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1. Variational Principle

We will be concerned with the internal dynamics of a bound system,
the internal Hamiltonian being denoted by H . ou starting point is
the observation that whatever the state of the system, the average value
of the energy cannct be less than the energy of the ground state. Thus

o~

given any wave function \Y for which the requisite integrals exist
~F

(henceforth we will refer to \P as a2 '"trial function") we then have

that the average energy is an upser bouad to the energy of the ground

state, thus

g = ($99/$® 7 Be (1-1)

~g
/Problem: Give a formal proof of (I-1). Hint: expand W in\

terms of the eigenfunctions of K .

——

1f H contains a kinetic energy operator and gge ig working
in configuration space, then the existence of (Y,t%¥ ) re-
quires that §» be twite differentiable, However this condi-
tion can be relaxed. If one uses -(Y¥, v¥¢ ) instead of
(¥, 9§ ) then one can show that one still has an upper
bound even if W is only once differentiable (see Courant
Hiblert "Methods of Mathematical Physics" Vol. I, bottom

p. 457). Also even if & is twice differentiable the
(V‘;,qu' ) form is often more convenient numerically. How-
ever, we will continue to use the form (I~1l) since it is
much easier to deal with formally. /

N

{ .
~y

Further we will now show that if we consider & as a fuhctional of
~
+ , then the various bound state eigenvalues of ¥{ are stationarx

[ard
points for B . 1In particular then we will have shown that not only
N ~
is B an upper bound to E@- but that €2 B is actually
~5

~
a minimum point for & is a functional of ¥ .

-1 -
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A
in a . Our initial observation that é%'&‘& {znd hence, in light

M
of the present result, that & = E6  is a minimua point) can also

~

be read from (I-5). Namely the smallest eigenvalue of \-}- =¢ is

[ ¥ |
evidently zero whence if A is orthogonal to V= and if C¢s

is non degenerate then

which proves the point.

y, N

Problem: What can we say if EGPOUNﬁ is degenerate?

Problem: Show that the higher eigenvaiues are uneither
maxima nor minima, i.e., they are simply statiomary pn{:ts/

N

Thus we have shown that the eigenvalues of Yt are stationary

~ ~
points of E as a functional of W . 1In Sec. IV we wiil prove the

.
converse: 1f E is a stationary point for B then T is an eigen-
~~

value and the corresponding W is an eigenfunction. Together these

results constitute a statement of the Variational Princinle -~

"variational" because in order to test for stationarity one must vary

o~
Y~ about the suspected value.

II. The Variational Method

In theory the variational principle provides an altermative but
equivalent method to the direct solution of the Schroedinger equation
for determining the &Y and E . However in practice one usually
can't carry it to completion -- one can't examine all $ and look for

stationary points. However, what one can do (and this constitutes a
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statement of the variational method or variational approximation) is to

try to approximate the \‘/ and E by examining a restricted set of

~e ~
trial functions and determining those “l’ which yield & which are

~
stationary for variation® of W within the set, i.e., which are sta-

tionary with respect to the restricted class of variations. We will
N ~

denote the ¥ which yield stationary © in this rescricted sense by
A
\\/ (possibly with a subscript) and call them optimal trial functions.

oy A
The corresponding & will be denoted by & . Evidently it is then

natural to put forward the ‘9 and é as thz "bezt approximztions'" to
the 4’ and T to be found witin the set since ia par:iicular ore
would expect that as one enlarged the set of triai functions the‘?‘
and % would steadily become better and better approximatious to the
q' and E (of course it 13'\:;: excluded that one may, by chance,

already have an exact eigenfunction in a restricted set). However,

BT L DT L L TR R O P

note that from what we have learned so far, this expectation is really
justified only for the energy of the ground state. Namely we know

A
what whatever the cet of trial functions, the lowest E , call it

A
B¢ » vill satisfy

A
E’c,,71 B¢
A
and since enlarging the set of trial functions cannot raise B (. .

and will usually lower it, it follows that for the ground state, the
approximation to the energy will improve steadily.

n
/It is more difficult to make statements gbout ‘¥ir s, in
part because how §ood an approximation ¢ is to

Y- depends on how one chooses to compare them.
re will therefore not pursue this question further, except
\ or a few related remarks in what follows. /

LI ) B e e s
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For the higher states however, all that one can say in general is that
as one enlarges the set, the g bhecome ''more stationary', but whether
or not they become numerically more accurate one cannot in general
predict., This is not to say that there are not techniques for ensuriing
that variational calculations give energy bounds for excited states so
that we have more control of the situation; there are, and we will

LtMaMadisTal Y

mention one IGDER-NLIMIOMUMPIOEMD, and discuss another in Sec. VI. It
i'sq to say, however, that they will require special precautions.
For example suppose that one knows that each member of the set of trial

functions in orthogonal to all the eigenfunctions with eigenvalues less

!
than €4 Then clearly, instead of (1) one can write

~N

E?/E,

and thus have a variational bound on a higher state. However, in
practice this is not very useful because one usually doesn't know th&

eigenfunctions of the lower states, and hence c:n't be sure that the
0 X

\‘/ are orthogonal to them. An important exception occurs when the

eigenfunctions of H‘ can be classified in an E priori way according
' N
to some symmetry property. Then if we restrict the set of WY oo belong
-~
to a particular symmetry type we can say that E will be an upper

bound to the lowest eigenvalue associated with that symmetry, which

may of course not be the lowest eigenvalue of H’ As an example,
assuming a spin independent ¥ , symmetry alone can ensure us of having
& bound for the W2 *$  giere of Helium since there is no triplet
state below £ . On the other hand to get a bound for the 14 20'S
state will require a different technique (see Sec. VI) since the

OaY 'S4 ground state lies below.
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For the moment then we will confine attention to the ground state,
or lowest state of a given symmetry (and drop the label Gr ). How-
ever before continuing we want to make one further important general
remark about the range of applicability of the variational method. 1In
our discussion thus far, as in our discussions of perturbation theory,
we have had in mind that k} is an atomic or molecular Hamiltonian.
However as far as the mathematics is concerned H could be a finite
dimensional Hermitian matrix and correspondingly Cl' a finite dimensional
column vector. Thus the variational method (and perturbation theory) can
be and are used to approximate the solution of finite matrix problems,
(Of course there are also many very efficient direct methods available
for solving finite matrix problems of fairly large size, especially
with the help of a computer.) Further, as we will iee, starting in
Sec. V, such problems in turn often arise in applying the variational
method to the atomic or molecular Hamiltonian. Even more generally,
one can envisage the use of the variational method to approximate the
solution of a mathematical problem, this problem having arisen in the
course of using the variational method to approximate the solution of

another problem, etc. We will mention examples of this soxtin Sec. VII.

The matrix problems tafu+¢n~ have the apparantly more ‘\L
general form

H =™ ic

where N 1is the eigenvalue, C the eigenvector, # .
Hermitian matrix and a positive definite Hermitian
matrix. However, they can be reduced to standard eigen-
value form by transforming with $¢ (which exist since
‘2 is Hermitian and positive definite) according to

A= ‘u; al "™ e I to yield the equation



|
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which is of the form which we have been discussing. How-
ever, note that by reversing the prodecure, i.e., Wy warhivg

d'= ,_{“'*’,H-J""", cl=d"c one can express all

quantities of interest, and in particular the variatonal

principle, in terms of 44 and , i.e., one does not

need to calculate J''v explicitly. Problem: Write the
\variational principle in terms of # and § . /

For the ground state then the variational method for finding ap-
proximations to W and E consists in examining a limited set of

o~ A
trial functions and deternining that 4/ , to be denoted by*\l » which

~

—~ A

minimizes & , the minimum value of & L.ing denoted by E . \‘P and
£ E

E are then taken as the '"best' approximations to \{’ and to be

found within the set.

\

Note that for the ground state one really doesn't have to
envisage a variational process, i.e., a continuous process.
One could base the procedure wholly on (1) by examining a
discrete set of ¥ , and selecting the one which gives the

smallest value of . 1In practice, however, one usually
\uses continuous sets. /

A
Now clearly from the minimal property (1), E 1is certainly the

~
best approximation to E that we can find among the \= provided by
A
the set. However, with respect to *J the situation is not so clear.
There will almost certainly be other members of the set which are

)
superior to \{4 in other weys, for example give more accurate expecta-

tion values for quantities other then the energy, or giving a smaller

~ ~3 Y
value for the "enmergy variance" (&, tn-€)"¥ ) etc.

(A recent reference: Keaveny and Christoffersen, J. Chem. Phys. 50
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80 (1969).) Indeed one often says that since g"‘ﬁ is of second order
in 'B while('\\"'*’ is (by definition) of first order, that energies
are more accurate than wave functions, and as a rule of thumb this is
probably true, However, as noted earlier, to make such a ststement
precise one must give some norm or norms by which one judges the
accuracy with which ‘-’\" approximates ‘¢ since "'\\"“r is, after all,
a function, usually of many variables. Then having settled on a norm
there is still '"the question of coefficients'. This is one says that
Ax” is of higher order than x (and hence, in this theorottcalv
sense, ''smaller") whatever the value of the constant coefficient A ,

because there i a range of X around zero such that [AMx*& ix\

-\
However this range depends on A , being W\ ¢ M and 1 practi-
cal case A may be such that though the value of X of inte seems
small, still A\ g A€ . To be more specific suppose ide

A

to measure the accuracy of ¥ by the single parameter

pa | oy - IC&’D ]"

TR oY)

A
and suppose that & is an excited state of B with anergyd. Then

(E~E) _ (g'og) o~
= - — ¥
&
which is of second order in .§ but which, depending on the numerical
values of é , and &, and ¥ for the case in point, may well be
larger than T . In summary then the concept of "order'" is a mathe-
matical one and it is not necessarily so, that quantities which involve

first order errors are less accurate than those which involve second

order errors. That the variational method yields a second order error
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v n*"‘k’
for the energy is , but equally as impcertant is that it yields an
improvable bound to €50 that one has some feeling for what one is
about in trying to make more and more complicated calculations involving

larger and larger sets of trial functions, namely one is sure that one

is therby obtaining a better and better approxmation to E(,.

IIT. The Variational Method -~ More Details

Let us now examine the variational method in more detail. We
~e
start with the definition of © written &s

(& (a-3r¥F) =0 (111-1)

~
Then given a ¥ from the set of trial functions we consider a néigh-

boring function which, to first order in the change of parameters
o
and/or functions which label the various Y , Wwe write as

&y ov

/ Note that in gemeral %% ¥ is a member of the se&
only through first order, i.e., it is not itself actually
a member o£’ the set. Thgs if the set consists of the
functions Aup—?x when A and & are arbitrary para-

meters then &% &% has the general form
~o T i o R ¢ 1
AL WAL xsTAC

which, for S o , is not in the set., There are cases
however -- linear spaces which we will discuss in detail
‘ater on -- in which % ¥ - is in the set. /

4 ~
Then to first order, the change in E is, from eq. (1), determined
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~ ~ N W
(6%, G-€1 %) $ &, w-YSP—SE LB =5 (1109

~ ~ n "
Now % is that ¥ which minimizes & within the set. Hence when

~
-

N
V= \)'f\ and & €& all possible first order variations of & allpwed

within the set must vanish. Thus we have

(6%, M—E) €) +($, n-=Ey&a¥y=p (111-3)
which together with

(‘-¢, -2 Y=o (1I11-4)

A A
are the equations to determine ™ and E . They constitute the

mathematical statement of the variational method. It should be kept

in mind, however, that in practice, having chosen a set of trial
functions, one is often not able to solve equs. (3) and (4) exactly,
i.e., analytically in closed form. Indeed one may well not be able to
wri.te. them down exactly ( E), usually because of the appearance of
difficult integrals. 1In 3uch cases one must resort to numerical
methods, methods which are inevitably of finite accuracy, to write
down and/or solve the equafions. The potential interplay here between
physical approximation and numerical approximation can clearly be quite
important and interesting. However, we will ignore it in what follows.
In particular when we discuss and derive properties the solutions é\

LY
and ¥ of (3) and (4), we will be ’l‘h\\&\wbu about the exact solutions

and will not discuss the effects of possible numerical inaccuracies.
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we w11l often write (3) as

5C¢> (§-€) \f):) =T (I1I-5)

A
with the understanding, of course, that O € = O

. A
/the that the 5% which satisfy,\(3) form a real linear\
space. That is if 5 ¢ and §2& satisfy (3) then so
do A&N + 85,9 where A and (3 are any two real
constants. On the other hand the set of trial functions
is not usually a linear space though the case ir which it
is of great practical importance ard is discussed in more
det2il ir several of the gectioas which follow. Thus con-
sider agair the set A¥P-<* | Then3mp -x and Farp-2
\pelang to the set but clearly 3asy.x + Setp-2x  does not/

A
An obvious procedure at this point would be to eliminate E from
A
(3) by use ot {4), solve the resultant equations for ¥ and then return

to (4) to determine @. . Indeed in simple situations this is just what

one does. Thus suppose that H is a one dimensional Hamiltonian and
~

the ¥ zre as given in the previous note. Then what one would do is

~ ~
calculate & a3 a function of & (evidently it doesn't depend on A )
3

~ A i ~
set b&% ~p (%= g—%“) - determine o and then return to (&) to
A

calculate &

) . Rl”? g ke N\
Problem: ith Gaussian trial functions -
find the best approximation to the ground state of hydrogen./

AN

However for theoretical purposes it is often convenient to retain the
forms (3) and (4), and indeed it is often of practical use too (in
particular for w..ing contact with the Schroedinger equation and also

for example in discussing linear trial functions). Thus we will leave
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(3) and (4) as they are and not combine them directly in the éay in-
dicated. However, it is useful to note that they can often be pro-

fitable cocmbined indirectly.

Namely suppose that the set of trial functions has no fixed overall
o v
scale. That is suppose that if Y is a member then so is AY¥ where
A, is an arbitrary real number. Then clearly among the variations

which will have been found to satisfy (3) will be
K. ox o
SY¥= oA V¥

But if now we insert this into (3) we find (4). Thus if the set of

trial functions has this property then we need not refer to (4) expli-

citly.

AN

/,We have referred to (3) and (4) as the equations to be
~

solved to determine ¢ and &€ . A natural question is
then, do they have solutions? Although clearly a question
of great importance, it is also a question which is natu-
rally of great mathematical complexity, and therefore we
choose to ignore it. In general we will assume without
further comment that solutions do exist, though in any
particular case one must be prepared for the possibility

that the contrary is true. //

N

Now let us become even more specific. Let us consider the common
situation in which the typical q; is specified by a number of (real
and independent) nPu'ameters 8’.‘ y==" a"ﬂ . That is we can
write
$: e? (a’-\ sz &M )
where '*’ specifies the functional form which we assume given (*’ of

course also deperds on coordinates, spins, etc.). If now we vary °

-
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A N .
(o9 then <+ 1is changed according to

‘. A\ -~ b 4
¢ = 0wy = 0T &L

) A ‘ o
{Ncte ‘HM&T/U\- gin angl &% is gimply linear combination of the bl-‘l' )

Inserting thie into {3) for each % wvalue then vields the Ii equations

N
r b“@ (_\ 5 \[:\2 \ s N\ 3 )
- 3}~ A A (I11=5}
Voo B /] r (\'l’s(:\ $ \i
Aéﬁk—
which together with {4) are to be used to decermiae the W) unknowns

é:“_ and ésn However what if the sczle of the tvial functions isn'

fixed? Then as we have geen (5} i3 a redundant equaticn and so we seen
to be left with M. equations for M unknown. Hewever this is (0f
course} not the case. Our assumption about the trial functions implies

that they can be written in the form
~y r
) A b

b= by & (b -y

o ~
where the kogh are real independent functions of the X, . Namely with

~d
this form ‘ai yields the arbitrary scale, and conversely the arbitrari-

A

ness of the scale implies the existence of b;

Inserting (see below)

n
A = by A
¥= ¥ = & &b
3,
iate (3) of €ourse then yields (d))and note that cancels out of
(4). Then inserting
S. 2 &= g
GY = St = U sy, 22, M

<Y
8§
F



£
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A
yields M~} other equations which again don’t involve \o, . Thus we

A
have consistency in that we have M equations for the M unknowns &
A )

and b3 -~~~ . Since these M equations are equivalent to the
original set (see below) it follows that the latter must also be con-

sistent, first impressions to the contrary not withstanding. The value
A

of \o, , of course, remains arbitrary. That is with this sort of set
&
of trial functione the overall scale of ¥ is left arbitrary, just as

the Schroedinger equation leaves the overall scale of 4’ arbitrary.

/The equivalence of the sets of equation follows from the\
observation that

A M A r A
b_i S}\‘o\c_ = 2 ?.\-t }%,‘—L Shy
L ey = yhL 9l

&>
1)

X

Ll

~
That is the 3"& are linear combinations o,{ the Sy with
real coefficients and hence the use of the by as variational
\zarameters is equivalent tu the use of the §, and conversel;y

We conclude this section with two further comments on equations
(4) and (6)

(1) 1If one is convinced that one has found all solutions of these
equations then the lowest & is of course the minimum, and is the one
to take to approximate EE@- (but see below). However, if one has
found only a solution then one should test it to see if it is at least
a local minimum and not a local maximum or stationary point. In numeri-

cal work this nas presumably been done by the search procedure.
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Analytically one must go on to second order to find

ey 2 (08, Criewito
JPPTLE

anﬁ then gne.must.__apply one of the standard tests to see whether or not
O
this quadratic form is postitive. For example one can look to see if

the matrix b___E, , o A has any negative eigenvalue$.
N ~ N~ -
Nwdi L) O

/

Problem: Prove that the matrix must havgv‘at least one ™
zero eigenvalue, Hint: What happens if & is simply /
‘ \;a'multiple of W ? :

~

3 (Iif) “On occasion one may have doub‘l.‘f_ that the standard calculus

: sort‘of 'apﬁﬁ}act_\ for finding minima which we have been discussing is

: A
really yielding the smallest E. Namely as we discussed at the outset,

- in order féi— various integrals to -exist the & must satisfy certain

- i ~
conditions and this may well mean that the range of the O-y are not

unlimited but that there are "boundaries'. If this is the case it
. ~
might then happen that the lowest © occurred on the boundary. Thus

A

.
1
’

9?2
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IV. The Variational Principle and the Schroedinger Eguatio
o~
In Sec. I we stated but did not prove that if B=E 1is a station-
ary point for ’Ev as a functional of $, then E is an eigenvalue and the.
corresponding ; is an eigenfunction. We now want to justify this state-
ment. The proof takes only a few lines. We have postponed it thig long
because it will immediately suggest some new points which we will Hll,!t to
expiore,and 80 it seemed best to get the other basic material out of the

way first.

First we use the Hermiticity of H to write eq. (I1I-3) as

& £ (V1)
(8%, (H-E) ¥) + (n-Br¢,d¥) =p 3 f& 1>
from which we can immediately read off our earlier result: 1’&»—3)&9
[ N
i,e., if & and YV satisfy the Schroedinger equation, then (1) is satis-

T~ B
fied for any &Y, t.e,E=E is a stationary point for & . Moreover,

and this the new point, we will now show that if (1) is satisfies for any
A N A

5‘$ 5 1.e., 1if g"E is a stationary point, then £ and \}' will

satisfy the Schroedinger equation. '

Tc prove this we need only note that if (1) is to be satisfied by

~
any 8§ ¥ it must be satisfied by
a LA
Sv+= MNl(yg—-edY¥
where 51 is a real constant. But inserting this into (1) yields

( -&) ¢, y-~8)¥)1=0

and hence

(h~&) % =0

which proves the point.
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V. The Variational Method and 'Moments' of the Schroedinger Equation

The two terms which appear on the left hand side of (IV=1l) are
evidently on another's complex conjugate. Suppose then, as if often the
case, that one is dealing with an H which is explicitly real (in the
representation in which one is working) and one is using a set of trial
functions which is real. Then these two terms will be equal and we may

replace (IV-1) by the simplcr form
A
C6¢) Q\*“QJ\)“) =0 (V-1)

Further this same equation will also hold with complex &} (for example
coordinate representation for a particle in a magnetic field) and com-
plex trial functions if the set of trial functions is sufficiently
S (6 Y
flexible so that if “Y+OeV is included through first order then so
~ . s & o~

is ¥ L Ot C\-‘-'F‘) for all possible S\, Namely if this is

a N ~ y N
the case then clearly in determining ¢ both Yx$eN  and ¢*\"1‘N
will have been examined whence we can apply (IV=-1) twice, first with

§¢= Svd to find

C&,ﬁ&\(\v%) $ya 3-8+ 8ed) =0

A~ - n
and then with S, = v O to find

n A, D N
— e =D E) + (S %) Sy =0
whence
(sv$, (R—)¥)=o S
which is the content of (1), Usually these conditions are met by not
imposing :a'_ priori reality conditions on the variational parameters

and /or functions,
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7/ Note that when eq. (1) applies the space of variations bo-\
comes a complex linear space. Thus if (1) is utuﬂed by,

&9 and &.4 then it is also satisfied by MAd, & €Bé-¥
\ where B and @ are arbitrary complex numbers. V4

When eq. (1) applies, the variational method can be given an in-
teresting and suggestive interpretation. I1f in a general way we under~
stand by a "moment" of a function F‘ s quantities of the sort

(&™)
for various choices of G » then we may say that as an approximation to
making C\-\.—e,‘) L?’-.o s l.e., to solving the Schroeding equation, the
variational method requires th~t we make a restricted set of moments of
Cp,-é)\s\ vanish. (If we make all moments vanish then of course we will
satisfy the Schroedinger equation. In this connection we again remark,
it may be by chance that a restricted set of trial functions contains

~
an exact eigenfunction.) The definition of &

C\Q) th-&) ‘j(\ d=p

can clearly also be interpreted in the same way. (One is satisfying the
Schroedinger equation "on the average'.)

Now this sort of approach, requiring various moments of C\*—e)¢
to vanish, is certainly one which one might come upon (and indeed one
which poeple have came upon) without reference to the variational method.

In particular consider the method of linear variational parameters

(the Ritz varitional method) which we will discuss in more detail in
succeeding sections, in which the set of trial functions consists of
functions of the form M

=
- L=y
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where the d;‘_ (the "basis set'') are a given set of linearly independent
functionsl and where the fg..\_ are arbitrary parameters (thus here is a
case in which the space of trial functions is a linear space).

Since no reality conditons are imposed on the (a; s (1) applies

whence we find by inserting

N M
v = Z a\'d't.
LAY
QA
S¥= Sed = S0u &, eatyem B

the set of homogeneous linear equations

A A ~
LE) CQ",, (w—~2)YRL) QL =9 v=2)

Now the point we want to make is that one can arrive at these Sawa
equations, and people often do, by first writing down the ':fchroedinger

Equation'": (the reason for the " " will be discussed in a moment)
e A
A
(h—€) Z S *ap (V3)
L)

and following the standard procedure of "multiplying through by hf
and integrating."

This sort of approach however raises further questions and possi-
bilities. Since the use of A has special reference to the variational
method let us replace (3) by the more neutral equations

M
(w-8> Z, S %m0 (v-4)
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The procedure of "multiplying through . . .'" then provides one way for,
trying to evaluate E and the 'a-\, . But what about other methods?
For ezample one might try to satisfy (4) indentically at A sgelected
points, or more generally one might try multiplying through by quite

another set of functions and integrate to find

M
Z C"h) (B -w) ) QA =0 Kzl --- M (V=5)
L=y

<Prohlem: What 1f the .‘1:. are 8 functions?\)

What is the status of these various approaches? Arve they equivalent?
Is one superior to the other?

First as to the equivalgncey in general (unless perchance an exact
“eigenfunction is cowntained in the '\;) the different procedures lead to
different answers. The point is simply that (4) as it stands is not a
consistent equation -- there are no .a\. and g which satisfy it (hence
‘our @arlier use of " ") since if there were jthen we would have an
eigenfunction and eigenvalue of P . If it were a consistent equation
then different methods of solving it would lead to the same results.
Since it is not consistent, different methods of 'solution” will in
general lead to different results.

Now ag to the advantages of one method over anothery as we have
seen the variational method leads to (2) and therefore as we know
endows it with the virtue that the lowest E is a guaranteed upper
bound to Eo . Indeed, as we shall see in the next section,it is

even more virtuous, the M. solution of (2) are)in order guaranteed

>
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upper bounds to the lowest M. eigenvalues of ¥ . Thus there is con-

giderable reason to choose (2)

Equations (5) can also be given a variational basis. Suppose we

define an energy 5‘?‘, by
(g, -87%) =0 (v-6)

Then one can readily show that if

Ve ¥+ 5
O. ¥ [

then

i.e., there are no terms of evbaB or of ¢4 {7 . Thus,in this sense

the eigenvalues of |} are statiouary points for % as a functional of

Q and\x ,» and converse!y. This then suggests determining "best"

JP

X and © from (6) and

(88, m~E2¥ )y (B, a-§)H8Y V=0 o
However % has no bound properties. Also note that it is not neces-

sarily real.

<Prob1em: Prove this.>

© e

The connection 'g\ith (5) comes if we choose

2 o X
Yo é:\ a, & O- i Pl

L=y,
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Then inserting

§50-= Sbv Ly Eal---M

into (7) yields (5)wmn o e\~ J-Mwok&*\w.

/Inserting 8‘$=8°~V- Ry leads to the equations \
M
by (e tw-8) ¥)a0
(|

Note that, as must be the case for consistency, thesc
equat%ons yield the same values of & as do the /
\ equations (5).

All of this is to say that eqs. (5) do have some theoretical founda-
tion over and above the "multiplying . . ." point of view. They have
been extensively discussed in the mathematical and applied mathematical
literature. However until recently they have not been used much in
atomic and molecular calculations, primarily chause they don't yield
a bound. However recently Boy$ has argued that%n(;) may w211 have de-
finite computational advantages over the variational principle when one .
is trying to use trial functions involving complicated explicit
electron correlation (something which has so far been computatiomally
impossible in the context of the variational principle when more than
3 or 4 electrons are involved) and has backed this up by very successful
calculatiuns for several systems. Thus we may expect to hear much more

of this approach in the future. However we will not discuss it further

here.
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VI. Linear Variational Parameters -- The Variational Method for

Excited States

Let us return now to equations (V-2). This is a set of linear
homogenecus equations to determine the ,C\{,. and % . As is well known
it has non-trivial solutions (i.e., all a\v. not identically equal to
zero) only for certsin values of E% , namely those for which the deter-
minant of coefficients, the so-called secular determinant, vanishes:

| Cé, cu-8220) \ =0 Vb

/ Note that we have here an example of the situation dis- ~N
cussed in Sec, T1. Namely in accord with the fact that tue
scale of the & was not fixed a priori. We see that rhe
scaie of ¥ is not fixed either, since only the ratios of
the Qx are determined by (V-2), and also we see that we

h-28191>0 i i
do not have to invoke C(%;h-@& explicitly in /
\order to determine % .

A
Equation (1) yields an Mth order algebraic equation for & , the
A
secular equation. We will denote the roots by E¥ , ¥=1--- M
~ A

A
where £, £ By $~- and we will denote the corresponding \‘fu_ by

and will choose them tn he normalized to one:

A TS
(dy |, e )= (VI-2)

A
In what follows we will need the following properties of the q’v, which

follow from the fact that the "Hamiltonian matrix"” (%, WRL) and the
"over lap matrix" Cd‘t,*\.) are Hermitian matrices: (If you are
unsure of these results accept them for now. We will prove them in

Sec, VII).
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C\)'(\,q 3,__ Y= Swo

(V1i-3)
A A a
Gy, WYL )= E S (V1-4)
™)
Equation (2) is of course a special case of (3). Eqpations (3) follow

A n
automatically if B«#B, , If there is degeneracy one can arrange that

they will be satisfied with no loss in generality. These properties

areﬁpf course also shared by the actual eigenfunctions of H .

(Roa L Snthy caxr 4 (4)

/ Problem: Show that Cay ,Mt-) MJM’&,‘«.} are Hermitian
matrices and that che latter is a positive definite matrix
\\(recall the discussion in Sec. II). 7

A
All that we know about the €y at the moment is that they are all

upper bounds to E(,— . We will now prove that they are succossively

upper bounds to the lowest [j eigenvalues of H , with appropriately
sharper statements if one can invoke symmetry. Thus through the use

of linear variational parameters one can get variational upper bhounds

for excited states.

In our discussion we have been taking the dPn to be given;\‘
fixed functions. Often however one imbeds variational para-
meters in them (so=called '"mon-linear parameters'"). Since
the result we have stated holds for any value of these para-
meters one will still have a bound if ome chooses the para=-
meters in each Y, so as to further minimize each €w .

In genergl this will require a different parameter choice -
in each On whence the '"price" that one will pay will be
\\that (3) and {4) will ro longer be satisfied for ¥ &L
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In Sec., VIII we will give an elegant proof. Here we will proceed

in a more pedestrian fashion. We have a basig set of f\, functions.
Let us note this explicitly by writing gu.("\) instead of e .

Thus in particular (4) becomes

[\

A -
(hy WE) 2 Ewcm) Ser (V1-5)

Now we ask for the effect of adding ome more functionC#‘ to our basig
set. Clearly we may assume without loss of generality that ‘,b is

normalized and orthogonal to all the ‘h—, and hence orthogonal to all

1. Y
the "\'v :

A
C#,#):.] - (% ))=p 2 M (VI=6)

Let us then write our new optimal wave function as
M & A A
N
$= 7 by Le (Vi-7)
L=y
QN
Whare for convenience we have used the ‘\\y instead of the Q\g , a step
o~
which is certainly allowed since the \3(;( span the same space as the
o , 1L.e., among other things, they are M_ linearly independent
linear combinations of the % »

(\} n @ N
1f now we insert OWY> Sl Y yK=\--.M ; and 5‘#‘—86 + into

(V=1) then we readily derive, ueing (3), (5) and (7), the equations

A
C é\v_uv\)- G.)Lp *-C‘Qu.,\'}"?) C»‘—O (VI-8)
™ a ¢ A “'l(\\o’-o
T @antHy b * L (N —-1 (VI-9)
L=

From (8) then we have

b= Sl uee /et W
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Whence (9) yields an equation for Q

2o
E _ (dnd) = 3 2 (VI=1Q)
L2 g-Cutm

Consider now the quantity on the right hand side as a function of g

and assume that all the aa. (™)  are distinct. We will discuss the
case in which there is degeneracy later. Also we will assume that none
of the I(bﬁ*swﬂv vanishes. Then the function has poles when Q’QLU“)_
It is negative immediately to the left of the poles and positive to the
right of the poles. It goes to zero through positive (negative) values
when ?: tends to pos&tive (negative) infinity. The solutioas of (10},
let us denote them by é,_LMMS are determined by the intersection of
this function with the straight line e" (2,W-4) . The situation
is shown graphically below for M= 4.

L {

—

2,0 [ €M) =AN)) Ewnlv)
‘ 1
' [ ( §
ENS)
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Evidently then we have (in general) the "separation theorem'

"~ A A _
By, (M) € Belne) S Evtr) , (VI-11)

In'particular then é\b\i“\’f‘) Qg V™) tells us that as ™M increases
and the basis ¢, becomes complete, the é\\g. approach their limiting
values, whiich,rassuming convergence, are the eigenvq'!}ues of & 5 M
above which proves the point.

/If the eigenfunctions of W can be classified according\
to symmetry, and if all the ®¢. have the same symmetry
then evidently we can say that the €v will by upper

. bounds to the M lowest eigenvalues of th‘t symmetry.

—

Problem: What if My , of rhe ‘h. have one symmetry,
M, another, etc.? Hint: If & and ®. have dif-

\ferent symmetries then (&y_d\=D and (B¢ W I=0O /

A
The theorem which we have just proven, that the E‘ yield upper

bounds to excited states energies also has a useful convergz If we

have a set of functions rxu_ which satisfy (VI=3) and (VI-4) that is

which satisfy

(e L) = Snn
L= \--- =t

(L, W)= Sebri

Then the €w will be successively upper bounds to the first B\ eigen=
values of “ (of appropriate symmetry, etc.). The proof is triVial,
Let us use the 7«. in the linear variational method:

Y"“,\ (43
Then evidently we will find Wp‘-—"}-\‘. And By = €. which proves

the point,
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Even if there is degeneracy among the e'j.M) it is clear that the
qualitative picture isn't changed since one can consider degeneracy as

Graphically what happens is of course

N
that the appropriate \ become steeper and steeper as successive gv-t”)

come closer together, and in the limit become vertical lines. 1In par=

ticular note that if say €.\M) =2 "= e then "E; (S would

again equal & y though there would be no more degeneracy.

/ Show that if there is an m fold degeneracy\

Froblem:
among the Q‘,WO at the value ¢ , then the Ruimay)

will have an n-1 fold degeneracy also at the value &

et s

Problem: 1If one wants to treat the degenerate case on
its own merits rather than as a limiting case, show that
one cannot base the discussion on eq. (10). For a dis-
cussion based directly on the secular determinant see
D.W. Davies, J. Chem. Phys. 33, 781 (1960).

A
Problem: What happens if one or more of the C&'\ﬂwb)

vanishes?

One choice of the % vhich has been discussed quite
a bit in the literature is

Q‘c—:. \_\_V-—-\ *|

(the so-called '"method of moments'). Most of its practi-
cal applications however have been to problems in which
W is a finite matrix. The reason is of course that if
is an atomic Hamiltonian then ( d, We® ) may
will not exist for L > 2 or so even with a "reasdnable"
choice for ¥or more details and a discussion of
these points gee J.B. Delos and S.M. Blinder, J. Cheem.
Phys. 47, 2784 (1967) and references given there. See
also C-Y. Hu, Phys. Rev. 152, 1116 (1966) and 167, 112
(1968). 1In this latter paper there is also some dis-
cussion and use of lower bounds. A careful reading of
this paper shows that the ﬁthods of moments is being
applied not to the atomic but to a finite Hamiltonian

matrix (recall the discussion in Sec. II).
em——
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Although primarily of theoretical interest, it is useful to
compare the excited state bound one gets using only linear
variational parameters, to what one would get if one used
linear variational parameters and in addition could also im-
pose orthogonality to lower states as discussed in Sec, II.
As might be expected, the latter procedure, if it could be
carried out, would generally yield a better bound. Our dis-
cussion will be a '"pedestrian version' of one given by
Perkine, J. Chem. Phys. 45, 2156 (1966). We will reproduce
hig discussion in Sec. V1II. Consider the first excited state,
Then suppose that instead of gimply using trial functions of
the form A Q¢,aL we would further require that they be
or thogonal to ground state eigenfunction ¥ , i.e., we would
require that TOw(d,¥)s0  But then we can use this equation
to determine one of the @, for which (7 W A SN ip
terms of *he others. Let this one be Giw . Eliminating Qe
then we see that this procedure is equivalent to using as
trial functions

M-
Ak T Q] ao by W3
i : ¥ Tha)

If we denote the lowest approximate energy that we get from .
this. procedure by y then clearly it follows from (11),
with K = 2, that

x A
JOn the other hand we also know (Sec. II) that if B. is
the eigenvalue for the first excited stateopi\ then

>
E, ¢ €,

So we have

S A
e, & €.t
which shows as expected that {?} ; 1f we sould cal-
culate it, would be a better approximation to g, than is
EM
F—CE

Problem: Generalize this last result to higher excite{,/

“tatea.
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VII. Quantum Mechanics in a Subspace

Many of the properties of the method of linear variational parae

meters become obvious (1f they were not obvious already) when one
A

(Y
realizes that although the Be and Yy are (probably) only approxi-
mations to the eigenvalues and eigenfunctions of ¥ , they are exact

eigenfunctions and eigenvalues of the ''subspace Hamiltonian"

F\: =TT BHW (VII-1)

where 'W is the projection operator onto the subspace of Hilbert space

spanned by the trial functions:

o A
T &= do koot v

n
T g G0 -t gy

<Prob1em: Prove that | and ﬁ are Hermitian opeutqrn.)

o~
A direct proof is quite trivial. Since from (VI-3) the% are orthe-

normal, we can write (using Dirac's braeket notation),
™M ~
W= T l$1,x- \'\"—\
=)
wlience it follows that - A
n
R WS (W W)
THT Wy = & W
which from (VI=4) becomes

N
rar & = B D

which proves the point.
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However we 21s0o want to give a second somewhat less direct proof
which, incidentally, involves no appeal to (VI=3) and (VI=4), since, as
we will see, it can be readily generalized to other cases in interest.
Thie prceof is ag foliows: From Sec. 1 we know that the eigeonfunctions

and eigenvaluves of vy zatisfy

» _—a e N S \a = ™ = 3
(5T, (BB + Qq’m,a)éﬂ-) =0 M8 @114
1"‘. A
We now want to chow tisr %% and € are golutions of these equations,

i.e., that

e - ! ™ . N - —— _ - .
(2%, (@3-S %er + Ore, (§ -€x)8M)=0 al (V171-5)

'

= -
: The proof is quite trivial. Namely any &% can be decomposed into a

el

part in the space of the “'x’p , and a part orthogonal to that space
vz 8% + S ¥

Then evidently from (3) end the Heramitian property of_‘T , the contri-
bution of 51‘; to the left hand side of (5) vanishes identically) whence

we have only to show that

P . - A " on -~ A P —
(6, % (M-EBudd )+ Gy, (8 -Ewdb¥) = p o) &Y

— A
But since 8,% and ‘4. are both in the space, we may write this as

(6%, (h~Euyfe) + G, ~S)8F) =p 4) 65

which of course is true since these are just the basic equations of
the method of linear variational parameters.
Thus we have indeed shown (without use of (VI=3) or (IV=4)) that the

\ N -
C‘,y-,\and the Eg are eigenfurctions and eigenvalues of H .
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’,'H is an operator over all of Hilbert spgce. Evidently its N
other sigenfunctions in addition to the y¢ , are any functions

" XK such that T)kap , and all beiong *o eigenvalue zero. ./

From this fast it then follows in the usual way (eic her automatically

or as a pussible choice) that

( &’p’ C\',,)a SeL (V1II-12)
o= A Al
(o, ) % )= Bedrr (VI1I-13)
and.since the last equation can be written
(VIII-14)

\ A
C¢1,H‘;L) =-E‘&1L-

we see that we have derived eqs. (VI-3) and (VI-4).
There are other interesting examples of sets of trial functioms

which form linear spaces. For example there has been considerable

interest in the so-called "S-limit" for the Helium atom, namely in
A

finding the optimal trial function of the form th‘:;*») where +(

and *3/'are the distances of the two electrons from the nucleus.

Clearly such functions (even when restricted to be symmetric 1n'ﬁ
and %,) form a lisear space. Now the point we want to make is that

in all such cases results like the above apply. Namely we can define

P
a Hermitian projection operator \\ with the properties

1‘7&1;:1 ' X wholly in the space

orthogonal to the space

Th=0 X
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and then we can simply repeat the second proof given above, symbol by
0N a

symtol, to show that if Y and Ev are derived from the variational

method, then they are an eigenfunction and eigenvalue of

-

9= Tamw

In pa-ticular then (12) and (14) will hold, whence, in accord with the

discussions of Sec. VI it will follow that whenever the trial functions

A
form a linear space the Ey will yield upper bounds to excited state

energies.

/ A
For the particular example of the "S-limit", if the L o ™~
are restrlcted to be symmetric (antisymmetric) then since
such a & has angular momentum zero, one will get bounds
for the energies of excited singlet (trlplet) S-states

of He .

A general variational calculation of course involves some
restricted set of triazl functions. One might then envisage
defining a projection operator 1\ onto the set of trial
functions. However, unless the_set of trial functions form
a linear space neither Y nor kf will be linear operators
and none of the above will apply.

———

Problem: Prove that if the set of trial functions form a
linear space then |y and i; are linear operators. //

Of course unless the space of trial functions can be finitely
parametrizod, as in the linear variational method, one can rarely
expect to solve the H problem exactly. In practice what one does

then is to restrict oneself to an examination of a subset of functions

of the appropriate tvpe, a subset which often does not form a linear
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subspace. Thus one has the sort of situation mentioned in Sec. I =-
as a vari .. approximation to the W problem one is led to the
I; problem, and in turn one uses the variational method to approximate
its solution (usually without mentioning ;; explicitly).
One final point concerning quantum mechanics in a subspace. 1If

for a general operator £&. we define

A= T AT
q: ﬁvl

then as long as and are in the subspace we have

(:%\", [ ‘?7:— C‘?;F\ )

i.e., we may '"drop the bars'. However one should keep in mind that in

general

fhough of course

<, Ay ) = () ARY

e o WV N '\1\
/ Problem: Under what conditions will (‘\’; AR Y )= ["lhﬁ % )
\for any ¢ and Q' in the subspace? /

Thus for exauple if R and E‘ are coordinate and momentum operators

respectively then in general

¥, (F§- g% §0% & p-20)¥)= 0 &, F)
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We will return to this point in a later chapter when we discuss fre=-

quency dependent polarizibilities and the "f-sum rule'.

VIII. The Max-Min Theorem

From the discussion in Sec., I., it is clear that we can character-
ize E\g , the k' eigenvalue of H CE“S €ea) by

- - g o~ - = C=\a-- (.V“\—\
Geo Do FouPfeggy  SePrmo tmeee ()

where the \";, are the szigeanfunctions of © associated with the lower
eigem)alues‘ That is one minimizes E subject to the constraint that
the :{: be orthogonal to the lower eigenfunctions. As noted earlier,
however, this approach is of little practical use unless one can in-
voke symmetry, since it requdires a lqiowledge of the “¢ L= ~-- =

However, there exists another variational approach which is free from

this defect, the so-called '"Max-Min Theorem". Namely one can show that

Eee Mat Mot CRNWDLe (e, ¥ ko i (VIII-2)

bt T

where the W; are ¥~ arbitrary functions. One first fexes them
Lo ~
and determines the minimum of © subject to the contraint that % be
~

orthogonal to the ¢ . This minimum © is then a functional of the
V¢ . To find ©w one then maximizes with respect to the W{ .

We will not give a proof here that these two definitions of Ew
are equivalent. A proof with references and historical comment can be

found in S. H. Gould, '"Variational Methods for Eigenvalue Problems"

Second edition (Oxford, 1966) Sec. I1I.6.
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However we will give a geometrical picture of the procedure by

describing the analogous procedure for finding the principal axis of
an ellipsoid. The analogue of $ is then a "trial axis" (through the
center of the ellipsoid) and the analogue of g is the length of this
axis.

(1) and (2) yield the same presecription for finding the spallest

~ ~s
axis -- minimize B with no constraints on W

To find the next smallest (1) says minimize E subject to the
constraint that + be orthogonal to the smallest axis. However (2)
offers a prescription which is independent of agy knowledge of the
smallest axis., Namely given a vector “\’| choose ;; to be in the
plane perpendicular to ‘V. . This plane intergects the ellipsoid in
an ellipse. The :Pwu.yu\«#amme":;rl’ then obviously be the
minor axis of the ellipse. Nov!xvary the choice Y| , and find the
largest of these minor axes. This will be the intermediate principal
axis of the ellipsoid. To find the largest axis the sinplest procedure
of course is to maximize E with no constraints on " In fact,
prescription (2) says the same. HNamely one is to pass two planes
through the ellipsoid, the normals to the planes being ®) and %, .
Since these planes will intersect in a line \g is uniquely fixed as
that line. Then one varies v and M~ , the normals to the two
planes, in such a way that (é is maximized. Obviodsly this is equi-
valent to simply maximizing g directly with no constraints on "; .

We now want to use (2) to give elegant derivation of some of the
results in Sec. VI. First we will derive the separation theorem

-

(VI-11). ILet W be the projection of |} onto the M4#%¥"* dimensional
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subspace spanned by the &, and ¢ . Then evidently

~N - n R
AE (Me) = Max Moi Oy, " $) /(-&',-Q) (Wi ¥)=p L21..- K=
- we \l\‘
A w & <= -'-""\
S s W 6 FDLagy w2
- ) ey (& F1=0
e N\ Mag MW oF, 8 D/ (wi,8)=p Cay---k-2
-\ CMAN= w3 o LQ(Q’) o
~

pvd where the ®™{ and W are to selected from the subspace.

A (g}
/ Problem: Justify our definitions of & w\Wgapd e ™).
Why did we restrict § and W[ to be in the subspace?

—

\&N\:: Laaal Yt § hor sthe, Somnvalves

A A
Comparing & (,’A) and Ep\.m-\) we see that the prescriptions
A ;
are similar except that for E&\Mv,-\) ‘W‘,_‘ is permitted to vary
A
while in E—,__Sl") it is in effect fixed at + . Thus the Max in the

latter case can't be higher than in the former case and we have
A A
Epa M) & Eelmn)

A o
Now let us compare E-u_\m\) and ©wW) . As far as the W, are

concerned the prescriptions are the same. However in the latter ca.e

o~
W is more restricted whence the Min can't be lower and we have

A (4
Ex(it) & Eetm)

which completes the derivation of (VI-11).
Now we will derive (VI-12) generalized to the K'th state.
Evidently the two procedures can be characterized by ( W4 is now the

projection of W anto the M. dimensional subspace spanned by the “'\v., )
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i

H
£
3

%\u'-' Max Ma OF, aw)[L¢¢) (v .¢)=0 Lot 1
RS
and
*E M (¢| \: ‘T)[\S)Q") (Wc,\;‘-go :g\——. )
L

whence follows that
A A
L
Ee & Ev
This result is of course independent of the choice of the WL Howe

ever with the ‘?; the eigenfunctions of W  associated with the lower

eigenvalues we also know that

€. ¢ B

whence we have
L -y

which generalizes (VI-14).

IX. The Unrestricted Hartree-Fock Approximation (URHF)

Although we have on several qccasions mentioned the possibility
of including arbitrary functions, as well as arbitrary parameters, in
the set of trial functions, the only detailed example we gave was in
Sec, V where we allowed the :; to be quite arbitrary, and then showed
that S; satisfies the Schroedinger equation. (Also in Sec. VIII we
briefly mentioned the "S-limit' approximation for Helium.) In this
section we will discuss another case which is of great practical im-
portanct. From a formal point of view it is the simplest of the
widely used Hartree-Fock (HF) or Self-Consistent-Field (SCF) approxi=-

«

mation methods wherein one approximates an eigenfunction of ay;
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N-electron problem by a finite sum of Slater determinants, the number
of determinants being kept as small as possible consistent with what-
ever other restrictions (usually symmetry restrictions of one kind or
another) that one wishes to impose. The optimal spin orbitals (subject
to possible restrictions) are then determined by use of the variational

method.

N

//Recently there has been great interest in so-called multi-
configuration SCF schemes in which one goes beyond the
minimum number of determinants. For example see E. Clementi,
Chem. Rev. 68, 341 (1968) and references given there. AwD

\snbmi * Phvae | J-C- PSP 635 QMDD AvA njanswan Then /

As the name suggests, in the unrestricted approximation one goes
to the limit and uses only a single determinant, and imposes no further
restrictions, at least restrictions of a physical nature. However in
developing the theory one usually, for convenience, imposes a certain
mathematical restriction which we will introduce in the next paragraph.

Thus we wish to use the variational method to determine the 'best"
single determinant appropriate to a Hamiltonian H which, typﬁcally

is a sum of one- and two-electron terms:

N
4o Zhovr 3T

Skt

(IX-1)

We now wish to show that there is no loss of generality in assuming
that the spin-orbitals which make up the deteiminant are orthonormal
and that the determinant is normalized. Having doue this we will then

make use of these assumptions since they s.m;.'ify the analysis. (For
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a more general discussion see ﬁpr example T. Gilbert in Molecular

Orbitals in Chemistry, Physics and Biology, P. O. LBwdin ed.)

The point is simply the following: Any determinant
Az M --- wwl (1X-2)

can be written as a numerical multiple of a normalized de.erminant

formed from orthonormal spin orbitals:

¢: \}m \,'ﬂ\é ""‘?ul . (1X-3)

. -
() Ve 1= See (1-4)

Granting this, then since K and 3: yield the same trial emergy, it
follows that we can confine attention to determinants of the fornlqz .
One way to establish the equivalence is to apply the familiar
Gram-Schmidt orthogenalization procedure to the q‘t : First we define

the orthogonal set of functions
VL‘=- M
Y= e

'\32 4‘\3—- M (4"')7"3‘)“"1»('(% h‘;)

- M\ (M"Ihv)

bl

Then, we note that from the rules for evaluating determinants it follows

that

(X‘:— l‘l)"‘" VLN]
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whence if we put

\(L ~
Vl-‘a'.' (19) \15) s
we will have

~ N ) ~
Y= e ---4y) "Z M) 7= MVH“}L 4 ¥

which proves the point. Of ccurse given one set of :ri, which do the

job’we can find an infinite number of other sets
~ | 5O
VAR S A

where the \‘,St are numecic:sl coefficients. Namely if the U;{._- form
a unimodular matrix (unitary and unit determinant) one finds that
N/ e 81
_\__. ‘v\ ks ?N ‘i
LM

~
again equals V¥ .

/Erobleg: Prove this, \

s

The set of Slater determinants does not form a linear space
since in general the sum of two determinants is not a deter-
minant, However there is sufficient linearity, thus

LF, Fe - F) 4 \E - B =

~N.
1 r\}"*g‘, ?P "'3”)

to permit statements about upperbounds to excited gthates
in some instances. See J. F. Perkins, J. Chem. Phys.

\iz_,’ 3827 (1965). /

We will now proceed to derive the equations which determine the
A ~ N
Ys, i.e., the best Y4 . However since only V¥ 1is directly
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swvéivad we ¢an eapest, in light of the remarks at the
end of the last paragraph, that tue equations which we find will not

~
fix the ‘¢, uniquely.
Because we havs fixed the nverai! scale of our trial functions

we will have need orf bothk

N a & o 0 . 3N &’
~ - N o {\\“;. (»'} ~€ } 4— = )
(&f, -6y 8+ ) =0 .

and
fi . - R
(4, w-&38Y =n (1% -6)

However the restricticn to pormalized trial functions implies that

through first order

s ‘f bﬁ i - =, #
(&4 %) + (3, 8%) =0 (1X=7)

A
which we can use to simplify (5). Namely ary 8 ¥ .can be decomposed
£ n
into a part parallel to % and a part orthogonal to " , thus

&5¢= oA F + d1% (IX-8)

where & A is a number. Inserting (8) into (7) we then find thatS A

must be pure imaginary
¥
(sMY" + &A =2 p (1X-9)

Then inserting (8) ints (5) and using (9) we find that the contributions
of the 5A terms to the left hand =side of (5) vanish identically whence

we are left with

i LN
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Lo A
to determine Y . Now what does a general 6_;_\-}4 look 1like? A general

n
OY takes the form

a

N & ™
& V@ --- 8% -y |

1}
eN
\/

{1X=11)

Now one can certainly wite
N
A “. A
dugz < o+ fiV
t= €
[a)
whnte the Joy are constants and where 6_1\', is orthogonal to all

the ''occupied" spin orbitals:

A
(e, 8,9,) =0 t=1 --- A (1X=12)
But since
\ a N a A A
e ‘m! P 5 &twt e ?M] ""5“3\{’
N -

it then follows that

A " -~
&.§= Z ‘}—5 0 - B -~y |

0~ n
Further since )N is a sum of terms and since the 8‘\_\!5 need

have no relation to one another (they are restricted only by (12)),

it follows that we may confine attention to a typical term and use

A
5 & = 2 1 b o | (1x-19)
v o m {

[N ~
(‘41,, 8 \¢,) =D L (1X-14)

Such variations are, for cbvious reasons, called one-electron
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excitations 7:f % %, Firzlly, eince we bave placed no reality “e-
seyiovions on ony trial fenctions we may replac® (13} by
' & -( . f: % fadaiasy
S R Ry LR =53
Usitg the steopdsvd rales 107 calesltatiug che watrix of t
Letreen twe Siater deterwir mts which differ by one svin orbica’ (1%}
ther vields
- 2 . . S n ~ Lo -
a0 O T ; e [ G DI ' BN ). ig, ntt e
,& "55, )-’"EJ 3 s S \_' 1?} \?» / ..A':)\x-_’ J" ;‘}‘fe;'lg ok 2 (T 23
Te
Fq. () can be writien ;';f..'.--f';:ﬂ'.h; in terms of the single pavtil ic
Hareree -Touk Hamily wmisn "'?-'.':3'.— detined uy
7; 7 A N a s
Vs cael TRV AL S R PR 2= (\"t\%'n‘\”. .
. ,ﬂ_;- f i 1 s - R
3T n iy
'Amen:-.'-,)c iz -a artblirary spin orbital, (Problem: Trove that ",

BN $9.CH 3

")
\ (43 3= -
(Y] i o [ o
L Yy “‘J"_l,f (,, \Q.z__ E‘Ac_g Lid ]
fi= '

-

where the Ty <ov. frr the woment, be arbitrary numlers,

However we must now en<ure, if everything is to be consistent (hat

the "¢ are o+trkoncimar, Evidently since \l\ is Hermitian, w2 .au
ALE y wE ’

{~
1

by jorting $a>0for SH0 since then the Y04

ENELr e (‘lt‘l'.'jL)i_;on;'liif_j, ;o
will be eigenfunctions ¢i common Hermitian operator (for a comment ou

degeneracy see below) the €ss then being the eigenvalues.
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The questiin of ucrmalization might appesr & bit trickiet since 1f
we write cut }\h‘r— ‘93 using (16), the equations appear quite non-linear,
The practical approach to the normalization question (aud also to the
‘creneracy problem, i.e., orthogonality is agutomatic only if €y 6y )
is as follows. To sclve (1&) omne proceeds in an iterative fashion.
One first guesses some orthonormal spin orbitals, call tkem “& .
From these one constructs, in the obvious way, a first agpproximation

'
to “WF , call it \\\-‘,F . One then proceeds tu soive

! " >
"“’E’P g, = €4l

2
P F . . : i = e ‘. \ SR PR Y
which is an crdinaryv eigenvalue oroblor T2 the 3 23 b0 by 18y
2 <
- , N - B ~
can be frzely made orthenormai. One chen proccsds oot hge o ¢.
etc. etc., steopping when a sufficient degree ¢i selr-uonzieterov has

been attained. Thu:z in practice there is no Jifi: ulty with normalz-

L

®ation (or degeneracy).

o 8

If one wishes one can alsco incor:srate this procedure into
the theory by simply replacing h“‘; by an *‘\WF which is
independent of normalization and which equals W“w3 when
the spin orbitals are normalized. Aw phvious e w

N o
t 5. ‘ Py
*h“P‘X > k‘x + g-..) e :\%""? hr (-Qk )37')\ct
S IR D) L“‘.\u‘:t)

N | /

The equations

k ~ C A
wy &= Y% . (1X~20)

define the so-called canowical URHF spin crbitals (we have dropped the
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second subscript of &gy ). However the; are not vecessarily the most
A

useful. Other sets derived from the ‘ﬂ by a unimodular transformation,
may have more desireable properties, for example they may be better loca-
lized (Problem: Show that, as must be the case, such sets satisfy equations
of the form (19). Show that the 8¢s form a Hermitian matrix). Also it
has on occasion been suggested that certain non-orthogonal sets could be
useful too. (See article by T. Gilbert referred to ear lier)-

We have not yet calculated g . To do so we use (6) and readily find

A z%’é - ($ Y TZw $)

&> Z.% ¥, 1 p! (1X-21)

& ~
Thus B is not simply the sum of the "spin-orbital energies &;' because
such a sum counts the two particle intera~tious twice. We will discuss
the physical significance of the g& as 1onization energies in another
chapter; our primary interest in this chapter being to describe the
formalism.c °v ,blem: Koopman's Theorem:d Consider the N-1 particle de-

- - L] \
- — l Q = ‘ - PR
+ - ’ N Ty

energy calculated fromt'\' differs from % by gy , supporting the inter=-
pretation of the acl as ionization energi.es.)

As we mentioned at the outset, the unrestricted approximation is
the most extreme of the Hartree-Fock schemes, and usually the resul-
tant Q* will not have the symmetry properties of the corresponding
eigenfunction of H-spin, angular wm.mentum, etc. An important exception
occurs in the case of closed snells. Here one can show that with
the usual non-relativistic, fixed nucleus Hamiltonian, then, in the
absence of externa: fields, a completely symmetricalf-‘: is a self-

consistent solution of eq. (20). Thus for a closed shell atom the

would take the familiar form of radial function timés shperical
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harmonic times spin function, the spatial functions being doubly

occupied. In particular for We one can find a solution of the form

=
=

(24 2}\

where :3 is a spherically symmetric spatiai function and o¢ and P

are spin functions. Similarly for B._ one can find a solution of the

=
% form YO A P & o z'p\ for Ng. a solution of the
- A A
form |3...$PS‘.~3'9 f*d.-——' f.(i\ etc,

Thus in thfa caseaone may say that the restricted Hartree-Fock functions

satisfy the unrestricted equations. Further one finds that, not un-

expectedley, this is then also true in its presence of external fields.

/ However we should also point out that though for closed \
shells the completely symmetric solution is self-consistent
it may well not yield the lowest energy of all single dete--
minants. For recent discussions see Kaplan and Kleiner
Phys. Rev. 156, (1967) and Cizek and Paldus, J. Chea.
Phys. 47, 3976 (1967). See also LYwdin in "Quantum Theory -
of Atoms, Molecules and Solids", P. 0. LYwdin, ed. (1%65)

\P. 601.

When one goes to open shells howevei the situation changes. Thus
consider L1 . One can check (Problem: Do this.) that a determinant
!
of the form |3a fo‘p Alwl will not satisfy eq. (19)

while a function of the form \2&3"\ A"« will. However

the latter function is unsatisfactory in that it is not pure spin %
but contains some spin 3/2. A similar situation will exist also witu
respect to orbital angular momentum when one goes on to open shells

which nominally would involve orbitals with non-zero angular momentum.
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‘mus/\for open shells one must impose further restrictions if one
wishes + to have appropriate symmetry. For \L one could simply
require that the trial functions take the form I/r:)vol Z\‘/‘s X’o&‘
and determ*nax and z\’ from the variatdonal method or, as a more
flexible alternative, one might use the appropriate linear combination
of IK" xb(k‘“\ and \3"* ’3'“/% 34"‘ which will
give g@usa spin % . Similarly for, non-zero angular momentum, one
can specify the zngular and s’ dependence of the spin orbitals,
vector coupling together various determinants to produce the desired
angular momentum ’and then determine the radial functions variationally.
General schemes of this sort go under such names as restricted HF {or
SCF) or multiconfigurational restricted HF, etc.
Returning to the case of L» , it is possible to imbed ‘Qﬂﬁpﬁidl
and similar restricted single determinants
appropriate to systems with spatifally closed half filled shells out-

side of closed shells in what we might call a "slightly restricted

scheme" (SRHF). Namely suppose one looks at determinants of the form

$= X \?;“d :‘P?},dgv - ——'-.(\\l';-‘d (U\""dl

N1
=
where the \‘1 are arbitrary orthonormal spatial orbitals. Thd:is we
have a number of doubls occupied orbitals and then a number of valence
orbitals all with the same spin.
~

If ore writes down the equations for the optimal Wy o d.e., for

A
the Vt:) then one can shov that for systems with spatially closed half
filled shells outside closed shells, the appropriate restricted orbitals

satisfy these equations. Further this also holds in the presence of

external fields.
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//Ploblem: Derive the equations for \\
" A A Ao
AN LV a Vi W )= O
*fa ;%i‘ | l[‘ V3 ot} C L) 3’7 'LQ

I GHI ROt oy
-

Show that one cannot put the analog of € equal to zeroQ.
Show that these equations are satisfied by 'J'\ -;2‘, T = 3'/

AN

We will conclude this chipter by some ccmments on how one actually
goes about solving the eq. (19) and their analogue for restricted HF
schemes. For closed shell atoms,and for open shells with angular and

$

spin restrictions one can, @ssuming ad.symmetric solu@ reduce them

to a set of non-linear, coupled, l-dimensional integro diiferential

TN oo

equations for the radial functions. Tt has then prover possible to
solve these, apparaatly with good accuracy, by direct numerical tech-
niques using an interative procedure of the type mentioned earlier.
= For molecules such a direct approach still seems pretty much out
of the question and one resorts to so-called "analytic" methods. Namely
what one really does is to go back to (13) and (14) and restrict thre
set of trial. functions further by replacing the ?P; by finite ex-
pansions in some basis sets (usually the same set for each § ) so
that 31;95 involves varying the finite number of expam;ion coeffi-

cients and any non-linear parameters which may be imbedded in the basis

set. Qualitatively the sfituation here is the same as that discussed

:!-’r!ll{ﬂﬂM! L Al

near the end of Sec, VII =- the (non-linear in this case) space of trial

whithy 2495 114)
functionsVis multiply infinite. One is therefore forced to restrict
attention to a finitely parameterized subset.

For fixed values of the non-linear parameters, varying the expansion

YT

coefrficients leads to a set of coupled non-linear algebraic equations
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for the expansion coefficients, equations which one can then solve
iteratively to seif-consistency. One then changes the value of the

non-linear parameters, etc.

X. Allowed Variations

The concept of an allowed variation is one which we will find
A
useful in the discussion which follows. We will say that AW is an

allowed variation if it satisfies
o " ~ ,
(A%, (M-EY$) F (% (§-e> ad)=p (X-1)

N 0N
Evidently if “¥ is an eigenfunction then all B are allowed.
Allowed variations can be loosely classified into one of three types

N
(i) Since W satisfies

( 6\'\\, W-Er$) * C¢,(\}——€) &)= 0 (X-2)

it follows that any 6""\ is an allowed variation. Such allowed varia-
tions one might call "built in'". That is from the structure of the set
of trial functions one can direct1§ see that '$i-ﬁ$ will belong to
the set through first order and therefore this variation will have been
explored in determ..ning'?k. Thus it follows that A‘f)\' will be ab\?
and hence allowed. ,

(ii) Certain -ariations will be allowed for reasons of symmetry.
Thus for example of H is rotationally invariant and if \’\: has a
definite angular momentum, then any A\?‘ with a different angular mo-

mentum is allowed. We have put such allowed variations in a separate

category because they are usually not "built in". Namely, being aware
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of the symmetry properties of 3] , one will usually have restricted the
class of trial functions to be of the desired symmetry type. Also note

A
that only the symmetry type!. of ‘-\»’ is important, 'oo‘k the fact that

o A
\Y is an optimal trial function. Thus with AN of a different symmetry

~ a ~ "~
type frpm Y , ¢ in (1) can be any ‘P of the same symmetry as ¢%
and the equation will continue to be true.
(iii) The rest. Again let us note that the ‘:\\‘ which arises from
a limited set »f trial functions could be an eigenfunction. Then wnat-
ever one's i priori expectations of the type (i) and {(ii), one would
find E postiori that all A&' were allowed.

N

/ In some of the later sections we will introduce other
variation methods, other optiwa’® trial functions, ecc.
In all cases the concept of allcwed variation will be g

\used analogously to our use here.

XI. Special Theorems Satisfied by Optimal Trial Fumctions

As a consequence of the Schoedinger equation, eigenfunctions
satisfy many special theorems which are often of interest in themselves
== Heﬂmat,x{Feynman Theorem, virial theorem, etc. In particular we will
be interested in theorems whose satisfaction does not depend simply on
symmetry properties. In this section we will derive several such
theorems by assuming that various variations are allowed. Conversely

™o
then if, for a given set of trial ¥ , we know ;:gr_igg; that certain
variations are allowed, then we can be sure that the optimal trial

function will automatically satisfy the corresponding theorem.

What we will be giving then are sufficient conditions that the

theorem be sctisfied -- namely if the variaticn falls into class (i)
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of the previous se t..r. tren Che  cre=niniing theem will be satis-

I
fied b . The existence of class (iii}, hcowever, makes it im~-
y s 2
possible to formulate a useful necessary condition. As a rule of thumb

. v vante md o TP
however, for the cases we will discuss, if it isn’t clear 2 priori that

the variation is ailcwed, then prebsbiy it isn

//,To come back to 2 point raised in Sez. Tii: In saving. as
we will say, that such and such apniax-;atiﬂﬂ satizfioe

such and znch a theoram, we wilil be azsuming thsat all
arithmetic has been done exactly. We will niot discuss the
effect of errors in numerical ana yqia‘ alse, inv a related

vein, for approximations whichk don't obv1ﬂuﬁ1y satisfy a
theorem, we will nor Aattempt to estimate hew close they 'ﬂﬁ}//

\ come .

In thie seztion o arpr-ach te the var ioos tteorems 1= ore find
conditions vnder which they will he ¢atistied 'maturaliv' 25 a result
of the cheoice of the ’::1; wvhizh one =zes ip the varistional mechod. 1In
another chapter we will d¥scuss a rather different sapgproach in which
the theorems are directly impcsed as constrzints on the variational

me thod.

(A) Generaiized Helimann-Fcynman Thecrem

Suppose that F% contains a real parameter O . Then from

(% Wm-85%) =o (XI-1)
we have . I3
f’\ /i = o =5 B 3
(W a-E) ) & (¥, -8R

RS -
+Cn (R - )y ) =
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Suppose ncw that

N

o
Av ¥ go- (Xi-3)
3o

is an allowed variation. Then the sum of the first two terms on the
left hand side of (1} will vanish, and we will be left with tha genera-

lized Hellmann-Fevnman Theorem:

| & ~
- o j - \ 5
o ’ LMpesr) (X ~4)
-3 €ON
\h,,,;,u'(-!?
The one. w»,-(-r ensuring that (3) will be an ailmved varistion
is for the gset nf trizl Fmioiomz o T abazen 7o wEh wEpmee 5
pendent of @ or. to »sur if core matlematicsYly and anvee rreo;
, S £ &
be closed under the operstiorn ¥ % =i o T se= thao he,
works one need only note thal theus. whatever *he 2 galue, T
r~ A
search through the same set for Woo. thas if W{@‘»} i= the ostiua

o be
trial function when U~ has the value V) , then ‘¥ Cq“»biz ) st

(a)
also belong to the set wherce clearly 3¥¥ gg will be a &7 | and

W
hence allowed.

More specifically (A. C. Hurley, Proc. Roy. Soc. A226, 179, (1959))
~
suppos@ that the & are specified by a number of real variaticnal para=

~
meters &‘\--—O\M . Then the simplest way for the set to pe iundepen=

(o A
dent of @ is for the W not te depend ou ¢F din any wa,. Thus W
; , B 5 i
will depend cn & onlv bersnse the (hq~" " g do. Therefore

- ~
¥ g m L VY R g0 o Q Siy (0% &_q;r)
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which is clearly a possible 5*-/}\‘ and hence allowed.

Obvious examples <f situations in which (3) is allowed are (i) the
linear variational method with the % independent of J~ ; (ii) most
SCF schemes, since although they m:.y involve restrictions an angular
or spin dependence of the spin orbitals, usually noE gx;'jéc_)_gl require-
ments are imposed on how the functions should depend on possible Q—\S
like nuclear charges, nuclear configurations, strength of external

fields, etc; (iii) analytic SCF schemes in which the basic functions
tooe "N
are independent of G . problem: In a linear space we have‘%%_ =
= A
\'{‘,"0“ ¢)/( \?«1 ¥) . Show that this raduces to (4) when the space is

2T
independent of U~ . Hint: What is .bw/af ?

N,

N

Although the situation with respect to SCF seems quite clear,
still there has been confusioan in the literature. See for e:-
ample W. Huo, J. Chem. Phys. 45, 1554 (1966)--corrected in foot-
note 11, J. Chem. Phys., 40, 1482 (1968). See also Goddard, J.
Chem. Phys. 48, 5337 (1968)=-no correction as yet.,

1f B = Hw‘, FVE"Y here B9 and B are indepen-
dent of v , then if (3) is satisfied with U =v , i.e., if

e ) W "
ILRCR VSRS

then §& 1is said to be "stable" under the "perturbation" Hh)
(g. G. Hall, Phil. Mag. 6, 249 (1961). Thus we see that the

W which arise from the linear variation method (with the
independent of ¢~ ) and from SCF schemes are stabie under ar-
bitrary perturbations. In particular, in connection with SCF,
we would stress that '’ need not be a one-electron opera=

\tor as nas sometimes been iwplied in the literature. /

~
Conversely if the\\' depend explicitly on 9~ , then, 'inless they
are closed under S — T +&q . one would not expect the theorem
to be satisfied. Thus for example in molecular calculations which

involve finite basis sets (analytic SCF ©R linear variational), usually
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the functions used involve the nuclear geometry explicity and are
different fur different geometries. Under these conditions then one

~
SRS
does not expect that bE;, will equal CQ, N \.\n))(\;'\?) where R is
T "
a ruclear separation. (However, note that this statement is "coordinate
dependent' =- see below.)

N

/ Problem: Would one expect the '"method of moments'" (Sec. VI)
\r.o satisfy (4)7 /

In our discussion of the generalized Hellmann~-Feynman Theorem we
have made no reference to the coordinate system (more generally, the
repredentation) which we were using. This of course does not euter in
computing ”%/(1- but it can changc the nature of ’o\%o_ completely.
If we denote by A’; the product of coovdinate differentials which are

involved in the calculation of (“\;1“3)/("“‘1;) and if we w~"«b
Q": H ( .g) ?); X )

o
then b.& &videaily means @.) 2 . Similarly by \W&)
L a A ;.u
and QCG;M) we mant‘f(?,fr,) and $(%, 0\v3T)  respectively;
Ny

anc for example to say that the Y ara independent of 6~ means that
they depend only on 3 and variational parameters. In some other
coordinate system they may well then depend on @ . In particular

then one may satisfy (4) in one coordinate system but not in others.

Thus W awu, \»MM-

(¢) g 3 ‘V)/ $ 3 -7"(}# ('M)q,g_ﬁ)@rr)

For some examples of the effect of different choices of ¥ on b%v



V- oot AR i

UG SN ot s

==

56
see C. A. Coulson and A. C. Hurley, I. Chem, Phys. 37. 448 (1962).

For further references and .4 more gemeral discussion zee 5. T. Epstein,

J. Chem. Phys. 42, 3813 (1963).

/ We might however indicate one CA¥ in point. To derive the
Hellmann~Feynman Theorem for a diatomic molecule one uses
O"a f& and Cartesian coordinates tivih all the electrons
referred to the same origin. Then ¥ depends on K&
through the electrnn-uucieus, and nucleusenucleus terms.
Use of (4) then yields the well-known Anschauldche result.
On the other hand if. as is appropriate to a-/n$Cuisiom f
long range forces, one refers dirferent electrongtc diffe-
rent origins,then the two electron terms in ) will also
involve R ‘and the shape of PWfps changes drastically.
Use of non~Cartesiau coordinate systems will further come

\\plicate the picture (see the references given ahove). //

This discussice or 1 F{igent
other point. 1In genera: = volume elewent 107 cves vt only a pro-
duct of coordinate differen iale. bur aisc a .Tscobian 'J . What then
1 f 3 depends on U7 7 (Cne might also envisage the limits of inte-
gration depending on @, However such dependence can be lumped with

r by use of appropriate step functions.} In our discussion up to
now we have ev’Jiently implicitly ignored this by differentiating only
B and Q/ "

We will not give a general discussion here (see S. T. Epstein,

J. Chem. Phys. 46, %/1 (1967)) but will note that in many cases of

interest, J involves O only in the form

d= o) 4LT)

whence ‘S‘ cancels out of (X1~1) can we may ignore it.
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/ Problem: Consider a linear harmonic oscillator of fre-
quency W . Using Ow Cartesian coordinate, what is w;ﬂ ;¢
Using a scaled cartesian coordinate W ® what 1sWypy ?
Show that if the resulting two formulae for ‘o%[;u are both /

\true, then the virial theorem is satisfied.

(B) On_the Prevalence of Interchange Theorems

In chapter we have seen that if

K= p‘.o.}. N +)~W

ther interchange theorems follow frum the Hellmann-Feynman theoreas

A = Ok ww/iwy

€ b, VWD /(4%)

if E is a non-degenerate eigenw.i-\v’& and ‘P the eigen‘aﬂ&“:""
In a similar way then we will have interchange theorems for a
variational approximation if Hellmann-Feynman Theorems are satisfied
~ for T")ﬁ ald o=~ . Thus in particular to calculate
("73 (\C\r\s) [L&,*) to any order in M and first order in
we need coupute only 68, w8 /$:) | amo and 2 t+.v$M¢.¢)\m
(the latter yielding %”)‘g . That is, we need 'f only for W20 .
In pe-rtic—u}ar then there will be interchange theorems within SCF -
théoties, for linear variational approximations (with the d’k inde~-

pendent of N and r ) ete.

(9] gﬂervgial Iheg;m
Let us suppose that - &

A¢'a. v 6*1 Ps! ‘?’ (XI=5)
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is an allowed variation where )‘3 is Hermitian and 61, is aVnumber.

Then from (1) we have

(§) Tun- wxuld$)-o (x1-6)

A
Thus if (5) is an allowed variation then $satisfies the hypervirial
theorem for b . (The average value of theYwaes derivative of )3
VM&\\“ in a stationary state.)

On the other hand if

A P A
Aq' = 3 )5“‘ (XI-7)

is allowed “then we find

&, (omtan ) $)= 28 ¢, A8

{XI1-8)

and if both are allowed we have

C\\'}:)l\’i‘g V)= (\?,\'\-}J ¥) = © C\?"}H‘) (X1=9)
Wtk Wae lan powwd

_'“\4_ one wayvto ensuré that such variations are allowed is to
choose the set of trial functions in such a way that if\i’v is a member
~n (a4

of the set then so is (i¥+ & % )J‘) WV to first order, whence, de-
pending on the reality conditions imposed on 6'{ sy (5) or (7) or both
will be allowed.

Before illustrating some of the possibilities by means of examples
it might be well to mention two )J'p of interest:

(A) If N is the “Vimar

Koy &R
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where *) and T% are the Cartesian momenta and coordinates of the
o't particle, then one finds that, with ¥} the non-relativistic
fixes rucleus Hamiltonian for atoms or molecules in the absence of
external fields,that the hypervirial theorem for )& is just the fami-
liar Virial Theorem, at least for atoms. For diatomic molecules what
one finds is

a
% yetR (‘*"%\3,‘?‘) (s >0 (XI-10)

- .
where T is the average kinetic energy and & is the nuclear separa-

tion and where we are using Carta2sian coordinates. (Problem: Derive
these results for atoms and diatomic molecules.) This then becomes

what is usually called the virial theorem, namely

N oA T4
4+ 8+ R dE XI-11
T T D ( )

if the Hellmann-Feynman Theorem for G-=P. is also satisfied in

Cartesian coordinates.

.

/Depending on whether “'\' is the Electronic Hamiltonian’;
or the total Hamiltonian, including nuclear repuision, \&
in (10) is the electronic or the total energy. In (11)

either may be used since the energy of nucleus repulsion
satisfie§

Ewve + R 4B 5
__Taw

Probjem: Derive the analogous results for polyatomic. . /
molecules. . '
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(B) Ifh is a component of the total electronic momentum

| N
% ,2] a 2. {5:1 = ﬁht

)

then the hypervirial theorem forh says that on the average there

is no net force in the E.‘N., Airection acting on the electrons. As

an interesting application consider an atom in a uniform electric field
Z . Then the net force on the electrons is equal to the force due
~ to the nucleus plus the force due to the zlectric field, the electron-

m
electron forces cdtelling out by action equals reaction. Thus if the

f _ hypervirial theorems are satisfied for the three [\ we will have

wiy P
0 =2 —N 2 ¥ F”e (X1-12)

On the other hand the force on the nuc.eus is

% ~ ~F
Fu- TE€-Fu -1

' L 4
where 2’ is the nuclear charge. But from (12) we can then write Fu

as
= o 4 -~

R v- B e = 2lhepye

Thus when the hypervirial theorems for all the P-\'. are satisfied, the

so-called '"dipole shielding factor" F will take on the (correct)
value "I?: .
Now let us turn to some examples of situations in which hypervirial
theorems are satisfied,
N
(i) Let )3 be a one-particle operator and ‘\’ the optimal URHF

Slater determinant. Thus we consider
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e ‘\— (\"‘ ~ ..
as= 64 Ak= TE 10 Akh-%|
wvaxdi, 5':\5 o fh ok o PV LTRAL L

The latter is qualitatively the sort of variation which we considered
yN pon
in Sec. IXYconnection with URHF, i.e., a Svim ofzorbital variations.

However unless 3;“' is pure imaginary t;“' does not satisfy
"~ A ~ .
cad, $) vtdad =0

which was a further condition which we imposed there. However since
we argued at that time that such restrictions were only mathmatical
0N
and not physical, we can infer that A¢ must be allowed both for 64
n .
pure imaginary and for &Y, real, and hence that (6), (8), ‘and 9)
should be satisfied. We can also prove this explicitly. Namely
ciearly A A
o I
6 _sh b)Y $r 8y
Ay —_—
i)
A~
where b_\}" is the sort of variation which we considered there fol-

n o
lowing (I*-IZ) and which we found to satisfy (5,%,WW¥ Y=D . Thus

on the one Hand we have

o
(ad v §r= R ofy E)

while on the other handn ('\ );'3) CA '\)“5“;-@’)’4)%
A = \), - ﬁ‘ -
ead ) = GAT o

Equating these then yields
: ~
¢, )= € (oY)

v
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which is part of (9), its complex conjugate yielding the rest. Then
since (6) and (8) follow from (9) the point is proven. Thus URHF
gsatisfies (9) and all hypervirial theorems (6) for one-electron opera-
tors and hence in particular the virial theorem and the theorem for

63 . (Note we did not add the qualifier "Hermitian". Problem: Show

that if these theorems are satisfied for all Hermitian one=electron

’23 , they are satisfied for all one=electron operatcrs.) In particu-

lar then restricted Hartree-Fock for closed shells atoms will also
satisfy these theorems since, as mentioned in Sec. IX, in this case
the restricted functions satisfy the unrestricted equatioms. (For
some recent calculations and further references see Kaneko and Aron,
Phys, Soc. Japan 26, 110 (1969).)

Also it is easy to see that if/Zj is any spin independent one-

)
electron operator then the SRHF mentioned in Sec. IX will satisfy the

hypervirial theorem for’23 . (Problem: Prove this.) Since the virial
theorem and the dipole shielding theorem involve ,8\5 of this type it
follows in particular that they will also be satisfied by restricted
Hartree-Fock approximations for atoms with spatially closed half filled

shells outside of closed shells.

’, When there are external fields present one usually adds
the adjective "coupled" to further delineate the various
HF schemes which we have been discussing. This is to dis-
tinguish them firom various "uncoupled' HF schemes which
we will discuss in another chapter. Thus M. Cohen (Proc.
Roy. Soc. A293, 365 (1966), Proc. Phys. Soc. 92, 23 (1967))
has reported some calculations for the alkalis which seem
to contradict the results found above. However what he
calls HF in these papers is not coupled HF but is some

version of uncoupled HF.
e
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/ It is also useful to note that with the_.or gin of co-\
ordinates 48, at the nucleus 3 = T A ZCG Pt XA ‘h)
really involves only the radial coordinate and radial
momentum of each particle. Thus even if + is a sum of
determinants derived from a restricted HF approximation,
since 3% involves only variations of radial functions,
it will follow that ny will satisfy the virial theorem.

<P

As implied in the previous note the virial depends on

the origin of coordinates. Problem: Show that if the

hypervirial theorems for P are satisfied then if the

virial theorem is satisfied for one origin, it is sat- /
\isfied for all origins.

(ii) One may wambwso satisfy a hypervirial theorem by explicitly
introducing a variational parameter to do the job. Thus if one uses

trial functions of the form

T
$ - 21 G (XI-14)

~
where Y is a pure imaginary (real) variational parameter and
o~
is independent of ‘\, , but may involve other parameters and/or

functions, then clearly the variations (5) (the variations (7)) will

be allowed.

/ In the gopstrained variastional approach mentioned at the

beginning of this Sec. XI, one instead constrains the varia-

tional parameters already available in order to satisfy the

the . Thus in the present gppg‘oach using \-lf instead

of cannot raise the optimal gAaud probably lowers it,

while in the constrained approach ‘g cannot be lowered and /
\ will probably be raised.
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i WA
In particular for B =Ly and ?i e

, one readily finds that

N ~ = =% -5
SA-- A, P2 OCH AT e M *-?> (XI-15)
where
s ™
€en W) y Evro  bapr (1X-16)

(Problem: Derive this result.) Thus if the trial functions are
-~
not a priori linked to a particular origin along the %'h‘q axis, the

hypervirial theorem for P\ﬂ will be satisfied. Problem: What of

the other theorems?

L d
/ n VBT ==
Problem: Prove that if W*& - ith € now ar-
bitrary but real, then = @( 4,+i;---,h& &) -»and the
hypervirial theorems for all ¥\vak components of P will
be satisf.ed.

pEmm—

The preceding problem raises the general question of sat-
isfying several hypervirial theorems simultaneously using
an approach of the type (l4). Problem: Show that if the
.b;’ commute, that this can be done as above by use of

Yo P
F= et "™ @

(Al
where_the q.‘l- are pure imaginary and 6 is independent of
the '{\\ . For a discussion of the more general case (and

for more details on fiudingg explicitly given/’) and & )
see S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 12!, 1495

\(1961). See also D. Pandres, Phys. Rev. 131, 886 (1963). /

Of course in the absence of external fields the theorem for PK
will often be satisfied simply because of symmetry. Thus consider an

A
atom. Then if ¥ has a definite parity we will have

(.2,’ 3 \?}) = (\t, H? ¢5= C\R?H‘?’)"‘O
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A
Note again that this has nothing to do with ‘¢ being an optimal .-ial
function. All that is important is that it have the right symmetry.
Also even in the present of an electiie - field the theorems for P‘_
~ -
(the components of § perpendicular to € ) can be satisfied by sym-
metry. In this connection one can prove the following (Probjem: Do
this.) If the hypervirial theorem forA is satisfied simply for
()

reasons of symmetry, then if the e have the appropriate symmetry,

A
1 will equal zero.

/As another example of the sort of thing, this time related
to time reversal if variance, suppos@® that 5] andq— are
real, then if # 1is explicitly real

of, Cas - $iagp

e aad

Problem: Prove this. Hint: Note that from our hypotheses
t(wy-2sw) 1is a pure imaginary Hermitian operator.

alf——

o A
\ Problem: Discuss ¥} and % real, b} pure imaginary. /

Let us now chooce/h to be the "virial" i.e., we take
.,b:-. "' Z cft h*h ("')

Then with % P‘*Mu show that
& -~ "», '[):: (3 ) G ( e 3’:;“) (X1-17)
with Lh'l V
o |
S = £ (X1-18)
Thus we can say that if the scale of electronic coerdinates cam

be freely varied then the virial theorem will be satisfied.

< Problem: Discuss the possibilities for compiex mlln;.)
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/Problem: Derive (17) and (18). Hint: Considering one
dimension prove that

Ny

WA N N7 B N

3 (& = e~ Q (e7=)
%C?*—*"i”{e 8 "‘)} {?(. 9

In discussing the virial we have had in mind that ¥ vas

an atomic or molecular Hamiltonian in the absence of external

fields, with neglect of spin and v@locity dependent furces.

However we should emphacize that whatever the nature of ¥i .
(atomic, molecular, iuclear, with or without external fields,

spin dependent forces, etc.) scaling will assure that the

average value of the commutator of ¥ and the virial will i
vanish. In particular for a single particle '. a potential
\/ this then yields the general virial theorem
A e )
o7 - A UVY) /
-—v——___"’"_—
\ W)

For diatomic molecules then this means the theorem (10)., In order
that (11) also hold we could then also require that é be explicitly
indenendent of R ,

Such an approach would then satisfy both (10) and (11). Not sur~
prisingly thers ie an alternative approach which in general satisfies
only (11), Namely let @ depend on  , but scale that dependence as

well., Thus use
-l

3—2 ~ -y ~e g
$ = Cf) V 9(?“\1,'“ R tw 3 R) (X1-19) .

One sees that this works as follows: T f one calculates (Problesm:

Carry out these calculations) bg/?ﬁ one will find the Hellmann-Feynman
result plus an extra term, call iti . If one then makes use of the

fact that 5#‘5 ?‘: 5‘? is an allowed variation one will derivn”}xa.g
Combining these results then yields (11). (See P. 0. Liwdin, J. Mol. Sepec,
3 4 (1959). Also E, C. Herrmann, Chem. Phys. Lett. 1, 253 (1967)).
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/ A o b g
roblem: For what $ would hypervirial theorams be sat-

igsfied if one scaled the and coordinates of the /
\particles independently?

(iii) Finally let us consider the situation when the set of trial
functions forms a linear space as in Sec. VIL. A feature of such cases
which we have not commented on explicitly earlier, but which it is now
déeful to note, is that, in contrast to the general situation, the é_‘f’_

belong to the space. This is obvious when one has linear variational

. A
parameters and in the general case it follows from the ramark thatx“l’

~

. belongs to the space for any W in the space.

Thus if AQ is to be allowed because it is 36‘? , it rfollows
that A\’}\' must belong to the space. Thus, with respect to the theorems
of interest at the moment, this means that /& ‘?’ should belong to
the space. The s™-™%) wkv:.:’ensure this 3 - to have/b‘\’\: belong
to the space if Q'I does. For the A‘s which we liave been talking
about, this is difficult unless the space is o® dimensional; Thus
one does not expect the linear varfational method to satisfy interesting

hypervirial theorems. (We are assuming the *\g to be fixed. 1If one

allows non-linear paraeters, scaling, etc., then that is a different

story -- the space is ro longer linear, and no longer finite dimensional.)

On the other Land if one is dealing with infinite spaces then the pros-
pects are better. Thus in view of our remarks at the end of the dis-
cussion (i) of this section, the "S~limit" for Hg will gatisfy the

virial theorem.

/Problem: Define A = § 1% Show that the theorems for\
\all Jj are satisfiedda the \1wism vawadnond WeHed /
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(C) Orthogonality

o of )
Let \-P and W be two solutions of the variational equations

Al
associated with energies € and © respectively. Further let us

suppose that

~n ol
A\{\\a = 5‘;\1“"
0N " Al a -
Ay =8 (X1-20)

¢

A ! 0 t
are allowed variations of & and % respectively where &M andsq

~ nt
may be arbitrary complex numbers. Choosing 8 and 51  first real and

N
then pure imaginary one finds from the fact that &% is allowed

Al PRA ’ )
( % (W— E)+)°‘ © (XI-21)

!
~n
and from the &act that &% is allowed

Ty A
&', - €)% ) =9
Subtracting then we have

(&'-&), H=p (x1-22)

: )
" )
that is, if (20) are allowed and if E#: {::-. - then‘? and‘s wiil

automatically be orthogonal. Further note that if we use (22) in (21)

we have

C\?",\\Q ) =v

and the considerations in Sec. VI concerning upper bounds to excited

states can be applied.
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Now when is it likely that the variations (20) will be allowed

because A¢ and b&‘ are a 8'\? and aéq’ ? One case, which we have
already discussed, %8s of course that in which the trial functions form
a linear space, and in fact we know of no other (;'); However one can
use the resuit in reverse. Thus in URHF method cthe different solutions,
ground state, first excited state of the same symmetry, etc;, etc., in
general differ from one another not just by onc.-tpin-or'bital, as would
be needed if (20) were to be allowed, but in all spin-orbitals. Thus
one does not expect, and indeed ome does not find, exact orthogoaslity.
Similar remarks clearly also apply to other SCF schemes. However, of
course, near orthogonality is not excluded. For some representative
calculations and more references see for example Bagus, Phys. Rev. 139,
A619 (1965).

%

. Though mainl only of formal interest note that if ad= 5“1 ‘5‘1'
and a8'=sQ are allowed with 5% o 6§’ real or pure
imaginpary, then if the off idagonal hypervirial theorem for
2y will be satisfied:

.Cw,ta\ﬂ&:)a. - &) (', 1¥)

For similar reasons as above one does not expect such aﬁlc-

tions to be satisfied in SCF schemes. See for .example

Vetchinkin, Opt. Specta (USSR) 14, 169 (1963); La Paglia

and Sinancglu, J. Chem. Phys. 44, 1088 (1966); and La Paglia

J. Mol. Spec. 24, 302 (1967), for discussion of oscillator /
\strengths in SCF schemes.

(D) Brillouin's Theorem

Suppose chat

. . | e
Avw = 81‘“\\7 . : {XI~23)
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A : '
is an allowed variation for S'(' either real or pure imaginary, and that

e
M is orthogonal to b

. ,
(q’), V)= o (XI~24)
.- Than it .follows that
A(\L», WY -0 : | (X1-25)
|
i.e., the matrix element ofﬂ- between “t and ‘{“v‘anishes.' This
result we call (the generalized) Brillouin's Theorem, since in the -

special case of URHF it becomes the Brillouin's Theorea.

. This -theorem is really not so much a 'special theorem" like the

~..wirial theorem, but rather 18 another way of expressing the basic equa-

tions of the variational method. (For a derivation of various HF
theorj.es from this point of view see Nesbet, Rev. Mod. Phys. 33 28
(1951) and Kaldos J.'Cheﬂ. Ph;s. 48, 835 (1968) ) Bowaver the point
is that :&en expresseﬂ in thi.s ﬂav, one sees that the eqnations of the
variational nethqd directly contain i.nformatien about what may “happen
if one tries to improve upon ‘?’ by means of pérttxrbafi(;n :heory;

To do this one will iatz'odaee a za'o-order Hamiltonian H‘ with

the pr operty

Ht.o’) _ \»

where Ew may or may rot equalE (See the end of this section =--
note that in any case E‘9 Eme E ) Then introéucing ehe remain-
ing orthonormal eigenfunctions ‘Bh aad eigenvalues Qa of \."3 5

the first order correction to ‘P can’ ‘be writtén‘th the well-known
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form (we assume that E“’) is non-degenerate)

9 W) gt &y .
§° = 2% Cw (XI-26)
ey~ ')

i

) ~ 5 %)
Now the import of Brillouin's Theorem is clear =-.if Oy = 6% Y

)
is an allowed variation then ‘5(., won't appear in the exprassion for

\?\“\ and hence will have no effect on the energy through third order

)
(Broblem: Show that Y may well appear in ‘4.’“') ).

/ vl

Another wew which is often used to improve a . \P iz to do
a linear variational calculation, the basis functions bejmg

& and a selected set e . This is the so-called comn-

figuration interaction (CI) method. Bri}louin s ‘Theorem
then tells us that any @ for whlchAw‘-"S"tét were allowed
“wvariations, will not be connected directly to ¢ in the re-
sulting Hamiltonian magrix. For an application to malti-
configurational Hartree-Fock theory see Levy and Berthier;

\Int. J. W. Chem. 2, 307 (1968) and references given there. /

URHF" is a particularly interesting case in point; The "P' for
which (25) holds are,as we know, just the one-electron excitations of
{\\' - Thus if we choose for \}") a one-electron operator (the choice
H“‘a Mpp = ‘qkab) clearly being the most natural) so that the
\km are single deteminants 1nv01v1ng varieus exc1tat10na of ‘b
then &“Q\P that \-? will involve no :glectron excitations.

This then implies th?interesting and useful result that fot aueh
-an “lﬁ s there are no first order correctioms to tke average niae of
any one-electron operator. Namely the first order co;;eqtigugq muld be

W Cw»t¢w’)¢) + e
(‘:)‘i’)




72
But if W 1s a one-electron operator then

iw (q.)w‘\v) ];F

Q™ N)

cqntain‘s only one-electron excitations, whence, from the above dis~-
cussion, the .first order correction iranishes.

Thus there will be no first order corrections to average dipole
ﬁoﬁehte , dverage kinetic ehergy, average electron-nucleus energy, etc.
Also, if H'“D contains all the interaction with external fields, our
resglt will hoid -to all orders in the external fields and hencg ‘there
wiil be no first order corrections té static polaribﬂiti‘.es, static
suscepf:iﬁiﬁ.ties, eté.

In a general way c;ne may say that there wi.ll be no first order
correct1ons to the one-electron density mattix bA One can see this

by 'éréuing that the aiverage value of W 1is given by

AvrW = Ta3W

;ﬁéhéé if there are no first order corrections to kW for anyW ,
there -c'an be ng\ first order cdrrec;t:i.ohs to b’ . Alternatively omne
can note that ’X itself is the expectation value of a one-electron
operator. (See for example McWeeny and Mlzund Proc. Roy. Soc. A259,
534 (1961). See also Somorjai, J. cr;e.m_._phys. 44, 3041 (1966) --
'E-:i.:hes'é authors work in configuration space. The result is most obvious
when one uses second quantization. ‘See for example "Yar? s
Rev. Mod. Pﬁys.' 34, 6946 (1962)) '

In any case a further- consequen&e is ﬂ'zan‘ that the. eigenfunctions

A~ ' "
of r, the natural spin orbitals, as given by URHF (namely the ' )
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~
and the eigenvalues of X (namely%) are also correct through first
order. (Actually the result concerning the eigenvalues is true whather
or not CY is an optimal determinant == gee Kutzelnigg and Smith, J.
Chem. Phys. 42, 2791 (1965) and references given there.)

More specifically let us consider an atom and let H“-”g. H*F . Than
~ the perturbation H—-\}“F_ is just the difference between the electron-
electron repulsion terms in B and those in \-\\“-_ , terms which, as we
. . have seen in our discussions of the "1/Z Method" are of the arder Yi‘
where P is the nuclear charge. Thus in this case we can conclude
that URHF yields expectation values of one-electron operators which are
accurate through order )i. , the errors being of ordert‘é)‘ . Similar
conclusions then follow as we have discussed for restricted HF for
closed shell atoms. Moreover let us again emphasize that these con-
clusions are true to any order in external fields which way be preseat
(for calculations illustrating these points we refer to a series of papers
by Dalgarno and collaborators, especially Cohen, which have been pub-
lished in recent years, mainly in Proc. Roy; Soc; and Proc. P:hys; Sec.).

Having said all this we must now point out that the precediag argu-
-ment contains a flaw and is not completely valid. The reason is cem-
nected with the peculiar degeneracy of hydrogenic enerzy levals. Thus
.. for example consider B(, in the absence of external fields (fer ex-
...plicit calculations, see the references given above). 1In the o0
limit (neglect electron-electron interaction) ‘?’ , which is a single
.determinant, becomes the single determinant of hydrogenic fuactipns-
O (28 ‘4 . oOn the other hand the correct result is a certain
linear combipation of the degenerate pair(i‘? (Wﬂ' ts BN ---"- 3



ORI b

Hovsshishi et

: 74
L h"’)ﬁ"\ $ .« (For more details see A. Dalgarno, Advan, in Phys.
11, 281 (1962) esp. P. 307 et. seq. and references there. For an
"extended HF scheme" designed to avoid this difficulty see for example
Cohen and Dalgarmo, J. Mol. Spec. 10, 378 (1963) and subsequent.papers.)
-'i‘his already indicates that something must be wrong with our argument
since evidently we don't get correct results even in zero order, i.e.,
. the leading term in.the limit &0 . The point is simply that our
arguments about orders falls is this case because of the fact that some
of the energy denominators in (24) and its higher order analog, will

-~->vanish as & ?* and hence \P") etec. will contain contributions of
lower order in "I% than our original argument suggested. On the
other hand for L¢{ the &n"u"'s and (\x‘\"’-r?'f degeneracy causes
no complication if there are no external fields since these states,

“~because they have different angular momentum, don't get mixed. How=-

simo.aver 1t '1s still generally true that if we introduce an artificial

-order parameter A and write )= Qm%(\&—ﬁnp) ther corrections

» .-of order ) to one-electron properties do vanish without exception.

M
-+ However, in cases like Ea—- the terms of orderk are not also of

™
order (} ,‘k’) +. Similar remarks apply also in the presence of external

- ‘»fi’elds,‘ oD Hen &\bg Ll lescomes o €430 W w:ﬁ !ﬁl\b‘(‘_;*
Q;M) Ve Chim-Pon, M LILT QWT) Wa""w\lmg\v-—n Hsna. ) »

In any case the arguments given above fall for two-electron opera=
tors so that in general one expects and finds that one-electron expacta-
tion-values will be given more accurately by URHF than two=electron
expectation values. Notice the energy operator H occupies an inter-

-mediate position here. Namely we know from the variational principle
that its expe‘étafi’bﬁ value, like that of one-electron operators, cone-

tains only a second order error. On the other hand H’ involves both
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one- and two-electron operators. However the point is that the two-
electron operator occurs multiplied by X whence a N etror for the
two-electron operator contributes a x’ error a8 far as the energy is

concerned.

As another example consider SRAF. In a general way the extemsion

e . is clear =- no first order corrections to the expectatioh values of
spin-independent one-electrm operators. In particular then for L -1ike
ions one expects no corrections of order ‘lt for spin-independent
operators, but one does expect correction:. for spin-dependent operators.
These expectations are borne out by the calculations (and the general
theorem) of Dalgarno and Cohen in Proc. Roy. Soc. A275, 492 (1963).
However it should be pointed out that our line of argument to this
result is not completely clear at this point. Namely because, as we
noted in a problem, the analogue of e“ s €4¢ don't all vanish, it
is not immediately obvious that we can wkite down an \')'Uﬂ which is a

\Q)
one-electron operator and which is such that V- W C o~ "t . We
will return to this point in chapter -
| 1/’ e \0) N\
. In introducing we noted that = may or may not
equal B . In particular i W Pygp  then we knov from
L eq. (IX-21) that €92 Z6s =g oaf.'mmmw Awans AdLA

' MWW’and some authors do this (notably Dalgarno) for Hartree-Fock

theory. One theory for which 2 é "naturally' £% the

shielding approximation. (Note that when EWaf, W 8¥%=0 ).
There you will recall one uses

a oy |
W% T -3 ;l_; ry (XI-27)

where T is the kipetic energy operator. The corresponding
'is a Slater determinant (or sum of Slater determinants)

pade up of hydrogenic spin orbitals, the effective charge

"% having been chosen by use of the variational method.
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$ w
Now since W 1is an eigenfunction of \'} it satisfies the
virial theorewm for \S,WS gy Le@esy

eV _ C¥, T\?)Ié\%’;,)

Oy _the other hand hydrogenic fgnctions of nuclear charge
. ~

depend @ 4, only as ¥ h , i.e., we have scaling,

whence the optimal functions will also satlsfy the virial

theorem for Y , which for an atom is

N
whence we have E@: & as announced.
——cd

Problem: Consider a diatomic molegule. Choose for \‘}w)
(20) plus nuclear repulsion, with 5 again determined
variatioaally. With é the optimal total energy include
ing nuclear repulsion, & that at equilibrium BYL.E .
Hint: Note that & does not invoive R explicitly.

For an extension to polyatomic molecules and references
to related work see Gliemann, Theoret. Chem. Acta. 11, 75

\( 1968).

(E) Gauge Invariance
!
Two Hamiltonians H and H— which are related by a unitary

transformation

H_l -y \%U_A UU*

= *\Jc—] (X1-28)
' =
have the same eigenvalues. A natural question to ask is then)under
!
what circumstances will variational calculations based on ¥} and 4

yield the same answers? One trivial answer is: if one uses trial

aY o !
functions ‘“\’ with H , then use trial functions U with & since

o8 wdh ) = ( o) W U“”/(u\?’,u'i?)

More interesting is the answer: Use the same set of trial functiocns
for both,' but choose the set of trial functions to be invariant under the

transformation 'V . (Problem: Show that this works.)
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As a specific "cxgnple consider ‘an atom or molecule in a magnftic

f1eld. Then as is well known a gauge transformation of the vector po-

‘tential”
/ - .
iy == \ .
Rp)— A )= R+ TAW 129
' f " _ can be produced by unitary transformation
- . . 'Z: N+s)
. & Sa).

0 @ P wz L O (X1-30)

Thus we conclude that if the set of trial functions in invariant under
the transformation (50) ;,the results of calcnlaﬁioné ﬁll be gauge
invariant for all A_. 'In particular, since U} times a caterminant is
again a determinant with changed spatial dependence of the orbitals it
.- follows that URHF and SRHF are gauge invariant for arbitrary A . {For .
agtual calculations see for examples a series of papers by W. N. lipscomb

and collaborations in J. Chen. Phys. starting armmd 1964, See also his

>rev1ev article in ”Acvanus 111 Hngnetic Resonance"” 2 (1966)

/ Probl.a- tht can one say about the‘gangc iuvariance of \
-the linear variatiocnal methed?-
1f a set of trial fucntions ¥ is not invariant under \J
Coddi s one niﬂat ask, is there an optimal gauge in.which to do the' -
calculations? One criteriom which suggests:itself is to ::
require that E’ (the optimal energy calculated with W )
be stationary with respect to (general or restricted) varia-
S e E&an of :the gauge.- -BEvidently this is the same as using
UV as the set of trial functions for H’ and treating A
wijesisoigea- furthervariatiomal functien. /

N

Ao s VTR 2l o?
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(F) Integral Hellmann-Feynman Theorem
We now consider two Hamiltoniars H’X and Q, and correspondingly

two optimal trial functions "l’at and ‘-\«/ Now let us suppose that

) A% - 3% %,
and " . Q (X1-31)
A‘\’y"’ &Y \'\'7‘

A
0O o
_are allowed variations of '*’,( and ‘-by respectively for 3‘1 both real

and pure imaginary. Then it follows that
A A n
- ( \5(7> CH,‘-. Ex) My 3‘&0

' a
C ‘-t-,,f(.‘v)y- Ey) % )=0

.,whence by subtraction one finds the so-called "integral Hellmanr nan

.+ ..Theorem"

(s - Ey ) = C‘W (“x—-\%)‘*l)
ST

which has arcused some interest in the literature (see for example

(X1-32)

various papers by Parr and céllabo_rator,s in J. Chem. Phys. starting

around (1964)). In practice the one way which has been found to insure
A A

that the variationa“are allowed is to draw ‘-V,f, and ‘k, from a common
: Bt) : .

linear space. - .

If the variations (31) an allowed then it follows that the righc

hand side of (32) will differ from the true s_genva].ue difference E,g-ﬁ,,
"

by t:exgns of second order in the errors in "l’-,. and '{9 , since we know

a
that E* and E-/ involve only second order errors. On the other hand
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if the conditions are not met, then the quantity on the right hand
A A
side will usually not equal E,(.. Ey and will contain first order

errors. (Fo. some representative numerical results see the papers by
Parr referred to earlier,and Rothstein and Blender, J. Chem. Phys. 49,
1283 (1968). See also Lowe and Mazziotti, J. Chem. Phys. 48, 877 (1967).)

We could go on and intrﬁucezlls -into ‘this two Hamiltonian situa-
tion, however the formal method is clear so we will not pursme the

matter further.

/ N

We said that in practice the one way which has been found
to ensure ‘shat the variations (31) are allowed is to draw
and \wy from a common linear space. The way in
vhich this has usually been done, and which allows the in-
troduction of non-line arameters to some exteant, is &%
follows: Let L’c)'ag’i&é?'ﬁ"? way, dstally from the
variational method applied to Hly using non-linear para~
meters, etc. To ensure that the variations (31) are -

allowed we then put (as a minimum)

A
¢). = &,,, ®O + Ayy ¥

o~
Then determine ihe linear variational parameters O« .y
and Q@ oy from the variational method applied to | P
More gemerally (Hurley, Int. J. Q. Chem. 1ls, 677 (1967))
if one wants to satisfy (32) for a continuous range of
A and Y values lying between ©- and L one can use
(as a minimum) b

A A c\ /
\‘,)‘: §‘ Q'hxl é’ \)d\

a
The C\.;,f being determined from the variational

method applied to MKy . (Note that with integrals
instead of sums, the set of linear homogeneous alge-
braic equations becomes a homogeneous linear integral /

\ equation
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