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I. Variational Principle

We will be concerned with the internal dynamics of a bound system,

the internal Hamiltonian being denoted by	 Our starting point is

the observation that whatever the state of the system, the average value

of the energy cannot be less than the energy of the ground state. Thus
ry

given any wave function + for which the requisite integrals exist
Aj

(henceforth we will refer to + as a "trial function") we then have

that the average energy is an a i.;er uouadu to the energy of the ground

state, thus

NIN.
Problem. Give a form2l proof of (I-1). Hint: expand	 in

terms of the eigenfunctions of R .

If 1i contains a kinetic energy operator and ode ig working
in configuration space, then the existence of (*,d + ) re-
quires that y^ be twice differentia bJq However this condi-
tion can be relaxed. If one uses -(py, V'1) instead of
( Q^' ) then one can show that one still has an upper
bound even if W is only once differentiable (see Courant
Hiblert "Methods of Mathematical Phys ics" Vol. I, bottom
p. 457). Also even if %P is twice differentiable the
(V i-,V q ) form is often more convenient numerically. How-
ever, we will continue to use the fora: (I-1) since it is
much easier to deal with formally.

{ N
Further we will now show that if we consider E: as a functional of

then the various bound state eigenvalues of " are stationary
N

points for E . In particular then we will have shown that not onlyry	 ti
is E an upper bound to 9 C-r	 but that	 = E Cr	 is actually

a minimum point for 1- is a functional of

- 1 -
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in	 Our initial observation that	 7a 2	 hence. in light
r,

of the present result, chat	 = IPZ ^r	 is a fr:irL:muuT yoint) can also

be read from (I-5). Namely the smallest eigenvalue of 	 is

evidently zero whence if 	 is or tho¢ona l to ^1's--	 Rrd i f F&

is non degenerate then

which proves the poinC.

Prnblem: What can we -ay if E, 	 s de^;a:.er2te?
GROUhU

Problem: Show chat the higher eigen:zkues are Neither
maxima nor minima, i.e., they are simply stationary ."iris-

Thus we have shown that the eigenvalues of 1' are stationary

points of	 as a functional of t-' . In Sec, TV we will prove the

converse: If V- is a stationary point for	 then E is an eigen-

value and the corresponding "4e is an eigenfunction, Together these

results constitute a statement of the Variational Principle --

"variational" because in order to test for stationarity one must vary

N
about the suspected value.

II. The Variational Method

In theory the variational principle provides an alternative but

equivalent method to 

`

the direct solution of the Schroedinger equation

for determining the °3	 and	 However in practice one usually

N
can't carry it to completion -- one can't examine all 	 and look for

stationary points. However, what one can do (and this constitutes a
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statement of the variational method or variational approximation) is to

try to approximate the + and '& by examining a restricted set of

trial functions and determining those T which yield r=- which are

N
stationary for variation% of %^' within the set, i.e., which are sta-

tionary with respect to the restricted class of variations. We will

rV	 ?IV

denote the + which yield stationary E in this restricted sense by

A
(possibly with a subscript) and call them optimal tral. funw-Lions.

The corresponding	 will be denoted by	 Evidently ±- is then

natural to put forward the "- and 	 as the "best approximations" to

the * and a to be found witin the sat since in par^ieular ore

n
would expect that as one enlarged the set of trial functions the

n
and	 would steadily become better and better approximations to the

A11110

and S (of course it isynot excluded that one may, by chance,

already have an exact eigenfunction in a restricted set). However,

note that from what we have learned so far, this expectation is really

justified only for the energy of the ground state. Namely we know
A

what whatever the Let of trial functions, the lowest ^ , call it

n
will satisfy

A
and since enlarging the set of trial functions cannot rai_ ge S&

and will usually lower it, it follows that for the ground state, the

approximation to the energy will improve steadily.

A

It is more difficult to make statements bout `^'(r	 , in
part because how $ood an approxim&tion qoL,	 is to

^^.	 depends on how one chooses to compare them.

yie will therefore not pursue this question further, except
or a few related remarks in what follows.

f



5

For the higher states however, all that one can say in general is that

n
as one enlarges the set, the	 become "more stationary", but whether

or not they become numerically more accurate one cannot in general

predict. This is not to say that there are not techniques for ensurting

that variational calculations give energy bounds for excited states so

that we have more control of the situation; there are, and we will

4 MM @'FIAT 0l Y
t	 mention one	 , and discuss another in Sec. VI. It

is4# to say, however, that they will require special precautions.

For example suppose that one knows that each member of the set of trial

functions in orthogonal to all the eigenfunctions with eigenvalues less

than E • 'hen clearly, instead of (1) one can write

and thus have a variational bound on a higher state. However, in

practice this is not very useful because one usually doesn't know tht

eigenfunctions of the lower states, and hence cisn't be sure that the
nr	 -

are orthogonal to them. An important exception occurs when the

eigenfunctions of ^4 can be classified in an arp iori way according
N

to some symmetry property. Then if we restrict the set of Y to belong
n

to a particular symmetry type we can say that E will be an upper

boun to the lowest eigenvalue associated with that symmetry, which

may of course not be the lowest eigenvalue of 	 As an example,

assuming a spin independent 1i , symmetry alone can ensure us of having

a bound for the tb " 30-"	 state of Helium since there is no triplet

state below tt . On the other hand to get a bound for the kA 24IS

state will require a different technique (see Sec. VI) since the

UAf- `S ground state lies below.
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For the moment then we will confine attention to the ground state,

or lowest state of a given symmetry (and drop the label Cr 	 ). How-

ever before continuing we want to make one further important general

remark about the range of applicability of the variational method. In

our discussion thus far, as in our discussions of perturbation theory,

we have had in mind that K is an atomic or molecular Hamiltonian.

However as far as the mathematics is concerned 	 could be a finite
n

dimensional Hermitian matrix and correspondingly	 a finite dimensional

column vector. Thus the variational method (and perturbation theory) can

be and are used to approximate the solution of finite matrix problems.

(of course there are also many very efficient direct methods available

for solving finite matrix problems of fAir ly large size, especially

with the help of a computer.) Further, as we will see, starting in

Sec. V, such problems in turn often arise in applying the variational

method to the atomic or molecular Hamiltonian. Even more generally,

one can envisage the use of the variational method to approximate the

solution of a mathematical problem, this problem having arisen in the

course of using the variational method to approximate the solution of

another problem, etc. We will mention examples of this sort in Sec. VII.

I

Of/ The matrix problems for^
general form

have the apparantly more

-9 C-=-X,Sc

where 1 is the eigenvalue, C the eigenvector, R 	 a
Hermitian matrix and I a positive definite Hermitian
matrix. However, they can be reduced to standard eigen-
value form by transforming with 01- (which exist since

is Hermitian and positive definite) according to

aq l,pt.	 C__'	 -	 to yield the equation



Al ^) , " G

'	 which is of the form which we have been discussing. How-

"	 ever, note that by reversing the prodedure, i.e.,

A I = ^ ^,^) G +z- J"- C 	 one can express all
quantities of interest, and in particular the variatonal
principle, in termsof -9 and ,4 , i.e., one does not
need to calculate J , " explicitly. Problem: Write the

^variational principle in terms of f(	 and J .

For the ground state then the variational method for finding ap-

proximations to * and E consists in examining a limited set of

^0	 A
trial functions and deterc-ining that + , to be denoted by 	 , which

Iv	
--^	 A	 s

minimizes	 , the minimum value of [— b,:ing denoted by f:	 and

F are then taken as the "best" approximations to + and 	 to be

found within the set.

Note that for the ground state one really doesn't have to
envisage a variational process, i.e., a continuous process.

1-

	

	 One could base the procedure wholly on (1) by examining a
discrete set of + and selecting the one which gives the
smallest value of C 	 In practice, however, one usually
ttses continuous sets.

A
Now clearly from the minimal property (1),'E is certainly the

best approximation to 1E that we can find among the L provided by
A

the set. However, with respect to + the situation is not so clear.

There will almost certainly be other members of the set which are
n

superior to	 in other ways, for example give more accurate expecta-

tion values for quantities other Chen the energy, 
f
or giving a smaller

pv

value for the "energy variance" ( ^, I Cam--L-7)  4 J etc.

(A recent reference: Keaveny and Christoffersen, J. Chem. Phys. 50
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n
80 (1969).) Indeed ore often says that since a ^ 12 is of second order

in	 while —Ir 	 is (by definition) of first order, that energies

are more Accurate than wave functions, and as a rule of thumb this is

probably true. However, as noted earlier, to make such a ststement

precise one must give some norm or norms by which one judges the

AAaccuracy with which y' approximates %-^ since 	 is, after all,

a function, usually of many variables. Then having settled on a norm	 P

there is still "the question of coefficients". This is one says that

A 7 0' is of higher order than x (and hence, in this theoretical

sense, "smaller") whatever the value of the constant coefficient A

because there is a range of X around zero such that IAIX L lk W

However this range depends on A , being W - kA -,	 and	 i practi-

cal case A may be such that though the value of X of irate	 seem

small, still 1Ak%' -I to	 To be more specific suppose	 ide
n

to measure the accuracy of 4' by the single parameter

►Lr

and suppose that & is an excited state of «• with energy , Tlen

Ce ^e ) _ Chi 
— S) -Y

C

which is of second order in > but which, depending on the numerical

values of	 , and G , and ^ for the case in point, may well be

larger than	 In summary then the concept of 1 °order" is a mathe-

matical one and it is not necessarily so, that quantities which involve

first order errors are less accurate than those which involve second

order errors. That the variational method yields a second order error



(III-1)
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for the energy is ^, but equally as important is that it yields an

improvable bound to F—frso that one has some feeling for what one is

about in trying to make more and more complicated calculations involving

larger and larger sets of trial functions, namely one is sure that one

is therby obtaining a better and better approxmation to e(s.

III. The Variational Method -- More Details

Let us now examine the variational method in more detail. We

_	 N

start with the definition of 	 written ds

ti
Then given a w from the set of trial functions we consider a neigh-

boring function which, to first order in the change of parameters

N
and/or functions which label the various ^' , we write as

ti
Note that in general	 is a member of the sett
only through first order, i.e., it is not itself actually
a member of the set. Thus if the set consists of the

functions A wt..el x when -A and a are arbitrary para-

meters then w 1 b ì	has the general form

A e_
	

-k-&A 
e 

y xbd A e

which, for b )^ *0	 , is not in the set. There are cases
however -- linear spaces which we will discuss in detail

\a ter on -- in which % + 6 w^	 is in the set.

Then to first order, the change in E is, from eq. (1), determined

by

^_y
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A	 v
flow + is that	 which minimizes E within the set. Hence when

2	 Z
and C = E all possible first order variations of E allpwed

within the set must vanish. Thus we have

6 1 +' ) c^? -^ ^-) ^— c • , cam-	 d ryr = a	 (III -3)

which	 with

^`-	 ^	 (III-4)

A	 n
are the equations to determine `}' and L . They constitute the

mathematical statement of the variational method. It should be kept

in mind, however, that in practice, having chosen a set of trial

functions, one is often not able to solve equs. (3) and (4) exactly,

i.e., analytically in closed form. Indeed one may well not be able to

write them down exactly ( ^), usually because of the appearance of

difficult integrals. In Such cases one must resort to numerical

methods, methods which are inevitably of finite accuracy, to write

down and/or solve the e quations. The potential interplay here between

physical approximation and numerical approximation can clearly be quite

important and interesting. However, we will ignore it in what follows.

In particular when we discuss and derive properties the solutions E

and t ' of (3) and (4), we will be iAt"%;v44 about the exact solutions

and will not discuss the effects of possible numerical inaccuracies.

F—
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We el.11 often ;write (3) as

6 C_4, (Ni^t) 14- ) =- L	 (III-5)

;.?i*.h the understa .ding, of course, that S t = O a

/Noce th-it the ^+ which satisfy (3) form a real lines\
space. That is ik 6j^	 ar_d iz^	 satisfy (3) then so
do	 where A and (3 are any two real
constants. On the other hand Che set of trial functions
is not ,sually a linear space though the case i.r which it
_.s of great practical importance and is discussed in more
detail it several of;,the sectio,i which follow. Thus con-
side_ again the set P, "p = 	 Thea 3A* -% and 57--t- 2-04

^bel. :^i,.g to the set but clearly 3a^1,__x + S'6k p -Zx does not

An obvious procedure at this point would be to eliminate	 from
n

(3) by use of i4), solve the resultant equations for 	 and then return

to (4) to determine C . Indeed in simple situations this is just what

one does. Thus suppose that `1 is a one dimensional Hamiltonian and

the	 are as given in the previous note. Then what one would do is

N	 hcalculate	 as a function of	 (evidently it doesn't depend on t\ )
ti	 A,	 ^	 jIN

set	 ^Naa)	 determine cC and then return to (4) to

calculate

rubles: With Gaussian trial functions p12q-07 t1

k
ind the best approximation to the ground state of hydrogen.

However for theoretical purposes it is often convenient to retain the

forms (3) and (4), and indeed it is often of practical. use too (in

particular for m_.Ang contact with the Schroedinger equation and also

for example in discussing linear trial functions). Thus we will leave
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(3) and (4) as they are and not combine them directly in the way in-

dicated, However, it is useful to note that they can often be pro-

fitable combined indirectly.

Nanely suppose that the set of trial functions has no fixed overall
N	 N

scale. That is suppose that if 4' is a member then so is A+ where

is an arbitrary real number. Then clearly among the variations

which will have been found to satisfy (3) will be

But if now we insert this into (3) we find (4). Thus if the set of

trial functions has this property then we need not refer to 4 expli-

citly.

/We have referred to n(3) and
, 
(4) as the equations to be`

solved to determine y and E . A natural question is
then, do they have solutions? Although clearly a question
of great importance, it is also a question which is natu-
rally of great mathematical complexity, and therefore we
choose to ignore it. In general we will assume without
further comment that solutions do exist, though in any
particular case one must be prepared for the possibility
that the contrary is true.

Now let us become even more specific. Let us consider the common
N

situation in which the typical	 is specified by a number of (real

ti	 ti
and independent) 

1P 
"ameters QI	 Q M	 That is we can

write

r`-	
I- ("-
	 ti

4-,= Cr , 0., - - 0.M

where C^ specifies the functionA'_ form which we assume given ( 4 of

course also deperds on coordinates, spins, etc.). If now we vary
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^(—Xr then + is changed according to

(Note '^^+t- u-	 rn4E k5 +-	 is simply linear combination of the

Inserting chi-- into	 ' =or each	 v--lue then yields the `" equations

N

—^	 f	 J

Which together w t€l (4) are t. be	 to	 t;.i- 1	 unknowns
^	 r°+

^. lq 3..nd & . However what if the sc ?e of the ttiai functions isn^t
fixed? Then as we have seen G;^,- '3 a fj 1̂ "' 11-k yant equati -n and $:± we ser-m

to be left with n. , equatio-ns for urzkzo.m.. However this is (Of

course] not the case. Our assumption about the trial functions implies

that they can be written in the form

where the

—j	 f1V

 to t, are real independent functions of the (X,.,	 Namely with

this form ^^ yields the arbitrary scale, and conversely the arbitrari-

ness of the scale implies the existence of

Inserting (see belnw)

A

into (3) of Course then yields ( a ) b and note that	 cancels out of

(4). Then insertingd i z. s
UV-
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4.

yields M-1 other equations which again don't involve 	 Thus we

have consistency in that we have M equations for the	 unknowns e

^	 f>

and b ', "°^Q r	 Since these kt. equations are e q uivalent to the

original set (see below) it follows that the latter must also be con-

sistent, first impressions to the contrary not withstanding. The value
A

of ^^ , of course, remains arbitrary. That is with this sort of set

("I

of trial functions the overall scale of ',I is left arbitrary, iust as

the Schroedinger equation leaves the ,)verill scale cif	 arbitrary.

/The equivalence of the sets of equation follows from the

observation that

'A L i^ x

kA	 N
Z &L 	 fit_ 5^
"'	 ab w b Qa_

r,

That is the ^^^ are linear combinations off the ^^^	 with
real coefficients and hence the use of the 6-& as variational

` parameters is equivalent to the use of the q	 d conversely

We conclude this section with two further comments on equations

(4) and (6)

(i) If one is convinced that one has found all solutions of these

equations then the lowest	 is of course the minimum, and is the one

to take to approximate R(r	 (but see below). However, if one has

found only a solution then one should test it to see if it is Zt least

a local minimum and not a local maximum or stationary point- In numeri-

cal work this has presumably been done by the search procedure.

i

I

L
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Analytically one must=go on to second order to find

ti

a =a

and then qne must.apply one of the standard tests to see whether or not

this quadratic form is postitive. For example one can look to see if
v

the matrilf	 aZ6	
11 	 ,^	 has any negative eigenvalueS.

Problem: Prove. that the matrix must have at least one
zero eigenvalue^ Hint: What happens if y, is simply

	

^a multiple of	 ?

T10 On occasion one may have doubtthat the standard calculus

soit of approach for finding minima which we have been discussing is

really yielding the smallest r= . Namely as we discussed at the outset,

in order for various integrals to exist the A' must satisfy certain

_ =
	 conditions and this may well mean that the range of the 0-1 .  are not

unlimited but that there are "boundaries". If this is the case it

=_	 N

might then happen that the lowest t occurred on the boundary. Thus

rV
NA	 CZ
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IV. The Variational Princiole and the Schroedin ger Eauation

N
In Sec. I we stated but did not prove that if 	 is a station-

ti
ary point for C- as a functional of 	 then 49 is an eigenvalue and theN
corresponding	 is an eigenfunction. We now want to justify this state-

ment. The proof takes only a few lines. We have postponed it this long

because it will immediately suggest some new points which we will want to

explore and so it seemed best to get the other basic material out of the

way first.

First we use the Hermiticity of 14 to write eq. (III-3) as

from which we can immediately read off our earlier result: I1►-ei)^0
n	 n

i.e., if	 and	 satisfy the Schroedinger equation, than (1) is satis-
n. ^	 ..i

fied for gal	 , C•t ' E= E ig a stationary point for Cr . Moreover,

and this the new point, we will now show that if (1) is satisfies for pM

n.• A

$	 , i.e., if E ---E is a stationary point, then E and + will

satisfy the Schroedinger equation.

To prove this we need only note that if (1) is to be satisfied by

any 6 it mast be satisfied by

where (51 is a real constant. But inserting this into (1) yields

CH+—E7 ^ ct^'^ )`^ 1 = O

and hence

which proves the point.



V_. The Variational Method and "Momenta" of the Schroedinster Equation

The two terms which appear on the left hand side of (IV-1) are

evidently on another ' s complex conjugate. Suppose then, as if often the

case, that one is dealing with an H which is explicitly real (in the

representation in which one is working) and one is using a set of trial

functions which is real. Then these two terms will be equal and we may

replace (IV-1) by the simpler form

(S It) C',^ -

Further this same equation will also hold with complex ti (for example

coordinate representation for a particle in a magnetic field) and com-

plex trial functions if the set of trial functions is sufficiently

ti N

flexible so that if '++ S v-'	 is included through first order then so
ti

is	 for all possible6p,*. Namely if this is

the case then clearly in determining. both `Ir ;"S^ ^^	 and^^d^^4

will have been examined whence we can apply (IV-1) twice, first with

to find

Cbk r
and then with

&v-`a Cry

which is the content of (1). Usually these conditions are met by not

imposing arp iori reality conditions on the variational parameters

and/or functions.

PPI-
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Note that when eq. (1) applies the space of variations be-\
comes a complex linear space. Thus if (1) is satisfied by,

b, y	 and .6,&4 then it is also satisfied by Prb, W
where At and b are arbitrary complex numbers.

When eq. (1) applies, the variational method can be given an in-

teresting and suggestive interpretation. If in a general way we under-

stand by a "moment" of a function i" , quantities of the sort

C^-)r-)

for various choices of ^3 , then we may say that as an approximation to

making Ck4 _1k) y-? p , i.e., to solving the Schroeding equation, the

variational method requires that we make a restricted set of moments of

A n
CE}-1^►	vanish. (If we make all moments vanish then of course we will

satisfy the Schroedinger equation. In this connection we again remark,

it may be by chance that a restricted set of trial functions contains

ti
an exact eigenfunction.) The definition of E

can clearly also be interpreted in the same way. (One is satisfying the

Schroedinger equation "on the average".)

Now this sort of approach, requiring various moments of CVV_i4)

to vanish, is certainly one which one might come upon (and indeed one

which poeple have came upon) without reference to the variational method.

In particular consider the method of linear variational parameters

(the Ritz varitional method) which we will discuss in more detail in

succeeding sections, in which the set of trial functions consists of

functions of the form	 11A. n„

r
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where the c'_ (the "basis set") are a given set of linearly independent

M
functionsf and where the GQt are arbitrary parameters (thus here is a

case in which the space of trial functions is a linear space).
ti

Since no reality conditons are imposed on the Qy , ( 1) applies

whence we find by inserting

.	 `4' - ^ ^L 41.

^w+ '- OW ata.

the set of homogeneous linear equations

ML	 e%.n
C,	 (V-2)

Now the point we want to make is that one can arrive at these s &%% Q

_	 equations, and people often do, by first writing down the '$chroedinger

Equation": (the reason for the " 	 " will be discussed in a moment)

M

^)

	

	 Q^, ^^' 3 t^	 (V-3)
!-mot

and following the standard procedure of "multiplying through by

and integrating."

This sort of approach however raises further questions and possi-

bilities. Since the use of 
A 

has special reference to the variational

method let us replace (3) by the more neutral equations

M

CH—ICS T	 (V•4)
` a.^. ^^- ' O 
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The procedure of "multiplying through . . ." then provides one way for,

trying to evaluate i and the -%. . But what about other methods?

For a-ample one might try to satisfy (4) indentically at M. selected

points, or more generally one might try multiplying through by quite

another set of functions and integrate to find

M
C^-p , C^ -a^ `^^ AL=d	 u =1-- - M	 (V-S)

L--.,L)

Pro lem: What if the TV-are b functions? %

What is the status of these various approaches? Are they equivalent?

Is one superior to the other?

First as to the equivalgncep in general (unless perchance an exact
N.

eigenfunction is coi:tained in the e.) the different procedures lead to

different answers. The point is simply that (4) as it stands is not a

consistent equation -- there are no aL and C- which satisfy it (hence

our P-ar lier use of "	 ") since if there were ,,then we would have an

eigenfunction and eigenvalue of " . If it were a consistent equation

then different methods of solving it would lead to the same results.

Since it is not consistent, different methods of "solution" will in

general lead to different results.

Now as to the advantages of one method over anotherl as we have

seen the variational method leads to (2) and therefore as we know

endows it with the virtue that the lowest L is a guaranteed upper

bound to ^^	 Indeed, as we shall see in the next section;it is

even more virtuous, the M solution of (2) are,in order guaranteed
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upper bounds to the lowest LL eigenvalues of 	 Thus there is con-

£ i_derable reason to choose (2)

Equations (5) can also be given a variational basis. Suppose we

define an energy Q, by

^^ Cam- E 7	 = O	 (V-6)

Then one can readily show that if

then

i.e., there are no terms of e7h^A or of off., 	 Thus in this sense

the eigenvalues of R are statioi.ary points for E as a functional of

© and I' , and converse:'.y. This then suggests determining "best"

E ,	 and B from (6) and

(V-7)

However	 has no bound properties. Also note that it is not neces-

sarily real.

<Problem: Prove this .>

The connection with (5) comes if we choose
M	 h

v	 ^^
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Then inserting

gq^=. 56V- -^ V_	 1r-z\---c_

into (7) yields (5),,;̂  c-S\-;V' 

Inserting W= SaK N.	 leads to the equations
M
^ by C'^ ^, ^ c^4- E ^ ^^l ^-p

Note that, as must be the case for consistelcd, these
equations yield the same values of	 as do the
equations (5).

All of this is to say that eqs. (5) do lave some theoretical founda-

tion over and above the "multiplying . . ." point of vi-a. They have

been extensively discussed in the mathematical and applied mathematical

literature. However until recently they have not been used much in

atomic and molecular calculations, primarily because they don't yield
'Vn W17VLt ^A^

a bound. However recently Boy i has argued tha tV (7) may v,-! 11 have de-

finite computational advantages over the variational principle when one

is trying to use trial functions involving complicated explicit

electron correlation (something which has so far been computationally

impossible in the context of the variational principle when more than

3 or 4 electrons are involved) and has backed this up by very successful

calculations for several systems. Thus we may expect to hear much more

of this approach in the future. However we will not discuss it further

here.
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Excited States

Let us return now to equations (V-2).

n
homogeneous equations to determine the

it has non-trivial solutions (i.e., all QK

zero) only for certain values of !l , namel

This is a set of linear

r
and t_'_ . As is well known

not identically equal to

those for which the deter-

minant of coefficients, the so-called secular determinant, vanishes:

1 C J, ,, C,^ --E ) ` , )' — o	
(V1-1)

Dote that we have here an ecam p le of the situation dis-
cussed in Sec. 11. Namely in accord with the fact that toe
scale of ttIe	 was not fixed a rp iori. We see that r1he
scaie^of * is not fixed either, since only_ the ratios of
the QK are deterrsined by (V-2) and also we see that we
do not have to invoke C47 [k-r.l 41''D	explicitly in	 r
order to determine 	 P

Equation (1)

secular equation.

where	 E v -

and will choose t'.

n
yields an Mt!h order algebraic equation for E , the

We will denote the roots by Elf-

and we will denote the corresponding \^., by

zem rn he normalized to one:

n n
(VI - 2)

In what follows we will reed the following properties of the "Vy- which

follow from the fact that the "Hamiltonian matrix'' COY-, 1-}-*L) and the

"overlap matrix"	 are Hermitian matrices: (If you are

unsure of these results accept them for now. We will prove them in

Sec. VII).
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CA	 `k L 	 k L	 (VI-3)

N	 A	 t\
c4v- J- 4., ) = C 1sc 6 I-%-	 (vi-4)

PAN)
Equation (2) is of course a special case of (3). EgQations (3) follow

automatically if E,-# E L „ If there is degeneracy one can arrange that

they will be satisfied with no loss in genernlity.. T}ese properties

are Aof course also shared by the actual eigenfunctions of

(am,, KL # L ,9, 4V C A" 
j C'4)

/Problem: Show that G`^K,^) R*=d C ,^ 	
Ilk,

e.,l are Hermitian
matrices and that the latter is a positive definite matrix

\ (recall the discussion in Sec. II).

n
All that we know about the QV, at the moment is that they are all

	

upper bounds to	 E (r . We will now prove that they are succ^_ssively

upper bounds to the lowest t" eigenvalues of 0 , with appropriately

sharper statements if one can invoke symmetry. Thus through the use

of linear variational parameters one can get variational upper bounds

for excited states.

In our discussion we have been taking the *,-' to be given,
fixed functions. Often however one imbeds variational para-
meters in them (so-called "non-linear parameters"). Since

the result we have stated holds for any value of these para-
meters one willAtill have a bound if one chooses tie para-
meters in each tk-,& so as to further minimize each tp. .
In general this will require a different parameter choice
in each Ok* whence the "price" that one will pay will be
that (3) and (4) will no longer be satisfied for V. .*L.	 f
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In Sec. VIII we will give an elegant proof. Here we will proceed

in a more pedestrian fashion. We have a basis set of 	 functions.

N	 A
Let us note this explicitly by writing C-4-(M) instead of r4-- V-

Thus  in particular (4) becomes

Cor, )	 Sk L-
	 (VI-5)

Now we ask for the effect of adding one more function +' to our basi,9

set. Clearly we may assume without loss of generality that + is

normalized and orthogonal to all the 	 and hence orthogonal to all

the ^v-
n

	

+1A ) _p	 i^-=l -- - M-	 (VI-6)

Let us then write our new optimal wave function as

n	 M
= 7- b,, Lk	 ^'	 (VI -7)

-L ,
IN

Wh-re for convenience we have used the	 instead of the 4 K , a step

which is certainly allowed since the	 span the same space as the

4' , i.e., among other things, they are M- linearly independent

linear combinations of the a?M- •

N	 n
If now we insert 6	 &61 ,L %tx )W=A--•M ; and S^ = S^	 into

(V-1) then we readily derive, using (3), (5) and (7), the equations

n

C IL-\'C")_ G ) L" ^-( -', t+0) t =e	 (VI-8)

A

G Ile,) ^L

From (8) then we have
ti
b^= CAL, t}^^ ^l &-- ^ `Lu^

(VI-9)
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n
Whence (9) yields an equation for 'E

M 1 C ^,H ^.^1'

A
Consider now the quantity on the right hand side as a function of rc

and assume that all the 6 z 04) are distinct. We will discuss the

case in whichthere is degeneracy later. Also we will assume that none

of the	
7
y '' )I^ vanishes. Then the function has poles when ^^^LU")

It is negative immediately to the left of the poles and positive to the

(npgaLive) values

solutions of (10),

the intersection of

. The situation

right of the poles. I t_ goes to zero through positiv,

when S tends to poAtive (negative) infinity. The

A
let us denote them by IS Vjm + ►)	 are determined by

this function with the straight line 5 r «1NV+)

is shown graphically below for M = 4.
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Evidently then we have (in general) the "separation theorem"

E CtA 	,A C M},)	
-r1%^ ^

►^)
V—i	 (VI-11)

	

In' particular then 15;Y-% ''^^^) ^ rO K.\")	 tells us that as M increases
A

and the basis C'^ becomes complete, the tr= \L. approach their limiting

values, which,/assuming convergence, are the eigenv ues of k}	 from

above which proves the point.

/If the eigenfunctions of ki can be classified according
to symmetry, and if all the Oy- have the same symmetry

then evidently we can say that the G w will by upper

bounds to the M lowest eigenvalues of th^t symmetry.

Problem: What if AAA , of the J?V. have one symmetry,
en,, another, etc.? Hint: If **. and `¢L have dif-

	

ferent symmetries then (^,^c^L1z9	 and Cr,^dtil^v

The theorem which we have just proven, that the	 K, yield upper

bounds to excited states energies also has a useful conve y e: If we

have a set of functions rXV- which satisfy (VI-3) and (VI-4) that is

which satisfy

C ^,'^ t„^ = bx L
k,L = ^- - - M

Then the E IL will be successively upper bounds to the first K eigen-

values of " (of appropriate symmetry, etc.). The proof is trivial.

Let us use the 	 in the linear variational method:M
T- aw 'XK

Then evidently we will findtaw ='X1^ A-,Va ^ti — C-^ which proves

the point.
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Even if there is degeneracy among the r. .,^M) it is clear that the

qualitative picture isn't changed since one can consider degeneracy as

a limiting case of n& degeneracy. Graphically what happens is of course

that the appropriate 1-_^ become steeper and steeper as successive 
V.wtV'%)

come closer together, and in the l,_mit become vertical lines. In par-

ticular note that if say Qt k!'1) —CC3 "4N — e	 then rL- 4 L'5) would

again equal fi though there would be no more degeneracy.

/Problem: Show that if there is an m fold degeneracy s
among the C-wtwD	 at the value t ; , then the
will have an n-1 fold degeneracy also at the value

Problem: If one wants to treat the degenerate case on
its own merits rather than as a limiting case, show that
one cannot base the discussion on eq. (10). For a dis-
cussion based directly on the secular determinant see
D.W. Davies, J. Chem. Phys. 33. 761 (1960).

ti 1

Problem: What happens if one or more of the «1H oet.J

vanishes?

One choice of the 4%c- i7hich has been discussed quite
a bit in the literature is

(the so-called "method of moments"). Most of its practi-
cal applications however have been to problems in which

is a finite matrix. The reason is of course that if
is an atomic Hamiltonian then ( *, 14--1+ ) may

will not exist for L > 2 or so even with a "reas6hable"
choice for. lk . For more details and a discussion of

these points see J.B. Delos and S.M. Blinder, J. Chem.
Phys. 47, 2784 (1967) and references given there. See

also C-Y. Hu, Phys. Rev. 152, 1116 (1966) and 167, 112
(1968). In this latter paper there is also some dis-
cussion and use of lower bounds. A careful reading of

this paper shows that the ethods of moments is being
applied not to the atomic A but to a finite Hamiltonian
matrix (recall the discussion in Sec. II).



29

Although primarily of theoretical interest, it is useful to
compare the excited state bound one gets using only linear

variational parameters, to what one would get if one used
linear variational parameters and in addition could also im-
pose orthogonality to lower states as discussed in Sec. II.
As might be expected, the latter procedure, if it could be
carried out, would generally yield a better bound. Our dis-

cussion will be a "pedestrian version" of one given by
Perkins, J. Chem. Phys. 45, 2156 (1966). We will reproduce
his discussion in Sec. VIII. Consider the first excited state.
Then suppos that instead of simply using trial functions of

the form 	 GLL a,_	 we would further require that they be
orthogonal 'to ground state eigenfunction 	 i.e., we would

require that Za^.0,.,*1s0. But then we can use this equation
to determine one of the Ol d, for which U. L_o*\*'U 	ik
terms of t he others. Let this one be ar, . Eliminating Mr►
then we see that this procedure is equivalent to using as
trial functions

M ►

If we denote the lo jest approximate energy that we get from
this procedure by 	 then clearly it follows from (11),

with K = 2, that

yam : ^ 1 ^ E y UI

On the other hand we also know (Sec. II) that if E., is
the eigenvalue for the first excited stateofi K then

,t.

So we have

(VI.12)

which shows as expected that	 1	 , if we sould cal-
culate it, would be a better approximation to E, than is

E,.0 rte)

Problem: Generalize this last result to higher excited/
^tates.

0:_
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VII. Quantum Mechanics in a Subspace

Many of the properties of the method of linear variational paraw

meters become obvious (if they were not obvious already) when one
n	 ^

realizes that although the Ev- and 1 y* are (probably) only approxi-

mat`_ons to the eigenvalues and eigenfunctions of " , they are ex_ ct

eigenfunctions and eigenvalues of the "subspace Hamiltonian"

^^ =	 ^i IT	 (VII-1)

where ` V is the projection operator onto the subspace of Hilbert space

spanned by the trial functions:

^

	

	 (VII.2)

n
(VII-3)

4 Problem: Prove that W and R are Hermitian operators.>
n

A direct proof is quite trivial. Since from (VI-3) the "41 are orthe-

normal, we can write (using Dirac's bra&ket notation),

T
^-x-1

whence it follows that 	 A

L

which from (VI-4) becomes 	 n

IT ^`^cw^ r
which proves the point.
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However we also want to give a second somewhat less direct proof

wbieb. -:-dentally, Involves no appeal to (VI-3) and (VI-4), since, as

we will see, it ca_z be res.dily generalized to other cases in interest.

This prcof Lb as fol,oik9= Y;om Sec. I we know that the eigenfunctions

and e:ger_va.lt:es of 44 ^atisfy

1 Chj — ^^ 8`t ^ --O f^^\ S^ 	(VT1-41

We nov wort to 01:0w 	and C w, are solutions of these equatio s,

i.e., that

... L	 €^ J .r	 4-^ X19 _E V_) &*-t ) = 0 N\,	 (" I7.-5)

The proof i.s q-Ate trivial. Namely any b`1 can be decomposed into a
IN,

Part in the space of the ' 	 , and a part orthogonal to that space

Then evidently from (3) and the Hermitian property of IT , the contri-

bution of 6 -7 to the left hand aide of (5) vanishes identically whence

we have only to shw, that

n.-

^, = , cN - ,^ )'k^ j + C^,F , CH - ^,^ ^s,	 o Xq S,y'

But since T,'T and	 are both in the space, we may write this as

h	 _

which of course is true since these are just the basic equations of

the method of linear variational parameters.

Thus we have indeed shown (without use of (VI-3) or (19-4)) that the

f^ A 	 u^^,, and the r-IL are eig^enfurctions and eigenva?ue• of rl .
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v H is an operator over all of Hilbert space. Evidently its
other -I genf'unctions in addition to the *K , are any functions

,^ x such that j ^ u , and all beio._a to e,.genvalue zero.

From this fact it then follows in the usual way (ei,',.cr automatically

or as a pi3sible choice) that

C Llt^, I `k, ) I S I, L
	

(VIII-12)

(VIII-13)

and since the. i.a=t equaLi.on can be written

	

y- L 	(VIII-14)

we see that we have derived eqs. (VI-3) and (VI-4).

There are other interesting examples of sets of trial. functions

which form linear spares. Fo: example there has been considerable

interest in the so-called "S-limit" for the Helium atom, namely in

finding the optimal trial function of the form y'^,^^) where + 1

and 4 v- are  the distances of the two electrons from the nucleus.

Clearly such functions (even when restricted to be symmetric in

and	 form a li-ear space. Now the point we want to make is that

in all such cases results like the above apply. Namely we can define

a Hermitian projection operator ^ with the properties

_	 I	 X wholly in the space

	

'W '^ -- 
D	 ,
 

-)L orthogonal to the space
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and then we can simply repeat the second proof given above, symbol by
N	 A

symbol, to show that if 4V- and Gk.. are derived from the variational

method, then they are an eigenfunction and eigenvalue of.

In pa r ticular then (12) and (14) will hold, whence, in accord with the

discussions of Sec. VI it will follow that whenever the trial functions

n
form a linear space the Ey, williy eld upper bounds to excited state

energies.

/ For the particular example of the "S-limit", if the
are restricted to be symmetric (antisymmetric) then since
such a 1r has angular momentum zero, one will get bounds
for the energies of excited singlet (triplet) S-states
of He .

A general variational calculation, of course involves some
restricted set of trial functions. One might then envisage
defining a projection operator 'W- onto the set of trial
functions. However, unless the set of trial functions form
a linear space neither -T nor 1t will be linear operators
and none of the above will apply.

Problem: Prove that if the set of trial functions form a

linear space then T and y are linear operators.

Of course unless the space of trial functions can be finitely

parametrized, as in the linear variational method, one can rarely

expect to solve the 'k problem exactly. In practice what one does

then is to restrict oneself to an examination of a subset of functions

of the appropriate type, a subset which often does not form a linear

'=4
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subspace. Thus one has she sort of situation mentioned in Sec. I --

as a vari•L	 approximation to the Vi problem one is led to the

problem, and in turn one uses the variational method to approximate

its solution (usually without mentioning i	 explicitly).

One final point concerning quantum mechanics in a subspace. If

for a general operator A- we define

A = 7AV
tiA

then as long as `^ and 1}	 are in the subspace we have

i.e., we may "drop the bars". However one should keep in mind that in

general

'hough of course

Problem: Under what conditions will ( Wi' i A	 `^ ^= [^,AX3 `^
for any' and ^rlUr  in the subspace?

Thus for example if X and % are coordinate and momentum operators
K

respectively then in general
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We will return to this point in a later chapter when we discuss fre-

quency dependent polarizibilities and the "f-sum rule".

VIII. The Max-Min Theorem

From the discussion in Sec. I., it is clear that we can character-

',	 ize EK	 the	 eigenvalue of	 CE if- Gwt.til by

M, w C `(^ \^ `F	 1 1	 ^`^,, ^}) =0 i, =t - - tom- t cvm_

where the ^", are the -•igt,fu ctions of ti associated with the lower

eigenvalues. That is one minimizes E subject to the constraint that
ti

the ^. be orthogonal to Elie lower eigenfunctions. As noted earlier,

however, this 4pproach is of little practical use unless one can in-

voke symmetry, since it regdires a knowledge of the 	 Z.-=) - - -  1^---t

However, there exists another variational approach which is free frcxn

this defect, the so-called "Max-Min Theorem". Namely one can show that

1	 .V	

C=N_ tt-t (VIII-2)

where the -WZ are	 arbitrary functions. One first fixes them

.	 and determines the minimum of E subject to the contraint that ^} be

r
•	 orthogonal to the ''f ;,	 This minimum E is then a functional of the

IJ ; . To find E r- one then -maximizes with respect to the IVZ

We will not give a proof here that thes e two definitions of K

are equivalent. A proof with references and historical comment can be

found in S. H. Gould, "Variational Methods for Eigenvalue Problems"

Second edition (Oxford, 1966) Sec. 11.6.
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However we will give a geometrical picture of the procedure by

describing the analogous procedure for finding the principal axis of

an ellipsoid. The analogue of 7 is then a "trial axis" (through the
ti

center of the ellipsoid) and the analogue of E' is the length of this

axis.

(1) and ( 2) yield the same presecription for finding the smallest

N	 N
axis -- minimize E- with no constraints on

To find the next smallest l ( 1) says minimize f. subject to the

constraint that + be orthogonal to the saallest suds. However (2)

offers a prescription which is independent of apy knowledge of the

smallest axis. Namely given a vector Uj choose + to be in the

plane perpendicular to -WI	 This plane intersects the ellipsoid in
,P• w K:,, g1,wc-

an ellipse. The t ip,Y^^ #t n^*a1 
V 
will than obviously be the

minor axis of the ellipse. Nowd:vary the choice 2**^t , and find the

largest of these minor axes. This will be the intermediate principal
t

axis of the ellipsoid. To find the largest axis the simplest procedure

~	 h
of course is to maximize E with no constraints on	 In fact,

prescription (2) says the same. gamely one is to pass two planes

through the ellipsoid, the normals to the planes being W1 and Vs, .
n+

Since these planes will intersect in a line %+ is uniquely fixed as

that line. Then one varies '01 and ^+^, the normals to the two

e"planes, in such a way that E is maximized. Obviously this is equi-
ty

valent to simply maximizing E directly with no constraints on

We now want to use (2) to give elegant derivation of some of the

results in Sec. VI. First we will derive the separation theorem
r

(VI-11). Let	 be the projection of	 onto the #AW dimensional
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Mix t'^
:^ tz^
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ti

ti
p„d where the "JC and `$` are to selected from the subspace.

n	 n
Problem: Justify our definitions of E K-t"") and E- ^ ; (M)

Why did we restrict _^ and 'w [ to be in the subspace?

WE = Q-tlAtl F i^ H ^^6^ y	 Byrn V 4^vice

Comparing r=. (N+) and t=-	 we see that the prescriptions
n

are similar except that for E K^M^^) ^^1 	 is permitted to vary
A

while in C— V k(A) it is in effect fixes? at	 Thus the Max in the

latter case can't be higher than in the former case and we have

n	 n
Now let us compare	 and SrV—W)	 As far as the ?/y are

concerned the prescriptions are the same. However in the latter ca.,e

N
is more restricted whence the Min can't be lower and we have

A	 n
E,,.c µr-\1 4̂% Er,Lm)

which completes the derivation of (VI-11).

Now we will derive (VI-12) generalized to the K'tt % state.

Evidently the two procedures can be characterized by 	 is now the

projection of t^ dnto the ^-I dimensional subspace spanned by the +^o, )
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Z

and

E

F

whence follows that

Or

EV- 4. Et^

This result is of course independent of the choice of the ` l̀i . llov-

ever with the `kZ the eigenfunctions of M associated with Elie lower

eigenvalues we also know that

whence we have

t ^. L ^ ^►- ^ Ew

which generalizes (VI-14).

IX. The Unrestricted Hartree-Fock Avvroximation (URHF

Although we have on several gccasions mentioned the possibility

of including arbitrary functions, as well as arbitrary parameters, in

the set of trial function.s, the only detailed example we gave was in

ti
Sec. V where we allowed the `-k to be quite arbitrary, and then showed

that `i' satisfies the Schroedinger equation. (Also in Sec. VIII we

briefly mentioned the "S-limit" approximation for Helium.) In this

section we will discuss another case which is of great practical im-

portanct. From a formal point of view it is the simplest of the

widely used Hartree-Fock (HF) or Self-Consistent-Field (SCF) approxi.-

oration methods wherein one approximates an eigenfunction of a*y

f
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N-electron problem by a finite sum of Slater determinants, the number

of determinants being kept as small as possible consistent with what-

ever other restrictions (usually symmetry restrictions of one kind or

another) that one wishes to impose. The optimal spin orbitals (subject

to possible restrictions) are then determined by use of the variational

method.

/ Recently there has `+een gr eat interest in so-:..a=led multi
configuration SCF schemes in which one goes beyond the
minimum number of determinants. For example see E. Clementi,
Chem. Rev. 68, 341 (1968) and references given there. kko

^S A X11;	 z<. ^ J - C , P, s ^ (0-b s C.^°rb>^ V

As the name suggests, in the unrestricted approximation one goes

to the limi t_ and uses only a sing 	 and imposes no further

restrictions, at least restrictions of a physical nature. However in

developing the theory one usually, for convenience, imposes a certain

mathematical restriction which we will introduce in the next paragraph.

Thus we wish to use the variational method to determine the "best"

single determinant appropriate to a Hamiltonian H which, typically

is a sum of one- and two-electron terms:

^i_ T ^ 	
z

s—^	
(lx -I)

Sit

We now wish to show that there is no loss of generality in assuming

that the spin-orbitals which make up the determinant are orthonormal

and that the determinant is normalized. Having done this we will then

make use of these assumptions since they sim;. l ify the analysis. (For

on



I, IIA, - - - M A/1 (IX-2)

a more general discussion see for example T. Gilbert in Molecular

Orbitals in Chemistry, Physic 3 and Biology, P. 0. Ldwdin ed.)

The point is simply the following: Any determinant

40

can be written as a numerical multiple of a normalized determinant

formed from orthonormal spin orbitals:

(IX-3)j

	

C\f1 \^ 'C )= 'Sst	 (IX-4)

Granting this, then since x and `}' yield the same trial energy, it

ti
follows that we can confine attention to determinants of the form`}' .

One way to establish the equivalence is to apply the familiar

Gram-Schmidt orthogenalization procedure to the AA{ : First we define

the orthogonal set of functions

AA i

M	
M^` ` 0M, t4,, )

11 ^ 2 -

Then, we note that from the rules for evaluating determinants it follows

that

`x : 1 `L l - - - '1 N 1



s

it

whence if we put

	

^So	 CC' S , ^.S) ^S

we will have

ti
"^ ;, l ^P i - - ^P►J ^ ^^ x `14,''1 t^ hr -- N^v^ "NCO

which proves the point. Of course given one set of T" which do the

job ) we can find an intiniLe nuaber of other Bela

	

^Q	 1 y

I It r
	 45 %

^, 
S 11 s 1.

where the V5t are numecicul coefficients. namely if the U^ t_ foria

a unimodular matrix (unitar y and unit determinant) one finds that

> 1 "	 : ̂ I I
YZ

N
again equals ,+

/Problem: Prove this.

The set of Slater determinants does not form a linear space
since in general the sum of two determinants is not a deter-
minant. However there is sufficient linearity, thus

^ N l	 ^'?, ` , -	 pNl
ti I IN.ti

to permit statements about upperbounds to excited states
in some instances. See J. F. Perkins, J. Chem. Phys.
42 ,1 3827 (1965). s

We will now proceed to derive the equations which determine the

a
	

pS^ i.e., the best Y S	 However since only	 is directly
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^AlYDiv'd,c^	 we cwn e>.-.+.:t, in lig!.t of the remarks at the

end of the last paragraph, that Vs,e equations which we find will not

r.
Fix theUli.quely.14

Because :.c. have fixed tre ove-rat". scale of our trial turct:ion,-,

we will have need of t qtr

and

However the restriction to	 trial f-actions implies that

through first order

(IX-7)

A

which we can use to simplify (5). Namely ary	 can be decomposed

NAinto a part parallel to `S' and a part orthogonal to `}- , thus

where SA is a number. Inserting (8) into (7) we t`:en ."ind thatd^

must be Pure imaginary

Then inserting (8) int-, (5) an-3 using (9) we find that the contributions

of the F, h terir.s to the left hand side of (5) vanish identically whence

we are left with

( ^P,*,, 11^4" ) 4 (1+) V) ^L^) , -=-Q 	 (IX-10)
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A
to determine	 Now what does a general 6j. .^ look like? A general

n
C)	 takes the form

Now one can certainly= wiit_e

b s	 Z_ $P
t-j	

'.^

.	 uAIkY4. the .3P.4 are	 and whi-re b^u^	 is orthogonal to al

the "occupied" .spin orbitals:

(\{t. 3 ^t.'^ 1) =0	 t =) - - - Aj	 (IX-12)

But since

`r	 ^	 t C	 N	 S

it then follows that

sl y =	 1- (^^	 bi`fs "'`{p

r.	 n
Further since 151*  is a sum of terms and since the Sl.Vs need

have no relation to one another (they are restricted only by (12)),

it follows that we may confine attention to a typical term and use

S 1	 =} (fir _, by^y -^.4^,	 (IX-13)

80.,
	 1D	 - A)	 (IX-14)

Such variations are, for obvious reasons, called one-electron



q ince T ie bav, pi g ed no realit.,

z rT 4 CfA •I r,	 cx, OUT	 I f ;.?::r ^n =. ;,7e. may t er-lact ( 10) by

C.	 j x -

`T 
s i	 1: - h(	 St-: -"rd ' Z IIE -, T i L 1 14'.7; 111 Yjg the iP-.a (. r X

I 'f7.0 0 	 d t ET d(- L E L,	 ?I L 	 101; i :11 -J T f f r by or e snin C.0-

XT

Pq	 bL--	 1-o Ji) t prms of the sin-lc	 Ic.

-let!

;?.EDi
. 
-Lreir y spin orbital, (Problem- Frove thoL

i& HLrfr.-i tiaii). n.-m.elv

e%

,.Iy-,. k'

CmniDaring (]^^ -jitl: "Pce'O we then conclu3e that Lhe	 S;i- L F-V

the zet :.f c,%uplc-i	 equatic-ts

%A A

ohEr p. t'f;e	 01-,, a: ,rnert, be aibiLrary n,.lmlcl:-,.

Hn-4c-j-Er we	 em4tire-, if everything is to lie c:.rms -i s tent 0--v

the	 ait.	 LvIlently .9'i llce. IA^-p is Hetmitlai-, w .Ali

!E.S m - 'J f oY 5-40 since then Lhe

will be eigenf--m-tion-7-- (A urru, :.on Hertritlan operator (for a comment -ju

dc- jien(--TaCIY see below) C-!e E- S&-	 then beinS the eigenvalkies.
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The question of 'ucrma i` zaLion might appear a ^;-t trickiei` since a t

we wr i to out ^ IAT -	 using (16), the e q uations appear quire non- linear .

The practical approa,.h to the normalization question (and also to the

€eneracy problem, i.e., orthogonality is au*_om_atic only if Ey,-^6^ )

is as follows. To solve (18) one proceeds in ar iterative fashion.

i
One first guesses some orthonormal spin orbitals, cal tr:em Y3 .

From these one constructs, in the obvious way, a first approximation

to ^Wp , call it ^4 r	 One *_hen proceeds to solve
b

h "n"T_ Its 	Est `es

which is an crdinar y ei.ger_-!alue r:r ob!, - f-r t},
	 ^ F

can be free j y ma e _r tht *for(ra ; . 	 t_)e c}te:r	 -	 6` -;^	 .s

etc. eLc. , Z. CCU:PLng when a S_:f- sic ient degzee Gi sue: 1f'	 has

been atrained. T'r.4:. in practice these is no 	 with nor :gal=-•

`cation (or degeneracy).

^If one wishes one can also incor •:_)rate this procedure into
the theory by simply replacing ti►µg by an*ti+aF which is
independent of normalization and which equals	 when
the spin orbitals are normalized. AN p^v^+DVy ±^@^u :^

\	 ^^ t	 IL^ n

The equations

"3f V `fs	 E 
Ll"^	 (IX-20)

define the so-called canonical UtHF spin orbitals (we have dropped the



46

second subscript of Esy ). Howevr^L the_ 17-.> not r:.^cessaril^ the most
A

useful. Other sets derived from the ^QS by a uaimodular transformation,

may have more desireable properties, for example they may be better loca-

lized (Problem: Show that, as must be the case, such sets satisfy equations

of the form (19). Show that the g fb form a Hermitian matrix). Also it

has on occasion been suggested that certain non-orthogonal sets could be

useful too. (See article by T. Gilbert referred to earlier).

	

We have not yet calculated 	 To do so we use (6) and readily find

z	 Es( ^ i.	
U0	 (IX-21)

S=?
NP_

Thus E is not simply the sum of the "spin-orbital energies 6s" because

such a sum counts the two particle	 twice. We t^?ill discussn
the physical significance of the C_^ as ionization energies in another

chapter; our primary interest in this chapter being to describe the

formalism.( oy ,olem: Koopman's Theorem: Consider the N - 1 particle de-
A	 n

terminant ^^ tw ^^ ► - ^~-' 1	 Show that the average U-1 particle

N	 n	 A
energy calculated from	 differs from E by 6,V , supporting the inter-

A
pretation of the e N as ionization energies.)

As we mentioned at the outset, the unrestricted approximation is

the most extreme of the Hartree-Fock schemes, and usually the resul-

t
tant + will not have the symmetry properties of the corresponding

eigenfunction of H-spin, angular u,..m.entum, etc. An important exception

occurs in the case of closed shells. Here one can show that with

the usual non-relativistic, fixed nucleus Hamiltonian, then, in the

absence of external fields, a completely symmetrical 	 is a self-

consistent solution of eq. (20). Thus for a closed shell atom the

would take the familiar form of radial function times shperical
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harmonic times spin function, the spatial functions being doubly

occupied. In particular for ;a one can find a solution of the form

l p d A pl

e%- is a spherically symmetric spatial function and oe and (3

are spin functions. Similarly for at one can find a solution of the

form jA AA 4/ of A p p 1	 for Nq a solution of the

form(Q.+:A (^ ^'vt---- f-^ 1 	etc.

Thus in thtstcaseaone may say that the restricted Hartree-Fock functions

satisfy the ..nrestricted equations. Further one finds that, not un-

expectedley, this is then also true in its presence of external fields.

/ However we should also point out that though for closed
shells the completely symmetric solution is self-consistent
it may well not yield the lowest energy of all single dete •

-minants. For recent discussions see Kaplan and Kleiner

Phys. Rev. 156, (1967) and Cizek 	 and Paldus, J. Che.a.
Phys. 47, 3976 (1967). See also Ldwdin in "Quantum Theory,

of Atoms, Molecules and Solids", P. 0. L8Win, ed. (1365)
P. 601.

where

When one goes to open shells however the situation changes. Thus

consider	 One can check (Problem: Do this.) that a determinant

of the form lea A P A^ ocI	 will not satisfy eq. (19)

while a function of the form IA^A^(^ A°K1	 will. However

the latter function is unsatisfactory in that it is not pure spin 2

but contains some spin 3/2. A similar situation will exist also witL:

respect to orbital angular momentum when one goes on to open shells

which nominally would involve orbitals with non-zero angular momentum.



48

Thus for open shells one must impose
n

wishes + to have appropriate symmetry.

require that the trial functions take the

A	 e-V
and deterw i nzA and A from the varia

further restrictions if orie

For 4. one could simply

.v n.
form I n d fj ( n oC

Clonal method or, as a more

flexible alternative, one might use the appropriate linear combination

of I3d y iN pe a l 	 ^d A ^
1
d `and ^A	 which will

give 4koa spin. ^ . Similarly for, non-zero angular momentum, one

can specify the angular and s,' dependence of the spin orbitals,

vector coupling together various determinants to produce the desired

angular momentum Iand then determine the radial functions variationally.

General schemes of this sort go under such names as restricted HF (or

SCF) or multiconfigurational restricted HF, etc.

Returning to the case of L^. , it is possible to imbed 12 0,pPA'a l

and similar restricted single determinants

appropriate to systems with spatirally closed half filled shells out-

side of closed shells in what we might call a "slightly restricted

scheme" ( gRHF). Namely suppose one looks at determinants of the form

fV	 ` t e"	 ev	 ^.	 ^,	 e^,

^^ 1 ^1 V'1 f; YL of V ^^ —	 — _—` v.S °Z l

7 N^.

where the	 are arbitrary orthonormal spatial orbitals. Thikis we

have a number of doublI occupied oibiLals and then a number of valence

orbitals all with the same spin.

.—v
If or p writes dowr_ the equations for the optimal ^.^ 	 i.e., for

A
the V+t then one can stiov that for systems with spatially closed half

filled shells outside closed shells, the appropriate restricted orbitals

satisfy these equations. Further this also holds in the presence of

external fields.
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Problem: Derive	 forChe equations

,^, s ^> > J; a s, r	 al ^J^^

Show that one cannot put the analog of E t-►-equal to zero.
\Show that these equations are satisfied by I^ -A , sy= ^^a^1

We will conclude this chapter by some cc-mnents on how one actually

goes about solving the eq. (19) and their analogue for restricted HT

schemes. For closed shell atoms and for open shells rAth angular and

spin restrictions one can, ssuming asymmetric solutio reduce them

to a set of non-linear, coupled, 1-dimensional integro differential

equations for the radial functions. Tt has then p-fov.?- possible to

solve these, apparantly with good accuracy, by direct n!jrictr cu l tec-l-

niques using an interative procedure of the type mentioned earlier.

For molecules such a direct approach still seems pretty much out

of the question and one resorts to so-called "analytic" methods. Namely

what one really does is to go back to (13) and (14) and restrict the

set of trial_ functions further by replacing the ^^ by finite ex-

pansions in some basis sets (usually the same set for each S ) so

that Sl \04 involves varying the finite number of expansion coeffi-

cients and any non-linear parameters which may be imbedded in the basis

set. Qualitatively the situation here is the same as that discussed

near the end of Sec } VII -- the (non-linear in this case) space of trial
4.ti;cl+y,^,d^^ Coq)

functionsvis multiply infinite. One is therefore forcers to restrict

attention to a finitely parameterized subset.

For fixed values of the non-linear parameters, varying the expansion

coef;icients leads to a set of coupled non-linear algebraic equations
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for the expansion coefficients, equations which one can then solve

iteratively to self-consistency. One then changes the value of the

non-linear parameters, etc.

X. Allowed Variations

The concept of an allowed variation is one which we will find

ti

useful in the discussion which follows. We will say that A* is an

allowed variation if it satisfies

	

( A^ CN_ ^)-)	 Cw^ CN-^^ off) =D (X-1)

Evidently if	 is an eigenfunction *_hen all 	 are allowed.

Allowed variations can be loosely classified into one of three type6

n

(i) Since	 satisfies

	

C 4, t ^ ^ b )^ ^	 (X-z)

it follows that any 134 is an allowed variation. Such allowed varia-

tions one might call "built in". That is from the structure of the set

of trial functions one can directly see that ^i- Q w will belong to

the set through first order and therefore this variation will have o,en

	

n	 n
explored in determ,ning 	 Thus it follows that &+ will be at3^

and hence allowed.

(ii) Certain • eriations will be allowed for reasons of symmetry.

Titus for example of VA is rotationally invariant and if	 has a

A
definite angular momentum, then an; 	 with a different angular mo-

mentum is allowed. We have put such allowed variations in a separate

.

category because they are usually not 'built in". Namely, being aware
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of the Symmetry properties of V , one will usually have restricted t1le

class of trial functions to be of tLe desired symmetry type. Also note

that only the symmetry type', of ^+ is important Wt the fact that

n	 ^
is an optimal trial function. Thus with	 of a different symmetry

type from	 ,	 in (1) can be any 14) of the same symmetry as

and the equation will continue to be true.

A
(iii) The rest. Again let us note that the * which arises from

a limited set of trial functions could be an eigenfunction. Then ,hat-

ever one's a i: iori expectations of the type (i) and (ii), one would

N
find a postiori that all A+ were allowed.

In some of the later sections we will intr: 'iuc, uther
variation raethods, other optima' trial "functions, ttc.
In all cases the concept of allc^aed variation will be

\ used analogously to our use here.	 J

XI. Special Theorems Satisfied by Optimal Trial Functions

As a consequence of the Schoedinger equation, eigenfunctions

satisfy many special theorems which are often of interest in themselves

M
-- Heilmany-Feynman Theorem, virial theorem, etc. In particular we will

be interested in theorems whose satisfaction does not depend simply on

symmetry properties. In this section we will derive several such

theorems by assuming that various variations are allowed. Conversely

r'̂then if, for a given set of trial 	 ,ale know a Mori that certain

variations are allowed, then we can be sure that the optimal trial

function will automatically satisfy the corresponding theorem.

Wha t_ we will be giving then are sufficient conditions that the

theorem be satisfied -- namely if the variaticn falls into class (i)
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of the prEV:'ou- se , t	 E'-.erl	 P!r wi l lL be satis•

f ied by	 The existence of class (11i), 1-.C-YeVC-T, makes it im-

possible to formulate a useful necessary condition. As a rule of thumb

however, for the cases -we will -C-4 1-- s cl uss -, if it isn't clear Wvriori that

the variation 4-s allowed-, then probably it isu'r,.

"*ftl
/To come back to :i point ra-ised in Sec. T'. --r: In savLng ., as

we will say. that such and such app-ox-44iation
such and qrch a thenrem. we wall be aesuTning

arithmetic has been done exact!-v. We	 di-c---:.s.:: the
effect of errors in ni -imeri •al anoivis,- 	fi; a rFlated
vein,, for approximations -which don't obvi u.-,-Iy saz-.isfy a
theorem, ve will- not Pttert--7t to esr-immte ^&.P rinse they WA^./C 0 -Tie .

In this t; e_:rton ;):-r

conditions t-ndar wh-;.f-h Crie v 	1 J 1	 n	 -r a -1 it' s	 le-:,UI,.L

Of the Cb04 - e —,2	 e s L:,	v,^r ^a r nn a Me, rf t 'r, C	 11 ( ),1	 Tn

another chapter we will rl-'scuss a rather different %pprDach in which

the theorems are directly imposed as constraints on the variational

method.

(A) Generalized Helirr.ann-Fcynman Theorem

Suppose that tA contains a real parameter V" . Then from

. N

we have
-6 '4'

	

b V 
I ^\^ - . r-- ) \^; .. ) V	 vo—, , I	

(Xl-?)

+- i6
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i

Suppose new that

e	 r:

y' = a ^^^_	 (XI--3)

is an allowed variation. Then the sum of the first two teTms on the

left hand side of (1.; w! 1.1 vanish, and we w111 be left wit',-. th= gcnera • -

lized Hellmann-Fevnman Theorem-

A	 Ok (1	 c^	 n

A. M1

C ti
The ohL,	 enszuring that (3) vi 11 be. an a + ! pl ed vari ,*=on

Is for tlu- sec of

pendent of	 or. t	 t :.. '.':^ 4Tl;l

be closed Ilnoer Cl l r : lrfl'CD t ion	 -..cW	 To .ter- : .h q i ^!1:

works one need Only ilut.e. Lhal !.he;,. wC,atc'_ver r.he

r..
search thzough the store. se , fr;r ill^ ;f 	 1'` ~11.f ..t

n
trial function when V' has the value Tj , then '^' ^'^ 6^

.
 ,	 must

IN

also belong to the set wber.;e clearly

	

	 will be a ST and
a^

hence allowed.

More specifically (A. C. Hurley, Proc. Roy. Soc. A226 5 179, (1959))

suppose that the 	 are specified by a number of real variational para-

meters ĵ -- lkp	 Then the simplest way for the set to be indepen-

dent of T' is for tb e	 -').W: to deer 1ni o. l C", in an} x"a . I -htls Y

will depend cn 'Q^	 1.v ► ,H,:ar1; f- r°e:;°	 ' f-^} 	do.	 There f ore

S	 A	 n

4- ^'_k `JCL` ^d _. L ^L `r

a^	 L	 a o.;,-60-	 SO- s Lz e
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n
which is clearly a possible a y' and hence allowed.

Obvious examples cZ situations in which (3) iE allowed are (i) the

linear variational method wit's the A^ independent of '^_-f" ; (ii) most

SCF schemes, since although they m.y involve restrictions an angular

,`
or spin dependence of the spin orbitals, usually no _q prtori require-

ments are imposed on how the functions should depend on possible Q- S

like nuclear charges, nuclear configurations, strength of external

fields, etc; (iii)

are independent of

ti

8Q

independent of 7-

analytic SCF schemes in which the basic functions

CT1 . Problem: In a linear space we have

Show that this ra

/

duces to (4) when she space is

Hint: What is a^/ao- ;

1. N1%1

N
Conversely if the * depend explicitly on (T- , then, unless they

are closed under Z` ---4	 't^^ , one would not expect the theorem

to be satisfied. Thus for example in molecular calculations which

involve finite basis sets (analytic SCF OR linear variational), usually
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the tunctions used involve the nuclear geometry explicity and are

different for different geometries. Under these conditions then one

	

n	
M1 ndoes not expect that VF

-ate 
will equal C^ , 6^	 w,V) where: R is

a nuclear separation. (However, note that this statement is "coordinate

dependent" -- see below.)

Problem: Would one expect the "method of moments" (Sec. VI)
\to satisfy (4)?

In our discussion of the generaliLed Hellmann-Feynman Theorem we

have made no reference to the coordinate system (more generally, the

representation) which we were using. This of course does not enter in
n

computing ^/^ ^- but it pan changc the nature of '6^T completely.
If we denote by a3 the product or coordinate differentials which are

± ^	 n n
involved in the calculation of C`1', rt^► Cw iY^	 and if w+ w^;L

ti
then	 Q i'Zat iy means	 , 	 Similarly by * tC %)^ 

and	 tz,47) we meant %e (S,?',)	 and	 ( _ Q-^^^'^)	 respectively;

and for example to say that the 	 am independent of Cr means that

they depend only on S and variational parameters. In some other

coordinate system they may well then depend on <r . In particular

then one may satisfy (4) in one coordinate system but not in others.

Thus u"	 VArV4-

Nr

For some examples of the effect of different choices of	 on a75V
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See C. A. Coulson and P, 	C. N!.r le'), !. C}jc t!t. 	 w'^ H (1962).
r

For further references and -L ­..oLe gc:crn.l	 S. T. Epstein,

J. Chem. Phys, 42, 3813 (196.5).

We might however- indicate one Cha ► 
in point. To derive the

Hellmann-Feynman Theorem fur a diatomic molecule one uses
0'-j6,R and Cartesian coorlinates 	 all the electrons
referred to the same or=gin. Vien h depends on it "Al-
through the electron- Lrucleus, ani nucleus-nucleus terms.

Use of (4) then yields the we l 1-known ,'rnschau lilchr- esult.
On the ocher. hand If. as is appropriate. to
long range forces, one refers di tferent electrr_rrl*Lc diffe-
rent or iginsI then the twu e lec tc or_ terms in C4 will .1180
involve R and the shape cif'b'*IDT changes drastic;il1.
Use of non-CaLtesiari coordinate systems will further comr
plicate the picture (see th e• references g1ven al-4.)VO.

"I'h:s 	 a, 	 :	 t_...	 ",	 I,.ii:;e::.	 aa...

other point.	 III geLit'(, i	 b',I1'iir!e' efelite'it .l`` i [ e6 :!-:`L 0-1.1", a p10-

duct-*^of coordinate ciifz?ren' i.a.ls, bn.i ;,.is (, a .r.i.-obian	 What then

if	 depends on 0' ? ((`ne might- AsL'.) erlvi- ge +he lAmi.ts c . f inte-

gration depending on (T- . However such dependence can be lumped with

T by use of appropriate step functions.' In our discussion up to

now we have ev l aently implicitly ignored this by differentiating onlyn	 '
and 141 .

We will not give a general discussion here (see S. T. Epstein,

J. Chem. Phys. 46, =:11 (1967)) but will note that iu many cases of

interest, 3 involves Q' only in the form

^ r ) Z.

whence i cancels out of (Xl-!"j can we may ignore it.
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IProblem: Consider a linear harmonic oscillator of fre-
quency w . Uzi ng 0.• Cartesian coordinate, what is ftb) ?
Using a scaled cartesian coordinate T-V X what is *6w ?
Show that if the resulting two formulae for Waw are both

`true, then the virial theorem is satisfied.

(B) On the -Prevalence of InterchAuKe Theorems

In chapter	 we have seen that if

then interchange theorems follow from the Hellmann-Feynman theorems

`b G	 Cam'

if	 ` is a non-degenerate eiger.Y4Ak &- : t1cl	 the eigen	 q4

In a similar way then we will have interchange theorems for a

variational approximation if Hellmann-Feynman Theorems are satisfied

for-	 AA	 Thus in particular to calculate

(4f^•` j fe,4w)	 to any order in I,^and first order in

we need compute only s,^, WO &4A) Ax 0 and	 C^' ► V ^ ^ f	 o
1-..

.(the latter yielding 	 ). That is, we need 4' -only for *).'X0 .

In pri-ticular then there will be interchange theorems within SCF

theories, for linear variational approximations (with the 4k inde-

pendent of `j. and 1A. ) etc.

(C) H,ypervirial Theorems

Let us suppose that
n



A
tk

is an allowe3 variation where )J is Hermitian and `' is avnumber.

Then from ( 1) we have

t '^, T- 'b 	 ii %3	 (XI-6)

Thus if (5) is an allowed variation theme *`satisfies the hypervirial

theorem for I . (The averabe value of the+Ku derivative of ,b
Y+Mn$V" in a stationary state.)

On the other hand if

44+ = S`i, ^J	 (XI-7)

is a l lowed ' Uien we find

and if both are allowed we have

(%I-9)

vJh^^.L► Ines. haw ^, d
one wayVto ensure that such variations are allowed is to

choose the set of trial functions in such a way that if `r is a member

of the set then so is C I t, ^^	 to first orderj whence, de-
N

pending on the reality conditions imposed on $ , (5) or ( 7) or both

will be allowed.

Before illustrating some of the possibilities by means of examples

1

it might be well to mention two	 P of interest:

(A) If h is the `-' V1VL% 4t

L fij' IS + 4s •^^
0	 S
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where ', # and '^s are the Cartesian momenta and coordinates of the

1^tU particle, then one finds that, with 	 the non-relativistic

fixes r.acleus Hamiltonian for atoms or molecules in the absence of

external fields,that the hypervirial theorem for )S is just the fami-

liar Virial Theorem, at least for atoms. For diatomic molecules what

one finds is

^ ^ A

where T is the average kinetic energy and R is the nuclear separa-

tion and where we are using Cartesian coordinates. Problem: Derive

these results for atoms and diatomic molecules.) This then becomes

what is usually called the virial theorem, namely

_4	 'T + 	 i '^	 (RI-11)
°-=	 1	 01^

if the Hellmann-Feynman Theorem for	 is also satisfied in

Cartesian coordinates.

Depending on whether Vi is the Electronic Hamiltonian
or the total Hamiltonian, including nuclear repulsion,
in (10) is the electronic or the total energy. In (11)
either may be used since the energy of nucleus repulsion

•	 satisfie&

ply	 C>

dot.

Pro m: Derive the analogous results for polyatomic-_
molecules.



60

(B) If .,^ is a component of the total electronic momentum

e	
N

then the hypervirial theorem for,	 says that on the average there

is no net force in the L 	 Airection acting on the electrons. As

an interesting application consider an atom in a uniform electric field

Then the net force on the electrons is equal to the force due

.A to the nucleus plus the force due to the electric field, the electron-

electron forces c;Ycelling out by action equals reaction. 	 Thus if the

Lypervirial theorems are satisfied for the three	 flb	 we will have

0 ue (XI-12)

f
On the other hand the force on the nucleus is

C-201	 _+

F

where L	 is the nuclear charge.	 But from (12) we can then write Fu

as

Thus when the hypervirial theorems for all the Pz, are satisfied, the

so-called "dipole shielding factor" 	 will take on the (correct)

value 14t:
Now let us turn to some examples of situations in which hypervirial

theorems are satisfied.

(i) Let h be a one-particle operator and T the optimal URIC'

Slater determinant. Thus we consider
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G Cs'

The latter is qualitatively the sort of variation which we considered

in Sec. IX connection with URHF, i.e., a SvM of orbital variations.

However unless ^j^, is pure imaginary tt ; does not satisfy

C4*, *) I -C ,+,X-- ) -=- U

which was a further condition which we imposed there. However since

we argued at that time that such restrictions were only mathmatical

A
and not physical, we can infer that A 	 must be allowed both for d M

pure imaginary and for 100 real, and hence that (6), (8), and (9)

should be satisfied. We can also prove this explicitly. Namely

c lear ly

C )̂
where b^,4' is the sort of variation which we considered there fol-

lowing (11-12) and which we found to satisfy 	 )—ID	 Thus

on the one Hand we have

while on the other hand	 n	 1%	 ti *	 A

'	 t4
Equating these then yields

Ca",
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which is part of (9), its complex conjugate yielding the rest. Then

since (6) and (8) follow from (9) the point is proven. Thus URHF

satisfies (9) and all hypervirial theorems (6) for one-electron opera-

tors and hence in particular the virial theorem and the theorem for

0 . (Note we did not add the qualifier "Hermitian". Problem: Show
that if these theorems are satisfied for all Hermitian one-electron

JJ , they are satisfied for all one-electron operators.) In particu-

lar then restricted Hartree-Fock for closed shells atoms will also

satisfy these theorems since, as mentioned in Sec. IX, in this case

the restricted functions satisfy the unrestricted equations. (For

some recent calculations and further references see Kaneko and Aron,

Phys, Soc. Japan 26. 110 (19.69).)

Also it is easy to see that if A is any spin independent one-

electron operator then the SRHF mentioned in Sec. IX will satisfy the

hypervirial theorem for /b . (Problem: Prove this.) Since the virial
theorem and the dipole shielding theorem involve b lS of this type it
follows in particular that they will also be satisfied by restricted

Hartree -Fock approximations for atoms with spatially closed half filled

shells outside of closed shells.

When there are external fields present one usually adds
the adjective "coupled" to further delineate the various
HF schemes which we have been discussing. This is to dis-
tinguish them from various "uncoupled" HF schemes which
we will discuss in another chapter. Thus M. Cohen (Proc.
Roy. Soc. A293, 365 (1966), Proc. Phys. Soc. 92, 23 (1967))
has reported some calculations for the alkalis which seem
to contradict the results found above. However what he
calls HF in these papers is not coupled HF but is some
version of uncoupled HF.

0_0_0 1
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f It is also useful to note that with the origin of co
ordinate. 44V,&,, AJL the nucleus A -.I.i 7— C?—.,T& F f-^y)
really involves only the radial coordinate and radial
momentum of each particle. Thus even if 4; is a sum of
determirnts derived from a restricted HF approximation,
since .S %V involves only variations of radial functions,
it will follow that &ve  will satisfy the virial theorem.

4

As implied in the previous note the virial depends on
the origin of coordinates Problem: Show that if the

'	 hypervirial theorems for P are satisfied then if the
virial theorem is satisfied for one origin, it is sat-
isfied for all origins.

(ii) One may	 satisfy a hypervirial theorem by explicitly

introducing a variational parameter to do the job. Thus if one uses

trial functions of the form

^ °^ e ^

rV

 v	 (XI-14)

where	 is a pure imaginary (real) variational parameter and
N

is independent of ^, , but may involve other parameters and/or

functions, then clearly the variations (5) (the variations (7)) will

be allowed.

•	 /In the constrgig^ed variational approach mentioned at the
beginning of this Sec. XI, one instead constrains the varia-
tional parameters already available in order to .satisfy the
theo m. Thus in the present approach, using * instead
of	 cannot raise the optimal a and probably lowers it,
while in the constrained approach	 cannot be lowered and J
will probably be raised. 	 /
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In particular for 1J 'A 1 K and	 rIMR, one readily finds that

,Ae C 	 +,J,^^`^ ^-	 ' -a , 'tA)'	 (XI-IS)

where

	

ev	 h.

(IX-16)

Problem: Derive this result.) Thus if the trial functions are

not a ru iori linked to a particular origin along the i^^#^^ axis, the

hypervirial theorem for ^K will be satisfied. Pro_ blem: What of

the other theorems?

/Problem: Prove that if ^^ N$ W* 4 now ar
bitrary but real, them p(^t^ + ^^ ---^3 -*and the
hypervirial theorems for all 4tv4ak components of 1P will
be satisfied.

The preceding problem raises the general question of sat-
isfying several hypervirial theorems simultaneously using
an approach of the type ( 14). Problem: Show that if the

L commute, that this can be done as above by use of

_ D
	

% '^ ti
+ 4

where the Kv- are pure imaginary and 5 is independent of
the "(K . For a discussion of the more general case (and
for more details on finding 4 explicitly given ot and g )
see S. T. Epstein and J. 0. Hirschfelder, Phys. Rev. 121', 1495,
(1961). See also D. Pandres, Phys. Rev. 131, 886 (1963).	 7

Of course in the absence of external fields the theorems for IK

will often be satisfied simply because of symmetry. Thus consider an
n

	atom. Then if	 has a definite parity we will have

w-^ P `I'^ = C , t+ 4 y" ^ _ C* f ^y-^ ^3
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Note again that this has nothing to do with 	 being an optimal crial

function. All that is important is that it have the right symmetry.
--9►

Also even in the present of an elect*KQ. field the theorems for P^

(the components of	 perpendicular to	 ) can be satisfied by sym-

metry. In this connection one can prove the following (Pro 	 s Doo

this.) If the hypervirial theorem for A is satisfied simply for
ti

reasons of symmetry, then if the Q have the appropriate symmetrv,

A
t will equal zero.

` As another example of the sort of thing, this timeA elated
to time reversal firvariance, suppost that Ej and ,+ are
real, then if	 is explicitly real

c^', C ^h .• ,bbl) ^ 1 ^. ^

Problem: Prove this. Hint: Note that from our hypotheses
is a pure imaginary Hermitian operator.

A	 j
Problem: Discuss It and	 real, )1 pure imaginary.

Let us now choose	 to be the "viriai" i.e., we take

ow

N

•	 Then with	 T►"*Tǹa can show that

(XI-17)

with
	

4e v1 I	

W-18)

Thus we can say that if the stale of electronic coerdinates cm

be freely varied then the airi-al theores will be satisfy.

612kjn: Discuss the possibilities for ca"lex scaling-
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/Problem: Derive (17) and (lei). Hint: Considering one`'
dimension prove that 	 ti,

AD

z	 ^

In discussing the virial we have had in mind that t'} was
anatomic or molecular Familtonian in the absence of chternal
fields, with neglect of spin and vilocity dependent forces.
However we should emphacize that whatever the nature of to
(atomic, molecular, vuclear, with or without external fields,
spin dependent forces, etc.) scaling will assure th$e the
average value of the commutator of H and the virial will
vanish. In particular for a single particle 	 a potential
U this then yi€lds the general virial theorem

2T _ ttL, n • v V`^'^ -AV

For diatomic molecules then this means the theorem (10). In order

that (11) also hold we could then also require that J3 be explicitly

independent of R .

Such an approach would then satisfy both (10) and (11). Not sur-

prisingly there is an alternative approach which in general satisfies
rr

only (11). Namely let - depend on 	 , but scale that dependence as

ve Il. Thus use

L yC

One sees that this works as follows- :r f one calculates ro IM
rl

Carry out these calculations) bE DR one will find the Hellmaun7Peynwsn

result plus an extra term, call. it% . if one than makes use of the
A

fact that ^'^ Nq ^^,	 is an allowed variation one will derive- A"W*j a6

Combining those results thew yields (11). (Sea P. n. Lddie, J. 14ol. Sepec.

46 (1959). Also 8. C. Herr=nn, Chas Phys. Lett, i 253 (1967)).
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/Problem: For what fats would hypervirial theorems be sat
isfied if one scaled the	 and	 coordinates of the
particles independently?

(iii) Finally let us consider the situation when the set of trial

functions forms a linear space as in Sec. VII. A feature of such cases

which we have not commented on explicitly earlier, but which is is now

e-
useful to note, is that, in contrast to the general situation, the _*

belong to the §2 cs .. This is obvious when one has l.ir_ear variational

A
parameters and in the general case it follows from the ramark that*}-*

belongs to the space for any 	 in the space.

,^	 n
Thus if L'^`1' is to be allowed because it is a (S`F , it follows

R
that	 must belong to the space. Thus, with respect to the theorems

of interest at the moment, this means that 	 +	 should belong to

the space. The ^'044S "'0* +#ensure this	 1S	 to haveb4, belong

to the space if Zr does. For the X.5 which wA have been talking

about, this is difficult unless the space is o^ dimensional. Thus

one does not expect the linear var i ational method to satisfy interesting

hypervirial theorems. (We are assuming the *%, to be fixed. If one

allows non-linear parameters, scaling, etc., then that is a different

story -- the space is no longer linear, and no longer finite dimensional.)

On the other hand if one is dealing witz infinite spaces then the pros-

pects are better. Thus in view of our remarks at the end of the dis-

cussion (i) of this section, the "S-limit" for lie will satisfy the

virial theorem.

Problem: Define X 2 Q )M Show that the theorems for
all ,^ are satisfied%;.. t6 t ..r	 ^+^+-y+;^+^►►d.	 - ^'
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(C) Orthogonality

Let %+ and ^+ be two solutions of the variational equations

n	 ti^
associated with energies E and F respectively. Further let us

suppose tiat

n nl
Ay^. 8I Je

h
(XI-20)

are allowed variations of 	 and	 respectively where c'1 and S't^

n

cl	
tit

may be arbitrary comp --x numbers. Choosing PA and &'+' first real and

then pure imaginary one finds from the fact that 4+
n
 is allowed

re	 --"A'	 (XI-21)

nI
and from the act that !1T is allowed

Subtracting then we have

	

rr. — ie ) C^^ s-p	 (XI-22)	 ,

that is, if (20) are allowed and if 	 #	 , then -^ and	 Viii

automatically be orthogonal. Further note that if we use (22) in (21)

we have

C4 t )P -̀* ) -=- t)

and the considerations in Sec. 9I concerning upper bounds to excited

states can be applied.
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Now when is it likely that the variations (20) will be allowed

because d* and 
a4^ 

are a 6'y^ and a d^ ? One case, whim we have

already discussed, to of course that in which the trial functions form

a linear space, and in fact we know of no other (:). However one can

use the result in reverse. Thus in URHF method she different solutions,

`	 ground state, first excited state of the same symmetry, etc., etc., in

general differ from one another not just by one spin-orbital, as would

be needed if (20) were to be allowed, but in all spin-orbitals. Thus

one does not expect, and indeed one does not find, exact orthogoality.

Similar remarks clearly also apply to other SCF schemes. However, of

course, near orthogonality is not excluded. For some representative

calculations and more references see for example Bagus, Phys. Rev. 139.

A619 (1965).

R A
Though mainl only of formal interest note that if

and 4V-%,Q, ^4	 are allowed with 64 wa bq' real or pure
imaginary, then if the off idagonal hyperviria l theorem for
.J^ will be satisfied:

Far similar reasons as above one does not expect such AIMU ,
tions to be satisfied in SCF schemes. See for example
Vetchinkin, Opt. Specta (USSR) 14, 169 ( 1963); La Pagli.a

'	 and Sinan:,glu, J. Chem. Phys. 4,,4 1088 ( 1%6); and La Paglia
J. Mol. Spec. 24, 302 ( 1967), for discussion of oscillator

'strengths in SCF schemes.

(D) Brillouin's Theorem

Suppose That

-23)



n	 (XI -24)

Then it-follows that

i.e., the matrix element of 	 between I+ and `{' vanishes. , This
-A

result we call (the generalized) Brillouin's Theorem, since in the

special rase of URHF it becomes the Brillouin's Theorem.

This theorem is-really not so mach a "special theorem" like the

: virial theorem, but rather is another way of expressing the basic equa-

tions of the variational method. (For a derivation of various HF

theorges from this point of view see Nesbet, Rev. Mod. Phys. 33, 28

(1961) and Baidos, J.= Chem. -Phys.	 -.835 (196&).)1 Rowever the point

is that lea expressE4 is this fir, one sees that $he equations of the

variational method directly contain information about What may happen

if one tries to improve upon	 by means of perturbation theory.

=:six

	

	 tv)
Tit=dtr this oae:Will introduce a $moo-order Hamiltonian} with

the property

A
where	 1 may or may rot equals . (See the end of this section --

1note that in any cage e t ' s .} Then introducing the rein-

i+il^	 A 0
ing orthonormal eigeufunctions	 and eigenyalues icy► of fj	 ,

thw`, first order correction to can be v3ritten-fn the well-known
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form (we assume that 1!^n) is non-degenerate)

eL -1	 ^) j to	 /

Now the import of Brillouin ` s Theorem is clear --: if N_ bA 
*M

to)
is an allowed variation then ',1 won`t appear in the expression for

^N^1 and hence will have no effect on the energy through third order

tv)t)
(Problem: Show that `/^ may well appear in *1	 ).

/Another vW which is often used to improve a 	 is to do
a linear variational calculation, the basis functions being'

4 and a selected set JN- . This is the so-called con-
figuration interaction (CI) method. Bri^louin's- Theorem

then tells us that any +v- for whichA424 4w. were allowed
variations, will. not be connected directly to ; in the re-
sulting Hamiltonian matrix. For an application to multi-
configurational Hartree-Pock theory see Levy and Eerthier,

%,,,Int. J. W. Chem. 2, 307 (1968) and references given there.

URHF is a particularly interesting case in point. The	 for

which (25) holds areas we know, just the one-electron excitations. of

Thus if we choose for t}
%P) aone-electron operator (the choice

b̂ '4vr,- 's Z'	 clearly being the most natural) so that the
n

are single determinants involving various excitations of*.  ,

then i+a^ that t̂ ) will involve no one-electron excitations.

This then implies theVinteresting and useful result that for saeh

an 	 , there are no first order corrections to the average vaUw of

any one-electron operator. Namely the first order corrections . old he

Cw- C4
c^fw)
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But if w is a one-electron operator then

L---.--T d

contains only one-electron excitations, whence, from the above dis-

cussion, the first order correction vanishes.

Thus there will be no first order corrections to average dipole

moments, average kinetic energy, average electron-nucleus energy, etc.

Also, if e contains all the interaction with external. fields, our

result will hold to all orders in the external fields and hence there

will be-no first order corrections to static polaribilities, static

susceptibilities, etc.

In s general way one may say that thew will be no first orderA

corrections to the one-electron density matrix (^. One can see this

by arguing that the average value of w is given by

fir. w = T11 IV
whence if there are no first order corrections tAtrW for any W

there can be no first order corrections to (	 Alternatively one
n

can note that	 itself is the expectation value of a one-electron

operator. (See for example WWeeny and Mizund, Proc. Roy. Soc. A259,

5^4 (1961). See also -Sa 'morjai, J. Chem. Phys. 44, 3441 (1966) --

these authors work in configuration space. The result is most obvious

when one uses second quantization. See for example Y and

as
Rev. Mod. Phys. 3_ .,4 6946 (1962)0")-

i

4

In any case a further eonaequtnce fis #len =ghat t ,. ei.geafunetions

of 	 the natural spin orbitals, as given by UREF (namely the Y )
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and the eigenvalues of T (namely	 are also correct through first

order.. (Actually the result concerning the eigenvalues is true whether
r

or not	 is an optimal determinant -- see Kutzelnigg and Smith, J.

Chem. Phys. 42 ) 2791 (1965) and references given there.)

More specifically let us consider an atom and let Helms 	 Then

the perturbation t4--lAyr, is just the difference between the electron-

electron repulsion terms in tj and those in tayr- , terms which, as we

.have seen in our discussions of the "l/Z Method" are of the order ye

where 'j- is the nuclear charge. Thus in this case we can conclude

that URHF yields expectation value4 of one-electron operators which are
1

accurate through order :E , the errors being of ordertO - Similar

conclusions then follow as we have discussed for restricted HF for

closed shell atoms. Moreover let us again emphasise that these con-

clusions are true to any order in external fields which may be present

(for calculations illustrating these points we refer to a series of papers

by Dalgarno and collaborators, especially Cohen, which have been pub-

lished in recent years, mainly in Proc. Roy. Soc. and Proc. Phys. Soc.).

Having said all this we must now point-out that the preceding argu-

•	 ment contains a flaw and is not completely valid. The reason is 	 -

-netted with the peculiar degeneracy of hydrogenic ener3y levels. Thus

for example consider QL in the absence of external fields (for ex-

-..,,;_.plicit calculations, see the references given above). In the Z­Mwe
A

limit (neglect electron-electron interaction)	 which U k sing

-determinant, becomes the single determinant of hydrugimic -funct

4A)z CZ..e1" t	 on the other hand the correct result is . a ern
linear combination of the degenerate pair) [ - I _- aad _
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(For more details see A. Dalgarno, Advan, in Phys.

11. 281 (1962) esp. P. 307 et. seq. and references there. For an

"extended HF scheme" designed to avoid this difficulty see for example

Cohen and Dalga?rno, J. Mol. Spec. 10, 378 (1963) and subsequent.papers-.)

This already indicates that something must be wrong with our argument

since evidently we don't get correct results even in zero order, i.e.,

the leading term in.,the limit mob . The point is simply that our

arguments about orders fails is this case because of the fact that some

of the energy denominators in (24) and its higher order analog, will

:vanish as 'J—"7o% and hence +	 etc. will contain contributions of

lower order in V	 than our original argument suggested. On the

= '	 other hand for . the ^s1 Zt^'^' and (\0 2-F x	degeneracy causes

no complication if there are no external fields since these states,

_`=	 Ucause they have different angular momentum, don't get mixed. How-

-never it -is still generally true that if we introduce an artificial

order parameter \0► and write W:XI , 4wP- -44-1 %,F) ther_ corrections

-.of order ) to one-electron properties do vanish without exception.
M

Iawever:, in cases dike RA-the terms of order are not also of

order `,U)	 Similar remarks apply also in the presence of external

fields er.3 :«. ^o ^-^- (•Dc.n ^ e.. Ci" %"	 f ^ VA&ks, ►'

In any case the arguments given above fail for two-electron opera-

tors no-that in general one expects and finds that one-electron expecta

tion values will be given more accurately by URHF than two-electron

expectation values. Notice the energy operator " occupies an inter-

;mediate position here. Namely 'we know from the variational principle

that its expectation value; : like that of one-electron operators, con-

tains only a second order error. On the other hand V involves both

9

r

'a
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one- and two-electron operators. However the point is that the two-
:.,

electron operator occurs multiplied by X whence a ) 1% 6ror for the
ti

two-electron operator contributes a X error as far as the energy is

concerned.

As another example consider SRAF. In a general way the extension

`	 is clear -- no first order corrections to the expectation values of

spin-independent one-electron operators. In particular then for U' -like

ions one expects no corrections of order ^1	 for spin-independent

operators, but one does expect correction for spin-dependent operators.

These expectations are borne out by the calculations (and the general

theorem) of Dalgarno and Cohen in Proc. Roy. Soc. A275. 492 (1963).

However it should be pointed out that our line of argument to this

result is not completely clear at this point. Namely because, as we

--	 noted in a problem, the analogue of 6j. 6, , tri don't all vanish, it

is not immediately obvious that we can wjite dawn an ^} iv7 which is a

one-electron operator and which is such that 	 1+^^, 4 ^^" ^'	 We

will return to this point in chapter

/In introducing 
Wo we noted that Skv) may or may not

equal	 In particular i+ Wl- 6v	 then we know from
eq. (IX-21) that G^A. 16* F . 0#t fiovASA- Vft C W #0W1 %L s-UA

tfv^^4-_A

	

	 ')and some authors do this (notabl Da ^arno) for Hartree-Fuck
theory. One theory for which ^ ,̂s 6 "naturally" .S the
shielding approximation. (Note that when E^ Igj WO." e =a  .
There you will recall one uses

a
S(XI-27)

where T is the kinetic energy operator. The corresponding
+,Y is a Slater determinant (or sum of Slater determinants)
at de up of hydrogenic spin orbitals, the of €ectiVe charge

":`	 hawing been chosen"!ry use of the varlAtional 00 od.
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Now since y' is an ei--enfunction of ^} 	 it satisfies the
virial theorem for	 i.e.,

On the other ha n hydrogeni.cc functions of nuclear charge
depend *V0 is only as 'S f, , i.e., we have scaling,

whence the optimal functions will also sat- I.sfy the virial
theorem for	 , which for an atom,

/
 is

pi n
whence we have	 G as announced.

—.* ,

Problem: Consider a diatomic molecule. Choose for ^i40
(20) plus nuclear repulsion, with 3 again determined
variatio;►ally. With	 the optimal. total energy includ-
ing nuclear repulsion, 	 that at equilibrium ^^-,-r= .

rV
Hint: Note that a+ does not involve Vk explicitly.
For an extension to polyatomic molecules and references
to related work see Gliemann, Theoret. Chem. Acta. 11 75 1
(1968).	 f

(E) Gauge Invariance

Two Hamiltonians 
14 

and 4 which are related by a unitary

transformation

v ^,l	
V U^ ° V^v —^ (XI-28)

have the same eigenvalues. A natural question to ask is thep,under

what circumstances will variational calculations based on H and

yield the same answers? One trivial answer is: if one uses trial
r'1r	 ti	 1

functions d{' with	 , then use trial functions U tV with k} since

Cam,

More interesting is the answer: use the same set of trial functions

for both, but choose the set of trial functions to be invariant under the

transformation U	 (Problem: Show that this works.)



T ••

?7

As a specific ' axample consider an atom or molecule in a mapAtic

field. Then as is well known a gauge transformation of the vector po-

tintial

	

As 	 ) ---a A	 Pj t1) 4.7	 t	 xz-zs

can be produced by unitary transformation
N	 ..^

Thus we conclude that if the set of trial functions in invariant under

the transformation (39), the results of calculations will be gauge

	

invariant for all •u	 In particular, since	 times a determinant is

again a determinant with changed spatial dependence of the orbitals it

	

follows that URHF and SRHF are gauge invariant for arbitrary 	 (For

actual calculations see for examples a series of papers by W. N.•24scomb

and collaborations in J. Chem. Phys. starting around 1964. See also his

review article in "Advances in'Magnetic Resonance" 2 (1966).

4 Problem: What can one say about the gaugeinvariance of
..the linear- variational method?

as^^
If a set of trial fucctions	 is not invariants muter 1.^

^r	 one might ask, is there an optimal gauge is whicb to do tbo
calculations? One criterion which suggestr-Itself is to
require that A,* (the optimal energy calculated with %f j -
be stationary with respect to (general or restricted) varia-
t sAS of -the gauge.- Evidently this is the-tam as usitg
	V	 as the set of trial functions for 	 and treating 4as a farther 'variational function.
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(F) Integral Hellmann-Fey^n
t

man ThEorem

We now consider two Hemiltoniar.a 	 and %4 Y and correspondingly

n	 n
two optimal trial functions %+,;L and c,`►y . Now let us suppose that

n

and	 R	 (XI-31)

^y 

are allowed variations of ^' and `-+cy respectively for &vL both real

and puro imaginary. Then it follows that

.;whence by subtraction one finds the so -called "integral Hellmanr	 man

..Theorem"

C*Y a (A ^► ^ `fit ^	 (XI-32)

which has aroused some interest in the literature (see for example

various papers by Parr and collaborators in J. Chem. Phys. starting

around (1964)). In practice the one way which has been found to insure
.^	 n

that the variationsf are al]gwed. pis - to draw t4eA and	 y from a common

linear space.

If the variations (3.1) ar.e . allowed then it follows that the right

hand . side of (32) will differ from the true ;- genvalue difference e^---rwy
n	 ^

by terms of second order in the errors in 	 and ''y , since we know
A	 R

that of and Ei involve only second order errors. On the other hand

A

y

_,
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if the conditions are not met, then the'quantity on the - tight hand

A	 r^
side will usually not equal rk _. Cy and will contain first order

errors. (Fo. some representative numerical results see the papers by

Parr referred to earlier .6and Rothstein and Blender, J. Chem. Phys. 49,

1283 (1968). See also Lowe and Mazziotti, J. Chem. Phys. 48 877 (1967).)

We could go on and introducet16 "into'this two Hamiltonian situa-

tion, however the formal method is clear so we will not pursue the
r

matter further.

to ensure that the variations (31) are allowed is to draw

yx and yy from a co^amon linear space. The way in
which this has usually been done, and which allows the in-
troduction of non-sine pis	 t	 tW'. ex n , is 46
follows: Let (;)'der v 	 n s	 way, ua 1y from the
variational mettod applied to H-S using non-linear para-
meters, etc. To ensure that the variations (31) are
allowed we then put (as a mini)

CL

3
Then r determine the linear variational parameters o.^.^c
and $,W from the variational method applied to N),,
More generally (Hurley, Int. J. Q.- Chem. ls," 677 (1967))
if one wants to satisfy (32) for a c6ntinuous range of
7t and `/ values lying between a. and 6 one can use
(as a minimum)

The 0. ),>  being determined from the variational
method applied to H-, . (Note that with integrals
instead of sums, the set of linear homogeneous alge-
braic eq ations becomes a homogeneous linear integral
equation.

We said that in practice the one way which has been found
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