value is kAx/ Ax-, etc. Equation six may then be written
as .

Co(Tg=To)/ At = Gy (Ty~To)4G5(Ts =To 4G5 (Ty ~Tg 4G, (T, ~Tp)
+G5 (T, "Te )"’G‘ (T‘ -To )"'Qo

or in enginesring terminology the rate of change o. temperature wi
respect to time is proportional to the summation of heat flows int
the node.

It should be noted that Figure F2 is essentially superimposed
on & lumped parameter cube of a physical system and is the network
representation of equation cne. S:ane equation seven is written in
explicit form, only one unknown (To ) exists and all of the informa-
tion neceasary for its solution is sontained in the network description.
If it had been formulated implicitly it would have to be solved in
a similtaneous manner. No matter what method of solution is requested
of the program, the information necessary has been conveyed by the

- gl sttt
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network description. When an implicit set is used with p greater
then zero, the energy flows based on old temperatures are added to
the Q term and the equations are then treated in the same manner as
for B equal to zero.

aViT+$s =0 (8)

The solution of Poisson's equation (eight) is the solution
utilized for steady state analysis. It is extremely important
because virtuaily all of the unconditionally stable implicit methods
reduce to it. If equation seven had all the right side values primed
and the left side was subtracted from both sides, we could think
of Co/At as a Go term and To (o0ld) would then become a boundary
node. In a manner of speaking, the capacitor we look at in 3-D
becomes a conductor in 4-D. We could draw a four dimensional network
but since there is no feedback in time it is senseless to take more
than one time step at a time. However, various time-space transforma-
tions can be utilized such that a one-~dimensional "transient" yields
the solution to a two dimensional steady state problem, etc. This
is analogous to the "Particle in Cell" method developed in the
nuclear field for following shock wave propagation.

Iterative Technitiuisg

Now that we have discussed the correlation between thephysical
model, network model and mathematical model, let's investigate the
commonality of the various methods of solution. By describing the
network of Figure F1 to the program we have supplied it with five
temperatures, five capacitors, five sources (four not specified and
therefore zero), four conductors and the adjoining node numbers of
the conductors. An explicit formulation such as equation six has
only one unknown. It's solution is easily obtainable as long as any
associated stability criteria are continously satisfied. A more
intereeting formulation would be a set of implicit equations as
follows:

(Ty=T, )Cy/ At = Q}+G, (T3-Ty) ‘

(T7-T; )C2/ At = QJ+G, (T¥-T4 )4G, (T4 -T4 )

(T=Ty)C3/ At = QJ+Gy (T4 -T4 )46, (10 -T¢) (9)
(T4-T4)Co/ At = Q+G3 (T - 4G (T -TY)

(Ty-T5)0s / At = Q4G4 (T-T2)

If the above had been formulated as a combination of explicit and
implicit, the known explicit portion would have been calculated and
added to the Q terms, then the P factor divided into the Q terms and
miltiplied times the At term.

3.6
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If we divide the At term into the C terms and indicate this by
primirg & we can reformulate equation nine as follows:

(Ci+G;) T} = Q6T+, Ty

(CI4G1+G,) T = QIHCI T 4G, Ti+G, Ty

(Ci+Gp+G3 )T = YOI +G, TG T (10}
(Ce+G31G, )T = WHW T HG Y6, Y .
(Co4G,) T = QYHYT+G,TY

This equation can be generalized as

| o CAT+ MG, ff
T = TF 3G » sub a for adjoining!V

where the sub a’‘indicates connection to adjoining nodes. A C!

value of zero yields the standard steady state equation, the conductor
weighted mean of all the surrounding nodes. We see here that the C!
can be thought of as a conductor to the old temperature value and
therefore equation eleven, although utilized to obtain transient
solutions, can be considered as a steady state equation in 4-D. By
rewriting equations ten in the form of equation eleven we are in a
position to discuss iterative techniques. By assuming all old values
on the right hand side of ten we could calculate a new set of tempera-~
tures on the left which, although wrong, are closer to the correct
answer. This single set of calculations is termed an iteration.

By replacing all of the old temperatures with those just calculated
we can then perform another iteration. This process is called "block"
iteration. A faster method is to utilize only one location for each
temperature. This way, the newest temperature available is always
utilized, otherwise old. This method is termed "'successive point®
iteration and is generally 25% faster than "block" iteraticn. The
iterative process is continued a fixed (set by user) number of times
or until the maximum absolute difference between the new and old-
temperature values is less than some prespecified value (set by user).

Although the above operations are similar to a relaxation procedure
there is a slight difference. We are performing a set of calculations
in a-fixed sequence. A relaxation procedure would continously seek
the node with the maximum temperature difference between old and new
and cslculate it. Programming wise, as much work is required in the
seeking operation which must be consecutive as in the calculation.

For this reason it would be wasteful to code a true relaxation method.
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In addition to the iterative approach, several solution subroutines
utilize an acceleration feature and/or a different convergence criteria.
Once it can be determined that tie temperatures are approaching the
steady state value, an extrapolation is applied in an attempt to
accelerate convergence. This convergence criteria is the maximum
absolute temperature change allowed between itsrations. This criteria
however is generally one sided and any associated errors are accumula-
tive. In order to obtain greater accuracy, some subroutines are
coded to perform an energy balance on the entire system (a type of
Green's function) and apply successively more severe convergence
criteria until the system energy balance (energy in minus energy
out) is within some prespecified tolerance.

Pseudo-Compute Sequence

When working with a simultaneous set of equations such as
equations ten, they are quite often treated by matrix methods and
formulated as follows:

[«] |z} = 5] (12)

where
(C14G,) -G, 0 0 0
=G, (C}4G,4G,) -G, 0 0
H = 0 -G, (CJ+G,4G,) =G, 0
0 0 -G, (GG, +G,) -G,
0 0 0 -G,  (CH+G,) 13)
and
I QI+ T,
I T,
[} m 5] = juas
I UG T,
e} s QUG Ts

The inverse of [A] is then calculated and the solution obtained by
matrix multiplication.

o] =[] o

(14)

Q"N [T




snmmwmmiﬂ?ONﬂ“ﬂﬁR
CDRPDIRAYQDN

CINDA-3G

It should be noted that the one dimensional problem has no
more than three finite valwes in any row or column of the coefficient
matrix [A]. A ihree dimensional problem would generally have no
more than seven finite values in any row or column. It is easy to
see that a one thousand node three dimensional problem would require
one million data locations of which approximately 993,000 would
contain zero. The inverse might require an additional one million
data locations. Aside from exceeding computer core area, the computer
time required to calculate the inverse is proportional to the cube
of the »nroblem size and large problems soon become uneconomical to
solve.

The explicit and iterative implicit methods previously discussed
are well suited for optimizing the data storage area required. Note
the adjoining node numbers associated with the conductors »f Figure Fl.

1,1,2 — Gl between nodes 1 and 2
2,2,3 — G2 between nodes 2 and 3 (15)
3,3,4, — G3 between nodes 3 and 4
L,4,5 -—~ G4 between nodes 4 and 5

Note also the row and column position of conductor values off the
main diagonal in the [A] coefficient matrix, equation 13; By
retaining the adjoining node numbers for each conductor we are
able to identify their element position in the coefficient matrix.
As a consequence we need store only the finite values. The main
diagonal term is a composite of the node capac1tance and conductor
values off of the main diagonal.

The program operates on the adjoining node numbers to form
what is termed the pseudc~compute sequence (PCS). The nodes are
to be calculated sequentially in ascending order so the adjoining
nodes are searched until the number one is found. When this occurs
the conductor number and other adjoining node number are stored as
a doublet value. The search is continued until all ones are located
and the conductor number for the last receives a minus sign. The
process is then continued for node two, etc. until all the node
numbers have been processed. The pseudo-compute sequence formed is
shown in Figare 16A. A slight variation to this operation is to
place a minus sign on the original other adjoining node number so
that it is not recognized when it is searched for. The resulting
pseuco-compute sequence thus formed is shown in Figure 16B.

3.9
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LPCS SPCS
-1,2 -1,2
l,l "2,3
—2,3 -3,1-&
;,2 "1445 (B)
3,4 -0,0
373 (16)7
"14»)5
‘1#,1& (A)

The above pseudo-compute sequences are *ermed long (LPCS) and short
(SPCS) respectivcly. By starting at the top of the pseudo-compute
sequence we are operating on rode one. The two values identify the
conductor into the rode (the position of the conductor value in an
array of conductor values) and the adjoiniig node (the position of
the temperature, capacitor and source values in arrays of temperature,
capacitor and source values respectively). The node being operated

on starts as one and is advanced by one each time a negative conductoer
number is passed.

It is easy to see that the long pseudo-compute sequence identifies
the element position and value locations of all the off diagonal
elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited
for "successive point# iteration of the implicit equations because
all elements in a row are identified. When a row is processed and the
new T value obtained, the new T can then be used in the calculation
procedure of succeeding rows.

The short pseudo-compute sequence identifies each conductor only
once and in this manner takes advantage of ths symmetry of the
coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the
adjoining node number reveal their temperature value locations and
their source value locations. The explicit solution subroutines
calculate the energy flow through the conductor, add it to the source
location of the node being worked on and subtract it from the source
location for the adjoining node. However, if the short pseudo-
compute sequence were utilized for implicit methods of solution
they would require the use of slower "block" iterative procedures.
The succeeding rows do not have all of the elements defined and the
energy rates passed ahead were based on old temperature values.

3,10
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Data logistics

The pseudo-compute sequences formulated as shown above allow
the program to stcre only the finite values in the coefficient matrix
thereby taking advantage of its sparsiiy. In addition, the short
pseudo-comyvte sequence takes advantage of any symmetry which may
exist, Multiply connected conductors which will be covered in the
next section also allow the user to take advantage of similarity
as well. The foregoing is fairly easy to follow, especially if the
nodes and conductors start with the number one and continue
sequentially with no missing numbers. This restriction is too
limiting for general use on large network models. To overcome this
restriction the program assigns relative numbers (sequential and
ascending) to the incoming node data, conductor data, constants
data and array data in the order received. Any numbers missing in
the actual numbering system set up by the user are packed out
thereby requiring only as much core space as is actually necessary.

A1l solution (Execution) subroutines require three locations
for diffusion node data (temperature, capacitance and source) and
one location for each conductor value. ¢ may require from
zero to three extra locations per node to. . .rmediate data storage.
Each node in a three dimensional network has essentially six. conductors
connected to it but only three are unique; i.e., each additional
node requires only three more conductors. Hence, each node in a
three dimensional system requires rom six to nine storage locations
for data values (temperature, capa: itance, source, three conductors
and up to three intermediate locations). The two integer values
that make up a doublst of the pseudo-compute sequence are packed
into a single core location. Hence, for a three dimensional network,
each node requires approximately three locations for data addressing
for the short and six locations for the long pseudo-compute sequence.
The nmumber of core locations required per node can vary from nin
to fifteen.

The program requires the user to allocate an array of data
locations to be used for intermediate data storage and initialize
array start and length indicators. Each subroutine that requires
intermediate storage area has access to this array and the start
and length indicators. They check to see that there is sufficient
space, update the start and length indicators and continue with
their operations. If they call upon another subroutine requiring
intermediate storage, thesecondary subroutine repeats the check
and update process. Whenever any subroutine terminates its
operations it returns the start and length indicators to their
entry values. This process is termed "Dynamic Storage Allocation"
and allows subroutines to share a common working area.

a1
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DESCRIPTION
Calculate time step
Variables 1 operations
Solve Network
Variables 2 operations
Output calls operations
Medify time control

Erase iteration
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Reverse direction if

Backup nonzero

Relaxation criteria not net
Time or temp change to large
Backup nonzero

Nct time to print

Problem stop time not reached

BASIC FLOW CHART FOR NETWORK SOLUTION SUBROUTINES

(F3)
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Order of Comgutatioﬁ

A problem data deck consists of data and operations "blocks" which
are preprocessed by CINDA=3G and passed on to the system FPRTRAN compiler.
The operations blocks are named EXECUTIPN, VARIABLES 1, VARIABLES 2
and PUTPUT CALLS. The FPRTRAN compiler constructs these blocks as
individual subroutines with the entry names EXECTN, VARBL1l, VARBL2 and
PUTCAL respectively. After a successful compilation, control is passed
to the EXECIN subroutine. Therefore, the order of computa*ion depends
on the sequence of subroutine calls placed in the EXECUTIZN block by
the program user. No other operations blocks are performed unless called

" upon by the user sither directly by name or indirectly from some subroutine
which internally calls upon them. The network execution subroutines
listed in Section 5.1 internally call upon VARBLl, VARBL2 and PUTCAL.

Their internal order of computation is quite similar, the primary
difference being the analytical method by which they solve the network.
Figure F3 represents a flow diagram of all the network solution sub=
routines; the subroutine writeupe contain the comparisons made at the
various check points and the routings taken.

Systems Programming

CINDA=3G is actually an operating system rather than an applications
program. The more one studies and uses the program the more apparent
this becomes. In order for the program to accomplish the desired
operations with regards to overlay features, data packing, dynamic
storage allocation, subroutine library file and yet be written in Fortran,
it was necessary to program CINDA=3G as a preprocessor. This preprocessor
operates in an integral fashion with a large library of assorted subrou-
tine which can be called in any sequence desired yet operate in an
integrated manner. It reads all of the input data, assigns relative
numbers, packs it, forms the pseudo-compute sequence and writes it on
a peripheral unit as Fortran source language with all of the data values
dimensioned exactly in name common. It then turns control over to the
system Fortran compiler which compiles the constructed subroutines and
enters execution. The Fortran allocator has access to the CINDA-3G
subroutine library and loads only those subroutines referred to by
the problem being processed.

Due to this type of operation, CINDA=3G is extremely dependent on
the systems software supplied. However, once the program has beeu
made operational on a particular machine, the problem data deck prepared
by the user can be considered as machine independent. The user need
only consult the section in this document on "Control Cards and Deck
Setup" to switch his problem from one machine to another.
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SECTION IV

DATA INPUT REQUIREMENTS

A CINDA-3G problem data deck consists of both data and instruction
cards. The card reading subroutines for CINDA-3G do not utilize a
fixed format type of input; they use a free form format quite similar
to the old SHARE Jecimal data read routine. The type of data is
designated by a mnemonic code in columns eight, nine and ten. This is
followed by the data field which consists of columns twelve through
eighty o the instruction field which consists of columns twelve through
seventy~-iwo. Although blanks are allowed before or after numerical data
they may not be contained within. The number 1.234 is fine, but 1. 234
will cause the program to abort. The program processes the problem data
into FPRTRAN common data and reforms instructions into FPRTRAN source
language which are then passed on to the system FRTRAN compiler.
Instruction cards which contain an F in column one are passed on exactly
as received. Any instruction card with or without an F in column one
may contain a statement or sequence number in columns two through five
which is passed on to and used by the FZRTHAN compiler.

The most frequently used mnemonic code was the old DEC designation
which has been replaced by three blanks, The data following this blank
mnemonic code may be one or more integers, floating point numbers (with
or without the E exponent designation% or alpha-numeric wcrds of up to
six characters each. The reading of a word or number continues until a
comma'is encountered and then the next word or number is read. As many
numbers or words as desired may be placed on a card but they may not be
broken between cards. A new card is equivalent to starting with a comma
and therefore no continuation designation is required., All blanks are
ignored and reading continues until the terminal column is reached or s
dollar sign encountered. Comments pertinent to a data card may be placed
after a dollar sign and are not processed by the program. If sequential
comnas are encountered, floating-point zero values are placed between them.

The next most frequently used code is BCD (for binary ccded decimal)
which must be followed by an integer one through nine in column
twelve. The integer designates the number of six character words
immediately following it. Blanks are retained and only the designated
number of six character words are read from the card. The mnemonic
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code END is utilized to designate the end of a block of input to

the program, The code REM serves the same function as a FPRTRAN
comment card) it is not processed by the program but allows the user
to insert non-data for clarification purposes. The code @CT may be
utilized and allows the input of a single octal word starting in
column twelve. The special codes CGS, CGD and GEN will be discusced

later in this section.

The data deck prepared by a program user consists of various input
"blocks" containing either data or instructions. A fixed sequence
of block input is required and each block must start with a BCD 3
header card and terminate with an END card (mnemonic codes). Specific
details about these blocks follows:

Title Block

The first card of a problem data deck is the title block header
card. It conveys information to the program as to the type of problem,
which data blocks follow and how they should be processed. The three
options presently available are:

Col 8
BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

The GENERAL indicates that a non-network problem follows and therefore
no node or conductor data is present. The THERMAL cards indicate that
a conductor-capacitor (CG) network description follows &nd that either
a short (SPCS) or long (LPCS) pseudo-compute sequence should be cone
structed, The title block header card may be followed by as many BCD
cards as desired. H-owaver, the first twenty words (six characters
each) are retained by the program and used as a page heading by the
user designated output routines. The block must be terminated by an
END card and is then followed by node data for a CG network problem
or constants data for a non-network problem.

Node Data Block

As discussed in section three, there are three types of nodes;
diffusion, arithmetic and boundary., Diffusion nodes are those nodes
with a positive capacitance and have the ability to store energy.

4.2
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Their future values are calculated by a finite difference representation
,of the diffusion partial differential equation. Arithmetic nodes are
designated by a negative capacitance value, they have no physical
¢pacitance and are unable to store energy. Their future values are-
calculated by a finite difference representation of Poisson's partial .
differential equaticn. This is a steady state calculation which always
utilizes the latest diffusion node values available, Boundary nodes
are designated by a minus sign on the node number; they refer to the
mathematical boundary, not necessarily the physical boundary. Their
values are not changed by the network solution subroutines but may be
modified as desired by the user.

A diffusion node causes three core locations to be utilized, one
each for temperature, capacitance and a source location. An arithmetic
node receives core locations for temperature and source only and a
boundary node only receives a temperature location. The program user
is required to group his node data into the above three classes and
submit them in that order, Node dzta input with the three blank mncmonic
code always consists of three values; the integer node number followed
by the floating point initial temperature and capaciatance values. A
negative capacitance value is used to designate an arithmetic node while
a negative node number designates a boundary node. Although the capaci-
tance value of a boundary node is meaningless, it must be included so
as to maintain the triplet format.

A1l nodes are renumbered sequentially (from one on) in the order
received. The user input number is termed the actual node number while
the program assigned number is termed the relative node number. This
relative numbering system allows sequential packing of the data and does
not require a sequentidl rumbering system on the part of the program
usger, It is worth noting that the pseudo compute sequence is based on
the relative numbering system., Hence, the computational sequence of
the nodes is identical with their input sequence. If a user desired to
reorder the computations in order to aid boundary propagation, he needs
merely to reorder his nodal input data.

The mnemonic codes CGS, CGD and GEN may be used. The CGS and CGD
codes are used when one or two materials respectively with temperature
varying properties are to be considered. For a2 single material the
node number and initial temperature remain the same but instead of a
capacitance value, the ueer may input the starting location (integer
count) of a doublet array of the temperature varying property followed
by the actual (literal) multiplying factor value to complete the
calculaticn or a constants location containing it., For i node consisting
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of two materials, the node number and initial temperature remain the
game but the user would use two array addresses and multiplying factors
with a CGD code. These codes would look as follows:

Col 8
CGS N#,Ti,Al,F1
or CGD N#,Ti,Al,F1,A2,F2

where N# is the integer node number and Ti is the floating point initial
temperature. The A arguments refer to doublet arrays of temperature
varying Cp or Pp*Cp and the F arguments may be or refer to a constant
location containing the weight or volume respectively. The CGS code
causes the product of the interpolated value times the F factor to be used
as the capacitance value. The CGD code uses the sum of the separate
interpolation times factor products as the capacitance value.

To input a sequential group of nodes, the following code is available,

Col 8
GEN N#,#N,IN,Ti,%,Y,Z,W

where N# is the starting node number.
#N is the total number of nodes desired (integer).
IN is an increment for the generated nodes (integer).
Ti is the initial temperature for all nodes,

and the capacitance valne is calculated as the product of X times Y
times Z times W. If this product is negative, arithmetic nodes will
be generated. If N# is negative, boundary nodes will be generated. A
sample node data block could be as follows:

Col 8 12

BCD 3NZDE DATA
1,80.,1.2,2,80.,1.3 $TW¢ DIFFUSI@N N@DES

CGS 3,80.,A1,4.63 $SINGLE MATERIAL N@DE

CGD 4,80.,A1,2.31,A2,4.76 $DPUBLE MATERIAL N@DE

GEN 5,10,1,80.,4.63,1.,1.,1.  $GENERATE 10 N@DES, 5-14
15,80,,-1,16,80,,-1 $TWg ARITHMETIC N@DES
-18,-460.,0 $¢NE BFUNDARY N@DE

END

The above does not correspond to a problem; it just represents data
input., Note that the nodes are input in the order: diffusion,
arithmetic and boundary. The factor portion of the CGS and CGD codes
may be a literal (zctual value) as shown or reference a constant's

L.

T




B i e e,

CIND A-SG SR Drveon °m

location coentaining the value. Either one (rot voth) of the array
drguments on the CGD code may be a literal il the property is constant.
Both codes set up linear interpolation calls which utilize the node
temperature as the independent variable and interpolate a dependent

value which is then multiplied by the factor to obtain the capacitance
value. The CGD call causes two interpolations and multiplications io be
performed and sums the products to obtain the capacitance value. These
interpolations are performed each iteration during the transient analysis.

The GEN code expects values in the following order; starting node
number, number of nodes to be generated, an increment for indexing the
generated node numbers, the initial temperature for all nodes and four
floating point numbers the product of which is the capacitance value,

Conductor Data Block

Two basic types of conductors may be used, regular or radiation,
and either may utilize temperature varying properties in calculating
the conductance value. When utilizing the blank mnemonic code a
regular conductor consists of the integer conductor number followed by
two integer adjoining node numbers and the floating point conductance
value., If more than one conductor has the same constant value, they may
share the same conductor number and value. This is accomplished by
placing two or more pairs cf integer adjoining node numbers between the
cenductor mmber and value. The CGS and CGD mnemonic codes may also be
utilized for conductors. They w~uld appear as follows,

Col 8
CGS G#,NA,NB,A1,F1
or CGD G#,NA,NB,Al,F1,A2,F2
where G# is the integer conductor number
MA is one adjoining node number
NB is the other adjoining node number.
The A arguments refer to doublet arrays of temperature varying thermal
conductivity k(T) and the F arguments may be or refer to a constant
location containing the cross sectional area divided by path length.
For CGS with Fl positive
G = kK1(Tm)*F1,Tm = (Ta + Tb)/2.0
For CGS with F1 negative

G = k1(Ta)*|F1]

be5
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For CGD ,
G = 1.0/[1.0/(1:1(%)*}‘1) + 1.0/(1:2(%)*1-‘2)}

The CGS mnemonic ccde may be utilized for either regular or radiation
conductors. The data consists of the integer conductor humber, one pair
only of integer adjoining ncde numbers and is followed by an array address
and meltiplying factor. A regular conductor would normally utilize the
CGS code where the addressed array would be thermal conductivity versus
temperature and the multiplying factor would consist of the cross-sectional
area divided by path length. A surface radiation conductor would utilize
the CGS code for a temperature varying array of emissivity with the
multiplying factor being the product of surface area times the Stephan~-
Boltzman constant (F = 1.0).

The CGD code may be utilized for regular conductors passing through
two materials. In this case two temperature varying property arrays and
multiplying factors are input. Two conductance vaiues are calculated
and one over the summation of their inverses is returned as the conductor
value. Either of the array addresses may be a literal if one of the
properties is a constant. The GEN code is also available for conductors
and is input as follows:

Col 8
GEN G#,#G,IG,NA,INA,NB,INB,X,Y,Z,W

where G# is the starting conductor number.
~ #G is the total number of conductors desired (integer).
IG is an increment for the generated conductors (integer).
NA and NB are initial adjoining node numbers (integers).
INA and INB are increments for the generated adjoining nodes
(integers),

and all generated conductors receive the same conductance value of
X times Y times Z divided by W. A negative G# will cause radiation
conductors to be generated,

The GEN code may be used to generate sequential conductors, either
radiation or repular. The data consists of the integer conductor number,
integer number of how many conductors tc be generated, an integer
increrent for indexing the generated conductors, the first integer
adjoining node mumber, an integer increment for indexing the first
adjoining ncde number, the second integer adjoining node number, an
integer increment for indexing the seccm? adjoining ncde number and
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finally four floating poiht numbers, the product of the first three
divided by the fourth is the constant conductance value.

Col 8
GEN 1,2,1,1,1,2,1,2.,2.,2.,2.
Gm -3’330’1’1?10’0’1'31’ ,lv ,10E+15

is equivalent to

Col 12
1,1,2,4.,2,2,3,4.
-3,1,10,2,10,3,10,1.E-15

An additional feature of the program is the one way conductor.
This is a conducior value which enters into the temperature calculation
of only one of its adjoining nodes and is indicated by placing a minus
The CGS, CGD and GEN codes may be used
Physically this occurs in incompressible fluid
flow, and therefore, the upstream node would receive the minus sign.

sign on the uneffected node.
for one way conductors.

A program idiosyncrasy which should be mentioned is that while a
single valued ccnductor with as many adjoining node pairs as desired
may be used, extending several cards if necessary, an adjoining node
In addition, the CGS, CGD and
GEN card may have more than one set of data on a card but a set of
All regular conductors must be
The following is illustrative

pair must not be split between cards.

data may not be broken between cards.
input prior to any radiation conductors.
of the various conductor input options.

Col 8 :

BCD 3C@NDUCT#R DATA
1,1,2,1.2,2,2,3,1.7
3,3,4,4,5,5,6,1.5
h:'718:'8:9:7'6

CGS 5,10,11,A3,4.6
CGD 6,12,13,A3,4.1,A4,7.6
GN 7,3,1,1,1,9,1,1.6,4.0,1.,1.
-10,1,99,1.E-15
CGS -11,2,99,A5,1.E-1
%qm -12,4,1,3,1,99,0,1.E-14,1.,1.,1.
D

mmcm

For example:

$TWZ REGULAR C@NDUCT@RS
$TRIPLE PLACED C@NDUCT@R
$DPUBLE PLACED @NE-WAY C@ND.
$VARIABLE C@NDUCT@R, SINGLE
$VARIABLE C@NIUCT@R, D@UELE
$GENERATE THREE C@NDUCT@RS
$RADIATIGN C@NDUCT@R
$VARIABLE EMISSIVITY RADIATI@N
$GENERATE F@UR RADIATI@N C@ND.

L7
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The first GEN card is equivalent to the following:

Col 12 )
7,1,9,6.4,8,2,10,56.4,9,3,11,6.4

and the second GEN card is equivalent to

Col 12
-12,3,99,1.5:-1[4,, -13’16"99,1-E-11+
'lA,5,99’l~E-lAp‘15,5,99,10E-1h

If the second GEN card had incremented the conductor number by zero,
it would have been equivalent to:

Col 12
-12’3:99’h,99,5,99,6,99,1.E—1h

Once the node and conductor data have been read by the program,
construction of the pseudo-compute sequence is performed. Any errors
encountered cause an appropriate error message to be printed and a "do
not execute” switch to be set. However, the program will continue to
process input data and attempt to discover any and all recognizable
errors. Items checked for are; no duplicate node or conductor numbers,
all conductor adjoining nodes must have been specified in node data
and a1l diffusion and arithmetic nodes must have at least one conductor
into them. A missing comma will dislocate the data input sequence
causing pages of error messages. If over two hundred error messages
are printed, the program gives up and immediately terminates.

Constants Datg Block

Constants data are always input as doublets, the constant name
or number followed by its value. They are divided into two types,
control constants and user constants, and may be intermingled within
the block. Control constants ( ~ 50) have alpha-numeric names while
user constants receive a number., User constants are simply data
storage locations which may contain integers, floating point numbers
or up to six character alpha-numeric words. It is up to the program
user to place data in user constant locations as needed and supply the
location addresses to subroutines as arguments.

Contrcl constant values are communicated through program common
to specific subroutines which require them. However, any control
constant name desired can be used as a subroutine argument. Wherever
possible, control constant values not specified are set to some accept-
able value., If a required control constant value is not specified an
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apprepriate error message is printed and the program terminated. ‘
It is up to the user to check the writeups of subroutines he is using
to determine control constant requirements. A list of contrcl constant
names and brief description of each follows, check subroutine writeups
for exact usage.

ARIXCA The maximum arithmetic relaxation change allowed.

ARIXCC  The maximum arithmetic relaxation change calculated.

ATMPCA  The maximum arithmetic temperature change allowed.

ATMPCC  The maximum arithmetic temperature change calculated.

BACKUP  If non-zero, the just done time step is erased and redone.

BA ENG User specified system energy balance to be maintained.

CSi;FAC  Stability criteria multiplication/division factor.

CSCMAX  Maximum stability criteria for the network. (c/2G) .

CSG:'IN Minimum stability criteria for the network. max and min.

CSGRAL  Stability criteria range allowed.

CSGRCL  Stability criteria range calculated.

DAMPA Arithmetic node damping factor.

DAMPD Diffusion node damping factor.

DRIXCA The maximum diffusion relaxation change allowed.

DRLXCC The maximum diffusion relaxation change calculated.

DTIMEE Highest time step allowed (maximum).

DTIMEI Input time step for implicit solutions.

DTIMEL Lowest time step allowed (minimum).

DTIMEU Time step used for all transient network problems.

DTMPCA The maximum diffusion temparature change allowed.

DTMPCC The maximum diffusion teuperature change calculated.

ENGBAL The calculated energy valance of the system.

LINECT A line counter location for program output.

I#PPCT  Program count of iteration loops performed (Integer).

NL#PP  User input number of iteration loops desired (Integer).

PPEITR  Causes outpui each iteration if set non-zero.

PUTPUT  Time interval for activating @PuTPUT CALLS.

PAGECT A page counter location for program output.

TIMEM Mean time for the computation interval,

TIMEN New time at the end of the computation interval.

- TIMEND Problem stop time for transient analysis.

TIME#  01d time at the start of the computation interval, also used

a3 problem start time, may be negative.

ITEST,JTEST,KTEST ,LTEST ,MIEST
Dummy control constants with integer names.
RTEST,STEST,TTEST ,UTEST ,VTEST

e Dummy control constants with non=integer names.
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The following is representative of a constants data block.

Col 8
BCD 3C@NSTANTS DATA
TIMEND,10.C,@UTPUT,1.0 $CENTRPL CENSTANTS

1,10,2,3,3,7,4,8 $INTEGERS
5,1.,6,1.E3,7,1.E=3 $FLPATING PPINT
8,TEMP,9,ALPHA $ALPHA-NUMERIC

END

Array Data Block

Array data is exceedingly simple to input. The user inputs
an ar-ay number, sequentially lists his information and teiminates
it with an END (data END, not mnemonic). Numerous subroutines
(interpolation, matrix, etc.) require that the exact number of values
in an array be specified as an integer. In order to reduce the number
of subroutine arguments and chance of error, the CINDA=3G preprocessor
counts the number of values in an array and supplies this integer
count as the first value in the array. The writeup of any subroutine
whose array arguments require the array integer count will list the
array argument as A(IC). Subroutines whose array arguments require
the first data value rather than the integer count vill list the
array argument as A(DV). Wren a user inputs the array number as
positive, the integer count is calculated by the preprocessor and
supplied as the first value in the array. For example:

Col 12
1.1.6,2.4,3.8,END

Array 1 above contains three data values and was input as a
positive array. By addressing Al as a subroutine argument the integer
count 3 would be the first value followed by 1l.6,2.4 and 3.8, If
the user wantec the 1.6 data value to be addressed the argument should
be Al+l. The user has the option of placing a minus sign on the input
array number., In this event the integer count of data values in
the array is not calculated or stored and addressing the array as Al
obtains the first data value for exampie;

Col 12
-2’106,2.L},3.8,END

Inputing the argument A2 would address the 1.6 data value; the
integer count is not available. The following is an example of
various types of arrays.

l&.lO
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Col 8

BCD 3ARRAY DATA
1,1.6,2.4,3.8,END $FLPATING PFINT NUMBERS
2,TEMP1,TEMP2,END $ALPHA-NUMERIC
3 $ALPHA-NUMERIC

BCD 3TEMPERATURE STUDY
END -
-4, ,SPACE, 100,END $SPACE #PTIMN

END

Two types of alpha-numeric input are shown above. The first allows
each word to be separated by a comma, requires each word to start with a
letter and does not allow the use of blanks. The second requires use of
the BCD mnemonic code and the integer word count. It allows use of
letters, numbers or characters anywhere and retains blanks. The space
option is an easy way for the user to specify a large number of locations
which are initialized by the preprocessor as floating point zeros. The
space option requires the word SPACE followed by the number of locations
to be initialized. It may be used anywhere in an array and as many times
as desired as long as total available core space is not exceeded.

Program Control

Aside from the title block, there are either two or four data
blocks depending upon whether the problem is GENERAL or THERMAL
respectively. No matter which, there are also four operations blocks
entitled EXECUTI@N, VARIABLES 1, VARIABLES 2 and @UTPUT CALLS. The
operations or instructions called for in these blocks determine the pro-
gram control. They are preprocessed by CINDA-3G and passed on to the
system F@RTRAN compiler as four separate subroutines entitled EXECTN,
VARBEL1, VARBL2 and PUTCAL respectively. When the FPRTRAN compilation
is successfully completed, control is passed to the EXECIN subroutine
which sequentially performs the operations in the same order as input
by the user in the EXECUTI@N block. Nonz of the operations specified
in the other three blocks will be performed unless they are called for,
either directly by name in the EXECUTI@N block or internally by some
other called for subroutine.

No operations will be performed unless requested ry the user and
no control constants will be utilized unless some subroutine calls
upon them. Network solution subroutines internally call upon VAREL1,
VARBEL2 and @UTCAL (see Figure F3, page 3.12). They also use numerous control




CINDA=3G : '

constants but their individual writeups in Section 5.1 must be
consulted in order to determine which ones and their exact usage.
Network solution subroutines require no arguments but most others do.
These arguments may be addresses which refer to the location of data
or they may be literals; 1.e., the actual data value. All of the
input data can be addressed by ueing alpha=numeric arguments of the
following form.

TN for the temperature location of node N

CN for the capacitance location of node N

QN for the source location of node N

GN for the conductance location of conductor N

KN for the value location of constant N

AN for the starting location of array N

and control constants utilize their individual names,

When addressing arrays the user must be.cautious as to the use.
of positive or negative arrays and address them accordingly. However,
the user may uniquely address any item in an array. For_ .instance,
the one hundredth value in a positive array ten could be uniquely
addressed as A10+100,. The above plus option is orly available for
arrays. If perhaps a user desired to address the twenty BCD words
for the titls block which were retained for output page headings,
he could do so by using the argument Hl,

Dynamic Storage Allocation is a unique feature of the CINDA=3G
program, Although not carried to the ultimate, all subroutines which
require working space generally obtain it from a common working
array, However, it is up to the user to specify information about
this array to the program. To do so the user must place three FPRTRAN
cards at the start of the execution block, for example,

Col 1 7
F - DIMENSI#N X(100)
F NDIM = 100
F NTH =0

The names used must be exactly as shown and in the above would cause
a working array of 100 locations to be created., If more or less
locations are needed the integer 100 may be changed as desired (both
first and second cards). If no working locations are required the
cards may be omitted. The program user must check the writeups of
subroutines he is using in order to determine if, when and how much
of a working array is required.
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An F in column one indicates *o the preprocessor that the card is
F@RTRAN and should be passed on as receivad. This F option allows the
user to program FPRTRAN operations directly into the cperations
blocks. However, the CINDA-3G arguments listed above are not FPRTRAN
compatible with the exception of the control constant names. Therefore,
it is recommended that the program user utilize CINDA-3G subroutine
calls wherever possible. This is impossible hcwever when logical
operations are required. In this case it is recommended that the user
place CINDA-3G data values as needed into the available dummy control
constent names allowed for that purpose. Then, FFRTRAN logical
operations can ‘e utilized with the durmy control constant names as
arguments. FORTRAN statement numbers for routing purposes may be
placed in columns two through five on any operations cards.

The data f{ield for node, conductor, constant and array data consists
of columns twelve through eighty. However, the data field of operations
cards ends with column seventy-two. In a manner of speaking, a CINDA-3G
subroutine call is a special array ard should terminate with a data
END. In order to simplify input for the user, the operations read
subroutines recognize two special characters; the left and right
paranthesis. The left paranthesis is accepted as a comma whils the
right paranthesis is accepted as a comma followed by a data END. This
allows what would have been this

Col 12
ADD,K1,K2,K3,END

to be more esthetically formatted as this

Col 12
ADD(K1,K2,k3)

which is almost identical to a TPRTRAN subroutine call.

Execution Operations Block

An execution operation block might be as follows:

Coll g8 1
BCD 3EXECUTI@N
F DIMENSION X(25)
F NDIM=25
F NTH=0
F 10 TIMEND=TIMEND+1.0
CNFRWD $EXPLICIT FYRWARD DIFFERENCING
STPSEP(T20,TTEST) $PIACE T10 INTY DUMMY CC
F IF(TTEST.LE.100.) G T¢ 10
END
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The above indicates a transient thermsl problem in which the user
desires to terminate the analysis when the temperature at node 20
exceeds one hundred degrees. The problem must have been fairly small
because only iwenty five working locations were dimensioned and CNFRWD
requires one per node, It does demonstrate the use of both CINDA=3G
calls and FPRTRAN operations and that control constants are referred
to by name in either. Another example might be

Col 1 g 12
BCD 3EXECUTIZN

F DIMENSI@N X(500)
F NDIM=500
F NTH=0
CINDSL $STEADY STATE (USES LPCS)
F TIMEND=10.0

CNFEWD  $TRANSIENT ANALYSIS (USES SPCS)
END

In this case tle user desires to have a steady state analysis performed
on the network and then a transient analysis performed utilizing the
steady state answer as initial conditions. However, the two network
solution subroutines referred to are incompatible in their pseudo-
compute sequence requirements and the program would be terminated with
an appropriate error message. A further example might be:

Col8 12
BCD 3EXECUTIZN
INVRSE(A1,A2) $SEE MATRIX SUBR@UTINE
MULT(A2,A3) $WRITEUPS FfR @PERATIENS
LIST(A2,K1,17) $PERFPRMED
LIST(A3,K2,17)
END

The above problem consists entirely of matrix operations and therefore
is run as a GENERAL. The subroutines do not require any working space
8o none has been dimensioned. Furthermore, no reference, direct or

indirect, is made to VARBLl, VARBL2 or PUTCAL and those operations

blocks should be empty. Even though they may be empty or not
referred to, their blockheader and mnemonic END cards must still be
input. .

There is no end to the variety of examples that could be generated.
In reality, the program user is actually programming although it is
somewhat disguised as data input. However, the program does simplify
the task of data logistics and automates overlay, tape library, and
other systems features thereby greatly lessening the programming
knowledge which might otherwise be required of a user,

L.14
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A point well worth considering is proper initialization. All
instructions contained in the other three operations blocks are perform=
ed each iteraticn or on the outnut interval. If an operation being
performed in Variables 1 is utilizing and producing non changing
constante, it should be placed in the Execution block (prior to the
network solution call) so that it will be performed only once.

Input arrays requiring post=interpoiation multiplication for units
conversion only could be prescaled, thereby deleting the multiplication
: process. Comrlex functions of a single independent variable requiring
H several inter,c.ation values which are then combined in a multiplicative:
: fashion can be precalculated versus the the independent variable.

Such a precalculated complex function reduces the amount of work
performed during the transient analysis. A great many operations of
this type can be performed in the Execution block prior t~. =7 for a
transient analysis, Also, output operations to be perform<: w.ice the
transient analysis is completed may be placed directly into the
Execution block following the transient network solution call.

Variables 1 tions Block

The statement that this program solves nonlinear partial different=
ial equations of the diffusion type is not quite accurate. In
reality the program only solves linear equations. However, nonlinearw
ities are evaluated at each computation interval and in this marner
generally yield acceptable answers to nonlinear problems. This
method is mors properly termed quasilinearization. The Variables 1
operation block allows a point in the computational sequence at which
the user can specify the evaluation of nonlinear network elements,
coefficients and boundary values (see Figure F3). The CGS and CGD
mnemonic codes utilized for node and conductor data cause the constrice
tion of various subroutine calls which are placed in this block by
the CINDA-3G preprocessor. The user must specify any addii onal
subroutine calls necessary to completely define the network prior to
entering the network solution phase.

3

Prior to inclusion of the CGS and CGD mnemonic codes, the Variables
1 operations block primarily consisted of linear interpolation subroutine
calls input by the user for che evaluation of temperature varying
_ properties. While these linear interpolation calls are automated
] : through use of the CGS and CGD codes, it is up to the program user to

ik
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specify any required bivariate or trivariate interpolations or other
functional evaluations necessary. Just prior to performing the
Variables 1 operations, all network solution subroutines zero out
all source locations, Therefore, the user is required to specify
constant as well as variable or nonlincar impressed sources in thie
block. A Variables 1 operations block could be as follows:

Col l g8 12
BCD 3VARIABLES 1
STFSEP(10.0,Q17) $CENSTANT IMPRESSED SPURCE
D1DEGL (TIMEM, 48,Q19) $TIME VARYING SPURCE

D2D1wM(T18,TIMEM,A19,7.63,G18) $BIVARIATE FUNCTION
F TTEST=11,6
F IF(TIMEN.GT.10.) TTEST=0.0
STFSEP(TTEST,Q27) $VARIABLE SPURCE
END

The first call above placee a constant heating rate of 10,0 into

the source location of node 17. The second call causes a linear
interpolation to be performed on array 8 using mean time as the indepen=
dent variable to obtain a time varying l:ting rate for node 19.

The third call uses mean time and the temperature at node 18 as
independent variables to perform a bivariate interpolation. The
interpolated answer is then multiplied by 7.63 and placed as the
conductance value of conductor 18, The next two cards are FPRTRAN
and allow a value of 11.6 to be placed into control constant TTEST
until TIMEN exceeds 10,0 after which a value of 0.0 is placed into
TTEST. This amounts to a single step in a "stair-case" function.

The last card places the value from TTEST into the source location
for node 27, Another sample Variables 1 block might look as follows:

Col 1 8 12

BCD 3VARIABLES 1
BLDARY(A12+1,T1,T7,T3,T4)  $CENSTRUCT VECTEZR
D1DEG1(T7,A19,A13+2) $INTERPPLATIMN
IRRADE(A7,A13,A10,A12) $IR RADIPSITY EXPLICIT
BRKARY(A12+1,Q1,Q7,Q3,Q4)  $DISTRIBUTE Q RATES
D1D1wM(TIMEM,A9,0.35,TTEST) $INTERPELATE
ADD(TTEST,QL,le $ADD TWP RATES

END

The first call above causes the construction of an array of four
temperature values necessary as input to an infrared radiosity
subroutine (third card). The second call causes the linear interpolation
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of a temperature varying property from array 19 to be placed into
array 13 + 2 which is the second array argument for the radiosity call.
This second argument must be an array of surface emissivities for the
surfaces under consideration; therefore array 19 must be an array of
temperature varying emissivity., The BRKARY call takes data values
from array 12 + 1, 2, 3 and 4 and places them into the source locations
for nodes 1, 7, 3 and 4 respectively. The fifth call performs linear
interpolation on array 9 using TIMEM as the independent variable,
multiplies the result by 0.35 and places it in control constant TTEST.
This might be a time varying solar heating rate where 0.35 is the
solar absorbtivity. The ADD call adds this rave to what is already
contained in the source location for node 1. Each node has one and
only one source location. If a user desires to impress more than one
heating rate on a node, he must sum the rates and supply the value to
the single source location available per node.

The Variables 1 operations block is the logical point in the
network computational sequence for the calculation of impressed sources
whether they are due to internal dissipation of powered components,
radiation depositation, aerodynamic heating or orbital heating. If a
desired subroutine is not available, the user may always add his own;
data cammmication is obtained through subroutine arguments as:in any
other subroutine.

Variables 2 Operations Block

In regards to the network solution, the Variables 1 operations
may be thought of as pre-solution operations and the Variables 2
operations as post-solution operations. In Variables 1 the network was
completely defiried with respect to nonlinear elements and boundary
conditions. Variables 2 allows the user to look at the just solved
network. He may meter and integrate flow rates, make corrections in
crder to account for material phase changes or compare just calculated
answers with test data in order to derive emperical relationships.
A simple Variables 2 operations block might be as follows:

Col 8 12
BCD 3VARIABLES 2
QMETER(T1,T2,G1,K1) $METER HEAT FL@W
QINTZG{K1,DTIMEU,K2)  $INTEGRATE HEAT FLZW
RDTNQS(T5,T1,G8,K3) $METER RADIATI@N FIgW
QINTEG(K3,DTIMEU ,KL) $INTEGRATE RADIANT FLW
ADD(X2 K4 ,K5)

END
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The first call measures the heat flow from node one to nede two
through regular conductor one and stores the result in constant location
one. The second call performs a simple integration with respect to
time and sums the result into constants location two. The third call
measures heat flow through a radiation conductor which is then integrated
by the fourth call. The sum of-the two integrations is obtained
by the fifth call. Another Var.ables 2 operations biock might be as
follows:

Col 8 12 _
BCD 3VARTABLES 2 .
ABLATS(A1,1.76,K8,A7,T15,015) $ABLATIVE ¢X N@DE 15
END

Pnase change sutroutines such as the above are unique in that they
perform automatic corrector operations. Node 15 has been solved by
the network solution subroutine as though no ablative existed. The
ABIATS subroutine then corrects the temperature at node 15 to account
for the ablative material. It does this by calculating the average
heating rate to node 15 over the time step just performed and utilizes
it as an inner surface boundary condition for the internally constructed
1-D network representation of the ablative material. The correctness
of this analytical approach can be rigorously substantiated for use
with explicit network solution subroutines. However, when used with
large time step implicit methods it yields a controlled instability
and the results may be questionable. It is up to the user to determine
the solution accuracy by whatever means available. A more complicated
Variables 2 operations block could be as follows:

Ccll 5 8 12
BCD 3VARIABIES 2

D1DEG1{TIMEN,A10,K8) $GET TEST TEMPERATURE
SUB(T8,K8,TTEST) $@BTAIN TEMP DIFFERENCE
F  IF(TTEST.LE.2.0) GF T¢ 10
MLTPLY(G7,0.99,G7) $REDUCE C@NDUCTANCE
5 STFSEP(-1.0,BACKUP) $SET BACKUP N@N-ZERg
F GZ T¢ 20
F 10 IF(TTEST.GE.-2.0) G T¢ 15
MLTPLY (G7,1.01,G7) $INCREASE C@NDUCTANCE
F 5
15 QMETER(T8,T15,K9)
QINTEG(K9,DTIMEU,K10)
F 20 C@NTINUE

END

G ARl LR L R L b LR g
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This corresponds tc a portion of & netwerk as follows:

-460

3-D T8

T1s

Array 10 is 3 time-temperature tesi history of node 8 and node
15 is a known boundary reference temperature. The problem is %o
caleculate the value of conductor seven which will yield a calculated
temperature a2t node eight that is within +2.0 degrees of the test
history. The above Variables Z sperations will attempt to modify
conductor seven sc that it will meet the constraints on temperature
eight. It is quite "brute-force" and unsophisticated. However, the
corrector opsrdions are at the descreticn of the user. If the tolerances
were too severc or the correction operations too strong the correction
for one tolerance could lead to dissatisfaction of the other and an
impasse result. If the reference temperature at node 15 were incorrect,
possibly no value of conductor seven would satisfy the constraints.
The end result of such a2 study would be to produce a plot of conductance
seven versus time which could be used to derive an emperical relation-
ship with other parameters. Too wide a tolerance would cause the
plot to resemble a stair-case function. Please note that either
condition being unsatisfied causes control constant BACKUP to be set
non-zero and the iteration to be redone with the corrected conductor
seven value. Only when all criteria are met are the metering and
integration operations performed.

Output Calls Operations Block

This operations block could have been entitled Variables 3 but
Output Calls seemed more appropriate. In it a user may call upon
any desired subroutine. However, its contents are performed on the
output interval (see Figure F3) so it is only logical that it would
primarily eontain instructions for outputing information. There is
a variety of output subroutines offering the user several format
naptions. A very simple Output Calls block would be as follows:

Cel 8 12
BCD 3@UTPUT CALILS
PRNTMP
END

4.19
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The above call will output certain time control information and the
temperature of every node in the neiwork under consideration. The node
temperatures will correspond to the relative node numbers set up by
the preprocessor, not the actual node numbers set by the user. The
preprocessor lists out all of the input data. Immediately after the
input node data a dictionary of relative node numbers versus actual
node numbers is listed. By utilizing it a user can correlate the
relative node temperatures with his actual numbers.

In addition to the various subroutines for printing output, there
are several plotting subroutines available. However, the plotting
sutroutines require that the information to be plotted exist as arrays.
In order to plot transient temperatures versus time it is necessary
for the user to store the information until the transient is completed
and then p-rform plotting. The operations to do this could be as
follows:

Col 8 12
BCD 3@UTPUT CALILS
PRNTMP
INDEX(K10,1)
STPARY(K10,A1,TIMEN)
ST@ARY(K10,A2,T1)
END

-

The Cutput Calls will be performed at problem start time and on
the output interval until problem stop time is reached. A 100 minute
transient with an output interval of 5 minutes would cause the Output
Calls operations to be performed 21 times. With constant ten initially
at zero, the INDEX call will add an integer one to it each time it is
performed. The ST@ARY call causes the third arguments (TIMEN and T1)
tc be stored into the K10th location of array one and two respectively.
Therefore, Al and A2 must contain at least as many dats Jocations as
required to accommodate the ST@PARY operations. When the transient
analysis is completed, Al and A2 contain array data suitable for
plotting or printing in a columnar format. Such operations are easily
called for in the Execution Operations Block immediately following the
network solution ecall.

;Ihe above data and operations blocks constitute a problem data
deck which must be terminated by the following card:

Col 8 12
BCD 3END {#F DATA
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Parameter Runs

Parametric analysis which do not involve network or operations
changes to the original problem may be performed on the same computer
run. Only data valves such as output page heading, temperatures, capacit-
ances, conductances, constants and arrays may be changed. The data
change blocks must all bs specified whether changes occur in the block
or not and the data input is identical to the preceeding discussion with
the exception of conductors. When specifying new conductances the
adjoining node information is deleted; only the conductor number and
value are required.

Two parametric run options are available, INITIAL and/or FINAL, and
they may be used several times within the problem data deck. The
problem data deck as initially input is referred to as the original
problem. Any and all INITIAL parameter runs refer to it exactly as it
was input. The FINAL parameter run refers to the just completed problem
exactly as terminated. When two INITIAL parameter runs are attached to
the end of a problem data deck, they both refer to the original problem
at start time. However, when two FINAL parameter runs are attached to
the end of a problem data deck, the first refers to the original as
terminated,and the second refers to the first FINAL parameter run as
completed. The CINDA-3G control cards necessary to specify a parameter
run as follows: _

Col 8 12
BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

END -
BCD 3N@DE DATA

END

ECD 3C#NDUCTZR DATA
END

BCD 3C@NSTANTS DATA
END

BCD 3ARRAY DATA
END

The parameter run decks are inserted in the problem data deck immediately
preceeding the BCD 3END @F DATA card. After the BCD parameter card, the
user may inseit additional BCD data to replace the original problem output
page  heading. When changing an array, the entire new array must be
input and be exactly the length of its original., Parameter runs conserve
machine time mainly due to not having to reform the pseudo-compute sequencs.
If a user desires, he may accomplish FINAL parameter runs by calling the
network execution subroutine twice in the EXECUTI@N block and inserting

the necessary calls to modify data values between them.
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Store and Recall Problem Options

The capability to store complete problems on and recall them from
magnetic tape is a useful feature of CINDA-3G. While the parameter run
capability is useful for performing parametric analysis in the same run,
the store and recall capability allows an indefinite time lapse betwseen
parametric analysis. In addition, long duration problems may be broken
into several short duration runs. If a parametric analysis is such that
the first portion of the runs are identical, then the problem can be
run for the constant portion, stored and then recalled as many times as
necessary.

The store problem feature is achieved by a user initiated subroutine
call which is as follows:

Col 12
STPREP(KX)

where KX refers to a constant location containing an alphanumeric identi-
fication name for the stored problem. The call may be used as many times
as desired but the user must insure that each activation references a
unique name. It is up to the user to insu~e that the stored problem
tapes have been mounted with the "write" ring in, are properly positioned
and that the computer operator has been instructed to save the tapes.

The user should check Section V, Control Cards and Deck Setup, to
determine which tapes his problem is being stored on and the control cards
if any for assigning it within the system.

The recall problem feature is a CINDA-3G preprocessor option which
is activated by the following card:

Col l 13
RECALL  AAAAAA

where AAAAAA is the alphanumeric identification name of tine stored problem.
This single card replaces the blank card preceeding the problem data

deck and must be followed by initial parameter and block data change cards
exactly as shown for parameter runs, including the first BCD 3 parameter
and END. cards and also the BCD 3END @#F DATA card. The stored problem
identified will be searched for and brought into core from the two storage
tapes. Any data changes specified will be performed and then control is
passed to the first subroutine call in the EXECUTI@N block. The user
must remember that the recalled problem contains the STYREP call, The
user is again advised to consult Section V for the tape unit designations,
control card requirements and operator instructions necessary for mounting
the stored problem tapes.

z“.22
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SECTION V

CONTROL CARDS AND DECK SETUP

UNIVAC-1108 Deck Setup NASA Houston

The EXEC-II, CUR and FPRTRAN V systems software for the UNi{7AC-1108
are well suited for operation of the CINDA-3G program. The two portions
of the program, Preprocessor and Variables, are contained in binary on
magnetic tape as files one and two respectively. The user must instruct
the operator to mount the tape on drive G. The \ symbol indicates a
seven and eight punch in the card column. The deck setup is as follows:

Col 1l 6 12 s
v RUN
v ASG  G=RXOOX
v ASG  J=J,K=K
v XQT  CUR
TRW G
IN G
\Y XQT cgooL5

<« blank card unless RECALL
- problem data deck through END @F DATA

ERS
IN G
TRI G
VN F@R,K LINKO
VN FPR,K EXECTN
VN FPR,K VARBL1
VN F@R K VARBL2

vN F#R,K @UTCAL
—"load and go" subroutines if any, withVFgR
v XQT  LINKO

V  EfF

It is recommended that the CINDA-3G user acquaint himself with the
CUR operating system and the basics of FPRTRAN V, in particular, logical
IF statements. _

The operator instruction ticket accompanying the job rst have the
RXOOXX designated as input on G and request K as a scratch tape. This
job's compatable with all the various 1108 systems at NSC and is
required to be run under the FFRTRAN V system. -

NOTE: The latest CINDA-3G reel number may be obtained from R. L. Dotts,
phone L83-2378.

5.1.1.1
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UNIVAC-1108 Tape Usage NASA Houston

UNIT FORTRAN PROGRAM
DESIGNATION NUMEBER VARIABLE
B 2 LUT3
c 3 LUT,

D L LUT1
F 8 LUT2
G 9 ——

H 10 -

J 12 LB3D
K 13 LBLP
M 15 LUT7
N 16 INTERN
17

R 21 ——
S 22 -——
Reread 30 KRR

FUNCTION

Copy of oripinal problem data.
Parameter ciange data.dt

Data number definitions.

NA-NB pa‘rs; data number definitions
from pavameter changes.

CUR(IN) CINDA-3G Master tape.
CUR(BUT), if any.* :
Data tape (original problem and all
parameter changes).

Program tape (contains generated
Fortran routines; LINKO,EXECTN,
VARBL1,VARBL2,§UTCAL)

Variables 1 calls generated from
node and conductor data blocks.¥*
Data conversion scratch tape

System plot tape (Restricted use)
Problem recall data tape.¥

Problem store data tape.*

Fortran reread unit.

#These tapes need not be assigned if the particular options are not
used. The STPREP option requires assigning and saving tapes L and 22.
The RECALL options requires assigning and mounting the above tapes on

4 and 21 respectively.

i,
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UNIVAC-1108 Deck Setup NASA Michoud

The EXEC-II, CUR and FPRTIRAN V systems software for the UNIVAC-1108
are well suited for operation of the CINDA-3G program. The two portions
of the program, Preprocessor and Variables, are contained in binary on

- magnetic tape as files one and two respectively. The user must instruct

the operator to mount the tape on drive F. The V symbol indicates a
seven and eight punch in the card column. The deck setup is as follows:

Col 1l 6 12

\Y RUN
\Y TPR ‘
V  ASG D=D,P=F,I=I,k=K, L = L .
\Y QT CUR
TRW F
IN F
V  XQT C@OOL5
<—blank card unless RECALL
—problem data deck through END @F DATA
\Y QT CUR -
ERS
IN F
TRI F
VN FPR,K LINKO
VN FgR,K EXECTN
VN F#R,K VARBL1
VN FPR,K VARBL2
VN FgR,K PUTCAL
<—"load and go" subroutines if any, withV F}Z‘R cr.rds
VN  XQT LINKO “ )
\Y) FIN

It is recommended that the CINDA-3G user acquaint himseif with the
CUR operating system and the basics of FPRTRAN V, in particular, logical
IF statements. .

The operator instruction ticket accompanying the job must have the
RXXXX designated as input on F, The job is compatable with all the
various 1108 systems at Michoud and is required to be run under the
FPRTRAN V system.

NOTE: The latest CINDA-3G reel number may be obtained from R. L.
Thompson, phone 2556448,

5.10201
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UNIVAC-1108 Tape Usage NASA Michoud

UNIT FORTRAN PROGRAM
DESIGNATION NUMEER VARIABIE
DRUM 2 LUT3
DRUM 3 LUTL
D L LUTL
DRUM 8 LUT2
F 9 ——
G 10 ——
I 12 LB3D
J 13 ——
‘K 14 LELP
L 15 LuT?
DRUM 27 INTERN
R 21 —
S 22 ——
Reread 0 FRR

FUNCTION

Copy of original problem data.
Parameter change data.

Data number definitions.

NA-NB pairs; data number definitions
from parameter changes.,

CUR(IN) CINDA-3G Master tape.
CUR(@UT), if any. *

Data tape (original problem and all
parameter changes).

System plot tape (restricted use).
Program tape (contains generated
Fortran routines; LINKO,EXECTN,
VARBL1,VARBL2,#UTCAL)

Variables 1 calls generated from
node and conductor data blocks.
Data conversion scratch tape.
Problem recall data tape. #*
Problem store data tape. ¥
Fortran reread unit.

% These tapes need not be assigned if the particular vptions are not

used,

The STYREP option requires assigning and saving tapes 4 and

22. The RECALL options requires assigning and mounting the above

tapes on 4 and 21 respectively.

(
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Alphabetic Listing of Available Subroutines

NAME PAGE NAME P/GE NAME PAGE NAME PAGE
AABB 6.5.7 CINDSR 6.1.3 Di1DWM  6.2.3 ENTR§  INTERN
ABIATS 6.6.4 CINDSS 6.1.1 DIMDGL  6.2.2 E@F 6.4.7

AB@RT CINSIN 6.3.14 DIMDG2  6.2.3 EXPARY 6.3.16
ACSARY 6.3.15 CINTAN 6,3.14 DIMIDA  6.2.2 EXPNTL 6.3.16
ADARIN 6.3.10 CMPXDV  6.3,18 DIMIMD  6.2.2 FILE 6.5.13
ADD 6.3.3 CMEXMP  6.3.18 DIMIWM  6.2.2 FILTER

ADDALP 6.5.7 CMPXSR  6.3.17 DIM2DA 6.2.3 FITIT

ADDARY 6.3.3 CMPYI 6.3,18 DIM2MD 6.2.4 FIX 6.3.1

ADDFIX 6.3.3 CNBACK 6.1.86  DIMWM  6.2.4 FLIGHT

ADDINV 6.,3.10 CNEXPN 6.1.6  DlICYL  6.2.5 FLIP 6.3.1

AERg INTERN  CNFAST 6.1.5  D11DAI  6.2.% FIAT  6.3.1

ALPHAA 6.5.7 CNFRWD 6.1.4  Dl1IDIM  6.2.4 F¢RM INTERN
AMAT CNFWBK 6.1.7 DILIMCY  6.2.5 FYRPM  INTERN
ARCC@S 6.3.15 CFIMAX 6.5,2 DI1IMDA  6.2.2 FRAMEV  6.4.3

ARCSIN 6.3.15 C@IMIN 6.5.2 DIIMDI  6.2.4 FRMFAC  INTERN
ARCTAN 6.3.15 CFIMLT ‘6.5.6  DI12CYL  6.2.5 FUDGE

ARINDV 6.3.10 CENE D12MCY 6.2.5 GARZAM

ARYADD 6.3.3 CNVEC D1ZMDA  6.2.3 GENALP  6.5.1

ARYDIV 6.3.6 CgPY INTERN D2DEG1  6.2.8 GENARY 6.3.7

ARYEXP 6.3.16  C@sAaRY 6.3.1, D2DEG2  6.2.8 - GENCgL 6.5.1

ARYINV 6.3.10  C@SD INTERN D2DIWM  6.2.8 GENM . INTERN
ARYMNS 6.3.2 CR#SS INTERN D2DWM  6.2.8 GENST  INTERN
ARYMPY 6.3.5 CSGDMP  6.1.5 D2MXD1  6.2.8 GSIgPE  6.2.6

ARYPLS 6.3.2 CSQRI  6.3,17 D2MXD2  6.2.8 HANTIM  INTERN
ARYST@ 6.3.11 CVQIHT 6.2.6 DMXIM  6.2.8 HEDC@L  INTERN
ARYSUB 6.3.4 CVQIWM 6.2.6  D2MX2M  6.2.8 HENEYK

ASNARY 6.3.15 DATEUP INTERN D3DEG1  6.2.9 IEXPAN  INTERN
ASSMBL 6.5.6 DA11CY 6.2.5 D3DIWM  6.2.9 INDEX

ATAND .  INTERN  DALIMC 6.2.5  EFACS 6.5.4 INGRAT

ATNARY 6.3.15 DA12CY 6.2.5  EFASN 6.5.4 INTRFC  4.3.1

BC@NE DAL2MC  6.2,5  EFATN 6.5.4 INVRSE  6.5.8

BENDIT DECAY  INTERN EFCgS 6.5.4, . IRRADE 6.6.2

BIVLV 6.6.5 DIAG 6.5.6  EFEXP 6.5.5 IRRADI  6.6.2

BKARAD 6.3.7 DISAS  6.5.6  FRFFEMS  6.3.21  ITERAT INTERN
BLDARY 6.3.7 DIVARY 6.3.6  EFFG 6.3.21  ITRATE INTERN
BRKARY 6.3.7 DIVFIX 6.3.6 EFLYG 6.5.5 JACPBI  6.5.10
- BTAB 6.5.7 DIVIDE 6.3.6  EFP@W 6.5.5 JPIN 6.3.12
BVSPDA 6.2.7 INTERN EFSIN 6.5.4 KERNEL

BVSPSA 6.2.7 DFUINT INTERN EFSQR 6.5.5 KMAT

BVTRN1 . 6.2.7 D1DEG1 6.2.1  EFTAN 6.5.4 IAGRAN 6.2.1

BVTRN2 6.2.7 DI1DEG2 6.2.3 EILEADD  6.5.3 IGRNDA  6.2.1

CALL 6.5.13  DIDCITI 6.2,4 ELEDIV  6.5.3 LIMAT

CAP INTERN D1DIDA 6.2.,1  ELEINV  6.5.3 LINE

CDIVI 6.3.18 DIDIIM 6.2,4, EIEMUL 6.5.3 LININT

CHANGE D1DIMI 6.2.4  EILESUB  6.5.3 LINRES

CINC@S 6.3.14, DIDIWM 6.2.2 ENDFIL  6.4.3 LIST 6.5.13
CINDSL 6.1.2 DID2DA 6.2.3 ENDMPP  6.5.13 IJGE 6.3.16
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Alphabetic Listing of Available Subroutines SContinued}
NAME PAGE NAME PAGE NAME PAGE NAME. PAGE
LZGEAR 6.3,16  PLYNML 6.3.19 SETUP INTERN  SYSTEM
L#GT 6.3.16  PNCHMA 6.4.6  OHADPX ~ INTERN  SYST?A
LZGTAR 6.2,16  PNTABL 6.6.4  SHFIV 6.3.1 SYST2B
LQDVAP 6.6.5 PYIMILT 6.5.9  SHFIVR  6.3.1 SYSTLA
LRMAT PPLRES SHIFT 6.5.2 SYSTLB
LSTAPE 6.5.14  PPIS@V  6.5.9  SHYCK INTERN  SYST*
LSTSQU 6.6,1 PPLVAL  6.5.9 SH¢C% INTERN  TABLE
MARGN SCL020  PRAND INTERN  SH@C INTERN  TANARY 6.3.14
MASS 6.5.11  PRESS  6.3.21 SHUFL 6.5.2 TDVEE INTERN
MASSES PRINT  6.4.1  SIGMA 6.5.1 TEMP§  INTERN
MATRIX 6.5.5 PRINTA 6.4.2  SIMEQN  6.6.1 TPPLIN  INTERN
MATVCA PRINTL 6.4.1  SIMP TPRBIT  INTERN
MATVEC PRNTMA  6.4.2  SINARY  6.3.14  TRANS  6.5.8
MAXDAR 6.3.9 YRITMP  6.4.1 SIND INTERN  TRAP
MLTPLY 6.3.5 PSINTR 6.2.6  SKPLIN  INTERN  TRNBV1  INTERN
MZDES 6.5.10  PSNTWM 6.2.6  SLDARD  6.3.,11  TRNBV2?  INTERN
MPYARY 6.3.5 PS@FTS SLDARY  6.3.11  TRNFRM  INTERN
MPYFIX 6.3.5 PUNCH  6.5.13 SLICE TRNPRT
MULT 6.5.8 PUNCHA 6.4.6  SLRADE  6.6.3 TRPZDA  6.3.20
MXDRAL 6.3.9 PUMLT1 INTERN SLRADI  6.6.3 TRPZD  6.3.20
NBLANK SCLO20  QCENE INTERN  SMPPAS INTERN  TS@FP
NEWRTL 5.3.19  QFPRCE  6.3.13 SMPINT  £.3.20 UNPAK  INTERN
NEWTRT 6.3.19 QINCID INTERN SPLIT 6.3.12 UPDMFP  INTERN
@DDTIM INTERN  QINTEG 6.3.13 SPREAD  6.3.12  UNITY  6.5.1
PNES 6.5.1 QINTGI  6.3.13 SPRESS  6.3.21  VARCM  6.2.10
@PNPLT 6.3 QETER  6.3.13 SQRFPT  6.3.17  VARCSM  6.2.10
#RBHET QMTRI  6.3.13 SQRPTI  6.3.17 VARC1  6.2.10
@RBHT INTERN  QUAD INTERN  SRSMI. INTERN  VARC2  6.2.10
@RBVEC . INTERN  RDTNQS  6.3.13 SRsM.. INTERN  VARGCM  6.2.10
@RINT INTERN  READ é.4.7  STAGHT INTERN  VARGSM 4.2.10
PARCHL READAB STAGP INTERN  VARGL  6.2.10
PIQT 6.5.13  REC@VL INTERN STATE VARG2 6.2.10
PLFTLL REC@VT INTERN STAT1 INTERN  VIRLAM  INTERN
PLYTL1 6.4.5 REFICT 6.5.2  STAT2 INTERN  VISCTY  INTERN
PLPTL2 6.4.5 REWIND 6.4.7  STFSEP  6.3.8 WEIGHT
PLPTMA RIGID STFSEQ  6.3.8 WIND
PLFTLL RIGPUT STFSQS  6.3.8 WNDIT
PLPTX1 A TS STIFF 6.5.12 WRITE  6.4.7
PIZTX2 A T 6.5.6 STNDRD  6.4.1 WRTARY  INTEWN
PLFTX3 6.4.5 RTPLY INTERN STPARY  6.3.11  WRIL INTERN
PIPTXL 6.4.5 SCAIAR  6.5.5  STPREP  4.22 XMATCH  INTERN
PLPTZ SCALE  6.,3.8  SUB 6.3.4 ) 9.4
PIYTED SCLDEP 6.7,11 SUBARY  6.3.4 ZERg 6.5.1
PLTBIV SCLIND 6.3.11 - SUBFIX  6.3.4
PLTND 6.4.3 SCRPFA 6.6.3  SUMARY  6.3.9
PLYARY 6.3.19 SETMNS 6,3,2 SYMINV  6.6.3
PLYEVL £.5.9 SETPLS 6.3.2  SYMIST  6.6.3

6.0.1
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Execution Subroutines

d

Name

CINDSS (Steady state, block iteration)
CINDSL (Steady state, accelerated)

CINDSR (Steady state, radiation dominated)
CNFRWD (Explicit forward differencing)
CNFAST (Accelerated forward differencing)
CSGDMP (Network criteria and linkage)
CNEXPN (Explicit exponential prediction)
CNFWEK (Tmplicit forward-backward diff.)
CNBACK (Implicit backward differencing)
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EXECUTION SUBROUTINE NAME: CINDSS

PURPOSE :

This subroutine ignores the capacitance values of diffusion nodes to cal-
culate the network steady state solution. Due to the SPCS requirement,
diffusion nodes are solved by a 'block" iterative method. However, if
all diffusion nodes were specified as arithmetic nodes they would be
calculated by a "successive point" iterative method. The user is re-
quired to specify the maximum number of iterations to be performed in
attempting to reach the steady state solution (control constant NLZ@P)
and the relaxation criteria which determines when it has been reached
(DRLXCA for diffusion nodes and/or ARLXCA for arithmetic nodes). The
subroutine will continue to iterate until one of the above criteria is
met. If the iteration count exceeds NIZPP an appropriate message is
printed. Variables 1 and Cutput Calls are performed at the start and
Variables 2 and Output Calls are performed upon completion. If not -
specifi=d, control constants DAMPD and DAMPA are set at 1.0. They are
used as multipliers times the new temperatures while 1.0 minus their
value is used as multipliers times the old temperatures in order to
"weight” the returned answer. This weighting of so much new and so
muich cld is useful for damping oscillations due to nonlinearities.
They may also be used to achieve over relaxation.

If a series of ' 3ady state solutions at various times are desired it
can be accompl’ “..d by specifying control constants TIMEND and @UTFUT.
QUTPUT will be used both as the output intervsl) and the computation
interval. In this case appropriate calls would have to be made in
Variables 1 to modify boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the
transient solution subroutines which has the same SPCS requirement.

In this manner the steady state solution becomes the initial eonditions
for the transient analysis. However, since CINDSS utilizes control
constants TIMEND and QUTRUT the user mus specify their values in the
exccution block after the steady state call and prior to the transient
analysis call.

RESTRICTIONS: The SPCS option is required. Diffusion ncdes receive a
"block" iteration while arithmetic ncdos receive a "successive point"
iteration, no acceleration features are utilized. Control constants
NL#FP and DRLXCA and/or ARLXCA must be specified. Successive steady
state solutions can be obtained by specifying control constants
TIMEND AND @UTPUT. Other control constants which are activated or
used are; LPPPCT, DRIXCC and/or ARLXCC, TIMEN, TIMEM, TIMEZ, DAMPD,
DAMPA, DTIMEU, LINECT and PAGECT. Control constant #PEITR is check
for output each iteration, :

CALLING SEQUENCE: CINDSS

#This subroutine utilizes one dynamic storage core location for each
diffusion rode. : . o

6.1.1
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EXECUTION SUBROUTINE NAME: CINDSL

PURPOSE: This subrcutine ignores the capacitance values of diffusion
nodes to calculate the network steady state solution. Since this sub-
routine has the LPCS requirement, both diffusion and arithmetic nodes
receive a "successive point" iteration. In addition, each third itera-
tion a linear extrapolation is performed on the error function plot of
each node in an attempt to accelerate convergence. The user is required
to specify the maximum number of iterations to be performed in attempt-
ing to reach the steady state solution (control constant NLPFP) and the
relaxation criteria which determines when it has been reached (DRLXCA
for diffusion nodes and/or ARLXCA for arithmetie nodes). The subroutine
will eontinue to iterate until one of the ahove criteria is met. If the
iteration count exceeds NIFPP an appropriate message is printed. Varia-
bles 1 and Output Calls are performed at the start and Variables 2 and
Output Calls are performed upon ccmpletion. If not specified, control
constants DAMPD and DAMPA are set at 1.0. They are used as multipliers
times the new temperatures while 1.0 minus their value is used as multi-
pliers times the old temperatures in order to "weight” the returned
answer. This weighting of so much new and so much old is useful for
damping oscillations due to nonlinearities. They may also be used to
achieve over relaxation.

If a series of steady state solutions at various times are desired it
can be accomplished by specifying control constants TIMEND and @QUTPUT.

. @UTPUT will be used both as the output interval and the computation

interval. In this case appropriate calls would have to be made in
Variables 1 to modify boundary conditions with time.

If desired, the CINDSL call can be followed by a eall to one of the
transient solution subroutines which has the same LPCS requirement. In
this manner the steady state solution becomes the initial conditions for
the transient analysis. However, since CINDSL utilizes control constants
TIMEND AND @UTPUT the user must specify their values in the execution
block after the steady state call and prior to the transient analysis

call.

RESTRICTIONS: The LPCS option is required. Diffusion and arithmetic
nodes receive a "successive point" iteration and an extrapolation

method of acceleration. Control constants NI@PP and DRIXCA and/or

ARIXCA must be specified. Successive steady state solutions can be
obtained by specifying control constants TIMEND and @UTPUT, Other
controi constants which are activated or used are; I@#PCT, DRLXCC, and/or
ARLXCC, TIMEN, TIMEM, TIME#, DAMPD, DAMPA, DTIMEU, LINECT and PAGECT,
Control constant @PEITR is checked for output each iteration,

CALLING SEQUENCE: CINDSL

#This subroutine utilizes two dynamic storage core locations for each
diffusion and arithmetic node.

_—
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EXECUTION SUBROUTINE NAME: CINDSR

PURPOSE: This subroutine is designed to calculate the network steady
state solution of moderately radiation dominated problems. It is similar
to CINDSL in that the LPCS option is required and that all nocdes receive
a "successive point" iteration and the same extrapolation method of
accrleration. Olher execution subroutines evaluate the nonlinear radia-
tion conductors each time they are encountered during an iteration.
CINDSR differs in that it linearizes the problem by calculating effective
radiation conductors and solves the linearized problem. It then re-
evaluates the effective radiation conductors, solves the linear problem
and continuously repeats the process. The user must .pecify the maximum
number of iterations to perform in attempting to reach the steady state
solution and the energy balance of -he system to be satisfied as a
criteria. This system energy bal. ce is the difference between all
energy into the system and all energy out and is specified as control
constant BALENG. CINDSR internally calculates the iterative relaxaticn
criteria damping factors and loopings to be performed in sclving the
linearized problem. It continuocusly increases the severi” of the
relaxation criteria until the BAIENG criteria is met for two successive
linearized problems with virtually no temperature change between the two.
Systems with small energy transfer rates to the boundaries are diffieult
to solve. A reasonable rule is to set BALENG at 1% of the rate in or
out. Successive steady state analysis may be performed and CINDSR may
be followed by a call to a transient analysis routine with the same

LPCS option requirement.

RESTRICTIONS: The LFCS cption is required. Control eccrstants NL##P and
BALENG must be specified and greater than zero. Successive steady state
solutions can be obtained by specifying control constants TIMEND and
@UTPUT. Other control constants which are activated or used are:

LJFPCT, ENGBAL, DRIXCC and/or ARLXCC, TIMEN, TIMEM, TIME¢, DTIMEU, LINECT
and PAGECT. Control constant BPETTR is checked for output each iteration.
Caution: Each radiation conductor must have a unique conductor number.

CALLING SEQUENCE: CIND3R

#This subroutine utiliges 3 dynamic storage core locations for each
diffusion and arithmetic node and one more for each radiation conductor.

_6,1.3
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EXECUTION SUBROUTINE NAME: CNFRWD

PURPOSE: This subroutine performs transient thermal analysis by the
explicit forward differencing method. The stability criteria of each
diffusion node is calculated and the minimum value is placed in control
constant CSGMIN. The time step used (control constant DTIMEU) is cal-
culated as 95% of CSGMIN divided by CSGFAC. Control constant CSGFAC
is set at 1.0 unless specified larger by the user. A "look ahead"
feature is used when calculating DTIMEU. If one time step will pass
the output time point the time step is set to come out evactly on the
output time point, if two time steps will pass the output time point
the time step is set so that two time steps will come cut exactly on
the output time point. DTIMEU is also compared to DTIMEH and DTIMEL.
If DTIMEU exceeds DTIMEH it is set equal to it, if DTIMEU is less than
DTIMEL the problem is terminated. If no input values are specified,
DTIMEL is set at zero and DTIMEH it is set at infinity. The maximum
temperature change calculated over an iteration is placed in control
constant DTMPCC and/or ATMPCC. They are compared to DTMPCA and/or
ATMPCA respectively and if larger cause DTIMEU to be modified so that
they compare as equal to or less than DTMPCA and/or ATMPCA. If

DTMPCA and/or ATMPCA are not specified they are set at infinity.

A1l diffusion nodes are calculated prior to solving the arithmetic
nodes. The user may iterate the arithmetic node solution by specify-
ing control constants NLPFP and ARLXCA. If the arithmetic node itera-
tion count exceeds NIJJP the answers are accepted as isyand the sub-
routine continues without any user notification. In addition the

user may svecify control constant DAMPA in order to dampen possible
oscillations due to nonlinearities. The arithmetic nodes may be used
to specify an incompressible pressure or radiosity network. In this
manner they would be solved implicitly each time step but evaluation
of temperature varying properties would suffer a one time step lag.

RESTRICTIONS: The SPCS option is required and control constants

TIMEND and @UTPUT must be specified. Problem start time if other than
zero may be specified as TIMEF. Other control constants used or activated
are: TIMEN, TiMEM, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA,
DTMPCC, ATMPCA, ATMPCC, NL@JP, LOJPCT, DAMPA, ARLXCA, ARLXCC, @PEITR,
BACKUP, LINECT and PAGECT.

CALLING SEQUENCE: CNFRWD

#This subroutine utilizes one dynamic storage core location for euach
diffusion and arithmetic node.

¢
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EXFCUTTON SUBROUTINE NAME: CNFAST

PURPOSE:  This subroutine is a modified version of CNFRAD whieh allows the
user to specify the minimum time step to be taken. The time step ealeculu-
tions procred exactly as in CNFRWD until the check with DTTMEL is mude.

If DTIMFU is less than DTIMEL it is set equal to it. As euch node is enl-
culated its COGMIN is obtained and compared to DTIMEU. Tf equil to or
greater, the nodal caleulation is identieal to CNFRWD, If the CSGMIN for
4 node is less thun LTIMEU the node recrives a steady state ealeulation.
If only-a small portion of the nodes in a system receive the steadr ctiite
calculation the answers are generally rasonable, However, as the number
of nodes receiving steady state calculations increases, so do the uolution
inaccuracies.

RESTRICTIONS:  The SPCS option is required and control constants TIMEND
wnd PUTPUT must be specified. The checks on control constants DTMFCA,
ATMPCA and BACKUP are not performed. Other control constants which arc
used or activated are: TIMEN, TIMEM, TIME@, CSGMIN, CSGFAC, DTIMEU,
DTIMFL, DTTMEH, DTMPCC, ATMPCC, DAMPA, ARLXCA, ARLXCC, NLggP, Lg¢gPCT,

! LTNECT :ind PAGECT.

CALLING SEQUENCE: ' CNFAST

*This subroutine utilizes one dynamic storage core location for each
diffusion node.

FXFCUTION SUBROUTINE NAME: C3GDMP

PURPOSE: This subroutine is designed to aid in the checkout of thermal
problem data decks. It calls upon Variables 1 and Output Calls and then
: prints out each relative diffusion node number with the capacitance and

E CSCMIN value of the node. For each node it identifies the attached

; conductors by relative conductor number, lists the type and conductance

E value and the relative number and type of the adjoining nods. Either Lhe
: SPCS or LPCS option may be used. While the LPCS option allows every con-
ductor attached to a node to be identified, the SPCS option only identi-
fies conductors for *‘ne first relative node number on which they occur.
After the diffusion rodes are proces.ed the connection infor: tion for
the arithmetic nodes is listed. After listing the above information
conlrol passes to the next sequentially listed subroutine.

RESTRICTIONS- This subroutine is generally called in the Execution block
and possibly in Variables 2 but not in Variables 1 or Output Calls.

CALLING SEQUENCE: CSGDMP
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EXECUTION SUBROUTINE NAME: CNEXPN

PURPOSE: This subroutine performs transient thermal analysis by the
exponential prediction method and the solution equation is of the
following form:

Q. zgjat zGjat
= ki 1-e Ci )+ e Ci
i~ ZGj i

j

The reader is referred to page 5.1.3 of CCSD TN-AP-66-15 for the deriva-
tion. The above equation is unccnditionally stable no matter what size
time step is taken and reduces to the steady state equation for an
infinite time step. However, stability is not to be confused with
accuracy. Time steps larger than would be taken with CNFRWD remain

-stable but tend to lose or gain energy in the system. For this reason

this subroutine is not recommended where accuracy is sought. However,
it is suitable for parametric analysis where trends are sought and a
more accurate method will be utilized for a final analysis.

The inner workings of the subroutine are virtually identical to CNFRWD
with the exception of the solution equation and the use of CSGFAC. The
time step used (DTIMEU) is calculated as CSGMIN times CSGFAC. The look
ahead feature for calculating the time step is identical as are the
checks with DTIMEH, DTIMEL and DTMPCA. The diffusion nodes are cal-
culated pricr to the arithmetic nodes and the arithmetic nodes utilize
NL@FP, ARLXCA and DAMPA exactly the same as CNFRWD.

RESTRICTIONS:  The SPCS option is required and control constants TIMEND
and PUTPUT must be specified. Problem start time if other than zero
may be specified as TIMEf. Other control constants used or activated
are: TIMEN, TIMEM, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA,
DTMPCC, ATMPCA, ATMPCC, ARLXCA, ARLXCC, DAMPA, @PEITR, BACKUP, LINECT
and PAGECT,.

CALLING SEQUENCE: CNEXPN

#*This subroutine utilizes one dynamic storage core location for each
diffusion and arithmetic node.

6.1.4
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EXECUTION SUBROUTINE NAME: ’ CNI'WBK

PURPOSE.:

This subroutine performs transient thermal analysis by implicit forward-
backward differencing. The LPCS option is required and allows the
simultaneous set of equations to be solved by "successive point" itera-
tions. During the first iteration for a time step,the capacitance
values are doubled and divided by the time step and the energy transfer
rates based on old temperatures are added to the source locations.

Upon completing the time step the capacitance values are returned to
their original state. The iteration looping, convergence criteria and
other control constant checks are identical to CNBACK. The time step
checks and calculations snd look ahead feature are identiecal to that
used for CNBACK.

The automatic radiation transfer damping and extrapolation method of
acceleration mentioned under the CNBACK subroutine writeup are also
zmployed in this subroutine. Diffusion and/or arithmetic terperature
calculations may be damped through use of DAMPD and/or DAMPA respectively.
Control corstants BACKUP and @PEITR are continuously checked. CNFWBK
internally performs forward-backward differencing of boundary conditions.
For this reason the user should utilize TIMEN as the appropriate inde-
pendent variable in Variables 1 operations.

It is interesting to note that CNFWBK generally converges in 25% fewer
iterations than CNBACK. The probable reason for this is that the
boundary of the mathematical system is better defined. <+hile every
future lemperature node under CNBACK is connected to its present temper-
ature, under CNFWBK ever ~ture temperature node is also receiving an
impressed scurce based on .he present temperature.

RESTRICT ONS:

The LPCS option is required. Control constants TIMEND, @UTPUT, DTIMEI,
NLZPFP and DRIXCA and/or ARLXCA must be specified. Other control constants
which are used or activated are: TIMEN, TIME@, TIMEM, CSGMIN, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRIXCC and/or
ARLXCC, L@FPCT, BACKUP, @PEITR, LINECT and PAGECT.

CALLING SEQUENCE: CNFWBK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.
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EXECUTION SUBROUTINE NAME: CNBACK
PURPOSE:

This subroutine performs transient thermal analysis by implicit backward
differencing. The LPCS option is required and allows the simultaneous
set of equations to be solved by "successive point" iteration. Each
third iteration,diffusion node temperatures which trace a continuous
decreasing slope receive an extrapolation on their error function curve
in an attempt to accelerate convergence. For convergence criteria the
user is required to specify NLZJP and DRIXCA and/or ARIXCA. If the
numoer of iterations during a time step exceeds NIJ#P a message is
printed but the problem proceeds.

agmwmwmwwww%‘;h.,;};‘

Variables 1 is performed only once for each time step. Since this sub-
routine is implicit the user must specify the time step to be used as
DTIMEI in addition to TIMEND and OUTPUT. The look ahead feature for
the time step calculation in CNFRWD is usrd as are the checks for
DTIMEH, DTMPCA and ATMPCA but not DTIMEL. Damping of the solutions can ‘
be achieved through use of control constants DAMPD and/or DAMPA. Control
constants BACKUP and @PEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary
step changes when radiation conductors are present. CNBACK contains an
automatic damping feature which is applied tc radiation conductors.

] The radiation transfer to a node is calculated for its present tempera-
H ture and a temporary new temperature is calculated. Then the radiaticn
transfer is recalculated.and the final node temperature is caleculated
: based on the arithmetic mean of the two radiation transfer calculations.
N | This automatic radiation damping has proven to be quite successful and

' lessens the need for use of DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, @UTPUT, DTIMEI,
s NIFFP and DRLXCA and/or ARLXCA must be specified. Other control con-
stants which are used on activated are: TIMEN, TIMEJ, TIMEM, CSGMIN,
DTIMEV, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC
and/or ARLXCC, LP@PCT, BACUP, @PEITR, LINECT and PAGECT.

CALLING SEQUENCE:
CNBACK

#This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.
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Interpolation Subroutines

Names

LAGRAN,LGRNTMA,D1DEG1 ,D1D1DA

D1D1WM,D1IMDA ,DIMDG1,DIMIDA ,DIMIWM,DIMIMD

D1DEG2,D1D2DA ,D1D2WM,D12MDA ,DIMDG2 ,DIM2DA
DI1M2WM,DIM2MD,D1DG1T ,D1D1TM,D1DIMI ,D11DAT ,D11DIM,D1IMDI
D11CYL,DA11CY ,D12CYL,DA12CY ,D1IMCY ,DA11IMC ,D12MCY ,DAIMC
CVQIHT,CVQIWM,GSLEPE ,PSINTR , PSNTWM

Bivariate Array Format

BVSPSA ,BVSPDA, BVTRN1 ,BVTRN2

D2DEG1,D2DEG2 ,D2DIWM,D2D2WM, D2 D1 ,D2MXD2 ,D2MXIM , D2MX2M
Trivariate Array Format

D3DEG1,D3D1WM
VARCSM,VARCCM,VARC1,VARC2,VARGSM, VARGCM, VARG1, VARG2
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SUBROUTINE NAMES: LAGRAN or LGRNDA
PURPOSE :

These subroutines perform L~-rangian interpolation of up to order 50. The
first requires one doublet array of X, Y pairs while the second requires
two singlet arrays, one of X's and the other of Y's. They contain an
extrapolation feature such that if the X vaiue falls outside the range of
the independent variable the nearest dependent Y variable value is
returned and no error is noted

n n Y » Xi
Y=Pn(X)= T N Xk-X , n=1,2,3,...,50max.
k=0 i=0
ik

RESTRICTIONS:

All values must be floating point except N which is the order of interpola=
tion plus one and must be an integer. The independent variable values
must be in ascending order.

CALLING SEQUENCE: ,_AGD.ANEX JYLA(IC) N
or 1GRNDA(X.Y Ax(Icf AY(IC) ,N)

NOTE:

A doublet array is formed as follows:

Ic,x1,n,x2,Y2.X ,...,XN N
"where IC’= é* _'by program)
and singlet arrays are fonmed as follows.

B IC,X1,X2,X3,...,XN
4! IC’Y].,YZ,YB,..O,YN
: and IC = N (set by program)

SUBROUTINE NAMES: DI.DEG1 or D1D1DA

PURPOSE :

These subroutines perform single variable linear interpclation on doublet
or singlet arrays respectively. They are self-contained subroutines that
are called upon by virtually 21l other linear intarpolation subroutines.

RESThsCTIONS:

All values must be floating point numbers. The X irlependent variable
values must be in ascending order.

CALLING SEQUENCE: D1DEG1 (X,A(IC),Y)
or DIDLDA(X,AX(IC) ,AY(IC),Y)
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SUBROUTINE NAMES: D1DIWM or D1IMDA
PURPOSE:

These subroutines perform single variable linear interpolation by calling on

DIDEG1 or D1D1DA respectively. However, the interpclated answer is multipiied

by the value addressed as Z prior to being returned as Y.
RESTRICTIONS:
Same as D1DEG1 or DID1DA and Z must be a floating point number.

CALLING SEQUENCE:

D1DIWM(X,A(IC),Z,Y)
or D1IMDA(X AX(IC),AY(IC),Z,Y)

SUBROUTINE NAMES: DIMDG1 or DIMIDA

PURPOSE :

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two
singlet arrays respectively.

RESTRICTTONS :

See D1DEG1 or D1D1DA as they are called on respectively.

CALLING SEQUENCE:

D]HDGléXl,XZ,A(IC) Y)
or DIMIDA(X1 X2 AX(IC) ,AY(IC),Y)

SUBROUTINE NAMES: DIMIWM or DIMIMD

PURPOSE :

These subroutines use the arithretic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is mal-
tiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIMDGl or DIM1DA and Z must be a floating point number.

CALLING SEQUENCE:

DIMIWM(X1,X2,A(IC) ,2,Y)
or DIMIMD(X1.X2 AX(1C) ,A¥(1C),Z,Y)
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SUBROUTINE NAMES: DIMZM or DIMMD
PURPOSE:

These subroutines use the arithmetic mean of two input values as the independ-
ent variable for parabolic interpolation. The interpolsied answer is multi-
plied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DIMDG2 or DIM2DA and Z must be a floating point number.

DIMAM(X1,X2,A(1C),Z,Y)
| or DINMD(X1,X2 AX(IC) ,AY(IC),Z,Y)
" SUBROUTINE NAME. . 510GIT or DIDLIM or DIDIMI

URFOSE:

" These subroutines perform single variable linear interpolation on sn array of
X's to obtain an array of Y's. DI1D1IM multiplies all interpolated values by
a constant Z value while DIDIMI allows a unique Z value for each X value.
They all call on DIDEG].

RESTRICTTONS :

The number of input X's must be supplied as the integer N and agree with the
maber of Y and Z locations where applicable. Z values must be floating
point numbers.

D1DG1I(N,x(DV),A(IC),Y(DV))
or DID1TM(N,X(D¥) ,A(IC),Z,Y(DV))
or DIDIMI(N,X(DV),A(1C),2(DV),Y(V))
SUBROUTINE NAMES: D11DAI or D11DIM or D1IMDI
HJ'RPCBE:

These subroutines are virtual‘l.y identical to D1DG1I, D1D1IM and DIDIMI
respectively. The difference is that they require singlet arrays for
interpolation and call on DI1D1DA.

RESTRICTIONS :
“Same as DIOGIT, DIDIIM and DIDIMI. .
CALLING SEQUENCE: | |
bnm:t(n,x(wmxgm),mm),Y(nv))

or DMI(N,X(DV) ,AX(IC) :AI( IC) ,Z(DV) ,Y(DV) )

Pl
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CUBROUTINE NAMES: D1ICYL or DALICY

PJRPOSE: These subroutines reduce core storage requirements for cyelieazl
interpolation arrays. The arrays need cover one pericd only,and the period
(PR) must be specified as the first argument. Linear interpclation is
perform-d,and the independent variable must be in ascending order.

RESTRICTIONS: All values must be floating woint. Subroutine INTRFC is
call-d ¢n by both D11CYL and DA1lCY, then DIDEG1 or D1D1DA respectively.

CALLING SEQUENCE: D1ICYL(PR,X.A(IC),Y)
or DA11CY(PR,X,AX(IC),AY(Ir),Y)

" RE3TRICTICNS: See D1ICYL and DA11CY. Subroutines LAGRAN and LGRNDA

CUBROUTINE HAMES: D12CYL or DA12CY

IRPOSE: These subroutines are virtually identical to D11CYL and DA1ICY
<xcept that parabolie interpclation is performed.

respectively are called on.

CALLING SEQUENCE: D1ZCYL(PR,X,A(IC),Y)
or DA12CY(PR,X,Ax(1C),AY(IC),Y)

SUBROUTINE NAMES: DI1IMCY or DA1IMC

PJRPOSE: These subroutines are virtually identical to D1ICYL or DA11CY
except that the interpolated answer is multiplied by the floating point
Z value prior ‘o being returned as Y.

RESTRICTIONS: Call on subroutines DI1DEGL and D1D1DA respectively.

CALLING SEQUENCE: D1IMCY(PR,X,A(IC),Z,Y)
or DA1IMC(PR,X,AX(1C},AY(IC},Z,Y)

SUBROUTINE NAMES: D12MCY or DA12MC

PURPOSE: These subroutines are virtually identical to D1IMCY and DA1IMC
except that parabolic interpolation is performed.

RESTRICTIONS: Calls on subroutines LAGRAN and LGRNDA respectively.

CALLING SEQUENCE: D12MCY(PR,X,A(IC),Z,Y)
or DA12MC(PR,X,AX(IC),AY(1C},2,Y)
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SUBROUTINF. NAMES: CVQIHT or CVQIWM
PURPOSE:

These subroutines perform two single variable linear interpolations. The
interpolation arrays must have the same independent variable X and dependent
variables of lets say R(X) and S(X). Additional arguments of Y, Z and T
complete the data values. The post interpolation calculations are respec-
tively:
Y = S(X)*(R(X)-T)
or Y = Z#S(X)R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common independ-
ent variable. A1l values must be floating point numbers.

CALLING SEQUENCE:

CVQIHT(¥ ,AR(IC),AS(1C),T,Y)
or CVQLM(X,AR(1C),As(1C),T,Z,Y)

SUBROUTINE NAMES: GS1@PE

PURPOSE:

This subroutine will generate a slope array so that point slope interpla-
tion subroutines can be used instead of standard linear interpclation sub-
routines. The user must address two singlet type arrays and a singlet
slope array will be produced.

RESTRICTIONS:

The X independent variable array must be in ascending order. All arrays
must be of equal length and contain floating point numbers.

CALLING SEQUENCE:
' GSIFPE(AX(IC),AY(IC),AS(IC))

SUBROUTINE NAMES: PSINTR or PSNTWM

PURPOSE :

These subroutines perform linear interpolation and require arrays of -the Y
points and slcpes which correspond to the independent variable X array.

All values must be floating point numbers. PSNTWM mmltiplies the interpolated
answer by Z prior to returning it as Y,

RESTRICTIONS:

The independent X and dependent Y and slope arrdys must be of equal length.
CALLING SEQUENCE:

PSINTR(X ,AX{IC) ,AY(IC},AS(IC),Y)
or PSNTWM(X,AX(IC),A¥(IC),AS(IC),2,Y)
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BIVARIATE ARRAY FORMAT Z= £(X.Y)

Bivariate arrays must be rectangular, full and input in the following
row oxder:

IC,N ,X1,X2,X3, ..., XN
Y1,211,212,213, . . . , ZIN
Y2,221,222,223, . . . , 22N

YM,ZM1,ZM2,ZM3, . . . , IMN

where I is the integer number of X variables, All other values must be
flosting point numbers,and the X and Y values must be in ascending order.

CUBROUTINE NAMES: BVSPSA or BVSPDA

PURPOSE: These subroutines use an input Y argument to address a bivariate
~array and pull off a singlet array of Z's corresponding to the X's or pull
off a doublet array of X, Z values, respectively. The integer count for
the constructed arrays must be exactly N or 2#N respectively. To use

the singlet array for an interpolation call the X array can be reached

by addressing the N in the bivariate array.

RESTRICTIONS: As stated above,and all values must be floating point.

CALLING SEQUENCE: BVSPSA(Y,BA(IC),Az(IC))
BVSPDA(Y,BA(IC),AXZ(IC))

SUBROUTINE NAMES: BVTRN1 or BVTRN2

PURPOSE: These subroutines construct a bivariate array of Y's versus
X and Z from an input bivariate array of Z's versus X and Y. BVTEN1
snould be used when the Z values increase with increasing Y values and
BVTRN2 when the Z values decrease with increasing Y wvalues.

RESTRICTIONS: The user must appropriately place the X and Z values and
spaces for Y's in the array to be constructed. These subroutines will
£ill in the Y spaces. The new array can differ in size from the old.
Subroutine D1DEG1l is called and its linear extrapolation feature applies.

CALLING SEQUENCE: BVTRN1(BA@(IC),BAN(IC))
or BVTRN2(BA@(IC),BAN(IC))
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SUBROUTINE NAMES : D2DEG1 or D2DEG2

PURPOSE: These subroutines perform bivariate linear and parabolic inter-
polation respectively. The arrays must be formated as shown for Bivariate
Array Format.

RESTRICTIONS: For D2DEG1 , N=22M22 | See page 6.2.7
' for D2DEG2 , N23,M23 array format
CALLING SEQUENCE : D2DEG1(X,Y,BA(IC),Z)

or D2DEG2(X,Y,BACIC),Z)
SUBROUTINE NAMES: D2D1AM or D2D2WM

PURPOSE: These subroutines perform bivariate linear or parabolic inter-
polation by calling on D2DEG1 or D2DEG2 respectively. The interpolated
answer is multiplied by the W value prior to being returned as Z.

RESTRICTIONS: Same as D2DEG1 or D2DEG2 and W must be a floating point
value.

CALLING SEQUENCE: D2DIWM(X,Y,BA(IC),W,2)
or D2D2wM(X,Y,BA(IC),W,Z)

SUBROUTINE NAMES: D2MXD1 or D2MXD2

PURPOSE: These subroutines are virtually identiczl to D2DEG1 and D2DEG2
except that the arithmetic mean of two X values is used as the X independ-
ent variable for interpolation.

RESTRICTIONS: Same as D2DEG1l or D2DEG2.

CALLING S CE: D2MXD1(X1,X2,Y,BA(IC),Z)
or D2MXD2(X1,X2,Y,BA(IC),Z)

SUBROUTINE NAMES: DIMXIM or D2MX2M

PURPOSE: These subroutines are virtually identical to D2DIWM and D2D2WM
except that the arithmetic mean of two X values is used as the X independ-
ent variable for interpolation.

RESTRICTIONS: Same as D2DIWM and D2DAWM.

CALLING S CE: D2MX1M(X1,X2,Y,BA(IC),W,Z)
or D2MX2M(X1,X2 ! BA(IC) W,2)

62,8
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TRIVARIATE ARRAY FORMAT T = £(X,¥,7)

Trivariate arrays may be thought of as two or more bivariate arrays, each
bivariate array a function of a third independent variable Z. Trivariate
arrays must be input in row order and be constructed as follows:

IC,NX1,NY1,Z21,X 1,¥2,X 3, . . . XN
Y1,T11,T12,T13, . . . , TIN
¥2,721,T22,723, . . . , TN

. e

YM,TML,TMR,TM3, . . . , TMN
NXZ2,NY2,22,X 1,£ 2,X 3, . . . , X J
¥1,T11,T12,7T13, . . . , TlJ
Y2,T21.T22,T23, . . . , T2d

YK,TK1,TK2,TK3, . . . , TKJ
NX3,NY3,23, « .+ e e e .

. . * - - - . . . .

The trivariate array muy consist of as many bivariate '"sheets" us desired.
The: rumber of X and ¥ values in each sheet must be specified as integers
{N/-NY). The "sheets" must be rectangular and full but need not be identi-
¢il in size. .

SJUBROUTINE NAMES: D3DEG] or D3DIWM

PIRPOSE:

These subroutines perform trivariate linear intepolatiocn. The interpolation
arriy musSt be constructed as shown for Trivariate Array Format. Subroutine

DGl is called on which calls on DIDFGl. Hence, the linear extripolation

feature of these routines applies. Subroutine D3D1WM multiplies the inter-

rolated answer by F prior to returning it as T.

RESTRICTIONS :

see Trivariate Array Format. F must be a floating point value.

CALLING SEQUENCE:

D3DEG1(X,Y,Z,

zZ,T
D3p1wM(X,Y,Z,T

=
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SUBROUTINE NAMES: VARCSM or VARCCM or VARC1 or VARC2

PURPOSE: These are linear interpolation subroutines which are set up as
Variables 1 calls by the preprocessor when processing the CGS and CGD
mnemonic codes in the nodal data block. VARCSM is utilized for the CGS code,
VARCCM is utilized for the CGD code when t. . array arguments appear, VARC1
and VARC2 are used for the CGD code when either the first or second respec-
tive array arguments are input as a constant, The following mnemonic codes
in the nodal block

Col 8 cGo 1, 2., Al, 10,2
CGL 2, €J0., Al, 10.2, A2, 1,6
CGD 3, 80., 1.4, 5.1, A2, 1,6
CGD 4, 80., Al, 5.1, 6.3, 8.7

would cause the construction in Variables 1 of

Col 12  VARCSM (T1, C1, Al, 10.2)
VARCCM (T2, C2, Al 10.2, A2, 1.6)
VARC). (T3, C3, 1. A, 5.1, A2 1, 6é)
VARC2 (TL, C4, A1, 5.1, 6 3 8.7)

The second call causes the sum of two interpolations with multiplications
to be used as the C2 value. The later two calls cnly perform one inter-
polation, but use the sum of the two products as the C value.

RESTRICTIONS: The array arguments must address the integer count.

CALLING SEQUENCE:
VARCSM (T, C, A(IC), F)
or VARCCM (T, C, AL(IC), F1, A2(IC), F2)
or VARC1 (T, C, X, F1, A2(IC), F2)
or VARC2 (T, C, Al(IC), F1, X, F2)

SUBROUTINE NAMES: VARGSM or VARGCM or VARGl or VARG2

PURPOSE: These are linear interpolation subroutines which are set up as
Variables 1 calls by the preprocessor when processing the CGS and CGD
mnemonic codes in the conductor data block. They are similar to the pre-
ceeding four calls for the nodal data block except that the conductor argu-
ment is first followed by two temperature arguments, VARGSM is used for the
CGS code. If the F value is positive the mean of the two addressed tempera-
tures is used for interpolation, If it is negative only Tl is used for
interpolation and the absolute value of F is used as a multiplier, The .
VARGCM, VARGl and VARG2 perform the one or two interpolations required, mul-
tiply by the F values to obtain Gl and G2 components and then calculate G as
G = 1.0/(1.0/G1 + 1.0/G2)

RESTRICTIONS: The array arguments must address the integer count,

CALLING SEQUENCE: VARGSM (G, T1, T2, A(IC), F)
or VARGEM (G, T1, T2, AL(IC), F1, A2(IC), F2)
' X, F1 A2(IC), Fzg

or VARGl (G, T1,
> Al(1c$, F1,

or VARG2 (G, T1,

3
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Arithmetic Subroutines

Mame

FLYLT ,FIX,INTRFC,SHFTV,SHFTVR,FLIP
SETPLS,ARYPLS,SETMNS , ARYMNS
ADD,ADDFIX,ADDARY ,ARYADD

SUB, SUBFIX,SUBARY ,ARYSUB

MLTPLY ,MPYFIX,MPYARY ,ARYMPY
DIVIDE,DIVFIX,DIVARY,ARYDIV

GENARY , BLDARY , BRKARY , BKARAD
STFSEP,SCALE , STFSEQ, STFSQS
SUMARY ,MA XDAR ,MXDRAL

ARYINV,ARINDV ,ADDINV,ADARIN

STPARY ,ARYST@,SCLDEP, SCLIND ,SLDARY , SLDARD
SPLIT,J@IN,SPREAD

QMETER ,RDTNQS ,QMTRI,,QF@RCE ,QINTEG,QINTGI
CINSIN,SINARY ,CINC@S,C@SARY ,CINTAN, TANARY
ARCSIN,ASNARY ,ARCC@S,ACSARY ,ARCTAN , ATNARY
EXPNTL,ARYEXP ,EXPARY, L#GT, LGTAR,, LIGE , LPGEAR
SQREPT , SQRPTT ,CMPXSR, CSQRI

CMPXMP ,CMPYI ,CMPXTWV ,CDIVI

NEWTRT ,NEWRT.,, PLYNML ,PLYARY

SMPINT, TRPZD, TRPZDA

PRESS , SPRESS ,EFFG,EFFEMS

B
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SUBRCUTINE NAMES: ELQAT or FIX or INTRFC
PURFOSE:

Subroutine FLPAT will convert an integer to a floating point number. Sub-~
routine FIX will convert a floating point number %o an integer. Subroutine
INTRFC will fracture a floating point number to yield the largest integer
value possible and the remainder or frastioral portion as a floating point
nuuber. Their respective operations are:

O 0

Le ke |
o -
nnwHnn

RN K=

RESTRICTIONS:

X and F arguments must address floating point values and the N argument
address an integer.

CALLING SEQUENCE:

!

FIAAT(N
or FIX(X,NS
or INTRFC(X,N,F)

X)

SUBROUTINE NAMS: SHFTV or SHFTVR or FLIP

PURPOSE :

Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place
it in another array in reverse order. Subroutine FLIP will reverse an
array in its own array location. Their respective operations are:

A(1i) = B(1) , i=1,N
or A(N-i+1) = B(i) , i=1N
or A(i)new = A(N-i+2) o0ld , i = 2,N+1

RESTRICTIONS :

The data values to be shifted or reversed in order may be anything. The
N must be an integer.

CALLING SEQUENCE:
SHFTV(N,B(DV) ,A(DV))
or sam'N,B(DVS,A(w))
FLIP(A&IC))

The answer array may not be overlayed into the input array.




CINDA-3G

SUBROUTINE NAMES: SETPLS or ARYPIS
PURPOSE:

SETPLS will set the sign positive for a variable numbar of arguments
while ARYPLS will set the sign positive for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numkers.
The number (N) of data values in the array must be specified as an
integer.

CALLING SEQUENCE:

SETPIS(A,B,C...)
or ARYPIS(N,A(DV))

where N may he a literial integer or the address of a location contain-
ing an integer and A(DV) addresses the first data value in the

MNWMHWH‘HM. o

array.
SUBROQUTINE NAMES: SETMNS or ARYMNS
PURPOSE:

SETMNS will set the sigr negative for a variable number of arguments
while ARYMNS will set the sign negative for every data value in a
specified length array.

RESTRICTIONS:
The values addressed may be either intugers or floating point numbers.
The number (N) of data values in the array must be specified as an
integer.

CALLING SEQUENCE:

SETMNS(A,B,C, .. )
or ARYMNS(N,A(DV))

where N may be a literial integer or the addres: of a location contain-
ing an interger and A(DV) addresses the first data value in the

array.
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SUBROUTINE_NAMES : , ADD or ADDFIX

PURPOSE :
To sum a variable number of floating point or integer numbers respectively.
5=XXx , i=1,23,....,8 , N=z=2

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subrmutine ADDFTX
is for integers. :

CALLING . EQUENCE:

ADD(X1,X2,X3,...,XN,S)
or ADDFIX(X1,X2,X3....XN,S)

SUBROUTINE NAMES: ADDARY or ARYADD

PURPOSE :

Subroutine ADDARY will add the corresponding elements of two specified
length arrays to form a third array. Subroutine ARYADD will add a
constant value to every element in an array to form a new array. Their
respective operations are:

Ai =Bi+Ci , i
or A1l=Bi+C , i

b et
-
=

RESTRICTIONS:

A1l data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:

ADDARY(N,B(DV),C(DV),A(DV))
or ARYADD(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE NAMES: SUB or SUBFIX

PURFOSE :

To subtract a variable number of floating point or integer
numbers respectively.

R=Y-ZXi,i=1,2,3,...,N,N21

RESTRICTIONS:

Subroutine SUB is for floating point numbers while subroutine SUBFIX
is for integers.

CALLING SEQUENCE: -

SUB(Y,X1,X2,X3,...,XN,R)
or SUBFIX(Y,X1,X2,X3,...,XN,R)

SUBROUTINE NAMES: SUBARY or ARYSUB

PURPOSE :

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form 2 third array. Subroutine ARYSUB will subtract a
constant value from every element in an array to form a new array. Their
respective operations are:

Ai=Bi-C -, 1i=1,N
or Ai =Bi -C , 1=1,N
RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer. '

CALLING SEQUENCE:

SUBARY(N,B(DV),C(DV),A(DV))
or ARYSUB(N,B(DV),C,A(DV))

The answ2r array may be overlayed into one of the input array areas.




wvtiih: .

TR a2

Al LR ENTTITS

CINDA=3G - ““‘”‘”‘QE&%&%’.‘.

SUBRCUTINE NAMES: MLTPLY or MPYFIX

PURPOSE :

To multiply a variable rumber of floating point or integer numbers
respectively.
= XI*X2%X3*, XN , N2z 2

RESTRICTIONS:

Subroutine MLTPLY is for floating point numbers while subrcutine MPYFIX
is for integers.

CALLING SEQUENCE:

MLTPLY(X1,X2,X3,...,XN,P)
or MWFIX(X1,X2,X3,...,XN,P)

SUBROUTINE NAMES: MPYARY or ARYMPY

Subroutine MPYARY will multiply the corresponding elements of two arrays
to form a third. Subroutine ARYMPY. will multiply a constant value times
each element of an array to form a new array. Their respective operations
are:

Ai=Bi*Ci, i
orAi=Bi®C ,1i

"o
=
=

RESTRICTIONS :

A1l data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:

MPYARY(N,B(DV),c(DV),A(DV))
or ARYMPY(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE NAMES: DIVIDE or DIVFIX

PURPOSE:
To perform a division of floating point or integer numbers respectively.
Q=Y/Z%Xi ,i=1,2,3,...,N , N =21

RESTRICTIONS:

Subroutine DIVIDE is for floating point numbers while DIVFIX is for
integers.

CALLING SEQUENCE:

DIVIDE(Y,X1,X2,X3,...,XN,Q)
or DIVFIX(Y,X1,X2,X3,...,XN,Q)

SUBROUTINE NAMES: DIVARY or ARYDIV

PURPOSE

Subroutine DIVARY will divide the elements of one array into the corre-
sponding elements of another array to produce a third array. OSubroutine
ARYDIV will divide each element of an array by a constant value to pro-
duce a new array., Their respective operations are:

Ai =Bifci , i

1,N
or Ai =BifC , i

1,N

RESTRICTIONS:

A1) data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE:

DIVARY(N,B(DV).C(DV),A{DV))
or ARYDIV(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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SUBROUTINE NAME: GENARY

PURPOSE:

This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number
of values in the array to be generated and the space for the generated
array.

RESTRICTIONS:
All numbers must be floating point.
CALLING SEQUENCE: GENARY(B(DV) ,A(DV))

where B(1)
B(2)
B(3)

minimum value
maximum value
length of array to he generated (floating point)

SUBROUTINE NAME: ELDARY
PURPOSE:

This subroutine will build an array from a variable number of arguments
in the order listed. The operation performed is:

AMo=Xi , i=1,N
RESTRICTIONS:

Data may be of any form. The subrouwine obtains the integer array length
N by counting the arguments.

CALLING SEQUENCE: BLDARY(A(DV) ,X1,X2,X3,...,XN)
SUBROUTINE NAME: BRKARY or BKARAD
PURPOSE :

These subroutines will distribute values fram within an array to a variable
number of arguments in the order listed. The first places the value

into the location while the second adds it to whats in the location.
Respective operations are:

X

or Xi
RESTRICTIONS:

Floating point numbers must be used for BKARAD. The integer array length

Al , i
Xi + Ad , i

- N is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: BRKARY(A(DV% ,1,X2,X3,...,5N)
or BKARAD(A(DV) ,X1,X2,X3,...,XN)
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SUBROUTINE NAMES: STFSEP or SCALE

PURPOSE:

it gtiges et o R e e TR

Subroutine SIFSEP will place a constant value into a variable number of

: locations. Subroutine SCALE will utilize a constant value to multiply a

H variable numver of arguments, each having a location for the product. The
: respective operations are:

Xi
or Xi

Y , i
™Zi o, i=1,2,

I
o

RESTRICTICNS:

STFSEP may be used to move any desired value but SCALE can only be used
for floating point numbers.

CALLING SEQUENCE:

STFSEP(Y,X1,X2,X3,...,XN)
or SCALE(Y,X1,21,X2,Z2,...,XN,ZN)

SUBROUTINE NAMES: STFSEQ or STFSQS

PURPOSE :

Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant

data value to be in the first array location while STFSQS requires it to
be supplied as an additional argument. The respective operations per-
formed are:

Ai
or Ai

o
[
-
b
I
=~
-

o
-
Al
.—l

RESTRICTIONS:

N must be an integer but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE:

STFSEQ(A(DV),N)
or STFSQS(B,N,A(DV))

£.3 .8 :
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SUBROUTINE NAME: SUMARY
PURFOSE :

To sum an array of floating point values:
S = ZAL , 1i=1,N

RESTRICTIONS:

The values to be summed must be floating point numbers and the array
length N must be an integer.

CALLING SEQUENCE:

SUMARY(N,A(DV),S)

SUBROUTINE NaMES: MAXDAR or MXDRAL

PURPOSE :

These subroutines will obtain the absolute maximum difference between

corresponding elements of two arrays of equal length N, The array values

must be floating point numbers. The operation performed is

D = }Ai -Bi

my » 1=1,N

Subroutine MXDRAL also locates the position P between 1 and N where the
maximum oceurs.

RESTRICTIONS:

The N argument must be an integer. The D and P arguments are returned as

floating point numbers.
CALLING SEQUENCE:

MAXDAR(N,A(DV),B(DV),D)
or MXDRAL(N,A(DV),B(DV),D,P) .
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SUBROUTINE NAMES: ARYINV or ARINDV

PURPOSE :

Subroutine ARINDV will divide each element of an array into a constant
value tc form a new array. Their respective operations are:

1.0/A1 , i
B/Ci , i

Ai
or Ai

1,N
1,N

/I
nu

RESTRICTIONS:

A1l data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE:

ARYINV (N,A(DV))
or ARINDV (N,c(pv),B,A(DV))

the ARINDV answer array may be overlayed into the input array area.

Subroutine ARYINV will invert each element of an array in its own location.

SUBROUTINE NAMES: ADDINV or ADARIN

PURPOSE ¢

Subroutine ADDINV will calculate one over the sun of the inverses of a
variable number of arguments. Subroutine ADARIN will calculate one
over the sum of inverses of an array of values. These subrcutines are
useful for calculating the effective conductance of series conductors.
Their respective operations are:

Y
orY

1.0/(1/X1+1./X2+.. +41./XN) , N =22
1.0/2(1./%i) , i=1,N -

RESTRICTIONS:

All data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE:

ADDINV(X1,X2,X3,...XN,Y)
or ADARIN(N,X(DV),Y)

4310 , 7 — !
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SUBRQUTINE NAMES: STARY or ARYST#

PURPOSE :

These subroutines will place a value into or take a value out of a
specific array location respectively. Their respective operations are:

Ai = s i
orX=A1 s i

RESTRICTIONS:

N , N>0
N N>0

The values may be anything but N must be an integer.

CALLING SEQUENCE: STPARY(N,X,A(DV))
or ARIST¢(N,X A(IV))

RESTRICTIONS:

SUBROUTINE NAMES: SCLDEP or SCLIND
PURPOSE :

These subroutines will multiply the dependent or independent variables of a
doublet type interpolation array respectively. Their respective operations
are:

Al = X*Ai s

3, ,7,...,N+1
or Al = XAl s 2,4,6

5
shs65000,N

Il lI

Al1] values must bz floating point. The arrays must contain the length
integer count as the first value which must be even.

CALLING SEQUENCE: ' SCLDEP(4(IC),X)
or SCLIND(A(IC),X)

SUBROUTINE NAMES: SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation arrays
during a transient analysis. The array data values are moved back one or
two positions, the first one or two values discarded and the last one or
two valws updated respectively. The "gliding array" thus maintained can
then be used with standard interpolation subroutines to simlate transport
delay phenomina. Their respective operations are:

M=AM+1 , i=2,N
and Al =X ’ i=N+1
or Al =4i+2 ’ i=2,N1
and Ai=Xand M+1~Y, i=N

RESTRICTTONS :

The addressed arrays must have the array integer count N as the first value.
For SLDARD, N must be even.

_ . SLDARY(X,A(IC))
CALLING SEQUENCE: SLDARD(X.Y, A(IC))

C 83,01
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SUBROUTINE NAMIS: SPLIT or JPIN

PURPOSE :

These subroutines separate a doublet array into two singlet arrays or
combine to singlet arrays into a doublet array respectively. Their
respective operations are:

Bi = A2i= s i=1,N

Ci = A2 , i=1,N

or  Ai-r = Bi , i=1,N

Azi = Ci , i=1,N
RESTRICTIONS:

The arrays may contain sny values but N must be an integer. N is the
length of the B and C arrays and the A array must be of length 2N.

CALLING SEQUENCE: SPLIT(N,A(DV) ,B(DV},C(DV))
or JPIN(N,B(DV),C(DV),A(DV))

SUBROUTINE NAME: SPREAD
PURPOSE:

This subroutine applies interpolation subroutine D1D1DA to two singlet
arrays to obtain an array of dependent variables versus an array of
independent variables. It is extremely useful for obtaining singlet
arrays of various dependent variables with a corresponding relationship

to one singlet independent variable array. The dependent variable arrays
thus constructed can then be operated on by array manipuwlation subroutines
in order to form composite or complex functions. Doublet arrays can

f;rst be separated with subroutine SPLIT and later reformed with subroutine
JPIN.

RESTRICTIONS:

All data values must be floating point except N which must be the integer
length of the array to be constructed. The arrays fed into D1D1DA for
interpolation must start with the integer count. X is for independent
and Y is for dependent. I is for input and § for output.

CALLING SEQUENCE: SPREAD(N,X(IC),Y(IC),XI(DV),Y#(DV))
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SUBROUTINE NAMES: QMETER or RDTNQS or QMIRI or QEQRCE

These subroutines are generally used for calculating flow rates, Their
respective operations are:

A = B*¥(C-D) .
or A = B#((C+,60.) -(D+460.) )
or Ai = Bi#(Ci-Ci+l) , 4i=1,N
or Ai = Bi#(Ci-Di) , i=1,N

RESTRICTIONS:

A1l values must be floating point numbers except the array length N which
must be an integer.

CAT.LING SEQUENCE:

QMETER(C,D,B,A)
or RDTNQS(D,C,B,A)

or QMTRI(N,C(DV),B(DV),A(DV))

or QFRCE(N ,C(DV3,D(DV,B(DV),A(DV))

SUBROUTINE NAMES: QINTEG or QINTGI

PURPOSE :

These subroutines perfora a simple integration. They are vseful for obtai
the integrals of flow rates calculated by QMETER, RDINQS, QMTRI or QFYRCE
Their respective operations are:

S = S+Q*DT
or Si = SiHQD¥DT , i=1,N

RESTRICTIONS:

All values must be floating point numbers except N which must be an integer.
Control constant DTIMEU should be used for the step size when doing an
intsgration with respect to time. These subroutines should be called in
Variables 2.

CALLING SEQUENCE:

QINTEGiQ,DT,S)
or QINTGI(N,Q(DV),DT,S(DV))
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SUBROUTINE NAMES: CINSIN or SINARY
PURPOSE:

These subroutines obtain the sine function of an angle or array cf angles.
Their respective cperations are

A = sine (B)
or Ai = sine (Bi) s

RESTRICTIONS:

[
I
)

-
=

All angles must be in radians. All values must be floating point numbers
except N which must be an integer.

CALLING SEQUENCE: CINSIN(B,A)
or  SINARY(N,B(DV),A(DV))

SUBROUTINE NAMES: CINCES or C@SARY
PURPOSE:

These subroutines obtain the cosine function of an angle or array of
angles. Their respective operztions are:

A
or Ai

cosine (B)
cosine (Bi) R i=1,N

RESTRICTIONS:

A1]1 angles must be in radians, All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQITNCE: CINCES(B,A)
or CmAng(N,B(W),A(W))

SUBROUTINE NAMES: CINTAN or TANARY
PURPOSE :

These subroutines cbtain the tagent functior of an angle or array of
angles. Their respective operations are:

A = tangent (B)
or Ai = tangent (Bi) , i=1,N
RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQUENCE: CINTAN(B,A)
or  TANARY(N,B(DV),A(DV))
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SUBROUTINE NAMES: ARCSIN or ASNARY

PURPOSE :

These subroutines obtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are:

sine ~ (B)
R .
sine "(Bi) , i= 1,N

A
or Ai

the angles are returned in radians with the following limits, - 7/2<A< 7/2.
A1l values must be floating point except for the array length N which
must be an integer.

CALLING SEQUENCE: ARCSIN (B ,A)
or  ASNARY(N,B(DV) ,A(IV))

SUBROUTINE NAMES: ARCCAS or ACSARY
PURPOSE:

These subroutines obtain the angle corresponding to a cosine function
value or array of cosine values. Their respective operations are:

A = cosine *(B)
or Ai = cosine (Bi) , i=1,N
RESTRICTIONS:

The angles are returned in radians with the following limits, O =A< 7 |
A1l values must be floating point numbers except for the array length
N which rmust be an integer.

CALL ™NG_SEQUENCE: ARCCES(B,A)
or ACSARY(N,B(IV) ,A(IV))

SUBROUTINE NAMES: ARCTAN or ATNARY
PURPOSE:

Thses subroutines obtain the angle corresponding to a tangent function
value of array of tangent values: Their respective operations are:

A = tangent " (B)
or Ai = tanvent ~(Bi) s i=1,N
RESTRICTIONS: /
The angles are returned in radians with the following limits, .

All values must be floating point numbers .xcept the array length N which
must be an integer.

CALLING SEQUENCE: ARCTAN(B

A
or Ammr(n,a%m) SA(DV))




CINDA=3G

SUBROUTINE NAMES: EXPNTL or ARYEXP or EXPARY
PURPQSE:

These subroutines perform an exponential operation. Their respective
operations are:

A=B
or Ai = Bi , I=1,N
or Ai = Bi© s I=1,N

RESTRICTIONS:

A1l values must be positive floating point numbers except N which must
be an integer
CALLING SEQUENCE: EXPNTL(C,B,A)

or ARYEXP(N,C,B(DV),A(DV))
or EXPARY(N,c(pv),B(DV),A(DV))

SUBROUTINE NAMES: LGT or LEGTAR
PURPOSE: -

These subroutines obtain the base 10 log function of a number or array
of numbers. Their respective operations are:

A = log, (B)
or Ai = log,, (Bi) s i=1,N
RESTRICTIONS:

Al]l values must be positive floating point numbers except N which must
be an integer.

CALLING SEQUENCE: LGT(B,A)
or L@GTAR(N,B(DV),A(DV))

SUBROUTINE NAMES: IGE or _LYGEAR
PURPOSE:

These subroutines obtain the base e log function of a number or array of
numbers. Their respective operations are: ‘

A =1log, (B)

or Ai =1log, (Bi) s - i=1,N
RESTRICTIONS:
A1l values must be positive floating point numbers except N which must be
an inte‘ger.
CALLING SEQUENCE: L4GE(B,A)

or LfGEAR(N,B(DV),A(DV))
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SUBROUTINE NAMES: SQREPT or SQRETI

PURPOSE:

These subroutines obtain the square root of a number or array of numbers
respectively. Their respective operations are:

4 =+B
or Al = +/Bi s i=1N
RESTRICTIONS:

The A and B values must be floating point numbers. The N must be an
integer.

CALLING SEQUENCE: SQRAPT(B,A)
or SQRPTI(N,B(DV),A(DV))

"“ﬂpﬂ“

SUBROUTINE NAMES: CMPXSR or CSQRI
PURPOSE :

These subroutines obtain the complex square root of a couplex nuber
or an array of camplex numbers respectively. Their respective operations

are:
A +iB = VC+ iD s i=,/~1
or Aj+ iBj = /Cg + iDJ , i= 1,N
RESTRICTIONS:

A1l numbers must be floating point except N which must be an integer.

CALLING SEQUENCE: CMPXSR(C,D,A,B)
or CSQRI(N,C(DV),D(DV),A(DV) ,’B(DV))

e  6.3.17
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SUBROUTINE NAMES: CMPXMP or CMPYI
PURPOSE:

These subroutines will multiply two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

L +iB = (C + iD)*(E + iF) , =1
or Aj + iBj = (Cj + iDj)*(Ej + iFj) , j= 1,N

RESTRICTIONS:

A1l numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXMP(C,D,E,F,A,B)
or CcMPYI(N,C(DV) ,D(DV) ,E(DV) ,F(DV) ,A(DV) ,B(DV))

SUBROUTINE NAMES: CMPXDV or CDIVI

PURPOSE:

These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A+ iB= (C + iD)/(E + iF) s i =1
or Aj + iBj = (Cj + 1Dj)/(Ej + iFj) ; j= 1,N

RESTRICTIONS:

A1l numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXDV(C,D,E,F,A,B)
or CDIVI(N,C(DV) ,D(DV) :E(DV) :F(DV) ,A(DV) ’B(DV))

6.3.18
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SUBROUTINE NAMES: NEWTRT or NEWRTL
PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic
or quartic equation respectively. The root must be in the neighborhood
of the supplied initial guess and up to 100 iterations are performed
in order to obtain an answer within the spec1fied tolerance. If the
tolerance is not met, an answer of 10 % is returned. The respective
equations are:

£(X) = A1+A2*X+A3*X’+AA*X = 0.0+T
or g(X) = AL+A¥X+AI*X+AIMX+AS*X* = 0.04T

where X starts as the initial guess RI and finishes as the final answer
RF, T is the tolerance.

RESTRICTIONS:

~

A1l data values must be floating point numbers.

CALLING SEQUENCE: NEWTRT(A(DV) ,T,RI,RF)' 4
or NEWRTL(A(DV),T,RI,RF)

SUBROUTINE NAMES: ’ PLYNML or PLYARY
P SE:

These subroutines calculate Y from the following polynomial equation:
Y = ALHAZKXHARX ALK+ ... +ANXN !

The number of terms is variable but all the A ccefficients must be
input no matter what their value.

RESTRICTIONS:

All values must be floating point numbers except the number of coefficients
N which must be an integer.

CALLING SEQUENCE: PLYNML(X,AL,A2,43,. .. ,AN,Y)
or PLYARY(N,X,A(DV),Y)

' 603 |19




CINDA=3G

SUBROUTINE NAMES: SMPINT or TRPZD
PURPOSE :

These subroutines perform area integrations by Simpson's rule and the
trapezoidal rule respectively. Simpson's rule requires that an odd
number of points be supplied. If an even number of points is supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but
Simpson's rule elsewhere. The respective operations are:

A = DX*(YI+LY242Y3+LY L+, . +YN) /3
or A = DX#(Y1+2Y2+2Y3+2Y L+, . .+IN)/2

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values
mist be floating point except N which must be an integer.

CALLING SEQUENCE:

SMPINT(N,DX,Y(DV),A)
or TRPZD(N,DX,Y(DV),A)

SUBROUTINE NAME: TRPZDA

PURPOSE;

This subroutine performs area integration by the trapezoidal rule. It
should be used where the DX increment is not uniform between the Y
values but the corresponding X value for each Y value is known. The
operation performed is as follows:

A =3 Z(Xi-Xi-1)*(Yit¥i-1) , i=2,N
RESTRICTIONS :

All values must be floating point numbers except the array length N
which must be an integer.

CALLING SEQUENCE:

TRPZDA(N,X(DV),Y(DV),A)

6.3.20
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SUBROUTINE NAMES: PRESS or SPRESS

PURPOSE: These routines are useful for impressing nodal pressures in one
dimensional flow paths once the entry pressure Pl, path conductance G and
flow rate W are known, The respective equations are:

P2 = P1-W/G
or P2(i +1) = Pl(i)-W/G(i); i=1,2,3,-+<N

RESTRICTIONS: For SPRESS, the pressures and conductors must be sequential
and in ascending order, the number of pressure points to be calculated must
be supplied as the integer N,

CALLING SEQUENCE: PRESS(P1,W,G,P2)
SPRESS(N, P1(DV) ,W,G(DV))

SUBROUTINE NAME: EFFG

PURPOSE: For a pressure network of the following type

c)
Pl ‘“ P2
G )
where the valves of the identified elements are known, this subroutine will
calculate the effective conductance GE from Pl to P2, Any interconnections

may occur in the space but only P2, P3 and P4 may be on the boundary and
no elements may cross it, The equation utilized is:

GE = (G1*(P1-P3) + G2%(P1-PL))/(P1-P2)

RESTRICTIONS: See above, May not b2 used where capacitors appear on the
internal nodes.

CALLING SEQUENCE: EFFG(P1,P2,P3,P4,G1,G2,GE)

SUBROUTINE NAME: EFFEMS
PURPOSE: This subroutine calculates the effective emissivity E between
parallel flat plates by the following equation,

E = 1,0/(1.0/E1 + 1,0/E2 - 1.,0)
where El and E2 are the emissivities of the two surfaces under considerat;on.

RESTRICTIONS: Arguments must be floating point numbers,
CALLING SEQUENCE: EFFEMS(E1,E2,E)
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OUTPUT SUBROUTINES

NAME

=
Z

STNDRD, PRNTMP, PRINT, PRINTL 6.4.1
PRINTA, PRNTMA b.4.2
SC-4020 Plotting Subroutines and Symbols 6.4.3
@PNPLT, PLTND, ENDFIL, FRAMEV 6.4.3
PIZTX1, PLYTX2 6.4.4
PLYTX3, PLYTXL, PLYTL1, PIPTL2 6.4.5
PUNCHA , PNCHMA 6.4.6
READ,WRITE, REWIND ,E@F 6.4.7

LW'
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SUBROUTINE NAMES: STNDRD or PRNTMP

PURPOSE :

Subroutine STNDRD causes a line of output to be printed giving the present
time, the last time step used, the most recent CSGMIN value, the maximum
diffusion temperature change calculated over the last time step and the
maximum relaxation change calculated over the last iteration. RNN refers
to the relative node number on which something occurred. The line of out-
put looks as follows:

L A

TIME DT IMEU CSGMIN(RNN) DTMPCC( RNN) ARIXCC(RNN)

Subroutine PRNTMP internally calls on STNDRD and also lists the tempera-

ture of every node in the network according to relative node number. The
relative node number - actual node number dictionary printed out with the
input data should be consulted to determine temperature locations on the

thermal network model.

~

RESTRICT IONS :

No arguments are required or allowed. These subroutines should be used
with network problems only.

CALLING SEQUENCE:

STNDRD
or PRNTMP

SUBROUTINE NAMES: PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed out.
The arguments ma; reference temperature, capacitance, source locations, con-
ductors, constants or unique array locations. In addition, subroutine
PRINTL allows each value to be preceeded or labeled by a six character
alphanumeric word. The number of arguments is variable but the "label" array
used for FRINTL should contain a label for each argument.

RESTRICTIONS:

These subroutines do not call on STNDRD. The user may call on it if he
desires time control information. Any control constant may be addressed
in order to see what its value is, integers must first be floated.

CALLING SEQUENCE:

PRINT(T,C,Q,G,K, ... ,A+)
or PRINTL(1A(DV),T,C,Q,G,K,...,A+)

t 6-[‘..1
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SUBROUTINE NAME: PRINTA
PURPOSE :

This subroutine allows the user to print out an array of values, five to
the line. The integer array length N and the first data value loeation
must be specified. Each value receives an indexed label, the user must
supply a six character alphanumeric word L to be used as a common label
and an integer value M to begin the index count.

RESTRICTIONS :

S
The array values to be printed must be floating point numbers.

CALLING SEQUENCE:

PRINTA(L,A(DV),N,M)

If the label was the work TEMP, N was 3 and M was 6 the line of output
would look as follows:

TEMP (  6) valueTEMP (  7)value TEMP ( &)value

SUBROUTINE NAME: PRNTMA

PURPOSE:

This subroutine allows the user to print out up to 10 arrays in a column

4 format. The individual elements are not labeled but each column receives
4 a two line heading of 12 alphanumeric characters each., The two line head-
' ing must be supplied as a single array of four words, six characters each.
The user must supply the starting location of each label array and value
array. The number of values in each value array must agree and be
supplied as the integer N. The value arrays must contain floating point
numbers.

RESTRICTIONS :

Labels must be alphanumeric while values must be floating point. All
floating point value arrays must contain the same number of values.

CALLING SEQUENCE:

PRNTMA(N,1A1(DV),VA1(DV),LA2(DV),VA2(DV),...)

:
7
3
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SC-4020 PIPTTING SUBRPUTINES AND SYMB@LS

CINDA-3G contains an integrated package of SC-4020 plotting subroutines Lhut
may be used to produce a variety of plotted output. Thesc plots are out-
put by the computer onto magnetic tape which when processed by the SC-4020
vields the plots on 35 mm. film which may then be processed to produce
Zerox or some other type of hard copy. The plotting symbols (IS) availeble
are as follows:

Decimal Plot Decimal Plot Decimal Plot Decimal Plot
Integer Char. 1Integer Char. Integer Char. Integer Char.

0 0 16 + 32 - 48
1 1 17 A 33 J 49 /
2 2 18 B 34 K 50 S
» 3 19 C 35 L 51 T
L 20 D 36 M 52 U
B 5 21 E 37 N 53 v
6 6 22 F 38 g 54 W
7 7 23 G 39 P 55 X
8 8 24 H 40 Q 56 Y
9 9 25 I 41 R 57 v/
10 ) 26 T 42 . 58 °
11 = 27 o L3 $ 59 3
12 " 28 ) Lh * 60 (
13 ! 29 B L5 4 61 S
1L ) 30 I L6 ~ 62 z
15 o 31 ? L7 d 63 0
SURROUTINE NAMES: @PNPLT or PLIND or ENDFIL or FRAMEV

PURPSE: These subroutines perform the following uvperations:

PNPLT This call rewinds the plot output tape. It should be the first
plot call within any job and appear only once. A "job" may con-
sist of one or more stacked problem runs.

PLTND This call empties the plot buffers. It should appear in every
problem run within a job and after all the quick plot calls.

ENDFIL This call writes an end of file on the plot output tape. It
should be used only once in a job as the last call of the last
problem run in the Jjob.

FRAMEV The plot frames produced or 35 mm, film are quite close together.
This call places a blank frame on the film thereby allowing the
good frames to be cut large enough for mounting as projector
slides. _

RESTRICTI@NS: Check Section V, Control Cards and Deck Setup, for tape
usage and control caids necessary.

CALLING SEQUENCE: JPNPLT
or PLTND
or ENLCFIL
or FRAMEV(3)
5T ¢ 1ece subroutines are not re red on the UNIVAC-1108 system.
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SUBROUTTNE NAMES: PI#TX1 or PLRTX2

PURPOSE :

These are FPHTRAN coded quick plot subroutines for the SC-4020 which call
upon & large package of undocumented subroutines specifically for the SC-
4,020. They will produce up to three XY graphs per frame and several vari-
ables may be plotted per graph. A suitable grid will be drawn with cer-
tain lines emphasized. The grid lines will have reasonable numerical in-
dicia and a centered title will be printed for both axes and at the top
of the graph.

PIYTX1 computes the minimum and maximum values of the stored X and Y arrays
to be plotted and calls upon PLPTX2 which uses the values as grid limits
for the graph. The user may set the grid limits by calling PIfTX2 directly.
The X, Y and top titles (XT, YT and TT respectively) must consist of 12
alphanumeric words of six characters each.

RESTRICTIONS:

N
Tae uses shovld consult Sectinn 5, Control Cards and Deck Setup, to check
tape designation requirements. The X and ¥ values must be floating point
numbers.

CALLING SEQUZNCE:

PIgTX1(N, 1S,TX(DV) ,TY(DV),TT(DV) ,NNP,AX(DV) ,AY(DV))
or PLPTX2(N,xL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV))

where N is the integer number of graphs per frame (1, 2 or 3). If
negative, the frame is advanced end a new grid produced; if
zero, the grid from the previous plot call is used and if
positive, the second or third graph for the frame is produced.
is the floating point X axis left limit

is the floating point X axis right limit

is the floating point Y axis bottom limit

is the floating point Y axis top limit

is an integer identifying the plotting symbol to be used

is the address of the X title

is the address of the Y title

is the addiess of the top title

is the integer number of XY values or points to be plotted,
if negative the points will be connected by straight lines.
is the address of the X array

is the address of the Y arrey
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SUBROUTINE NAMES: PLTX3 or PLPTX
PURPOSE :

These subroutines are similar to PIPTX1 and PLPTX2 but have 6 additional
arguments which allow the user to modify the grid as desired.

RESTRICTIONS:
See PLPTX1 and PIFTX2.

CALLING SEQUENCE:
PLYTX3(N,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY (DY)
DX,DY,L,M,I,J)
or PLYTXL(N,XL,XR,YB,YT,IS,TX(DV),T¥(DV),TT(DV),HP
AX(Dv),AY(DV),DX,DY,L,M,1,J)

vhere the arguments are identical to PLPTX1 and PLTXZ except for

DX,DY these floating point values are used for spacing the grid
lines which are centered on the zero values. If zero, no
grid lines will be drawn.

L,M these integers cause every LY vertical and MY® horizontal grid
line to be rsdrawn for emphasis. If zero, no grid lines will
be emphasized. If negative, a square grid will be produced.

I,J these integers cause every Ith vertical and JY norizontal grid
line to be labeled with its value. If zero, no grid lines
will be labeled., If negative, the labels will be placed outside
the grid, ctherwise they will appear on the zero axis.

SUBROUTINE NAMES : PLgTL1 or PLPTI2
PURPGSE :

These subrcutines are similar to PLPTX1 and PLETX2 but produce log-semi,
log-log or semi-log plots. The arguments are identical to PLZTX1 and
PLPTX2 except for one additional one which sets the plotting mode.

RESTRICTIONS:

See PLPTXL and PIPTX2. No limit may be zero.
ALLING SEQUENCE:
PLPTL1(N,IS,TX(DV),TY(0V),TT(DV) ,NP,AX(DV),
AY(DV),LM)
or PLPTL2(N,XL,XR,iB,YT,IS,T¥(CV),TY(DV),TT(DV),
NP,AX(DV),AY(DV) ,IM)
where the arguments are identical to PLPTX1 and PLPTX2 except for LM
which is an integer for identifying the plotting mode as follows:
IM < 0 produced plot wili be log X versus linear Y
IM = 0 produced plot will be log X versus log Y
(" IM > 0 produced plot will be linear X versus log Y.

0.
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SUBROUTINE NAME: PUNCHA

PURPOSE: This subroutine enables a user tc punch out an array of data
values in any desired format, The F argument must reference a FFRTRAN
FYRMAT which has been input as an array, including the outer parenthesis
but deleting the word FFRMAT, The second argument must address the first
data value of the array of sequential values. The third argument, N, must
be the integer number of data wvalues in the array, The output is written
onto logical tape 15, the user must provide the necessary control cards
and processing information for the operator.

RESTRICTIONS: The user should check Section V for the appropriate control
card requirements, Punched output is written on logical tape 15, operator
processing instructions should be supplied,

CALLING SEQUENCE: PUNCHA(F(DV), A(DV),N)

SUBROUTINE NAME: PNCHMA

PURPOSE: This subroutine is similar to PUNCHA, but up to 10 equal length
arrays of data values may be punched. Again the first argument must
reference a FPRTRAN F@RMAT which has been input as an array, including
the outer parenthesis, but deleting the word FPRMAT., The integer number
of data values in an array must be supplied as the second argument N,

The array starting locations then follow as arguments three up to twelve,
The first values in each array is punched, then the second, etc.

RESTRICTIONS: The user should check Section V for the appropriate control
card requirements., Punched output is written on logical tape 15, operator
processing instructions should be supplied,

CALLING SEQUENCE: PNCHMA(F(DV),N,A1(DV),A2(DV),-.-)

60‘&06 \
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SUBROUTINE NAMES: READ or WRITE

SE: These subroutines enable the user to read and write arrays of
data as binary information on magnetic tape. The first argument L must
be the integer number of the logical tape being addressed. The second
argument X must address the first data value of the array to be written
out or starting location for data to be read into. The third argument
N must be an integer, For WRITE it is the number of data values to be
written on tape as a record, For READ it is the number of data values
to be read in from tape from the next record, not necessarily the entire
record. :

RESTRICTIONS: The user should check Section V to determine which logical
tape are available and control card requirements. All processed infor-
mation must be in binary,

CALLING SEQUENCE: READ(L,X(DV),N)
} or WRITE(L,X(DVS,N)

SUBRD NAME: EfF or REWIND

: These subroutines enable the user to write end of file marks
on magnetic tape and to rewind them, They sre generally used in con-
junction with subroutines READ and WRITE discussed above, The single argu-
ment L must be the integer logical tape number of the unit being activated.

%mgz The user should check Section V to determine available
tapes, .

CALLDD SEQUENCE:  EfF (L)
or REWIND (L)

6.4.7
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MATRIX SUBROUTINES

NAME

2
&

Matrix Data Storage and Retrieval
CALL, FILE, ENIMZP, LSTAPE

ZERY ,NES ,UNITY ,SIGMA ,GENALP,GENC@L 6.5.1
SHIFT ,REFLCT ,SHUFL,C@IMAX ,CIMIN 6.5.2
ELEADD ,ELESUB,ELEMUL,ELEDIV ,ELEINV 6.5.3
EFSIN,EFASN,EFCS ,EFACS ,EFTAN ,EFATN 6.5.4
EFLYG,EFSQR,EFEXP ,EFP@W ,MATRIX ,SCAIAR 6.5.5
DISAS,ASSMBL,DIAG,CHIMLT ,RAWMLT £.5.6
ADDALP,ALPHAA ,AABB ,BTAB 6.5.7
INVRSE ,MULT, TRANS 6.5.8
POIMLT , PFLVAL, PLYEVL,, POLS@V 6.5.9
JACEBI ,MgD::S 6.5.10
MASS 6.5.11
STIFF 6.5.12
LIST,PLYT ,PUNCH 6.5.13
6.5.14
6.5.1

.
.

Note: All of the above subroutines require that matrices be
input as positive numbered arrays having the integer
number of rows and columns as the first two data values
followed by the floating point element values in row
order, The above package of subroutines is often re-
ferred to (within CCSD) as MPPAS, for Matrix Oriented
Production Assembly System.
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SUBROUTINE NAMES: ZERJ or gNES

PURPOSE: These subroutines generate a matrix [Z] such that every ele-
ment is zero or one respectively.

RESTRICTIONS: The matrix to be generated must contain exaetly enough
space in addition to having the integer number of rows and columns as
the first two data values. The NR and NC arguments are the integer
number of rows and columns respectively.

CALLING SEQUENCE: ZERF(NR,NC,Z(IC))
or ¢NES(NR,NC,Z(IC))

SUBROUTINE NAMES: UNITY or SIGMA

PURPOSE: These are square matrix generation subroutines. UNITY
generates a square matrix such that the main diagonal elements are
one and all other elements are zero. SIGMA generates a squar:s matrix
such that all elements on and below the main diagonal are one and the
remaining elements are zero.

RESTRICTIONS: The matrix [Z] to be generated must contain exactly
enough space in addition to having the integer number of rows and
colums as the first two data values. The integer number of rows and
colums are equal and must be input as the argument N.

CALLING SEQUENCE: UNITY(N,Z(IC))
or SIGMA(N,Z(IC))

SUBROUTINE NAMES: GENALP or GENC@L

PURPOSE: These are special matrix generation subroutines. GENALP will
generate a matrix such that every element is equal to a constant C.
GENCFL will generate a column matrix such that the first element is
equal to X1 and the last element is equal to X2. The intermediate '
elements receive equally incremented values such that a linear relation-
ship is established between row number and element value.

RESTRICTIONS: The NR ard NC arguments refer to the integer number of
rows and columns respectively. X1, X2 and C must be floating point
values. The generated matrices must contain exactly enough space in
addition to having the integer number of rows and columns as the first
two data values.

* CALLING SEQUENCE: GENALP(NR,NC,C,Z(IC))

or GENC@L(X1,X2,NR,Z(IC))

' 6.5.1
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SUBROUTINE NAMES: SHIFT or REFICT

PURPOSE: These subroutines may be used to move an entire matrix from
one location to another. SHIFT moves the matrix exactly as is and
REFLCT moves it and reverses the order of the elements within each

column. The last element in each column becomes the first and the first
becomes the last, etc.

RESTRICTIONS: The matrices rmust be of identical size and the integer
number of rows and columns must be the first two data values. The [Z]
matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE: SHIFT(A(IC),Z(IC))
or REFLCT(A(IC),Z(IC))

#REFLCT uses three dynamic storage locations plus an additional one for
each row.

SUBROUTINE NAME: SHUFL

PURPOSE: This subroutine allows the user to reorder the size of a
matrix as long as the total number of elements remains unchanged. The
row order input matrix [A] is transposed to achieve column order and
then reformed as a wector by sequencing the columns in ascending order.
This vector is then reformed into a column order matrix by taking a
column at a time sequentially from the vector. The newly formed column
matrix is then transposed and output as the row order matrix [Z].

RESTRICTIONS: The matrices must be identical in size and have their
respective integer number of rows and columns as the first two data

values. The number of rows time columns for [A] must equal the number
of rows times columns of [Z].

CALLING SEQUENCE: SHUFL(A(IC),z(IC))
SUBROUTINE NAMES: CZIMAX or OFIMIN

PURPOSE: These subroutines search an input matrix to obtain the maximum
or minimum values within each column respectively. These va’ues are

output as a single row matrix [Z] having as many columns as the input
matrix [4].

RESTRICTIONS: Each matrix must have its integer number of rows and
columns as the first two data values.

CALLING SEQUENCE: C¢II4AX§A(IC),Z(IC))
or CPIMMN(A(IC),Z(IC))

6.5'2
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SUBROUTINE NAMES: EIEADD or ELESUB

PURPOSE:. These subroutines add or subtract the corresponding elements
of two matrices respectively.

mn min
(Al (8 , Z;:s = as. T b,

nren
[2] = iy ij 1j

RESTRICTIONS: All matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] or [B] matrix.

CALLING SFQUENCE: ELEADD(A(IC),B(IC),Z(IC))
or ELESUB(A(IC),B(IC),z(IC))

SUBROUTINE NAMES: ELEMIL or ELEDIV

PURPOSE: These subroutines multiply or divide the corresponding elements
of two matrices respectively.

ma m#n mn
2l = [ =/ (8] ) 235 = aj3 */  byy

RESTRICTIONS: All matrices must be of identical size and have the integer
number of rows and columns as the first two datc values. The [Z] matrix
may be overlayed into the [A] or [B] metrix.

CALLING SEQUENCE: ELEMUL(A(IC),B(.C),z(1C))
: or ELEDIV(A(IC),B(1C),z(IC))

SUBROUTINE NAME: : ELEINV

PURPOSE: This subroutine obtains the reciprocal of each element of the A
matrix and places it in the corresponding element location of the [Z]
matrix. '

Zij = l,O/B.iJ-
RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and columns as the first two data values. The [Z] matrix

may be overlayed into the [A] matrix.

CALLING SEQUENCE: ELEINV(A(IC),2(IC))
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SUBROUTINE NAMES : EFSIN or EFASN

PURPOSE: These subroutines perform elementry functions on all of the [A}
matrix elements as follows:

234 = cine (aj3) or zj4 = arcsine (ajy)
RESTRICTIONS: The matrices must be identical in size and have the integer

number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix,

CALLING SEQUENCE: EFSIN(A(IC),z(1IC))
or EFASN(A(IC),z(IC))

SUBROUTINE NAMES: EFCZS or EFACS

PJRPOSE: These subroutines perform elementary functions on all of the
[AI matrix elements as follows:

Zij = cosine (aij) or Zij = &rccosine (a'ij)
RESTRICTIONS: The matrices must be identical in size and have the integer

number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SEQUiNCE: EFCOS(A(IC),z(1C))
: or EFACS(A(IC),Z(IC))

SUBROUTINE NAMES: EFTAN or EFATN

PURPOSE: These subroutines perform elementary funetions on all of the [A]
matrix elements as follows:

235 = tangent (aj3) or zjj=arctangent (2 )

RESTRICTIONS: The matrices must be of identical size and have the integer
number of rows and eolumns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix.

CALLING SEQUENCE: EFTAN(A(IC),Z(IC))
or EFATN(A(IC),Z(1C))

Lering
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SUBROUTINE NAMES: EFLOG or EFSQR

PURPOSE: Trese subroutines perform elementary functiors on all of the [A]
matrix elements as follows:

233 = loge(aij) or 234 = [ayy

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. All elements
in the [A] matrix must be positive.

CALLING SEQUENCE: EFLOG(A(IC),Z(IC))
or EFSQR(A(IC),z(1C))

SUBROUTINE NAMES: EFEXP or EFZQE

PURPOSE: These subroutine perform elementary functions on all of the [A]
matrix elements as follows:

ajjy o
zij = e or z2ij = aij

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix. The exponent o may be an integer
or floating point number. However, if any elements in [A] are negative
then ¢ must be an inveger.

CALLING SEQUENCE: EFEXP(A(IC),Z(IC))
| or EFPN(A(IC),e,2(IC))

SUBROUTINE NAMES: MATRIX or SCAIAR

PURPOSE: Subroutine MATRIX allows a constant to replace a specific
matrix element and subroutine SCAIAR allows a specific matrix element
to be placed into a constant location. The integers I and J designate
the row and column position of the specific element.

z33 = C or C = 233

KESTRI@TIONS: The matrix must have the integer number of rows and
colurns as the first two data values. Checks are made to insure that
the identified element is within the matrix boundaries.

CALLING SEQUENCE: megc 1,7,2(1c))
or SCALAR(z(18) 1,3,C)
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SUBROUTINE NAMES: DISAS or ASSMBL

PURPOSE: These subroutines allow a user to operate »n matrices in a par-
tioned manner by disassembling a submatrix [Zfefrom a parent matrix [A]
or assembling a submatrix [Z] into a parent matrix [4].

RESTRICTIONS: The I and J arguments are integers which identify (by row
and column number respectively) the upper left hand corner position of the
submatrix within the parent matrix. All matrices must have exactly enough
space and contain the integer number of rows and colums as the first two
{ata values. The NR and NC arguments are the integer number of rows and
colums respectively of the disassembled submatrix. If the submatrix
exceeds the bounds of the parent matrix an appropriate error message is
written and the program terminated.

CALLING SEQUENCE: DISAS(A(IC),I,d ,NR,NC,Z(IC))
or ASSMBL(Z(1C),1,7,:(1c))

SUBROUTINE NAMES: DIAG

PURPC3E: Given a 1N or N#1 matrix [V] this subroutine forms a full square
M matrix [Z]. The [V] values are placed sequentially on the main diagonal
of [2] and all off diagonal elements are set to zero.

RESTRICTIONS: Both ma;cnces must have exactly enough space and contain their
integer number of rows and columns as the first two data values,

CALLING SEQUENCE: DIAG(V(IC),z(IC))
SUBROUTINE NAMES: COLMLT or ROWMLT

PURPOSE: To multiply each element in a columm or row of matrix [A] by its
corresponding element from the matrix [V] which is conceptually a diagonal
matrix but stored as a vector; i.e., 1#N or N#l matrix. The matrix [2] is
the product.

RESTRICTIONS: The matrices must have exactly enough space and contain the
integer number of rows and columns as the first two data values, The ma-
trices being multiplied must be conformable. )

CALLING SEQUENCE: C T(A(TC),V(IC),Z2(IC
or Ré%T?V%lC%,AéIC%,Z%ICB

60506 )
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SUBROUTINE NAMES: ADDALP or ALPHAA

PURPOSE: To add a constant to or multiply a constant times every ~lement in

a matrix.

zy3 = Ctagy or 235 = (¥ayy

integer number »~f rows and columns as the first two data values. C and all
elements must be floating point numbers. The [Z] matrix may be overlayed

into the [A] matrix.

RESTRICTIONS: The matrices must have exactly enough space and contain the

CALLING SEQUENCE: ADDALP(C,A(IC),2(1C))
or ALPHAA(C,A(IC),z(1C))
SUBROUTINE NAME: AABB
PURPOSE: To sum two scaled matrices, .
mwmn rmn mn
[zZ) = ci1[A] + c2[B] , 235 = Cl*azj + C2%bsy

RESTRICTIONS: All matrices must be of identical size, contain exactly
enough space and contain the integc number of rows and cclumns as the

first two data values., Thre output matrix {Z] may be overlayed into either

of the input matrices.

CALLING SEQUENCE: AABB(C1,A(IC),C2,B(IC),2(1C))
SUBROUTINE NAME: | BTAB

PURPOSE: To perform the following matrix operation:

nn n¥m mm  n
2 = [B* [ 8

RESTRICTIONS: The matrices must be conformable, contain exactly enough space

and contain the integer number of rows and columns as the first iwo data
values. Subroutines MULT and TRANS are called on.

CALLING S CE: BTAB(A(IC),B(IC),Z(IC))

NOTE: This subroutine (due to MULT and TRANS) uses 2twm+6 dynamic storage

locations.

6.5.7
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: SUBROUTINE NAME: INVRSE

PURPOSE: To invert a square matrix.

nn n¥n n¥n
given [A] -, 2 = [a7?

RESTRICTIONS: The mai.rices must be square, identical in size and contain
the integer number of rows and columms as the first two data values. The
output matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE: INVRSE(A(IC),Z(IC))

NOTE: This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME: MULT

: PURPOSE: To multiply two conformable matrices together.
2l = W B, =z = 31Dy 5

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
If [A] and [B] are square, [Z2] may be overlayed into either of them.

CALLING SEQUENCE: ~ MuLr(A(Ic),B(IC),Z(IC))

NOTE: This subroutine required n¥m dynamic storage locations.

SUBROUTINE NAME: TRANS
PURPOSE:

mwn n¥*m
Given a matrix [A] form its transpose as [Z]

RESTRICTIONS: Both matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.
Theoutput matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE: TRANS(A(IC),z(1IC))

NOTE: This subroutine requires n*m dynamic storage locations.

g 6.5.8 | ~
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SUBROUTINE NAME: PEIMLY

PURPOSE: This subroutine performs the multiplication of a given number
of nth order polynorial coefficients by a similar number of mth order
polynomial ccetrficients. The polynomials must be inpu® as matrices with
the number of rows equal and each row receives the following operation.

(cy5€p5C3,ees se)=(ay,a0,...,3,)%(by,bs,. .., by) kemin-1

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and colmwums as the first two data values.

CALLING SEQUENCE: PPIMLT(A(TC) ,B(IC),((IC))
SUBROUTINE NAME: PYLVAL

PURPOSE: Given a set of polynomial coefficients as the first row of
matrix |A] this subroutine evaluates the polynomial for the input complex
number X+iY. The answer is returned as U+iV.

RESTRICTIONS: [A] may be mn but oniy the first row is evaluated.

CALLING SEQUENCE: PPLVAL(A(IC),X,Y,U,V)
SUBROUTINE NAME: | PLYEVL

PURPOSE: Given a matrix [A] containing an arbitrary number NRA of n'h
order polynomial coefficients and o column matrix [X] containing an arbitrary
number NRX of x values, this subrcutine evaluates each polynomial for each x
value, The answers are output as a matrix [Z] of size NRX3NRA. Each se!

of polynomial coefficients in [A] is a row in ascending order. An x value
evaluated for the polynomials creates a row in [2] where the columm number
agrees with the polynomial row number.

RESTRICTIONS: The matrices must have exactly enough space and contain their
integer number of rows and columns as the first two data values.

CALLING SEQUENCE: PIYEVL(A(IC),2(1C),2(IC))
SUBROUTINE NAME: PELS@V

PURPOSE: Given a set of polynomial coefficients as the first row in matrix
[A] , size (m,n+1), this subroutine calculates the complex roots which are
returned as matrix [2], size (n,2). Column 1 contains the real part and
colum 2 the imaginary part of the roots.

RESTRICTIONS: This subroutine presently is limited to n = 20, It inter-
nally calls on RTPJLY and utilizes some double precision.

CALLING SEQUENCE: P@LS@V(A(1C),2(1C))

‘ 6.5.9
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SUBROUTINE NAME: JACEBI

PURPOSE: This subroutine will find the eigenvalues [E] and eigenvector
matrix [Z] associated with an input matrix [A].

nfn  n¥n n¥n  n¥*l
Al [zZl = [z [E]

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two datz values.

CALLING SEQUENCE: JAC@BI(A(IC),E(IC),Z2(1IC))

NOTE: This subroutine requires 2*n¥nt+6 dynamic storage locations.

SUBROUTINE NAME: M@ZDES

PURPOSE: This subroutine solves the following dynamic vibration equation

n¥n n'mn nfn  n¥n n¥l

- . 1
bW @ = @B [ {gz-]

where [A] is the input inertia matrix associated with the kinetic energy
and [B] is the input stiffness matrix asscciated with the strain energy.
[2Z] is the output eigenvector matrix associated with the frequencies of
vibration Wi which are output in radians/sec as [R] and in cycles/sec
as [C], both [R] and [C] are n*1 matrices.

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columms as the first two data values.
Subrcutine JACEBI is called on.

CALLING SEQUENCE: M@DES(A(IC),B(1C),Z(1C),R(IC),Cc(IC))

NOTE: This subroutine requires 3*mnt9 dynamic storage locations.
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SUBROUTINE NAME: MASS
PURPOSE:

If a dynamic vibration problem is referred to a set of coordinates
consisting of the deflections, L,;, and the rotations, 6;,, at N
collocation points along the beam under consideration, then this
subroutine generates the 2N by 2N inertia matrix [A] which appears
in the following expression for kinetic energy:

IT= é{tﬂ T iﬂér ' Q“A] (4

RESTRICTIONS:

The mass and inertia data input to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of
arbitrary size and different in length from each other. The number
of collocation points, N, which determines the ultimate size, 2N by
2N, of the output inectia matrix, is also chosen arbitrarily.

CALLING SEQUENCE: MASS(X({IC) ,DMPL(IC) ,KIPL(IC),CM(IC),A(IC))

where X is the matrix (N X 1) of collocation points referred
' to an arbitrary origin.
DMPL is the matrix (NDM X 4) of distributed mass per unit
length slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 ia the mass wvalue at the rear of the slice.
Col 4 is tte mass value at the front of the slice.
RIPL is the matrix (NRI X 4) of distributed rotary inertia
per unit length slices. The columns here are similar
to DMPL. :
CM  is the matrix (NCM X 4) of concentrated mass items, where
Col 1 is the attach point location for each item.
Col 2 is the mass at this location. ‘
Col 3 1s the location of its center of gravity.
Col 4 is the moment of inertia about the C. of G.
A is the output (24 X 2N) inertia matrix.

NIE:

Having application to DMPL, RIPL and CM, it is noted that the location
of the values may not go beyond the limits of the collocation points
in either direction.

i
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SUBROUTINE NAME: ST

PURPOSE:

If a dynamic vibration problem is referred to a set of cocrdinates
consisting of the deflections, §{,, and the rotations, 6; , at N
collocation points along the beam under consideration, then this
subroutine generates the 2N by 2N stiffness matrix [K] which
appears in the following expression for the strain energy:

U = %{ L,- - L8 - Q‘HK] FQJ

3
N

J

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be
supplied as piecewise continuous slices; however, these arrays may
be of arbitrary size and different in length from each other. The
number of collocation points, N, which determine the ultimate size,
2N by 2N, of the output stiffness matrix, is also chosen arbitrarily.

CALLING SEQUENCE: STIFF(X(IC),EI(IC),GA(IC) ,X(IC))

where X is the matrix (N X 1) of collocation points refsrred to
an arbitrary origin.

EI is the matrix (NEI X 4) of bending stiffness slices, where
Col 1 is the location of the rear of a slice.

Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Coi 4 is the stiffness value at the front of a slice.

GA is the matrix (NGA X 4) of shear stiffness slices, where
‘the columns here are similar to those for the EI
distribution.

K is the output stiffness matrix size 2N by 2N.

Having application to EI and GA, it is noted that the locatica of the
values may not go beyond the limits of the collocation points in either
direction.
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(_ SUBROQUTINE NAME: LIST

: PURPOSE: This subroutine prints out the elements of a matrix A and iden-
3 tifies each by its row and column number. The user must supply an alpha--
numeric name ALP and integer number NUM to identify the matrix., This is to
maintain consistency with subroutines FILE and CALL.

RESTRICTIONS: The matrix must have its integer number of rows and columns
as the first two data values.

CALLING SEQUENCE: LIST(A(IC),ALP,NUM)
SUBRQUTINE NAME: PIZT

PURPOSE: This subroutine produces SC-4020 plots of the columns of a matrix
A, size (n*m) versus a colum matrix X , size (m*l). It order the data
internally and then calls on subroutine PLFTX1 (page 6.4.4). Each colummn in
A reguires as 12 word label for the Y axis title (YT) which must be entered
sequentially as an array. The X axis title (XT) and top title (TT) must

each consist of 12 work arrays.

RESTRICTIONS: The matrices must have exactly enough space and contain the
integer number of rows and columms as the first two data values. The titles
must have been input as positive arrays.

CALLING SEQUENCE: PLOT(A(IC),X(7C),TT(IC),YT(IC),XT(IC))

NOTE: This subroutine requires mt3 dynamic storage locations.

SUBROUTINE NAME: PUNCH

PURPOSE: This subroutine punchs out a matrix A , size n¥*m, one column
at a time in any desired format. The argument FgR must.reference a
FPRTRAN format statement that has been input as a positive array. It must
include the outer parenthesis but not the word FJRMAT. The argument HEAD
mis* be a single BCD word used to identify the matrix. Each colum is
designated and restarts use of the FURMAT statement.

RESTRICTIONS: The matrix A must have exactly enough space and contain
the integer number of rows and columns as the first two data values.

CALLING SEQUENCE: PUNCH(A(IC) ,HEAD,FgR(IC))

NOTE: This subroutine requires nt3 dynamic storage locations.
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MATRIX DATA STORAGE AND RETRIEVAL

The ability to store and retreive matrices from tape is easily achieved
thru the use of the FILF and CALL subroutines, Matrices are identified by
an alphanumeric name, integer problem number and the core address of or
for the matrix, The CALL subroutine searches the matrix storage tape on
logical 13 and brings the desired matrix into core, The FILE subroutine
writes a matrix onto the logical 12 tape. Subroutine ENDMJP causes all
matrices from the logical 12 tape to be updated onto the logical 13 tape.
In case of duplicate matrices the one from logical 12 replaces the one on
logical 13, A matrix which has been filed cannot be called until ean
ENDMJP operation has been performed, To create a new tape the user merely
sets control constant NJCFPY nonzero and has a scratch tape mountesd on

" logical 13, The user should check the section on control cards and deck

setup to determine control card requirements,

'SUBROUTINE NAMES: CALL or FIIE

PURPOSE: To allow the user to reurieve or store matrices on magnetic tape,
sce above, The H argument muet be a six character alphanumeric word and
N must be an integer number, both of which are used to identify the matrix,

. RESTRICTICNS: See above, The matrix must have exactly enough space and

contain the integer number of rows and columns as the first two data values,

CALLING SEQUENCE: CALL (H,N,A(IC))
or FILE (A(IC),H,N)

SUBROUTINE NAMES: ENDMIP or LSTAPE

PURPOSE: - Subroutine ENDMZP should be used in conjunction with subroutines
CALL and FILE, see above., It causes matrices which have been filed by
FILE on logical 12 to be updated ontc logical 13, A call to subroutine
ISTAPE will cause the output of the name, problem number and size of every
matrix stored on tape on logical 13.

RESTRICTIONS: See above,

CALLING SEQUENCE: ENDMZP
or LSTAPE
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Special Subroutines
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SIMEQN,LSTSQU 661
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SUBROUTINE NAME: . SIMEQN

PURPOSE :

This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output
valies are communicated as a single specially formatted positive input array.
The array argument must address the matrix order (N) which is input by

the user. The first data value must be the integer order of the set

(or size of the square matrix) followed by the coefficient matrix [A]

in col rder, the boundary vector 1BT and space for the solution
vectorumTST

W - o
RESTRICTIONS:

The integer count and matrix size must be integers, all other values must
be floating point. lTre coefficient matrix is not modified by SIMEQN.

Hence, changes to {B} only allow additional solutions to be easily
obtained.
CALLING SEQUENCE: SIMEQN(A(N ))

where the array is formatted exactly as follows:
IC,N,A(l,l),A(%,Z),...,A(N,N),Bl,...,BN,Sl,...,SN

SUBROUTINE NAME: LSTSQU

PURPOSE :

This subroutine performs a least squares curve fit to an arbitrary number
of X, Y pairs to yield a polynomial equation of up to order 10. Rsather
than using a double precision matrix inverse, this subroutine calls on
subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS:

All values must be floating point numbers except N and M which must be
integers. N is the order of the polynominal desired and is one less than
the number of coefficients desired. M is the array length of the independent
X or dependent Y values.

CALLING SEQUENCE: LSTSQU(N,M,X(DV) ,Y(DV) ,A(DV))
#This subroutine reguires 2#M dynamic storage core locations. '

6.6.1
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SUBROUTINE NAME: IRRADI or IRRADE

IRPOSEt  These subroutines simulate a radiosity network* within a
wiltiple gray surface enclosure containing a non-gbsorbing mecia. The
input is identical for both subroutines. However, IRRADE utilizes
explicit equations to outain the solution by relaxation and IRRADI initially
performs a symmetric matrix algebra inverse and thereafter obtains the
exact solution implicitly by matrix multiplication. The relaxation
criteria of IRRADE is internally calculated and seveve enough so that
both routines generally yield identical results. However, IRRADE should
be used when temperature varying emissivities are to be considered and
IRRADT should be used when the surface emissivities are constant. Both
subroutines solve for the J node radiosity, obtain the net radiant heat
flow rates to each surface and return them sequentially in the last array
that was initially used to input the surface temperatures. The user

need not specify any radiation conductors within the enclosure.

RESTRICTIONS: The Fahreheit system is required. The arbitrary number
of temperature arguments may be constructed by a preceeding BLDARY call.
The emissivity, area, temperature-Q and upper half FA arrays must be

in corresponding order and of exact length. The first data value of
the FA array must be the integer number of surfaces am the second the
Stephan-Boltzman constant in the proper uwaits and then the FA floating
point values in row order. The diagonal elements (even if zero) must
be included. As many radiosity subroutine calls as desired may be used.
However, each call must have unique array arguments., The user should
follow the radiosity routine by SCALE, BRKARY or BKARAD to distribute
the Q's to the proper source locations.

CALLING SEQUENCE: IRRADI (AA(IC),A€(IC),AFA(IC),ATQ(IC))
or IRRADE(AA(IC),A€(IC),AFA(IC),ATQ(IC))

where the arrays are formatted as follows:

AAéIC? JAl,A2,A3,AL,. . . AN,END
A€(IC 61625361.; . 5 €EN,END
AFA(TCS N, 0,PA (1,15 ,Fa(1,2,FA(1,3) FAL,4) ,FAL,5), . . . FA(L,N)
"FA(2.2) FA(2,3) FA(2.4) JFA(2.5), . . . FA(2.N)
"FA(N-2,N-2) ,FA(N-2,N-1) ,FA(N-2,N)
FA(N-1,N-1) ,FA(N-1,N)
FA(N,N),END
ATQ(1C),T1,T2,T3, . . .TN,EAD
where FA(1, 2) is defined as A(l)*i(l 2). After the subroutine is performed
the ATQ array is ATQ(IC),QI,QZ,QS, . . . QN,END.
Since FA(1, 2{ (2,1) only the upper half triangle of the full A matrix is
required. IRRADI verts this half matrix in its own area, hence approximate
1y 300 surfaces may be considered using CINDA-3G on & 65K core machine,

#'Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction
of the ASME, May 1956, pp. 725-735.

6.6.2 .
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SUBROUTINE NAME: SLRADI or SLRADE

PURPOSE: These subroutines are very similer to IRRADI and IRRADE but

are designed to solve for the solar heating rates within an enclosure.
SLRADI inverts a half symetric matrix in order to obtain implicit solutions
while SLRADE obtains solutions explicitly by relaxation. SLRADE should

be used when temperature varying solar emissivities are to be considered.
The second data value of the AFA array must be the solar constant in

the proper units. The AT array allows the user to input the angle (degrees)
between the surface normal and the surface-sun line. The AI array allows
the user to input an illumination factor for each surface which is the
ratio from zero to one of the unshaded portion of the surface. The

solar constant (S), AT and AI values may vary during the transient

#r both routines. No input surface temperatures are required. The absorbed
heating rates are returned sequentially in the AQ array. the user may
utilize SCALE, BRKARY or BKARAD to distribute the heati. g rates to the
proper source locations.

RESTRICTIONS: These routines are independent of the temperature system
being used. All of the array arguments must reference the integer count
set by the CINDA-3G preprocessor and be of the exact reguired length,

As many calls as desired may be made but each call must have unique array

. arguments.

CALLING SEQUENCE: SLRADI(AA(IC),A€(IC),AFA(IC),AT(IC),AL(IC),4Q(IC))
or SLRADE(AA(IC),A€(IC),AFA(IC),AT(IC),AI(IC),AQ(IC))

i

SUBROUTINE NAME: SCRPFA

PURPOSE: To obtain the script FA value for radiant transfer within an
enclosure. The input arrays are formated as shown for subroutines IRRADI
and IRRADE. The s=cond data value in the AFA array is used as a final
multiplier, if 1.0 the script FA values are returned, if ¢ then script ¢
FA values are returned. Thescript FA values are returned in the ASFA
array which is formatted identical to the AFA array and may overlay it.

BESTRICTIONS: All array arguments must reference the integer count set
by the CINDA-3G preprocessor and all arra;s must be exactly the required
length.

CALLING SEQUENCE: ~  SCRPFA(AA(IC),A€(IC),AFA(IC),ASFA(IC))

NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1l) may be called to list

the matrix values and identify them by row and column number. This routine
and the implicit radiosity routines finalize the half symetric coefficient
matrix and call on SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symetric
inverse.

6.6.:




CINDA-3G
SUBROUTINE NAME: ABLATS '

PURPQOSE: To provide a simple ablation (sublimation) capability for the
CINDA-3G user. The user constructs the 3-D network without considering

the ablative., Then in Variables 2 he simulates 1-D ablative attachments
by calling ABLATS. ABLATS constructs the 1-D network and solves it by
implicit forward-backward differencing (Crank-Nicholsun method) using

the time step set by the execution subroutine. Separate ablation arrays
(AA) must be used for each ABLATS call. Required working space is obtained
from unused program common. Several ABLATS calls thereby share unused
common. The user must call subroutine PNTABL(AA) in the OUTFUT CALLS to
obtain the ablation totals and temperature distribution.

RESTRICTIONS: ABLATS must be called in VARIABLES 2 and may be used with
any execu.ion subroutine. Subroutines DIDEGl, NEWTRL and INTRFC are
called. All units must be consistent. The Fahrenheit system is required.
Temperature varying material property arrays must not exceed 60 doublets.
Bivariate material properties ..y be simulated by calling BVSPSA prior

to ABIATS, Cross-sectional area is always considered unity. Thermal
conductivity, Stephan-Boltzman constant and density units must agree in
area and length units.

CALLING SEQUENCE: ABLATS(AA(IC),R,CP,G,T,C)

where C is the capacitance location of the 3-=D node attached to.
T 4is the temperature location of the 3-D node attached to.
G is the l:cation of the material thermal conductivity or the
starting location (integer count) of a doublet G vs T array.
CP is ‘he location of the material specific heat or the starting
location (integer count) of a doublet Cp vs T array.
R is the location of the material density or the starting location
(integer count) of a doublet vs T array.
AA(IC) 4is the ztarting location of the ablation array which must be
formatted as follows:
AA(IC)+1l the asblative link number . a user specified identification
integer.
2 integer number of sublayers (NSL) desired, ABLATS subtracts
from this the number of sublayers ablated.
the initial temperature of the material, ABLATS replaces this
with the outer surface temperature, always in degrees F.
th~ impressed outer surface heating rate per unit area,
radiation rates not included.
material thickness, this is replaced by the sublayer thickness.
surface area of the 3-D node attached to, need not be unity.
ablation temperature, degrees F.
heat of ablation
Stephan-Boltzman constant in consistent units.
surface emissivity
space "sink" temperature, degrees F.
SPACE,N,END where N equals NSI + 4.

NOTE: The outer surface radiation loss is integrated over the time step.
#This subroutine requires 3%(NSL+l) dynamic storage core locations.
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SUBROUTINE NAME: 1QDVAP

PURPOSE: This subroutine allows the user to simulate the addition of
liquid to a node, The network data is prepared as though no liquid exists
at the node and is solved that way by the network execution subroutine,
Then 1QDVAP, which must be called Variables 2, corrects the nodal solution
in order to account for the liquid, If the nodal temperature exceeds the
boiling point of the liquid, it is set to the boiling point.

The excess energy abcve that required to reach the boiling point is cal-
culated and considered as absorbed thru vaporizaticn, If the liquid is
completely vaporized the subroutine deletes its operations, The method
of solution holds very well for explicit solutions, but may introduce
some error when large time steps are used with implicit solutions,

RESTRICTIONS: This subroutine must be called Variables 2,

CALLING SEQUENCE: LQDVAP(T,C,A(IC))

where T is the temperature location of the node,

C is the capacitance location of the node.

A + 1 contains the initial liquid weight,
2 contains the liquid specific heat.
3 contains the liquid vaporization temperature,
L, contains the liquid heat of vaporization.
5 receives the liquid vaporization rate (weight/time)
6 receives the liquid vaporization total (total weight)
7 ccntains the liquid initial temperature,

SUBROUTINE NAME: BIVLV

PURPOSE: Thie subroutine allows the user to specify the percentage flow
rates through two parallel tubes with common end poinits, One tube must
consist of a single flow conductor (G1) while the other tube may consist
of one or more sequential flow conductors (G2(I), I = 1,N). The ratio of
#low through Gl divided by the total flow may be calculated in any desired
Janner and must be supplied as the argument W, The conductor values of
either one tube or the other are reduced in order to achieve the desired
percentage flow rates irregardless of the pressure drop.,

RESTRICTIONS: N must be an integer. G2 must address the first of the
ssquential conductors in that tube, ’

CALLING SEQUENCE: BIVLV(N,W,G1,G2(DV))

. . €.6.5
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SECTION VII

ERROR MESSAGES

Due to the variety of subroutines available and the variable number
of arguments which some of them have, no check is made to determine if a
subrcutine has the correct number of arguments. An incorrect number of
arguments on a subroutine call will generally cause jcb termination im-
mediately after successful compilation, usually without any error message.
If the above occurs, the user should closely check the number of arguments
for his subroutine calls.

Numerous error messages can be output by the preprocessor. These
error messages are listed below and grouped according to various pre-
processor functions. All error messages are preceeded by three asterisks
which have been deleted below. Self-explanatcry messages are not enlarged

upon.
1. Processing Data Blocks
DATA BLYCKS IN IMPRFPER @RDER @R ILIEGAL BLFCK DESIGNATI@N ENC@UNTERED.
AN IMBEDDED F."A* HAS BEEN ENC@UNTERED IN THE LAST LINE.
INTEGER FIELD EXCEEDS 10.
REAL NUMBER FIELD EXCEEDS 2C.
ALPHAMERIC FIELD EXCEEDS 6.
MULTIPLE DECIMAL PJINTS HAVE BEEN ENC@UNTERED.
N@DES MUST BE @RDERED - DIFFUSI@N, ARITHMETIC, BUNDARY.
C@NDUCT@RS MUST BE $RDERED - REGULAR, RADIATIgN.
N@DE NUMBER, XXXXX, IS THE DUPLICAfL ¢¥ THE XXXXXTH N@DE.
C@NDUCT@R NUMBER, XXXXY, IS THE DUPLICATE ¢F THE XXXXXTH C@NDUCTYR.
CANSTANT NUMBER, XXXXX; IS THE DUPLICATE gF THE XXXXXTH C@NSTANT.
ARRAY NUMBER, XXXXX. IS THE DUPLICATE ¢F THE XXXXXTH ARRAY.
FIXED C@NSTANT NAME IS NgT IN LIST.
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2. Yorming Pseudo Compute Sequence
N@DE, XXXXX, HAS N¢ MATCH IN THE NA-NB PAIRS.
ADJFINING NgDE, XXX, ¢F NA-NB PAIR HAS N MATCH IN THE N@DAL BL#CK.
3. Processing Program Blocks
EXECUTI@N BLZCKS IN IMFRZPER ¢RDER @R ILIEGAL BIL@CK DESIGNATI@N
FNC@UNTERED.
VARIABLE DESIGNAT@R, AAAAA, N@T DEFINED F¥R GENERAL PRZBLEM.
Explanation: Some alpha character other than K or A has been used
to reference a data block. In a thermal problem a
designator other than G, K, or A is assumed to be
referencing the nodal block.
MISSING N@DE NUMBER, XXXXX.
MISSING CENDUCT@R NUMBER, XXXXX.
MISSING CPNSTANT NUMBER, XXXXX.
MISSING ARRAY NUMBER, XXXXX.
FIXED C@NSTANT NAME, AAAAA, N@T IN LIST.
NUMBER (F SUBRZUTINES REQUESTED EXCEEDS 75.
Explanaticn: More than 75 unique subroutines have been called.
4. Processing Parameter Changes
The first rive parameter change error messages are prefaced with the
words: PARAMETER CHANGE ERR{R.
N@DE NUMBER, XXXXX, WAS N@T DEFINED IN THE $RIGINAL PRZBLEM.
CYNDUCTZR NUMBER, XXXXX, WAS N@T DEFINED IN THE $RIGINAL PRZBLEM,
C@NSTANT NUMBER, XXXXX, WAS N@T DEFINED IN THE @RIGINAL PR¥BLEM.
ARRAY NUMBER, XXX, WAS N@T DEFINED IN THE $RIGINAL PR@BLEM.
CPNSTANTS BIZCK WAS EMPTY IN THE ¢RIGINAL PRYBLEM.
ARRAY BIZCK WAS EMPTY IN THE RIGINAL PREBLEM.
7.2 )
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5. Terminations Due to Errors (no preceeding asterisks)
THE AB@VE PARAMETER CHANGE WILL N@T BE EXECUTED.
ERRJR TERMINATIPN - L@ADING IS SUPPRESSED.
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SECTION VIII
CINDA-3G OPERATING SYSTEM DESCRIPTION

The increased rate of change in machine characteristics of digital
computers requires a corresponding change in the design of large,
flexible programs. The cost of conversion of machines dependent programs
exceeds their worth in many cases. The Fortran V version of CINDA-3G
is an attempt to minimize conversion efforts to succeeding machine
generations by providing primarily Fortran coded routines capable of
linking the engineering problem with the Fortran compiler. In general,
the effectiveness of this method is limited only by the capability of
the operating system to allow automatic selective composition of a
program from a large file of subprograms. The functions performed by
the UNIVAC Fortran V compiler, allocator, and CUR facility provides an
efficient, flexible method of program maintenance and execution.

I. = The Fortran V version of CINDA-3G exists logically as a pre-processor,
processor, and library. The operational continuity of these portions
is made possible by the UNIVAC 1108 software.

A. The function of the pre-processor is to operate on a user
supplied problem and produce the following:

1, Processor Main Program
This small routine acts primarily as a communication; link
in providing addressing relationships between the operational
user program and user data.

2, User Progran
These Fortran source programs are operational equivalents
of the users Execution, Variables 1 and 2, and Output Calls
blocks.

3. User Data .
Binary data generated consists of definitions of parameters
referenced in the various user data blocks and their
corresponding values.

The pre-processor and appropriate use of the UNIVAC 1108
system control cards allows construction of the above from
tape when the RECALL option is utilized.
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II.

The processor performs reading of the user data values prepared
previously and calls the user program (i.e. Execution Block).

The CINDA-3G library contains a large number of various types
of subprograms to accomplish most user requirements. UNIVAC
software provides simple, flexible methods for the maintenance
of this library. In addition, it is not necessary that a
subroutine be updated to the library prior to availability

in the user problem.

Preprccessor

A,

Operation of the pre-processing phase,

The main program (PREPR#) accomplishes the initialization of
data values and tape units and defines the order of processing
which is carried out by seven overlay links:

1. If the problem being processed is a RECALL problem, SPLIT
is called to read the recalled problem data and number
definitions from the input tape and write these on the
appropriate work tapes., SPLIT calls SKIP if the input
tape is not positioned at the problem being recalled.
(Section II. C.)

2. C@DERD reads the title block and the block title cards.
DATARD reads the free-form data cards in the 4 (or 2,
if General Problem) data blocks and any parameter change
data. Each card is read, a format constructed for it,
and then re-read. The data from each block is written
on the data tape as one record. The number definitions
of the data and the NA-NB pasirs are writtecn on work tapes.

3. PSEUD@ reads the node number definitions and NA-NB pairs
from work tape. The pseudo compute sequence (Long or
short) is cons‘ructed, packed by PACK43 (Slueth), and
flagged. by #RMiN (Slueth), and written on the data tape.
(Section II. B.)

4. GENLNK constructs the main program of the processor |
including CAMMPN and DIMENSIPN information. On the UNIVAC
1108, routines which are ,to be compiled from tape must
have a particular format. BLKCRD, STFFB, and WRTBLK (Slueth)
generate records in this format. (Section II. D.)
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5. [PRESUB reads the title cards of the four program blocks
and initiates the construction of each new subroutine.
CINDA4 convertis the CINDA "calls" in the program blocks
into Fortran subroutine calls. Data referenced by input
number definition is changed to reafer to its relative
location in CPMMPY data arrays.

6. INITAL combines the original set of data and the initial
parameter changes and writes the updated set of data on
the data tape.

7. FINAL converts final parameter change data (number defini-
+ions and values) to relative array locations and values
and writes number-value records on the data tape.

Construction of the Pseudo Compute Sequence

The pseudo compute sequence is a string of paired integers,
the first consisting of a sign and 13 bits, the second of a
sign and 12 bits. Four of these 27 bit composite words
are packed into 3 machine (36 bits) words by PACK.3.

The formation of the string takes place in PSUED@ according
to the following rules:

Ni are the diffusion and arithmetic mean node number definitions
ifiput in the BCD 3NgDE DATA block. T nbj is the relative
location of node number NB NA :=NB, are the node pairs

joined by conductors 1nput in the BPﬂ 3C@NDUCT@R DATA block.

m is the conductor number of the NAj-NBj under consideration.
IKNp is the relative location of conductor number m. The
occurrence of NAy and NBj may be reversed throughout.

1. Short

a. N;€ diffusion nodes, and
Ni=NAj
(1) if NBy > 0, and
,NBj € diffusion nodes
~LKN;, LTNBj: and
NBy = - | By |
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(2) if NBj <0, or
NBj not € diffusion nodes
— LKNp, 'LTNBj

b. N; € arithmetic mean nodes, and
Ni = NA;

(1) if NBj > 0; and
NBj € diffusion nodes
— LKN;, LTNBj’ and

NBy = | nB,]
(2) it HB‘j not € diffusion nodes
—1KN , LIyp 3
2. Long
. Same as short, except the NBj is not set negative in any
case.

Store and Recall Options
The purpose of the store and recall options is to provide the

user with the means to interrupt his program at any point,
store tle current data values, and continue processing. The
tapes saved from the above run can then be used in conjunction
with a RECALL card and a BCD 3INITIAL PARAMETERS data deck

to make necessary data changes and restart the saved problem
at point of the interrupt. :

Fortran logical tapes 22 and 13 are saved when running a store
problem option; they are mounted on 21 and 13 when running
the recall option.

The data tape 21 contains a six character identification,
specified in the users call to STPFTP, the problem type
(GENERAL or THERMAL), the data number definitions from LUTL,
and the data values from core. ,

The program tape, LBLP, contains the Fortran routines: LINKO,
EXECTN, VARBL1, VARBL2, and §UTCAL.

8.4
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D. Tormat of Subroutines to be Compiled from Tape.
Routines must be written on tape (a2 non-Fortran write routine
must be used to omit the Fortran control word on each record)

in 507 word blocks with a maximum of 36 li-word card images
per block. Each block contains three signal words, for
example,
Word # Block 1
1 Subroutine Name
2 Integer (Fortran) number of card images in
block
3-16 1st card image
17-30 2nd card image
ete.
507 +0 (denotes more blocks of same subroutine
to follow)
Block 2
1 0 (denotes continuation of above subroutine)
2 same as block 1
card images .
507 =0 (777777777777g) (denotes last block of
subroutine)
NOTE: Only the last block of a subroutine may be a short block

(less than 36 card images) in which case no fill is
needed., ’
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SAMPLE PROBLEM 1A

A perfectly insulated one dimensional bar has a constant '.cating rate ap-
plied to one end. Obtain the ten minute transient temperature response, at
half minute intervals, of the bar ends and at points 1/4, 1/2 and 3/4 of the
way along the bar, The bar is initially at 80°F and receives a constant
heating rate of 3.0 BTU's/min. The length of the bar is four inches and it
has a crcss-sectional area of one square inch. It has the following material
properties:

density = 172.8 lbs./ft>
specific heat = 0.35 BTU/1lbeF
thermal conductivity = 0.2 BTU/in min°F

Below is a schematic of the physical problem with the nodes appropriately
placed and the dashed lines indicating the lumping of the system for capaci-

tance purposes, //1, LLLLLLLLLLLLL
i
[}

The network representatiqn is as foliows: .
T2 T3 T4 T8

q, Ti
IGIIGZIG3IG41
Caracitors receive the ssme number as the femperatures but with a C prefix.

From the above information, we immediately calculate:

C2=C3=CL=p*V*Cp=0.035 BTU/°F
C1=C5=C2/2.0=0.0175 BTU/°F
Gl=G2=G3=Gl=keAc/i = 0.2 BTU/min°F .

vhere V = i ¥#Ac, length times cross-sectional area.

To apply explicit forward differencing to this problem, we must utilize the
CNFRWD execution subroutine which reguires the short pseudo-compute sequence.
Hence, the title block is as follows: :

Col 8
BCY 3THERMAL SPCS
BCD GSAMPLE PREBLEM N@.1lA
END

The nodal block is next and requires the node number, initial t-mperature,
and capacitance of each node be listed.

Col 8
BCD 3N@DE DATA
1,&.,-0175’”5,mc,.ol75
GEN 2.3,1,800,0035910310’10
ap -




CINDA-3G

The conauctor block requires that each conductor number be listed with
the node numbers at either and and the conductor value,

Col 8
BCD 30¢NDUCTPR DATA
GEN 1,4,1,1,1,2,1,.2,1,,1.,1.
END

The only control constants required for CNFRWD are as follows:

Col 8
BCD 3CONSTANTS DATA
TIMEND, 10, ,§UTPUT. . ,CSGFAC, 2,
END

There is no array data and only one exscution call, hence:

Coll Col 8
BCD 3ARRAY DATA
END
RCD 3EXECUTI@N
DIMENSION X(100)
NDIM = 100
NH=0

CNFREWD

rxj 3] =y

END

_ There are no sacond variables operations but we must apply the heating
rate in the first variables,

Col 8
BCD 3VARIABIES 1
STFSEP (3.,Q1)

END
BCD 3VARIABIES 2
END

Our actual node numbers will have a ons to one correspondence with the
relative node numbers so the following completes the data input,

Col 8
BCD 3@UTPUT CALLS
PRNTMP
END
BCD 3END ¢F DATA

The above problem data deck pr:.cessed by the CINDA-3G program on the Univac
1108 as a standard run produces the following oulpul;

NOTE: The only option to the BCD JEND gF DATA card is a patrameter change,
A new job would require another set of control cards,
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SAMPLE PROBLEM 1B

Sample problem 1A was linear and can be rigorously solved by means of the
Laplace transform. However, the introduction of nonlinearities makes rigor-
ous solutions virtually impossible and makes the use of finite difference
techniques mandatory. To demonstrate, apply the following nonlinearities
to sample problem 1A and obtain the solution.

1. Both ends of the bar are uninsulated and allowed to radiate to absolute
zero. The Stephan Boltzman constant is ¢ = 1,991E-13 BTU/min in2°R* and
the emissivity varies linearly with temperature as follows:

€
€

0.4 at =100°F
0.8 at 300°F

2. The thermal conductivity of the bar varies with temperature as follows:

k = 0.15 at -100°F~(BTU/in min °F)
k = 0.25 at 100°F
k = 0.40 at 200°F
k = 0.60 at 300°F

3. The density remains unchanged but the specific heat varies with tempera-
ture as follows:

Cp .3 at =100°F~(BTU/1b *F)
.39 at 100°F
49 at 200°F
.65 at 300°F

[eNoNoNe

L. The heating rate is a function of time as follows:

q = 3.0 at 0 min~BTU/min)
q = 4.0 at 3 min
q = 4.0 at 7 min
q = 3.0 at 10. min

In addition, obtain the rate of heat loss and integral of the radiation
transfer from the unheated end of the bar. The network representation of
this problem differs only slightly from lA.

ql, -
TIO ; ;k!l T2 T3 T4 TS Elg TIO
| T Gl T G2 T G3 T G4 T |

Now however, the capacitances are a function of temperature. We therefore
require multiplying factors such that:

C =pPVCp(T), MF=PV
MF = 0.1 for capacitors 2,3 and 4
MF = 0.05 for capacitors 1 and 5
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The conductors are now:

G = k(Tm)Ach ,MF = AC/f, ™ is the mean of the end T's
MF = 1.0 for conductors 1, 2, 3 and 4

A radiation conductor requires the input value¥ &€ FA, however FA = 1,0, hence
Grad =r €(T), MF === 1,991 BTU/min °F. Also, q = q(T)

The capacitors and conductors will be specified with CGS and CGD calls,
the problem data deck m~~ be constructed as follows:

Col 1l 8
BCD 3THERMAL SPCS
BCD 9SAMPLE PR@BLEM 1B
END
BCD 3N@DE DATA
cGS 1,80.,A3,.05,2,80.,A3,.1,3,80.,/,.1
CGS 4,80.,A3,.1,5,80.,A3,.05
-10,-460.,0
END
BCD 3C@NDUCT@R DATA
008 1,1,2,82,1552,2,3,42,1..3,3 0,08, 1, oholi s 5,82,1,
cGS -11,1,10,A1,-1.991E-13,-12,5,10,A1,-1.991E-13
END
BCD 3C@NSTANTS DATA
TIMEND,10.,0UTPUT,15,CSGFAC, 2. ,4,0,5,0
END
BCD 3ARRAY DATA
1,-100.,.4,300.,0.8,END $ EPSIL@N VS T
2,-100.,.15,100.,.25,200.,.4,300.,.6 ,END $ K VS T
3,-100.,.3,100.,.39,200.,.49,300.,.65,END $ CP VS T
4,0.,3.,3.,4.,7.,4.,10.,3.,END $ Q VS TIME
-5,QRATE,QTYTAL,END $ A LABEL ARRAY
END
BCD 3 EXECUTI@N
F DIMENSION X(100)
F NDIM = 100
F NTH = 0
CNFRWD
END
BCD 3VARIABLES 1
D1DEG1 (TIMEM,AL,QLl) $APPLY HEATING RATE
END
BCD 3VARIABLES 2
RDTNQS(T10,T5,G12,K4)  $@BTAIN HEAT FLPW RATE
QINTEG(K4 ,DTIMEU,K5) $INTEGRATE SAME
END
BCD 3@UTPUT CALLS
PRNTMP
PRINTL (A5,K.,K5)
END
BCD 3END @F DATA

The above problem data deck processed by the Univac 1108 version of CINDA-3G
produces the following output. .

w
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